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Preface

Though being taught as a traditional subfield of classical electrodynamics, the
field of optics is now once again considered to be an important branch of the
physical sciences. Some even say that the 21st century will be the century of
the photon, following the era of the electron.

In teaching physics, wave optics and interferometry are important topics
with beneficial propaedeutic contributions to the theory of classical fields and
quantum mechanics. In lecture halls today we can easily demonstrate wave,
i.e., coherence phenomena with laser light sources. It is hence appropriate
also in lecturing to devote more room to the concepts of optics created since
the 1960s.

This textbook attempts to link the central topics of optics that were estab-
lished 200 years ago to the most recent research topics such as nonlinear op-
tics, laser cooling or photonic materials. To compromise between depth and
breadth, it is assumed that the reader is familiar with the formal concepts of
electrodynamics and also basic quantum mechanics. This new edition has not
only grown by an entire new chapter introducing the field of quantum optics.
It also presents new material describing the rapidly rising role of photonic ma-
terials and fibres. Last but not least about 100 problems with varying degrees
of difficulty have been included.

In scientific education, this textbook may serve as a reference for the foun-
dations of modern optics: classical optics, laser physics, laser spectroscopy,
concepts of quantum optics, nonlinear optics as well as applied optics may
profit. Teaching will be complemented through materials presented by new
media such as the internet. Nevertheless, the author strongly believes that
conventional textbooks will continue to be a prime source of learning. Novel
materials and complements will be made available, however, through the fol-
lowing website: www.uni-bonn.de/iap/oll.

Bonn, October 2006 Dieter Meschede
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1
Light rays

1.1
Light rays in human experience

The formation of an image is one

Fig. 1.1 Light rays.

of our most fascinating emotional
experiences. Even in ancient times
it was realized that our ‘vision’
is the result of rectilinearly prop-
agating light rays, because every-
body was aware of the sharp shad-
ows of illuminated objects. Indeed,
rectilinear propagation may be in-
fluenced by certain optical instru-
ments, e.g. by mirrors or lenses. Fol-
lowing the successes of Tycho Brahe
(1546–1601), knowledge about geo-
metrical optics made for the conse-
quential design and construction of
magnifiers, microscopes and tele-
scopes. All these instruments serve
as aids to vision. Through their as-
sistance, ‘insights’ have been gained
that added to our world picture of natural science, because they enabled ob-
servations of the world of both micro- and macro-cosmos.

Thus it is not surprising that the terms and concepts of optics had tremen-
dous impact on many areas of natural science. Even such a giant instrument
as the new Large Hadron Collider (LHC) particle accelerator in Geneva is
basically nothing other than an admittedly very elaborate microscope, with
which we are able to observe the world of elementary particles on a subnu-
clear length scale. Perhaps as important for the humanities is the wave the-
oretical description of optics, which spun off the development of quantum
mechanics.
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In our human experience, rectilinear propagation of light rays – in a homo-
geneous medium – stands in the foreground. But it is a rather newer under-
standing that our ability to see pictures is caused by an optical image in the
eye. Nevertheless, we can understand the formation of an image with the fun-
damentals of ray optics. That is why this textbook starts with a chapter on ray
optics.

1.2
Ray optics

When light rays spread spherically into all regions of a homogeneous
medium, in general we think of an idealized, point-like and isotropic lu-
minous source at their origin. Usually light sources do not fulfil any of these
criteria. Not until we reach a large distance from the observer may we cut
out a nearly parallel beam of rays with an aperture. Therefore, with an or-
dinary light source, we have to make a compromise between intensity and
parallelism, to achieve a beam with small divergence. Nowadays optical
demonstration experiments are nearly always performed with laser light
sources, which offer a nearly perfectly parallel, intense optical beam to the
experimenter.

When the rays of a beam are confined within only a small angle with a
common optical axis, then the mathematical treatment of the propagation of
the beam of rays may be greatly simplified by linearization within the so-
called ‘paraxial approximation’. This situation is met so often in optics that
properties such as those of a thin lens, which go beyond that situation, are
called ‘aberrations’.

The direction of propagation of light rays is changed by refraction and re-
flection. These are caused by metallic and dielectric interfaces. Ray optics
describes their effect through simple phenomenological rules.

1.3
Reflection

We observe reflection of, or mirroring of light rays not only on smooth metallic
surfaces, but also on glass plates and other dielectric interfaces. Modern mir-
rors may have many designs. In everyday life they mostly consist of a glass
plate coated with a thin layer of evaporated aluminium. But if the application
involves laser light, more often dielectric multi-layer mirrors are used; we will
discuss these in more detail in the chapter on interferometry (Chap. 5). For ray
optics, the type of design does not play any role.
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1.3.1
Planar mirrors

We know intuitively that at a planar

�
�

Fig. 1.2 Reflection at a planar mirror.

mirror like in Fig. 1.2 the angle of inci-
dence θ1 is identical with the angle of re-
flection θ2 of the reflected beam,

θ1 = θ2, (1.1)

and that incident and reflected beams
lie within a plane together with the sur-
face normal. Wave optics finally gives
us a more rigid reason for the laws of
reflection. Thereby also details like, for
example, the intensity ratios for dielec-
tric reflection (Fig. 1.3) are explained,
which cannot be derived by means of
ray optics.

1.4
Refraction

At a planar dielectric surface, like e.g. a

��

��

Fig. 1.3 Refraction and reflection at a
dielectric surface.

glass plate, reflection and transmission oc-
cur concurrently. Thereby the transmit-
ted part of the incident beam is ‘refracted’.
Its change of direction can be described
by a single physical quantity, the ‘index
of refraction’ (also: refractive index). It is
higher in an optically ‘dense’ medium than
in a ‘thinner’ one.

In ray optics a general description in
terms of these quantities is sufficient to un-
derstand the action of important optical
components. But the refractive index plays
a key role in the context of the macroscopic
physical properties of dielectric matter and their influence on the propagation
of macroscopic optical waves as well. This interaction is discussed in more
detail in the chapter on light and matter (Chap. 6).
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1.4.1
Law of refraction

At the interface between an optical medium ‘1’ with refractive index n1 and a
medium ‘2’ with index n2 (Fig. 1.3) Snell’s law of refraction (Willebrord Snell,
1580–1626) is valid,

n1 sin θ1 = n2 sin θ2, (1.2)

where θ1 and θ2 are called the angle of incidence and angle of emergence at
the interface. It is a bit artificial to define two absolute, material-specific re-
fractive indices, because according to Eq. (1.2) only their ratio n12 = n1/n2
is determined at first. But considering the transition from medium ‘1’ into a
third material ‘3’ with n13, we realize that, since n23 = n21n13, we also know
the properties of refraction at the transition from ‘2’ to ‘3’ . We can prove this
relation, for example by inserting a thin sheet of material ‘3’ between ‘1’ and
‘2’. Finally, fixing the refractive index of vacuum to nvac = 1 – which is ar-
gued within the context of wave optics – the specific and absolute values for
all dielectric media are determined.

In Tab. 1.1 on p. 11 we collect some physical properties of selected glasses.
The refractive index of most glasses is close to nglass = 1.5. Under usual at-
mospheric conditions the refractive index in air varies between 1.000 02 and
1.000 05. Therefore, using nair = 1, the refraction properties of the most impor-
tant optical interface, i.e. the glass–air interface, may be described adequately
in terms of ray optics. Nevertheless, small deviations and variations of the
refractive index may play an important role in everyday optical phenomena
in the atmosphere (for example, a mirage, p. 7).

1.4.2
Total internal reflection

According to Snell’s law, at the interface between a dense medium ‘1’ and
a thinner medium ‘2’ (n1 > n2), the condition (1.2) can only be fulfilled for
angles smaller than the critical angle θc,

θ < θc = sin−1(n2/n1). (1.3)

For θ > θc the incident intensity is totally reflected at the interface. We will see
in the chapter on wave optics that light penetrates into the thinner medium for
a distance of about one wavelength with the so-called ‘evanescent’ wave, and
that the point of reflection does not lie exactly at the interface (Fig. 1.4). The
existence of the evanescent wave enables the application of the so-called ‘frus-
trated’ total internal reflection, e.g. for the design of polarizers (Sect. 3.7.4).
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Fig. 1.4 Total internal reflection at a dielectric surface occurs for an-
gles θ > θc. The point of reflection of the rays does not lie exactly
within the interface, but slightly beyond (the Goos–Haenchen effect
[68, 146]).

1.5
Fermat’s principle: the optical path length

As long as light rays propagate in a homogeneous medium, they seem to fol-
low the shortest geometric path from the source to a point, making their way
in the shortest possible time. If refraction occurs along this route, then the
light ray obviously no longer moves on the geometrically shortest path.

The French mathematician Pierre de Fermat (1601–1665) postulated in 1658
that in this case the light ray should obey a minimum principle, moving from
the source to another point along the path that is shortest in time.

For an explanation of this principle, one cannot imagine a better one than
that given by the American physicist Richard P. Feynman (1918–1988), who vi-
sualized Fermat’s principle with a human example: One may imagine Romeo
discovering his great love Juliet at some distance from the shore of a shallow,
leisurely flowing river, struggling for her life in the water. Without thinking,
he runs straight towards his goal – although he might have saved valuable
time if he had taken the longer route, running the greater part of the distance
on dry land, where he would have achieved a much higher speed than in the
water.

Considering this more formally, we determine the time required from the
point of observation to the point of the drowning maiden as a function of the
geometric path length. Thereby we find that the shortest time is achieved
exactly when a path is chosen that is refracted at the water–land boundary. It
fulfils the refraction law (1.2) exactly, if we substitute the indices of refraction
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n1 and n2 by the inverse velocities in water and on land, i.e.

n1

n2
=

v2

v1
.

According to Fermat’s minimum principle, we have to demand the following.
The propagation velocity of light in a dielectric cn is reduced in comparison
with the velocity in vacuum c by the refractive index n:

cn = c/n.

Now the optical path length along a trajectory C , where the refractive index n
depends on the position r, can be defined in general as

Lopt = c
∫
C

ds
c/n(r)

=
∫
C

n(r) ds. (1.4)

With the tangential unit vector et, the path

Fig. 1.5 Fermat’s principle and
refraction at a dielectric surface.

element ds = et · dr along the path can be cal-
culated.

Example: Fermat’s principle and refraction
As an example of the use of the integral prin-
ciple, we will again consider refraction at a di-
electric surface and this time vary the length
of the optical path between the points A and
B in Fig. 1.5 (rAO = vector from A to O etc., e1,2
= unit vectors). Since the path must be mini-
mal it cannot change with small modifications
δr′ = r′OB − rOB = rOA − r′OA. Thus

Lopt = n1e1 · rAO + n2e2 · rOB,
δLopt = (n1e1 − n2e2) · δr′.

In the homogeneous regions light has to follow a line, thus variations can
only occur along the surface with the normal N, i.e. δr′ = N×δr. We use the
commutativity of the triple product,

(n1e1 − n2e2) · δr′ = (n1e1 − n2e2) · (N×δr) = ((n1e1 − n2e2)×N) · δr,

and find minimal variation for

(n1e1 − n2e2) × N = 0.

This relation is a vectorial formulation of Snell’s law (1.2), reproducing it im-
mediately.
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1.5.1
Inhomogeneous refractive index

In general, the index of refraction of a body is not spatially homogeneous, but
has underlying, continuous, even though small, fluctuations like the material
itself, which affect the propagation of light rays: n = n(r). We observe such
fluctuations in, for example, the flickering of hot air above a flame. From the
phenomenon of mirages, we know that efficient reflection may arise like in
the case of grazing incidence at a glass plate, even though the refractive index
decreases only a little bit towards the hot bottom.

Again using the idea of the integral principle, this case of propagation of a
light ray may also be treated by applying Fermat’s principle. The contribution
of a path element ds to the optical path length is dLopt = n ds = net · dr,
where et = dr/ds is the tangential unit vector of the trajectory. On the other
hand dLopt = ∇Lopt · dr is valid in accordance with Eq. (1.4), which yields
the relation

net = n
dr
ds

= ∇Lopt and n2 = (∇Lopt)2,

which is known as the eikonal equation in optics. We get the important ray
equation of optics, by differentiating the eikonal equation after the path,1

d
ds

(
n

dr
ds

)
= ∇n. (1.5)

A linear equation may be reproduced for homogeneous materials (∇n = 0)
from (1.5) without difficulty.

Example: Mirage
As a short example we will treat reflection at a hot film of air near the ground,
which induces a decrease in air density and thereby a reduction of the refrac-
tive index. (Another example is the propagation of light rays in a gradient
wave guide – Sect. 1.7.3.) We may assume in good approximation that for
calm air the index of refraction increases with distance y from the bottom, e.g.
n(y) = n0(1 − ε e−αy). Since the effect is small, ε � 1 is valid in general,
while the scale length α is of the order α = 1 m−1. We look at Eq. (1.5) for
r = (y(x), x) for all individual components and find for the x coordinate with
constant C

n
dx
ds

= C.

1) Thereby we apply d/ds = et · ∇ and

d
ds

∇L = (et ·∇)∇L =
1
n

(∇L ·∇)∇L =
1

2n
∇(∇L)2 =

1
2n

∇n2.
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We may use this result as a partial parametric solution for the y coordinate,

d
ds

(
n

dy
ds

)
=

d
dx

(
n

dy
dx

dx
ds

)
dx
ds

=
d

dx

(
C

dy
dx

)
C
n

=
∂n(y)

∂y
.

The constant may be chosen to be C = 1, because it is only scaling the x
coordinate. Since 2n ∂n/∂y = ∂n2/∂y and n2 � n2

0(1 − 2ε e−αy), we get for
ε � 1

d2y(x)
dx2 =

1
2

∂

∂y
n2(y) = n2

0εα e−αy .

This equation can be solved by fundamental methods and it is convenient to
write the solution in the form

y = y0 +
1
α

ln [cosh2(κ(x − x0))]
κ(x−x0)�1→ y0 +

2κ

α
(x − x0),

where the new parameter κ has to be determined from boundary conditions.
For large distances from the point of reflection at x = x0 we find straight prop-
agation as expected. The maximum angle φ = arctan(2κ/α), where reflection
is still possible, is defined by κ ≤ n0α(ε/2)1/2. As in Fig. 1.6 the observer reg-
isters two images – one of them is upside down and corresponds to a mirror
image. The curvature of the light rays declines quickly with increasing dis-
tance from the bottom and therefore may be neglected for the ‘upper’ line of
sight. At (x0, y0) a ‘virtual’ point of reflection may be defined.

�

����	

�

�


��
��
	

Fig. 1.6 Profile of the refractive index and optical path for a mirage

1.6
Prisms

The technically important rectangular reflection is achieved with an angle of
incidence of θi = 45◦. For ordinary glasses (n � 1.5), this is above the angle
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Fig. 1.7 Reflection in 90◦ prism. This prism is used for rectangular
beam deflection. It may also be used for the design of a retro-reflector,
whereby an optical delay Δt = Δ�/c is realized by simple adjustment.

of total internal reflection θc = sin−1 1.5 = 42◦. Glass prisms are therefore
often used as simple optical elements, which are applied for beam deflection.
More complicated prisms are realized in many designs for multiple reflec-
tions, where they have advantages over the corresponding mirror combina-
tions due to their minor losses and more compact and robust designs.

Often used designs are the Porro prism and the retro-reflector (Fig. 1.8) –
other names for the latter are ‘corner cube reflector’, ‘cat’s eye’ or ‘triple mir-
ror’. The Porro prism and its variants are applied for example in telescopes to
create upright images. The retro-reflector not only plays an important role in
optical distance measurement techniques and interferometry, but also enables
functioning of safety reflectors – cast in plastics – in vehicles.

We may also regard cylin-

Fig. 1.8 The Porro prism (left) is combined out of two
rectangular prisms, which rotate the image plane of an
object such that in combination with lenses one gets an
upright image. The retro-reflector (right) throws back
every light ray independently of its angle of incidence,
but causing a parallel shift.

drical glass rods as a vari-
ant of prisms where total in-
ternal reflection plays an im-
portant role. In such a rod
(see Fig. 1.11) a light ray is
reflected back from the sur-
face to the interior again and
again, without changing its
path angle relative to the rod
axis. Such fibre rods are used,
for example, to guide light
from a source towards a pho-
todetector. In miniaturized
form they are applied as wave
guides in optical telecommu-
nications. Their properties will be discussed in the section on beam propa-
gation in wave guides (Sect. 1.7) and later on in the chapter on wave optics
(Sect. 3.3) in more detail.
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1.6.1
Dispersion

Prisms played a historical role in the spectral decomposition of white light into
its constituents. The refractive index and thus also the angle of deflection δ in
Fig. 1.9 actually depend on the wavelength, n = n(λ), and therefore light rays
of different colours are deflected with different angles. Under normal dispersion
blue wavelengths are refracted more strongly than red, n(λblue) > n(λred).

Fig. 1.9 Refraction and dispersion at a symmetrical prism. The index
of refraction n can be calculated from the minimum angle of deflection
δ = δmin in a simple manner.

Refractive index and dispersion are very important technical quantities for
the application of optical materials. The refractive index is tabulated in manu-
facturers’ data sheets for various wavelengths, and (numerous different) em-
pirical formulae are used for the wavelength dependence. The constants from
Tab. 1.1 are valid for this formula which is also called the Sellmeier equation:

n2 = 1 +
B1λ2

λ2 − C1
+

B2λ2

λ2 − C2
+

B3λ2

λ2 − C3
(λ in μm). (1.6)

By geometrical considerations we find that the angle of deflection δ in Fig. 1.9
depends not only on the angle of incidence θ but also on the aperture angle α

of the symmetrical prism and of course on the index of refraction, n,

δ = θ − α + arcsin
[

sin(α
√

n2 − sin2 θ) − cos α sin θ )
]

,

δmin = 2θsymm − α.

The minimum deflection angle δmin is achieved for symmetrical transit
through the prism (θ = θsymm) and enables a precise determination of the
refractive index. The final result is expressed straightforwardly by the quanti-
ties α and δmin,

n =
sin [(α + δmin)/2]

sin (α/2)
.

For quantitative estimation of the dispersive power K of glasses, the Abbe
number A may be used. This relates the refractive index at a yellow wave-

�
δθ

α

��

������

����
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length (at λ = 587.6 nm, the D line of helium) to the change of the re-
fractive index, estimated from the difference of the refractive indices at a
blue (λ = 486.1 nm, Fraunhofer line F of hydrogen) and a red wavelength
(λ = 656.3 nm, Fraunhofer line C of hydrogen),

A = K−1 =
nD − 1

nF − nC
.

According to the above, a large Abbe number means weak dispersion, and
a small Abbe number means strong dispersion. The Abbe number is also im-
portant when correcting chromatic aberrations (see Sect. 4.5.3).

Tab. 1.1 Optical properties of selected glasses.

Name Boron crown Heavy flint glass Barium crown Flint glass
Abbreviation BK7 SF11 LaSF N9 BaK 1 F 2
Abbe number A 64.17 25.76 32.17 57.55 36.37
Refractive index n for selected wavelengths
λ = 486.1 nm 1.5224 1.8065 1.8690 1.5794 1.6321
λ = 587.6 nm 1.5168 1.7847 1.8503 1.5725 1.6200
λ = 656.3 nm 1.5143 1.7760 1.8426 1.5695 1.6150

Dispersion constants of refractive index (see Eq. (1.6))
B1
B2

B3

C1
C2

C3

1.0396
0.2379
1.0105
0.0060
0.0200
103.56

1.7385
0.3112
1.1749
0.0136
0.0616
121.92

1.9789
0.3204
1.9290
0.0119
0.0528
166.26

1.1237
0.3093
0.8815
0.0064
0.0222
107.30

1.3453
0.2091
0.9374
0.0100
0.0470
111.89

Density ρ (g cm−3)
2.51 4.74 4.44 3.19 3.61

Expansion coefficient Δ�/� (−30 to +70 ◦C) ×106

7.1 6.1 7.4 7.6 8.2
Strain birefringence: typically 10 nm cm−1.
Homogeneity of the refractive index from melt to melt: δn/n = ±1 × 10−4.

The index of refraction describes the interaction of light with matter, and
we will come to realize that it is a complex quantity, which describes not only
the properties of dispersion but also those of absorption as well. Furthermore,
it is the task of a microscopic description of matter to determine the dynamic
polarizability and thus to establish the connection to a macroscopic descrip-
tion.
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1.7
Light rays in wave guides

The transmission of messages via light signals is a very convenient method
that has a very long history of application. For example, in the 19th century,
mechanical pointers were mounted onto high towers and were observed with
telescopes to realize transmission lines of many hundreds of miles. An ex-
ample of a historic relay station from the 400 mile Berlin–Cologne–Coblenz
transmission line is shown in Fig. 1.10. Basically, in-air transmission is also
performed nowadays, but with laser light. But it is always affected by its scat-
tering properties even at small distances, because turbulence, dust and rain
can easily inhibit the propagation of a free laser beam.

Ideas for guiding optical waves have been in existence for a very long time.
In analogy to microwave techniques, for example, at first hollow tubes made
of copper were applied, but their attenuation is too large for transmission
over long distances. Later on periodical lens systems have been used for the
same purpose, but due to high losses and small mechanical flexibility they
also failed.

The striking breakthrough hap-

Fig. 1.10 Historic station No. 51 of the Berlin–Colog-
ne–Coblenz optic-mechanical ‘sight’ transmission line
on the tower of the St. Pantaleon church, Cologne.
Picture by Weiger (1840).

pened to ‘optical telecommu-
nication’ through the develop-
ment of low-loss wave guides,
which are nothing other than
elements for guiding light rays.
They can be distributed like
electrical cables, provided that
adequate transmitters and re-
ceivers are available. With
overseas cables, significantly
shorter signal transit times and
thus higher comfort for phone
calls can be achieved than via
geostationary satellites, where
there is always a short but un-
pleasant and unnatural break
between question and answer.

Therefore, propagation of
light rays in dielectric wave
guides is an important chapter
in modern optics. Some basics
may yet be understood by the
methods of ray optics.
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1.7.1
Ray optics in wave guides

Total internal reflection in an optically thick medium provides the fundamen-
tal physical phenomenon for guiding light rays within a dielectric medium.
Owing to this effect, for example, in cylindrical homogeneous glass fibres,
rays whose angle with the cylinder axis stays smaller than the angle of total
internal reflection θc are guided from one end to the other. Guiding of light
rays in a homogeneous glass cylinder is affected by any distortion of the sur-
face, and a protective cladding could even suppress total internal reflection.

Therefore, various concepts have been developed, where the optical waves
are guided in the centre of a wave guide through variation of the index of re-
fraction. These wave guides may be surrounded by cladding and entrenched
like electrical cables.

We will present the two most
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Fig. 1.11 Profiles of the refractive index and ray
path in optical wave guides. Upper: wave guide with
homogeneous refractive index. Centre: wave guide
with stepped profile of refractive index (step-index
fibre). Lower: wave guide with continuous profile of
refractive index (gradient-index fibre).

important types. Step-index
fibres consist of two homoge-
neous cylinders with different
refractive indices (Fig. 1.11).
To achieve beam guiding, the
higher index of refraction must
be core, the lower one in the
cladding. Gradient-index fibres
with continuously changing (in
good approximation, parabolic)
refractive index are more so-
phisticated to manufacture, but
they have technical advantages
like, for example, a smaller
group velocity dispersion.

Excursion: Manufacturing wave guides

The starting material is an ordinary tube made of quartz glass. It rotates on a lathe
and is blown through on the inside by a gas mixture (chlorides such as highly purified
SiCl4, GeCl4, etc.). An oxyhydrogen burner heats a small zone of only a few centime-
tres up to about 1600 ◦C, in which the desired materials are deposited as oxides on the
inner walls (chemical vapour deposition, CVD). Thus by multiple repetition a refractive
index profile is established, before the tube is melted at about 2000 ◦C to a massive
glass rod of about 10 mm diameter, a so-called preform. In the last step a fibre pulling
machine extracts the glass fibre out of a crucible with viscous material. Typical cross-
sections are 50 and 125 μm, which are coated with a cladding for protection.
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1600 oC 2000 oC 2000 oC

1. SiCl4 + BCl3

+ O2

SiO2:B3O3 2����

Si02

2. SiCl4 + GeCl4

SiO

Fig. 1.12 Manufacturing of wave guides. The preform is manufactured
with appropriate materials with distinct indices of refraction, which are
deposited on the inner walls of a quartz tube by a chemical reaction.

1.7.2
Step-index fibres

The principle of total internal reflection is applied in step-index fibres (Fig. 1.13),
which consist of a core with refractive index n1 and a cladding with n2 < n1.
The relative difference in the index of refraction

Δ =
n1 − n2

n1
(1.7)

is not more than 1–2%, and the light rays are only guided if the angle α to-
wards the fibre axis is shallow enough to fulfil the condition for total internal
reflection.

For example, for quartz glass

� ��

��

�
�

Fig. 1.13 Critical angle in a step-index fibre.

(n2 = 1.45 at λ = 1.55 μm), whose
core index of refraction has been
enhanced by GeO2 doping up to
n1 = n2 + 0.015, according to θc =
sin−1(n2/n1) one finds the critical
angle θc = 81.8◦. The complemen-
tary beam angle relative to the fi-
bre axis, αG = 90◦ − θc, can be ap-
proximated by

αG � sin αG �
√

2Δ, (1.8)

since n2/n1 = 1 − Δ, and thus is set in relation to Δ, which yields α ≤ 8.2◦ for
this case.

When light rays cross the axis of a fibre, propagation takes place in a cut
plane, which is called the meridional plane. Skewed rays do not pass the axis
and are guided on a polygon around the circle. It can be shown that the rays
must confine an angle α < αG with the z axis to be guided by total internal
reflection.
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1.7.2.1 Numerical aperture of an optical fibre

To guide a light ray in an optical fibre, the angle of incidence at the incou-
pler must be chosen small enough. The maximum aperture angle θa of the
acceptance cone can be calculated according to the refraction law, sin θa =
n1 sin αG = n1 cos θc. The sine of the aperture angle is called the numerical
aperture (NA). According to Eq. (1.8) and cos θc � √

2Δ it can be related with
the physical parameters of the optical fibre,

NA � n1
√

2Δ. (1.9)

This yields, for example, NA = 0.21 for the quartz glass fibre mentioned
above, which is a useful and typical value for standard wave guides.

1.7.2.2 Propagation velocity

Light within the core of the wave guide propagates along the trajectory with
a velocity v(r(z)) = c/n(r(z)). Along the z axis the beam propagates with a
reduced velocity, 〈vz〉 = v cos α, which can be calculated for small angles α(z)
to the z axis according to

〈vz〉 � c
n1

(
1 − 1

2
α2

)
. (1.10)

In Sect. 3.3 on the wave theory of light, we will see that the propagation veloc-
ity is related to the phase velocity.

1.7.3
Gradient-index fibres

Beam guiding can also be performed by means of a gradient-index fibre (GRIN),
where the quadratic variation of the index of refraction is important. To de-
termine the curvature of a light ray induced by the refractive index, we apply
the ray equation (1.5). This is greatly simplified in the paraxial approximation
(ds � dz) and for a cylindrically symmetric fibre,

d2r
dz2 =

1
n

dn
dr

.

A parabolic profile of the refractive index with a difference of the refractive
index of Δ = (n1 − n2)/n1,

n(r≤a) = n1

[
1 − Δ

( r
a

)2
]

and n(r>a) = n2, (1.11)

decreases from the maximum value n1 at r = 0 to n2 at r = a. One ends up
with the equation of motion of a harmonic oscillator,

d2r
dz2 +

2Δ
a2 r = 0,
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and realizes immediately that the light ray performs oscillatory motion about
the z axis. The period is

Λ =
2πa√

2Δ
, (1.12)

and a light ray is described with a wave number K = 2π/Λ according to

r(z) = r0 sin(2πz/Λ).

The maximum elongation allowed is r0 = a, because otherwise the beam
loses its guiding. Thereby also the maximum angle αG =

√
2Δ for crossing the

axis occurs. It is identical with the critical angle for total internal reflection in
a step-index fibre and yields also the same relation to the numerical aperture
(Eq. (1.9)). As in the case of a step-index fibre, the propagation velocity of the
light ray is of interest. Using the approximation Eq. (1.10) we calculate the
average velocity during an oscillation period with tan α � α = dr(z)/dz,

〈vz〉 =
〈

c cos α(r(z))
n(r(z))

〉
=

c
n1

〈
1 − Δ(r0/a)2 cos2(Kz)
1 − Δ(r0/a)2 sin2(Kz)

〉
,

and find after a short conversion the remarkable result

〈vz〉 =
c

n1

[
1 −

(
Δ
2

)2 (
α

αG

)2
]

,

which actually means that, because Δ � 1, the propagation velocity within
a gradient-index fibre depends much less on the angle α than that within a
step-index fibre. As we will see, this circumstance plays an important role for
signal propagation in wave guides (see Sect. 3.3).

1.8
Lenses and curved mirrors

The formation of an image plays a major role in optics, and lenses and curved
mirrors are essential parts in optical devices. First we will discuss the effect of
these components on the propagation of rays; owing to its great importance
we have dedicated an extra chapter (Chap. 4) to the formation of images.

1.8.1
Lenses

We define an ideal lens as an optical element that merges all rays of a point-
like source into one point again. An image where all possible object points
are transferred into image points is called a stigmatic image (from the Greek:
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stigma, point). The source may even be far away and illuminate the lens with a
parallel bundle of rays. In this case the point of merger is called the focal point
or focus. In Fig. 1.14, we consider a beam of parallel rays that passes through
the lens and is merged in the focal point. According to Fermat’s principle,
the optical path length must be equal for all possible paths, which means that
they are independent of the distance of a partial beam from the axis. Then the
propagation of light must be delayed most on the symmetry axis of the lens
and less and less in the outer areas!

Fig. 1.14 Upper: Stigmatic lens imaging. All rays starting at object
point P are merged again at image point P′. The light rays are delayed
more near the axis of the lens body than in the outermost areas, so
that all rays make the same optical path length to the image point.
A lens may be figured as a combination of several prisms. Lower: A
parallel beam of rays originating from a source at infinite distance is
focused at the focal point at focal distance f .

For a simplified analysis, we neglect the thickness of the lens body, consider
the geometrical increase of the path length from the lens to the focal point at a
distance f and expand the term as a function of distance r from the axis,

�(r) =
√

f 2 + r2 � f
(

1 +
r2

2 f 2

)
.

To compensate for the quadratic increase of the optical path length �(r), the
delay by the path within the lens glass – i.e. the thickness – must also vary
quadratically. This is actually the condition for spherical surfaces, which have
been shown to be extremely successful for convergent lenses! The result is
the same with much more mathematical effort, if one explores the properties
of refraction at a lens surface assuming that a lens is constructed of many
thin prisms (Fig. 1.14). In the chapter on lens aberrations, we will deal with
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the question of which criteria should be important for the choice of a planar
convex or biconvex lens.

1.8.2
Concave mirrors

Among curved mirrors, concave or parabolic mirrors play the most impor-
tant role. They are very well known from huge astronomical telescopes (see
Chap. 4), because we entered the fascinating world of the cosmos with their
aid. But they are used much more often in laser resonators (Sect. 5.6).

Taking into account the tangential plane

�

��� �

!���������
"�����

Fig. 1.15 Path of rays for a concave mir-
ror. For near-axis incident light, spherical
mirrors are used.

at the intercept of the surface normal
at the lens surface, we can transfer
the conditions of planar reflection to
curved mirror surfaces. Concave mir-
rors mostly have axial symmetry, and
the effect on a parallel beam of rays
within one cut plane is visualized in
Fig. 1.15.

The reflected partial rays meet at the
focal point or focus on the mirror axis,
as they do in the case of a lens. It is

known from geometry that the reflection points must then lie on a parabola.
Near the axis, parabolic mirrors may in good approximation be substituted
by spherical mirrors, which are much easier to manufacture. On the left-hand
side of Fig. 1.16 the geometrical elements are shown, from which the depen-
dence of the focal length (defined here by the intersection point with the opti-
cal axis) on the axis distance y0 of a parallel incident beam may be calculated,

f = R − R
2 cos α

� R
2

[
1 − 1

2

(y0

R

)2
+ · · ·

]
.

In general we neglect the quadratic correction, which causes an aperture
error and is investigated in more detail in Sect. 4.5.2.3.

Fig. 1.16 Focusing an incident beam that is parallel to (left) and
oblique to (centre: top view; right: side view) the optical axis.
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In laser resonators a situation often occurs in which spherical mirrors are
simultaneously used as deflection mirrors, e.g. in the ‘bowtie resonator’ in
Fig. 7.33. Then the focal width of the rays within the ray plane ( fx) and within
the plane perpendicular to that one ( fy) will differ from f0 = R/2,

fx =
R

2 cos α
=

f0

cos α
and fy =

R cos α

2
= f0 cos α.

The geometrical situations in the top view (Fig. 1.16, center) are easy to see.
In the side view one looks at the projection onto a plane perpendicular to
the direction of emergence. The projections of the radius and focal length
are reduced to R cos α and f cos α, respectively. The difference between the
two planes occurring here is called astigmatic aberration and sometimes can be
compensated by simple means (see for example P. 171).

1.9
Matrix optics

As a result of its rectilinear propagation, a free light ray may be treated like a
straight line. In optics, systems with axial symmetry are especially important,
and an individual light ray may be described sufficiently well by the distance
from and angle to the axis (Fig. 1.17). If the system is not rotationally sym-
metric, for example after passing through a cylindrical lens, then we can deal
with two independent contributions in the x and y directions with the same
method.

The modification of the beam direction

�

��

��

�

Fig. 1.17 Key variables of an optical ray
for simple translation.

by optical components – mirrors, lenses,
dielectric surfaces – is described by a
trigonometric and therefore not always
simple relation. For near-axis rays, these
functions can often be linearized, and thus
the mathematical treatment is simplified
enormously. This becomes obvious, for
example, for a linearized form of the law
of refraction (1.2):

n1θ1 = n2θ2. (1.13)

Here we have made use of this approximation already with the application
of Fermat’s principle for ideal lenses. Near-axis rays allow the application
of spherical surfaces for lenses, which are much easier to manufacture than
mathematical ideal surfaces. Furthermore, ideal systems are only ‘ideal’ for
selected ray systems, otherwise they suffer from image aberrations like other
systems.
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When treating the modification of a light ray by optical elements in this ap-
proximation by linear transformation, matrices are a convenient mathematical
tool for calculating the fundamental properties of optical systems. The devel-
opment of this method made for the denomination matrix optics. The intro-
duction of transformation matrices for ray optics may be visualized very eas-
ily, but they achieved striking importance, because they do not change their
form when treating near-axis rays according to wave optics (see Sect. 2.3.2).
Furthermore this formalism is also applicable for other types of optics like
‘electron optics’, or the even more general ‘particle optics’.

1.9.1
Paraxial approximation

Let us consider the propagation of a light ray at a small angle α to the z axis.
The beam is fully determined by the distance r from the z axis and the slope
r′ = tan α. Within the so-called paraxial approximation, we now linearize the
tangent of the angle and substitute it by its argument, r′ � α, and then merge
r with r′ to end up with a vector r = (r, α). At the start a light ray may have
a distance to the axis and a slope of r1 = (r1, α1). Having passed a distance d
along the z axis, then

r2 = r1 + α1d,
α2 = α1,

hold. One may use 2 × 2 matrices to write the translation clearly,

r2 = T r1 =

(
1 d
0 1

)
r1. (1.14)

A bit more complicated is the modification by a refracting optical surface.
For that purpose we look at the situation of Fig. 1.18, where two optical media
with refractive indices n1 and n2 are separated by a spherical interface with
radius R. If the radius vector subtends an angle φ with the z axis, then the light

Fig. 1.18 Modification of a light ray at curved refracting surfaces.

�

α1

α2

�

�� ��

φ

��

�

� �"



� ���

�� ��



1.9 Matrix optics 21

ray is obviously incident on the surface at an angle θ1 = α1 + φ and is related
to the angle of emergence by the law of refraction. In paraxial approximation
according to Eq. (1.2), n1θ1 � n2θ2 and φ � r1/R is valid, and one finds

n1

(
α1 +

r1

R

)
= n2

(
α2 +

r2

R

)
.

The linearized relations may be described easily by the refraction matrix B,(
r2

α2

)
= B

(
r1

α1

)
=

(
1 0

(n1 − n2)/n2R n1/n2

)(
r1

α1

)
. (1.15)

1.9.2
ABCD matrices

Tab. 1.2 Important ABCD matrices.
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The most important optical elements may be specified by their transforma-
tions, also called ABCD matrices,(

r2

α2

)
=

(
A B
C D

)(
r1

α1

)
, (1.16)

which we collect in Tab. 1.2 for look-up purposes and will be presented in the
following in more detail.

According to Fig. 1.18 the effect of a lens on a light ray is characterized
by a refraction B at the entrance, a translation T in the glass and one further
refraction B′ at the exit. Now the matrix method shows its strength, because
the effect of a lens can easily be expressed as a product L = B′TB of three
operations,(

r2

α2

)
= L

(
r1

α1

)
= B′TB

(
r1

α1

)
. (1.17)

Before we discuss the lens and some more examples in detail, we have to
fix some conventions, which in general are used in matrix optics:

1. The ray direction goes from left to right in the positive direction of the z
axis.

2. The radius of a convex surface is positive, R > 0, and that of a concave
surface is negative, R < 0.

3. The slope is positive when the beam moves away from the axis, and
negative when it moves towards the axis.

4. An object distance or image distance is positive (negative) when lying in
front of (behind) the optical element.

5. Object distances are defined to be positive (negative) above (below) the
z axis.

6. Reflective optics is treated by flipping the ray path after every element.

1.9.3
Lenses in air

Now we will explicitly calculate the lens matrix L according to Eq. (1.16) and
we take into account the index of refraction nair = 1 in Eqs. (1.14) and (1.15).
The expression

L =

⎛⎜⎝ 1 − n − 1
n

d
R

d
n 0

(n − 1)
[

1
R′ − 1

R − d(n − 1)2

RR′n

]
1 + n − 1

n
d
R′

⎞⎟⎠
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makes a complicated and not very convenient expression at first sight.
Though it may allow the treatment of very thick lenses, by far the most im-
portant are the predominantly used ‘thin’ lenses, whose thickness d is small
compared to the radii of curvature R, R′ of the surfaces. With d/R, d/R′ � 1
or by direct multiplication B′B, we find the much simpler form

L �
(

1 0

(n − 1)
(

1
R′ − 1

R

)
1

)

and introduce the symbol D for the refractive power in the lens maker’s equa-
tion,

D = −(n − 1)
(

1
R′ −

1
R

)
=

1
f

. (1.18)

Thus the ABCD matrix for thin lenses becomes very simple,

L =

(
1 0

−D 1

)
=

(
1 0

−1/ f 1

)
, (1.19)

where the sign is chosen such that convergent lenses have a positive refractive
power. The refractive power is identical with the inverse focal length, D =
1/ f . The refractive power D is measured in units of dioptres (1 dpt = 1 m−1).
To support the interpre-

$ �

� %

Fig. 1.19 Point image formation with a lens.

tation of Eq. (1.19), we
consider a bundle of rays
that originates from a point
source G on the z axis
(Fig. 1.19). Such a bundle
of rays can be described at
a distance g from the source
according to(

r
α

)
= α

(
g
1

)
. (1.20)

We calculate the effect of the lens in the form

L

(
r
α

)
= α

(
g

1 − g/ f

)
= α′

(
−b
1

)
. (1.21)

The lens transforms the incident bundle of rays into a new bundle, which
again has the form (1.20). It converges for α′ < 0 to the axis, crosses it at a
distance b > 0 (convention 4) behind the lens, and creates there an image of
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the point source. If b < 0, then the virtual image of the point source lies in
front of the lens and the lens has the properties of a dispersive lens.

By comparison of coefficients, we obtain the relation between object dis-
tance g and image distance b from Eq. (1.21) for lens imaging:

1
f

=
1
g

+
1
b

. (1.22)

This equation is the known basis for optical imaging. We refer to this topic
again in Chap. 4 in more detail.

Example: ABCD matrix of an imaging system
For imaging by an arbitrary ABCD system, we must claim that a bundle of
rays (r1, α1) is again merged at a point at a certain distance d = d1 + d2:(

r2

α2

)
=

(
1 d1

0 1

)(
A B
C D

)(
1 d2

0 1

)(
r1

α1

)
.

For stigmatic imaging r2 must be independent of α1 and by calculation one
finds the condition d1D + d2A + d1d2C + B = 0, which for B = 0 can be
fulfilled by suitable choice of d1 and d2, even if C < 0. Thus the ABCD matrix
takes exactly the form that we know already from lenses and lens systems.

1.9.4
Lens systems

The matrix method enables us to explore the effect of a system consisting of
two lenses with focal lengths f1 and f2 at a distance d. We multiply the ABCD
matrices according to Eqs. (1.19) and (1.14) and get the matrix M of the system

M = L2TL1 =

(
1 0

−1/ f2 1

)(
1 d
0 1

)(
1 0

−1/ f1 1

)

=

⎛⎜⎝ 1 − d
f1

d

−
(

1
f2

+ 1
f1

− d
f1 f2

)
1 − d

f2

⎞⎟⎠ .

(1.23)

The system of two lenses substitutes a single lens with focal length given by

1
f

=
1
f2

+
1
f1

− d
f1 f2

. (1.24)
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We consider the following two interesting extreme cases.

(i) d � f1,2: Two lenses that are mounted directly next to each other, with
no space between them, add their refractive powers, M � L2L1 with
D = D1 + D2. This circumstance is used for example when adjusting
eyeglasses, when refractive powers are combined until the required cor-
rection is found. Obviously a biconvex lens can be constructed out of
two planar convex lenses, expecting that the focal length of the system
is divided by two.

(ii) d = f1 + f2: If the focal points coincide, a telescope is realized. A parallel
bundle of rays with radius r1 is widened or collimated into a new bundle
of parallel rays with a new diameter ( f2/ f1)r1. The refractive power of
the system vanishes according to Eq. (1.24), D = 0. Such systems are
called afocal.

A thin lens is one of the oldest optical instruments, and thin lenses may have
many different designs due to their various applications. But since lens aber-
rations are of major interest, we will dedicate a specific section to the various
designs (Sect. 4.5.1).

1.9.5
Periodic lens systems
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Fig. 1.20 Periodic lens system and equivalence to a two-mirror res-
onator.

Periodic lens systems had already been analysed in early times to realize op-
tical light transmission lines. For such an application it is important that a
light ray does not leave the system even after long distances. We consider a
periodic variant of the lens system with focal lengths f1 and f2 at a distance d.
For that purpose we add one more identical translation to the transformation
matrix from Eq. (1.23), which yields a system equivalent to a system of two
concave mirrors (Fig. 1.20):(

A B
C D

)
=

(
1 0

−1/ f2 1

)(
1 d
0 1

)(
1 0

−1/ f1 1

)(
1 d
0 1

)

=

(
1 d

−1/ f2 1 − d/ f2

)(
1 d

−1/ f1 1 − d/ f1

)
.
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Now for n-fold application the individual element will cause total transfor-
mation(

An Bn

Cn Dn

)
=

(
A B
C D

)n
.

Introducing

cos Θ =
1
2
(A + D) = 2

(
1 − d

2 f1

)(
1 − d

2 f2

)
− 1, (1.25)

this matrix can be evaluated algebraically. Thus one calculates(
A B
C D

)n
=

1
sin Θ

(
A sin nΘ − sin (n − 1)Θ B sin nΘ

C sin nΘ D sin nΘ − sin (n − 1)Θ

)
.

The angle Θ must remain real, to avoid the matrix coefficients increasing to
infinity. Otherwise the light ray would actually leave the lens system. Thus
from the properties of the cosine function,

−1 ≤ cos Θ ≤ 1,

Fig. 1.21 Stability diagram for lenses and optical resonators accord-
ing to the condition (1.26). Stable resonator configurations are within
the hatched area. The dashed lines indicate the positions of confocal
resonators, d = (r1 + r2)/2. Symmetric planar parallel, confocal and
concentric resonators are at the positions circled 1, 2, and 3.
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and in combination with Eq. (1.25) we get

0 ≤
(

1 − d
2 f1

)(
1 − d

2 f2

)
≤ 1. (1.26)

This result defines a stability criterion for the application of a wave guide con-
sisting of lens systems, and the corresponding important stability diagram is
shown in Fig. 1.21. We will deal with this in more detail later on, because
multiple reflection between concave mirrors of an optical resonator can be de-
scribed in this way as well (Sect. 5.6).

1.9.6
ABCD matrices for wave guides

According to Sect. 1.7 and with the aid of the wave number constant K =
2π/Λ (Eq. (1.12)) a simple ABCD matrix for the transformation of a ray by a
graded-index fibre of length � can be specified:

G =

(
cos K� K−1 sin K�

−K sin K� cos K�

)
. (1.27)

With short pieces of fibre (K� < π/4) also thin lenses can be realized, and it
can be shown that the focal point lies at f = K−1 cot K�. These components
are called GRIN lenses.

1.10
Ray optics and particle optics

Traditional optics, which deals with light rays and is the topic of this textbook,
was conceptually in every respect a role model for ‘particle optics’, which
started around the year 1900 with the exploration of electron beams and ra-
dioactive rays. Since ray optics describes the propagation of light rays, it is
convenient to look for analogies in the trajectories of particles. We will see in
the chapter on coherence and interferometry (Chap. 5) that the wave aspects
of particle beams are widely described in terms of the ideas of optics as well.

To re-establish the analogy explicitly, we refer to considerations about Fer-
mat’s principle (p. 5), because there a relation between the velocity of light
and the index of refraction is described. This relation is particularly simple if
a particle moves in a conservative potential (potential energy Epot(r)), like for
example an electron in an electric field. As a result of energy conservation,

Ekin(r) + Epot(r) = Etot,
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we can immediately infer from Ekin = mv2/2 that

v(r) =

√
2
m

[Etot − Epot(r)],

if the particles do not move too fast and we can adopt classical Newtonian
mechanics (in a particle accelerator, the special theory of relativity has to be
applied).

We can define an effective relative index of refraction by

v(r1)
v(r2)

=
neff(r2)
neff(r1)

=

√
[Etot − Epot(r2)]√
[Etot − Epot(r1)]

.

As in the case of light, it must satisfy an additional condition, to be defined
absolutely. For example, we may claim that neff = 1 for Epot = 0. But then it is
obvious that neff depends extremely on the velocity outside of the potential –
particle optics has properties that are very much chromatic! The fundamental
reason for this difference is the different relation between kinetic energy E and

Fig. 1.22 Lenses for particle optics. Upper:
So-called ‘single lens’ for electron optics with
equipotential surfaces qU [136]. The potential
is created by symmetric positioning of three
conducting electrodes, the two outer ones
lying on the same potential. Lower: Mag-
netic lens for atom optics with equipotential

surfaces |μ · B| [61, 95]. An axial magnetic
hexapole is formed out of circle segments,
which are manufactured from a homoge-
neously magnetized permanent magnet (e.g.
NdFeB or SmCo). The strength of the mag-
netic field rises as a square function of the
radial distance.
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momentum p for light and for particles having mass, which is also called the
dispersion relation:

light E = pc,
particles E = p2/2m.

In charged particle beams a narrow velocity distribution can be created by
acceleration, which makes the difference not very pronounced. But the broad-
ness of the velocity distribution in thermal beams of neutral atoms induces
significant problems. Indeed, this velocity distribution can be manipulated
by so-called supersonic jets or by laser cooling (see Sect. 11.6) in such a way
that even ‘atom optics’ can be established [61, 95]. We present some important
devices of electron and atom optics in Fig. 1.22.
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Problems

1.1. Sun spots In the shade of a densely leaved tree (in the light transmitted
through the gaps in window blinds) one observes with clear sky conditions
numerous round light spots. What is their origin? How do they depend on
the shape of the gaps in the leaves?

1.2. Mirror images Why does a mirror exchange left and right but not up and
down?

1.3. Parabolic mirror with skewed rays What is the image of a bundle of par-
allel rays entering a parabolic mirror with a non-vanishing angle relative to its
axis?

1.4. Rainbow Explain the origin of the rainbow. Estimate the dispersion of
water dn/dλ from the appearance of colours. The index of refraction of wa-
ter is about n = 1.33. (The precise value depends on the specific colour.) To a
good approximation and over a wide range of parameters we can consider
raindrops to be spherical. The wavelengths limiting the visible spectrum
are λ = 700 nm on the red and λ = 400 nm on the violet side. (Reminder:
d/dx(arcsin(x)) = 1/(1 − x2)1/2.)

1.5. Refractometer Abbe’s refractometer is an instrument for the determina-
tion of the refractive index of liquids. In this instrument, a droplet of the
liquid is dabbed onto a glass prism, then a second glass prism is folded onto
it. The double prism is now rotated until until a sharp border between light
and darkness appears on the screen or in the eyepiece of a telescope. The re-
fractive index of the liquid can then be determined from the rotation angle.
(Sometimes there is a second ruler indicating immediately the index of refrac-
tion.) Can you imagine how this device works? If the index of refraction of the
glass prisms is n, what is the range of refractive indices that can be measured
with this method?

&
!�

!� �

&� '!

Fig. 1.23 Abbe’s refractometer, illuminated with a diffusive source S.
The liquid is filled in the thin gap between parallel prisms P1 and P2.
The double prism is rotated by an angle α until a half-bright/half-dark
image EP appears on the screen Sc. The lens has focal length f .

1.6. Halo The most frequent halo phenomenon is a circumferential ring for
the Sun or the Moon with 22◦ opening angle, and with weak red colour on the
inner side. It is caused by tiny ice crystals in the atmosphere with refractive
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index 1.31. They are formed in the high troposphere and have predominantly
prism shape with equilateral triangular cross-section. How does the 22◦ halo
arise?

1.7. Fermat’s principle In a simplified way Fermat’s principle states that a
light ray propagates from one point to another on a trajectory that finds the
shortest travel time. Derive the laws of reflection and of refraction using this
principle.

1.8. Curvature of light rays Derive the measure for the curvature of a light
ray (the second derivative of the trajectory) in a medium with inhomogeneous
though steady refractive index by purely geometric-optical means. Avoid the
case where the ray travels orthogonally to the gradient of n.

1.9. Deflection by a prism (I) Deflection is minimal for symmetric transit of
an equilateral prism. Show that this property is a direct consequence of the
reversibility of the path of the light ray.

1.10. Deflection by a prism (II) Show that the refractive index can be ex-
tracted from the minimal deflection angle of a light ray δmin by a symmetric
prism from n = sin [(δmin + α)/2]/ sin (α/2). What is the best choice for α to
obtain maximum precision?

1.11. Optical fibres (I) Consider an optical fibre formed by a core with refrac-
tive index n1 = 1.4515 and the cladding with n2 = 1.4500. Calculate the largest
angle aperture (half the opening angle of the light cone hitting the fibre) for
which the light ray is still guided by the straight fibre. Suppose the core diam-
eter is 50 μm. How large is the smallest radius of curvature by which the fibre
may be bent before strong losses occur?

1.12. Modal dispersion Consider an optical light pulse of length T. If on in-
sertion of the pulse into a fibre the light field is uniformly distributed across
all angles above the critical angle for total internal reflection, the partial rays
will disperse in time and propagate with different velocities along the fibre
axis. How short a duration is acceptable for the pulse if the pulse length must
not grow by more than 50% while propagating a distance �?

1.13. Cylindrical lens, astigmatism What are the imaging properties of a
cylindrical lens (the refracting surface is cut out from a cylindre)? Is it possible
to realize point-like imaging with two cylindrical lenses? Are two cylindrical
lenses equivalent to a single spherical lens? Explain why the optometrist calls
astigmatism also cylindrical aberration.

1.14. Determination of focal length (I) Find out how the focal length of a
lens can be rapidly estimated, and how to determine it precisely. If you are
wearing glasses, try it out. How many dioptres do your glasses have?

1.15. Bessel’s method for determination of focal length (II) See Prob. 4.3.
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1.16. Newton’s equation Show by calculation and by geometrical construc-
tion, that the equation for image formation with a lens (Eq. (1.22)) is equivalent
to (g − f )(b − f ) = f 2. (See also Eq. (4.1).)

1.17. Depth of focus How large is the depth of focus for image formation with
a spherical mirror? How do you meaningfully define the depth of focus for
observation with the naked eye and for photographers, respectively? How
can one enhance the depth of focus?

1.18. Lens and glass plate Use the ABCD method to investigate the influence
of a plain parallel glass plate with thickness d on the focusing action of a lens
with f > d. Assume that the glass plate is oriented normally to the beam axis
and located within the focal length of the lens. Use this system to determine
the refractive index of the glass plate. Estimate the accuracy of the method.

1.19. Optical fibres (II) A small glass sphere (radius R, refractive index n),
which is placed immediately at the entrance facet of an optical fibre, can be
used to couple light into the fibre. Calculate the ABCD matrix for a glass
sphere and the transformation of a collimated bundle of light rays transiting
the glass sphere. Discuss optimal parameters (R, n) for the sphere in order
to couple light most efficiently into the fibre. For a realistic example use the
optical fibre parameters of Prob. 1.11.

1.20. The determinant of ABCD matrices The determinants of both the trans-
lation matrix T (Eq. (1.14)) and the refraction matrix B (Eq. (1.15)) are obvi-
ously identical to unity. Why does this imply for the lens matrix |L| = 1, too?
Show that furthermore Newton’s equation for thin lenses, ( f − g)( f − b) = f 2,
is a consequence of this condition.

1.21. Thick lenses and principal planes For image formation the result of the
example from p. 24, bD + gA + bgC + B = 0, must also hold for thick lenses.
Here {b, g} designate the separation of object and image from the intersection
of the lens with the z axis. We can then identify C = −1/ f in the ABCD
matrix with the focal length. Show first that the relation ( f A − g)( f D − b) =
f 2 holds. What is the position of the focal points of the lens? Rewrite the
equation in the form [ f − (g − gP)][ f − (b − bP)] = f 2. Points {bP, gP} define
the conjugated planes, or principal points. Interprete the result and give the
corresponding Newton’s equation

1.22. Gardener’s fantasies? Sometimes gardeners advise not to water flowers
if the Sun is shining, since the focusing action of the water droplets could
destroy leaves. Do you accept this advice?
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2
Wave optics

At the beginning of the 19th century a few phenomena were known that could
not be reconciled with simple rectilinear, ray-like propagation of light, and
made wave theory necessary. The beginning is marked by Huygens’ prin-
ciple (after the Dutch mathematician and physicist C. Huygens, 1629–1695),
an explanation of wave propagation often used up to now and very intu-
itive. About 100 years later T. Young (1773–1829) from England and A. P. Fres-
nel (1788–1827) from France developed a very successful wave theory, which
could explain all the phenomena of interference known at that time. After
G. Kirchhoff (1824–1887) had given a mathematical formulation of Huygens’
principle, the final breakthrough occurred with the famous Maxwell’s equa-
tions, which will serve also here as a systematic basis for the wave theory of
light.

The development of a common theoretical description of electric and mag-
netic fields by the Scottish physicist J. C. Maxwell (1831–1879) had a crucial
influence not only on physics, but also on the science and technology of the
20th century. Maxwell’s equations, which had at first been found through em-
pirical knowledge and aesthetic considerations, caused for example Heinrich
Hertz in 1887 to excite radio waves for the first time, thereby laying the foun-
dation for modern telecommunications techniques.

2.1
Electromagnetic radiation fields

Electromagnetic fields are defined by two vector fields,1

E(r, t), electric field,
and H(r, t), (magnetic) H field.

They are caused by electric charges and currents.

1) We follow the recent general literature, where usually the notation
B(r, t) stands for the magnetic field or B field, while H(r, t) is simply
called the (magnetic) H field.
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2.1.1
Static fields

Charges are the sources of electric fields. The formal relation between field
strength and charge density ρ and total charge Q, respectively, in a volume
with surface S is described by Gauss’s law in differential or integral form,

∇ · E = ρ/ε0 or
∮

S
E · df = Q/ε0. (2.1)

Furthermore, an electrostatic field is irrotational (curl-free), which means that
∇×E = 0, and it may be described as the gradient of a scalar electrostatic
potential Φ(r),

E(r) = −∇Φ(r).

The sources of the magnetic field are not charges, because it is known that

∇ · H = 0, (2.2)

but instead curls, which are caused by currents (current density j, total current
I crossing a surface with contour C). According to Stokes’ law

∇×H = j or
∮
C

H · dl = I (2.3)

is valid. The field strength of the H field may be described as the curl of a
vector potential A(r),

H(r) =
1

μ0
∇×A(r, t).

2.1.2
Dielectric media

The considerations of the preceding section are only valid for free charges and
currents. But usually these are bound to materials, which we can roughly
divide into two classes, conductors and insulators. In conducting materials
charges can move freely; in insulators they are bound to a centre, but an exter-
nal field causes a macroscopic dielectric polarization through displacement of
charge.2 For example, polar molecules may be oriented in a water bath, or a
charge asymmetry may be induced in initially symmetric molecules (Fig. 2.1).
In a homogeneous sample, negative and positive charges compensate, and
there is left only an effective charge density at the border of the polarized
volume. If the polarization varies continuously, then the compensation is in-
complete and one gets an effective charge density

ρpol = −∇ · P(r, t).
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Fig. 2.1 In a solid (left), charges are separated. In a glass with polar
molecules (right), existing dipoles are oriented.

Of course, polarization charges contribute to the electric field as well as the
density of free charges, and therefore in dielectric matter it holds that

∇ · E =
1
ε0

(
ρfree + ρpol

)
.

In many important optical materials the polarization charge is proportional to
the external field strength, and the coefficient is called the dielectric susceptibi-
lity χ,

P = ε0χE.

We introduce the dielectric displacement with the relative dielectric constant κ =
1 + χ,

D = ε0E + P = ε0κE, (2.4)

and thus we can write much more simply

∇ · D = ρfree. (2.5)

An analogue to the dielectric polarization, namely a magnetic polarization
M(r, t) = χmagH(r, t), may occur, which is in general called magnetization.
Magneto-optical effects (e.g. the Faraday effect) may be of less importance
than dielectric phenomena, but on the other hand they play a significant role
in optical applications, see Sect. 3.8.5. In most of the cases we treat here, the
assumption is justified that the magnetic permeability of vacuum, μmag =
1 + χmag = 1, is valid.

2) More precisely it is a polarization density.
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2.1.3
Dynamic fields

The magnetic or B field and the H field are related by

B(r, t) = μ0H(r, t),

differing from each other only by μ0, the permeability of vacuum. It is known
that a change of the magnetic field within a circuit loop C induces a voltage.
Thus we formulate the law of induction as the third Maxwell equation, where
S is an arbitrary surface bounded by the closed loop C :

∇×E = − ∂

∂t
B or

∮
C

E · dl = − ∂

∂t

∮
S

B df. (2.6)

In analogy, a changing dielectric field strength causes a displacement cur-
rent, jdis = ε0(∂/∂t)E, and a time-dependent polarization causes a polariza-
tion current, jpol = (∂/∂t)P. This yields the complete fourth Maxwell equa-
tion for time-varying fields, if we consider these contributions in Eq. (2.3)
(with (∂/∂t)D = jdis + jpol):

∇×H = j +
∂

∂t
D. (2.7)

2.1.4
Fourier components

Electric and magnetic fields with harmonic time development are central to
optical wave theory. When talking of Fourier components of an electromagnetic
field we mean the Fourier amplitudes E and H:3

E(r, t) = Re{E (ω, k) e−i(ωt−kr)},
H(r, t) = Re{H(ω, k) e−i(ωt−kr)}.

In general the relation for an amplitude in position and time space, A(r, t),
and the corresponding Fourier or (ω, k) dimension can be stated as

A(r, ω) = 1
(2π)1/2

∫
A(r, t) e−iωt dt,

A(k, t) = 1
(2π)3/2

∫
A(r, t) eikr d3r.

Of course, time and space variables may be Fourier-transformed simultane-
ously. It is particularly convenient to describe monochromatic fields, which

3) We will write dynamic electromagnetic fields mainly in complex
notation. Thereby the physical fields should always be considered as
the real parts, even when this is not expressed explicitly like here.
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have a fixed harmonic frequency ω = 2πν, by Fourier components. Ap-
plying Maxwell’s equations to this, the differential equations result in vec-
tor equations. We collect an overview of all variants in Tab. 2.1 and add the
Coulomb–Lorentz force, which acts on a charge q at the point r and with ve-
locity v = dr/dt.

Tab. 2.1 Summary: Maxwell–Lorentz equations.

In vacuum In matter In (ω, k) space

Charges are sources of electric field:

∇ · E = ρ/ε0 ∇ · D = ρ ik · D = ρ

No magnetic charges exist:

∇ · B = 0 ik · B = 0

Law of induction:

∇×E = − ∂
∂t B ik×E = iωB

Currents are curls of the magnetic field:

c2∇×B = 1
ε0

j + ∂
∂t E ∇×H = j + ∂

∂t D ik×H = j − iωD

Coulomb-Lorentz force:

m d2

dt2 r = q(E + v×B) –

2.1.5
Maxwell’s equations for optics

For most applications in optics we can assume that no free charges and cur-
rents exist. It is the task of a microscopic theory to calculate the dynamical
dielectric function ε(ω) = ε0κ(ω) = ε0[1 + χ(ω)] from Eq. (2.4). For simple
cases we will discuss this question in the chapter on the interaction of light
with matter (Chap. 6). First of all we substitute the dielectric function ε0κ by
phenomenological means by the index of refraction n,

ε0κ = ε0n2, (2.8)

which can depend on frequency ω and on position r, and find a set of
Maxwell’s equations, meaningful for optics, which features high symmetry:

∇ · n2E = 0,

∇ · H = 0,

∇×E = −μ0
∂
∂t H,

∇×H = ε0
∂
∂t n2E.

(2.9)
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Since we are particularly interested in the motion of charged, polarized mat-
ter, we must add the Lorentz force. These five equations are also called the
Maxwell–Lorentz equations. They are specified in Tab. 2.1 in differential and
integral form.

2.1.6
Continuity equation and superposition principle

We can draw two important conclusions from Maxwell’s equations:

1. Charges are conserved, as can be found easily by applying the diver-
gence to Eq. (2.3) and applying Eq. (2.1) for the continuity equation:

∇ · j = − ∂

∂t
ρ.

2. The superposition principle is a consequence of the linearity of Maxwell’s
equations. Two independent electromagnetic fields E1 and E2 are super-
positioned linearly to yield a superposition field Esup,

Esup = E1 + E2. (2.10)

The superposition field is important as a basis for the discussion of in-
terference.

2.1.7
The wave equation

Electromagnetic fields propagate in vacuum (nvac = 1) at the velocity of light,
and they are a direct consequence of Maxwell’s equations. In vacuum, there
exist neither currents, j = 0, nor charges, ρ = 0. This simplifies Maxwell’s
equations (2.1) and (2.6) significantly,

∇ · E = 0 and ∇×H = ε0
∂

∂t
E.

With the vector identity ∇×(∇×E) = ∇(∇ · E) − ∇2E and using c2 =
1/μ0ε0, we find the wave equation in vacuum,(

∇2 − 1
c2

∂2

∂t2

)
E(r, t) = 0. (2.11)

The corresponding one-dimensional wave equation can be written in the form(
∂

∂z
− 1

c
∂

∂t

)(
∂

∂z
+

1
c

∂

∂t

)
E(z, t) = 0,
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and by some straightforward algebra one finds solutions of the form

E(z, t) = E(z ± ct).

The solutions propagate with the phase velocity c, the value of which in vac-
uum is called the velocity of light c. The velocity of light is one of the most
important universal constants. Its numerical value was measured ever more
precisely up to 1983, since when it has been set by definition once and for all
to the vacuum value of (c stands for the latin word celeritas, velocity)

velocity of light, c = 299 792 458 m s−1.

Excursion: Velocity of light and theory of relativity

According to our direct experience, light propagates ‘instantaneously’. The Danish as-
tronomer Olaf Rœmer (1644–1710) discovered in 1676 that the phases of the innermost
Jupiter moon Io get shorter when the planet approaches the Earth, and longer when
it moves away from Earth. From that, he concluded that the propagation of light rays
does not occur on an unmeasurably short time scale, but with a finite velocity. From his
data Huygens determined the speed of light to be 225 000 km s−1 (see also Prob. 2.1).

�(()*


�(())*

�((+



�((+�*

�((+*


�(

 �(�* �(*
 �()* �


 �
�*

�)�,�-��$�..����"�.��.�
����������/�$,�.���(+0	


������

�����((�)(��1*+�2 .

Fig. 2.2 Values of the velocity of light before and after the 17th
Congress on Weights and Measures (1983). The diamonds indicate
the measured values of various laboratories including uncertain-
ties [54].

Since 1983 the value of the velocity of light has been fixed once and for all by inter-
national convention. At first sight it may seem surprising that one may just define a
physical universal constant. But it must be considered that velocities are determined
by the physical quantities time and distance, and therefore independent measurements
of time and distance are always necessary. Time measurements can be performed by
comparison with an atomic time standard (atomic clock) with extreme precision, but for
distance measurements such a measuring unit is not available. Therefore the proce-
dure has been inverted and now – at least in principle – any distance measurement is
derived from a much more precise time measurement:

One metre is the distance that light covers in vacuum within 1/299 792 458 s.
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The velocity of light plays a central role for the special theory of relativity, invented
by A. Einstein in 1905 [51]. In a famous interference experiment the US physicists
Michelson and Morley had obtained first evidence in 1886 that in the rest frame of an
observer light always propagates with the same velocity c, no matter what the motional
state is of the light source itself. One of the consequences of this theory is that no
particle or object, nor even any action of physical origin, can move or propagate faster
than the velocity of light c.

The theory of relativity epitomizes an outstanding intersection point of classical and
modern physics. Owing to the theory, it is necessary that the equations of mechanical
motion are modified for very high velocities. From the very start Maxwell’s equations,
describing the propagation of light, have been consistent with the theory of relativity.
This property is called ‘relativistic invariance’.

The wave equation is further simplified if monochromatic waves with har-
monic time evolution are considered. We use complex numbers, because in
that way many waveforms can be discussed formally in a clear manner.

In general only the real part of the complex amplitude is considered as a
physically real quantity. Inserting into Eq. (2.11)

E(r, t) = Re{E(r) e−iωt}

yields, with ω2 = c2k2, the Helmholtz equation, which depends only on the
position r:

(∇2 + k2) E(r) = 0. (2.12)

In homogeneous material (i.e. for constant index of refraction n), the wave
equation (2.11) experiences only one modification due to (2.9): The propa-
gation is defined by another phase velocity, c → c/n, otherwise the wave
propagates exactly as in vacuum. One gets[

∇2 −
(n

c

)2 ∂2

∂t2

]
E(r, t) = 0. (2.13)

In theoretical electrodynamics also the dynamic electric and magnetic fields
are often and slightly more elegantly derived from a common vector potential
A(r, t) = A0 e−i(ωt−kr), which on its part fulfils the Helmholtz equation (2.12):

E = ∂
∂t A = iωA,

H = 1
μ0

∇ × A = i
μ0

k×A.
(2.14)

For a complete definition of the potential A, an additional condition to ensure
so-called gauge invariance is necessary. For this purpose the so-called Coulomb
gauge (∇ · A = 0) is a suitable choice, but in other situations alternatives
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Fig. 2.3 Snapshot of a linearly polarized electromagnetic wave in
isotropic space. The directions of the electric (E) and magnetic (H)
fields are perpendicular to each other and to the propagation direction
with wave vector k as well.

like the Lorentz gauge for relativistic problems might offer advantages. From
∇ · E = 0 and Eq. (2.14) it follows that radiation fields are transverse in free
space (i.e. they are orthogonal with respect to the wave vector k) (Fig. 2.3),4

E · k = H · k = 0.

Furthermore (2.14) may yield the useful relation

H =
1

μ0c
ek × E.

This shows that the E and H fields are also perpendicular to each other.

2.1.8
Energy and momentum

The instantaneous energy density U of an electromagnetic field is

U = 1
2 (ε0|E|2 + μ0|H|2). (2.15)

For a dynamic field we have ε0|E|2 = μ0|H|2 and hence U = ε0|E|2, too. The
total energy U of an electromagnetic field is obtained by integration over the
corresponding volume V,

U = 1
2

∫
V
(ε0|E|2 + μ0|H|2) d3r.

Formally a ’photon’ oscillating with frequency ω has energy U = h̄ω, evenly
distributed onto the electric and magnetic degrees of freedom. From that one

4) Static fields of charge distributions are called longitudinal, because
then according to Eq. (2.1) it holds that ∇ · E = ρ(r) = 0. Indeed
longitudinal and transverse properties depend on the gauge.
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can get the average field strength 〈|E|〉 =
√

h̄ω/2ε0V, which corresponds to
one photon. This quantity is important if for example one wants to describe
the coupling of an atom to the field oscillation of an optical resonator.

Electromagnetic waves transport momentum and energy. The momentum
current density is described by the Poynting vector S,

S = E×H = cε0ek|E|2, (2.16)

which is proportional to the energy current density, since E = pc. In an ex-
periment the intensity I = c〈U〉 of an electromagnetic wave averaged over
one period T = 2π/ω is measured most easily. It is related to the electric field
amplitude E0 which for E(t) = E0 cos ωt yields

I = 1
2 cε0E2

0 .

2.2
Wave types

Now let us discuss several limiting cases of simple and important wave types.

2.2.1
Planar waves

Planar waves are the characteristic solution of the Helmholtz equation (2.12) in
Cartesian coordinates (x, y, z):(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 + k2
)

E(r) = 0. (2.17)

Planar waves are vector waves with constant polarization vector ε and ampli-
tude E0,

E(r, t) = Re{E0ε e−i(ωt−kr)}.

In general they have two independent, orthogonal polarization directions ε,
which we will discuss later in Sect. 2.4. Through the wave vector we define by
k · r = const planes with identical phase Φ = ωt − kr (Fig. 2.4).

2.2.2
Spherical waves

In our experience, light propagates into all directions of space, while the in-
tensity declines. Because of this, it would be convenient to describe ray prop-
agation by spherical waves as indicated in Fig. 2.4(a). In spherical coordinates
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Fig. 2.4 Snapshot of important wave types: (a) the isotropic (scalar)
spherical wave has a simple structure; but it cannot describe electro-
magnetic waves correctly, which are always vector fields; (b) a planar
wave with wave vector; (c) the dipole wave corresponds to a spherical
wave with anisotropic intensity distribution; (d) yet at a distance of only
a few wavelengths from the source the dipole wave is very similar to a
planar wave.

(r, θ, φ) the Helmholtz equation (2.12) can be written as(
1
r2

∂

∂r
r2 ∂

∂r
+

1
r2 sin θ

∂

∂θ
sin θ

∂

∂θ
+

1
r2 sin2 θ

∂2

∂φ2 + k2
)

E(r) = 0. (2.18)

But since electromagnetic waves have vector character, we have to look for
solutions for ‘vector’ spherical waves. These are known and common, but
are mathematically too complex in our case. But the problems are simplified,
because in optics often only a small solid angle in a distinct direction is of
practical importance. There the polarization of the light field varies only to a
small extent and in good approximation we can apply the simplified, scalar
solution of this wave equation. An isotropic, spherical wave (k = ker) has the
form

E(r, t) = Re

{
E0

e−i(ωt−kr)

|kr|

}
. (2.19)

The amplitude of the spherical wave decreases inversely with the distance
E ∝ r−1, and its intensity with the square of the inverse distance I ∝ r−2. With
the scalar spherical wave approximation, the wave theory of diffraction can
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be described in good approximation according to Kirchhoff and Fresnel (see
Sect. 2.5).

2.2.3
Dipole waves

Dipole radiators are the most important sources of electromagnetic radiation.
This is true for radio waves at wavelengths in the range of metres or kilome-
tres, which are radiated by macroscopic antennas, and for optical wavelengths
as well, where induced dipoles of microscopic atoms or solids take over the
role of antennas. A positive and a negative charge ±q at a separation x have
a dipole moment d(t) = qx(t). Dipoles can be induced by an external field
displacing the centre-of-mass charge of the positive and negative charge dis-
tributions, for example of a neutral atom. Charge oscillations x = x0 e−iωt

cause an oscillating dipole moment,

d(t) = d0 e−iωt,

which radiates a dipole wave and forms the simplest version of a vector spher-
ical wave. Let us assume that the distance of observation is large compared
with the wavelength r � λ = 2πc/ω. Under these circumstances we are
located in the far field of the radiation field.

Fig. 2.5 Angular distribution of the intensity (∝ |E|2) of a linearly and a
circularly oscillating dipole.

Although the separation |x| between the charges is small compared with
the wavelength, we may describe the intensity distribution with the results of
the Hertzian dipole.5 The simplest form is shown by a linear dipole along the z
axis, d = d0 e−iωtez, and the field amplitude is stated in spherical coordinates
(r, θ, φ):

Elin =
k3d0

ε0
sin θ

e−i(ωt−kr)

kr
eθ.

5) The Hertzian dipole has vanishing spatial extent (x → 0), but a
non-zero dipole moment d.
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The faces of constant phase are spherical faces again. Only the angle factor
sin θ, which specifies exactly the component perpendicular to the direction
of propagation, creates the antenna characteristics of a dipole. For a circular
dipole, d = d0 e−iωt(ex + iey), we find

Ecirc =
k3d0

ε0
cos θ

e−i(ωt−kr)

kr
(cos θ eθ + ieϕ).

In Fig. 2.5 the intensity distribution of oscillating dipoles is shown. In con-
trast to a circular dipole, for a linear one directions occur into which no energy
is radiated. The dipole character can be observed very nicely with the Tyndall
effect by relatively simple means. One needs only a linearly polarized laser
beam and a Plexiglas rod (Fig. 2.6). The double refraction of the Plexiglas
rod causes a modulation of the polarization plane, and the observer, standing
at the side, sees a periodic increase and decrease of the scattered light in the
Plexiglas rod.

Fig. 2.6 Tyndall effect in a Plexiglas rod. By birefringence the plane of
polarization gets modulated. Therefore an observer at the side sees a
periodic increase and decrease of the scattered light intensity.

2.3
Gaussian beams

Now we want to establish the connection between ray optics and wave op-
tics, i.e. we want to describe in particular laser beam propagation through
the methods of wave optics. Observation of a laser beam yields characteris-
tic properties which we will use to construct the so-called Gaussian principal
mode of laser beam propagation: Laser beams are extremely well bundled, i.e.
they do not seem to change over distances of many metres, and they are axially
symmetric. They truly form rays without any effort. Along the propagation
direction z a light ray behaves very similarly to a planar wave with constant
amplitude Ã0, which is a known solution of the wave equations (2.11) and
(2.17),

E(z, t) = Ã0 e−i(ωt−kz).

On the other hand we know that, at large distances from a source, also laser
light behaves more like another known solution of Eqs. (2.11) and (2.19),
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which is divergent like the spherical or dipole wave discussed before with
an amplitude inversely decreasing with distance from the source,

E(z, t) = A0
e−i(ωt−kz)

kz
. (2.20)

A wave which combines the properties of plane waves and spherically diverg-
ing waves could have the structure

E(z, t) = A0
e−i(ωt−kz)

k(z − iz0)
, (2.21)

where z = z0 separates the region where the wave will behave more like a
plane wave (|z| < z0) and more like a spherically divergent wave (|z| > z0).
Here z0 is a real number while the origin of the imaginary term will become
transparent later. We will use this ad hoc approach to ’construct’ the funda-
mental mode of coherent beam propagation. The 3D extension of the wave
will be introduced by replacing kz → kr and expanding kr in the vicinity of
the z axis.

2.3.1
The Gaussian principal mode or TEM00 mode

We now consider a cut-out of a spherical wave close to the z axis (‘parax-
ial’) and separate longitudinal (z coordinate) and transverse contributions.
Rays with axial symmetry depend only on the transverse coordinate ρ, and
when substituting kr = kr we may furthermore use the approximation r =√

z2 + ρ2 � z + ρ2/2z within the so-called Fresnel approximation for ρ � z, r:

E(r) =
A(r)
|kr| eikr � A(z, ρ)

kz
exp

(
i
kρ2

2z

)
eikz. (2.22)

This form of course much resembles Eq. (2.20) where the spatial phase is trans-
versely modulated, respectively curved, with the Fresnel factor exp(ikρ2/2z).

The linear substitution z → z − iz0 is similar to a coordinate transformation
and simply realizes one more solution which also introduces a phase shift for
small z due to the imaginary term iz0. With this substitution we already arrive
at the Gaussian principal mode,6 if we use a constant amplitude A0:

E(z, ρ) � A0

k(z − iz0)
exp

(
i

kρ2

2(z − iz0)

)
eikz. (2.23)

Gaussian modes propagate in free and in isotropic space, in contrast to, for
example, waves in a dielectric wave guide, which depend on the inhomoge-
neous optical properties of the material. In isotropic space the electric and

6) The notion of ‘mode’, which appears here for the first time, is de-
rived from the Latin modus, meaning measure or melody.



2.3 Gaussian beams 47

magnetic fields, as well, are transverse to the direction of propagation and the
waveforms are called transverse electric and magnetic modes (TEMm,n) with in-
dices (m, n). The basic solution is called the TEM00 mode. It is by far the most
important form of all used wave types, and therefore will be analysed in more
detail, before we consider the higher modes in Sect. 2.3.3.

The presentation of the field distribution in Eq. (2.23) is not yet very trans-
parent. Therefore we introduce the new quantities R(z) and w(z) through

1
z − iz0

=
z + iz0

z2 + z2
0

=
1

R(z)
+ i

2
kw2(z)

. (2.24)

The decomposition of the Fresnel factor into real and imaginary parts creates
two factors, a complex phase factor that describes the curvature of the phase
front, and a real factor that specifies the envelope of the beam profile:

exp

(
i

kρ2

2(z − iz0)

)
→ exp

(
i

kρ2

2R(z)

)
exp

(
−

(
ρ

w(z)

)2
)

.
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Fig. 2.7 A Gaussian principal mode close to the beam waist. In the
centre nearly planar wavefronts are achieved, while outside the waves
quickly adopt a spherical form. In the lower part the Rayleigh zone is
hatched.

The form of the Gaussian principal mode in Fig. 2.7 is fully characterized
by the parameter pair (w0, z0). The following definitions and notations have
been established to lend physical meaning to important parameters.
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2.3.1.1 Rayleigh zone, confocal parameter b:

b = 2z0

The Gaussian wave exhibits its largest variation for −z0 ≤ z ≤ z0, within the
so-called Rayleigh length z0 from Eq. (2.24). This region is called the Rayleigh
zone and is also characterized with the confocal parameter b = 2z0. The
Rayleigh zone marks positions in the near field of the smallest beam cross-
section or focal point (’focus’). At z � z0 a nearly planar wave propagates
and the wavefront changes only marginally. The Rayleigh zone is the shorter,
the more the beam is focused. In the context of images we also use the notion
depth of focus (see Sect. 4.3.3). In the far field (z � z0) the propagation is again
similar to a spherical or dipole wave, respectively.

2.3.1.2 Radius of wavefronts R(z):

R(z) = z[1 + (z0/z)2]

Within the Rayleigh zone R(z) → ∞ holds at z � z0, whereas in the far field
R(z) � z. The largest curvature or the smallest radius occurs at the border of
the Rayleigh zone with R(z0) = 2z0.

2.3.1.3 Beam waist 2w0:

w2
0 = λz0/π

The beam waist 2w0, or beam waist radius w0, specifies the smallest beam
cross-section at z = 0. If the wave propagates within a medium of refractive
index n, then λ must be substituted by λ/n. The diameter of the beam waist
is then w2

0 = λz0/πn.

2.3.1.4 Beam radius w(z):

w2(z) = w2
0

[
1 +

(
z
z0

)2
]

Within the Rayleigh zone the beam radius w(z) stays approximately constant.
But in the far field it increases linearly according to w(z) � w0z/z0.

2.3.1.5 Divergence Θdiv:

Θdiv =
w0

z0
=

√
λ

πz0n

In the far field (z � b) the divergence can be determined from the relation
Θ(z) = w(z)/z, z → ∞.
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2.3.1.6 Gouy phase η(z):

η(z) = tan−1(z/z0) (2.25)

Passing through the focus the Gaussian wave receives a bit more curvature,
i.e. shorter wavelength than a planar wave. For illustration, alternatively to
(2.24), we can make the substitution

i
z − iz0

= − 1
z0

w0

w(z)
e−i tan−1(z/z0)

(the imaginary factor establishes the common convention, to find a real am-
plitude or vanishing phase at z = 0). By this function the small devia-
tion from the linear phase evolution of the planar wave can be described,
−π/2 ≤ η(z) ≤ π/2. This extra phase is known by the name Gouy phase;
half of it is collected within the Rayleigh zone. In travelling through the focus
the phase is effectively inverted, which is reminiscent of two partial rays ex-
changing relative positions when crossing at a focal point.

With these notations the total result of the Gaussian principal mode or
TEM00 mode is the following:

E(ρ, z) = A0
w0

w(z)
e−[ρ/w(z)]2 eikρ2/2R(z) ei[kz−η(z)]. (2.26)

The first factor describes the transverse amplitude distribution, the second
(Fresnel) factor the spherical curvature of the wavefronts, and the last one the
phase evolution along the z axis. In the majority of applications in physics and
optical technology a Gaussian principal mode or TEM00 mode is used.

Example: Intensity of a TEM00 mode
The intensity distribution within a plane perpendicular to the propagation
direction corresponds to the known Gaussian distribution,

I(ρ, z) =
cε0

2
EE∗ =

cε0

2
|A0|2

(
w0

w(z)

)2

e−2[ρ/w(z)]2,

with the axial peak value

I(0, z) =
cε0

2
|A0|2

(
w0

w(z)

)2

.

In general the ‘cross-section’ of a Gaussian beam is specified as the width
2w(z), where the intensity has dropped to 1/e2 or 13% of the peak value. Some
87% of the total power is concentrated within this radius.

Along the z axis the intensity follows a Lorentzian profile 1/[1 + (z/z0)2]. It
declines from its peak value I(0, 0) = (cε0/2)|A0|2 (see Fig. 2.7) and reaches
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half of this value at z = z0. The confocal parameter b then is also a measure
for the longitudinal half-width of the focal zone.

The total power travelling in the Gaussian beam is P = 2π
∫

I(ρ, z)ρ dρ.
Owing to energy conservation it cannot change, as can be verified by explicit
integration,

2P
cε0

= 2πA2
0w2

0

∫ ∞

0

ρ dρ

w2(z)
e−2[ρ/w(z)]2 = πw2

0A2
0.

2.3.2
The ABCD rule for Gaussian modes

The usefulness of Gaussian modes for analysis of an optical beam path is sup-
ported particularly by the simple extension of the ABCD rule (Sect. 1.9.2),
known from ray optics. At every position z on the beam axis a Gaussian beam
may be characterized either by the pair of parameters (w0, z0) or alternatively
by the real and imaginary parts of q(z) = z − iz0 according to Eq. (2.24). We
know that both parameters of a light ray are transformed linearly according
to Eq. (1.16) and that for every optical element a distinct type of matrix T with
elements A, B, C, D exists. The parameters of the Gaussian beam are trans-
formed by linear operations with coefficients that are identical to the ones
from ray optics:

q1 = T̂ ⊗ q0 =
Aq0 + B
Cq0 + D

. (2.27)

Now it is not very difficult to show that these operations may be applied mul-
tiple times and that the total effect T̂ corresponds to the matrix product T̂2T̂1:

q2 = T̂2 ⊗ (T̂1 ⊗ q0) =
A2

A1q0 + B1
C1q0 + D1

+ B2

C2
A1q0 + B1
C1q0 + D1

+ D2

=
(A2 A1 + B2C1)q0 + ...

...
.

Thus we can describe the effects of all elements by the known matrices from
Tab. 1.2.

Example: Focusing with a thin lens
As an important and instructive example we now choose the effect of a thin
lens of focal length f , with which a Gaussian beam with TEM00 mode has to
be focused, and make a comparison with the predictions from ray optics. Let
us look at the parameters of the wave in planes 1 (directly in front of the lens),
2 (directly after the lens) and 3 (in the focus).
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Plane E1. A Gaussian beam with large beam waist 2w01 and infinitely large
radius of curvature R(z=0) = ∞ is very close to our expectations of a planar
wave. Then, the Rayleigh length is also very large, since z01 = πw2

01/λ; for
example, it is 124 m long for a beam diameter of only 1 cm and a wavelength
of 632 nm! Let us assume that the beam waist of the incident beam is at z = 0
and due to that q(z) is purely imaginary,

q1 = −iz01 = −i
πw2

01
λ

.

Plane E2. The beam radius is not
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�
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�� �� ��

��
0

Fig. 2.8 Focusing a Gaussian beam
with a thin lens of focal length f .

changed by the thin lens at once
(w02 = w01), but the radius of cur-
vature is changed, and is now given
by 1/R2 = −1/ f :

1
q2(z=0)

= − 1
f

+ i
1

z01
.

Formal application of the lens trans-
formation from Tab. 1.2 and with
Eq. (2.27) would have yielded the
same result.

Plane E3. For the translation from the lens to the new focus we get

q3(�) = q2(0) + �,

but the � position of plane 3 is initially unknown and must be determined
from the condition that at the focus q−1

3 = iλ/πw2
03 is purely imaginary. For

that purpose we determine the real and imaginary parts of q2,

q2 = − f

1 + ( f /z01)2

(
1 + i

f
z01

)
.

Obviously the real part of q3 is compensated exactly at

� =
f

1 + ( f /z01)2 =
f

1 + (λ f /πw2
01)

2 ,

which means that we again find planar waves there. According to ray optics
we would have expected the focus to be located exactly at � = f . But if the
focal length is short compared with the Rayleigh length of the incident beam,
f � z01, or equivalently, which is usually the case, λ f /w2

01 � 1, then the
position of the focal point will differ only marginally from that.

More interesting is the question of how large the diameter of the beam is in
the focus. We know that ray optics does not answer that, and we have to take
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into account diffraction at the aperture of the lens (see example p. 68). At first
we calculate the Rayleigh parameter

1
z03

=
1
f

1 + ( f /z01)2

f /z01
,

and then determine the ratio of the beam diameter at the lens and in the focus,

w03

w01
=

(
z03

z01

)1/2

=
f /z01√

1 + ( f /z01)2
. (2.28)

Replacing 1/z01 with λ/πw2
01 results in

w03 =
λ f

πw01

1√
1 + (λ f /πw2

01)2
� λ f

πw01
,

and the first factor yields the Rayleigh criterion for the resolving power of a
lens, known also from diffraction theory, which will be treated once more in
the section on diffraction (Sect. 2.5, Eq. (2.47)).

2.3.3
Higher Gaussian modes

For a more formal treatment of the Gaussian modes we now also decompose
the Helmholtz equation (2.12) into transverse and longitudinal contributions,

∇2 + k2 =
∂2

∂z2 +∇2
T + k2 and ∇2

T =
∂2

∂x2 +
∂2

∂y2 ,

and apply it to an electric field E = Aeikz. We are interested in solutions,
where the amplitude A(x, y, z) is varying only very slowly on a wavelength
scale, i.e. in comparison with eikz. Using

∂

∂z
A = A′ � kA and

∂2

∂z2 A = A′′ � kA′

when inserting the electric field into the original Helmholtz equation (2.12) we
find the approximation(

∇2
T + 2ik

∂

∂z

)
A(x, y, z) = 0, (2.29)

which is called paraxial Helmholtz equation, The most fundamental solution of
the paraxial Helmholtz equation we have already found by intuition and con-
struction (Eq. (2.23), p. 46)), but the Gaussian principal mode is only one par-
ticular, although important, solution. With a bit of algebra one can show that
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the principal mode, from Eq. (2.23) and with constant amplitude A0,

A(x, y, z) =
A0

z − iz0
exp

(
i
k(x2 + y2)
2(z − iz0)

)
eikz,

fulfils the paraxial equation (2.29) indeed. This is not surprising, because by
this we have just verified that, close to the z axis, the applied spherical wave
fulfils the paraxial Helmholtz equation. We look now for the higher-order
solutions by allowing the amplitude to depend (slowly) on (x, y, z):

A(x, y, z) =
A(x, y, z)

z − iz0
exp

(
i
k(x2 + y2)
2(z − iz0)

)
.

Initially we want to use Cartesian coordinates, which deliver the best-known
solutions, called Hermitian–Gaussian modes. But there are also other solutions,
for example the Laguerre–Gaussian modes (see Prob. 2.5), which are found when
applying cylindrical coordinates. From the paraxial Helmholtz equation (2.29)
we find a new equation for the amplitude distributions A(x, y, z),(

∂2

∂x2 +
2ikx
q(z)

∂

∂x
+

∂2

∂y2 +
2iky
q(z)

∂

∂y
+ 2ik

∂

∂z

)
A(x, y, z) = 0. (2.30)

Obviously this is valid for A = const which reproduces the Gaussian principal
mode. Let us investigate amplitudes that depend symmetrically on x and y
and along the longitudinal direction cause only a small correction of the phase
evolution:

A(x, y, z) = F (x)G(y) exp [−iH(z)].

We substitute this form in Eq. (2.30) and take into account that 1/(z − iz0) =
2(1 − iz/z0)/ikw2(z). By claiming exclusively real solutions for F , G and H,
imaginary contributions cancel and we get

1
F (x)

[
∂2

∂x2 F (x)− 4x
w2(z)

∂
∂xF (x)

]
+ 1

G(y)

[
∂2

∂y2 G(y)− 4y
w2(z)

∂
∂yG(y)

]
+ 2k ∂

∂zH(z) = 0.

Expecting that the distribution of transverse amplitudes does not change
along the z axis, we execute the variable transformation

u =
√

2 x/w(z) and v =
√

2 y/w(z)

(the factor
√

2 is necessary to normalize the new equations):

1
F (u)

[F′′(u) − 2uF′(u)
]
+

1
G(v)

[G′′(v)− 2vG′(v)
]
+ kw2(z)H′(z) = 0.
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By this transformation we have achieved a separation of the coordinates, and
the equation can be solved via eigenvalue problems:

F′′(u) − 2uF′(u) + 2mF (u) = 0,
G′′(v)− 2vG′(v) + 2nG(v) = 0,

kw2(z)H′(z)− 2(m + n) = 0.
(2.31)
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Fig. 2.9 Calculated transverse intensity distribution of Hermitian–
Gaussian modes of low order (|Amn(x, y)|2 = |Hm(x)Hn(y)|2). Com-
pare Fig. 2.10.

The equation for the (u, v) coordinates is known as Hermite’s differential
equation. Its solutions are called Hermitian polynomials Hj(x), which are easy
to determine according to the recursion relations

Hj+1(x) = 2xHj(x)− 2jHj−1(x),

Hj(x) = (−)j ex2 dj

dxj (e−x2
).

(2.32)

The Hermitian polynomials of lowest order are

H0(x) = 1, H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x.

The modulus squared specifies the transverse intensity distribution and is il-
lustrated in Fig. 2.9 for the mode of lowest order. They form a system of or-
thonormal functions with the orthogonality condition∫ ∞

−∞
Hj(x)Hj′(x) e−x2

dx =
δjj′

2j j!
√

π
. (2.33)
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The third equation from (2.31) is solved by

H(z) = (n + m)η(z) (2.34)

with η(z) = tan−1(z/z0) (see Eq. (2.25)). It enhances the phase shift of the
Gouy phase and plays an important role in the calculation of the resonance
frequencies of optical resonators (see Sect. 5.6).

Thus the result for the modulation factor of the amplitude distribution for
higher-order Gaussian or TEMmn modes is

Amn = Hm

(√
2 x/w(z)

)
Hn

(√
2 y/w(z)

)
e−i(m+n)η(z),

which with the substitution ρ2 = x2 + y2 and the definitions for w0, w(z), and
R(z) from Sect. 2.3.1 yields

Emn(x,y,z) = E0Hm

(√
2x

w(z)

)
Hn

(√
2x

w(z)

)
w0

w(z)
e−(ρ/w(z))2

× eikρ2/2R(z) ei(kz−(m+n+1)η(z)).

(2.35)

The result for the TEM00 mode is reproduced, of course. All higher modes
are described by a Gaussian envelope, modulated by Hermitian polynomials.
Therefore they are called Hermitian–Gaussian modes.

A question might remain: Why have we chosen the Cartesian form of the
paraxial Helmholtz equation, and why do cylindrical coordinates actually sel-
dom appear? The reason is of technical nature, because at the interior of
mirrors and windows small deviations from cylindrical symmetry are always
present, and thus Cartesian Gaussian modes are preferred to Laguerre modes,
which are found as solutions of equations with cylindrical symmetry.
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Fig. 2.10 Gaussian modes of higher order from a simple titanium–
sapphire laser. For the TEM48,0 mode the scale has been reduced
a little bit. The asymmetry of the higher-order modes is caused by
technical inaccuracies of the resonator elements (mirrors, laser crys-
tal) [172].
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2.3.4
Creation of Gaussian modes

In most experiments interest is focused on the TEM00 principal mode. By
nature it is preferred in a laser resonator, because it has the smallest diffraction
losses. According to Fig. 2.9 it is obvious that the effective size of a mode
increases with the orders (m, n), so that the openings of a resonator (mirror
edges, apertures) are of increasing importance. On the other hand, since the
spatial amplification profile also has to match the desired mode, modes of very
high order can be excited by intentionally misaligning a resonator (Fig. 2.10).

Controlled shaping of light fields can also be achieved by a filter; thereby the
notion of spatial filter is used. Such a spatial filter is shown in Fig. 2.11, which in
its most simple form consists of a convex lens (e.g. a microscope objective) and
a so-called pin-hole, with a diameter adjusted to the TEM00 principal mode.

Fig. 2.11 Spatial filter. In front of the aperture the beam consists of a
superposition of many Gaussian modes. It is shown, for the example
of a TEM01 mode, how higher-order modes can be suppressed by the
aperture. The fields in both ‘ears’ of the mode oscillate with opposite
phase.

Transmission of higher-order Gaussian modes is not only inhibited by the
aperture, because the diameter increases rapidly with the order, but is also
suppressed by the spatially alternating phase distribution. Therefore the aper-
ture is not excited dipole-like, as is the case for the TEM00 principal mode, but
with a higher order, which, as everybody knows, radiates with lower intensity.

At the output a ‘cleaned’ Gaussian beam propagates, which has lost inten-
sity, of course. Excellent suppression of higher-order modes is achieved when
a single-mode optical wave guide is used instead of a pin-hole (see Sect. 3.3).

2.4
Polarization

We have already noticed in the previous section that electromagnetic waves
are vector waves with direction, which can be described in terms of two or-
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thogonal polarization vectors ε and ε′ in free space.7 We consider a transverse
wave propagating in the ez direction. The polarization must lie within the xy
plane (unit vectors ex and ey), and we consider two components, which may
have different time-variant phases,

E(z, t) = Exex cos(kz − ωt) + Eyey cos(kz − ωt + φ). (2.36)

For φ = 0, 2π, 4π, . . ., these components have equal phases and the wave is
linearly polarized,

E(z, t) = (Exex + Eyey) cos(kz − ωt).

Fig. 2.12 The field of a circularly polarized wave (left-hand side) ro-
tates around the propagation axis everywhere with the same ampli-
tude. The linearly polarized wave (right-hand side) is a common sine
wave.

For φ = π, 3π, . . ., they oscillate out of phase and in general yield an ellipti-
cally, or for Ex = Ey circularly, polarized wave:

E(z, t) = Exex cos(kz − ωt) + Eyey sin(kz − ωt).

Instead of Eq. (2.36) the field amplitude may also be written in the form

E(z, t) = Ecos(aex + bey) cos(kz − ωt + α)
+ Esin(−bex + aey) sin(kz − ωt + α),

with a2 + b2 = 1, which corresponds to the ellipse in Fig. 2.13 rotated by the
angle α. By comparison of the coefficients at (kz − ωt) = 0, π/2, one may
calculate the angle α,

tan (2α) =
2ExEy cos φ

E2
x − E2

y
.

7) The notion of ‘polarization’ is also used as dielectric polarization else-
where. The kind of application for which it is used is always clear
from the context.
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Furthermore in Fig. 2.13 the decomposition of a linear and elliptical polariza-
tion into two circular waves is illustrated.

�

���	 ��	 ��	

Fig. 2.13 (a) Elliptically polarized wave. The linearly polarized wave
(b) and the elliptical wave (c) can be decomposed into two counter-
running circular waves.

2.4.1
Jones vectors

In general any transverse polarized light wave can be decomposed into either
two orthogonal and linear or two counter-running and circularly polarized
waves. For example we find for the field of Eq. (2.36):

E(z, t) = Re{Exex + Ey e−iφey} e−i(ωt−kz)

= Re{(Ex + i e−iφEy)e+ + (Ex − i e−iφEy)e−} e−i(ωt−kz).

Jones suggested the orthogonal unit vectors{
e+ = (ex + iey)/

√
2

e− = (ex − iey)/
√

2

}
and

{
ex = (e+ + e−)/

√
2

ey = −i(e+ − e−)/
√

2

}
(2.37)

for the characterization of a polarization: ex,y for linear, and e± for circular,
components. Writing this for the individual components we find

ex =

(
1
0

)
, ey =

(
0
1

)
, e± =

1√
2

(
1
±i

)
.

It is obvious from Eq. (2.37) that any linearly polarized wave may be de-
composed into two counter-running circularly polarized waves and vice
versa. Optical elements affecting the polarization, like for example retardation
plates, can be described very simply with this formalism (see Sect. 3.7.4).

2.4.2
Stokes parameters

For the characterization of a polarization state of a wave by Jones vectors, we
need the amplitudes and directions for two orthogonal components (ex,y or
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e±) at any given time. Polarizations may fluctuate in time also. Hence for this
characterization G. Stokes suggested the use of the time-averaged quantities

S0 = 〈E2
x〉 + 〈E2

y 〉, S2 = 〈2ExEy cos φ〉,
S1 = 〈E2

x〉 − 〈E2
y 〉, S3 = 〈2ExEy sin φ〉.

The first parameter S0 is obviously proportional to the intensity, and since
one direction is already fixed, only three parameters are independent of each
other. Normalizing the S parameters to si = Si/S0, then s0 = 1 is always valid
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Fig. 2.14 Stokes parameters and vectors for distinct polarization
states. From left to right: linearly x polarized, linearly y polarized, un-
polarized, right circularly polarized.

and furthermore8

V = s2
1 + s2

2 + s2
3 ≤ 1 (= 1 for perfectly polarized light).

According to the superposition principle for the superposition of two waves
S′′ = S + S′ holds for the Stokes parameters.

Stokes parameters also describe unpolarized light as shown in Fig. 2.14. Here
’unpolarized’ means that the instantaneous polarization of the light field –
which has fundamental vector character – fluctuates so rapidly that on aver-
age no definite polarization state is measured.

2.4.3
Polarization and projection

A quite astonishing property of the polarization may be demonstrated impres-
sively with a polarization foil. A polarization foil generates polarized light
from unpolarized light through absorption of the component that oscillates
in parallel with the aligned organic molecules of the foil. More polarization
components will be treated within the chapter on wave propagation in matter
(Chap. 3).

In Fig. 2.15, the left-hand side illustrates that two crossed polarizers result
in the cancellation of the transmission. But it is quite astonishing that, when
one more polarizer is inserted with polarization direction at 45◦ in between
the two others, a quarter of the light transmitted by the first polarizer (ne-
glecting losses) passes through the orthogonal polarizer! The polarization of

8) We will find in the chapter on light and matter (Chap. 6) that this
structure appears again in the Bloch vectors of the analogous atomic
two-state systems.
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Fig. 2.15 Transmission of crossed polarizers. The hatching indicates
the direction of polarization. In the right-hand figure the third polarizer
is inserted at 45◦ in between the other two polarizers.

the electromagnetic field is ‘projected’ onto the transmission direction of the
polarizer, the polarizer affecting the field, not the intensity. See also Prob. 2.13.

2.5
Diffraction

Light diffraction has played an im-

��2����������.
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Fig. 2.16 Huygens’ principle: diffraction at
an aperture.

portant role in the development of
the wave theory of light. Even fa-
mous physicists doubted for a long
time that ‘light comes around a cor-
ner like sound’, but already Leonardo
da Vinci (1452–1519) knew that some
light falls into the shadow of an illu-
minated object – against the predic-
tions of geometrical optics.

C. Huygens gave a first illustrative idea to wave theory by interpreting ev-
ery point in space as an excitation source of a new wave, a concept called
today Huygens’ principle. It indeed makes many diffraction phenomena acces-
sible to our intuition, but it assumes ad hoc that waves are always transmitted
into the forward direction only.

The general mathematical formalism of Huygens’ principle is extremely
elaborate, because the electric and magnetic radiation fields are vector fields,
E = E(x, y, z, t) and B = B(x, y, z, t). Up to now there exist only a few general
solved examples; the problem of planar wave propagation at an infinite thin
edge solved in 1896 by A. Sommerfeld (1868–1951) counts as an exception.

An enormous simplification is achieved when substituting the vectorial
field by scalar ones, whereby we have to determine the range of validity of
the approximation. It is advantageous that light beams often propagate with
only small changes of direction. Then the polarization changes only slightly
and the scalar approximation describes the behaviour excellently.
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2.5.1
Scalar diffraction theory

Here it is our objective to understand Huygens’ principle by means of mathe-
matics in scalar approximation by applying the superposition principle to the
combined radiation field of multiple sources.9

Within this chapter we will for sim-
7 7#

7##

!

7###

Fig. 2.17 The light field at P is fed
by the sources Q, Q′, Q′′, . . . .

plicity exclusively discuss the propaga-
tion of monochromatic waves:10

E(r, t) = E (r) e−iωt.

The total field E (rP) at a point P
(Fig. 2.17) is composed of the sum of all
contributions of the individual sources
Q, Q′, . . . . We know already that
spherical waves emerging from a point-
like source Q have the scalar form of
Eq. (2.19),

E = EQ eikr/kr.
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Fig. 2.18 Kirchhoff’s theorem. (a) Choice of the surfaces according
to Eq. (2.38). (b) The surface S is excited by a source Q and radiates
towards the point P.

To cover all fields incident on a point P, we look at the sources on a surface
S and the effect of these on a very small volume with surface S′ around P
(Fig. 2.18). We can make use of the Green’s integral theorem, well known
from mathematics, which for two solutions ψ and φ of Helmholtz’s equation
(2.12) reads∮

S
[ψ∇φ − φ∇ψ] dS =

∫
V

[
ψ∇2φ − φ∇2ψ

]
d3r = 0.

We let eikr/kr and E (rP) be used for ψ and φ, and in Fig. 2.18(a) we cut out
a sphere with very short radius r′ and surface element dS′ = r2 dΩ′ er about

9) This section is mathematically more tedious. The reader may skip it
and simply use the results in Eqs. (2.43) and (2.44).

10) This treatment requires spatial and temporal coherence of the light
waves, which will be discussed in more detail in the chapter on
interferometry (Chap. 5).
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point P to be contracted to this point,(∮
S

dS +
∮

S′
dS′

)[
eikr

r
∇E − E∇ eikr

r

]
= 0.

On the surface of the small sphere around P we have dS′ ‖ er and thus
∇E · dS′ = (∂E/∂r)r2 dΩ′. We also use −∇ eikr/r = (1/r2 − ik/r) eikrer and
find∮

S

[
eikr

r
∇E − E∇ eikr

r

]
dS =

∮
S′

[
E (1− ikr) + r

∂E
∂r

]
eikr dΩ′. (2.38)

Now we let the radius of the volume around P decrease more and more (r →
0) and with∮

S′

(
E − ikrE + r

∂E
∂r

)
eikr dΩ′ r→0−→ 4πE|r=0 = 4πEP

we can prove Kirchhoff’s integral theorem:

E (rP) =
1

4π

∮
S

[
eikr

r
∇E − E∇ eikr

r

]
dS. (2.39)

In principle we can now predict the field at point P if we know the distribution
of fields on the surface S. Owing to its relatively wide generality, however, the
Kirchhoff theorem does not give the impression that it might be very useful.
Therefore we want to study further approximations and apply them to a point
source Q illuminating the surface S (Fig. 2.18(b)). Let us assume that a scalar
spherical wave of the form

E (ρ, t) =
EQ

kρ
ei(kρ−ωt)

propagates from there. We use spherical coordinates and just insert the spher-
ical wave into Eq. (2.39),

E (rP) =
EQ

4πk

∮
S

[
eikr

r

(
∂

∂ρ

(
eikρ

ρ

))
eρ − eikρ

ρ

(
∂

∂r

(
eikr

r

))
er

]
dS.

Then we make use of the approximation

∂

∂ρ

eikρ

ρ
= k2 eikρ

(
i

kρ
− 1

(kρ)2

)
� eikρ ik

ρ
, (2.40)

for ρ and r, which is excellent already for distances of only a few wavelengths,
since kρ � 1. Then also the Kirchhoff integral (2.39) can be simplified again
crucially,

E (rP) = − iEQ

2π

∮
S

eik(r+ρ)

rρ
N(r, ρ) dS, (2.41)
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whereby we have introduced the Stokes factor N(r, ρ):

N(r, ρ) = −eres − eρes

2
= − 1

2 [cos (r, es) − cos (ρ, es)]. (2.42)

To understand the Stokes factor (also obliquity factor) and its meaning (re-
spectively to substitute it by the value ‘1’ in most cases), we look at Fig. 2.19.
Thereby we make use of a more realistic example, in which the rays are near
the axis, which means that they propagate in the vicinity of the connecting line
between Q and P. We can specify the ‘excitation’ originating from the surface
element dS with

dES = (EQ/kρ) exp (ikρ) cos (ρ, es) dS,

the contribution at P with

dEP = dES cos (er, es) exp (ikr)/r,

and thus find exactly the factors from Eq. (2.41).
A remarkable property of the Stokes factor is the suppression of the radia-

tion in the backward direction, because according to Eq. (2.42) N → 0 holds
for eρ → er! In contrast to that, we find for near-axis rays in the forward di-
rection N → 1, and we want to restrict ourselves to this frequent case in the
following. The right part of Fig. 2.19 shows the total angle distribution of the
Stokes’ factor for a planar incident wave with ρ = es.
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Fig. 2.19 Interpretation of the Stokes factor. Left: geomet-
ric relations. Right: angle dependence of the Stokes factor,
N(r, ρ‖es) = [1 + cos(φ)]/2.

We finally consider the propagation of near-axis rays for N � 1 in the ge-
ometry and with the notations of Fig. 2.20. Besides we assume that the surface
S is illuminated with a planar wave. Then the field strength ES � EQ/kρ is
constant, but the intensity distribution may be characterized by a transmis-
sion function τ(ξ, η) (which in principle can be imaginary, if phase shifts are
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caused). According to Eq. (2.41) we can calculate the field strength at the point
P as

E (rP) = − iES

λ

∮
S

τ(ξ, η)
eikr

r
dξ dη. (2.43)
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Fig. 2.20 Fraunhofer diffraction for a Stokes factor N � 1.

This result is also still too difficult for a general treatment. But further ap-
proximations are made easier by the circumstance that the distance between
the diffracting object and the area of observation is in general large compared
with the wavelength and the transverse dimensions, which are marked in
Fig. 2.20 by a circle with radius a within the plane of the diffracting object.
We express the distances r and r0 by the coordinates of the respective planes,

r2 = (x − ξ)2 + (y − η)2 + z2 and r2
0 = x2 + y2 + z2.

We consider r as a function of r0,

r2 = r2
0

(
1 − 2(xξ + yη)

r2
0

+
ξ2 + η2

r2
0

)
,

and expand r with κx = −kx/r0 and κy = −ky/r0,

r = r0

√
1 +

2(κxξ + κyη)
kr0

+
ξ2 + η2

r2
0

� r0

(
1 +

κxξ + κyη

kr0
+

ξ2 + η2

2r2
0

)
.

Then the phase factor in Eq. (2.43) decomposes into three contributions,

exp(ikr) → exp(ikr0) exp[i(κxξ+κyη)] exp
(

ik(ξ2 + η2)
2r0

)
.

The first factor just yields a general phase factor, the second depends lin-
early on the transverse coordinates of the diffracting plane and the plane of
observation, the last one depends only on the coordinates of the diffracting
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plane (we have met the last factor already as the ‘Fresnel factor’, when dis-
cussing Gaussian beams (see p. 46)). In many experiments the Fresnel factor
differs only a little from 1, because ka2/r0 � 1. Therefore it delivers the dis-
tinguishing property for the two important basic diffraction types, Fraunhofer
and Fresnel diffraction (r0 � z):

(i) Fraunhofer diffraction a2 � λz,
(ii) Fresnel diffraction a2 ≥ λz but a � z.

(2.44)

Since the 19th century diffraction phenomena have played an important
role in the development of the wave theory of light, and up to now they are
closely correlated with the names of Joseph von Fraunhofer (1787–1826) and
Augustine Jean Fresnel (1788–1827). The radius a =

√
λz defines the region

of validity of the Fraunhofer approximation within the diffracting plane. The
usual condition is that in this case the object lies completely within the first
Fresnel zone (see also p. 75). Besides, when the distance z to the diffracting
object is just chosen large enough, one always reaches the far field limit, where
Fraunhofer diffraction is valid.

2.5.2
Fraunhofer diffraction

The Fraunhofer approximation is applied in the far field of a diffracting object
(e.g. a slit with typical dimension a), if the condition

a2 � λz

(2.44(i)) is fulfilled. For near-axis beams we can substitute the factor 1/r �
1/r0 � 1/z, and we find after inserting the approximations into Eq. (2.43) the
expression

E (rP) = − iES eikr0

λz

∮
S

τ(ξ, η) ei(κxξ+κyη) dξ dη. (2.45)

But in the phase factor we keep r0,

exp (ikr0) � exp (ikz) exp
(

ik(x2 + y2)
2z

)
, (2.46)

because here even small deviations may lead to a fast phase rotation, which
then plays an important role in interference phenomena.

After that the field amplitude at point P has the form of a spherical wave,
which is modulated with the Fourier integral T(κx, κy) of the transmission
function τ(ξ, η),

T(κx, κy) =
∫ ∞

∞

∫ ∞

∞
dξ dη τ(ξ, η) ei(κxξ + κyη).
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Finally the great impact of Fourier transformation in many areas of physics
has been significantly supported by its relevance for the treatment of optical
diffraction problems. Now we want to discuss some important examples.

Examples: Fraunhofer diffraction

1. Fraunhofer diffraction at a long single slit
We consider a long, quasi-one-

��
Fig. 2.21 Diffraction at a long slit.

dimensional slit (Fig. 2.21, width
d) and assume again that the illu-
mination may be inhomogeneous.
Because we have introduced sev-
eral approximations concerning ray
propagation (e.g. Stokes factor N =
1), we may not solve the one-
dimensional case just by simple in-
tegration of the η coordinate in Eq.
(2.45) from −∞ to ∞. Instead
we have to work out the concept
of Kirchhoff’s integral theorem for
a line-like (instead of a point-like)

source. From a line-like source a cylindrical wave originates, the intensity
of which does not decline like 1/z2 any more, but only with 1/z. It turns out
that the result has a very similar structure.

The amplitude of the cylindrical wave must decline with 1/
√

z and the one-
dimensional variant of Eq. (2.45) has the form

E (rP) = − iES eikr0

λ
√

kz

∮
S

τ(ξ) eiκxξ dξ.

In the case of a linear, infinitely long slit, the transmission function has the
simple form τ(ξ) = 1 for |ξ| ≤ d/2 and else τ(ξ) = 0. One calculates

E (x) = − iES eikr0

λ
√

kz

∫ d/2

−d/2
dξ eiκxξ = ES

d eikr0

λ
√

kz

sin (kxd/2z)
kxd/2z

.

The intensity distribution I(x) ∝ |E (x)|2 is shown in Fig. 2.21 and distorted
slightly in the grey colour scale for clarification.
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2. Fraunhofer diffraction at a ‘Gaussian transmitter’

We consider a Gaussian amplitude

Fig. 2.22 Diffraction at a ‘Gaussian transmitter’.

distribution, which one may create
for example out of a planar wave
by a filter with a Gaussian trans-
mission profile. On the other hand
we may just use the Gaussian beam
from Sect. 2.3 and insert an aperture
only in thought – the physical result
would be the same.

On a screen behind the aperture
the intensity distribution must have
been induced only by the diffraction
at this fictitious aperture! We use
the form and notation from Sect. 2.3
with the fictitious transmission

τ(ξ) = e−(ξ/w0)2
/
√

π.

The diffraction integral

E (x) = iE0
eikr0

λ
√

kz

∫ ∞

−∞
dξ eiκxξ e−(ξ/w0)2

√
π

can be evaluated with

∫ ∞

−∞
dξ exp [−(ξ/w0)2] exp (iκxξ) =

√
π w0 exp [−(κxw0/2)2]

and we find, using the notion on p. 48 (beam waist w0, length of the Rayleigh
zone z0, etc.):

E (x) = iE0
w0 eikr0

λ
√

kz
e−(xz0/w0z)2 � E0

w0 eikz

λ
√

kz
eikx2/2z e−(x/w(z))2

.

The last approximation is valid in the far field (z � z0) and we find af-
ter some conversions that it corresponds there exactly to the Gaussian TEM00
mode from Sect. 2.3. Indeed one could have started the search for stable modes
in a mirror or lens system also from the viewpoint of diffraction. The ampli-
tude distribution must be a self-reproducing solution (or eigenfunction) of the
diffraction integral, which is ‘diffraction-limited’. Indeed integral equations
are not very popular in teaching, which is why usually the complementary
path of differential equations according to Maxwell is struck.

In our discussion we have treated the x and y coordinates completely in-
dependently from each other. That is why wave propagation according to



68 2 Wave optics

Gaussian optics occurs independently in x and y directions, an important
condition for optical systems, the axial symmetry of which is broken, e.g. in
ring resonators.

3. Fraunhofer diffraction at a circular aperture
One more element of diffraction,

��

Fig. 2.23 Diffraction at a circular aperture.

exceptionally important for optics,
is the circular aperture, because
diffraction occurs at all circle-like
optical elements, among which
lenses are counted for example. We
will see that the resolution of optical
instruments is limited by diffraction
at these apertures, and that diffrac-
tion causes a fundamental limit for
efficiency, the so-called diffraction
limit.

We introduce polar coordinates
(ρ, ψ) within the (η, ξ) plane and

(r, φ) within the (x, y) plane of the screen. With these coordinates the diffrac-
tion integral from Eq. (2.45) reads as

E (r) = −iES
eikr0

λz

∫ a

0
ρ dρ

∫ 2π

0
dψ e−i(krρ/z) cos(φ−ψ).

This can be evaluated with the mathematical relations for Bessel functions,

J0(x) =
1

2π

∫ 2π

0
exp [ix cos (ψ)] dψ and

∫ x

0
dx′ x′ J0(x′) = xJ1(x).

The result is

E (r) = −iES eikr0
ka2

z
J1(kar/z)
(kar/z)

.

The central diffraction maximum is also called the ‘Airy disc’ (do not confuse
this with the Airy function!).

The intensity distribution is determined by forming the modulus,

I(r) = I(r=0)
(

2J1(kar/z)
kar/z

)2

.

The radius rAiry of the Airy disc is defined by the first zero of the Bessel func-
tion J1(x=3.83) = 0. From x = karAiry/z = 3.83 = 2π · 1.22 we find the
radius

rAiry = 1.22
zλ

2a
.
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With these specifications we may already determine the Rayleigh criterion for
a lens of diameter 2a → D and with focal length z → f ,

rAiry = 1.22
f λ

D
, (2.47)

which matches the result of the treatment of Gaussian beams except for small
constant factors (see p. 52).

2.5.3
Optical Fourier transformation, Fourier optics

According to Eq. (2.45) in the far field a diffracting object creates an ampli-
tude distribution that corresponds to the complex amplitude distribution in
the object plane and is a function of the spatial frequencies κη = −kη/z and
κξ = −kξ/z. A convex lens focuses incident beams and moves the Fourier
transform of the amplitude distribution into the focal plane at the focal length
f (Fig. 2.24):

E (κη, κξ) = A(η, ξ)
∮

S
τ(x, y) ei(κηx+κξ y) dx dy

= A(η, ξ)F{E (x, y)}.
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Fig. 2.24 A lens as an optical Fourier transformer. The image can be
reconstructed by a second lens. The properties of the image can be
manipulated in Fourier space, i.e. the Fourier plane.

Therefore when observing a Fraunhofer diffraction image, one uses con-
veniently a lens (directly after the diffracting object), to keep the working
distance short. It can be shown that the factor A(η, ξ) is independent of
(η, ξ) if the diffracting object is located at the front focal plane. Under these
circumstances, studying the intensity distribution I(η, ξ) ∝ |E (κη, κξ)|2 ∝
|F{E (x, y)}|2, obviously one finds a power spectrum in the space frequencies
of the diffracting object.
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But the Fourier transformation of a diffracting object by a lens would not
be that exciting if it were not for the fact that it forms the basis for the Abbe
theory of imaging in a microscope (see Sect. 4.3.2) or more generally of Fourier
optics [113]. The treatment of this goes beyond the scope of the present book,
but, referring to Fig. 2.24 and without going into details, we want to point
out that a second lens compensates or reverses again the Fourier transfor-
mation of the first lens. Within the focal plane of the first lens, the Fourier
plane, the image can now be manipulated. Just by use of simple diaphragms
(amplitude modulation) certain Fourier components can be suppressed and
one obtains a smoothing of the images. On the other hand one can also ap-
ply phase modulation, e.g. by inserting glass retardation plates, which affect
only selected diffraction orders. This procedure is also the basis for the phase
contrast method in microscopy. Imaging can also include a magnification by
application of lenses with different focal lengths.

2.5.4
Fresnel diffraction

For Fraunhofer diffraction, not only must the screen lie in the far field, but also
the size a of the radiation source must fit into the first Fresnel zone with radius
r0 =

√
zλ, which means that a ≤ √

zλ must be fulfilled. If this condition is not
met, one may apply the Fresnel approximation (see Eq. (2.44(ii)), which for

a2 ≥ λz but a � z

uses the full quadratic approximation in (x, y, η, ξ):

r2 = (x − η)2 + (y − ξ)2 + z2,

r = z
(

1 +
(x − η)2

z2 +
(y − ξ)2

z2

)1/2

= z +
(x − η)2

2z
+

(y − ξ)2

2z
+ · · · .

Then according to Eq. (2.43) the diffraction integral reads as

E (rP) = iE0
eikz

λz

∮
S

τ(η, ξ) exp
(

ik
2z

[(x − η)2 + (y − ξ)2]
)

dη dξ. (2.48)

Mathematically this is much more elaborate than the Fourier transformation
in the Fraunhofer approximation (Eq. 2.45), but easy to treat with numerical
methods.
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Examples: Fresnel diffraction

1. Fresnel diffraction at a straight edge

First we introduce the normalized variable u,

k
2z

(x − η)2 :=
π

2
u2, u0 = u(η=0) =

√
k
πz

x, dη = −
√

πz
k

du,

into the diffraction integral and substitute (K is constant)

E (x) = K
∫ ∞

0
exp

[
ik
2z

(x − η)2
]

dη
x→u−→ K

√
πz
k

∫ u0

−∞
exp

[
i
π

2
u2

]
du.

�

�

�

Fig. 2.25 Fresnel diffraction at a straight edge.

At a large distance (x, u0 → ∞) from the edge we expect a homogeneous field
and homogeneous intensity, which we can use for normalization:

I0 =
cε0

2
E2(x→∞) =

cε0

2

∣∣∣∣K√
πz
k

(1 + i)
∣∣∣∣2

=
cε0

2
K2zλ.

With that we can calculate the intensity, which can be expressed with the aid
of the Fresnel integrals,

C(u) :=
∫ u

0
du′ cos

(π

2
u′2

)
and S(u) :=

∫ u

0
du′ sin

(π

2
u′2

)
,

in a clear form:

I
(

x =
√

πz
k

u0

)
=

cε0

2
|E (x)|2 =

1
2

I0

∣∣∣∣∫ u0

−∞
exp

[
i
π

2
u2

]
du

∣∣∣∣2

=
I0

2

{[
C(u0) +

1
2

]2

+
[

S(u0) +
1
2

]2
}

.
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Fig. 2.26 Cornu spiral and diffraction intensity behind a straight edge.

As the result we gain the Cornu spiral and the intensity distribution behind a
straight edge, which are both illustrated in Fig. 2.26.

2. Fresnel diffraction at a circular aperture

In order to evaluate the diffraction integral (2.48) for the case of near field
diffraction at a circular aperture with radius a, we use x = r cos φ′, y = r sin φ′,
η = ρ cos φ and ξ = ρ sin φ:

E (r, φ) = iES
eikz eikr2/2z

λz

×
∫ a

0

∫ 2π

0
e−ikρ2/2z e−irρ cos (φ′−φ)ρ dρ dφ.

(2.49)

The angle integration can be carried out and substituting κ := ka2/z it yields
the expected radially symmetric result

E (r) = iES eikz eiκ(r/a)2/2κ
∫ 1

0
e−iκx2/2 J0(κxr/a)x dx.

Now the integral can be evaluated numerically and then yields the diffrac-
tion images from Fig. 2.27. On the optical axis (r = 0) the integral can also be
solved analytically with the result

E (r=0) = iES eikz 2 sin(κ/4) eiκ/4,

I(r=0) = 4 × cε0
2 |ES|2 sin2(ka2/4z).

(2.50)

Accordingly along the axis one finds up to four-fold intensity of the inci-
dent planar wave! For κ � 1 the Fraunhofer approximation is reached and
there sin(κ/4) � κ/4 ∝ 1/z is valid. On p. 75 we will interpret this result
again with the aid of the Fresnel zones. Furthermore we will deal with the
complementary problem, the circular obstacle, on p. 74.
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Fig. 2.27 Example for Fresnel diffraction at a circular aperture from
the Fresnel up to the Fraunhofer limit case. The right-hand figure
shows the calculated intensity distribution at ka2/z = 40 and 14.

2.5.5
Babinet’s principle

Babinet’s principle is nothing other

�>6����������?���;�2=

� ?
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Fig. 2.28 Diffraction at a circular obstacle:
Babinet’s principle.

than an application of the superposi-
tion principle (Sect. 2.1.6). It often al-
lows a clever formulation for the anal-
ysis of diffraction phenomena, because
it is particularly also linear within the
diffracting plane. If we consider the
light field, which is created by the two
geometries S1 and S2, then the total
field, which propagates without these
objects, is just the sum of the two in-

dividual diffracting fields. According to Fig. 2.28, we can compose the non-
diffracted field (index ND) out of the diffracted field and the corresponding
complementary field:

END(rP) = E(rP) + Ecomp(rP).

This statement, Babinet’s principle, seems fairly banal at first sight, but it al-
lows a clever treatment of complementary geometries.
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Example: Circular obstacle
We can construct the light field diffracted by a disc with Babinet’s principle
and the result from a circular aperture. It consists of just the difference be-
tween the non-diffracted field, in the most simple case a planar wave, and the
complementary field, which originates from a circular aperture:

E (r) = ES eikz
(

1 + i eiκ(r/a)2/2κ
∫ 1

0
e−iκx2/2 J0(κxr/a)x dx

)
.

The diffraction image at a circular obstacle consists of the superposition of a
planar wave and a diffraction wave of the circular aperture. In the centre a
bright spot can always be seen, which has become famous as the ‘hot spot’:

E (r=0) = ES eikz[1 + 2i sin(κ/4) eiκ/4] and I(r=0) =
cε0

2
|ES|2.

According to an anecdote, Poisson opposed Fresnel’s diffraction theory on
the grounds that the just achieved results were absurd; behind an aperture in
the centre of the diffraction image a constant hot spot could not be observed.
He was disproved by experiment – this observation is not simple, because the
rims of the diffracting disc must be manufactured with optical precision (i.e.
with only slight deviations in the micrometer range).

Fig. 2.29 Fresnel diffraction at a circular obstacle. Right-hand side:
Calculated intensity distributions. In the centre the ’hot spot’ can be
recognized. Compare the complementary situation in Fig. 2.27.
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2.5.6
Fresnel zones and Fresnel lenses

� � 0

.

.?
 �

Fig. 2.30 Fresnel zones and zone plate.

In the case of Fraunhofer diffraction we can equate the Fresnel factor from
Eq. (2.49), exp[−ik(x2 + y2)/2z], with 1 according to ka2/z = 2π(a2/λz) � 1,
but this is not the case for Fresnel diffraction. This factor specifies with what
kind of phase ΦF the partial waves of the diffracting area contribute to the
interference image, e.g. all with approximately ΦF = 0 in the Fraunhofer limit
case.

However, if we slowly increase the radius r of the diffracting object at a fixed
distance z, then starting at a1 =

√
zλ the partial waves contribute with oppo-

site phase, since ka2
1/z = π. Therefore we can refer to the criterion established

by Fresnel,

a2
N = Nzλ, (2.51)

to divide the diffracting plane according to the character of its phase position.
In Fig. 2.30 the division with white and black zones is introduced, the outer

radii of which increase according to Eq. (2.51). For clarification we look again
at the diffraction at a circular aperture from the example on p. 72. According to
Eq. (2.50) the brightness reaches a maximum on the axis at a2/zλ = 1, 3, . . . ,
while at a2/zλ = 2, 4, . . . a minimum appears.

In a radially symmetric aperture every Fresnel zone contributes with the
same area and intensity to the total field on the axis. Partial waves stemming
from the odd Fresnel zones accumulate a path difference of (N − 1)λ/2 =
0, 2, 4, . . . , λ on the axis, which results in constructive interference. On the
other hand, a contribution with opposite phase is created from the even zones
(Nλ/2), which results in cancellation of the light field for equivalent numbers
of even and odd zones.

The suggestion to make use of this circumstance and use a diaphragm for
every second zone dates back to Fresnel. The division into zones from Fig. 2.30
therefore stands exactly for the idea of a Fresnel zone plate. Alternatively one
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may also use a corresponding phase plate, which is better known under the
name ‘Fresnel lens’ or ‘Fresnel step lens’ (Fig. 2.31). These lenses are often
used in combination with large apertures, for example in overhead projectors.

Fig. 2.31 Fresnel’s stepped lens: Scheme and ring-shaped application
in an old boat lantern (Source: Wikipedia, image by Aton (rp) 2004).
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Problems

2.1. Measurement of the speed of light according to Rœmer and Huygens
O. Rœmer observed varia-

Fig. 2.32 O. Rœmer gained the first insight about the
travel time of light from the time variations he observed
between the eclipses of the Jupiter moon Io.

tions in the orbital period of
the innermost Jupiter moon
Io (TIo = 1.8 days or 42.5
hours). He used these data
to derive the time it takes
light to traverse the orbit of
the Earth around the Sun (1
astronomical unit, 1 AU =
150×106 km). C. Huygens
calculated the first estimate of the speed of light from Rœmer’s observations.
Examine the Earth’s orbit and specify which event can be observed from the
Earth, entry or exit of Io into the shade of Jupiter? Where do you expect the
largest deviations of the observed from the ’true’ orbital period? What ac-
curacy is required for a clock such that the acceleration/deceleration can be
measured within two revolutions? Rœmer compared 40 revolutions before
and 40 revolutions after the opposition (Sun between Earth and Jupiter). He
concluded that light travels across the diameter of the earth orbit in 22 min-
utes. What value did Huygens estimate for the speed of light?
2.2. Field distributions and Poynting vector of electromagnetic waves
Sketch the electric and magnetic field distributions and the Poynting vector
for the superposition of two plane and linearly polarized waves for (a) a plane
standing wave and (b) two orthogonally crossed waves.
2.3. Image dipoles and optical quadrupole radiation In the vicinity of con-
ducting planes one can derive many properties of a radiating dipole using
the superposition of its dipole field with the field of an image dipole, which
is located at the mirror position of the original dipole. These arguments also
hold for atomic dipoles radiating visible light. Examine the two possible ori-
entations in Sect. 12.3.3, Fig. 12.5 (σ and π orientation orthogonal and parallel
to the surface normal) and assure yourself that the dipoles must have paral-
lel and antiparallel orientation, respectively, in order to satisfy the boundary
conditions of a vanishing electric field at the conductive surface. Give the far
field (r � λ) spatial distribution of the radiation field strength as a function
of r, the distance from the centre of the two dipoles, and θ, the angle with the
surface normal. Assume the limiting case where the separation of the dipoles
is small compared with the wavelength λ. How does the amplitude drop with
r for the two orientations?
2.4. Paraxial wave equation Verify Eqs. (2.29) and (2.30) by explicitly carrying
out the slowly varying envelope approximation.
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2.5. Laguerre Gaussian modes For cylindrically symmetric paraxial waves
an alternative description is given by Laguerre Gaussian modes. In place of
Eq. (2.35) the amplitude is in this case given with the definitions for w0, w(z),
R(z), and η(z) from Sect. 2.3.1.1 by:

E�m(r,ϕ,z) = E0

( √
2r

w(z)

)�

L�
m

( √
2r

w(z)

)
w0

w(z)
e−(ρ/w(z))2×

× ei�ϕeikρ2/2R(z) ei(kz−(2m+�+1)η(z)).

Find out about the properties of the Laguerre polynomials (e.g. in [6]) and
sketch the transverse intensity and phase angle distribution of these modes.

2.6. Orbital angular momentum and Laguerre Gaussian modes Investigate
the influence of the azimuthal phase factor ei�ϕ of the Laguerre Gaussian
modes of Prob. 2.5. Extending the concept of the Poynting vector, which de-
scribes the momentum density of a light beam, one can also define a density
of the orbital angular momentum [89] through

M = r×E×H.

Determine and sketch the distribution of the Poynting vector, the density of
the orbital angular momentum M, and calculate the total orbital angular mo-
mentum of the beam L = c

∫
M d3r. Interpret the result [12].

2.7. Microwave Gaussian beam A typical satellite dish has a diameter of 50
cm and a focal length of 25 cm. Use Gaussian beam optics to estimate the
diameter of the focal spot which is created by the microwave radiation emitted
by the Astra satellite at 11 GHz.

2.8. Intensity of microwave and optical beams Let us send an 11 GHz signal
with the antenna from Prob. 2.7 to the Astra satellite. The power of the trans-
mitter is 1 W. Use Gaussian beam optics to calculate the maximum intensity
arriving at the satellite. Furthermore, estimate the intensity if we use a 1 W
Helium Neon laser (λHe−Ne = 632 nm) instead of the microwaves.

2.9. Gouy phase Devise an experiment which proves the existence of the
Gouy phase. (Hint: Phase relations are typically investigated with interfer-
ometric devices.) Is there an analogue of the Gouy phase in ray optics?

2.10. Coupling into optical fibres For an optical fibre a numerical aperture
NA = 0.1 is specified for λ = 850 nm. How large is the diameter of the guided
beam (2w, w waist size), if we assume an approximate Gaussian profile? You
want to insert a well-collimated beam with half-width 2 mm and divergence
1 mrad with a lens into this fibre. There are lenses with 10 cm, 5 cm, 2 cm, 1 cm
focal lengths available. Which lens gives the best result, and at which position
from the end of the fibre?
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2.11. Axes of a polarizer The axes of an unknown polarizer (e.g. polarizing
sheets) can be determined in the following way: Find a ground surface as
smooth as possible in your vicinity, i.e. at least with some residual reflection.
Take the polarizer and observe this reflection at a distance of some 2–4 m. By
rotating the polarizer the reflection from the surface should become lighter
and darker. What is the origin of the polarization, and how do you identify
the axes?

2.12. Polarization and reflection Determine the local state of polarization of
the electric field from the following pairs of light beams which are counter-
propagating in the +z and −z direction, respectively, as a function of z:

(a) lin‖lin: Elin
+z ‖ Elin−z; (b) lin⊥lin: Elin

+z ⊥ Elin−z;
(c) σ+σ+: Ecirc+

+z , Ecirc+−z ; (d) σ+σ−: Ecirc+
+z , Ecirc−−z .

Which optical components are used, if the counter-propagating beam is gen-
erated by retro-reflection from a plane mirror?

2.13. Projection and rotation of the polarization Two perfectly crossed po-
larizers extinguish a light beam. Insertion of another polarizer in between the
crossed polarizers causes transmission of light again (see Fig. 2.15). Show that
the transmitted intensity is 25% for lossless polarizers. Continue the example
by insertion of 2, 3, ... polarizers with equal angle settings 30◦, 22.5◦, etc.

2.14. Fraunhofer diffraction from simple and irregular openings What is the
diffraction image of a square aperture in the far field (Fraunhofer limit)? How
is the image changed for two crossed slits? What is the influence of irregular
openings, e.g. punched letters?

�

@�
�

Fig. 2.33 Designations for Problems 2.15–2.18, diffraction from a slit.

2.15. Single slit: partial waves A plane wave (wave vector k = 2π/λ) is in-
cident on an infinitely long slit of width d. We are interested in the inten-
sity distribution which we observe on a screen at the distance z from the
slit (Fig. 2.33). Here we assume that the Fraunhofer limit is realized, i.e.
d2 � λz/π. Calculate the position of the first diffraction minimum with the
following method: Divide the slit into two half-slits with identical width. For
every point on the screen we now calculate the difference of the average phase
of the two beams from the half-slits. The partial waves annihilate each other
if the phase difference equals π.
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2.16. Single slit: Huygens’ principle A more realistic description than the
previous problem is derived from Huygens’ principle: It states that every
point of the slit is the origin of a spherical wave into the half-space behind the
slit (Fig. 2.33). In our case we can for symmetry reasons replace the spherical
wave with a cylindrical wave E (ρ) ∝ exp(ikρ)/

√
ρ, where ρ gives the distance

from the origin of the cylindrical wave. The field amplitude at the screen is
derived from the sum of all partial waves. Calculate with this method the
intensity distribution of the diffraction image of the slit as a function of the
diffraction angle α � 1.

2.17. Double slit: Babinet’s principle Construct the diffraction image of the
double slit using Babinet’s principle using two single slits with different
widths d1 > d2.

2.18. Kirchhoff’s integral Kirchhoff’s diffraction integral allows the calcula-
tion of the field distribution caused by diffraction from an arbitrary object. In
the far field of a diffracting slit (Fig. 2.33) Kirchhoff’s integral is reduced to a
one-dimensional integral by taking advantage of the Fraunhofer approxima-
tion and the translational symmetry along the slit. With ES the amplitude of
the incident plane wave at the slit and κX := −kX/r0 (≈ ka for α � 1) we
have

E (X) = − iES exp (ikr0)
λ
√

kz

∫ ∞

−∞
τ(ξ) exp (iκXξ) dξ .

(a) Give the form of the transmission function τ(ξ) for the diffraction slit.
(b) Calculate E (X) using the formula for the case α � 1.

2.19. Diffraction from a thin wire Calculate by means of Babinet’s principle
the field distribution which is caused by diffraction of a plane wave from a
thin wire in the far field. What is changed if the wire is replaced with a thin
long glass plate with optical thickness �opt = (nglass−1)� = λ/2?
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3
Light propagation in matter

We have seen that we can describe refraction at dielectric interfaces, such as
glass plates, with the help of refractive indices introduced phenomenologi-
cally. We may also consider refraction as the response of the glass plate to the
incident electromagnetic light wave. The electric field shifts the charged con-
stituents of the glass and thus causes a dynamic polarization. This in turn radi-
ates an electromagnetic wave and acts back on the incident light wave through
interference. Here we will discuss the properties of matter with macroscopic
phenomenological indices of refraction. Some fundamental relations with the
microscopic theory will be introduced in Chap. 6.

In the preceding chapter we discussed wave propagation in homogeneous
matter and noticed that it differs from that in vacuum only by the phase
velocity (Eq. (2.13)). Now we want to explore how interfaces or dielectrics
with inhomogeneous refractive index affect the propagation of electromag-
netic waves.

3.1
Dielectric interfaces

In order to discuss dielectric interfaces, we have to know how they affect elec-
tromagnetic fields. We will only cite the relations important for optics, and
leave it to the reader to consult textbooks on electrodynamics for proofs of
the rules (of mathematical boundary conditions) with the help of Maxwell’s
equations (2.9).

Suppose that an interface divides two media with refractive indices n1 and
n2, and with normal unit vector eN. Then the electromagnetic radiation fields
are fully characterized by

(E2 − E1) × eN = 0 and (n2
2E2 − n2

1E1) · eN = 0,
(H2 − H1) × eN = 0 and (H2 − H1) · eN = 0,

(3.1)

where E1,2 and H1,2 are to be taken in direct proximity to, but on different
sides of, the interface. We further note that in optics we may often restrict
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ourselves to the application of the vector products from (3.1), while the scalar
products are accounted for by Snell’s law (Eq. (1.2)).

3.1.1
Refraction and reflection at glass surfaces

In the case of a transverse electromagnetic wave incident on a dielectric in-
terface, we can distinguish two polarization configurations: the polarization
may be either linearly perpendicular (s) or parallel (p) to the plane of incidence
(Fig. 3.1).

Fig. 3.1 Electromagnetic fields at a dielectric interface for (left) s and
(right) p polarization. The symbol � indicates the field vectors perpen-
dicular to the plane of the drawing.

Waves with s (resp. p) polarization of the electric field are called s (resp.
p) waves. Alternatively the notions σ and π polarizations (resp. TE and TM
waves) are also used. We have to treat the two cases for each component
individually. Then elliptical polarizations can be reduced to superpositions of
these cases according to the superposition principle.

3.1.1.1 s polarization

We consider the {E, H, k}α triads of the incident (i), reflected (r) and transmit-
ted (t) waves and use the notation from Fig. 3.1 with

Eα = E0αez e−i(ωαt−kαr),

Hα = E0α
μ0cωα

kα × ez e−i(ωαt−kαr).
(3.2)

The s-polarized electric field is perpendicular to the surface normal, which is
why

Et = Ei + Er (3.3)
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is valid. If this relation is fulfilled everywhere and at all times at the interface,
then obviously all waves must have the same frequency, and we can consider
the time t = 0. Besides, according to (3.1), at x = 0 the relation

E0t eikyty = E0i eikyiy + E0r eikyry

must hold for arbitrary y, and thus all y components of the k vectors must be
equal:

kyt = kyi = kyr.

Next we consider the components individually for the reflected and trans-
mitted parts. Since the reflected wave propagates within the same medium as
the incident wave, according to n2

1k2
α = n2

1(k2
xα + k2

yα) the relations

k2
xr = k2

xi and kxr = −kxi

must be satisfied, because the positive sign creates one more incident wave,
which is not physically meaningful. Thus the law of reflection is again estab-
lished. For the transmitted wave, kt/n2 = ki/n1 must hold. From geometry
one finds directly ki = kyi/sin θt and thus also Snell’s law (1.2) again,

n1 sin θi = n2 sin θt.

This is valid only for real refractive indices, but it can be generalized by the
application of

k2
xt = k2

t − k2
yt =

n2
2

n2
1

k2
i − k2

yi.

All results up to now have just confirmed the outcomes we knew already
from ray optics. But by means of ray optics we could not find out about the
amplitude distribution, which is now possible by means of wave optics. Ac-
cording to (3.2) the tangential components of the H field are related to the E
components,

Hyα = − E0

μ0cω
kxα.

These must be continuous due to (3.1) and therefore fulfil the equations

kxtE0t = kxiE0i + kxrE0r = kxi(E0i − E0r),
E0t = E0i + E0r,

(3.4)

which we have extended by the condition (3.3) to complete the system of equa-
tions. It has the solutions

E0r =
kxi − kxt

kxi + kxt
E0i and E0t =

2kxi

kxi + kxt
E0i.
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With the amplitudes, the corresponding intensities can be calculated with-
out any problems. The reflection coefficient r and the transmission coefficient t
may also be described according to

r = E0rE0i
= n1 cos θi − n2 cos θt

n1 cos θi + n2 cos θt
,

t = E0tE0i
= 2n1 cos θi

n1 cos θi + n2 cos θt
,

and by the use of n1/n2 = sin θt/sin θi according to Snell’s law, these can be
modified to yield

r =
E0r

E0i
= − sin (θi − θt)

sin (θi + θt)
and t =

2 cos(θi) sin(θt)
sin (θi + θt)

.
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Fig. 3.2 Reflection coefficient and reflectivity at a glass plate with
refractive index n = 1.5 for s and p polarization. Full line: from vacuum
into glass. Dashed line: from glass into vacuum.

The dependence of the reflection coefficient and the reflectivity on the angle
of incidence θi is illustrated in Fig. 3.2. Among other things the figure shows
the change of sign of the reflectivity coefficient for the reflection at a more
dense medium which at normal incidence corresponds to a phase jump by
180◦.

A very important special case occurs when light enters perpendicularly, i.e.
at an angle θi = 0◦. Then for the reflectivity R and transmission T, the Fresnel
formulae are valid:

R =
|Er|2
|Ei|2 =

(
n1 − n2

n1 + n2

)2

and T =
|Et|2
|Ei|2 =

4n1n2

(n1 + n2)2 . (3.5)

It is straightforward to calculate that, at a glass–air interface (n1 = 1, n2 = 1.5),
4% of the intensity is reflected.
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3.1.1.2 p polarization

The discussion of a p-polarized electric field oscillating within the plane of
incidence follows the procedure just outlined, and can therefore be shortened
giving the conditions and the results only. Boundary conditions in this case
require E‖ = Ey = Eyt = Eyi − Eyr to be continuous, as well as Hzt = Hzi +
Hzr. Snell’s law is reproduced again, and for the amplitudes one finds with
μ0cωHzα = Eα0kα the system of equations

E0t cos θt = E0i cos θi − E0r cos θr,

ktE0t = kiE0i + krE0r,

Solutions read

E0r =
k2

t kyi − k2
i kyt

k2
t kyi + k2

i kyt
E0i and E0t =

2kiktkyt

k2
t kyi + k2

i kyt
E0i.

The reflection coefficient of the p wave is more transparently written as

r =
E0r

E0i
= − tan (θi − θt)

tan (θi + θt)
,

and is shown together with the reflectivity in Fig. 3.2. It vanishes for

θi − θt = 0 and θi + θt = π/2.

The first condition is only fulfilled trivially for n1 = n2. The second one leads
to the Brewster condition

n2

n1
=

sin θB

sin θt
=

sin θB

sin (π/2 − θB)
= tan θB,

which yields the Brewster angle θB = 57◦ for the glass–air transition (n = 1.5).
The Brewster condition may be interpreted physically with the angular distri-
bution of the dipole radiation (see Sect. 2.2.3 and Fig. 3.3): the linear dielectric
polarization in the refracting medium is transverse to the refracted beam and
cannot radiate into the direction of the reflected wave, if the former makes a
right angle with the refracted wave.

3.1.2
Total internal reflection (TIR)

As shown in Fig. 3.2, TIR is a very prominent feature for light waves travel-
ling from a denser medium into a less dense one. Let us study this situation
in more detail by considering the component kxt = k2 cos θt describing the
penetration of the wave into the less dense medium. We adopt the solutions
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Fig. 3.3 Left: At the Brewster angle θB only s-polarized light is re-
flected. Right: For total reflection at the denser medium (n1 > n2), an
evanescent wave field is generated in the less dense medium.

for propagating waves below the critical angle θc = sin−1(n2/n1), n1 > n2,
which we know already from Eq. (1.3), by generalization of Snell’s condition
for θi > θc to imaginary values. With W = sin θt = sin θi/sin θc > 1, one may
write

cos θt = (1 − sin2 θt)1/2 = (1 −W2)1/2 = iQ,

where Q is again a real number. Now we write the electric field for angles of
incidence beyond the critical angle as a propagating wave,

E(r, t) = E20 exp[−i(ωt − k2r)].

With k = k2(cos θt ex + sin θt ey), one gets

E = E20 exp(−k2Qx) exp[−i(ωt − k2Wy)].

Thus for θi > θc there is a wave propagating along the interface which pene-
trates into the denser medium, but is attenuated exponentially with penetra-
tion depth δe = 1/(k2Q) (Fig. 3.3). The wave within the less dense medium
usually is called the evanescent wave field.

Example: Penetration depth and energy transport for total reflection
According to the preceding section, the penetration depth of a totally reflected
wave is for n2 = 1 < n1 and θi > θc

δe =
1

k2Q
=

λ/2π√
n2

1 sin2 θi − 1
.
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For the case of a 90◦ prism from Fig. 1.7 (angle of incidence 45◦, refractive
index n1 = 1.5), one calculates Q = 0.25 and δe = 0.27 μm at 600 nm.

�A

�A'

Fig. 3.4 Frustrated total internal reflection. The width of the air gap
must be less than the penetration depth of the evanescent wave.

It is instructive to consider the energy transport according to Eq. (2.16)
through the interface into the evanescent wave. It turns out that the normal
component of the Poynting vector is purely imaginary,

〈S〉 · eN = 〈E × H〉 · eN

= Re{cε0/2|E|2iQ} = 0,

and therefore no energy transport occurs through the interface. Actually this
situation changes if we position a second interface nearby, as indicated in
Fig. 3.4. Then the so-called frustrated total internal reflection (FTIR) occurs. The
FTIR phenomenon is not only used to build optical beam splitters, but also to
couple light in different manners (by varying the air gap) into wave guides
(see Fig. 3.7) or monolithic optical resonators, or for example to perform spec-
troscopy in the immediate vicinity of a surface.

3.2
Complex refractive index

So far we have considered real indices of refraction n, which are a good ap-
proximation for media with negligible losses. Absorption or other losses, e.g.
scattering, may be taken into account phenomenologically by the generaliza-
tion of the refractive index to a complex quantity,

n = n′ + in′′.

Then in a homogeneous medium wave propagation may be described accord-
ing to

E(r, t) = E0 e−i(ωt−n′kr) e−n′′kr,
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where obviously α = 2n′′kz specifies the attenuation of the intensity (I ∝ |E|2),
here for propagation along the z direction:

I(r) = I(0) exp(−αz) = I(0) exp(−2n′′kzz). (3.6)

3.2.1
Refractive index of conducting materials

Nowadays dielectric multi-layer mirrors are usually used for laser applica-
tions (see Sect. 5.7). But conventional mirrors made of evaporated metal lay-
ers also still play an important role in ‘everyday optical technology’ due to
their low price and broadband effect. Metals are characterized by enormous
conductivity, which also causes their high reflectivity. We consider a classi-
cal, phenomenological model for the conductivity σ, which goes back to Paul
Drude (1863–1906). It has been shown to be extremely powerful and was later
more fundamentally justified by a microscopic solid-state quantum theory. In
the Drude model the motion of a free electron is attenuated by friction forces
with an attenuation rate τ−1,

m
(

dv
dt

+
v
τ

)
= Re{qE0 e−iωt},

which takes into account all internal losses within a crystal in a lumped pa-
rameter. In equilibrium the ansatz v = v0 e−iωt yields an average velocity
amplitude

v0 =
qE0

m
1

−iω + 1/τ
= − qE0τ

m
1

1 − iωτ
.

With charge carrier density N and current density j = σE = N qv, one may
determine the frequency-dependent conductivity of a metal,

σ(ω) =
N q2

m
τ

1 − iωτ
= ε0ωp

ωpτ

1 − iωτ
, (3.7)

where we introduce the plasma frequency ω2
p = N q2/mε0. The plasma fre-

quencies of typical metals with large charge carrier densities (N = 1019 cm−3)
have values ωp ≈ 1016 s−1, which is beyond the frequencies of visible light.
In semiconductors the conductivity may be adjusted by doping, and this fre-
quency can be easily shifted into the visible or infrared spectral range.

To analyse the influence of conductivity on wave propagation, we refer to
the fourth Maxwell equation (2.7) and introduce the current density we have
just determined,

∇×H = μ0σE + ε0
∂

∂t
E.
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This gives rise to a modification of the wave equation (2.11),(
∇2 − 1

c2
∂2

∂t2

)
E(r, t)− σ

ε0c2
∂

∂t
E = 0.

According to k2 = n2(ω)(ω/c)2 the solution E = E0ε e−i[ωt−n(ω)kr] yields
a complex refractive index depending on the conductivity of the medium,
which has to be determined phenomenologically,

n2(ω) = 1 + i
σ(ω)
ε0ω

. (3.8)

It pays to distinguish the extreme cases of low and high frequencies.

3.2.1.1 High frequencies: ωpτ � ωτ � 1

We expect this case for optical frequencies; according to (3.7) it holds that

σ � iε0ω2
p/ω and n2(ω) � 1 − (ωp/ω)2.

For ω < ωp, the refractive index is purely imaginary,

n = i
(ω2

p − ω2)1/2

ω
= in′′, (3.9)

and the wave no longer propagates in this medium. Instead for ω > ωp, the
wave penetrates into the medium, as in the case of total internal reflection, to
a depth of

δ = (n′′k)−1 =
c√

ω2
p − ω2

.

For τ−1 � ω � ωp, we find that n′′ ≈ ωp/ω is valid, and the penetration is
called the ‘anomalous skin effect’ with an approximately constant penetration
depth δas, which corresponds exactly to the plasma wavelength λ = ωp/2πc,

δas = c/ωp = λp/2π.

3.2.1.2 Low frequencies: ωτ � 1 � ωpτ

At the lower end of the frequency spectrum, the conductivity is independent
of frequency to good approximation,

σ(ω) � ε0ω2
pτ,

and in this case the imaginary part of the index of refraction is from Eq. (3.8)

n′′ � ωp/2
√

τ/ω.
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Now the refractive index determines the penetration depth, which is called
the ‘normal skin effect’ for lower frequencies:

δns =
λp

π
√

ωτ
.

This case is less important in optics, but plays an important role in applications
at radio frequencies.

3.2.2
Metallic reflection

Now we can use the results of the previous section to discuss metallic reflec-
tion. However, we confine ourselves to perpendicular incidence. Oblique in-
cidence has many interesting properties but requires elaborate mathematical
treatment, which can be found in the specialist literature [25].

For optical frequencies the limiting case of high frequencies (ωτ � 1) from
the previous section applies, and we can use the purely imaginary refractive

index (3.9), n = in′′ = i
√

(ω2
p − ω2)/ω.

We can take the boundary conditions from Eq. (3.4) and use them directly
for the air–metal interface, kt/ki = in′′,

in′′E0t = E0i − E0r,
E0t = E0i + E0r.

Without any problems one finds

E0r =
1 − in′′

1 + in′′ E0i and E0t =
2

1 + in′′ E0i.

An interesting result is obtained,
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Fig. 3.5 Electromagnetic fields reflected at
perpendicular incidence.

when calculating the reflectivity,

R =
|Er|2
|Ei|2 =

|1 − in′′|2
|1 + in′′|2 = 1.

We have neglected ohmic losses
(relaxation rate τ−1!), which are,
of course, always present in real
metals. Indeed, one finds that
within the visible spectral region
important metals like Al, Au and
Ag have reflectivities of the order
of 90–98%. Normally this value is

reduced by oxidized surfaces, so that metallic mirror surfaces either have to
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be deposited on the backside of a glass plate or are covered with a transparent
and thin protective layer.

Example: Hagen–Rubens relation
To take into account the ohmic losses in Eq. (3.7), we use the approximation

σ(ω) =
σ0

1 − iωτ
� iσ0

ωτ

(
1 − i

ωτ

)
,

which gives for the refractive index at optical frequencies (ωp � ω � τ−1)
the approximation

n2(ω) � −ω2
p

ω2

(
1 − i

ωτ

)
.

Furthermore, we use
√

1 − i/ωτ � −i(1 − i/2ωτ) and find, with n′′ accord-
ing to (3.9) and with n′/n′′ = 1/2ωτ from

n2(ω) � ω2
p

ω2

(
i +

1
2ωτ

)2

= n′′2
(

i +
n′

n′′

)2

for the reflectivity, the Hagen–Rubens relation

R = 1 − 4n′/n′′2 � 1 − 2/ωpτ.

Aluminium has a plasma frequency ωp ≈ 1.5 × 1016 s−1, which suggests that
for an optimum reflectivity of a fresh layer of 95% for visible wavelengths the
average time between scattering events is τ ≈ 2 × 10−15 s.

3.3
Optical wave guides and fibres

Let us extend the treatment of optical fibres in ray optics (Sect. 1.7) by solving
the Helmholtz equation (2.12) in order to analyse the properties of wave prop-
agation in optical fibres. We concentrate on wave guides that have a cylindri-
cal cross-section (commonly also called optical fibres, Fig. 3.6) and, as men-
tioned before in Sect. 1.7, constitute the backbone of optical networks – from
short-range interconnections for local cross-linking of devices up to overseas
cables for optical telecommunications.

Wave guides are also an important basic element of integrated optics. Here,
planar structures are preferred (Fig. 3.7), onto which transverse structures
can be fabricated by well-known techniques of semiconductor technology. In
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Fig. 3.6 Step-index fibre with characteristic transverse field distribu-
tions (modes). The curvature of the modes must be positive in the core
and negative in the cladding. The left side shows the field distribution
for the fundamental mode, the right side for the next higher mode.

LiNbO3, for example, the index of refraction may be varied within approx-
imately 1% by in-diffusion of protons, creating wave guides just below the
surface of planar crystals that have a nearly rectangular profile of the index of
refraction.

Fig. 3.7 Types of wave guides. Left: Cylindrical, mechanically very
flexible fibres (light is coupled in and out by lenses) are used for
transmission over long distances. Right: Wave guides with rectan-
gular cross-section just below the surface of suitable substrates (e.g.
LiNbO3) play an important role in integrated optics. Coupling can be
performed via an edge or by frustrated total internal reflection (FTIR)
with a prism on top.

A mathematical investigation of the waveforms of an optical fibre is rather
tedious and involved. As an example, let us sketch the treatment of the cylin-
drical step-index fibre, the most important type for applications.

3.3.1
Step-index fibres

The index of refraction in a step-index fibre (Fig. 3.6) is cylindrically sym-
metric and homogeneous within the core and the cladding, respectively. Its
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value declines from n1 within the core at r = a step-like to the value n2 of
the cladding. According to the geometry we look for solutions of the form
E = E(r, φ) e−i(ωt−βz) (and correspondingly for H) with

E(r, φ) = Er(r, φ)er + Eφ(r, φ)eφ + Ez(r, φ)ez.

The wave equation for cylindrical (r, φ) components is complicated, since the
er and eφ unit vectors are not constant. Fortunately, for the Ez and Hz com-
ponents, a scalar wave equation still holds, where ∇⊥(r, φ) stands for the
transverse part of the nabla operator,

(
∇2

⊥ + k2 − β2
){

Ez

Hz

}
= 0.

A complete system of solutions is obtained if one first evaluates the compo-
nents {Ez,Hz} and then constructs {Er , Eφ,Hr,Hφ} by means of Maxwell’s
equations,

∇ × H = −iωε0n2
i E and ∇ × E = iωμ0H, (3.10)

the result of which is given in Eqs. (3.14) and (3.15).
The propagation constant β must still be determined, and the Helmholtz

equation for {Ez,Hz} in cylindrical coordinates with k1,2 = n1,2ω/c is(
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂φ2 + (k2
i − β2)

){
Ez(r, φ)
Hz(r, φ)

}
= 0.

With the help of the trial solutions {Ez,Hz} = {e(r), h(r)}e±i�φ, this is reduced
to a Bessel equation for the radial distribution of the amplitudes,(

∂2

∂r2 +
1
r

∂

∂r
+ k2

i − β2 − �2

r2

){
e(r)
h(r)

}
= 0.

The curvature of the radial amplitudes {e(r), h(r)} depends on the sign of
k2

i − β2. Within the core we can permit positive, convex curvatures corre-
sponding to oscillating solutions; but within the cladding the amplitude must
decline rapidly and therefore must have a negative curvature – otherwise ra-
diation results in an unwanted loss of energy (see Fig. 3.6):

within the core 0 < k2
⊥ = k2

1 − β2,
within the cladding 0 > −κ2 = k2

2 − β2.
(3.11)

In other words, the propagation constant must have a value between the wave
numbers ki = niω/c of the homogeneous core and of the cladding material,

n1ω/c ≤ β ≤ n2ω/c,
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and differ only a little from k1,2 for small differences in the index of refraction
Δ = (n1 − n2)/n1 (Eq. (1.7)). Such wave guides are called weakly guiding.

By definition of Eq. (3.11) we have k2
⊥ + κ2 = k2

1 − k2
2. Since k1 � k2, the

transverse wave vectors k⊥ and κ are small compared with the propagation
constant β,

k2
⊥ + κ2 = (ω/c)2(n2

1 − n2
2) � 2Δ(n1ω/c)2 � β2. (3.12)

For k1 � k2 � β the transverse wave vectors k⊥ and κ are small compared
to the propagation constant β. The transverse solution must remain finite,
thereby keeping only the Bessel functions J� (and modified Bessel functions
K�) of the first kind within the core and the cladding, respectively. For the
sake of transparency we introduce scaled coordinates X := k⊥r, Y := κr and
Xa := k⊥a, Ya := κa, respectively:

e(r) =

⎧⎪⎪⎨⎪⎪⎩
A · J�(X)

J�(Xa)
r→0
∝ (k⊥r)� Kern,

A · K�(Y)
K�(Ya)

r→∞
∝ e−κr/

√
κr Mantel,

h(r) =

⎧⎪⎪⎨⎪⎪⎩
B · J�(X)

J�(Xa)
r→0
∝ (k⊥r)� Kern,

B · K�(Y)
K�(Ya)

r→∞
∝ e−κr/

√
κr Mantel.

(3.13)

By properly defining the coefficients {A, B}, we have already taken care that
the components {Ez,Hz} are continuous at r = a. For the {Er, Eφ,Hr,Hφ} com-
ponents we obtain conditions from Eqs. (3.10) in cylindrical coordinates:

−iωε0n2
i Er =

i�h(r)
r

ei�φ−iβHφ,

−iωε0n2
i Eφ = iβHr− ∂

∂r
h(r)ei�φ,

iωμ0Hr =
i�e(r)

r
ei�φ−iβEφ,

iωμ0Hφ = iβEr− ∂

∂r
e(r)ei�φ.

Insertion of the solutions for {e(r), h(r)} and utilizing scaled coordinates X =
k⊥r yields radial components

Er(X, φ) = iβa
(

ωμ0

β

iB�

XXa

J�(X)
J�(Xa)

+
A
Xa

J′�(X)
J�(Xa)

)
ei�φ,

Hr(X, φ) = βa

(
ωε0n2

i
β

A�

XXa

J�(X)
J�(Xa)

+
iB
Xa

J′�(X)
J�(Xa)

)
ei�φ,

(3.14)
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and azimuthal contributions

Eφ(X, φ) = iβa
(

iA�

XXa

J�(X)
J�(Xa)

− ωμ0

β

B
Xa

J′�(X)
J�(Xa)

)
ei�φ,

Hφ(X, φ) = βa

(
B�

XXa

J�(X)
J�(Xa)

+
ωε0n2

i
β

iA
Xa

J′�(X)
J�(Xa)

)
ei�φ.

(3.15)

Here solutions (3.14) and (3.15) are valid for the core. For the cladding the
corresponding solution is found by replacing X → Y, J� → K�.

To determine the propagation constant β, we use boundary conditions (3.1)
at r = a and X = Xa in Eq. (3.15). A short calculation yields a linear system of
equations in {A, B},

B ωμ0
β

(
J′�(X)

XJ�(X) + K′
�(Y)

YK�(Y)

)
+−i�A

(
1

X2 + 1
Y2

)
= 0,

A ωε0
β

(
n2

1 J′�(X)
XJ�(X) + n2

2K′
�(Y)

YK�(Y)

)
+ i�B

(
1

X2 + 1
Y2

)
= 0,

and yields a characteristic eigenvalue equation(
J′�(X)

XJ�(X)
+

K′
�(Y)

YK�(Y)

)(
k2

1 J′�(X)
XJ�(X)

+
k2

2K′
�(Y)

YK�(Y)

)
= �2β2

(
1

X2 +
1

Y2

)2

. (3.16)

An additional condition is derived by multiplying Eq. (3.12) with a2, resulting
in

X2
�m + Y2

�m =
(ω

c

)2
(n2

1 − n2
2)a2 = V2. (3.17)

Here we have introduced the V parameter which is directly related to the nu-
merical aperture NA through Eq. (1.9) and corresponds to a normalized wave
vector ka:

V =
ωa
c

· NA = ka · NA. (3.18)

For every wavelength λ the V parameter fully accounts for the physical prop-
erties of the step-index fibre – the indices of refraction (n1, n2) and the core
radius a. For every V and � = 0, 1, 2, ... numerical treatment of the tran-
scendental equation (3.16) in accord with Eq. (3.17) yields a set of solutions
(X�m, Y�m) with m = 1, 2, 3, ... as well as the propagation constant β�m accord-
ing to Eq. (3.11),

β�m = (k2
1 − (X�m/a)2)1/2 = (k2

2 + (Y�m/a)2)1/2.

Numerical treatment of this transcendental equation, for � = 0, 1, 2, . . ., gives
solutions (X�m, Y�m) and a propagation constant β�m for every frequency or
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wavelength ω = 2πc/λ, respectively; this treatment is elaborate and is cov-
ered extensively in the literature [151]. As we did in Sect. 1.7 on ray optics, we
restrict ourselves to the simplified case of weakly guiding waves with small
differences of the indices of refraction.

3.3.1.1 Weakly guiding step fibres

In weakly guiding wave guides we have n1 � n2 and k1 � k2 � β. Hence
Eq. (3.16) can be simplified yielding(

J′�(X)
XJ�(X)

+
K′

�(Y)
YK�(Y)

)
= ±�

(
1

X2 +
1

Y2

)
. (3.19)

We furthermore substitute the derivatives with the identities

J′�(X) = ±J�∓1(X) ∓ �J�(X)
X

, K′
�(Y) = −K�∓1(Y)∓ �K�(Y)

Y
. (3.20)

For � = 0 we find transverse electric (TE) and transverse magnetic (TM) so-
lutions. For both the signs in �±1 we find after some transformations the
so-called hybrid modes. The conditions are:

� = 0 TE�m,TM�m
J0(X�m)

X�m J1(X�m) = − K0(Y�m)
Y�mK1(Y�m) ,

� ≥ 1 HE�m
J�−1(X�m)

X�m J�(X�m) = K�−1(Y�m)
Y�mK�(Y�m) ,

� ≥ 1 EH�m
J�+1(X�m)

X�m J�(X�m) = − K�+1(Y�m)
Y�mK�(Y�m) .

(3.21)

In Fig. 3.8 we have sketched graphical solutions for the additional condition
(3.17).
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Fig. 3.8 Graphical analysis of Eq. (3.21) for a weakly guiding step-
index fibre and V=10; here we have used the inverse of Eq. (3.21),
and the argument of YK�/K�+1 is

√
V2 − X2. Left: TE and TM modes

for �=0. The shaded area indicates the region where only one solution
exists (single-mode). Right: HE and EH modes for �=0.
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Fig. 3.9 Left: The (ω,β) dispersion relation for a weakly guiding step-
index fibre. Within the normalized units the air line, i.e. ω = cβ, has
unit slope. Below the cut-off frequency ωc (Eq. (3.24)) the wave guide
supports a single-mode only. Right: Effective index of refraction as a
function of the V parameter (Eq. (3.18)).

From the solutions generated, for example, by the methods shown in
Fig. 3.8, we can construct the dispersion relation ω(β�m) displayed in Fig. 3.9
with normalized, dimensionless units ωa/c vs. βa. It exhibits the following
characteristic properties:

• Left: In normalized units, the dispersion relations ωa/c vs. βa in a ho-
mogeneous material with refractive index n have slope 1/n . For a step-
index fibre, the lines with slopes 1/n1 and 1/n2 divide the diagram into
three regions. Below ωa/c = 1/n1 in the dark shaded area no propaga-
tion modes exist. Above the line with ωa/c = 1/n2 radiation modes can
freely propagate in the cladding and above ωa/c = 1 (the air line) also
in air. An individual mode is characterized by (ω, β), where β gives the
component of the wave vector along the fibre axis. Thus the spectrum is
continuous above ωa/c = (1/n2)βa.

In between the lines 1/n1 und 1/n2 propagation is only possible for dis-
crete (ω, β) values of the guided modes. Within the light grey shaded
area the fibre has single-mode character, i.e. for every frequency ω there
exits a unique propagation constant β (see Sects. 3.3.1.2 and 3.3.1.3). The
magnified cut-out shows the end of the single-mode area where the next
modes enter.

• Right: Sometimes it is useful to introduce an effective index of refraction
instead of the propagation constant:

neff = β/k = cβ/ω with n2 < neff < n1. (3.22)

The effective refractive index also allows a more transparent overview
of the spectrum of modes allowed between the lines with 1/n1 and 1/n2.
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Fig. 3.10 Intensity distribution (E field) for different types of step-index
fibre modes. A fibre with numerical aperture NA = 0.12 and core diam-
eter 2a = 5.1 μm was used as model. The dashed circle indicates the
core. Left image: λ = 850 nm, V = 2.26; otherwise λ = 400 nm and
V = 8.81.

Equation (3.13) gives one more condition from Eq. (3.21) which fixes the ratio
of the electric (A) and magnetic amplitudes (B). The ’+’ sign holds for the HE
modes, and the ’−’ sign for the EH modes:

(A ± i(ωμ0/β)B)� = 0. (3.23)

Because of the imaginary coefficient the electric and magnetic components are
temporally 90◦ out of phase. In order to obtain an overview of the geometric
properties of the optical wave guide modes, let us have a look at some special
cases.

3.3.1.2 � = 0: TE and TM modes

For � = 0 we have A = 0 (B = 0), i.e. either the E or the H field is purely
transverse. Hence for � = 0 the TE/TM denominations are sensibly used. We
have indicated the graphical conditions for the (degenerate) TE0m and TM0m
modes in Fig. 3.8. TE/TM modes can be guided only for V > X01 = k⊥a =
2.405 (J0(2.405) = 0), or above the corresponding cut-off frequency

ωc = 2.405(n2
1 − n2

2)
−1/2(c/a), (3.24)

which is directly obtained from Eqs. (3.11) and (3.17). Higher-order TE/TM
modes appear above V = 5.520 (J1(5.520) = 0).

3.3.1.3 � ≥ 1: HE and EH modes

The lowest-order mode is the HE11 mode, which exists down to X = 0, or
ω = 0. This mode is ’tacked’ to the core for arbitrarily small frequencies
and correspondingly small curvatures of the transverse amplitudes. With de-
creasing frequency the portion of the energy propagating within the cladding
increases more and more. For the mathematical analysis we assumed the
cladding to have an infinite extension – which involves some technical limit,
of course.
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Owing to Eqs. (3.21) and (3.23), the HE and EH modes differ. This difference
not only is revealed by the different propagation constants, but also manifests
itself in the domination of the z components in the corresponding H (HE),
resp. E (EH), parts.

3.3.1.4 � ≥ 1: LP modes

According to Eq. (3.23) we have A = ±i(ωμ0/β)B for � > 0. By substitution
in Eqs. (3.14) and (3.15), application of the recursion formulae (3.20), and a
short calculation, one can show that the modes HE�m have linear transverse
polarization and that the transverse components Ex = Er cos(φ) + Eφ sin(φ)
dominate the longitudinal Ez components by the factor β�ma/X�m � 1. These
modes are also called (linearly polarized) LP-modes. They are derived from the
HE modes and for higher � values from a linear superposition of degenerate
{HE�+2,m,EH�,m} modes:

HE�,m → LP�−1,m and HE�+2,m, EH�,m → LP�+1,m (� ≥ 2).

Example: Core diameter of a single-mode wave guide.
In manufacturers’ catalogues wave guides for single-mode applications are
typically presented with specifications for the numerical aperture NA and the
cut-off wavelength, for instance:

NA 0,13 0,12 0,11
λ cut-off (nm) 1260 800 620

From these specifications we can calculate the core diameter 2a using Eq. (3.18)
and 2a = Vλ/(πNA), yielding:

2a (μm) 7,4 5,1 4,3

3.3.2
Graded-index fibre

The term ‘quadratic index media’ covers all the common systems like
gradient-index fibres with parabolic index profile (see Fig. 3.11) that we have
already dealt with in the section on ray optics and may be treated like the lim-
iting case of an infinite thick lens. Realistic gradient fibres have a quadratic
profile in the centre only, which then continues into a step-like form again.
Instead, we look at a simplified, purely quadratic system, which reflects al-
ready the properties of a graded-index fibre. The index of refraction depends
on the normalized radius r/a, and making use of the difference in the index
of refraction, Δ = (n1 − n2)/n1 (see Sect. 1.7.3), we find

n(ρ) = n1[1 − Δ(r/a)2] and Δ � 1.
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Fig. 3.11 Simplified profile of
the index of refraction of a
GRIN fibre.

We seek solutions of the Helmholtz equation (2.12), whose envelope does
not change along the direction of propagation, i.e. of the form E (x, y, z) =
A(x, y) exp(iβz), and get the modified equation

{∇⊥ + n2
1k2 − 2n2

1k2Δ[(x/a)2 + (y/y)2]− β2}A(x, y) = 0,

using {n1k[1 − Δ(r/a)2]}2 � (n1k)2[1 − 2Δ(r/a) + · · · ]. Let us assume now,
as in the case of higher Gaussian modes (see Sect. 2.3.3), that the transverse
distribution corresponds to modified Gaussian functions,

A(x, y) = F (x) e−(x2/x2
0)G(y) e−(y2/y2

0).

With this ansatz we find(
F′′ − 4x

x2
0
F′ − 2

x2
0
F

)
G +

(
G′′ − 4y

y2
0
G′ − 2

y2
0
G
)
F + n2

1k2FG

+
[(

4
x4

0
− 2n2

1k2Δ
a2

)
x2 +

(
4
y4

0
− 2n2

1k2Δ
a2

)
y2

]
FG − β2FG = 0,

where the unpleasant quadratic term in general can be eliminated by choosing

kx0 = ky0 = (ka)1/2/(2n2
1Δ)1/4 � 1.

By substituting
√

2 x/x0 → u and
√

2 y/y0 → v, we transform again to the
Hermite differential equation that we already know from the higher Gaussian
modes. With indices m and n we find

2(F′′ − 2uF′ + 2mF )G + 2(G′′ − 2vG′ + 2nG)F
+ [n2

1k2x2
0 − β2x2

0 − 4(m + n + 1)]FG = 0.

The terms of the upper row are constructed to vanish already on inserting the
Hermite polynomials Hm,n (see Eq. (2.31)). After a short calculation one gets
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for the propagation constant, which is the centre of interest,

βmn(ω) = neff
ω

c
=

n1ω

c

√
1 − 4

√
2Δ(m + n + 1)

n1ka
.

The transverse distribution of the amplitudes also corresponds to the ones
in Fig. 2.9. But in contrast to the Gaussian modes, the mode diameters (x0, y0)
do not change. This example of a simplified GRIN fibre illustrates that multi-
mode fibres, in addition to ‘material dispersion’ characterized by a frequency-
dependent index of refraction, show ‘mode dispersion’. This influences the
form of pulses, because individual partial modes have different propagation
velocities.

3.3.3
Fibre absorption

One could not imagine the success of optical fibres without their extraordi-
narily advantageous, very low absorption properties (Fig. 3.12). On the short-
wavelength side these are limited by Rayleigh scattering at small inhomo-
geneities rising like ∝ 1/λ4.

On the long-wavelength side absorp-
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Fig. 3.12 Absorption properties of optical
fibres made of silicate glass.

tion increases again due to infrared ab-
sorption by the wings of the phonon
spectrum. The wavelengths 1.3 and
1.55 μm, very important for telecom-
munications, coincide with very small
absorption coefficients, and simulta-
neously the group velocity dispersion
vanishes for standard silica fibres at
1.3 μm (see p. 121). In between we find
resonances that are caused, for exam-
ple, by OH contamination in the glass.

3.4
Functional types and applications of optical fibres

3.4.1
Multi-mode fibres

Inspection of Fig. 3.8 shows that with growing V parameter (which corre-
sponds to a scaled frequency), V = (ωa/c)(n2

1 − n2
2)

1/2 (Eq. (3.18)), with
nearly even spacing at V = π, 2π, 3π, ... a new mode occurs with initial pa-
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rameters Y�m = 0 and β = n2ω/c. All guided modes are located in Fig. 3.9 be-
tween the lines with slopes 1/n1 and 1/n2) describing propagation in the ho-
mogeneous core and dielectric cladding. With growing frequency ever larger
� values are important. One can show [151] that the number of modes M in-
creases quadratically,

M ≈ V2/2.

not linearly with the V parameter (see Prob. 3.8).
When light is coupled into a multi-mode fibre a superposition of multiple

transverse modes is excited which propagate with different velocities (’modal
dispersion’). At the exit of the wave guide the multi-mode field is transformed
into a free field whose transverse and temporal profile is deformed as a result
of dispersion. Such fibres are used if transverse coherence (i.e. well controlled
phase fronts) is not very important, e.g. for optical pumping of high-power
solid-state lasers (see Sect. 7.8.2).

3.4.2
Single-mode (SM) fibres

The condition for single-mode operation of an optical wave guide is straight-
forwardly expressed by demanding that the V parameter (3.18) must not ex-
ceed the minimum value for the occurrence of the next higher (TE) mode.
Thus for

V < 2.405 (3.25)

a step-index fibre supports propagation of a single-mode only, the LP01- or
HE11-mode, respectively. The modal properties of the step-index fibre are col-
lected in Fig. 3.9 in terms of a dispersion or propagation diagram. For guided
modes free propagation is allowed in the core but not in the cladding. It is re-
markable that the narrow hatched region between the lines with slopes 1/n1,2
spans the entire region of current optical communication technology!

The lowest-order mode of the cylindrical step-index fibre (HE11/LP01) has a
bell-shaped profile resembling the transverse envelope of the Gaussian TEM00
mode in a homogeneous medium (Fig. 2.9). Therefore a free-space Gaussian
beam can be efficiently coupled to the ground mode of a single-mode fibre.
Indeed, the single-mode fibre is frequently used as an ultimate spatial filter
(see also Sect. 2.3.4). Of the full amplitude distribution launched into the fibre
only the ground mode component propagates along the fibre. Thus a very
’clean’ TEM00 mode emerges from the fibre output.
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Fig. 3.13 Polarization-maintaining (PM) fibres. By insertion of addi-
tional elements into the cladding of a cylindrical fibre (a) mechanical
strain is exerted which controls the birefringent properties of the fibre.
The bowtie (b) and PANDA (c) structures are in common use.

3.4.3
Polarization maintaining (PM) fibres

A perfect cylindrical step-index fibre is still degenerate with respect to two or-
thogonal polarization states. Thus the polarization state at the output of a fibre
is in general not predictable and is furthermore subject to fluctuations because
of temperature variations or mechanical motion of the fibre. Such problems
can be avoided with polarization maintaining (PM) single-mode fibres. They
are technically realized by inserting extra elements into the cladding (Fig. 3.13)
which apply mechanical strain to the core of the fibre yielding small elliptical
deviations of the index of refraction from cylindrical symmetry. Thus the de-
generacy of the propagation constants β for the principal axes is lifted and
coupling of the two orthogonal polarization modes is suppressed. The polar-
ization of the coupled-in light must be parallel to the principal axis, to make
use of the characteristics of conserving the polarization.

3.4.4
Photonic crystal fibres (PCF)

Since about 1995 optical wave guides have been manufactured with special
structures widely exceeding the complexity of the index of refraction profile
of step-index or GRIN fibres. Such fibres are a very active field of research
since their properties (including for instance dispersion) can be tailored with
great variability. Photonic crystal fibres are a special case of the subject of
the next section, photonic materials, where they are treated in a special section
(Sect. 3.5.6).
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3.5
Photonic materials

Up to now we have studied the propagation of light in more or less homoge-
neous materials, with the important exceptions of dielectric boundaries and
slowly varying indices of refraction. Today numerous methods of micro-struc-
turing allow us to tailor optical, i.e. dielectric, properties of matter at the wave-
length scale of light and below. Taking advantage of these methods leads to
photonic materials which have properties that promise to control propagation
of light in a manner not available from naturally occurring materials.

Structured dielectric materials with periodic modulation of the index of re-
fraction in two or three dimensions have a key role for photonic materials.
Since such samples resemble the periodic properties of crystals they are also
called photonic crystals. In contrast to natural crystals, the periods are of the
order of the wavelength of light, i.e. several 100 nm to μm for visible and near
visible wavelength ranges. Photonic crystals are usually manufactured in a
laboratory. However, Nature provides examples of materials whose wealth of
colours is a direct consequence of periodic structures, e.g. the beautiful wings
of butterflies or opal gems.

3.5.1
Photonic crystals
In Fig. 3.14 we show examples of photonic crystals with different dimension-
ality.

• Left: The one-dimensional (1D) pillar consists of GaAs layers with peri-
odically varying composition [99] providing axial confinement of light.
In the transverse direction the propagation of light in this hybrid structure
is suppressed by total internal reflection (TIR, see Sect. 3.1.2) such that a
closed resonator is formed.

• Middle: Two-dimensional (2D) crystals are manufactured by conven-
tional methods of micro-structuring (see P. 157), or alternatively by self-
organization as for the present example [148]. 2D crystals are of interest
for integrated optics since light is confined to the thin layer if the refrac-
tive index of the adjacent material is smaller. In photonic crystal fibres
(PCFs, Sect. 3.5.6) light is guided along the fibre axis by transverse pho-
tonic structures.

• Right: The photonic crystal shown here was obtained by controlled pho-
to-chemical etching along the crystallographic (100) direction of a Si
crystal [123]. It exhibits a so-called photonic bandgap at the infrared
wavelength of 5 μm.

The propagation of light in photonic crystals – i.e. in periodic dielectric
structures – is theoretically well described with the notions from solid-state
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Fig. 3.14 Examples of photonic crystals (see text). With permis-
sion from Y. Yamamoto (left, [99]), M. Giersig (middle, [148]) and
R. Wehrspohn (right, [123]).

physics: point symmetry groups as well as the reciprocal lattice are impor-
tant concepts. The band model of electron dynamics has inspired many pro-
posals for applications, with a special emphasis on semiconductor materials
with their bandgaps. The engineering potential of these materials has created
micro-electronics and suggests a similar yet unrealized potential for photonic
materials. Theoretical treatment of photonic materials is even more involved
than in solid-state physics since there scalar electronic wave functions give
satisfactory results already. Here, the vector nature of Maxwell’s equations
needs to be accounted for.

For materials with a photonic bandgap (PBG) propagation of light is fully
suppressed for certain wavelength regions. Multi-layer systems with periodi-
cally varying index of refraction have been produced for a long time, they are
used as dielectric mirrors or interference filters (see Sect. 5.7). They make an
excellent 1D model to understand the origin of the bandgap. However, PBG
materials are of significant interest only in 2D and 3D where they promise the
realization of complex optical circuitry.

3.5.1.1 Light propagation in 1D periodically structured dielectrics

For an introduction we study the propagation of light in a crystal whose in-
dex of refraction is modulated in one direction only with period Λ. The 1D
example is closely related to the treatment of dielectric multi-layer mirrors in
Sect. 5.7. They are manufactured by deposition of the layers from evaporation
sources and were introduced a long time ago.
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Fig. 3.15 A periodic system of layers with alternating
index of refraction is approximated by a Fourier sum,
Eq. (3.27). The dashed line shows the first-order ap-
proximation.

For our problem it is convenient to consider the Helmholtz equation (2.12)
for a plane wave in the form(

n−2(z)
d2

dz2 + k2
0

)
E(z) = 0. (3.26)

The index of refraction n is a real function n(z) = n(z + Λ) with periodicity Λ.
Thus we can expand it in terms of a Fourier series

n(z) = n0 + nG eiGz + n−G e−iGz + . . . .

Fourier coefficients G = 0,±G,±2G,±3G, ... with G = 2π/Λ constitute the
reciprocal lattice, which is well known from solid-state physics [101]. Since
n(z) is a real function we have nG = (n−G)∗. In order to find approximate
solutions for Eq. (3.26) it is useful to expand n−2(z) into a Fourier series as
well. For small coefficients nG � n0 we have

n−2(z) � n−2
0 −∑

G

2nG

n3
0

eiGz. (3.27)

3.5.2
Bloch waves

Let us assume that a monochromatic wave travelling in the dielectric with pe-
riodic index of refraction variation can be described by a sum of plane waves
with coefficients eK,

E(z) = ∑
K

eKeiKz.
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The propagating field E(z) is not necessarily periodic in Λ. From the Helm-
holtz equation (3.26) we obtain by insertion and minor rearrangement

1
n2

0

[
∑
K

∑
G

2nG

n0
K2eKei(K+G)z −∑

K
(n2

0k2
0 − K2)eKeiKz

]
= 0.

The coefficients of an individual wave vector K are obtained by multiplying
this equation with e−iK′z and using

∫
eiK′ze−iKz dz = δ(K − K′)/

√
2π. Only for

K′ = K is the integral non-zero. Hence in this case the factor

(n2
0k2

0 − k2)ek + ∑
G

2nG

n0
(k − G)2ek−G = 0 (3.28)

must vanish, where we have set K′ → k. This equation connects waves whose
k-vectors differ by a vector of the reciprocal lattice. Thus the solution has the
form

E(z) = ∑
G

ek−Gei(k−G)z =

(
∑
G

ek−Ge−iGz

)
eikz = Ek(z)eikz. (3.29)

The Fourier series in the brackets, ∑G ek−Ge−iGz, is constructed from recip-
rocal lattice vectors only and therefore periodic in Λ, E (z) = E (z + Λ). We
have thus established the Bloch theorem which was initially given for electrons
moving in a periodic potential. Such electrons are described by a wave func-
tion ψk(r) = uk(r)eikr where uk(r) has the periodicity of the crystal potential.
Wave vectors in 1D differ by multiples of G = mG, m = ±1,±2,±3, ..., hence
only wave vectors from the first Brillouin zone are physically significant, i.e.
−G/2 ≤ k ≤ G/2 in the description of a specific wave.

3.5.3
Photonic bandgap in 1D

Determination of the ek−G coefficients in Eq. (3.29) makes solution of the in-
finitely large system of equations (3.28) necessary, which in general requires
not only approximations but also numerical treatment. For an illustration we
restrict ourselves to the special case where only coefficients n0 and n±1 = n±G
are non-zero. The equations for the first three coefficients are then given by

(n2
0k2

0 − k2)ek − 2n1

n0
(k −G)2ek−G − 2n−1

n0
(k + G)2ek+G = 0,

(n2
0k2

0 − k2)ek−G − 2n1

n0
(k − 2G)2ek−2G − 2n−1

n0
k2ek = 0,

(n2
0k2

0 − k2)ek+G − 2n1

n0
k2ek − 2n−1

n0
(k + 2G)2ek+2G = 0.

(3.30)
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Fig. 3.16 Dispersion relation for electromagnetic waves in a 1D pho-
tonic crystal with bandgap. Addition of a reciprocal lattice vector G
shifts the marked branch of the dispersion relation into the first Bril-
louin zone.

For an estimate of the coefficients we can use Eq. (3.28),

ek = ∑G>0 2(nG/n0)(k − G)2ek−G

(noω/c)2 − k2 .

In the vicinity of the origin of the Brillouin zone where (k, ω/c) � G, the
denominator of ek is given by ((n0ω/c)2 − k2), and for the other coefficients
ek±G by ((n0ω/c)2 − (k − G)2) � G2 � |(n0ω/c)2 − k2|. Therefore, the ek
coefficient dominates and to a good approximation we find the linear rela-
tionship k = n0ω/c. For long wavelengths the propagation constant is thus
determined by the average index of refraction n0, like in a homogeneous ma-
terial.

A very different situation occurs at the boundary of the Brillouin zone at
k � G/2. Here we have |k − G| � G, and at least coefficients ek and ek−G are
relevant. We consider ek and ek−G and simplify Eqs. (3.30) by neglecting all
other components,

(n2
0k2

0 − k2)ek − 2n1

n0
(k −G)2ek−G = 0,

2n−1

n0
k2ek − (n2

0k2
0 − k2)ek−G = 0.

It is well known that this system of linear equations has a solution if the de-
terminant vanishes,

((n0ω/c)2 − k2)2 − (2|n1|/n0)2(k(k − G))2 = 0.
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The dispersion relation ω vs. k is straightforwardly derived from this equa-
tion, yielding

ω± =
ck
n0

(
1 ± 2|n1|

n0

k − G
k

)1/2

for k ≈ G/2 = π/Λ , (3.31)

and is qualitatively displayed in Fig. 3.16. No solution exists for frequencies
between ω− and ω+. In this region the propagation of electromagnetic waves
is suppressed in the photonic crystal. In analogy with the band model of semi-
conductors in solid-state physics we speak of a photonic bandgap (PBG). The
width of the bandgap is determined from Eq. (3.31) for k = G/2 and not too
large n1/n0 from

Δω = ω+ − ω− � ω0
4|n1|

n0
,

where we have used ω0 = ck/m0. As expected, the bandgap vanishes with
vanishing modulation, n1 → 0. For k = G/2 the forward wave (k = G/2)
is strongly coupled to the backward wave (k−G/2 = −G/2). Thus at the
bandgap maximal mixing of waves is realized resulting in reflection and for-
mation of a standing wave (Fig. 3.17). The situation is fully equivalent to the
Bragg condition for reflection,

k = 2π/λ = G/2 = π/Λ or 2Λ = λ,

where λ denotes the wavelength within the crystal. In Sect. 5.7 we will more
closely investigate such a multi-layer Bragg mirror which is used to gener-
ate highly reflecting dielectric mirrors. The reflection coefficient shown in

Fig. 3.17 This drawing offers a physical explanation for the origin of
the bandgap. The maxima of the upper standing wave with wavelength
λ matching twice the photonic crystal periodicity Λ = λ/2 rest on
zones with higher (resp. for the lower standing wave with lower) index
of refraction. Thus the effective index of refraction is very different and
causes an increase or decrease of the frequency compared to a wave
travelling in a material with the average refractive index. (See also
Fig. 9.27.)



110 3 Light propagation in matter

Fig. 5.26 exhibits a large region with little wavelength dependence which is
equivalent to the photonic bandgap discussed with the present model. Bragg
mirrors made from alternating indices of refraction also play an important role
for the construction of semiconductor lasers (see Fig. 3.14 and Sect. 9.5.2).

3.5.4
Band gaps in 2D and 3D

In one-dimensional periodic dielectrics a bandgap always exists, as discussed
in the preceding section. It is well known from solid-state physics, however,
that in two and three dimensions (2D, 3D) the occurrence of a bandgap (for
electrons in semiconductors) depends on details of the crystal symmetry, a
statement that holds for photonic crystals as well. Photonic bandgaps which
suppress propagation of light in all three or at least two dimensions have re-
ceived much interest for some years [93, 183]. Again in analogy with semicon-
ductor physics it has been suggested that dielectric defects (see Sect. 3.5.5)
playing the role of dopant atoms can be used to generate localized (’zero-
dimensional’), non-propagating states of optical electromagnetic fields.

3.5.4.1 2D photonic crystals

Figure 3.18 shows an important example of a (hexagonal) two-dimensional
crystal structure (left) along with its reciprocal lattice (right). Like in the 1D
case the propagation properties are characterized in terms of a dispersion di-
agram ω(k), k = (kx, ky), which now has 2D character itself, i.e. it is a surface
in 3D space. An example for hexagonal 2D lattices is given in Fig. 3.19. The
dispersion relations are typically displayed along the boundaries of the irre-
ducible Brillouin zone instead of giving the full 2D surface.
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Fig. 3.18 Left: Hexagonal two-dimensional crystal lattice with primi-
tive unit cell (hatched). Right: Reciprocal lattice and first Brillouin zone.
The dashed lines indicate half the separation of the next reciprocal
lattice nodes from the origin. For symmetry reasons all information is
already contained in the cross-hatched triangle Γ-M-K. Band structures
are commonly displayed by the dispersion relations along the bound-
aries of this irreducible Brillouin zone; see Fig. 3.19.
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Fig. 3.19 Examples of bandgaps in 2D photonic crystals. The des-
ignations for the reciprocal lattice vectors are given in Fig. 3.18. (a)
Periodic dielectric cylinders with n2 = 12. (b) Periodic cylindrical holes
in a dielectric with n2 = 12. With kind permission of Steven G. John-
son. Further properties in [88].

For 2D photonic crystals we can distinguish two types of systems:

• In thin, plane hybrid structures transverse confinement of light waves
to the thin layer is accomplished by index guiding, i.e. by total internal
reflection from the plane boundaries (Fig. 3.20). Propagation within the
plane is controlled by the periodic 2D modulation of the refractive index.

• In photonic crystal fibres (PCFs) light is guided along the axis as in
conventional fibres (Sect. 3.3) but transverse confinement to the axis of
the fibre can be realized by 2D photonic bandgaps. A special section
(Sect. 3.5.6) is dedicated to these novel components which have rapidly
opened a new era of nonlinear optical interactions because of their very
special properties.

The dispersion relations of Fig. 3.19 give detailed information on the propa-
gation of a plane wave with a given k vector, or propagation constant. In many
cases it is sufficient to analyse the so-called density of states, and a bandgap
in particular shows up as a gap in the density of states, too. For homogeneous
materials the evaluation of the density of states is explained in App. B.3; for
periodic structures numerical treatment is in general necessary. An example
is given in Fig. 3.20 which shows the density of states of TE modes for the
structure on the left side with r/a = 0.2.
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Fig. 3.20 Left: Hybrid structures. In a 2D
photonic crystal the transverse field distri-
bution of an electromagnetic wave can be
confined by total internal reflection at the
boundaries of the slab-shaped crystal. Right:
Density of states of the TE modes of a 2D
photonic crystal formed from a quadratic lat-

tice of cylindrical holes with r/a = 0.2 in
a dielectric with n2 = 10 (from [149]). The
dashed line indicates the expected behaviour
of the 2D density of states in a homogeneous
material (see App. B.3) with averaged refrac-
tive index.

3.5.4.2 3D-photonic crystals

Although in three dimensions the structure of the dispersion relations is nec-
essarily even more complex as a result of the geometry, the third dimension
does not introduce novel features beyond the phenomena of 2D structures; a
3D bandgap is characterized again by a gap in the density of states.

The search for fabrication methods of suitable periodically structured di-
electric materials which can suppress wave propagation in all three dimen-
sions is a very active area of research. The prediction of the propagation
properties of a given structure already requires challenging and theoretical
calculation and by far exceeds the scope of this text. They are in fact more
elaborate than for electron propagation in semiconductor crystals, which can
be treated with scalar wave functions, while electromagnetic waves in struc-
tured dielectrics must be treated with full account of their vector character.
Today even theoretically few structures are known which offer a full 3D pho-
tonic bandgap.

The preparation of photonic crystals exhibiting a PBG at nanometre scales
poses another challenge. Novel methods of fabrication are necessary since the
conventional processes of microstructuring are directed towards manipula-
tion of thin layers at the surface of suitable substrates. An example generated
with electrochemical etching processes with a bandgap at about 5 μm wave-
length is shown in Fig. 3.14.

3.5.5
Defects and defect modes

The intense interest in photonic crystals is driven by the application perspec-
tives of so-called defect modes, too. Defects are local perturbations of the per-
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Fig. 3.21 Defects in 2D photonic crystals: (a) dielectric defect, point-
like; (b) hole-like defect, point-like; (c) dielectric defect, line-like; (d)
line-like defects in 2D hybrid structures can be used to realize complex
plane wave guides for light.

fectly periodic refractive index lattice. For instance, magnification or demag-
nification of a single hole in the 2D photonic crystal of Fig. 3.20 leads to such
defects. Examples of such defects are shown in Fig. 3.21. Demagnification of a
hole leads to a dielectric defect, since the index of refraction is locally enhanced.
Magnification of the hole reduces the index of refraction and generates a hole-
like defect.

Defects can cause isolated and localized electromagnetic field states in the
photonic bandgap. Propagation of the field is suppressed as well as sponta-
neous decay. The electric fields of the so-called defect mode drops exponentially
with the distance from the perturbation, much like the evanescent field of total
internal reflection (TIR, Sect. 3.1.2). Thus a point-like defect can store light as
in an optical cavity (Sect. 5.6). An optical defect in a PBG thus shows phenom-
ena resembling the properties of donor and acceptor atoms in a semiconductor
which can accept or deliver an electron from a local perturbation (Sect. 9.3.4).

In Fig. 3.22 the dielectric defects seem to grow out of the upper (air) band,
the hole-like from the lower (dielectric) band. One can qualitatively under-
stand this evolution by taking into account that frequency and propagation
constant are related through ω = cβ/neff (Eq. (3.22)). We expect that a di-
electric defect enhances neff, while a hole-like defect decreases the effective

����������.�� �


 
�� 
�1

,�����; ��������

��


J
�


�

�
�
��

J
�

�
���

�
��
3


��
	

�������������

��������

���

Fig. 3.22 A 2D photonic crystal constructed from dielectric cylinders
with radius r/a = 0.2 shows a bandgap for n2 = 12; see Fig. 3.19.
The position (frequency) of the defect modes depends on the defect
radius. For r/a < 0.2 defects are hole-like, for r/a > 0.2 dielectric.
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refractive index locally. In the first case the frequency of the corresponding
localized state decreases; in the second it increases into the photonic bandgap.
The localization or ’tacking’ of an electromagnetic field state to a dielectric de-
fect can be understood in direct analogy with the guiding properties of a step-
index fibre: The fibre core allows axial propagation for (ω, β) values below
those allowed in the homogeneous cladding material (see Fig. 3.9), thus sup-
pressing transverse propagation. For hole-like defects the ’forbidden’ region,
the photonic bandgap, is generated by diffraction from the periodic structure.

3.5.6
Photonic crystal fibres (PCFs)

Photonic crystal fibres (PCFs) count among some of the most interesting
micro-structured materials in optics since their invention around 1995 [105].
They not only offer very unusual properties, but also are relatively straight-
forward to manufacture. A preform of the desired structure is made from a
bundle of hollow or solid glass capillaries. Then the preform is heated like
in conventional fibre drawing processes of telecommunication fibres. Surpris-
ingly enough, the transverse structure is essentially preserved in this process
but reduced in diameter by a factor of about 30.

Fig. 3.23 Photonic crystal fibres are fabricated by drawing a heated
bundle of capillary tubes (middle). Left: Fibres with dielectric core.
Right: Fibres with hollow core (BlazePhotonics Ltd). With kind permis-
sion by P. St. Russell.
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A sketch of the process is shown in Fig. 3.23, along with two specific ex-
amples. In contrast to the 2D photonic hybrid structures of Fig. 3.21 which
guide light waves within a thin layer, light propagates in PCFs along the fi-
bre core which corresponds to the defects of Sect. 3.5.5. It is expected that for
the characterization of photonic crystal fibres dispersion diagrams are used as
for conventional fibres and in analogy with Figs. 3.9 and 3.19. A conceptual
diagram with characteristic properties is given in Fig. 3.24

Fig. 3.24 Dispersion diagram of photonic crystal fibres. Dotted regions
are forbidden for wave propagation. Below the line with slope 1/n1
propagation of light is strictly forbidden in analogy with conventional
step-index fibres. In the hatched area guided modes are generated by
dielectric cores. The finger-like forbidden areas correspond to photonic
bandgaps extending even beyond the air line (dashed line). Hollow
cores can cause guided modes in the bandgaps.

Below the line with slope 1/n1 corresponding to the bulk material with re-
fractive index n1 propagation within the 2D photonic crystal is certainly not
possible – this region is forbidden. For large wavelength or small propaga-
tion constants β, respectively, we can assume that the dielectric–air structure
causes an average index of refraction depending on the filling fraction of the
dielectric and with nave < n1 which pushes the lower boundary for guided
modes up to the line with slope 1/nave.

When the wavelength of light propagating in such a fibre approaches the
scale of the 2D periodicity, simple averaging is no longer possible. It turns out
that light becomes more concentrated in the dielectric and hence the bound-
ary for guided modes gradually approaches the line of the bulk material. A
dielectric core defect then generates guided modes within the hatched area of
the dispersion diagram. While conventional optical fibres are weakly guid-
ing because of their small index of refraction variation, the strong index of
refraction contrast in PCFs – typically glass vs. air – causes strong guiding
corresponding to smaller cross-sections of the guided light field. This prop-
erty contributes significantly to the strong activity of nonlinear processes in
PCFs.
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In contrast to step-index fibres PCFs exhibit photonic bandgaps, too. They
generate regions in the (ω, β) plane where propagation is forbidden even
above the air line; see Fig. 3.24. In such a region also hollow cores – hole-like
defects – generate isolated, guided modes.

Because of their unusual properties – strongly guiding PCFs have very ver-
satile applications which are treated in special publications [21]. Here we re-
strict ourselves to a qualitative example which illustrates the rapidly growing
interest in these micro-structured optical wave guides.

Example: An endlessly single-mode fibre [20]
For single-mode operation of a step-index fibre, the condition V = (2πa/λ)
(n2

1 − n2
2)

1/2 < 2.405 must be fulfilled for the V parameter (Eqs. (3.18 and
(3.25)). Neglecting dispersion the V parameter is proportional to 1/λ in con-
ventional fibres and eventually exceeds the single-mode threshold value 2.405
with decreasing wavelength. A solid dielectric core can guide light in PCF ma-
terials made from a glass–air structure as shown in Fig. 3.23 in analogy with
setp-index fibres. The above condition for V is modified, however, since the
effective index of refraction (neff < n1) of the periodically structured material
now depends itself on the wavelength.

In fact, with decreasing λ

Fig. 3.25 Calculated values of the effective V para-
meter for photonic crystal fibres of the type shown
in Fig. 3.23 (left).With kind permission from
P. St. Russell, Erlangen.

the guided light tends to be
more and more concentrated
into the dielectric portion
of the structure, and neff
more and more approaches
n1. Hence it also modifies
the V parameter and may
even compensate the 1/λ-
dependence. In an ’endlessly
single-mode’ fibre the V
parameter can remain below
2.405 as shown in Fig. 3.23

(upper left). The curves shown in Fig. 3.25 show calculated V values
for varying ratios of the diameter d of the holes and their separation λ.

3.6
Light pulses in dispersive materials

Electromagnetic waves are used to transmit information. To make sure that
there is enough power available at the other end of the transmission line for
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the message to be read by a receiver, the material (e.g. an optical fibre) in which
transmission occurs must be sufficiently transparent. Of course, these condi-
tions are valid for all kinds of electromagnetic waves used for transmission
of information, for radio waves with ultra-short or long waves, and for mi-
crowave systems as well. For optical wavelengths, the properties of the trans-
parent medium are generally described by two frequency-dependent indices:
absorption is described by the absorption coefficient α(ω) and dispersion by
the refractive index n(ω).
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Fig. 3.26 Qualitative trends of the absorption coefficient and refractive
index as functions of wavelength for transparent optical materials. The
narrow band of visible wavelengths (VIS, 400–700nm) and the optical
windows for telecommunications (COMM, 850, 1300, 1550 nm) are
indicated.

Information is typically transmitted with digitized signals, i.e. with short
optical light pulses. These pulses are not only attenuated in intensity by the
absorption of light energy, but also deformed as a consequence of dispersion.
Therefore, it is important to explore whether such a pulse is still detectable in
its original shape at the end of a transmission line. We know that it is enough
to describe a continuous, monochromatic field by an absorption coefficient
α(ω) and real index of refraction n(ω), the spectral properties of which are
shown qualitatively in Fig. 3.26. The amplitude of the field at point z, taking
the propagation coefficient β(ω) = n(ω)ω/c into account, then yields

at the start, z = 0: E(0, t) = E0 e−iωt,
at the point z: E(z, t) = E0 e−i[ωt−β(ω)z] e−α(ω)z/2.
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A light pulse can be described as a wave packet, i.e. by the superposition of
many partial waves. For that purpose we consider an electric field

E(0, t) = E(0, t) e−iω0t,

with carrier frequency ν0 = ω0/2π and time-variant envelope E(z, t), which
describes the pulse shape, but in general varies slowly in comparison with the
field oscillation itself,

∂

∂t
E(t) � ω0E(t). (3.32)

We determine the field spectrum E (z, ν) of the light pulse by harmonic expan-
sion:

E (z, ν) =
∫ ∞

−∞
E(z, t) ei2πνt dt =

∫ ∞

−∞
E(z, t) ei2π(ν−ν0)t dt,

E(z, t) =
∫ ∞

−∞
E (z, ν) e−i2πνt dν =

∫ ∞

−∞
E (z, ω) e−iωt dω

/
2π.

(3.33)

Usually the spectrum of the wave packet is located at ν = ν0 because of
Eq. (3.32) and its width is small compared to the oscillation frequency ν0. In
Fig. 3.27 we give two examples for important and common pulse shapes.

Characteristic quantities of pulsed laser radiation include the spectral band-
width Δν and the pulse length Δt, which are not easily defined and even more
difficult to measure. We may for instance employ the conventional variance

〈(Δν)2〉 = 〈ν2 − ν2
0〉 =

∫ ∞

−∞
(ν − ν0)2|E (ν)|2 dν

/∫ ∞

−∞
|E (ν)|2 dν,

and, accordingly, in the time domain,

〈(Δt)2〉 =
∫ ∞

−∞
(t − 〈t〉)2|E(t)|2 dt

/∫ ∞

−∞
|E(t)|2 dt,

and show that the general relation

2πΔνtp ≥ 1/2 (3.34)

holds between these two quantities. The equals sign is valid only for pulses
without frequency modulation, such pulses being called ‘Fourier-limited’.
From the experimental point of view it is easier to measure half-widths Δν1/2
and Δt1/2 = tp of the intensity. Then the pulse length times bandwidth prod-
uct can be written as

2πΔν1/2tp = K, (3.35)
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Fig. 3.27 Two important pulse shapes in the time domain and in fre-
quency or Fourier space. For illustration, the Gaussian pulse is super-
imposed on the sech or cosh−1 pulse. The amplitudes are chosen in
such a way that the pulses have the same total energy (

∫ |E(t)|2 dt).
The K values specify the product of half-width times pulse length from
Eq. (3.35).

and this constant K is indicated for the two examples in Fig. 3.27. In general,
its value is less than 0.5, because the half-width usually underestimates the
variance. In Fig. 3.27 the much broader wings of the cosh−1 pulse can be seen
as a reason for this.

For monochromatic waves the absorption coefficient α and the propagation
constant β are often known for all partial waves of the wave packet in the
frequency domain. Then Eq. (3.33(i)) can also be described with the transfer
function τ(z, ν),

E(z, t) = E(0, t) eiβ(ν)z e−α(ν)z/2 = τ(z, ν)E(0, t).

A pulse is composed of many partial waves, and the correlation between
the pulse shapes at the start and the end of a transmission line is described by
a linear, frequency-dependent transfer function τ(z, ν) in Fourier space:

E (z, ν) = τ(z, ν)E (0, ν).

The temporal evolution of the field amplitude at the point z can now be deter-
mined according to

E(z, t) =
∫ ∞

−∞
τ(z, ν)E (0, ν) e−i2πνt dν.
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Incidentally, according to the convolution theorem of Fourier transforma-
tion, a non-local correlation in the time domain is valid,

E(z, t) =
∫ ∞

−∞
T(z, t − t′)E(0, t′) dt′

with

T(z, t) =
∫ ∞

−∞
τ(z, ν) e−i2πνt dν.

The optical bandwidth of common light pulses is generally narrow com-
pared with the spectral properties of the transparent optical materials used
in optical wave guides. Therefore, the following assumptions are reasonable.
The frequency dependence of the absorption coefficient plays no role in pulse
propagation. In good approximation it holds that

α(ν) � α(ν0) = const.

The pulse shape is changed very sensitively by the frequency-dependent
dispersion, and the propagation constant β(ν) = 2πνn(ν)/c can be described
by the expansion

β(ν) = β0 + dβ
dν

(ν − ν0) + 1
2

d2β

dν2 (ν − ν0)2 + · · ·
= β0 + β′(ν − ν0) + 1

2 β′′(ν − ν0)2.
(3.36)

Within this approximation the frequency dependence of the propagation con-
stant β(ν) is described by the material-dependent parameters β0, β′ and β′′,
the interpretation of which we now want to introduce. With τ0 = e−αz/2 the
corresponding transfer function reads as follows:

τ(z, ν) = τ0 eiβ0z eiβ′(ν−ν0)z eiβ′′(ν−ν0)2z/2.

3.6.1
Pulse distortion by dispersion

Let us now discuss the influence of the dispersive contributions in more detail.
If the dispersion is independent of frequency, then we obtain the wave equa-
tion (2.13) once more, in which the velocity of light in vacuum is substituted
by the material-dependent phase velocity,

β0 = 2πn(ν0)ν0/c = 2πν0/vφ.

Let us first consider the case where β′′ = 0. Indeed, this case occurs with
glass, and one may realize qualitatively in Fig. 3.26 that somewhere between
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lattice absorption and electronic absorption the curvature of the refractive in-
dex must disappear at some point for every transparent material. For glass,
this happens at a wavelength of λ = 1.3 μm, which therefore offers an impor-
tant window for transmission of information by optical communication. The
pulse shape after a propagation length z is obtained from

E(z, t) = τ0 eiβ0z
∫ ∞

−∞
eiβ′(ν−ν0)zE (0, ν) e−i2πνt dν.

Substituting β′z → 2πtg, after some algebra this yields the form

E(z, t) = τ0 eiβ0z e−i2πν0t
∫ ∞

−∞
E (0, ν) e−i2π(ν−ν0)(t−tg) dν

= τ0 e−i(2πν0t−β0z)E(0, t − tg).

The only effect of dispersion is a delay of the pulse transit time by tg = z/vg,
which we interpret as a group delay time. This can be used for the definition of
a group velocity vg, which can be associated with a ‘group index of refraction’
ng:

1
vg

=
1

2π

d
dν

β =
1
c

(
n(ω) + ω

d
dω

n(ω)
)

=
ng(ω)

c
. (3.37)

In most applications optical pulses propagate in a region of normal dis-
persion, i.e. at dn/dω > 0. Then according to Eq. (3.37) it holds that
vg < vφ = c/n(ω). Red frequency contributions propagate faster in a medium
than blue ones, but the pulse keeps its shape as long as the group velocity is
constant (‘dispersion-free’); this is a favourable condition for optical telecom-
munications, where a transmitter injects digital signals (‘bit currents’) in the
form of pulses into optical wave guides, which have to be decoded by the
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Fig. 3.28 Example: Dispersion parameters of BK7 glass.
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receiver at the other end. In optical fibres this situation is similar to that in
BK7 glass at λ = 1.3 μm, which can be seen in Fig. 3.28 for zero passage of the
material parameter M(λ) and will be discussed in the next section.

Example: Phase and group velocities in glasses
We can use the specifications from Tab. 3.1 to determine the index of refraction
and the group refractive index as a measure of the phase velocity and group
velocity in important optical glasses. The wavelength 850 nm is of substantial
importance for working with short laser pulses, because, on the one hand,
GaAs diode lasers with high modulation bandwidth exist in this range (up to
pulse durations of 10 ps and less) and, on the other, the wavelength lies in the
spectral centre of the Ti–sapphire laser, which is nowadays the most important
primary oscillator for ultra-short laser pulses of 10–100 fs and below. There,
with the Sellmeier formula (1.6) and the coefficients from Tab. 1.1, we calculate
the values for Tab. 3.1. The values for the group refractive index are always
larger than the values of the (phase) refractive index by a few per cent.

Tab. 3.1 Indices of refraction of selected glasses at λ = 850 nm.

Abbreviation BK7 SF11 LaSF N9 BaK 1 F 2
Index of refraction at 850 nm
n 1.5119 1.7621 1.8301 1.5642 1.6068

Group index of refraction
ng 1.5270 1.8034 1.8680 1.5810 1.6322

Material dispersion
cM(λ) (μm−1) −0.032 −0.135 −0.118 −0.042 −0.075

For shorter and shorter pulses, the bandwidth increases according to Eq.
(3.34), and the frequency dependence of the group velocity influences the
pulse propagation as well. This is specified as a function of frequency or wave-
length by one of two parameters: the group velocity dispersion (GVD) Dν(ν)
and the material dispersion parameter M(λ):

Dν(ν) = 1
(2π)2

d2

dν2 β = d
dω

(
1
vg

)
,

M(λ) = d
dλ

1
vg

= − ω2

2πc Dν(ν).

Like before, we obtain the pulse shape from

E(z, t) = τ0 e−i(ω0t−β0z)

×
∫ ∞

−∞
E (0, ν) eiDν(ω−ω0)2z/2 e−i(ω−ω0)(t−tg) dω

2π
.

(3.38)
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The pulse is not only delayed, but also distorted. We cannot specify this mod-
ification in general, instead we have to look at instructive examples.

Example: Pulse distortion of a Gaussian pulse
At z = 0 the optical pulse E(0, t) = E0 e−2 ln 2(t/tp)2

e−iω0t with intensity half-
width tp has the spectrum

E (0, ω) = E0 e−[(ω−ω0)tp]2/8 ln 2.

At the end of the propagation distance at z = �, the spectrum is deformed
according to Eq. (3.38). For the sake of simplicity we introduce the so-called
dispersion length,

�D = t2
p/4 ln 2 Dν, (3.39)

and find

E (�, ω) = E0 e−[(ω−ω0)tp]2/8 ln 2 ei(�/�D)[(ω−ω0)tp]2/8 ln 2.

Inverse Fourier transformation yields the time-dependent form
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Fig. 3.29 Pulse distortion manifests itself as pulse broadening and
frequency chirp. The red frequency components run ahead (left-hand
part of the pulse), whereas the blue ones lag behind (right-hand part).
The neither distorted nor delayed pulse is also indicated for compari-
son.
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E(�, t) = τ0E0 e−i(2πν0t−iβ0�)

× exp

(
2 ln 2(t − tg)2

t2
p[1 + (�/�D)2]

)
exp

(
i �
�D

2 ln 2(t − tg)2

t2
p[1 + (�/�D)2]

)
.

Hence not only is the pulse delayed by tg, but it is also stretched,

t′p(z=�) = tp

√
1 + (�/�D)2, (3.40)

and furthermore the spectrum exhibits the so-called ‘frequency chirp’, where
the frequency changes during a pulse:

ν(t) =
1

2π

d
dt

Φ(t) = ν0 +
1
π

�

�D

t − z/vg

t2
p[1 + (�/�D)2]

.

Now we can determine how far a pulse propagates within a material with-
out significant change of shape. For example, according to Eq. (3.40) it holds
that the pulse duration has increased at � = �D by a factor of

√
2. The disper-

sion length plays a similar role in the transmission of pulses as the Rayleigh
zone does for the propagation of Gaussian beams (see p. 48).

For BK7 glass from Tab. 3.1 it holds that D(λ=850 nm) = 0.04 ps2m−1. Then
one finds for a GaAs diode laser and a conventional Ti–sapphire laser

GaAs diode laser: tp = 10 ps �D = 200 m,
Ti–sapphire laser: tp = 50 fs �D = 5 mm.

It turns out that a short (50 fs) pulse is heavily distorted even by a 5 mm BK7
glass window!

3.6.2
Solitons

All optical materials show dispersion, resulting in pulse distortion as de-
scribed above, and detrimental in applications. However, in some materials
one can use nonlinear properties, which will be discussed in more detail later
in the chapter on nonlinear optics (Chap. 13), to compensate dynamically for
the effects of dispersion. Here we are particularly interested in the optical Kerr
effect, describing the intensity-dependent index of refraction,

n(I) = n0 + n2 I. (3.41)

It is true that the values of the nonlinear index in glass are only in the range
of n2 ≈ 10−15/(W cm−2), but, since the power density in optical fibres is very
high, this effect plays a role even at power levels of only a few milliwatts
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and enables the generation of so-called ‘solitons’ [50]. Under certain circum-
stances, these can propagate with a stable shape in a dispersive optical fibre
for more than thousands of kilometres.

We study the influence of nonlinearity in a one-dimensional wave equation,
taking the linear contribution into account by the index of refraction, resp. the
propagation constant β, as we did before,(

∂2

∂z2 + β2(ω)

)
E(z, t) e−i(ω0t−β0z) =

1
ε0c2

∂2

∂t2 PNL(z, t), (3.42)

and consider a harmonic field E(z, t) = E(z, t) exp[−i(ω0t− β0z)]. In the wave
equation we separate the linear and nonlinear contributions of the polariza-
tion,

P = ε0(n2 − 1)E � ε0(n2
0 − 1 + 2n0n2 I + · · · )E = ε0(n2

0 − 1)E + PNL,

so that

PNL(z, t) = 2ε0n0n2
ε0c2

2
|E(z, t)|2E(z, t) e−i(ω0t−β0z).

To obtain approximate solutions, we use the so-called slowly varying envelope
approximation (SVEA), where we neglect ∂E/∂z � kE second derivatives,

∂2

∂z2 E(z, t) e−i(ω0t−β0z) � e−iω0t
(

2iβ0
∂

∂z
− β2

0

)
E(z, t).

We have already used this approximation when generating the paraxial Helm-
holtz equation (see Eq. (2.29)).

The static dispersive properties of the materials are taken into account by
Δω = ω − ω0 and similarly to Eq. (3.36) by

β(ω) ≈ β0 + Δω/vg + Dν(Δω)2/2 + · · · .

For bandwidths of the pulse that are not too large (Δω � ω0), we can use
the equivalence −iΔωE � ∂E/∂t, etc. – thereby ignoring a more stringent
mathematical transformation with the aid of a Fourier transformation – and
write

β2(ω) ≈ β2
0 +

2iβ0

vg

∂

∂t
− β0Dν

∂2

∂t2 + · · · .

Now inserting all contributions into Eq. (3.42), we get the equation of mo-
tion of a soliton as the final result after a few algebraic steps,[(

∂

∂t
+

1
vg

∂

∂z

)
+

i
2

Dν
∂2

∂t2 − iγ|E(z, t)|2
]

E(z, t) = 0. (3.43)
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Obviously the propagation of a pulse with envelope E(z, t) is described by a
nonlinear coefficient

γ = ε0c2n2β0/n0,

besides the two dispersion parameters, group velocity vg and group velocity
dispersion (GVD) Dν.

Even with the considerable approximations that we have used so far, the
solution of this equation still requires some mathematical effort. Therefore we
want to restrict our discussion to the simplest solution called solitary envelope
solution. A pulse (pulse length τ0) that has the shape

E(0, t) = E0 sech
(

t
τ0

)
at the beginning of a fibre with dispersion length �D (see Eq. (3.39)) can prop-
agate keeping its shape

E(z, t) = E0 sech
(

t − z/vg

τ0

)
eiz/4z0

if the conditions

γ ∝ n2 > 0 and Dν < 0

are fulfilled, and, besides, the amplitude has a value equal to [151]

E0 = (|Dν|/γ)1/2/τ0.

These conditions are found in optical fibres in the region of anomalous group
velocity dispersion (GVD < 0), typically at λ > 1.3 μm, with simultane-
ously moderate requirements for pulse power. Besides the fundamental so-
lution, solitons of higher order exist, in analogy to the Gaussian modes, which
are characterized by a periodic recurrence of their shape after a propagation
length of �D, which we do not want to discuss here.

Linn Mollenauer, who, together with his colleagues [127], was the first to
demonstrate long-distance transmission of optical solitons in optical fibres,
introduced a very instructive model to illustrate the physical properties of a
soliton (Fig. 3.30). He compares the differently coloured wavelength contri-
butions of a pulse with a small field of runners of different speeds, which
disperses very quickly without special influences. As shown in the lower part
of the figure, however, the dispersion can be compensated by a soft, nonlinear
floor.

Solitons play an important role in many other physical systems as well. One
more example, spatial solitons, will be given in Sect. 14.2.1.2. The relationship
of Eq. (3.43) with the nonlinear Schrödinger equation,

i
∂

∂x
Ψ +

1
2

∂2

∂t2 Ψ + |Ψ|2Ψ = 0,
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may be demonstrated by the transformation into a moving frame of reference
with x = z − vgt and the substitutions Ψ = τ0

√
πγ|/Dν| E and z/z0 → x =

π|Dν|x/τ2
0 .

3.7
Anisotropic optical materials

When discussing the propagation of light in matter, we always assume the
medium to be isotropic. Because of that isotropy, the induced dielectric dis-
placement is always parallel to the inducing field and can be described for
transparent materials by just one parameter, the index of refraction, D =
ε0n2E. However, real crystals are very often anisotropic and the refractive
index depends on the relative orientation of the electric field vectors with re-
spect to the crystal axes.

3.7.1
Birefringence

Birefringence in calcite (calcareous spar) has been fascinating physicists for a
long time (see Fig. 3.31) and is one of the most prominent optical properties of
anisotropic crystals. Birefringent elements play an important role in applica-
tions, as well, for example as retarder plates (p. 132), as a birefringent filter for
frequency selection (p. 133) or as nonlinear crystals for frequency conversion
(Sect. 13.4). Crystal anisotropies can be induced by external influences, like
mechanical strain (strain birefringence) or electric fields (Pockels effect).

Fig. 3.30 A soliton field of athletes (with kind permission from Linn
Mollenauer).
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We restrict ourselves to the simplest case of uniaxial crystals, where the
symmetry axis is called the ‘optical axis’ (O.A.), and thus the formal problem
can be reduced from three to two dimensions. Light beams that are polarized
parallel to the optical axis experience a different refractive index than beams
with orthogonal polarization.

A simple microscopic model of birefringence may be illustratesd by charges
of the crystal bound to its axes with spring constants of different strengths
(Fig. 3.32). Therefore, they are displaced by different amounts for identical
excitation, and the relation between dielectric displacement D(r, t) and the in-
cident electric field E(r, t) has to be described by a tensor, which has diagonal
form, if the optical axis is used as one of the coordinate axes,

D = ε0

⎛⎜⎝ n2
o 0 0

0 n2
o 0

0 0 n2
e

⎞⎟⎠ E, E =

⎛⎜⎝ n−2
o 0 0
0 n−2

o 0
0 0 n−2

e

⎞⎟⎠ D/ε0.

In uniaxial crystals (unit vectors e⊥ ⊥ O.A., e‖ ‖ O.A.), there are two iden-
tical indices (ordinary index n⊥ = no) and one extraordinary refractive index
(n‖ = ne = no). Selected examples are collected in Tab. 3.2. The difference
Δn = no − ne itself is often called birefringence, and may have positive or neg-
ative values.

Tab. 3.2 Birefringence of important materials at λ = 589 nm and T = 20 ◦C.

Material no ne Δn αmax

Quartz 1.5442 1.5533 0.0091 0.5◦
Calcite 1.6584 1.4864 −0.1720 6.2◦
LiNbO3 2.304 2.215 −0.0890 2.3◦

In Maxwell’s equations (2.9) for optics we also have to use the correct tensor
relation instead of D = n2E and write more exactly

ik · D = 0,
ik · H = 0,

ik×E = iμ0ωH,
ik×H = −iωD.

(3.44)

Fig. 3.31 The calcareous spar crystal (5× 5× 15 cm3 ) that Sir Michael
Faraday gave to the German mathematician and physicist Julius
Plücker as a present in about 1850 shows birefringence
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Fig. 3.32 Left: Microscopic model of electromagnetic crystal
anisotropy. The black charge is held in different crystal directions
with springs of different strength. Right: Electromagnetic field vectors
and propagation vectors in an anisotropic crystal. O.A.: optical axis;
S: Poynting vector; H: the H field is normal to the plane.

From that we conclude directly

k×(k×E) = −ω2D/ε0c2.

After some algebra (k×(k×E) = (k · E)k − k2E) we can write

D = ε0n2
(

E − k(k · E)
k2

)
,

introducing the index of refraction n2 = (ck/ω)2, which describes the phase
velocity vθ = c/n of the wave. Its value has to be determined including the
dependence on crystal parameters.

In the next step we decompose the propagation vector k = k⊥e⊥ + k‖e‖
and with D⊥ = ε0n2

⊥E⊥, etc., we may write the individual components as

k⊥E⊥ =
n2k2

⊥(k · E)
(n2 − n2

o)k2 and k‖E‖ =
n2k2

‖(k · E)

(n2 − n2
e)k2 .

The sum of these two components corresponds exactly to the scalar product
k · E, and with

k · E =

(
n2k2

⊥
(n2 − n2

o)k2 +
n2k2

‖
(n2 − n2

e)k2

)
(k · E)

we obtain after short calculations a simplified form of the so-called Fresnel
equation [25],

1
n2 =

k2
⊥/k2

n2 − n2
o

+
k2
‖/k2

n2 − n2
e

,
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It yields an equation linear in n2, because
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Fig. 3.33 The index ellipsoid. O.A.:
optical axis.

the n4 contributions cancel after multiply-
ing (k2 = k2

⊥ + k2
‖). Finally, substituting the

components of the propagation vector k by
k⊥/k = sin θ and k‖/k = cos θ, we reach the
most important result for describing wave
propagation in a uniaxial crystal:

1
n2(θ)

=
cos2 θ

n2
o

+
sin2 θ

n2
e

. (3.45)

This equation describes the so-called ‘index
ellipsoid’ of the refractive index in a uniax-
ial crystal, which we introduce in Fig. 3.33.

3.7.2
Ordinary and extraordinary light rays

Now, we consider the incidence of a light ray onto a crystal, the crystal axis
of which makes an angle θ with the propagation direction. If the light ray
is polarized perpendicular to the optical axis (O.A., Fig. 3.34), then only the
ordinary index of refraction plays a role. The ordinary light ray (Eo) obeys
the ordinary Snell’s law (Eq. (1.2)). If the polarization lies within the plane
of propagation and optical axis, then different indices of refraction affect the
components of the field parallel and perpendicular to the optical axis, and the
light ray now propagates as an extraordinary light ray (Ee).

Since according to the boundary conditions in Eq. (3.1) the normal (z) com-
ponent of the dielectric displacement is continuous, it must vanish for normal
incidence.

Therefore, the dielectric displace-

Fig. 3.34 Ordinary and extraordinary rays in
birefringence.

ment lies parallel to the polarization
of the incident electric field. Ac-
cording to Eq. (3.44), the vector of
propagation k is perpendicular to
D and H and retains its direction in
the extraordinary ray. The propaga-
tion direction of the ray continues
to be determined by the Poynting
vector S,

S = E×H.

Therefore, the direction of S makes the same angle with the wave vector k that
occurs between E and D. According to Fig. 3.34 it is sufficient to determine
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the angle

tan ρ = Ez/Ex

from the electric field components in the crystal, in order to specify the angle
of deflection of the extraordinary ray.

The relation of D and E can be calculated without much effort, if we use the
system of major axes including the optical axis,

(
Dz

Dx

)
=

(
cos θ − sin θ

sin θ cos θ

)(
n2

e 0
0 n2

o

)(
cos θ sin θ

− sin θ cos θ

)(
Ez

Ex

)

=

(
n2

e cos2 θ + n2
o sin2 θ (n2

e − n2
o) sin θ cos θ

(n2
e − n2

o) sin θ cos θ n2
e cos2 θ + n2

o sin2 θ

)(
Ez

Ex

)
.

Because of the boundary conditions (3.1) the Dz component must vanish, and
we may conclude directly that

tan ρ =
1
2

(n2
e − n2

o) sin 2θ

n2
e cos2 θ + n2

o sin2 θ
.

The ‘getting out of the way’ of the extraordinary beam is called beam walk-
off and must always be considered when using birefringent components. We
can find an equivalent formulation of the beam walk-off angle using n(θ) from
Eq. (3.45),

tan ρ =
n2(θ)

2

(
1

n2
o
− 1

n2
e

)
sin 2θ. (3.46)

Example: Beam walk-off angle of quartz
We calculate the maximum deflection angle for birefringence in a quartz crys-
tal with the common methods and find

θmax = arctan(ne/no) = 45.2◦.

For θmax we calculate the beam walk-off angle according to Eq. (3.46),

ρ = 0.53◦.

One could say that in general the beam walk-off angle amounts to only a few
degrees; even for a material such as calcareous spar (see Tab. 3.2) with strong
birefringence it is only about 6◦. In nonlinear optics, for example, in the case
of the so-called angular phase matching (see Sect. 13.4) the efficiency of fre-
quency conversion is limited by beam walk-off.
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3.7.3
Retarder plates

An important application of birefringent materials is the so-called ‘retarder
plates’, with which the states of polarization can be manipulated, by adjust-
ing the optical axis perpendicular to the direction of propagation. Ordinary
and extraordinary light rays then propagate collinearly through the crystal,
and their components are given by the projection onto the optical axis; the an-
gles of those are adjusted relative to the incident polarization by rotation (see
Fig. 3.35).
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Fig. 3.35 Retarder plates transform an incoming state of polarization
into a new state, depending on their thickness and the angle φ of ori-
entation of the optical axis O.A. (left). Important special cases: λ/2
plate (centre); and λ/4 plate (right).

For the discussion we conveniently use Jones vectors, which have, for exam-
ple, the form E = aex + bey for a base of linearly polarized light (Sect. 2.4.1).
The ordinary and extraordinary beams are delayed with respect to each other
within a plate of thickness d with phase shifts exp(iαo) = exp(inoωd/c), resp.
exp(iαe) = exp(ineωd/c). In rotating the electric field first towards the coor-
dinate system of the optical axis and then back again, the general transforma-
tion matrix can be specified as

E′ =

(
cos φ − sin φ

sin φ cos φ

)(
eiαo 0
0 eiαe

)(
cos φ sin φ

− sin φ cos φ

)
E.

From that we gain after some manipulation

E′ =

(
eiαo cos2 φ + eiαe sin2 φ ( eiαo − eiαe) sin φ cos φ

−( eiαo − eiαe) sin φ cos φ eiαo cos2 φ + eiαe sin2 φ

)
E. (3.47)

Let us now consider two important special cases, the λ/2 plate and the λ/4
plate.
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3.7.3.1 λ/2 plate

For the λ/2 plate, the special case exp(iαo) = − exp(iαe) is chosen. Therefore,
the optical path lengths of the ordinary and extraordinary rays must differ by
exactly half a wavelength. In this case, the Jones matrix Mλ/2 reads as

Mλ/2 = eiαo

(
cos 2φ sin 2φ

− sin 2φ cos 2φ

)
and shows a rotation of an arbitrary initial state by angle 2φ (Fig. 3.35 centre).

3.7.3.2 λ/4 plate

For the λ/4 plate, the special case exp(iαo) = i exp(iαe) is chosen, which cor-
responds to a difference in the optical path lengths of a quarter wavelength.
The Jones matrix Mλ/4 in this case reads as

Mλ/4 = eiαo

2

(
(1 + i) + (1 − i) cos 2φ (1 − i) sin 2φ

−(1 − i) sin 2φ (1 + i) − (1 − i) cos 2φ

)

= ei(αo+π/4)√
2

(
1 −i
i 1

)
for φ = π/4.

In particular, for the angle adjustment of φ = 45◦, the λ/4 plates transform
linear polarizations into circular ones, and vice versa.

The differences in path lengths of retarder plates are in general not exactly
equal to λ/2 and λ/4, but to λ(n + 1)/2 and λ(n + 1)/4 instead, and the num-
ber of total waves n is called the order. They serve their purpose independently
of their order, but due to the dispersion, which in addition has different tem-
perature coefficients for no and ne, retarder plates of higher order are much
more sensitive to variations in frequency or temperature than retarder plates
with lower order.

So-called retarder plates of zero order consist of two plates with nearly the
same thickness but unequal differences in optical path λ/2 or λ/4. If two
plates with crossed optical axes are mounted on top of one another,1 then
the influences of higher orders are compensated and there remains an effec-
tive plate of lower order, which is less sensitive to spectral and temperature
changes. ‘Real’ plates of zero order would generally be too thin and therefore
too fragile for manufacturing.

3.7.3.3 Lyot filter

A linearly polarized light field is split by a birefringent plate with optical axis
oriented at φ = 45◦ to the direction of polarization and orthogonal to the

1) They are often ‘optically contacted’, i.e. they are connected via two
very well polished surfaces (whose planarities must be much better
than an optical wavelength) only by adhesive forces.
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Fig. 3.36 Top left: Lyot filter built from two parallel polarizers and a
wavelength-dependent retarder plate oriented at 45◦. Optimum extinc-
tion occurs for wavelengths where the retarder plate corresponds to
a λ/2-plate. Right: Transmission curves of Lyot filters with single re-
tarder plate of increasing thickness d, 2d, 4d, and of a filter composed
of the three plates. Bottom left: Three-plate Lyot filter at Brewster an-
gle for use within a laser resonator.

diretion of propagation evenly into ordinary and extraordinary waves. At the
exit of a plate of thickness d, the relative phase shift of the two waves , Δ =
2π(no − ne)d/λ, is wavelength-dependent. Combining retarder plates with
polarizers, one can achieve wavelength-dependent and frequency-dependent
transmission. Such applications are called birefringent filters or Lyot filters.

In Fig. 3.36 a retarder plate (now of higher order) is positioned between two
parallel polarizers. Only for distinct wavelengths does it serve as a λ/2 plate,
for example, and cancel transmission.

The incident light is transformed in general into elliptically polarized light
depending on the orientation of the optical axis. We can calculate the transmis-
sion of a light field polarized linearly in the x direction according to Eq. (3.47),

E′
x = exp

(
i
αo + αe

2

) [
cos

(
αo − αe

2

)
+ i sin

(
αo − αe

2

)
cos 2φ

]
Ex,

and with (αo − αe) = (no − ne)2πνd/c we find the transmitted intensity cor-
related with the incident intensity Ix,

IT = Ix

[
cos2

(
(no − ne)πνd

c

)
+ sin2

(
(no − ne)πνd

c

)
cos2 2φ

]
.

In particular, for φ = 45◦ one finds a transmission modulated by 100% with
the period (or the ‘free spectral range’) Δν = c/(no − ne)d. Positioning sev-
eral Lyot filters with thicknesses dm = 2md one behind the other, the free spec-
tral range is maintained, but the width of the transmission curve is reduced
quickly.
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Lyot filters, resp. birefringent filters, may be positioned in the ray path at the
Brewster angle as well, to reduce losses substantially (Fig. 3.36). The optical
axis lies within the plane of the plate, and the central wavelength of the filter
with the lowest losses can be tuned by rotating the axis. Such elements are
mainly used in broadband laser oscillators (e.g. Ti–sapphire lasers, dye lasers,
Sect. 7.9.1.1) for rough wavelength selection.

3.7.4
Birefringent polarizers

One more important application of
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Fig. 3.37 Glan air polarizer. The acceptance
angle is defined by the critical angles for
total internal reflection for the ordinary and
the extraordinary rays.

birefringent materials is their use as
polarizers. From the many variants we
introduce the Glan air polarizer. Its ef-
fect is based on the various critical an-
gles of total internal reflection for the
ordinary beam (which is reflected for
devices made of calcareous spar) and
the extraordinary beam (Fig. 3.37).

Applying a polarizer, both the ex-
tinction ratio and the acceptance angle
are the most relevant numbers to de-
termine the alignment sensitivity, depending on the difference of the refractive
indices for ordinary (o) and extraordinary (eo) beams. With Glan polarizers
very high extinction ratios of 1 : 106 and more can be achieved. One variant
is the Glan–Thompson polarizer, where a glue is inserted between the two
prisms with refractive index between no and ne. Then total internal reflection
occurs for the partial wave with the lower index of refraction only, the other
one is always transmitted, in Fig. 3.37 the extraordinary wave.

3.8
Optical modulators

Materials in which the index of refraction can be controlled or switched by
electric or magnetic fields offer numerous possibilities to influence the polar-
ization or phase of light fields, thereby realizing mechanically inertia-free op-
tical modulators for amplitude, frequency, phase or beam direction. We will
pick out several important examples.
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3.8.1
Pockels cell and electro-optical modulators

The electro-optical effect addresses the linear dependence of the refractive in-
dex on the electric field strength and is also called the Pockels effect. If the index
of refraction depends quadratically on the field strength, resp. linearly on the
intensity, then we talk about the optical Kerr effect, which will be discussed
in more depth in the chapter on nonlinear optics (Sect. 14.2). We came across
self-modulation of an optical wave by the Kerr effect in Sect. 3.6.2 on solitons
already.

The electric field is created by
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Fig. 3.38 Electro-optical modulator with a KDP
crystal, switched to blocking mode.

electrodes attached to the faces
of the crystal. The geometry of
the index of refraction modula-
tions are in general determined
by crystal symmetry. Here, we
discuss a simple and important
example, the uniaxial KDP crys-
tal.

The KDP crystal is mounted
between two crossed polarizers
and its optical axis is adjusted
parallel to the propagation direc-

tion. A longitudinal electric field is created with transparent electrodes
(Fig. 3.38).

In the field-free state, there is axial symmetry, which is lifted by the external
field and induces an optically marginal biaxial crystal. Thereby the indices of
refraction in the x and y directions, which are tilted by 45◦ against the posi-
tion of the polarizer, are changed by the same modulus of the angle, but with
opposite sign:

nox = no − rn3
oU/2d and

noy = no + rn3
oU/2d.

In this arrangement the transmission is proportional to

IT = I0 cos2(2πrn3
oU/d).

In applications of electro-optical modulators (EOMs), the half-wave voltage,
where the difference in the indices of refraction creates a phase delay of the x
and y components of λ/2, is among the most important technical criteria. The
maximum modulation frequency is determined by the capacitive properties
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of the driver circuit. At very high frequencies (>200 MHz) transit time effects
occur because the field strength across the crystal is no longer homogeneous.
In this case, travelling-wave modulators can be constructed, in which the
radio-frequency wave and the optical wave co-propagate.

Example: Half-wave voltage of KDP
The electro-optical coefficient of KDP is r = 11 pm V−1 at a refractive index
of no = 1.51. For a crystal length of d = 10 mm, the half-wave voltage at a
wavelength of λ = 633 nm is calculated as (E = U/d)

U = 2 × λ

2
1

rn3
o

= 84 V cm−1.

In this case the half-wave voltage does not depend at all on the length of the
crystal. Therefore it is more convenient to choose arrangements with trans-
verse electro-optical coefficients.

Example: Phase modulation with an EOM
If one adjusts the linear polarization of a light beam parallel to the principal
axis of a crystal and leaves out the polarizers in Fig. 3.38, then the beam expe-
riences not an amplitude modulation but a phase modulation, resp. frequency
modulation. The index of refraction depends linearly on the driving voltage
and causes a phase variation at the output of the EOM,

Φ(t) = ωt + m sin(Ωt),
E(t) = Re {E0 exp(−iωt) exp[−im sin(Ωt)]} ,

(3.48)

where the modulation index m specifies the amplitude and is correlated with
the material parameters through

m = ωrn3
oU/2c.

The corresponding instantaneous frequency experiences a harmonic modu-
lation as well,

ω(t) =
d
dt

Φ(t) = ω + mΩ cos(Ωt),

where the modulation amplitude M = mΩ appears. Actually, we cannot
strictly distinguish between phase modulation (PM) and frequency modula-
tion (FM). However, the modulation index allows a rough and common cate-
gorization into distinct regions:

m < 1 phase modulation,
m ≥ 1 frequency modulation.
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Fig. 3.39 Phase modulation with an EOM. The spectra are illustrated
for modulation indices m = 0.1 (top) and m = 2.4 (bottom). The
lengths of the bars indicate the contribution of the sideband, and the
direction indicates the phase position according to Eq. (3.49).

The difference gets more pronounced if we decompose the electromagnetic
wave (3.48) with intensity

e−im sin(Ωt) = J0(m) + 2[J2(m) cos(2Ωt) + J4(m) cos(4Ωt) + · · · ]
− 2i[J1(m) sin(Ωt) + J3(m) sin(3Ωt) + · · · ]

into its Fourier frequencies:

E(t) = E0 e−iωt[J0(m) + J1(m)(e−iΩt − eiΩt)
+ J2(m)(e−i2Ωt + ei2Ωt) + J3(m)(e−i3Ωt − ei3Ωt) + · · · ]. (3.49)

We present these spectra for the cases m = 0.1 and m = 2.4 in Fig. 3.39.
For a small modulation index (PM), the intensity at a carrier frequency ω is
barely changed, but sidebands appear offset from the carrier by the modula-
tion frequency. The intensity of the sidebands is proportional to J2

� (m). For
a large modulation amplitude (FM), the intensity is distributed to many side-
bands, and in our special case the carrier is even completely suppressed due
to J0(2, 4) = 0.

In contrast to harmonic amplitude modulation (AM), where exactly two
sidebands are created, many sidebands appear for PM/FM modulation. An-
other important difference is that the AM variation can be shown (‘demodu-
lated’) with a simple photodetector, but PM/FM information cannot.

3.8.2
Liquid crystal modulators

Liquid crystal (LC) modulators are well known from liquid crystal displays
(LCDs). By ‘liquid crystals’ we mean a certain type of order of slab-like or
disc-like organic molecules within a liquid (which appear quite often).
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In the nematic phase (there exist also smectic and cholesteric phases), all
the molecular slabs point in one direction, without aligning their centres. If
the molecules are exposed to a surface with a preferred direction (grooves,
anisotropic plastics), then they become oriented in this direction. The enclo-
sure of a liquid crystal between glass plates with crossed grooves causes the
rotated nematic phase shown in Fig. 3.40, where the molecular axes are rotated
continuously from one direction into the other.

The rotated nematic phase rotates
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Fig. 3.40 Liquid crystal modulator.

the plane of polarization of an inci-
dent polarized light wave by 90◦. But
the molecular rods can be aligned
parallel to the field lines of an electric
field in the direction of propagation.
Then the polarization is not changed
during transmission. Thus, an elec-
tric field can be used to switch the
transmitted amplitude. LC displays
use the same principle, but work in
general in a reflection mode.

3.8.3
Spatial light modulators

The digital revolution is more and more also entering the world of optical
devices. It has led to the development of modulators allowing spatial con-
trol of the intensity or phase of an extended light field, so-called spatial light
modulators or SLMs. Conceptually it is straightforward to use the fabrication
methods of micro-electronics and divide the LC described in the last section
into an array of small and individually addressable pixels. LCDs have long be-
come a ubiquitous component of electric and electronic tools. With improved
optical quality LC arrays can be used to actively control the wavefront of a
laser beam incident on such a device. While applications for versatile digital
display technology are fairly obvious (see below) we here introduce another
example where SLMs are used to control the shape of ultra-short pulses (for
the generation of femtosecond pulses, see Sect. 14.2.1.1).

In Fig. 3.41 a very short pulse is dispersed by a grating and in combination
with a lens a parallel wavefront is generated with spatially varying colour.
Without SLM the second grating would undo the dispersion and simply re-
store the original pulse. The SLM can now be configured, if necessary by
inserting additional optical elements such as polarizers etc., to introduce at-
tenuation or delays in each channel (typically 128 and more) individually. On
recombination the pulse is now very different from the incoming pulse. This
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Fig. 3.41 Pulse shaping using a spatial light modulator (SLM). The
incoming ultra-short pulse (typically in the femtosecond domain) is
dispersed into its spectral components. The SLM modifies the intensity
of individual channels (here: 1–8) and generates small delays. With a
second grating the pulse is recombined.

pulse shaping method is used to improve for instance the efficiency of chemi-
cal reactions induced by femtosecond laser pulses (‘femto chemistry’) [29].

In 1987 Larry Hornbeck of Texas Instruments invented another type of spa-
tial light modulator, the digital mirror device (DMD), which can realize more
than 1.3 million hinge-mounted mirrors on a single silicon chip. Each individ-
ual mirror in Fig. 3.42 has a square length of about 15 μm and corresponds to
a pixel of a digital image. It is separated from adjacent mirrors by 1 μm, and
it tilts up to 12◦ in less than 1 ms by micro-electromechanical actuators. White
and black is generated by directing each mirror in and out of the light beam
from the projection lamp. Since each mirror can be switched on several thou-
sand times per second, also grey scales can be realized by varying the ‘on’ vs.
the ‘off’ time of the mirror.

The DMD offers digital light processing (DLPTM) with excellent quality and
is currently revolutionizing display technologies from large scale cinemas to
home entertainment.

3.8.4
Acousto-optical modulators

If a sound wave propagates within a crystal, it causes periodic density fluctu-
ations, which induce a variation of the refractive index at the same frequency
and wavelength. The periodic fluctuation of the refractive index has an ef-
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fect like a propagating optical grating, at which the light ray is diffracted.
Diffraction may be interpreted as a Bragg scattering or Bragg refraction off
this grating.

An acousto-optical modulator
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Fig. 3.43 Acousto-optical modulator. The
intensity variation of the optical beams
reflects the intensity of the acoustic wave.

(AOM) consists of a crystal, at the end
of which is glued a piezo-element to
excite ultrasonic waves (Fig. 3.43), the
transducer. To avoid reflection and
standing waves, a sound absorber is
installed at its other end.

The ultrasonic head is set vibrating
mechanically with a radio frequency
(typically 10–1000 MHz) and radiates
sound waves through the modulator
crystal. Then the light ray transits a so-
called extensive sound wave field and
experiences diffraction in this ‘Bragg
domain’ in one order, only. If the light
ray transits through a thin sound wave
field, as is the case with an optical grating, then several, here undesirable,
diffraction orders occur. This boundary case is called the ‘Raman–Nath do-
main’.

In order to discuss the influence of the sound wave on the propagation of
the light ray in more detail, we consider the variation of the index of refraction
in the x direction caused by a sound wave with frequency Ω and wave vector
q = qex,

n(t) = n0 + δn(t) = n0 + δn0 cos(Ωt − qx).

We use the wave equation in the form of Eq. (2.13) and take into account that
[n0 + δn(t)]2 � n2

0 + 2n0δn(t) + · · · . Furthermore, we confine ourselves to the
variations of the x components, because we do not expect any change through

Fig. 3.42 A sector of 3×3 mirrors out of an array of 1280×1024.
On the right side one mirror is removed to expose the electro-
mechanical actuators. With permission by Texas Instruments, from
www.dlp.com/dlp_technology.
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the sound wave in the other directions,[
∂2

∂x2 − k2
y − k2

z −
(

n2
0

c2 − 2n0δn(t)
c2 + · · ·

)
∂2

∂t2

]
E(r, t) = 0. (3.50)

Now we shall consider how the amplitude of the incident wave evolves,
which for simplification has only a linear polarization component,

Ei(r, t) = Ei0(x, t) e−i(ωt−kr).

The modulated index of refraction leads to a time-dependent variation at fre-
quencies ω ± Ω; therefore, we can ‘guess’ an additional field Ea(r, t), which
we may interpret as a reflected field,

Ea(r, t) = Ea0(x, t) e−i(ω′t−k′r),

with ω′ = ω + Ω and k′ = k + q, arising from diffraction off the sound wave.
The oscillating refractive index has no influence on the propagation vector;
therefore, even at this point it must hold that

k′2 = (k + q)2 = n2
0(ω + Ω)2/c2 � (n0ω/c)2

(because Ω � ω). From that the Bragg
�

�
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Fig. 3.44 Bragg geometry.

condition immediately follows:

q = −2kx.

Now, we study Eq. (3.50) with a total field
E = Ei + Ea, and again assume that the
change in amplitude is negligible on the
scale of a wavelength, i.e.

∂2/∂x2 [E(x) eikx] � [−k2 + 2ikE′(x)] eikx.

With k2
x + k2

y + k2
z = (n0ω/c)2 and (kx + K)2 + k2

y + k2
z = [n0(ω + Ω)/c]2, after

a short calculation we obtain the equation[
2ikx

∂
∂x + 2ω2n0δn0

c2 cos(Ωt − qx)
]

Ei0(x) e−i(ωt−kxx)

+
[
−2ikx

∂
∂x + 2ω2n0δn0

c2 cos(Ωt − qx)
]

Ea0(x) e−i[(ω+Ω)t+kxx] = 0.

To get a more simplified system for the two amplitudes Ei0 and Ea0, we use
the cos terms in their complex form, sort according to the oscillator frequencies
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and ignore oscillating terms, where the incident field does not participate:

2ikx
∂

∂x Ei0 + ω2n0δn0
c2 Ea0 = 0,

−2ikx
∂

∂x Ea0 + ω2n0δn0
c2 Ei0 = 0.

Finally, we substitute the x dependence by the dependence along the principal
propagation direction z (thereby Ea propagates in the opposite direction to Ei).
With kx = k sin θ = (n0ω/c) sin θ it holds that

i ∂
∂z Ei0 + kδn0

2n0 sin θ
Ea0 = 0,

i ∂
∂z Ea0 + kδn0

2n0 sin θ
Ei0 = 0.

(3.51)

The solutions of this system are well-known harmonic oscillations with fre-
quencies

γ =
kδn0

n0 sin θ
.

In general, as Ea0 = 0 is valid at the entrance of an AOM, we find the pendu-
lum solution

Ei(z, t) = Ei0 cos(γz/2) e−i(ωt−kr),

Ea(z, t) = Ei0 sin(γz/2) e−i[(ω+Ω)t−(k+q)r].

So the reflected beam is actually frequency-shifted, as guessed above. For
small z the reflected intensity is proportional to (γz)2. The modulation ampli-
tude of the refractive index at sound intensity IS is

δn0 =
√
MIS/2.

The M coefficient depends on the material parameters and is introduced here
only phenomenologically. For small powers the reflected (in other words,
diffracted) intensity is proportional to |Ea|2, and thus, according to this result,
proportional to the applied sound power.

3.8.5
Faraday rotators

Certain materials show the Faraday effect, where the oscillation plane of lin-
early polarized light is rotated independently of the initial orientation propor-
tional to a longitudinal magnetic field,

E′ =

(
cos α − sin α

sin α cos α

)
E

with α = VB �,
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where V (units deg m−1 T−1) is the Verdet constant, B is the magnetic field
strength and � is the crystal length. The magnetization of a Faraday crystal
affects right-hand and left-hand polarized refractive indices with different in-
dices of refraction: n± = n0 ± VBλ/2π.

In contrast to the retarder plates

Fig. 3.45 Faraday rotation. Only those field
lines are shown which pass through the whole
crystal.

in Sect. 3.7.3, the polarization trans-
formation of an electromagnetic
wave is not reversed in a Fara-
day rotator, if the wave is returned
into the same configuration. The
Faraday rotator is ‘non-reciprocal’
and therefore is suited extremely
well for the design of isolators and
diodes. As a result of the typ-
ically very small Verdet constants
(Tab. 3.3), relatively high magnetic

field strengths are necessary. They can be more conveniently realized with
permanent magnets made of SmCo or NdFeB [181].

Tab. 3.3 Verdet constant of selected materials at 589 nm.

Material Quartz Heavy flint TGG∗

V (deg m−1 T−1) 209 528 −145
*TGG = terbium–gallium garnet.

3.8.6
Optical isolators and diodes

In most applications laser light is sent to the device under test via various
optical components. Thereby back-reflections always occur, which even for
very low intensities cause undesirable amplitude and frequency fluctuations
of the laser light. Optical isolators offer the possibility to decouple experiment
and light source from each other. The components introduced in the preceding
sections are the building blocks of such devices.

In Fig. 3.46 we present three concepts that may be applied to suppress re-
flections from the upper reflector:

(i) The isolator on the left uses a λ/4 plate, which transforms the linear po-
larization into circular polarization, e.g. a right-handed one. After reflec-
tion, the handedness is preserved but the wave propagates backwards.
After the second passage through the λ/4 retarder plate, the action of
a λ/2 plate is realized. The polarization is thus rotated by 90◦ and the
wave is deflected at the polarizing beam splitter (see Sect. 3.7.4). This ar-
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Fig. 3.46 Optical isolators. (i) Left: λ/4 plate isolator. (ii) Centre: Fara-
day isolator. (iii) Right: The effect of an AOM isolator is based on fre-
quency shifts. PBS = polarizing beam splitter.

rangement is only sensitive to the reflection of circularly polarized light
and hence is of limited use.

(ii) In contrast to the previous case, the Faraday isolator (centre) allows the
suppression of arbitrary reflections only in combination with a second
polarizer between rotator and mirror. One disadvantage is the techni-
cally impracticable rotation by 45◦, which can be compensated with a
λ/2 plate or a second rotator stage [181]. A two-stage isolator also offers
typically 60 dB extinction of reflections, in contrast to the typical 30 dB
of a single-stage unit.

(iii) From time to time the acousto-optical modulator is applied for isola-
tion purposes. Its isolation effect is based on the frequency shift of the
reflected light by twice the modulation frequency, which, for example,
may lie outside of the bandwidth of the laser light source to be isolated.
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Problems

3.1. Phase shift in total internal reflection (TIR) Begin by showing that the
coefficient of dielectric reflection for p-polarization (see p. 84) is alternatively
given by r = E0r/E0i = (n1 cos θt − n2 cos θi)/(n1 cos θt + n2 cos θi). Consider
the reflection coefficient for the case of total internal reflection (n2 < n1), i.e.
for an angle of incidence above the critical angle θi > θc = sin−1(n2/n1).
Show that the coefficients for both s- and p-polarization and for θi > θc takes
on the value R = |r|2 = 1. Use the generalized Snellius’ law cos(θt) = (1 −
sinθi/ sin θc)1/2 = iQ, Q real, for this purpose. Show furthermore that the
phase shift of the reflected waves is ϕs = 2 tan−1(n1 cos θi/n2Q) and ϕp =
2 tan−1(n1Q/n2 cos θi), respectively.

3.2. Phase shift at metallic surfaces Show that on reflection from a metallic
surface (refractive index n = n′ + in′′ = n(1 + iκ)) a phase shift

tan φ =
2nκ

n2 − 1 + n2κ2

occurs for normal incidence. Show that for a perfect conductor (conductivity
σ → ∞) the phase shift vanishes, tan φ → 0.

3.3. Beam splitter made from metal films Simple beam splitters can be manu-
factured by depositing a thin metal film onto a glass substrate. Determine the
width of the thin layer with conductivity σ so that the intensity is evenly dis-
tributed between transmitted and reflected beams. For the sake of simplicity
consider normal incidence.

3.4. Surface plasmons The imaginary index of refraction of metals, n2
met(ω) =

ε(ω) < 0, renders possible the excitation of special electromagnetic states at a
metal–vacuum or metal–dielectric boundary, so-called surface plasmons. Study
the wave equation at the metal–vacuum boundary in the z = 0 plane. Con-
sider solutions of the form E(x, y, z) = E0 exp[i(kxx + kyy − ωt)− κ±|z|] with
1/κ± penetration depth into the vacuum (’+’: z > 0) and into the metal (’−’:
z ≤ 0), respectively, and show that the boundary conditions can be met. De-
rive the dispersion relation ω(k) and develop an experimental arrangement to
excite and detect such surface plasmon oscillations. An interesting review on
optical properties of plasmonic excitations can be found in [143].

3.5. Fibre couplers, directional couplers (a) For applications in e.g. commu-
nication networks, optical fibres must frequently be coupled with each other
face to face. Study qualitatively the influence of small transverse mismatch,
axial tilts and gaps. For simplicity assume a box-shaped mode profile (which
width do you choose?).

(b) The signal propagating in an optical fibre must frequently be directed
into multiple output ports. Directional couplers are used for this purpose
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which can be manufactured by parallel fusion of two wave guides. The fu-
sion causes the field distributions of the optical modes to overlap and hence
the electric fields in the two fibres are coupled with each other. Consider a
simplified model in which for the fusion length � the field amplitudes are lo-
cally coupled with a constant coefficient. How does the power exiting into the
two ports depend on the coupling strength and length �?

3.6. Linear polarization of the LP/HE modes Construct explicitly the linearly
polarized transverse components Ex, Ey of the LP01 mode from the HE11 mode
and Eqs. (3.14) and (3.15) using, for example, the route sketched in Sect. 3.3.1.4.
Justify the designation LP mode.

3.7. Single mode fibre For a typical step-index fibre (NA = 0.11, λcut-off =
620 nm) operated in the single-mode regime, estimate the portion of the total
power of the LP01 mode which travels in the core and cladding, respectively,
as a function of the wavelength. How do you focus a free-space Gaussian
TEM00 mode onto the fibre end for optimal coupling efficiency?

3.8. Number of wave guide modes With increasing V parameter (3.18) not
only the number of allowed � values for J�(X) increases but also the num-
ber of roots X�m < V continues to rise. In order to estimate the number
of modes for a given V parameter, begin by assuring yourself that J�(x) ≈
(2/πx)1/2 cos(x − (� + 1/2)π/2) is a good approximation for large x. Use this
approximation to calculate explicitly the number M of allowed modes and
show that it rises with M ≈ 4V2/π2. Calculate the mode number for a step-
index fibre with NA = 0.2 and core diameter 2a = 50 μm. How does the mode
number change if the cladding is replaced with air, i.e. if a pure solid 50 μm
diameter glass fibre is used?

3.9. Brillouin zone in a two-dimensional rectangular lattice Construct the
reciprocal lattice for a crystal square lattice (length a) and for a parallelogram
(side length a and b, angle 45◦). Construct the first Brillouin zone, too.

3.10. Polarizers Collect information from books and catalogues and describe
the polarizing mechanism of the following polarizing components: Glan–
Taylor, Glan–Thompson, Rochet, Sénarmont and Nicol prisms; thin-film po-
larizers; polarization sheets (also Polaroid filter). Give specifications for trans-
mission, extinction ratio and acceptance angle.

3.11. Wollaston prisms Two triangular rectangle prisms with even sided
cross-section are cut from a uniaxial crystal (usually quartz). One crystal has
the optical axis in, the other one orthonormal to, the cross-section. The crys-
tals are cemented to each other at the hypotenuses (sometimes simply with a
droplet of water). What happens to an unpolarized light beam incident onto
one of the four sides of the polarizer? Which angles are observed for calcite?

3.12. Switching laser beams In experiments and applications, laser beams
must be switched off and on. Consider several methods and discuss their
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limits, advantages and disadvantages:
(a) mechanical shutters; (b) AOMs; (c) EOMs.

3.13. AOM with standing acoustic wave An AOM is excited with an acoustic
standing wave of frequency Ω. Model the index of refraction variation in
terms of an optical phase grating. Study the effect on a laser beam incident at
normal angles to the acoustic wave, and at an angle α.

3.14. Faraday isolator Using the Verdet constants from Tab. 3.3 calculate the
field strength required for the rotator of a Faraday isolator at the wavelength
λ = 589 nm. How can one generate such magnetic fields? See [181].
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4
Optical images

Image formation is traditionally among the most important applications in
optics. The basic element in optical imaging is the convex lens, which for
stigmatic imaging merges into one point again all the rays that originated from
a single point. With the help of geometry (Fig. 4.1), we can understand the
most important properties of a (real) optical image:

• a beam parallel to the axis is sent through the focal point by a convex
lens;

• a beam that reaches the lens via the focal point leaves the lens parallel to
the axis;

• a beam passing through the centre of the lens is not diffracted.

From geometrical considera-
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Fig. 4.1 Conventional construction of a lens image
with the common notation.

tions, we can connect the dis-
tances g and b of object G and
image B, respectively, with the
focal length f , and deduce the
lens equation,

x′

f
=

f
x

. (4.1)

We have already come across the
form of the imaging equation ,

1
f

=
1
g

+
1
b

, (4.2)

in Eq. (1.22), when discussing matrix optics. It evolves from the lens equation,
when one uses the object and image distances, g = f + x and b = f + x′.

We dedicate this chapter to lens imaging, as it is the basis for various optical
instruments, which have substantially influenced the development of optics
and have made possible – literally – our insights into the macro- and micro-
cosmos. Besides the basic principles, we first raise the question of the resolu-
tion capability of such instruments. What objects at very large distances can
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we make visible?, What are the smallest objects that we can observe with a
microscope including their structure or at least their size?

In the lens of our eye, imaging occurs as well, and we have to take this into
account for all our vision processes; therefore, we begin by presenting some
of the more important properties of our ‘own vision instrument’.

4.1
The human eye

Unfortunately, it is not possible here to go into the physiological origin of the
vision process, and for that we refer the reader to the relevant literature [57].

least distance of distinct vision S
0
 250 mm

vitreous humor

retina

optical nerve

pupil

crystalline lens

horny skin (cornea)

aqueous humor

Fig. 4.2 Human eye, reduced to the most important optical ‘compo-
nents’.

Tab. 4.1 Optical properties of the human eye.

Vitreous humour, aqueous humour n = 1.336 (∼ 4/3)
Cornea n = 1.368
Crystal lens n = 1.37–1.42

Focal length, front f = 14–17 mm
Focal length, back f = 19–23 mm
Clear vision distance 150 mm to ∞, S0 = 250 mm

Pupil (diameter) d = 1–8 mm
Pupil (shutter time) τ = 1 s
Resolving power at 250 mm Δx = 10 μm
Sensitivity (retina) 1.5 × 10−17 W/vision cell ∼ 30 photon s−1

For our purposes it is sufficient to construct a ‘reduced artificial standard
eye’. The eye body in general has a diameter of 25 mm, and several important
optical properties are collected in Tab. 4.1. The refractive power of the total
eye is achieved predominantly by the curvature of the cornea (typical radius
5.6 mm, difference in refractive index with respect to air Δn ∼ 0.37), while the
variable crystalline lens guarantees ‘focusing’ by contraction. Recently, laser
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ablation with femtosecond lasers has become established as a very promising
method for reshaping the cornea, and thus a patient’s ability to see can be
improved.

By adaptation of the focal length of our eyes, we are generally able to rec-
ognize objects at a distance of 150 mm or more. As a standardized distance
for optical instruments, often the conventional least distance of distinct vision of
S0 = 250 mm is chosen, where the best results are achieved with vision aids.

4.2
Magnifying glass and eyepiece

The simplest, and since ancient times very popular, optical instrument is the
convex lens used as a magnifier. The effect can most quickly be understood by
considering the angle α at which an object of height y is seen, since this angle
determines our physiological impression of its size – a mountain 1000 m high
at a distance of 10 km seems to have the same size as a matchbox at a distance
of 25 cm. Only our knowledge of their distance identifies objects according to
their real sizes.

�

�
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y
2��

Fig. 4.3 Vision without (left) and with a magnifying glass. The magnifi-
cation is caused by widening of the vision angle. The object lies within
the focal length of the magnifier, and the position of the virtual image
was chosen to be at infinity in this example.

Without technical aid, we view an object of size y with the eye (Fig. 4.3) at
an angle α = tan(y/S0) � y/S0, which is determined by the least distance of
distinct vision S0. Now, we hold the magnifier directly in front of the eye: the
magnifier widens the angle at which we see the object. If we bring the object
close to the focal length, x ∼ f , then parallel rays reach the eye, so that the
object appears to be removed to infinity. From geometrical relations, we can
determine that

αmax =
y
f

.

From that we can directly deduce the maximum magnification M of the mag-
nifying glass,

M =
αmax

α
=

S0

f
.
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Thus, the smaller the focal length of a magnifying lens, the stronger is its mag-
nification. However, since the least distance of distinct vision is defined as
S0 ∼ 250 mm, and because thicker and thicker, more curved, lenses are nec-
essary at smaller focal lengths, the practicable magnification of magnifying
lenses is limited to M ≤ 25.

In contrast to the real image, discussed in the first section, the magnifying
glass generates a virtual image. If the magnifying glass is not held directly in
front of the eye like in Fig. 4.3, then the magnification is a little bit less, as one
may straightforwardly find out from geometrical considerations. However,
the difference is in general marginal, and, anyway, an individual user looks for
a suitable working distance by manual variation of the distances of magnifier,
eye and object.

In optical devices, such as microscopes and telescopes, real intermediate
images are generated, which are then observed with a so-called eyepiece. The
eyepiece in general consists of two lenses to correct for chromatic aberrations,
which we will discuss in Sect. 4.5.3. In the Huygens eyepiece (Fig. 4.4), a real
intermediate image is generated by the field lens, which is looked at with the
eyepiece. The eyepiece fulfils exactly the task of a magnifying lens with an
effective focal length focu and a magnification Mocu = S0/ focu for an eye that
is adapted to infinite vision distance.

Example: Effective focal length and magnification of a Huygens eyepiece
A Huygens eyepiece consists of two

intermediate 
image

eye lens

field lens

Fig. 4.4 Huygens eyepiece with path of rays.

lenses at a separation of

d = ( f1 + f2)/2,

because there the minimal chromatic
aberrations occur (see Sect. 4.5.3). We
determine the effective focal length and
magnification of a system consisting of
two lenses with f1 = 30 mm and f2 =
15 mm, for instance by application of
the matrix formalism of Sect. 1.9. The
system has an effective focal length of

1
focu

=
1
f1

+
1
f2

− f1 + f2

2 f1 f2

=
f1 + f2

2 f1 f2
= (20 mm)−1

and thus a magnification of Mocu = 250/20 = 12.5×.
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4.3
Microscopes

To see small things ‘big’ is one of the oldest dreams of mankind and contin-
ues to constitute a driving force for our scientific curiosity. The magnifying
glass alone is not sufficient, as we know already, to make visible the struc-
ture of very small objects, like e.g. the details of a biological cell. However,
by adding one or two lenses, which generate a real image at first, it has been
possible since the 19th century to achieve up to 2000-fold magnifications – the
microscope [98] ’opens’ our eyes.

We consider a microscope

obj

ocu

int. image

focu

fobj

t

eye

Fig. 4.5 Beam path within a microscope: t is the
length of the tube; fobj and focu are the focal lengths
of objective and eyepiece; the black arrow shows the
position of the intermediate image.

(Fig. 4.5) in which an objec-
tive ‘obj’ with focal length fobj
generates a real intermediate
image. The intermediate im-
age plane is a suitable posi-
tion to install, for example, a
graticule, the lines of which are
seen simultaneously with the
object under test. For that pur-
pose, an eyepiece ‘ocu’ with fo-
cal length focu or more sim-
ply a magnification Mocu =
S0/ focu = 250 mm/ focu is
used, typically with enlarge-
ment factors 10× or 20×. In
practice, objectives and eye-
pieces are lens combinations,
in order to correct for aberra-
tions (see Sect. 4.5.3). The total
focal length fμ of the compos-
ite microscope is evaluated ac-
cording to Eq. (1.24) as

1
fμ

=
1

fobj
+

1
focu

− t
fobj focu

.

In general, microscopes have
tubes with well-defined
lengths of t = 160 mm, and
since t � fobj, focu, one may
approximately specify

fμ � − fobj focu

t
= − fobj focu

160 mm
.
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We can determine the image size in two steps: (i) The object lies approxi-
mately in the focal plane of the objective, whereas the distance between the
real image and the objective differs only a little bit from the length of the tube
t. According to Eq. (4.1) it then holds that y/ fobj � y′/t and the objective gives
rise to a magnification Mobj = y′/y � t/ fobj. (ii) The eyepiece further magni-
fies the image by the factor Mocu = y′′/y′ = S0/ focu, as explained in Sect. 4.2
on the magnifying glass. The total magnification Mμ of the microscope is then

Mμ = Mocu Mobj � S0

focu

t
fobj

=
S0

fμ
.

This last result shows that the microscope in fact acts like an effective magni-
fying lens of extremely short focal length.

Example: Magnification of a microscope
We construct a microscope with an eyepiece, magnification 10×, and an objec-
tive with focal length fobj = 8 mm. The magnification of the objective amounts
to Mobj = 160 mm/8 mm = 20. The total magnification can be calculated ac-
cording to Mμ = 10 × 20 = 200.

Standard microscopes are designed for a quick exchange of the optical el-
ements, to change the magnification easily. Both eyepiece and objective are
usually specified with the magnification, e.g. 100×; the components of differ-
ent manufacturers are in general interchangeable. The total magnification can
be determined according to the procedure described above without difficul-
ties. For precision measurements it is necessary to calibrate the magnification
factor by means of a suitable length standard.

4.3.1
Resolving power of microscopes

So far, we have looked at the microscope only from the geometrical optics
point of view and assumed that a point is imaged into an ideal point, again
and again. However, as a result of diffraction at the apertures of the lenses,
this is not possible, so the resolving power is limited by diffraction. A first
measure for the resolving power can be gained from the result for the diameter
of the Airy disc. We require that the separation Δxmin of the Airy discs of two
distinct objects shall be at least as large as their diameter, see Eq. (2.47):

Δxmin ≥ 1.22
fobjλ

D
.



4.3 Microscopes 155

The systematic approach is given
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Fig. 4.6 Resolving power and numerical aperture.
The right half shows the enhancement of the re-
solution with immersion oil. The resolution is
influenced by illumination, as well. Here, a con-
denser lens is applied, which illuminates a maxi-
mum solid angle (Köhler illumination).

by the numerical aperture NA (or
the Abbean sine condition – see
next section). It is defined as in
the case of the acceptance angle
of optical fibres (Eq. (1.9)) as the
sine of half of the aperture angle
(Fig. 4.6), i.e. of the extreme rays
that still contribute to the image:

NA = n sin α.

Thereby n specifies the index of
refraction in the object space. The
spatial resolution of a microscope
is usually defined by (Sect. 4.3.2)

Δxmin ≥ λ

NA
. (4.3)

For smaller magnifications, longer focal lengths and therefore smaller angles
occur. Then these two conditions are equivalent due to sin α � tan α �
D/2 fobj.

Since the sample is always very close to the focal plane, the NA is a prop-
erty of the objective used and is in general specified on standard components.
According to (4.3), the resolving power is enhanced by short wavelengths
(optical microscopes use blue or even ultraviolet light for high resolution)
and a large NA. For objectives with large magnification, i.e. with short fo-
cal lengths, NA values of about 0.7 are achieved in air. The best optical mi-
croscopes achieve resolutions of about 0.2 μm with blue illumination. Shorter
wavelengths and hence further improved resolution can be achieved by using
an alternative to ‘light’, such as electrons in an electron microscope.

In applications in biology and medicine investigating tissue etc. a cover slip
(typical thickness 0.08 — 0.17 mm) protects the sample (see Fig. 4.6). In order
to realize the theoretical values of resolution, when designing the objective,
the cover slip must be taken into account. Furthermore, total internal reflec-
tion can be a problem limiting the maximum transmission angle within the
cover glass to about 40◦. The available NA value can then be significantly
enhanced by means of immersion fluids with an index of refraction that is
adjusted to match that of the cover glass. Of course, the exact form of the ob-
jective is of importance, if one is to achieve the total theoretical resolution; but
the details are far beyond the scope of this book.
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4.3.2
Abbe theory of resolution

To determine the resolving power of a microscope even more accurately, we
follow the insight of E. Abbe and consider a periodic structure (a grating with
period Δx) that we observe with a microscope. Ernst Abbe (1840–1905), pro-
fessor of physics and mathematics at the University of Jena, Germany, and
close coworker of Carl Zeiss (1816–1888), provided crucial experimental and
theoretical contributions to the development of modern microscopy.

The simplified situation for the
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Fig. 4.7 Fourier image of a microscope,
after Ernst Abbe.

grating is illustrated in Fig. 4.7, and
the focal plane or Fourier plane of
the objective now plays a very cru-
cial role. There, bundles of paral-
lel rays are focused, and one ob-
serves the Fraunhofer diffraction im-
age of the object, which is simple
only for the chosen example of a one-
dimensional grating. However, the
following point is crucial. Within
the focal plane, the objective gener-
ates the Fourier transform of the com-
plex amplitude distribution in the ob-
ject plane, as we have already seen in
Sect. 2.5.3. A structure with a certain
size a can only be reconstructed if,
apart from the zero order, at least one
more diffraction order enters the ob-
jective and contributes to the image.

The Abbean sine condition can be straightforwardly taken from the diffrac-
tion properties of gratings (see Sect. 5.3.2, Eq. (5.7))

a ≥ λ/ sin α.

In the optical microscope, the Fourier spectrum of a diffracting or scattering
object is reconstructed by the eyepiece and eye or camera objective to yield a
magnified image. In principle, the reconstruction can be gained by a calcu-
lation or a numerical procedure. In this sense, the scattering experiments of
high-energy physics, where the far field of the diffraction of extremely short-
wave matter waves off very small diffracting objects is measured, are nothing
other than giant microscopes.
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Excursion: Optical lithography

From many points of view, optical lithography is the reverse of microscopy, because
lithography, which is nowadays one of the most powerful driving forces of the world
economy, is primarily concerned with the miniaturization of electronic circuits to the
smallest possible dimensions. The principle is introduced schematically in Fig. 4.8.
With a ‘wafer stepper’, a mask (‘reticule’), which contains the structure of the desired
circuit, is projected at reduced scale step by step onto cm2 wafers which have standard
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Fig. 4.8 Optical lithography. Principle of the wafer stepper and UV
illumination unit. The lens systems contain numerous components for
the correction of aberrations.

sizes of 12 inches (30 cm) and more. The wafer is coated with adequate film material
(‘resist’) which is photo chemically altered such that afterwards in eventually several
processing stages transistors and transmission lines can be produced. Manufactur-
ers of lithography objectives, which nowadays may consist of 60 and more individual
lenses, succeeded impressively in guiding the resolution of their wafer steppers di-
rectly along the resolution limit according to Eq. (4.3). At present miniaturization of
electronic circuits is limited by the wavelength in use, nowadays in general the wave-
lengths of the KrF∗ laser at 248 nm and the ArF∗ laser at 193 nm. Further progress
will entail enormous costs, because at these short wavelengths tremendous problems
arise in manufacturing and processing of suitable, i.e. transparent and homogeneous,
optical materials. The evolution of the state of art in micro-lithography is regularly
published [38].

4.3.3
Depth of focus and confocal microscopy

Every user of a microscope knows that he or she has to adjust the objective–
sample distance to render the image ‘sharp’, and that the range of adjustments
for which sharp images are generated decreases with increasing magnifica-
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tion. The longitudinal distance along the optical axis of the microscope be-
tween the two points where the sample can still be seen sharply is called the
‘depth of focus’. A quantitative measure of the depth of focus may be ob-
tained, for example, from the geometrical considerations in Fig. 4.9.

The movement of an object pointint. image

g b

x

Fig. 4.9 Geometry of the depth of focus.

by δg out of the ‘true’ object
plane causes a spot with diam-
eter Δx in the intermediate im-
age plane. From Eq. (4.2) we can
derive that for δg/g � 1 the
image distance moves approxi-
mately by δb/b ∼ −δg/g. Ge-

ometrical considerations then yield directly the result Δx = |δb D/2b| =
|δg D/2g| � |δg D/2 f |. If we require that this spot should stay smaller than
the diffraction disc of the object point, then we find for a maximum tolerable
movement Δz:

Δz ≤ Δxmin
f

D/2
∼ λ f 2

(D/2)2 ∼ λ

NA2 .

Then, for larger magnifications, the depth of focus becomes very small, as
well; it reaches the order of a wavelength. The small depth of focus for the
reverse process of microscopy, reduction in optical projection lithography,
causes high demands on the mechanical tolerances of wafer steppers in op-
tical lithography. We can draw an analogy to Gaussian ray optics (see p. 50):
the length of the Rayleigh zone of the focused coherent light beam has the
same ratio with the diameter of the focal spot as the depth of focus has!
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Fig. 4.10 Principle of confocal microscopy. The dashed
line shows that radiation from a deeper plane is suppres-
sed by the aperture.
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Confocal microscopy uses the short depth of focus of an image with short
focal length and large numerical aperture to gain – beyond ‘planar’ informa-
tion – three-dimensional information of the device under test. In Fig. 4.10 the
basic principle of confocal microscopy is shown: a coherent light beam creates
a narrow spot with little depth of focus within the probe. Only the light in-
tensity reflected, resp. scattered, out of the spot is focused onto an aperture.
Structures in other planes are projected into other planes and therefore radia-
tion originating from those planes is largely suppressed by the aperture.

The intensity transmitted through the aperture is continuously monitored
by a photodetector and recorded by a computer which recovers an image from
these data. Confocal microscopy is an example of scanning probe microscopy,
since data from the sample are taken point by point and later reconstructed.
In Fig. 4.10 this is achieved by a movable beam steerer (‘scanner’). Confocal
microscopy achieves resolutions of about 1 μm; the advantage is access to the
third dimension, which is, of course, only possible in transparent samples.

4.3.4
Scanning near-field optical microscopy (SNOM)

The limited resolution of a microscope is a ‘result’ of Maxwell’s equations.
In free space the curvature of the electric field cannot occur on a scale much
shorter than a wavelength. An ideal point light source is imaged by an optical
imaging system into a small but finite spot at best, and this limits the resolu-
tion by diffraction to a value of about half a wavelength λ/2 of the light in
use.

In the near field of a radiating system, this limit can be exceeded, since in
the presence of polarizable material the propagation of electromagnetic waves
is no longer restricted by the diffraction limit. A typical arrangement is in-
troduced in Fig. 4.11. An optical fibre is pulled by a pipette pulling device to
yield a tip, the radius of curvature of which is less than 100 nm. This receives a
cladding, e.g. out of relatively low-loss aluminium, which leaves only a small
aperture, which serves as radiation source or detector of the local light field
(or both simultaneously).

The end of the fibre, which is made to oscillate by a piezo-drive, experi-
ences an attractive van der Waals force at a typical distance of micrometres
and a damping force that may be used to adjust the distance as in atomic force
microscopy (AFM) by some feedback control circuit. The system therefore
gives information about the surface topography of the sample, too. The opti-
cal information is recorded by detecting at the end of the fibre the light picked
up or reflected at the tip. With smaller and smaller apertures, the spatial reso-
lution increases, and can be pushed significantly below the wavelength in use
(typically λ/20); note that it depends essentially on the diameter of the aper-
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Fig. 4.11 Scanning near-field optical microscope. An aperture at the
end of an optical fibre is used as a source or detector of radiation fields
with a resolution of less than optical wavelengths.

ture and not on the wavelength. On the other hand, the detection sensitivity
decreases more and more, because the sensitivity decreases with a high power
of the diameter of the aperture, and even 1 mW of light power damages the
apertures.

After the celebrated success of scanning microscopy, which was initiated by
tunnelling microscopy and force microscopy in the 1980s, nowadays scanning
near-field optical microscopy (SNOM) has been established as yet another new
method of scanning microscopy.

4.4
Telescopes

Binoculars and telescopes are used to make terrestrial or astronomical objects
more visible. In general, they are composed of two lenses or mirrors, the focal
points of which coincide exactly, i.e. their separation is d = f1 + f2. In the
Galilean telescope in Fig. 4.13, a concave (diverging) lens with negative focal
length is used. Under these circumstances, the image matrix of the system
reads as follows according to Eq. (1.23):

Mtel =

(
− f2/ f1 d

0 − f1/ f2

)
. (4.4)
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Fig. 4.12 Left: Reflector telescope of the Cassegrain type, schematic.
Right: Hubble Space Telescope, in operation since 1990.

The total refractive power of this system vanishes, Dtel = 0. Such systems are
called afocal [140]; their action is based on angle magnification only. The ob-
jects are located effectively always at very large distances. From there, parallel
bundles of rays originate, which are transformed into parallel bundles of rays
at other, but larger, angles, α → αM in Fig. 4.13.
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Fig. 4.13 Angle magnification in a Galilean telescope.

4.4.1
Theoretical resolving power of a telescope

Before we determine the magnification, we want to consider the kinds of ob-
jects we might be able to recognize. Therefore, we have to recall the resolv-
ing power of a convex lens, which we have determined already in Eq. (2.44).
There, we have already seen that at a fixed wavelength the aperture of any
imaging optics determines the smallest angle at which two point-like objects
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can still be distinguished. We reformulate this condition for telescopes:

minimum structural dimension � wavelength × distance
aperture

.

The consequences for (1) the human eye (pupil 1 mm), (2) a telescope with
10 cm mirror and (3) the 2.4 m mirror of the Hubble Space Telescope (HST)
have been illustrated in Fig. 4.14. The shapes of objects can be recognized
above the limiting lines 1–3, whereas below those lines the objects cannot be
distinguished from points.

distance
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Fig. 4.14 Pattern recognition of objects far away, with the eye (1), a
telescope with 10 cm mirror (2) and the Hubble Space Telescope (3)
[1 light year = 9.5 trillion km].

4.4.2
Magnification of a telescope

In Fig. 4.13 we introduced the concept invented by Galileo Galilei (1564–1642),
which is composed of a convex lens with focal length fobj and a concave eye-
piece with a focal length focu. Geometrical considerations, such as the calcula-
tion of the system matrix Mtel (4.4), show easily that the magnification of the
angle by telescopes is

magnification M =
αM

α
= − fobj

focu
. (4.5)

The negative sign of M means that the image is inverted; therefore, the
Galilean telescope of Fig. 4.13 offers a non-inverted image due to the con-
cave lens with negative focu. Telescopes are large-volume devices, because
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large apertures and lengths of focus are advantageous. The minimum device
length is

�telescope = fobj + focu.

4.4.3
Image distortions of telescopes

Like all optical instruments, telescopes are affected by several aberrations
(see next section). Here, we discuss two selected problems; furthermore, the
Schmidt mirror which sets an example for the correction of spherical aberra-
tions is described on p. 170.

4.4.3.1 Lens telescopes and reflector telescopes

Chromatic aberrations, which we will discuss in detail in Sect. 4.5.3, were
identified very early as an obstacle to improving lens telescopes technically.
Isaac Newton (1642–1727) was one of the first (1688) to discover that refrac-
tive lens optics, suffering from strong dispersion, should be substituted by
the reflective optics of reflector telescopes, which nowadays has become the
standard device layout.

In Fig. 4.12 the Cassegrain concept is shown, which consists of a primary
concave mirror and a secondary convex mirror. If the primary mirror has
parabolic shape, then the secondary must have hyperbolic shape; however,
other types (with other types of aberrations) are possible, as well. One of the
newest instruments of this type is the Hubble Space Telescope, (HST) which
since 1990 has delivered more and more new and fascinating pictures of stars
and galaxies far away, not influenced by atmospheric fluctuations [85].

In the original HST con-

Fig. 4.15 Point-spread function of the Hubble Space Tele-
scope before (left) and after (right) installation of the
COSTAR correction optics. After [40].

figuration, a mistake in
the calculation of the mir-
ror properties resulted in
aberrations, which inhib-
ited realization of the total
theoretically available res-
olution of the HST! How-
ever, there was real de-
light after the optics of the
telescope were corrected
by an additional pair of
mirrors – after, so to speak, fitting ‘spectacles’ to the HST.

To evaluate the quality of an imaging system, often the so-called point-spread
function is used, by means of which the image of a point according to wave the-
ory is described, taking the exact form of the imaging system into account. In
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Fig. 4.15 the result for the calculation for the HST before and after the installa-
tion of the correction optics is shown.

4.4.3.2 Atmospheric turbulence

The HST, with a mirror diameter of 2.4 m, does not have an extraordinary
diameter; with 10 m the telescope at the Keck Observatory in Hawaii offers
much more than that. However, the resolution of the HST is much superior
to that of terrestrial telescopes, because the resolving power of the latter is
limited to effectively 10 cm by turbulent motion of the atmosphere (like the
optical telescope in Fig. 4.14)! However, owing to their collecting power, giant
terrestrial telescopes offer the possibility to study faint objects with very low
light power in more detail.

For the installation of huge mirror telescopes, one looks for environments
with very favourable atmospheric conditions, e.g. in the Andes of Chile or on
the Hawaiian Islands. The 10 m telescope at the Keck Observatory is one of
the most modern facilities (construction year 1992). To use the total theoretical
efficiency of a mirror, the geometric shape – a sphere, hyperboloid or whatever
– must be kept to within subwavelength precision. However, with increasing
size, this requirement is more and more difficult to fulfil, because these heavy
mirrors are even distorted by the influence of gravity, thus causing aberra-
tions. Therefore, the Keck mirror was manufactured with 36 segments, the
positions and shapes of which can be corrected by hydraulic positioning ele-
ments in order to achieve optimum imaging results.

Fig. 4.16 Left: Schematic of the new telescope at the Keck Observa-
tory. Right: Artificial or reference stars for the application of adaptive
optics.

Actively tuned optical components are used more and more and are sum-
marized under the term ‘adaptive optics’. With newer developments it is pos-
sible to compensate for atmospheric turbulence that changes on a time scale
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of ca. 100 ms. Typically, for that purpose the wavefront must be analysed and
used to control a deformable mirror within a feedback loop. The wavefront in
the upper atmosphere may be assessed, observing atmospherically, by anal-
ysis of the light from a very bright reference star or by the positioning of an
‘artificial star’ (Fig. 4.16) [63], such as a laser excited source, for example, in the
upper atmosphere. For this purpose one uses a dye laser tuned to the yellow
D2 line of sodium at 589 nm. At about 100 km, the laser beam hits a layer of
sodium atoms created by micrometeorites, which vaporize as they enter the
upper atmosphere. Resonance fluorescence of the sodium atom then acts as a
glowing guide star wherever an astronomer needs it.

4.5
Lenses: designs and aberrations

The spherical biconvex lens is, so to speak, the cardinal case of a convex lens
and is the lens usually illustrated in figures. All spherical lenses cause aber-
rations, however, and the application of certain designs depends completely
on the area of application. As a rule of thumb, we recall the paraxial approx-
imation: the linearized form of Snell’s law (sin θ → θ, Eq. (1.13)) is the better
fulfilled, the smaller are the angles of refraction! Therefore, it is convenient to
distribute the refraction of a beam of rays, passing through a lens, as evenly
as possible to the two refracting surfaces. At selected points aberrations can
be compensated by adequate choice of the surfaces. In a multi-lens system
(doublet, triplet, . . . ), several curved surfaces and thus degrees of freedom are
available. However, the perfect lens system, correcting for several types of
aberrations at the same time (see below), cannot be realized in this way, and
thus all multi-lens systems (‘objectives’) are in general designed for specific
applications. Before introducing the technical discussion of aberrations, we
want to collect some intuitive arguments for dealing with one or two lenses.
More complex systems must be analysed numerically.

��	 ��	 ��	 ��	

Fig. 4.17 Important lens types: (a) planar convex lens; (b) biconvex
lens; (c) convergent meniscus lens; (d) planar concave lens.
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4.5.1
Types of lenses

4.5.1.1 Planar convex lenses

��22
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Fig. 4.18 Spot diagrams of a planar convex lens for two different ori-
entations (after commercial software for the analysis of aberrations).
The specifications of the distances refer to the distances to the nomi-
nal focal point (here 66 mm).

This type of lens only has one curved surface and therefore may be manu-
factured quite cheaply. For typical indices of refraction of technical glasses of
n = 1.5, one finds according to Eq. (1.18) f = −1/D � 2R. To focus a light ray,
the planar convex lens may be used in two different orientations. Figure 4.18
indicates how spherical aberrations primarily affect the ability to focus. The
so-called ‘spot diagrams’ show the evolution of the size of a spot along the
optical axis. Obviously, it is convenient to distribute the refractive power to
several surfaces – indeed, in the orientation of the lower part in Fig. 4.18, re-
fraction occurs only on one side of the lens, resulting in reduced quality focus-
ing.

4.5.1.2 Biconvex lenses and doublets

We may imagine a biconvex lens as composed of two planar convex lenses
back to back, as indicated in Fig. 4.19. Therefore, the refractive powers add
and we find for common glasses again according to Eq. (1.18) with n ∼ 1.5:

f � R.
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For 1 : 1 imaging, the biconvex lens singlets

Fig. 4.19 Biconvex lens and planar
convex doublet.

have minimum spherical aberration, which is
important, for example, for collimators. How-
ever, the refractive powers of planar convex
lenses add in exactly the same way if they are
mounted with their spherical surfaces oppos-
ing each other. Thereby, in a 1 : 1 image the re-
fractive power is distributed to four surfaces
and one achieves further reduction of aberra-
tions.

4.5.1.3 Meniscus lenses

Meniscus lenses may minimize as singlets the aberrations for a given distance
between object and image. Indeed, they are first of all part of multi-lens ob-
jectives and serve, for example, to change the length of focus of other lenses,
without introducing additional aberrations or coma. Such components are
called aplanatic [116].

4.5.2
Aberrations: Seidel aberrations

Here, we briefly sketch the funda-
�
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Fig. 4.20 Notation of ray parameters.

mental formal method, going back to
P. Seidel (1821–1896), to classify aber-
rations. Since it is now necessary to
deal with non-axial contributions as
well, the complex numbers r0 = x +
iy are convenient for the discussion of
the traces of light rays.

We use the notation from Fig. 4.20,
following the discussion of matrix
optics from Sect. 1.9 and using complex numbers for convenience. The re-
lation between the ray originating at r0 = x + iy propagating with slope r′0
and its image point at r(z) is described by:

r(z) = g(z; x, x′, y, y′)

= f (z; r0, r0
∗, r′0, r′0

∗).

One may use the Laurent expansion, known from the theory of complex num-
bers [6],

r(z) = ∑
αβγδ≥0

Cαβγδ r0
αr0

∗βr′0
γr′0

∗δ. (4.6)
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A rotation by the angle Θ in the plane of the object, r0 → r0 eiΘ, must cause a
rotation by the same angle in the image plane,

r(z) eiΘ = ∑
αβγδ

Cαβγδ r0
αr0

∗βr′0
γr′0

∗δ eiΘ(α−β+δ−γ).

From that one finds directly the first condition

(i) α − β + γ − δ = 1,
(ii) α + β + γ + δ = 1, 3, 5, . . . ,

(4.7)

while the second follows from the special case Θ = π, resp. r(z) → −r(z),
from direct reflection at the optical axis. It determines that only odd orders 1,
3, . . . may occur.

4.5.2.1 Ray propagation in first order

In first order (α + β + γ + δ = 1 in Eq. (4.7)), one finds β = δ = 0 and

r(z) = C1000r0 + C0010r′0.

This form corresponds exactly to the linear approximation, which we already
used as the basis of matrix optics and discussed in detail in Sect. 1.9.

4.5.2.2 Ray propagation in third order

In third order (α + β + γ + δ = 3), in total six contributions arise, the prefactors
of which are known as ‘Seidel coefficients’. We find the conditions α + γ = 2
and β + δ = 1, which can be fulfilled with six different coefficients Cαβγδ and
are itemized in Tab. 4.2.

Tab. 4.2 Seidel coefficients of aberrations.

Coefficient α β γ δ ∝ Aberration
C0021 0 0 2 1 r′3 spherical aberration
C1011 1 0 1 1 r′2r coma I
C0120 0 1 2 0 r′2r coma II
C1110 1 1 1 0 r′r2 astigmatism
C2001 2 0 0 1 r′r2 curvature of the image field
C2100 2 1 0 0 r3 distortion

From the table we will now discuss several selected aberrations and the
corrections of those in more detail. The coefficients are properties of the lens
or the lens system, and in the past the theoretical determination of those has
been possible only for certain applications due to the enormous numerical cal-
culation expenditure. Nowadays, these tasks are done by suitable computer
software.
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4.5.2.3 Aperture aberration or spherical aberration

We have already introduced the effect of spherical aberration in Fig. 4.18 with
the example of a planar convex lens with spot diagrams. It depends only on
the aperture angle (r′0 in Eq. (4.6)), may be reduced by limiting the aperture,
and is therefore called ‘aperture aberration’. However, on doing this the imag-
ing system very quickly loses light intensity. Therefore, for practical applica-
tions further corrections are necessary, which can be achieved by choice of a
combination of convenient radii of curvature (‘aplanatic systems’) or by the
use of a lens system, for example. In particular, spherical aberration is often
corrected at the same time as chromatic aberration (see Sect. 4.5.3).

Example: Aperture aberration of a thin lens
Since spherical aberration is determined by the aperture angle only, we con-
sider a point on the axis, r0 = 0, at a distance g from the lens (Fig. 4.21). As we
have already discussed in more detail on p. 23, the image point must also lie
at r(z) = 0 and must be independent of r′0. From the combination of the linear
approximation with the Seidel approximation, one finds

r(z) = 0 = gz
(

1
g

+
1
z
− 1

f

)
r′0 + C0021r′03.

Within the paraxial approxima-
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Fig. 4.21 Spherical aberrations.

tion Eq. (4.2) is fulfilled exactly
for z = b. But here the inter-
cept with the optical axis de-
pends on r′0. In linear approx-
imation for small shifts it holds
that z = b + δz(r′) and r(z) = 0
for r′0 is valid for

δz =
b
g

C0021r′03.

Here, we have determined the so-called longitudinal spherical aberration. In
a similar way the transverse spherical aberration (δr(r′) in Fig. 4.21) may be
calculated.

Example: Schmidt mirror
An interesting variant of the commonly used Cassegrain concept is the so-
called Schmidt telescope, which is additionally equipped with a compensator
plate made of glass. It corrects not only the aperture aberration, but also chro-
matic aberrations, coma and astigmatism. Thereby large image fields up to 6◦
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are achieved that are very suitable for a celestial survey campaign. Standard
telescopes do not achieve more than about 1.5◦.

Schmidt’s idea first takes into ac-
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Fig. 4.22 Cassegrain–Schmidt telescope.

count that a parabolic mirror may gen-
erate perfect images very close to the
axis, but on the other hand causes
strong comatic distortions even at small
distances, while a spherical mirror cre-
ates a much more regular image of a cir-
cular observation plane. In the vicinity
of the axis the location of the spherical
mirror may be described according to
the expansion

z =
r2

4 f
+

r4

64 f 3 + · · · ,

where the first term corresponds ex-
actly to the paraboloidal form. The
compensator plate with refractive index n compensates exactly for the differ-
ence in optical path length between spherical and paraboloidal surfaces, if the
variation of the thickness is chosen to be

Δ(r) =
r4

(n − 1)32 f 3

(the factor of 2 occurs due to reflection). This form – the solid line variant in
Fig. 4.22 – increases towards the aperture of the telescope, whereas the dashed
variant in Fig. 4.22 minimizes chromatic aberrations as well [25].

When the compensator plate is mounted within the plane of the centre of
curvature of the primary mirror (radius R in Fig. 4.22), then the correction is
valid also for larger angles of incidence within good approximation.

4.5.2.4 Astigmatism

If the object points do not lie on the optical axis, then the axial symmetry is
violated and we have to discuss the ‘sagittal’ and the ‘tangential’ planes of
beam propagation separately.1 The effective length of focus of a lens depends

1) Astigmatism of an optical lens also occurs for a component that is
perfectly rotationally symmetric. It should be distinguished from
astigmatism of the eye, which is caused by cylindrical asymmetry of
the cornea and creates image points at different distances even for
axial points.
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on the angle of incidence, as can be recognized in Fig. 4.23, where the light rays
of the sagittal and tangential planes are concentrated into two different focal
lines. Between these two lines there exists a plane where one may identify an
image point of ‘least confusion’ as a compromise.
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Fig. 4.23 Astigmatism of a lens. Within the sagittal (dotted) and tan-
gential planes (shaded), the image points lie at different distances.

Example: Astigmatism of tilted planar plates
When light passes through a planar plate at

Fig. 4.24 Astigmatism of a tilted
planar plate.

an oblique angle, this leads to different ef-
fective focal lengths and thereby to astigma-
tism. We have illustrated this qualitatively
in Fig. 4.24. In turn, a planar plate may
be used to compensate for the astigmatism
of other components as well. For example,
light beams emanating from diode lasers in
edge-emitting configuration do not have ax-
ial symmetry in general (see Chap. 9). They
exhibit astigmatism which can be corrected
by a window at a suitable angle.

In laser resonators, optical components
are often installed at the Brewster angle. If curved concave mirrors are used,
then the astigmatism of those (see p. 18) may be used for compensation again
by suitable choice of the angle [106].
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4.5.2.5 Coma and distortion

Among all image aberrations, the one called ‘coma’ (from the Greek word
for long hair) or asymmetry aberration is the most annoying. Coma causes a
comet-like tail (that is where the name comes from) for non-axial object points,
which we have illustrated qualitatively in Fig. 4.25.

According to Tab. 4.2 the image field curvature has a similar form to astig-
matism, but it is axially symmetric. Distortion has two variants, pin-cushion
and barrel distortion, which are also indicated in Fig. 4.25. This contribution
depends on the radius only.

Fig. 4.25 Coma (left), barrel distortion (top right) and pin-cushion dis-
tortion (bottom right).

4.5.3
Chromatic aberration

Chromatic aberration is caused by dispersion of optical materials, since the in-
dex of refraction of the glasses used in lenses depends on the wavelength. The
refractive power of a convex lens is in general higher for blue light than for
red light. We discuss the effect of dispersion with the lens maker’s equation
(1.18) for a lens with refractive index n(λ) and radii of curvature R and R′:

1
f

=
1
g

+
1
b

= −(n − 1)
(

1
R′ −

1
R

)
.

The object distance is fixed, of course, but the image distance changes with the
index of refraction,

Δ
1
b

= −Δn
(

1
R′ −

1
R

)
=

Δn
n − 1

1
f

.

We know (see p. 25) that the refractive powers D of two directly neighbour-
ing lenses add, and due to D = 1/ f it holds that 1/ ftot = 1/ f1 + 1/ f2. If
the focal length of the combined system is not to change with wavelength any
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Fig. 4.26 Chromatic aberration and correction with so-called achro-
mats.

more, then

Δ
1

ftot
=

Δn1

n1 − 1
1
f1

+
Δn2

n2 − 1
1
f2

= 0,

and we find the condition, to correct for chromatic aberration:

f2
Δn1

n1 − 1
= − f1

Δn2

n2 − 1
. (4.8)

To treat this situation more precisely, we have to use the linear expansion of
the refractive index,

Δni =
dni

dλ
Δλ +

1
2

d2ni

dλ2 (Δλ)2 + · · · .

However, because certain standard wavelengths for Δλ have been agreed (see
Tab. 1.1), the above expression is sufficient. Since dispersion has the same sign
for all kinds of known glasses, a lens without chromatic aberrations, which
is called achromatic, must be composed of a convex and a concave lens (see
Fig. 4.26). Lenses also play an important role in particle optics; there, it is
much more difficult than in light optics to construct achromatic systems, since
divergent lenses cannot be constructed so easily.

Incidentally, the radii of curvature of the two lenses are not yet determined
by the condition (4.8) for correction of chromatic aberration. This degree of
freedom is often used to correct not only for chromatic aberration, but simul-
taneously for spherical aberration of a lens. Therefore, with an achromat one
often gets a lens that is corrected spherically, as well.
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Problems

4.1. Graphical image construction Construct graphically the image of the ob-
ject O which is generated by the imaging system (a) (e.g. F1,2 = 3 cm, separa-
tion of the lenses d = 8 cm, distance of the object from the first focal point x =
2 cm) and (b) (e.g. F1 = −2 cm, F2 = 2 cm, x = 2 cm, d = 1.5 cm).
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Fig. 4.27 Lens systems for Prob. 4.1.

4.2. Imaging with lenses Show that the separation of an object and its image
generated by a convex lens is at least four times the focal length. How large is
the image of the Sun generated by a lens with focal lens f ?

4.3. Bessel’s method for the determination of focal lengths The focal length
of a lens can be determined with the following method. The lens is used to
image some object, e.g. a narrow bright slit, onto a screen. The separation
c from the object G to the image B is measured. In the next step the lens is
moved to the second imaging position, and the distance a between the old
and the new positions of the lens is measured. Show that the focal length of
the lens is given by f = (a2 − c2)/4a. What is the advantage of the method?

4.4. Projection A projection device generates on a screen a magnified image
of a small object such as a slide.

For the perception of the ob-
&���

-A

&�

!�

8

Fig. 4.28 Schematic diagram of projection device,
with light source. R: reflector; F: heated filament; CL:
condenser lens; S: slide; PO: projection objective.

server it is essential to uniformly
illuminate the object. Explain
the illumination scheme from the
drawing, i.e. the function of the
filament F, reflector R, conden-
sor lens CL, and projection objec-
tive PO. What is the requirement
for the quality of the lenses (e.g.
chromatic and other aberrations etc.)?

4.5. The dentist’s mirror How do you construct a dentist’s mirror such that
for a working distance of 15 mm an upright image with magnification 2 is
obtained?

4.6. The near-sighted have advantages Why is it possible for near-sighted
people to see small objects better? How much can this effect account for?
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4.7. Limits of the magnification glass Why is it not possible to obtain with a
magnification glass more than a 20 to 30-fold enlargement?

4.8. Cover slip and microscope imaging Common microscope objectives are
designed to achieve optimum resolution if the sample under observation is
covered with a slip of standard thickness 0.17 mm. What is the effect on the
image if the cover slip is missing, in particular with large numerical aperture?

4.9. Contrast generation and microscope imaging The information content
of an image is in the first place an effect of contrast, e.g. the distribution of
grey values (or colour values). The image contrast in our eye is a result of lo-
cally varying light absorption of an object, and the human eye requires – on a
bright background – intensity variations of about 10–20%. Find out about the
following two methods for contrast enhancement. (a) The dark field method
renders the background dark by suitable illumination of the sample. (b) With
the phase contrast method bacteria and cell cultures can be made visible which
absorb very little light by making use of small refractive index variations be-
tween the cells and the aqueous environment.

As a model for a transparent ob-

�
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Fig. 4.29 Model object for the dark field and
the phase contrast methods.

ject consider a thin glass plate with a
narrow stripe which causes an addi-
tional phase shift of eiφ for light rays
transmitted. Following Abbe we con-
sider image formation in the micro-
scope in analogy with Fourier optics,
i.e. we begin by determining the in-
tensity distribution in the focal plane through Fourier transformation of the
diffracting object. The image is then retrieved by inverse transformation of
this distribution. The final image can be manipulated by introducing spe-
cial filters into the focal plane which modify the intensity and the phase
distribution. Show that the diffracted field in the focal plane has the form
E (κ) = δ(κ) + d(eiφ − 1) sin(κd/2)(κd/2). For the dark field method, the ax-
ial rays (the bright field) are removed by a stop. For the phase contrast method
they are delayed with respect to the remaining diffracted field by π/2. Study
the effect of these operations onto the image.

4.10. Stars with lobes Why do we frequently see stars with four-fold lobes on
astronomical images obtained from reflector telescopes?

4.11. Tele lens and zoom lens With telescopes we can observe distant objects.
In order to obtain large magnification a long focal length of the objective is
essential (Eq. (4.5)). For a camera, however, telescopes are impracticable be-
cause of their length. Tele lenses are constructed in such a way that a long
focal length is obtained with a comparatively short overall length. Further-
more, the image is formed in the vicinity of the lenses. Begin by confirming
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that a large image of a distant object on a film (today more importantly on the
CCD chip of a digital camera) requires a long focal length lens, too. A tele
lens is composed from a convex lens (focal length fS) and a concave lens (fo-
cal length − fZ). Show that for d > fS − fZ the lens system is equivalent to a
single convex lens. Identify the range of focal lengths that can be controlled
by varying the separation of the lenses. Sketch the positions at which the two
lenses have to be positioned with respect to a fixed film position for different
distant object positions.

4.12. Tricolore Our eye is apparently well corrected for chromatic aberrations.
When observing a red area and a blue surface the accommodation muscles
must increase the curvature of the eye lens more strongly for the red light
which is refracted less efficiently than blue light. What is the origin of the
saying that, as painters claim, red approaches us more aggressively while blue
seems to drag us into the downs? When one observes coloured stained glass
windows in churches the different colours appear to be located in different
planes. In the French national flag, the Tricolore, the red stripe is significantly
wider (37% of the total height) than the white (33%) and the blue one (30%).
Why?
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5
Coherence and interferometry

The principle of superposition from Sect. 2.1.6 delivers all the requirements
needed to deal with the interference of wave fields. So one could treat inter-
ferometry and coherence just as part of wave optics, or as an implementation
of the principle of superposition. But interference in interferometry is criti-
cally determined by the phase relations of the partial waves. Therefore, we
will begin by considering the somewhat unwieldy concept of coherence. We
introduce quantitative measures for the role of phases, which in the real world
are always subject to fluctuations.

Because of this enormous significance, we will devote this chapter to these
aspects of wave optics. Nearly every field of physics dealing with wave and
especially interference phenomena has taken up the concept of coherence, like
e.g. quantum mechanics, which calls the interference of two states ‘coherence’.
With the help of quantum mechanics, interference experiments are described
and interpreted with matter waves.

Tab. 5.1 Basic interferometer types.

Coherence type Two-beam interferometer Multiple-beam interferometer

Transverse Young’s double slit Optical grating

Longitudinal Michelson interferometer Fabry–Perot interferometer

The wealth of literature dealing with interferometry is not easily compre-
hensible, not least due to its significance, e.g. for the methods of precision
length measurement. In this book, we are focusing on the types of interferom-
eters collected in Tab. 5.1 and underlying all variants.

5.1
Young’s double slit

The double-slit experiment first carried out by Thomas Young (1773–1829),
an early advocate of the wave theory of light, is certainly among the most
famous experiments of physics because it is one of the simplest arrangements
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to achieve interference. The concept is emulated in numerous variants in order
to prove the wave properties of different phenomena, e.g. of matter waves of
electron beams [131] or atomic beams [32], which are discussed later in a short
digression (see p. 184).

The fundamental effect of interference for light emanating from a double-
slit arrangement instead of a single slit is shown in Fig. 5.1. The conditions
for and properties of this interference phenomenon are discussed in detail in
Sect. 5.3.

Fig. 5.1 Young’s double-slit experiment. On the right is shown the
interference pattern from a double slit. On the left is shown the pattern
of a single slit (one slit blocked) for comparison. A logarithmic grey
scale has been chosen to make the interference patterns visible.

5.2
Coherence and correlation

The concept of ‘coherence’ means the ‘capability of interference’ of wave
fields. We shall see how we can also quantitatively describe it by ‘coherence
length’ and ‘coherence time’. These terms come from optical wave theory and
state the distances or periods of time over which a fixed phase relation exists
between (at least) two partial waves, so that within this interval the principle
of superposition can be applied without any trouble.

When one calculates the distribution of intensity from the superposition of
two coherent partial waves E1,2(r, t), first the amplitudes have to be added and
then the square of the total field has to be taken:

Icoh(r, t) =
cε0

2
|E1(r, t) + E2(r, t)|2

= I1(r, t) + I2(r, t) + cε0 Re{E1(r, t)E∗
2(r, t)}.

(5.1)

In the incoherent case, however, the intensities of the partial waves are added
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instead,

Iinc(r, t) =
cε0

2
[ |E1(r, t)|2 + |E2(r, t)|2 ] = I1(r, t) + I2(r, t),

We see immediately that the difference is determined by the superposition
term.

This quantity Icoh can only be observed if there is a fixed phase correla-
tion between E1 and E2 at least during the time of the measurement, because
every real detector carries out an average over a finite time and space inter-
val. The times of fluctuation depend on the nature of the light source. For
example thermal light sources exhibit fluctuations on the scale of pico- and
femtoseconds, which is much faster than detectors with response times at the
nanosecond scale.

5.2.1
Correlation functions

Quantitatively the relative time evolution of the phase of superposed fields
can be understood by the concept of correlation. We define the general complex
correlation function, also known as the coherence function, as

Γ12(r1, r2, t, τ) =
cε0

2
〈E1(r1, t + τ)E∗

2(r2, t)〉

=
1

TD

∫ t+TD/2

t−TD/2

cε0

2
E1(r1, t′ + τ)E∗

2(r2, t′) dt′,

which by the average (brackets 〈 〉) accounts for the finite integration time TD
of the detector. It is obvious that the interference term in Eq. (5.1) is a special
case of this function. More exactly, this is the first-order correlation function.
Fully developed theories of coherence make extensive use of correlation func-
tions of higher orders, too. In the second order, for example, there are four
field amplitudes related to each other [122]; see Sect. 12.6.1.

In interferometry we will consider correlations that do not change with
time, so that after averaging only the dependence of the delay is left. Ad-
ditionally, we will generally determine the intensity of the superposition of
waves, i.e. we will consider Γ12 at only one point r = r1 = r2, so that the
simplified form

Γ12(r, τ) =
cε0

2
〈E1(r, t + τ)E∗

2(r, t)〉

= lim
T→∞

1
T

∫ T

0

cε0

2
E1(r, t + τ)E∗

2(r, t) dt
(5.2)

is sufficient. In the case of very large delay times τ, we expect in general the
loss of phase relations between E1 and E2. The product E1(r, t + τ)E2(r, t)
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statistically fluctuates around 0 and vanishes on average:

Γ12(r, τ→∞) → 0.

To make the connection with Eq. (5.1), we have to take into consideration
that, in a typical interferometry experiment, the partial waves are created with
the help of beam splitters from the same light source. The delay τ then reflects
the different optical path lengths of the partial waves to the point of super-
position. The function Γ12(r, τ) describes their capability of forming interfer-
ence stripes.

It is very convenient to define the normalized correlation function g12(r, τ)
which is a quantitative measure for the interference contrast,

g12(r, τ) =
(cε0/2)〈E1(r, τ)E∗

2(r, 0)〉√〈I1(r)〉〈I2(r)〉 . (5.3)

The function g12 is complex and takes values in the range

0 ≤ |g12(r, τ)| ≤ 1.

An important special case of Eq. (5.3) is the autocorrelation function,

g11(r, τ) =
〈E1(r, τ)E∗

1(r, 0)〉
〈|E1(r)|2〉 , (5.4)

which in this case relates the amplitude of an electromagnetic field to itself
with delay τ. We shall see its important role in the quantitative analysis of
coherence features.

Now we can summarize the calculation of intensity for coherent and inco-
herent superposition by

〈I(r)〉 = 〈I1(r)〉 + 〈I2(r)〉 + 2
√
〈I1(r)〉〈I2(r)〉Re{g12(r, τ)}.

In interferometry, the different paths of light beams coming from the same
source generally cause a delay τ = (s1 − s2)/c. In order also to define a quan-
titative measure of coherence, we introduce the visibility

V =
Imax − Imin

Imax + Imin
, (5.5)

with Imax and Imin describing the maxima and minima of an interference pat-
tern, respectively. Obviously, V(τ) also takes values between 0 and 1. In an
interferometric experiment, the degree of coherence can be measured by de-
termination of the visibility.

The capability of interference could not have been taken for granted and
has played an important part in the development of wave theory. The rea-
son for the great significance of interferometry for wave theory is to be found
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in the fact that the physical features of a wave, i.e. phase and amplitude, can
only be measured by superposition with another reference wave, i.e. by an
interferometric experiment. Whether interference can be observed is crucially
dependent on the coherence properties of the waves.

5.2.2
Beam splitter

The central element of an interferometric arrangement is the beam splitter.
In the past, only by separation of an optical wave from a single light source1

could one create two separated partial waves that were able to interfere. One

Fig. 5.2 Wavefront (left) and amplitude (right) beam splitters. Beam
splitters have a second entrance, which is not always as visible as for
the right-hand type.

can differentiate between two different types of beam splitters, as shown in
Fig. 5.2. The ‘wavefront splitter’ is based on the variations of the double slit
as the classic form. The ‘amplitude splitter’ is usually realized with a partially
reflecting glass substrate. In the case of advanced applications, the existence
of a second entrance gains importance. The second entrance can easily be seen
in the right-hand interferometer in Fig. 5.2.

5.3
The double-slit experiment

Let us now consider in detail the incidence of a planar wave on a double slit
(Figs. 5.1 and 5.3). Both slits act as new virtual and phase-synchronous (‘coher-
ent’) light sources. To understand the interference pattern on the screen, we
have to determine the difference between the two optical paths ‘1’ and ‘2’. If
the distance z between the double slit and the screen is very much larger than
the distance d between the slits themselves and the extent x of the interference
pattern, i.e. d, x � z, we can determine the path difference Δ12 between paths

1) Today, we are able to synchronize two individual laser light sources
so well that we can carry out interference experiments using them.
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Fig. 5.3 Analysis of the diffraction pattern from Fig. 5.1. Left: Nota-
tions and geometry of the double slit. Right: The interference pattern is
understood as the product of the single-slit diffraction pattern (dashed
line) and sinusoidal modulation (thin line). Here, width D = distance/4
= d/4.

1 and 2 in a geometrical way according to the construction from Fig. 5.1, and
calculate the intensity distribution according to Eq. (5.1).

If the path difference is an integer multiple of the wavelength, Δ12 = nλ,
we expect constructive interference; in the case of half-integer multiples, we
have destructive interference. The path difference Δ12 and the corresponding
phase difference Φ12 at angle α are

Δ12 = d sin α and Φ12 = kΔ12 =
2πd

λ
sin α.

For small angles α � x/z we expect a periodic fringe pattern on the screen
varying as

I(x) =
I0

2

(
1 + cos

2πd
λ

x
z

)
,

with maximum intensity I(x=0) = I0.
During this analysis, we have assumed that the two slits are infinitesimally

narrow. In a real experiment, of course, they have finite width, so we have
to take into account single-slit diffraction, also. The superposition of the two
phenomena can be taken into account by means of Fraunhofer diffraction at
a slit according to p. 66. The situation becomes very simple, if we displace
the slits by ξ = ±d/2 = ±ξ0 from the axis. Calling the box-shaped function
for the slit (width D) again τ(ξ), we get for the diffraction integral with κx =
2πx/λz:

E ∝
∮

S
[τ(ξ − ξ0) eiκxξ + τ(ξ + ξ0) eiκxξ ] dξ

=
∮

S
τ(ξ) eiκxξ dξ (eiκxd/2 + e−iκxd/2).
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The intensity distribution is calculated as usual from I = cε0|E |2/2 for linear
polarization,

I =
I0

2

(
1 + cos

2πd
λ

x
z

)
sin2(πxD/λz)
(πxD/λz)2 ,

and we recognize immediately the complete interference pattern containing
the product of the diffraction images of the single slit and of the double slit
(Figs. 5.1 and 5.3).

5.3.1
Transverse coherence

Typical classical light sources2 (incandescent lamps, discharge lamps, etc.)
have a finite extent. We can visualize them as consisting of point-like light
sources that illuminate the double slit with the same colour or wavelength
but with completely independent phases. In this case an additional phase dif-
ference appears that can be determined according to a similar construction as
in Fig. 5.1. If one of these point sources S lies at an angle β to the axis, the
whole phase difference is

Φ12 = kΔ12 � 2πd
λ

(α − β)

for small angles α and β.
According to this, displacement of the light source causes a transverse shift

of the interference pattern on the screen. If all shifts between 0 and 2π occur,
the superposition of all fringe patterns causes the overall interference pattern
to be washed out. Thus, in order to observe interference, the maximum phase
shift Δmax occurring between two point sources of light at a separation of Δa =
zS(β − β′) from each other and at a distance zS from the double slit must not
become too large:

Δmax =
2πdΔa

λzS
< 1.

This condition is met if the angle Ω = θ − θ′ = Δa/zS with which both of
the point sources are seen is sufficiently small, i.e.

Ω =
Δa
zS

<
1

2π

λ

d
. (5.6)

According to this, for a given wavelength λ and a given distance zS, the
ability to interfere (‘interferability’) can be achieved through a light source

2) The Gaussian beams of laser light sources have perfect transverse
coherence!
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with a sufficiently small point-like area (Δa ≤ λzS/2πd) or slit separation
(d ≤ λzS/2πΔa).

The coherence area of a source is to be determined by changing the slit
separation d while the source distance is fixed. The central interference fringe
(which is always a maximum) with its adjacent minima is observed and evalu-
ated according to Eq. (5.5). The distance where the value V = 1/2 is obtained
is defined as the transverse coherence length.

Excursion: Double-slit experiments with matter waves
We have dealt with double-slit interference as a pure wave phenomenon in the previ-
ous section, and we have also already referred to the application to other wave phe-
nomena, in particular to matter waves. In this context, there is a very well-known
phenomenon that bothers our intuition quite hard: an interference pattern is also gen-
erated by a single particle, by so-called ‘self-interference’. Although we always detect
only one particle, its matter wave must have gone through both slits simultaneously!
We infer this interpretation from the way in which quantum mechanics deals with it
theoretically. It has been proven by experiments time and again, but stands in bizarre
contradiction to our natural, i.e. macroscopic, view of a ‘particle’.

The first demonstration of the double-slit experiment with matter waves was given
by Möllenstedt [131] using electron beams. For that experiment an electron beam was
collimated and sent through an electric field arrangement corresponding to a Fresnel
biprism. In recent times atom optics [1] or matter wave optics has been established as a
new field. With helium atoms a double-slit experiment has been carried out in perfect
analogy to Young’s experiment [32]. On the one hand, the de Broglie wavelength λdeB
of neutral atoms with mass m and velocity v within the atomic beam is very small,
λdeB = h/mv � 20 pm. That is why very tiny slit widths and separations had to
be used, d ≤ 1 μm, in order to obtain resolvable diffraction. The atomic flux was
accordingly very small. On the other hand, helium atoms in the metastable 3S state
can be detected nearly atom by atom by means of channel plates. This high detection
sensitivity has made possible the atomic Young’s experiment with neutral atoms.

In the lower part of Fig. 5.4 the result of the experiment is shown. The small atomic
flux density has even an additional advantage. With a pulsed beam source one can
record the velocity of the atom by time-of-flight measurement and associate it with the
change of the interference pattern. This can be directly interpreted as a consequence of
the variation of the de Broglie wavelength, which can be immediately calculated from
the time-of-flight measurement.

Finally we may turn to the interpretation once more, and consider the light from the
point of view of the particles or photons. For that we imagine an experiment in which
the double slit is illuminated with such a weak intensity that there is only one pho-
ton at a time – the condition for self-interference is also met again. Such experiments
are sometimes called Taylor experiments because they were conducted already in 1909
by G. Taylor. Sensitive photon-counting cameras are used to detect the interference
pattern. We observe indeed a statistical pattern, which after some time generates a
frequency distribution described exactly by the interference of the light waves.
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Fig. 5.4 Diffraction of matter waves at a double slit. By courtesy of
J. Mlynek and T. Pfau.

5.3.2
Optical or diffraction gratings

If the number of slits is greatly increased, one obtains an optical grating, an
example of multiple beam interference. Optical gratings are used as ampli-
tude, phase or reflective gratings, and are qualitatively introduced in Fig. 5.5.
They are specified according to the number of lines per millimetre, typically
1000 lines·mm−1 or more for optical wavelengths. It is remarkable and im-
pressive that even very fine gratings may ‘simply’ be carved mechanically
with diamonds. Optical gratings exhibit typically several orders of diffraction.
For efficient application, grooves with special shapes are used to concentrate
the intensity into a single or a few diffraction orders only; see Fig. 5.5. Such
gratings are called blazed gratings.

Mechanically manufactured gratings, though, suffer from scattering losses
and additional faults with a long period (‘grating ghosts’). Better optical
quality is offered by components called ‘holographic gratings’ according to
the method of manufacture. They are produced by methods of optical mi-
crolithography. A film (‘photoresist’) on a substrate of optical quality is ex-
posed to a standing light wave. The solubility of the exposed film depends
on the dose, and thus a remnant of film is left over at the nodes of the stand-
ing wave (see Fig. 5.5). A reflection grating can be manufactured from this
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structure, e.g. by coating with a reflecting material. One disadvantage, in the
case of a holographic grating, is that it is more difficult to control the ‘blaze’
by properly shaping the grooves.

Fig. 5.5 Left: Amplitude, phase and reflective grating. The blaze of
a reflective grating can be chosen in such a way that the diffraction is
mostly directed into a certain desired order, for instance by shaping
the grooves. Right: Manufacturing of a holographic grating with an
asymmetric groove. The photoresist is illuminated by a standing-wave
light field. At the nodes it is only weakly affected and thus remains
undissolved.

The condition for interference is identical with that of the double slit. We
consider the beams radiating from the N lines of a grating with length L. Two
adjacent beams have a path difference

Δ(θ) = (L/N) sin θ (5.7)

corresponding to a phase difference

Φ(θ) =
kL
N

sin θ =
2πL
Nλ

sin θ. (5.8)

With homogeneous illumination, the field amplitude is

E = E1 + E2 + · · ·+ EN

= E0(1 + e−iΦ + e−2iΦ + · · ·+ e−NiΦ) e−iωt

= E0 exp{−i[ωt + 1
2 (N − 1)Φ]} sin(NΦ/2)

sin(Φ/2) .

The diffraction pattern (Fig. 5.6) of the grating has maxima at Φ = 2mπ, with
m = 0,±1,±2, . . . . There the intensity is calculated from I0 = cε0|E0|2 and
Imax = cε0|E(Φ=2mπ)|2/2 = N2 I0. Diffraction between the intensity maxima
is strongly suppressed, and the grating can be used very advantageously as a
dispersive element for spectral analysis.

The first minimum appears at Φ = 2π/N, the first secondary maximum at
Φ = 3π/N. For large N the intensity is limited to I(Φ=3π/N) � N2/(3π/2)2
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≈ 0.05Imax only. The diffraction grating concentrates the radiation energy into
the main maxima.

The spectroscopic resolution is of primary interest. According to the Ray-
leigh criterion, the main maximum of one wavelength is supposed to fall into
the first null of the only just resolvable adjacent wavelength, i.e. according to
Eq. (5.8)

Φ(θ+δθ) − Φ(θ) � 2π

λ

L
N

cos θ δθ =
2π

N
.

The condition for the main

.���
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Fig. 5.6 Calculated diffraction pattern of a grating
consisting of six single slits at two different wave-
lengths. The diffractive contribution of the single
slit (broken line, width = 0.6 × distance between
slits) has been neglected. The light and dark shaded
patterns correspond to two different wavelengths.

maximum varies with the
wavelength according to
m δλ = (L/N) cos θ δθ = λ/N
and so results finally in the
resolution,

R =
λ

δλ
= mN.

This increases with the number
of illuminated slits N and with
the order of interference m,
as can also be easily seen in
Fig. 5.6 where the diffraction
intensity is given for two dif-
ferent wavelengths.

Example: Resolution of an optical grating
We determine the resolution of a grating with a diameter of 100 mm and num-
ber of grooves equal to 800 line mm−1 at λ = 600 nm. We get

R = 100 mm × 800 mm−1 = 0.8 × 105.

From that a wavelength can be separated just at a difference of

δλ =
λ

mN
� 7 × 10−3 nm.

5.3.3
Monochromators

Grating monochromators are standard equipment in most optical laborato-
ries, and they play an important role by offering one of the simplest instru-
ments of spectroscopy with high resolution. They all have in common the use
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of reflective gratings, which are technically superior to transmission gratings.
They differ only in those structural details dealing with operation or resolu-
tion.
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Fig. 5.7 Principle of the Czerny–Turner monochromator.

As an example we introduce the Czerny–Turner construction (Fig. 5.7).
Here, the grating has to be completely illuminated to achieve the highest pos-
sible resolution, which is why the input light has to be focused on the entrance
slit. The grating simultaneously serves as a mirror that is turned with a linear
motion drive. One finds according to Eq. (5.8)

mλ =
L
N

(sin θ − sin θ′).

Because θ = α/2 − θG and θ′ = α/2 + θG (Fig. 5.7), one gets

λ =
2L

mN
cos(α/2) sin θG,

and hence the wavelength at the exit slit only depends on the rotation
angle θG.

Spectral resolution depends on angular resolution in this instrument, and it
improves with the distance between the slits and the grating. Thus monochro-
mators are offered with standard lengths of 1/8 m, 1/4 m, 1/2 m, etc., which
are a coarse measure of their resolution. Above approximately 1 m they be-
come large, heavy and impracticable, so that resolution exceeding 106 is cum-
bersome to achieve. Through the advent of laser spectroscopy, which we will
discuss in Chap. 11, resolution inconceivable with the conventional methods
using grating monochromators has been reached.
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5.4
Michelson interferometer: longitudinal coherence

The interferometer arrangement given in 1882 for the first time by the Amer-
ican physicist M. Michelson (1852–1931) has become very famous. It was de-
veloped to identify experimentally the ‘ether’ postulated in the 19th century
to be responsible for the spreading of light. If the ether existed, the speed of
light should depend on the relative speed of the light source in that medium.

The results by Michelson and Morley were interpreted by assuming that
the speed of light was independent of the reference frame – a discovery in
full agreement with the descriptions by Poincaré, Lorentz and finally Einstein
who published the theory of special relativity in 1905 [51].

The heart of a Michelson in- "�

"�%&

E1(r,t)

E2(r',t) �a,r1

input

�b,r2

Fig. 5.8 Michelson interferometer. BS = beam
splitter; M1, M2 = mirrors.

terferometer (Fig. 5.8) is the am-
plitude beam splitter, mostly con-
sisting of a semitransparent mir-
ror. An incident planar wave E =
Ein e−i(ωt−kr) is separated into two
partial waves with equal ampli-
tudes Ea,b = Ein/

√
2. Usually

the beam splitter consists of a pol-
ished glass substrate coated on one
side. The reflected and transmitted
beams travel along different optical paths. The two paths are different since
the substrate acts on one of the two arms only. For compensation, sometimes
an additional glass substrate of the same thickness is inserted into the other
arm in order to make the interferometer arms as symmetric as possible. Us-
ing monochromatic laser light, this does not matter because the difference
in the light path lengths can simply be geometrically compensated. If the
light is polychromatic, however, dispersion of the glass substrates caused by
wavelength-dependent differences in the light paths is also compensated by
the additional substrate.

At the end of the two interferometer arms the two partial waves are reflected
and pass through the beam splitter again. The interferometer generates two
separate output waves E1 and E2,

E1 =
1√
2
(Ea + Eb) =

1
2
Ein e−i(ωt−kr)(e2ikr1 + e2ikr2),

E2 =
1√
2
(Ea − Eb) =

1
2
Ein e−i(ωt−kr′)(e2ikr1 − e2ikr2),

(5.9)

at its exits. We calculate the intensity there and get from I = ε0cEE∗/2 the
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results

I1 = 1
2 I0{1 + cos[2k(r1 − r2)]},

I2 = 1
2 I0{1 − cos[2k(r1 − r2)]}.

(5.10)

According to this, the total intensity is constant but distributed on the two ex-
its I0 = I1 + I2 depending on the difference in light paths s = 2(r1 − r2). Note
that, in this arithmetical treatment, the different signs in the sum of the par-
tial beams (E1,2 = (Ea ± Eb)/

√
2 ) are caused by the reflections off the beam

splitter, in one case at the more dense, and in the other case at the less dense,
medium. This 90◦ phase difference is also essential to satisfy energy conser-
vation.

5.4.1
Longitudinal or temporal coherence

With the Michelson interferometer, the temporal coherence length �coh = cτcoh
is measured by increasing the length of one arm until the interference contrast
is decreased to a half. The coherence length is then twice the difference of the
two branches, �coh = 2|r1 − r2| in Fig. 5.8. Usually, the visibility from Eq. (5.5)
is again used as a quantitative measure.

The interference contrast is measured through the field autocorrelation
function ΓEE∗(s/c), according to Eqs. (5.2) and (5.3) with τ = s/c. This is
linked to the spectral power density

SE(ω) =
1
c

∫ ∞

0
ΓEE∗(s/c) eiωs/c ds

according to the Wiener–Khintchin theorem (see App. A, Eq. (A.9)). So a
Fourier transformation of the interferometer’s signal as a function of the
path difference delivers information about the spectral properties of the light
source. Analysis of the light from a sodium vapour lamp with the Michelson
interferometer shows this connection very clearly, as we describe qualitatively
in Fig. 5.9. This relation is also the basis of the Fourier spectrometer, which we
mention here for the sake of completeness. Furthermore, the self-heterodyne
method from Sect. 7.3.2.2 can be considered as a variant of the Michelson in-
terferometer. Here the path difference of the arm lengths even has to be so
large that no stable interference can be observed in the time average. This
method allows determination of the spectral properties of a narrowband laser
light source.

Example: The wavemeter
The wavemeter, also known as the lambda meter, is a variant of the Michelson
interferometer used in many laser laboratories. Monochromatic laser light
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Fig. 5.9 Interferometer signals of a Michelson interferometer for a
single and a double spectral line, like e.g. the yellow D line of the Na
vapour lamp. In the upper inset boxes the associated spectra are
shown.
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Fig. 5.10 Wavemeter arrangement for the determination of laser
wavelengths. For clarity the laser beam to be measured (broken line)
is drawn only at the entrance and at the exit.

sources have a very large coherence length (�coh > 10 m). During continuous
variation of the path length difference of the interferometer arms, they con-
sequently generate a sinusoidal modulation of the interferometer signal with
period proportional to the frequency or inverse wavelength of the laser light
according to Eq. (5.10). Comparison of the interferometer signal of an un-
known wavelength λnew to a reference laser wavelength λref amounts to the
determination of the unknown frequency or wavelength by simple division of
the number of fringes counted when the reflector trolley slides along its track.

In the wavemeter arrangement, two retro-reflectors are fitted to a mobile
carriage (Fig. 5.10), so that the incident and reflected beams of the Michelson
interferometer are spatially separated. At one exit the reference beam is di-
rected to a photodiode in order to count the number Nref of interferometer
fringes for a certain travelling interval. At the other exit it serves as a tracer
beam for a differently coloured laser beam to be measured. Its interferometer
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fringes are counted on a second photodiode, Nmeas. Electronic division then
yields the unknown wavelength through comparison with the reference laser:
λmeas = λrefNmeas/Nref.

Excursion: Gravity wave interferometer
A particularly unusual variant of the Michelson interferometer with huge dimensions
has been constructed at several places around the world. For example, the project at
Hannover (Germany) called GEO600 has an arm length of 600 m, while at other places
even arm lengths up to 4 km have been realized.

With a Michelson interferometer, as well as with every optical interferometer,
minute lengths or variations of length can be measured with an accuracy far be-
low the optical wavelength. Exactly this feature can serve to detect distortions of space
caused by gravity waves. Though they were predicted in detail by Einstein’s theory
of general relativity, they have not been directly observed yet since they only exert an
extraordinarily weak force even on big masses.

For a most sensi-

�
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��.��������
���.=��

Fig. 5.11 Gravity waves are predicted to cause quadrupolar dis-
tortions of space, e.g. by radiation from a rotating binary star. As-
trophysicists are using sensitive Michelson interferometers for the
search.

tive proof of a change
of length δ� with an
interferometer, the
instrument itself has
to have a length �

as large as possible.
According to the
theory of general rela-
tivity, even for strong
astronomical ‘gravita-
tional wave sources’
like e.g. supernova
explosions, relative

sensitivities of δ�/� ≈ 10−20 are necessary. At a length of 1 km this corresponds to
about 100th of a proton radius! Gravity waves spread like electromagnetic waves,
they are transverse, but have quadrupolar characteristics (Fig. 5.11).

The sensitivity can be increased by folding the light path in each arm. Narrowband
detection of the weaker but continuous and strongly periodic emission of a binary star
system (see Fig. 5.11) promises an increase of sensitivity. To achieve sufficient signal-
to-noise ratio of the interferometer signal, the use of very powerful laser light sources
with superb frequency stability is necessary. At the present time neodymium lasers are
preferred for this task.

Not only could the proof of the existence of gravity waves offer the long-sought
confirmation of the theory of general relativity, but also, with gravity wave antennas,
a new window could be opened for the observation of space. In the face of these
expectations, the plans for the Laser Interferometer Space Antenna (LISA) [55] do not
seem to be completely eccentric. In this spaceflight project, in about 2015 it is planned
to park a Michelson interferometer consisting of three spaceships (two mirrors and a
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beam splitter with light source) shifted by 20◦ in Earth orbit around the Sun. This
Michelson interferometer will have an arm length of 5 × 106 km!

5.4.2
Mach–Zehnder and Sagnac interferometers

There are numerous variants of the Michelson interferometer that have differ-
ent methodical advantages and disadvantages. Two important examples are
the Mach–Zehnder and the Sagnac interferometers, the latter of which, strictly
speaking, forms a class of its own.

5.4.2.1 Mach–Zehnder interferometer

The Mach–Zehnder interferometer (MZI) is derived from the Michelson inter-
ferometer, in which the reflections at the mirrors are no longer carried out at
normal incidence and a second beam splitter is used for the recombination of
the beams. The MZI is also used for spatially resolved studies of changes in
the wavefronts passing objects of interest [79].

BS

BSM1

M2

BS

M1

M2 BS

R

Fig. 5.12 Mach–Zehnder (left) and Sagnac (right) interferometers. BS
= beam splitter; M = mirror. The Sagnac interferometer can be realized
with mirrors or with an optical wave guide. In the latter case multiple,
coil-like windings (radius R) can be realized.

The reflection angle at the beam splitters (BS) and mirrors (M1, M2) in
Fig. 5.12 (left) must not necessarily be set to 90◦. Several times the MZI con-
cept has stimulated ideas for interferometric experiments in particle optics,
since there mirrors and beam splitters can often be realized only under graz-
ing incidence, with small deflection angles. Neutron beams reflected off the
crystal lattice of Si single crystals are an interesting example [144].

5.4.2.2 Sagnac interferometer

The Sagnac interferometer also derives from the Michelson interferometer:
here, the light beams are not reflected back to themselves but run back on
diametrically opposed paths that are at first identical. But if the interferome-
ter is rotating around an axis perpendicular to its plane, a phase shift between
the opposing beams is predicted by the theory of special (and general) relativ-
ity. For the sake of simplicity, we consider a circular light path (radius R) in a
fibre and with one beam splitter. The round-trip time is T = L/c = 2πnR/c
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with n the refractive index of the fibre. We adopt the result from the theory of
special relativity that, in a medium moving at velocity v, the speed of light as
measured in the laboratory frame is modified according to [116]

c± = c
1 ± nv/c
n ± v/c

. (5.11)

In the rotating fibre path (angular velocity Ω = v/R), in one direction the light
travels towards the beam splitter, and in the other direction, away. Hence the
effective round-trip time is increased or decreased corresponding to the path
RΩT = vT travelled by the beam splitter. It is taken into account by the con-
dition T± = L±/c± = (L ± vT±)/c±. From this implicit equation we extract
T± = L/(c± ∓ v), and with a short calculation using the result Eq. (5.11) we
find 1/(c±v) � (n/c)(1 ± (v/nc)). Surprisingly, the time difference T+ − T−
no longer depends on n,

T+ − T− � 2v/c2 = 2RΩ/c2.

For light with frequency ω, we now directly obtain the difference of the light
paths or phase difference ΔΦ at the beam splitter from this:

ΔΦ = ω(T+ − T−) =� ω
4πR2Ω

c2 = Ω
4F
λc

.

According to this, the interference signal is proportional not only to the an-
gular velocity Ω but also to the area F = πR2 of the Sagnac interferometer.
The effective area and with it the sensitivity can be increased by the coil-like
winding of a glass fibre (Fig. 5.12).

Example: Phase shift in the Sagnac interferometer We determine the phase
shift generated by the Earth’s rotation (2π/24 h = 1.8 × 10−6 s−1) in a Sagnac
interferometer. The fibre has a length of 1 km and is rolled up into an area
with a diameter of 2R = 10 cm. The interferometer is operated with a diode
laser at λ = 780 nm. Thus

ΔΦ = 1.8× 10−6 π× 4(0.1/2)2(103/π× 0.1)
(0.78× 10−6) × (3 × 108)

= 0.77 × 10−5 rad.

This condition requires a high standard of the art of experimenting but can be
realized in the laser gyro.

If a laser amplifier is installed in a Sagnac interferometer, one has realized
the ‘laser gyro’. This is widely used since it allows very sensitive detection of
rotary motion and acceleration, but for studies of this we refer the reader to
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the specialized literature. It should be emphasized, however, that in the laser
gyro the waves running around to the left and to the right, respectively, have
to have different frequencies.

5.5
Fabry–Perot interferometer

We consider two plane parallel dielectric interfaces illuminated by a light
beam at a small angle. Such an optical component can be easily made from
a plane parallel glass substrate. In this case it is called a Fabry–Perot etalon
(FPE) (from the French étalon, meaning ‘calibration spacer’ or ‘gauge’). It
is often used for frequency selection in laser resonators or as a simple and
very highly resolving diagnostic instrument for laser wavelengths. The light
beams are reflected back and forth many times and so exhibit multiple-beam
interference in the longitudinal direction analogous to the diffraction grating.

6 A� 8!' A� &���

n

!

�

Fig. 5.13 Multiple beam interference in the Fabry–Perot etalon (FPE).
A ground glass substrate acts as a diffuser to generate light beams in-
cident onto the etalon in many directions. The second lens L2 induces
parallel light rays to interfere on a screen at the focal plane.

The surfaces of an FPE are partly silvered and must be very smooth and
planar. Furthermore, their relative tilt, or wedge, has to be very small. For
precise measurement, also the distance � of the spacing between the reflecting
surfaces must be very well known and controlled. The optical length of the
FPE depends on the index of refraction n of the substrate,

�opt = n�,

which for a material such as glass changes relatively rapidly with tempera-
ture (dn/dT � 10−3 K−1). Stable, less-sensitive etalons are built with an air
gap between glass substrates fixed by spacers with small thermal expansion,
e.g. quartz rods. If the distance � of the gap can be varied, e.g. by a piezo-
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translator, it is called a Fabry–Perot interferometer. This type of instrument was
used for the first time by C. Fabry and A. Perot in 1899.

The condition for constructive interference can again be determined from
the phase difference δ between two adjacent beams. One determines the path
length A–B–C in Fig. 5.14(a) and finds, with k = 2π/λ,

δ = k�opt = 2nk� cos θ = 2πN, (5.12)

where N is the order of the interference, usually a large number. This result
perhaps contradicts our initial expectation, since, because of the geometry,
each individual beam in the interferometer travels along an elongated path
�/cos θ tending to longer wavelengths and smaller frequencies. However, ex-
actly the opposite occurs: tilting of an etalon shifts the interference condition
to shorter wavelengths!

Let us now add the individual contributions of each beam, where we now
have to account for reflection and transmission. The change of intensity is
described by the reflection and transmission coefficients, while the coefficients
of the field amplitudes are defined by r =

√
R and t =

√
T:

r, r′ = amplitude reflectivities, R, R′ = reflection coefficients,
t, t′ = amplitude transmissivities, T, T′ = transmission coefficients.

Phase jumps during reflection (π phase shift for reflection off the denser
material) are included with the total phase shift accumulated after one round
trip and given by eiδ. Then the transmitted partial waves contributing to the
field amplitude Etr at the interference point P are summed up in a complex
geometric series,

Etr = t′tEin + rr′ eiδ tt′Ein + (rr′)2 e2iδ tt′Ein + · · · ,

yielding the result

Etr =
tt′Ein

1 − rr′ eiδ . (5.13)

Alternatively, this result can be derived in a clear and efficient manner by
considering only the wave circulating within the etalon right after the first
mirror (see Fig. 5.14), because in equilibrium it has to be reconstructed by
interference of the internal wave after one full round trip and the incident
wave:

Eint = eiδ rr′Eint + tEin.

From this, with Etr = t′Eint, one again and immediately obtains the first result.
Already, to satisfy energy conservation, there has to be a reflected wave. From
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Fig. 5.14 Phase condition for the Fabry–Perot etalon. (a) Difference in
the optical paths of the partial beams. (b) Self-consistent condition for
the internal field.

this consideration, the effect of interference becomes still more transparent,

Er = rEin − r′t eiδEint =
r − r′ eiδ

1 − rr′ eiδ Ein. (5.14)

The minus sign occurs here because in this case there was one reflection – and
hence one π phase jump – less compared to the circulating wave.

Let us now explore Eq. (5.13) by considering the transmitted intensity. By
taking the modulus, we first get

Itr = Iin
TT′

|1 −√
RR′ eiδ|2 .

This can be written more transparently by introducing the finesse coefficient, F,

F =
4
√

RR′

(1 −√
RR′ )2

, (5.15)

from which after a short calculation we get the Airy function

Itr = Iin
TT′

(1 −√
RR′ )2

1
1 + F sin2(δ/2)

. (5.16)

According to our calculation the transmitted intensity varies over the range

(1 − R)(1 − R′)
(1 +

√
RR′ )2

≤ Itr

Iin
≤ (1 − R)(1 − R′)

(1 −
√

RR′ )2
, (5.17)

and can even become identical with the incident wave if there are ideal loss-
free mirrors with the same reflection coefficients:

(R, T) = (R′, T′) : Itr = Iin
1 + F sin2(δ/2)

,

δ = Nπ : Itr = Iin.
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We will learn more about this case in Sect. 5.6 when we look at optical reso-
nators.

Now let us determine also the accumulated intensity circulating in the
etalon along with the reflected intensity,

Iint = 1
T′ Itr,

Ir = Iin − Itr.

Real resonators are always affected by losses, which should be as low as possi-
ble. If we take the losses per revolution simply into account with a coefficient
A, we get the generalized finesse coefficient

FA =
4
√

RR′(1 − A)
[1 −√

RR′(1 − A) ]2
, (5.18)

by which we can again calculate the transmitted power according to

Itr =
4TT′(1 − A)
(T + T′ + A)2

Iin

1 + FA sin2(δ/2)
.

We can find analogous expressions for the reflected and the coupled power.

Example: Coupling of an optical resonator
Optical resonators, which we shall discuss in more detail in Sect. 5.6, allow
the storage of light energy, albeit only for relatively short times. Thus it is
interesting to know the amount of an incident light field that is coupled into
the resonator. This can be answered by the recent considerations.

Again, the case of resonance δ = 0 is particularly important. We find these
relations for the reflected and the transmitted fractions of the incident inten-
sity:

Ir

Iin
=

(
T′ + A − T
T′ + A + T

)2

and
Itr

Iin
=

4TT′(1 − A)
(T′ + A + T)2 .

The power circulating in the resonator can also be easily determined according
to Ires = Itr/T′ and is shown in Fig. 5.15 as a function of T/A and for the
special but instructive case T′ = 0.

The maximum of the coupled power is reached at T/A = 1. The power
circulating there in the resonator is proportional to 1/A for low A. In this
case the external losses (caused by the coupling mirror) are just equal to the
internal losses. This situation is quite well known for resonators: only in the
case of perfect ‘impedance matching’ is the full incident power coupled into
the resonator; otherwise it is over- or under-coupled.
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Fig. 5.15 Influence of losses on the coupling of a Fabry–Perot res-
onator in the case of resonance δ = 0. The normalized intensities of
the reflected (Ir) and stored light field (Ires) are displayed for the spe-
cial case T′ = 0.

5.5.1
Free spectral range, finesse and resolution

According to Eq. (5.12), the Fabry–Perot interferometer delivers a periodic se-
ries of transmission lines as a function of the frequency ω = ck of the incident
light field. The distance of adjacent lines corresponds to successive orders N
and N + 1 and is called the ‘free spectral range’, ΔFSR:

ΔFSR = νN+1 − νN =
c

2n�
=

1
τcirc

. (5.19)

The free spectral range also just corresponds to the inverse circulation time
τcirc of the light in the interferometer. If the gap between the mirrors is empty
(n = 1), then we simply have ΔFSR = c/2�. Typically, Fabry–Perot interfer-
ometers with centimetre distances are used whose free spectral range is calcu-
lated according to

ΔFSR =
15 GHz
�/cm

.

They are usually designed for some 100 MHz up to several GHz.
The Fabry–Perot interferometer can only be used for measurements if the

periodicity leading to superpositions of different orders is visible. In that case
the resolution between two narrowly adjacent frequencies is determined by
the width of the transmission maxima. It can approximately be calculated
from Eq. (5.16) taking into account that most interferometers have large F co-
efficients. Then the sine function can be replaced by the argument,

Itr � Iin

1 + F(δ/2)2 .
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If two spectral lines are assumed to be separable if their FWHMs Δν1/2 do
not overlap, the lowest resolvable frequency difference is determined from
δ = 1/F1/2 = 2nk�, and for pairs of mirrors with identical reflectivity one
obtains

Δν1/2 = ΔFSR
1 − R

π
√

R
. (5.20)

The ratio F = ΔFSR/Δν1/2

��J����

8&�

Δ� �

Fig. 5.16 Free spectral range (FSR) and full
width at half-maximum (FWHM) in the
Fabry–Perot resonator.

of free spectral range and reso-
lution can be easily read from
an oscilloscope screen like in
Fig. 5.16. This measure is more
common than the finesse coeffi-
cient F and F is simply called the
finesse

F =
π

4

√
F =

π
√

R
1 − R

. (5.21)

The interferometric resolution ν/Δν1/2 is indeed considerably higher with

R = NF

and can easily exceed a value of R > 108.

Example: Resolution of Fabry–Perot interferometers
In Tab. 5.2 we have compiled some characteristic specifications for typical
Fabry–Perot interferometers, which will play an important role as optical cav-
ities in the next section. In the table it is remarkable that the half-width Δν1/2
always has a similar order of about 1 MHz. The reason for this is the practi-
cal applicability to the continuous laser light sources used in the laboratory,
which exhibit typical linewidths of 1 MHz.

Tab. 5.2 Characteristics of Fabry–Perot interferometers.

� 1 − R = T ΔFSR Δν1/2 F Q at 600 nm τres

(mm) (GHz) (MHz) (ms)
300 1% 0.5 1.7 300 3 × 108 0.1
10 0.1% 15 5 3 000 108 0.03
1 20 ppm 150 1 150 000 5 × 108 0.15

100 20 ppm 1.5 0.01 150 000 5 × 1010 15
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5.6
Optical cavities

Fabry–Perot interferometers are very important as optical cavities, which are
necessary for the construction of laser resonators or are widely used as optical
spectrum analysers (see details in Sect. 7.3.2).

5.6.1
Damping of optical cavities

An electromagnetic resonator stores radiant energy. It is characterized, on the
one hand, by the spectrum of its resonant frequencies, also known as modes
νqmn, and, on the other, by their decay or damping times τres, which are related
to the stored energy U ∝ E2,

1
U

dU
dt

=
2 dE/dt

E
= −1/τres.

We can work out the loss approximately by evenly spreading the mirror
reflectivities (R = r2) and other losses over one revolution τcirc = Δ−1

FSR,

ΔE
Eτcirc

� 1
2

ln[(1 − A)RR′] = ln
√

(1 − A)RR′.

Using the fact that R, R′, (1 − A) have values close to unity and ln(1 + x) � x
the relation

τres = − τcirc

ln
√

(1 − A)RR′
� τcirc

1 −
√

(1 − A)RR′

is obtained. It is again related to the Q value or quality factor and the half-
width Δν1/2 by

Δ1/2 =
ν

Q
=

1
2πτres

.

For A → 0 and R = R′, this result reproduces Eq. (5.20). The resonator’s
damping time τres rules the transient properties as well as the decay time
of optical cavities. In Tab. 5.2 we have given some Q values and oscillation
damping times τres. It is assumed that the absorptive losses can be neglected
compared to the transmission of the mirrors.

5.6.2
Modes and mode matching

For stability reasons, resonators no longer use plane mirrors in their construc-
tion, but curved ones.3 With our knowledge of Gaussian beams from Sect. 2.3,

3) Unstable resonators are also used, e.g. for the construction of high-
power lasers [161]. See also Prob. 5.6.
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we can understand immediately that an appropriate resonator mode has to be
constructed according to the following principle: the surfaces of the mirrors
must fit exactly the curvature of the wavefronts (see Fig. 5.17).

Whether resonators work sta-

Fig. 5.17 Gaussian wave and resonator mirrors.

bly or unstably can again be
investigated by means of the
ABCD law of ray or Gaussian
beam optics. A pair of mir-
rors is completely equivalent to
the periodic lens system from
Sect. 1.9.5, if we replace the fo-
cal lengths by the radii R1/2
and R2/2. Thus from Eq. (1.26)
we obtain the stability diagram
(Fig. 1.21 on p. 26) for optical cavities according to

0 ≤
(

1 − �

R1

)(
1 − �

R2

)
≤ 1. (5.22)

The characteristic parameters of an optical cavity consisting of two mirrors
are their radii R1 and R2 and their separation �. Between the mirrors, a Gaus-
sian standing wave with confocal parameter b = 2z0 and beam waist w0 is
excited. The surfaces of the mirrors are at a separation � corresponding ex-
actly to the length of the cavity,

� = z1 + z2.

The full solution of the Gaussian modes is described according to Eqs. (2.26)
and (2.35),

Emn(x, y, z) = E0
w0

w(z)Hm(
√

2 x/w(z))Hn(
√

2 y/w(z))

× exp{−[(x2 + y2)/w(z)]2} exp[ik(x2 + y2)/2R(z)]

× exp{−i[kz − (m + n + 1)η(z)]}.

(5.23)

In the middle line the geometric form of the Gaussian general solution is
given, which is characterized by (R(z), w(z)) and (z0, w0), respectively. Higher
modes cause a transverse modulation Hm,n of this basic form (upper line).
Along the z axis the phase is solely determined by the Gouy phase, the last line
in Eq. (5.23). That is why we can at first concentrate on the geometric adjust-
ment of the wavefronts which are described by R(z) according to Eq. (2.22).
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At z1,2 in Fig. 5.17 the radii of the wavefronts have to match the radii of
curvature of the mirrors exactly, so

R1,2 =
1

z1,2
(z2

1,2 + z2
0) = z1,2 +

z2
0

z1,2
.

By means of

z1,2 = 1
2 R1,2 ±

√
R2

1,2 − 4z2
0,

we can then express the parameters of the Gaussian wave (z0, w0) by the cavity
parameters (R1, R2, �),

z2
0 =

−�(R1 + �)(R2 − �)(R2 − R1 − �)
(R2 − R1 − 2�)2 ,

w2
0 =

λz0

nπ
.

(5.24)

Exploration of this formula has to take into account that, according to the con-
ventions for ABCD matrices (p. 22), mirror surfaces with their centre to the
left and right of the surface, respectively, have different signs.

For the excitation of a cavity mode, the Gaussian beam parameters (z0, w0)
have to be precisely tuned to the incident wave. If this, the mode matching
condition, is not met, only that fraction of the field is coupled in which corre-
sponds to the overlap with the resonator mode.

5.6.3
Resonance frequencies of optical cavities

A resonator is characterized by the spectrum of its resonance frequencies.
From the Fabry–Perot resonator, we expect an equidistant pattern of trans-
mission lines at the distance of the free spectral range ΔFSR. For a more exact
analysis, we have to take into account the phase factor (the Gouy phase, last
line of Eqs. (5.23) and (2.23)), respectively). The phase difference must again
be an integer multiple of π,

Φmn(z1)− Φmn(z2) = qπk(z1 − z2) − (m + n + 1)[η(z1) − η(z2)]. (5.25)

With � = z1 − z2 and η(z) = tan−1(z/z0) we at first find

kqmn� = qπ + (m + n + 1)
[

tan−1
(

z1

z0

)
− tan−1

(
z2

z0

)]
.

The resonance frequencies νqmn are determined from kqmn� = 2πnνqmn�/c =
πνqmn/ΔFSR. We introduce the resonator Gouy frequency shift

ΔGouy =
[

tan−1
(

z1

z0

)
− tan−1

(
z2

z0

)]
ΔFSR

π
, (5.26)
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Fig. 5.18 Mode or frequency spectrum of a Fabry–Perot resonator.

which varies between 0 and ΔFSR. We obtain the transparent result

νqmn = qΔFSR + (m + n + 1)ΔGouy.

It shows a mode spectrum with a rough division into the free spectral range
ΔFSR. The fine structure is determined by resonance lines at the distance
ΔGouy.

5.6.4
Symmetric optical cavities

We are now going to investigate the special case of a symmetric optical cavity
consisting of two identical mirrors, R2 = R = −R1. In this important special
case the form of Eq. (5.24) is strongly simplified and can be interpreted as

z2
0 =

(2R − �)�
4

and w2
0 =

λ

2πn

√
(2R − �)�. (5.27)

The length of the symmetric cavity can be varied from � = 0 to 2R before the
region of stability is left.

The parameters of the Gaussian
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Fig. 5.19 Rayleigh length and beam waist
for a symmetric optical cavity.

wave in a symmetric optical cav-
ity, (z0, w0), are shown in Fig. 5.19,
normalized to the maximum val-
ues z0max = R/2 and w0max =
(λR/4πn)1/2. The instability of the
plane–plane and the concentric cavity
is here also expressed by the sensitive
dependence of the mode parameters
on the �/R ratio.

In the symmetric cavity the Gouy
phase (5.26) depends on the length and the radius of curvature according to

ΔGouy = ΔFSR
2
π

tan−1
(

�

2R − �

)1/2

. (5.28)
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5.6.5
Optical cavities: important special cases

The three special cases �/R = 0, 1, 2 deserve particular attention because they
exactly correspond to the plane parallel, confocal and concentric cavities.

5.6.5.1 Plane parallel cavity: �/R = 0

=����=������ ��J����

J2� �J?�	2� �J?�	2�

8&�

Fig. 5.20 Path of rays and resonance frequencies of the plane parallel
cavity.

The Fabry–Perot interferometer or etalon described in the previous sections
exactly corresponds to this extreme case. As we know from Fig. 1.21, it is
an extreme case in terms of stability. In practical use it is also important that
polished flat surfaces always have a slight convex curvature for technical rea-
sons, so that an FPE consisting of two plane air-spaced mirrors always tends
to instability. The Gouy phase (5.28) of the plane parallel interferometer is
ΔGouy = 0, rendering all transverse modes degenerate as shown in Fig. 5.20.

5.6.5.2 Confocal cavity: �/R = 1

If the focal lengths of the cavity mirrors coincide ( f1 + f2 = R1/2 + R2/2 = �),
the configuration of the confocal cavity is obtained. In the symmetric case we
have R1 = R2 = �.
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J

���J5�	�
���J5�	
���IIII

J�
��J
����J5�	����IIII

q J?� J?�

����

8&� �

������� 8&� �

Fig. 5.21 Path of rays and resonance frequencies of the confocal cav-
ity.

In this case, the Gouy phase is ΔGouy = ΔFSR/2, and the modes are arranged
at two highly degenerate frequency positions (Fig. 5.21) at a separation of

Δconfoc
FSR = c/4n�. (5.29)

The high degeneracy has its ray optical analogue in the fact that paraxial
trajectories are closed after two revolutions; see Fig. 5.21.
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Fig. 5.22 When confocal cavities are slightly displaced from their per-
fect mirror separation at �/R = �confoc/R = 1, the degeneracy of
transverse modes is lifted.

If the confocal cavity is irradiated by a laser beam without mode match-
ing, many transverse modes are excited and the frequency separation c/4n�
(Eq. (5.29)) can be observed as an effective free spectral range and not as c/2nl.
It is instructive to observe the emergence of transverse modes to the left or
right of the fundamental modes if the length of the confocal cavity is slightly
displaced from the perfect position �/R = 1, as indicated in Fig. 5.22.

The high degeneracy makes the confocal cavity particularly insensitive
in terms of handling and convenient for practical spectral analysis (see
Sect. 7.3.2). In general, a larger linewidth will be observed than is to be ex-
pected according to the simple relation of Eq. (5.20). This broadening is caused
by the higher modes which suffer from stronger damping and show exact de-
generacy only within the paraxial approximation.

5.6.5.3 Concentric cavity: �/R = 2

Obviously, this cavity is very sensitively dependent on the exact positions of
the mirrors, but it leads to a very sharp focusing, which reaches the diffraction
limit. In laser resonators, nearly concentric cavities are frequently used to con-
centrate the pump laser as well as the laser beam into a small volume where
large amplification density is realized (see e.g. Fig. 7.33). In concentric cavi-
ties the Gouy phase ΔGouy = ΔFSR causes strong degeneracy of the transverse
modes again.
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Fig. 5.23 Path of ray and resonance frequencies of the concentric
cavity showing large degeneracy.
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Excursion: Microcavities

In recent times there has been great interest in miniaturized devices of optical cavities
with dimensions of a few μm. Since the radiation field is stored in a very small volume,
a strong coupling of radiation field and matter can be obtained there.

The external coupling is not simple in such cavities since the direction of the emis-
sion is not simply controllable. In this context, there have recently been investigations
on oval4 cavities [134], which help to solve this problem by their shape.

In Fig. 5.24 the calculated intensity distributions for a cylindrically symmetric, an
elliptical and an oval cavity are shown. The connection with concepts borrowed from
ray optics can be seen in particular for the oval cavity.

Fig. 5.24 Distribution of light in circular, elliptical and oval microcavi-
ties. By courtesy of Dr J. Noeckel [134].

5.7
Thin optical films

Thin optical films play an important role for applications, since dielectric coat-
ings to reduce or enhance optical reflections have found their way into every-
day life, for instance on spectacles. We shall limit ourselves to the interfer-
ence phenomena associated with thin optical films, and we shall ignore almost
completely the important aspects of materials science for their manufacture.

Metallic mirrors cause losses of 2–10% when reflecting visible wavelengths.
That is more than many laser systems can tolerate just to overcome the thresh-
old. With a wealth of transparent materials, dielectric film systems with a
structured refractive index can be fabricated making predictable reflectivities
between 0 and 100% possible. For the highest reflectivity, both transmission
and absorption must be specified, which in the best case are only a few ppm!

4) These are not elliptical cavities, which can be treated analytically
and show a discrete spectrum.
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5.7.1
Single-layer films
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Fig. 5.25 Reflection at a single thin film. Left: film system. Right: fac-
tor 4n1/(1 + n1)2 and the effect of a single film on glass with n = 1.5
and optimal film thickness d = λ/4n1.

We consider the single film from Fig. 5.25 and determine the reflected wave
that is the result of the superposition of reflections from the first and second in-
terfaces, i.e. Er = r1Ei + t1r2Ei. It is straightforward to check using the known
formulae for the reflection coefficient from Sect. 3.1.1 that, for perpendicular
incidence, the amplitude of the reflected wave obeys

Er =
(

1 − n1
1 + n1

+ 4n1
(1 + n1)2

n1 − n2
n1 + n2

ei2kn1d eiΦ
)

Ei

�
(

1 − n1
1 + n1

+ n1 − n2
n1 + n2

ei2kn1d eiΦ
)

Ei.

(5.30)

For reflection from the denser medium at the second interface, with n1 < n2,
we have Φ = π, and for n1 > n2 (less dense medium), Φ = 0. The simplifica-
tion in the second line of Eq. (5.30) is made possible by the negligible deviation
of the transmission factor 4n1/(1 + n1)2 from unity in the technically impor-
tant range between n = 1.3 and n = 2 (see Fig. 5.25). Even with a single-layer
thin dielectric film, good results in terms of the coating of optical glasses can
be obtained. For technically advanced applications, though, systems consist-
ing of many layers are necessary.

5.7.1.1 Minimal reflection: AR coating, AR layer, λ/4 film

The thin film is designed as a single-layer λ/4 film with d = λ/4. In addition,
we choose n1 < n2, so that we have exp(iΦ=0) = 1 because of the reflection
at the denser medium, and exp(2ikd) = −1 causing destructive interference
of the partial waves. In comparison with the substrate, the film shows low
refraction and hence is called an L-film. For perfect suppression of optical



5.7 Thin optical films 209

reflection, the condition

1 − n1

1 + n1
=

n1 − n2

n1 + n2

has to be met, which is equivalent to

n1 =
√

n2. (5.31)

The simple anti-reflection (AR) films used for ‘coating’ of spectacles and
windows reduce the reflection of the glass from 4% to typically 0.1–0.5%. A
commonly used material is MgF2, which quite closely fulfils condition (5.31)
when used on glass (n = 1.45).

5.7.1.2 Reflection: highly reflective films

In this case we first choose a highly refractive film or H-film on a substrate
with a lower refractive index, i.e. n1 > n2. The 180◦ or π phase jump during
the reflection at the less dense medium now causes constructive interference
of the two partial waves, and the total reflectivity is enhanced. A single TiO2
λ/4 film on glass, for example (see refractive indices in Tab. 5.3), increases the
reflectivity from 4% to more than 30% (see Fig. 5.26).

Tab. 5.3 Refractive index of materials for thin dielectric films.

MgF2 SiO TaO2 TiO2

1.38 1.47 2.05 2.30

Fig. 5.26 Wavelength-dependent reflectivity of multiple films with two,
four and 10 layer pairs of films. In this example a stack of TiO2 and
glass layers each with a thickness of 0.15 μm is assumed. The dashed
line marks the reflectivity of a single film. The 10-stack has a reflectiv-
ity R > 99% between 0.55 and 0.65 μm.
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5.7.2
Multiple-layer films

As a model example of a multiple-layer film, let us study a periodic film stack
consisting of N identical elements [103]. We have to consider the splitting of
the waves at each interface (Fig. 5.27):

E+
j = tijE

+
i + rjiE

−
j ,

E−
i = tjiE

−
j + rijE

+
i .

To be specific, we take a wave incident

�� �9

��
+

��
-

��
+

��
-

Fig. 5.27 Interface within a multiple-layer
optical film.

from the left. However, we elaborate the
transformation in the opposite direction,
since there is no wave travelling to the left
behind the last interface in the direction of
propagation (E−

N = 0).
The set of equations can be solved and

conveniently represented in a matrix if we
also use rij = −rji and |tijtji| + |rijrji| = 1.
Thus

Ei = GjiEj =
1
tij

(
1 rij

rij 1

)(
E+

j

E−
j

)
.

Before getting to the next interface, the wave undergoes a phase shift ϕ =
±njkd for the wave running to the right and to the left, respectively. In this
case the total transformation from one interface to the other is

Ej = ΦjiGjiEi = SjiEi with Φji =

(
e−iϕ 0

0 eiϕ

)
,

and in particular for N interfaces

E1 = S1,2S2,3 · · · SN−2,N−1SN−1,N

(
E+

N
0

)

=

(
R11 R12

R21 R22

)(
E+

N
0

)
.

(5.32)

Thus the relation between incident, reflected and transmitted waves is
uniquely determined. In particular, the reflectivity can be calculated from
|R11|2/|R21|2 once R = S1,2S2,3 · · · SN−2,N−1SN−1,N is known. While an ana-
lytical solution remains laborious, numerical solution by computer is straight-
forward. In Fig. 5.26 the evolution of reflectivity from a single-layer pair film
to a highly reflective multiple-layer film is shown.
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5.8
Holography

One of the most remarkable and attractive capabilities of optics is image for-
mation, to which we have already dedicated an entire chapter (Chapter 4).
Among the various methods, usually holography (from the Greek holo, mean-
ing ‘complete’ or ‘intact’) arouses the greatest astonishment. The attraction is
mostly caused by the completely three-dimensional reconstruction of a recor-
ded object! Here, we shall restrict ourselves to the interferometric principles of
holography, and refer the reader to the specialist literature for more intensive
studies [77].

5.8.1
Holographic recording

For a conventional record of a pic-
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Fig. 5.28 Holography uses the linear part
of the blackening of the film.

ture, whether by using an old-fashioned
film or a modern charge-coupled device
(CCD) camera, always the spatial distri-
bution of the light intensity is saved on
the film or in digital memory. For a holo-
gram, both the amplitude and the phase
of the light field are recorded instead. For
this purpose the light field scattered off
the object, the signal wave with amplitude
distribution

ES(x, y) = 1
2 [ES(x, y) e−iωt + c.c.],

is superposed with a coherent reference
wave

ER(x, y) = 1
2 [ER(x, y) e−iωt + c.c.].

The interference pattern is recorded by a
film. One thus produces an interferomet-
ric record of an object – information about the image is truly contained in the
interference pattern! The intensity distribution recording this information re-
sults from the superposition of signal and reference waves:

2I(x, y)/c2ε0 = |ES + ER|2 = |ES|2 + |ER|2 + ESE∗
R + E∗

S ER. (5.33)

For this we have already assumed that the signal and reference waves have a
sufficiently well-defined phase relation, since they originate from the same co-
herent light source. Otherwise the mixed terms would suffer from prohibitive
temporal fluctuations.
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The illumination intensity on the film material – which usually has non-
linear properties, see Fig. 5.28 – is adjusted such that a linear relation between
the transmission and the intensity distribution is obtained, i.e.

T(x, y) = T0 + τ I(x, y). (5.34)

Historical experiments in the 1940s by D. Gábor (1900–1979, Nobel prize-
winner in 1971) were obtained as in-line holograms, since there the require-
ments for the coherence of the light source are not so stringent. Today, since
lasers with a large coherence length are readily available, the holographic
record is typically taken according to the off-axis method of Leith–Upatnieks
shown in Fig. 5.29.
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Fig. 5.29 Record of a hologram according to the Leith–Upatnieks
method.

The monochromatic signal wave propagates in the z direction in the ar-
rangement of Fig. 5.29, and the transverse phase distribution is caused by the
illuminated object,

ES = ES e−iωt eikz eiφ(x,y).

The (almost) plane reference wave has identical frequency ω and travels at an
angle θ towards the z axis. The wave vector k has components kz = k cos θ and
ky = k sin θ, and thus

ER = ER e−iωt eikzz eikyy.

Following Eq. (5.33) at plane P with φ0 = kzz0, we obtain the intensity distri-
bution

IP(x, y) = IS + IR + ESE∗
R eiφ0 e−i[kyy+φ(x,y)] + c.c. (5.35)

All contributions cause a blackening of the film material. The reference
wave usually corresponds in good approximation to a plane wave, and so
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generates homogeneous blackening. The blackening caused by the signal
wave, which for simplification has been assumed to have a constant ampli-
tude, usually generates an inhomogeneous intensity distribution since there
are no plane wavefronts emanating from an irregular object. In a different
situation, this phenomenon is also known as laser speckle and is discussed in
more detail in Sect. 5.9.

5.8.2
Holographic reconstruction

The major fascination of holography is manifest in the actual image recon-
struction process, since the holographic film itself – the hologram – does not
contain any information for the human eye. For reconstruction, the object is
removed and the hologram is illuminated once again with the reference wave.
By diffraction, the secondary waves shown in Fig. 5.30 are generated.
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Fig. 5.30 Image reconstruction from a hologram with secondary
waves (see also Fig. 5.29).

Formally we can derive the secondary wave by considering the field distri-
bution immediately after passing through the hologram. We can identify four
different diffracted waves, U0, UH

0 , U+1 and U−1,

Erecon = T(x, y)ER

= T0ER + τER IR + τER IS + τ|ER|2ES + τE2
RE∗

S
= U0(x, y) + UH

0 (x, y) + U+1(x, y) + U−1(x, y),

which we are going to consider in detail. Actually, it is quite complicated to
determine the diffraction field of a complex hologram. Fortunately, we can
identify every term with a known waveform naturally continued from the
local field distribution.
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5.8.2.1 Zeroth order

U0(x, y) = (T0 + τ IR)ER e−iωt ei(kyy+kzz)

This term propagates in zeroth order because its wave vector is identical to
that of the incident reference wave, which is continued and plainly attenuated
by a constant factor (T0 + τ IR) < 1 due to attenuation.

5.8.2.2 Halo

UH
0 (x, y) = τ ISER(x, y) e−iωt ei(kyy+kzz)

As mentioned above, the signal wave usually causes inhomogeneous blacken-
ing. The secondary wave also propagates in zeroth order, but the diffraction of
the speckle pattern (see Sect. 5.9) leads to broadening compared to the trans-
mitted reference wave and is sometimes called a ‘halo’.

5.8.2.3 Reconstructed signal wave

U+1(x, y) = τES eiφ(x,y)ERE∗
R e−iωt eikz

Obviously, with this contribution, the signal wave is exactly reconstructed ex-
cept for a constant factor! The reconstructed signal wave propagates in the z
direction, which we are going to call the first order in analogy to diffraction by
a grating. The virtual image contains all 3D information of the reconstructed
object and can therefore be observed – within the light cone – from all sides.

5.8.2.4 Conjugated wave

U−1(x, y) = τE2
RES e−iωt e−iφ(x,y) ei[2kyy+(2kz−k)z]

In a vector diagram we can determine the propagation direction of the so-
called conjugated wave. For small angles θ = ky/kz we have 2kz − k � kz and
k2

conj = 4k2
y + (2kz − k)2 � k2. That is why the axis of the conjugated ray runs

at angle 2θ to the z axis and disappears at θ = π/4 at the latest. Writing it as

U−1(x, y) = τE2
R(ES eiφ(x,y))∗ e−i{ωt−k[sin(2θ)y+cos(2θ)z]},

the ‘phase-conjugated’ form of this ray in comparison to the object wave be-
comes transparent. From a physical point of view, the curvature of the wave-
fronts is inverted, so the wave seems to run backwards in time. Again, fol-
lowing the analogy to diffraction by a grating, this wave is also called the
minus-one order of diffraction.

Compared to an in-line hologram, the three secondary waves of interest
can be easily separated geometrically and observed in off-axis holography
(Fig. 5.30).
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5.8.3
Properties

Holograms have many fascinating properties out of which we have selected
only a few here.

5.8.3.1 Three-dimensional reconstruction

Since the signal wave coming from the object is reconstructed, the virtual im-
age looked at by the observer through the holographic plate appears three-
dimensional as well. It is even possible to look behind edges and corners if
there exists a line of sight connection with the illuminated areas.

5.8.3.2 Partial reconstruction

The complete object can be reconstructed from each fragment of a hologram.
This seems to be inconsistent at first, but becomes clear in direct analogy to
diffraction by a grating. There, the diffraction pattern observed from more and
more reduced fragments always stay the same as well. However, the width
of each diffraction increases, i.e. the resolution of the grating is reduced due
to the decreasing number of illuminated slits. In a similar way the resolution
declines in reconstructing from a holographic fragment. The finer structures
of the image disappear, while the gross shape of the signal wave and hence
the object is preserved.

5.8.3.3 Magnification

If, in reconstructing an object, light of a different wavelength is used, the scale
of the image is correspondingly changed.

5.9
Laser speckle (laser granulation)

When a dim wall or a rough object is illuminated with laser light, the observer
distinguishes a granular, speckled structure, which does not appear in illumi-
nation with a conventional light source and is obviously caused by the coher-
ence properties of the laser light. In fact, coherent phenomena, i.e. diffraction
and interference, can also be observed using incandescent light sources, but
the invention of the laser has really granted us a completely new sensory ex-
perience. Newton had already recognized that the ‘twinkling’ of the stars,
having been poetically raised by our ancestors, is a coherence phenomenon
caused by the inhomogeneities of the atmosphere, and thus directly related
with speckle patterns.
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The granular irregular structure is called ‘laser granulation’ or speckle pat-
tern. Reflected off the rough, randomly shaped surface of a large object, a
coherent wave acquires a complex wavefront like after passing through a
ground glass screen. For simplification, we can imagine that the light beams
from a large number of randomly arranged slits or holes interfere with each
other. In each plane there is thus a different statistical interference pattern.
Indeed, every observer sees a different but spatially stable pattern as well.

Formal treatment of the speckle pattern requires some expense using the
mathematical methods of statistics. We briefly discuss this phenomenon at
least qualititvely, since it is nearly ubiquitous wherever laser light is used. Al-
though laser granulation at first appears an undesirable consequence of inter-
ference, it contains substantial information about the scattering surfaces, and
it is even suitable for interferometric application in the measurement tech-
niques for the determination of tiny surface changes [82].

5.9.1
Real and virtual speckle patterns

Speckle patterns can be observed, for example, when we expand a laser beam
and project it from a diffuse reflector onto a screen. On the wall there is a fixed
granular pattern that only changes with a different reflector. This pattern is
determined only by the microstructure of the reflector and is called a real or
objective speckle pattern [113]. It can be recorded by direct exposure of a film.

When it is imaged, however, it is transformed by the imaging process itself.
A subjective or virtual speckle pattern is generated, with properties determined
by the aperture of the imaging optics, e.g. the size of the pupil of our eye.
This property can be easily understood and observed just with a laser pointer
illuminating a white wall. If we form a small hole, some kind of artificial
pupil, with our hand, the granulation speckles grow rougher the smaller the
diameter of the hole.

Detailed consideration of the coherent wave field is not usually of interest.
We finish this discussion with a short discussion of the intensity distribution
in the statistical wave fields leading to laser granulation and the characteristic
dimensions of the speckle grains.

5.9.2
Speckle grain sizes

The sizes of speckle grains can be estimated by a simple consideration [113].
The lens of an imaging objective is illuminated by a wave field of a granulation
pattern with a time-invariable but spatially random phase distribution. The
characteristic scale d of the interference pattern is determined by the resolution
of the image and reaches the Rayleigh criterion as in Eq. (2.47). If wavefronts
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from a large distance are incident on the lens, the beams coming from a certain
direction are superimposed in the focal plane at a distance f . For a circular
lens with aperture D, the diameter of the focal spots cannot become smaller
than

d = 1.22λ f /D.

With a decrease in the aperture size, a roughening of the speckle pattern is
to be expected. This phenomenon is shown in Fig. 5.31, where an effective
aperture is formed by focusing of the laser beam onto a ground glass substrate.

Fig. 5.31 Speckle pattern of a focused helium–neon laser beam after
passing through a ground glass substrate, showing the statistical pat-
tern. From left to right, the focus was shifted more and more into the
substrate. Stronger focusing leads to coarser interference structures.

A rotating glass disc produces a rotating interference pattern like Fig. 5.31.
A light beam cut out by an aperture will show strong intensity fluctuations, re-
sulting in a so-called pseudo-thermal light beam [4]. The quantum properties
of such light beams are presented in Sect. 12.6.4.1.
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Problems

5.1. Interference fringes of the Michelson interferometer The interference
pattern at the exit of a Michelson interferometer can be understood with the
following construction. An observer looking into the exit sees two virtual
images of the light source which irradiates the input of the interferometer. At
the exit the radiation fields of the two virtual light sources interfere with each
other. Depending on (mis-)alignment different patterns are observed.

(i) Verify the path of the rays leading to the two virtual light sources. Ex-
plain why the longitudinal difference between the virtual images in Fig. 5.32
is 2(l1 − l2 + λ/2). (ii) Explain the situation which leads to the interference
pattern shown in (a). (iii) For a slightly misaligned interferometer one can ob-
serve the interference pattern (b). Sketch the path of the rays for this case and
give the position of the virtual light sources.

�
�

�
�

�� �
�
5 �

�
	 5  � ��	 ��	

��2�
.=�����

��2=�.�����
=���

��I����.�,�����

Fig. 5.32 Virtual light sources of the Michelson interferometer.

5.2. Unitarity of the beam splitter Consider a beam splitter with reflection
and transmission coefficients r1,2 and t1,2 for the two input ports. Show that
as a consequence of energy conservation alone the reflected waves must be
90◦ out of phase.

5.3. Interferences with a ruler With a simple laser pointer one can gener-
ate beautiful interferences with just a simple student’s ruler. Shine the laser
pointer at grazing incidence onto that side of the ruler having the tick marks.
What interference figures do you get for mm and cm marks? What is their
relation? If instead of cm units inch units are used, the rulers frequently have
marks at 1/2, 1/4, 1/8, ... etc. What is the difference to the standard decimal
ruler? Why can we not observe these interferences with a conventional light
source?

5.4. Fringes of the Fabry–Perot interferometer The classic Fabry–Perot in-
terferometer uses ground glass (Fig. 5.13) for illumination. The lens causes
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ring-shaped interference fringes in the focal plane. Calculate the position of
the rings as a function of the focal length f of the lens.

5.5. Quality of the mirrors for a Fabry–Perot interferometer Surface rough-
ness of mirrors causes deformations of the phase fronts of the reflected light.
These deformations influence the spectral resolution of the Fabry–Perot inter-
ferometer which is characterized by the finesse , (Eq. (5.21)). Consider as a
model the influence of a step on the mirror surface of height h. Show that for
h < λ/2F the resolution is not significantly modified.

5.6. Unstable confocal resonator Find the position of the confocal resonator
with radii {R1, R2} in the stability diagram of Fig. 1.21. Show that they are
unstable with the exception of the symmetric case R1 = R2. What is the differ-
ence between the two branches? How much is the cross-section of the beam
modified for R1 = R2 after each round trip? If we interpret the finesse as an
effective number of round trips in the resonator, we can define a finesse for
the unstable resonator, too. How many round trips are necessary as a func-
tion of the ratio of the radii, R1/R2, to widen the cross-section to twice its
initial value? Unstable resonators play an important role for high-power laser
systems. They are discussed in detail in [161].

5.7. Cavity ring down ppectroscopy The storage time for light circulating in
an optical resonator is limited by the losses of the resonator. Discuss what con-
tributions leading to losses have to be accounted for in addition to the mirror
reflectivity R < 1. The decay time (’ring down time’) is further shortened by
absorbing samples immersed into the resonator field, e.g. atomic or molecu-
lar gases. These substances can be detected by cavity ring down spectroscopy.
Show that the storage time can be described by τ = �/(c(1 − R) + αs) where
� is the resonator length, R the mirror reflectivity, α the absorption coefficient
and s < � the length of the sample. How large must the mirror reflectiv-
ity be chosen in order to obtain reasonable ’empty’ ring down times of about
τ > 10 μs? What is the sensitivity for detecting atoms with a strong absorption
line at resonance? (Hint: Estimate the absorption coefficient α from Eq. (6.20)).

5.8. Computer analysis of multi-layer dielectric mirrors Write a computer
program (we suggest using computer algebra programs such as MapleTM or
MathematicaTM) to display Eq. (5.32) graphically as a function of the wave-
length or frequency. Study the width of the reflection band centred around λ0
as a function of the number of layers. What is the reflectance at 2λ0 and 3λ0?
Extend your program by accounting for material dispersion.
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6
Light and matter

An electromagnetic wave accelerates electrically charged particles in gases,
liquids and solids, and in so doing generates polarizations and currents. The
accelerated charges for their part again generate a radiation field superim-
posed onto the incident field. To understand macroscopic optical properties, it
is necessary to describe the polarization properties of matter microscopically,
which can only be done by means of quantum theory. Despite that, classical
theoretical physics has been able to explain numerous optical phenomena by
phenomenological approaches.
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Fig. 6.1 An electromagnetic field E generates a polarization P in
matter consisting of positive and negative charges. The accelerated
charges generate a radiation field and so react upon the fields.

The quantum theoretical description of matter has led to the development
of ‘quantum electronics’ (see Tab. 6.1), in which the electromagnetic radiation
fields are still taken into account classically, i.e. with a well-defined phase and
amplitude. This kind of treatment of the radiative interaction is also called
‘semiclassical’.

Ultimately also electromagnetic fields have to be dealt with in a quantum
theoretical way when phenomena such as the famous ‘Lamb shift’ are to be
understood. Today ‘quantum electrodynamics’ (QED) is considered a model
case of a modern physical field theory. In ‘quantum optics’ in a narrower
sense,1 in particular the quantum properties of optical radiation fields are

1) The term ‘quantum optics’ is in general not very precisely defined.
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dealt with [118, 139], e.g. the spectrum of resonance fluorescence or so-called
photon correlations. Such topics are treated in Chap. 12.

Since the beginning of the 1980s it has been possible to influence the motion
of atoms by radiation pressure of light, or laser cooling. The kinetic energy in a
gas cooled in such a way can be decreased so much that atomic motion can no
longer be comprehended like that of classical, or point-like, particles. Instead,
their centre-of-mass motion has to be dealt with according to quantum theory
and can be interpreted in terms of matter waves. In the excursion on p. 184
we have already used this explanation for the diffraction of atomic beams. The
hierarchy of theoretical concepts for light–matter interaction is summarized in
Tab. 6.1.

Tab. 6.1 Treatment of light and matter by theoretical physics*.

Matter Light Atomic motion
Classical optics C C C
Quantum electronics Q C C
Quantum optics Q Q C
Matter waves Q Q Q

*C = classical physics; Q = quantum theory.

When the effect of a light field on dielectric samples is to be described, gen-
erally the electric dipole interaction is sufficient since it is stronger than all
other couplings, such as magnetic effects and higher-order multipoles, which
can be neglected. The concepts of optics can also be extended without any
problems if such phenomena are to be treated theoretically.

6.1
Classical radiation interaction

6.1.1
Lorentz oscillators

A simple yet very successful model for the interaction of electromagnetic ra-
diation with polarizable matter goes back to H. Lorentz (1853–1928). In this
model, electrons are considered with a spring that are harmonically bound
like little planets to an ionic core and oscillate at optical frequencies ω0. The
classical dynamics of such a system is well known. The influence of a light
field shows up as driving electrical or magnetic forces adding to the binding
force FB = −mω2

0x.
Additionally, we assume that damping of the oscillator is caused by release

of radiation energy. Although this concept cannot be fully explained by classi-
cal electrodynamics without some contradictions, in an approximation it leads
to the Abraham–Lorentz equation, in which, besides the binding force, a damp-
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ing force FR = −mγ(dx/dt) occurs causing weak damping (γ � ω0). At this
stage the limits of classical electrodynamics become evident [138], because a
consistent and correct calculation of γ can only be obtained by means of quan-
tum electrodynamics [176]; see Sect. 12.3.1. For our purposes, however, it is
sufficient to consider γ as the phenomenological damping rate.

For simplification we use complex quantities to write the orbit radius, x →
r = x + iy. We consider the equation of motion of the driven oscillator,

r̈ + γṙ + ω2
0r =

q
m
E e−iωt, (6.1)

under the influence of a driving light field E e−iωt, which is circularly po-
larized. With the trial function r(t) = ρ(t) e−iωt, the equilibrium solution
ρ(t) = ρ0 = const. with

ρ0 =
qE/m

(ω2
0 − ω2) − iωγ

can be found easily from the secular equation ρ(−ω2 − iωγ + ω2
0) = qE/m.

For the near-resonant approximation, ω ≈ ω0, we can replace (ω2
0 − ω2) �

2ω0(ω0 − ω) = −2ω0δ with detuning δ, and introduce the maximum radius
ρmax = −qE/mω0γ to obtain

ρ0 = ρmax
γ/2

δ + iγ/2
.

For the x and y coordinates of the driven oscillator, we have

r(t) = x + iy = ρmax
γ

2
δ − iγ/2

δ2 + (γ/2)2 e−iωt. (6.2)

We will see that, in terms of the propagation of light in polarizable matter, x
and y give exactly the ‘dispersive’ (x) and the ‘absorptive’ (y) components of
the radiation interaction. The shape of the dispersion curve and the Lorentz pro-
file of absorption are presented in Fig. 6.2. Here the term ‘normal dispersion’
refers to the dominant positive slopes of the dispersion curve. This situation
is typically found for transparent optical materials, which have electronic res-
onance frequencies beyond the visible domain in the UV. Negative slopes of
dispersion are called ‘anomalous dispersion’.

It is known that an accelerated charge radiates, and so a charged harmonic
oscillator has to lose energy. In classical electrodynamics the damping rate is
calculated from the Larmor formula [138] describing the power radiated by a
particle with charge q undergoing an acceleration a:

Prad =
1

4πε0

2q2

3c3 a2 (6.3)
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Fig. 6.2 ‘Quadrature’ components of the Lorentz oscillator, which are
oscillating in phase (x, absorptive) and 90◦ out of phase (y, dispersive)
with the driving field, respectively. The amplitude is normalized to the
maximum absorption value in the case of resonance at δ = 0.

The damping thus caused is also called ‘radiation reaction’ and has already
been accounted for phenomenologically in Eq. (6.1). From a shortened ver-
sion of the derivation leading to the well-known Abraham–Lorentz equation,
we can infer a damping rate depending on elementary atomic quantities only,
which provides further insight into radiative properties. We have to keep in
mind, however, that a suitable theory of damping must invoke the full quan-
tum theory of light.

By multiplication with ṙ we can introduce the Larmor rate of energy transfer
from the charged oscillator to the radiation field (−Prad) into Eq. (6.1),

d
dt

(
mṙ2

2
+

mω2
0r2

2

)
+ mγṙ2 = 0 = Prad + mγṙ2.

If damping is weak (ω0 � γ), we can assume that, during one revolution
period 2π/ω0, the amplitude change (r) is negligible, and so we can replace
r̈ = ω2

0r and ṙ = ω0r. Then we may identify the radiation power with the
power dissipated through friction (mγṙ2), which was introduced phenomeno-
logically before. We obtain

γ =
q2ω2

0
6πε0c3m

and ρmax =
3ε0λ3

4π2q
E . (6.4)

This result is frequently used to introduce the so-called classical electron radius
[59, 138],

rel =
e2/4πε0

2mc2 = 1.41× 10−15 m with γ =
4
3

relc
λ2 .

As far as we know from scattering experiments in high-energy physics, the
electron is point-like down to 10−18 m, and thus this quantity does not have
physical significance.
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In this way we can obtain the complex dipole moment of a single particle
from d = qρ0 according to Eqs. (6.2) and (6.4),

d(t) = qρ0 = −3λ3

4π2
i − 2δ/γ

1 + (2δ/γ)2 ε0E e−iωt. (6.5)

Often the polarizability α is used as well. It is defined by

d(t) = αE e−iωt,

and the coefficient α is easily extracted from comparison with Eq. (6.5).
In the x as well as in the y component, there is a phase delay φ between the

electric field and the dipole moment, which is only dependent on the damping
rate γ and the detuning δ = ω − ω0 (Fig. 6.3),

φ = arctan(γ/2δ). (6.6)

The so-called phase-lag shows the known behaviour of a driven harmonic
oscillator, i.e. in-phase excitation at low (‘red’) frequencies, out of phase or
90◦ following in the case of resonance, and opposite phase at high (‘blue’)
frequencies.

J'
=

J'

=

��

J'

=

�

� 5* 
 *

Fig. 6.3 Phase lag of the Lorentz oscillator in steady state. At low
frequencies, the driving field and the dipole oscillate in phase; in the
case of resonance, the dipole follows the field out of phase at 90◦; and
at high frequencies, it oscillates with opposite phase.

From Eq. (6.1) we can furthermore infer the time-dependent equation for
ρ(t). We assume that the oscillation amplitude ρ(t) changes only slowly in
comparison with the oscillation itself, i.e. ρ̈ � ωρ̇, etc. We then approximately
obtain

ρ̇ +
(

iδ +
γ

2

)
ρ = −i

qE
2mω

, (6.7)

by furthermore applying iω + γ/2 � iω as well. This complex equation pro-
vides an interesting analogy with the result of quantum mechanics discussed



226 6 Light and matter

on p. 241. There we will find Bloch vector components exhibiting strong for-
mal similarity with dipole quadrature components (u, v), which we introduce
here by letting ρ = u + iv. Decomposition of the complex equation of motion
(6.7) into a system of real equations yields

u̇ = δv − γ
2 u,

v̇ = −δu − γ
2 v − qE

2mω .
(6.8)

We can furthermore complement this equation by

d
dt

(u2 + v2) = −γ(u2 + v2) − qE
mω

v, (6.9)

and thus obtain a relation describing the excitation energy of the system. This
is analogous to the third optical Bloch equation for the w component of the
difference of the occupation numbers (see Eq. (6.36)).

Excursion: Lorentz oscillator in a magnetic field
If a magnetic field influences the motion of a charge, a Lorentz force is added to the
equation of motion (6.1), which is FLor = qẋ × B and results in an extra term iqρ̇B
when the replacement x → r = x + iy → ρe−iωt is carried out. If its influence on
the dynamics is low, |qB|/m � ω0, then the components of the magnetic field in the
xy plane cause a rotation of the orbital plane, while the z component modifies the
eigenfrequency of the oscillator. The complete equation of motion is now

ρ̈ + γρ̇ + ω2
0ρ =

q
m

(E + iρ̇Bz) e−iωt. (6.10)

We seek solutions using the same procedures as before, and, with the Larmor frequency

ωL = qBz/2m,

we obtain the equilibrium solution

ρ0 =
ρmaxγ/2

(ω0 − ωL − ω)− iγ
. (6.11)

In Eq. (6.1), the eigenfrequency ω0 has only to be replaced by the modified value ω0 −
ωL. Otherwise, the results can be taken over. With this theory, H. Lorentz was able to
interpret the Zeeman effect, the shift and splitting of atomic resonance lines by external
magnetic fields.

We finish by studying the effect of a transverse magnetic field on the motion of an
electron. For this purpose we take the vector product of Eq. (6.10) by x× (replacing
ρ → x) and obtain a new equation for the electronic angular momentum L = mx×ẋ.
Strictly speaking, this should be mx×(ẋ×B) = L×B + mẋ×(x×B), but in static fields
the second term vanishes, and in alternating fields it is equivalent to a relativistic cor-
rection of first order, (v/c)d×E, and can be neglected. So

d
dt

L + γL = d×E +
q
m

L×B.
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It can be recognized from this equation that a circularly polarized electric light field
as well as a transverse static field (B ⊥ L) can cause rotation of the electronic angular
momentum. The former case is usually called ‘optical pumping’ in spectroscopy [76],
and the latter case occurs in the Hanle effect [39]. See also Prob. 6.3.

6.1.2
Macroscopic polarization

The macroscopic polarization P(r, t) has already been introduced in Sect. 2.1.2
in order to describe the propagation of electromagnetic waves in a dielectric
medium. From the microscopic point of view, a sample consists of the mi-
croscopic dipole moments of atoms, molecules or lattice elements. The ‘near
field’ of the microscopic particle does not play a role in the propagation of the
radiation field, which is always a ‘far field’. If there are Nat atomic or other
microscopic dipoles in a volume V, the macroscopic polarization is obtained
from

P =
N
V

p =
N
V

d(u + iv). (6.12)

Here the volume V is chosen much larger than molecular length scales, e.g.
dmol < 5 Å, and the average volume of a single particle as well. If the micro-
scopic polarization density p(r) is known, there is the more exact form:

P(r, t) =
Nat

V

∫
V

p(r − r′, t) d3r′.

In our classic model the Fourier amplitudes of the polarization P = F{P}
and of the driving field E are linearly connected,

P(ω) = ε0χ(ω)E (ω), (6.13)

and the susceptibility χ(ω) = χ′(ω) + iχ′′(ω) can be given using the results
of Eq. (6.5),

χ′(δ) = Nat
V

3λ3

4π2
2δ/γ

1 + (2δ/γ)2 ,

χ′′(δ) = Nat
V

3λ3

4π2
1

1 + (2δ/γ)2 .
(6.14)

Since the temporal behaviour of the polarization is also characterized by tran-
sient processes, it usually depends on the field intensity also at earlier times.
This becomes more apparent in the time-domain expression

P(r, t) = ε0

∫ ∞

−∞
χ(t − t′)E(r, t′) dt′, (6.15)

which requires χ(t − t′) = 0 for (t − t′) < 0 in order not to violate causal-
ity. Here as well the literal meaning of ‘susceptibility’ or ‘after-effect’ shows
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up. But for our purposes we assume that we are allowed to neglect relaxation
processes occurring in solid materials within picoseconds or less, and there-
fore we can restrict our treatment to an instantaneous interaction.2 According
to the convolution theorem of Fourier transformation, the relation is, however,
much simpler in the frequency domain following Eq. (6.13).

To be more exact, the ‘dielectric function’ (Eq. (2.4)) ε0κ(ω) = ε0[1 + χ(ω)]
and the susceptibility are second-rank tensors, e.g. χij = ∂Pi/∂Ej, and reflect
the anisotropy of real materials. The magnetic polarization can mostly be ne-
glected for optical phenomena (μr ∼ 1), since the magnetic field B and the H
field are identical except for a factor, H = B/μ0.

Only in an isotropic (∇ · P = 0) and, according to Eq. (2.4), linear medium
does the wave equation take on a simple form. This is, however, an important
and often realized special case where the polarization obviously drives the
electric field:

∇2E − 1
c2

∂2

∂t2 E =
1

ε0c2
∂2

∂t2 P. (6.16)

6.1.2.1 Linear polarization and macroscopic refractive index

If the dielectric polarization depends linearly on the field intensity according
to Eq. (6.13), then the modification of the wave velocity within the dielectric,
c2 → c2/κ(ω), can be taken into account using the macroscopic refractive
index n2(ω) = κ(ω) (see Eq. (2.13)):

∇2E − n2(ω)
c2

∂2

∂t2 E = 0. (6.17)

According to Eq. (6.13) we have E + P/ε0 = [1 + χ(ω)]E = n2(ω)E with

n2(ω) = κ(ω) = 1 + χ(ω).

Here the relation between the complex index of refraction n = n′ + in′′ and
the susceptibility χ becomes simpler in a significant way, if, for example in
optically thin (dilute) matter like a gas, the polarization is very low, |χ(ω)| �
1:

n′ � 1 + χ′/2 and n′′ � χ′′/2,

or

n � 1 +
N
V

3λ3

8π2
i + 2δ/γ

1 + (2δ/γ)2 . (6.18)

2) The methods of femtosecond spectroscopy developed in the 1990s
now also allow us to study such fast relaxation phenomena with
excellent time resolution.
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Thus, by measuring the macroscopic refractive index, the microscopic proper-
ties of the dielectric requiring theoretical treatment by quantum mechanics can
be determined. Using (N/V)3λ3/(8π2) ≥ 0.1, we can also estimate the den-
sity of particles where we ultimately leave the limiting case of optically thin
media. For optical wavelengths (λ � 0.5 μm), this transition occurs already at
the relatively low density of N/V ≈ 1014 cm−3, which at room temperature
for an ideal gas corresponds to a pressure of only 10−2 mbar.

The solution for a planar wave according to Eq. (6.17) is then

E(r, t) = E0 e−i(ωt−n′k·r) e−n′′k·r.

Propagation not only takes place with a modified phase velocity vph = c/n′
but also is exponentially damped according to Beer’s law in the z direction
with absorption coefficient α = 2n′′kz,

I(z) = I(0) e−2n′′kzz = I(0) e−αz. (6.19)

We have chosen n′′, χ′′ > 0 for normal dielectrics according to Eq. (6.18); as
we will see, in a ‘laser medium’ one can create n′′, χ′′ < 0 as well, realizing
amplification of an optical wave.

Let us briefly study the question of whether a single microscopic dipole can
generate a refractive index, i.e. whether it could cause noticeable absorption
or dispersion of an optical wave. For this consideration we again rewrite the
absorption coefficient as

α = 2n′′k =
N
V

3λ2

2π

1
1 + (2δ/γ)2 =

N
V

σQ

1 + (2δ/γ)2 . (6.20)

Therefore, the effect of a single atom is determined by a resonant cross-section
of

σQ = 3λ2/2π at δ = 0, (6.21)

which is much larger than the atom itself. If we succeed in limiting a single
atom to a volume with this wavelength as diameter (V � λ3), then a laser
beam focused on this volume will experience strong absorption. Such an ex-
periment has in fact been carried out with a stored ion [179]. Dispersion is
observed for non-zero detuning only, but for small values δ = ±γ/2 a single
atom is predicted to cause a measurable phase shift δΦ = ±1/(8π) as well.

6.1.2.2 Absorption and dispersion in optically thin media

Sometimes it is useful to consider directly the effect of polarization on the
amplitude of an electromagnetic wave propagating in a dielectric medium.
For this, we take the one-dimensional form of the wave equation (6.16),(

∂2

∂z2 − 1
c2

∂2

∂t2

)
E (z) e−i(ωt−kz) =

1
ε0c2

∂2

∂t2 P(z) e−i(ωt−kz),
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we fix the frequency ω = ck for E(z, t) = E (z) e−i(ωt−kz) and additionally we
assume that the amplitude changes only slowly (on the scale of a wavelength)
during propagation. Thus:∣∣∣∣∂2E (z)

∂z2

∣∣∣∣ � k
∣∣∣∣ ∂E (z)

∂z

∣∣∣∣ .

Then with ∂2/∂z2 [E (z) eikz] � eikz[2ik ∂/∂z − k2]E (z), the wave equation is
approximated by[

2ik
∂

∂z
− k2 +

ω2

c2

]
E (z) = − ω2

ε0c2P(z),

which with k = ω/c further simplifies to

∂

∂z
E (z) =

ik
2ε0

P(z). (6.22)

Now we consider the electromagnetic wave with a real amplitude and
phase, E (z) = A(z) eiΦ(z), and calculate

E (z)dE∗(z)
dz = AdA

dz + iA2 dΦ
dz = −ik

2ε0
P∗(z)E (z),

E∗(z)dE (z)
dz = AdA

dz − iA2 dΦ
dz = ik

2ε0
P(z)E∗(z).

From this we can determine the change of the intensity I(z) = 1
2 cε0A2 of an

electromagnetic wave while propagating within a polarized medium accord-
ing to

d
dz

I(z) =
ω

2
Im{E (z)P∗(z)}

and the phase shift according to

d
dz

Φ(z) =
ω

2I(z)
Re{E (z)P∗(z)}.

The absorption coefficient α and the real part of the refractive index n′ can be
calculated in an obvious way from

α = 1
I(z)

dI(z)
dz = ω

2I(z) Im{E (z)P∗(z)},

n′ − 1 = 1
k

dΦ(z)
dz = c

2I(z) Re{E (z)P∗(z)}.
(6.23)

We naturally reproduce the results from the section on the linear refractive
index, if we assume the linear relation according to Eq. (6.13). The form devel-
oped here also allows us to investigate nonlinear relations, and will be useful
in the chapter on nonlinear optics (Chap. 13).
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6.1.2.3 Dense dielectric media and near fields

Certainly, in a dilute, optically thin medium, we do not make a big mistake by
neglecting the field additionally generated in the sample by polarization. But
this is no longer the case in the liquid or solid states. In order to determine
the ‘local field’ of the sample, we cut out a fictitious sphere with a diameter
datom � dsph � λ with ‘frozen’ polarization from the material (Fig. 6.4).

To determine the microscopic local field Eloc at the position of a particle, we
decompose it into various contributions, Eloc = Eext + Esurf + ELor + Enear,
which depend on the different geometries and structures of the sample and
are in total called the ‘depolarizing field’ since they usually weaken the exter-
nal field Eext:

Esurf: The field of the surface charges generated by the surface charge density
ρsurf = n · P(rsurf). It vanishes for a wave at normal incidence.

ELor: The field of the surface of

'��
< '.���

'���

'A��

Fig. 6.4 Contributions to the local electric field
in an optically dense medium. For a transverse
wave the contribution of the surface vanishes
in the case of normal incidence.

a fictitious hollow sphere cut out
from the volume (also known as
the ‘Lorentz field’). For homo-
geneous polarization, one finds
ELor = P/3ε0.

Enear: The field of the electric charges
within the sphere. In the case of iso-
tropic media, this contribution van-
ishes, Enear = 0.

From P = ε0χEloc = ε0χ(E + P/ε0), we then obtain by insertion of Eloc =
ELor = P/3 the macroscopic volume susceptibility χV of an isotropic and lin-
ear but dense material,

χV
ij(ω) =

1
ε0

Pi

Ej
=

χ

1 − χ/3
.

From this by rearrangement can be obtained the Clausius–Mossotti equation,
which describes the influence of the depolarizing field on the refractive index
(density N = N/V),

3
n2 − 1
n2 + 2

= χ =
N q2

ε0m
1

(ω2
0 − ω2) − iωγ

. (6.24)

For small polarizations, χ/3 � 1, Eq. (6.24) again turns into Eq. (6.18).
Realistic polarizable substances, though, do not have just one degree of free-

dom like the Lorentz oscillator described here but lots of them. We can extend
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the Lorentz model for a not too strong field by linearly superimposing many
oscillators with different resonance frequencies ωk and damping rates γk and
weighting them with their relative contribution, their ‘oscillator strength’ fk:

3
n2 − 1
n2 + 2

=
N q2

ε0m ∑
k

fk

(ω2
k − ω2)− iωγk

.

Even if the field intensity becomes quite large, we can still use the concepts
described here if we introduce a nonlinear susceptibility. This case is dealt
with in Chap. 13 on nonlinear optics.

The dimensionless oscillator strength allows a simple transition to the quan-
tum mechanically correct description of the microscopic polarization [163].
For this, only the matrix element of the dipole transition between the ground
state |φg〉 and excited states |φk〉 of the system, qrkg = q〈φk|r|φg〉, has to be
used:

fkg =
2mωkg|rkg|2

h̄
.

We do not need to require anything specific about the nature of these states.
They can be atomic or molecular excitations but also, for example, optical
phonons or polaritons within solid states. Strictly speaking, the success of the
classical Lorentz model for single atoms is justified by this relation. In atoms
the oscillator strengths follow the Thomas–Reiche–Kuhn sum rule ∑k fkg = 1;
already for low atomic resonance lines such as, for example, the well-known
doublets of the alkali spectra, we have f ∼ 1; therefore the other resonance
lines have to be significantly weaker.

6.2
Two-level atoms

6.2.1
Are there any atoms with only two levels?

In quantum mechanics we describe atoms by their states. In the simplest case a
light field couples a ground state |g〉 to an excited state |e〉. This model system
can be theoretically dealt with well, and is particularly useful for understand-
ing the interaction of light and matter. However, even simple atoms such as
the alkali and alkaline earth atoms, which are technically easy to master and
widely used for experimental investigations, present a complex structure with
a large number of states even in the ground level.3

3) The wealth of structure is generated by the coupling of the mag-
netic orbital and spin momenta of electrons and core. For low states
the splittings are about 100–1000 MHz. Details can be found in text-
books about quantum mechanics [36] or atomic physics [180].
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Fig. 6.5 Abstract and realistic two-level atoms. Left: Calcium atom.
A σ+-polarized light field couples only states with angular momentum
quantum numbers |g〉 = |F, mF〉 = |0, 0〉 and |e〉 = |1, 1〉. Right:
Sodium atom. A circularly polarized light field (σ±) is ‘pumping’ the
sodium atoms to the outer |F, mF〉 = |2,±2〉 states, which with σ±
light are coupling only to the |3,±3〉 states.

Occasionally, though, it is possible to prepare atoms in such a way that no
more than two states are effectively coupled to the light field. The calcium
atom, for instance, has a non-degenerate singlet ground-state (1S0, � = 0, m =
0). By using a light field with a wavelength of 423 nm and proper choice of
the polarization (σ±, π), three different two-level systems can be prepared by
coupling to the (1P1, � = 1, m = 0,±1) states.

The famous yellow doublet of the sodium atom (λ = 589 nm) is another
example that has played a central role in experimental investigations, though
it has large total angular momenta F = 1, 2 even in the 2S1/2 ground state
doublet due to its nuclear spin of I = 3/2 and presents a wealth of magnetic
substructure. By so-called ‘optical pumping’ [76] with σ+-polarized light, all
the atoms in a gas can be prepared in, for example, the state with quantum
numbers F = 2, mF = 2. This state is then coupled only to the F′ = 3, mF′ = 3
substate of the excited 2P3/2 state by the light field.4

These effective ‘two-level atoms’, the list of which can easily be extended,
play an enormously important role in physical experiments since they provide
the simplest models of a polarizable physical system and radiative interaction
is reduced to its most fundamental case.

4) In reality, the circular polarization is never perfect. Small admixtures
of σ− light to the σ+ light cause, for example, occasional excitations
with ΔmF = −1 and therefore limit the ‘quality’ of the two-level
atom.
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6.2.2
Dipole interaction

The ‘free’ two-level atom with total mass M is now reduced to a Hamiltonian
Hat having only a ground state |g〉 and an excited state |e〉.5 To complete the
picture, we allow for an arbitrary centre-of-mass energy E0 = P2/2M. Thus

Hat =
P2

2M
+

h̄ω0

2
(|e〉〈e| − |g〉〈g|). (6.25)

The energy of the atom is Ee = 〈e|Hat|e〉 = E0 + h̄ω0/2 in the excited state
and Eg = E0 − h̄ω0/2 in the ground state. The resonance frequency presents
the energy separation of the two states, ω0 = (Ee − Eg)/h̄.

The dipole operator V̂dip is obtained by an analogy with classical electrody-
namics, i.e. by converting the classical energy of a dipole subject to an electric
field into an operator. For the electron position operator r̂, we obtain6

V̂dip = −qr̂E.

In a realistic experiment, we always have to take the exact geometric orien-
tation of atom and electric field into account. For the consideration of the
two-level atom, however, we neglect this geometric influence and restrict the
problem to one dipole coordinate d̂ = qr̂ only,

V̂dip = −d̂E0 cos ωt.

Using the completeness theorem of quantum mechanics, we can project the
position operator onto the states involved (〈i|d̂|i〉 = 0):

d̂ = |e〉〈e|d̂|g〉〈g|+ |g〉〈g|d̂|e〉〈e|.

We use the matrix element deg = 〈e|d̂|g〉 of the dipole operator. Using the def-
inition of atomic raising and lowering operators, σ† = |e〉〈g| and σ = |g〉〈e|,
we write

d̂ = degσ† + d∗egσ. (6.26)

5) We assume that the reader is familiar with the basic principles of
quantum mechanics. Quantum states are given in Dirac notation,
where state vectors |i〉 are associated with complex wave functions
ψi(r). The expectation values of an operator Ô are thus calculated
from 〈Ô〉 = 〈 f |Ô|i〉 =

∫
V dV ψ∗

f (r)Ôψi(r).
6) Rigorous analysis according to quantum mechanics results in the

product of electron momentum and electromagnetic vector potential
p̂A, but it can be shown that in the vicinity of resonance frequencies
r̂E leads to the same result [153].
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With those operators we can already express the atomic Hamiltonian and the
dipole operator very compactly:

Hat =
P2

2M
+ h̄ω0(σ†σ − 1

2 ),

V̂dip = −(degσ† + d∗egσ)E0 cos ωt.
(6.27)

From linear combinations of the atomic field operators, Pauli operators can
be generated, which are known to describe a spin-1/2 system with only two
states:

σx = σ† + σ,
σy = −i(σ† − σ),
σz = σ†σ − σσ† = [σ†, σ].

We will see that we can interpret the expectation values of σx and σy as com-
ponents of the atomic polarization and σz as the difference of occupation num-
bers or ‘inversion’. With σ†σ− 1/2 = (σz + 1)/2 we find that the Hamiltonian
operator from Eq. (6.27) is equivalent to a spin-1/2 system subject to a homo-
geneous magnetic field,

Hat =
P2

2M
h̄ω0

2
(σz + 1). (6.28)

In general any two-level atom or any two-level quantum system can be de-
scribed in terms of a pseudo-spin system, exhibiting fully analogous dynamics.

The Pauli operators have the form

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
,

in the matrix representation and follow the generally useful relation [σi, σj] =
2iσk on cyclic permutation of the coordinates x, y, z. In addition we have

σ† = 1
2 (σx + iσy),

σ = 1
2 (σx − iσy).

The operators’ equation of motion is obtained from the Heisenberg equation

σ̇i =
∂

∂t
σi +

i
h̄
[H, σi].

For this, the Hamiltonian is usefully written in the form

H = 1
2 h̄ω0σz − 1

2 (deg + d∗eg)E0 cos(ωt)σx − 1
2 i(deg − d∗eg)E0 cos(ωt)σy.
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Often real values can be chosen for deg. Then the third (σy) term is omitted
and it can simply be written as

H = 1
2 h̄ω0σz − degE0 cos(ωt)σx.

If the operators are not explicitly time-dependent, the result is an equation
system known as Mathieu’s differential equations,

σ̇x = −ω0σy,

σ̇y = ω0σx − 2degE0
h̄ cos(ωt)σz,

σ̇z =
2degE0

h̄ cos(ωt)σy.

(6.29)

It can easily be shown that only the orientation, but not the magnitude, of
the angular momentum is changed under the effect of the light field; we have
σ2

x + σ2
y + σ2

z = 1 as for the Pauli matrices.

6.2.3
Optical Bloch equations

Until now we have considered the development of atomic operators under the
influence of a light field. For the semiclassical consideration we can replace
them by expectation values7 Si = 〈σi〉 and again obtain the equation system
(6.29), only now for classical variables [2]. To produce transparent solutions
it is advantageous to consider the evolution of variables in a new coordinate
system rotating with the light frequency ω around the z axis, i.e. with the
polarization,

Sx = u cos ωt − v sin ωt,
Sy = u sin ωt + v cos ωt,
Sz = w.

This often used approximation is called the ‘rotating wave approximation’
(RWA). The variables (u, v) describe the sine and cosine components of the
induced electric dipole moment, and w is the difference in occupation num-
bers. The close relation of these variables with the classical Lorentz model in
Sect. 6.1.1 and their physical interpretation will be explained in more detail in
Sect. 6.2.7.

7) There are no operator products that could cause typically quantum
mechanical signatures due to non-commutativity.



6.2 Two-level atoms 237

With detuning δ = ω − ω0 we obtain after some algebra

u̇ = δv − degE0
h̄ sin(2ωt)w,

v̇ = −δu − degE0
h̄ [1 + cos(2ωt)]w,

ẇ =
degE0

h̄ sin(2ωt)u +
degE0

h̄ [1 + cos(2ωt)]v.

For typical optical processes the contributions oscillating very rapidly with
2ωt play only a small role (they cause the so-called Bloch–Siegert shift) and are
therefore neglected. We introduce the Rabi frequency

ΩR = |degE0/h̄| (6.30)

and get the undamped optical Bloch equations,

u̇ = δv,
v̇ = −δu + ΩRw,
ẇ = −ΩRv,

(6.31)

originally found for magnetic resonance by F. Bloch (1905–1983, nobel prize
1952) in order to describe there the interaction of a magnetic moment with
spin 1/2 in a strong homogeneous magnetic field exposed to a high-frequency
field.

The system of equations (6.31) can also be written in a shorter way by intro-
ducing the Bloch vector u = (u, v, w) and Ω = (ΩR, 0,−δ):

u̇ = Ω × u. (6.32)

It describes the behaviour of a magnetic dipole transition, e.g. between the
hyperfine states of an atom, in an excellent approximation. In Sect. 6.2.4 we
explore in more detail the situation of perfect resonance, i.e. at zero detuning
δ = 0. There, the occupation number difference, or w component of the Bloch
vector, oscillates sinusoidally with Rabi frequency ΩR and maximum ampli-
tude. If the detuning δ does not vanish, there is still a sinusoidal oscillation
with generalized Rabi frequency

Ω =
√

δ2 + Ω2
R, (6.33)

In Fig. 6.6 occupation number oscillations are shown for initial conditions
(u, v, w)(t=0) = (0, 0,−1) and δ = 0, ΩR, 2ΩR. With increasing detuning
the generalized Rabi frequency increases while the amplitude of the occupa-
tion number oscillations decreases. Full modulation is obtained only at perfect
resonance.
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Fig. 6.6 Solutions for Eqs. (6.31) with initial condi-
tion (u, v, w)(t=0) = (0, 0,−1): Occupation num-
ber oscillation for different detunings δ. See also
Fig. 6.8.

Since optical two-level systems obey an identical set of equations, almost
all the concepts of coherent optics are borrowed from electron and nuclear
spin resonance. In contrast to magnetic systems spontaneous emission (see
Sects. 6.3.2 and 12.3.1) plays a dominant role for optical processes, however.
Hence the optical Bloch equations (6.31) need to be extended by introducing
damping rates (Sect. 6.2.6).

6.2.4
Pseudo-spin, precession and Rabi nutation

Every quantum mechanical two-level system can be understood in analogy
with the magnetic spin-1/2 system where we only have the ’up’ and ’down’
state; it is thus a pseudo-spin-1/2 system. In a classical vector model for the
spin and its magnetic moment, a gyromagnet, the frequency corresponding
to the energy splitting caused by the magnetic dipole energy in an external
magnetic field is also associated with the precession frequency of the dipoles
around the external field axis (Fig. 6.7). Quantum transitions between the two
states are equivalent to additional forces (a transverse radiofrequency B field
in magnetic resonance experiments) resulting in nutation of the spin vector in
the classical analogue.

Tab. 6.2 Comparison of the spin-1/2 system and Bloch vector components.

Spin 1/2 Bloch vector
Transverse components x, y u, v polarization
Longitudinal component z w occupation number difference
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Fig. 6.7 Precession and nutation of a magnetic dipole moment as-
sociated with a gyro. The pseudo-spin of the two-level atom performs
an analogous motion in which the longitudinal z direction is associ-
ated with the difference in occupation numbers w, while the transverse
directions are identified with the polarization components u and v.

Let us now consider special solutions of the optical Bloch equations (6.31)
to analyse the dynamics of the two-level system. The resonance case is par-
ticularly easy to determine: here the detuning vanishes, δ = 0. The occupa-
tion number w and the v component of the polarization perform an oscillation
with the Rabi frequency according to Eq. (6.31). At thermal ambient energies, an
atom with an optical excitation frequency usually resides in its ground state,
and therefore we normally have w(t=0) = −1 and

v(t) = − sin (ΩRt),
w(t) = − cos (ΩRt).

The dynamical Bloch vector evolution for resonant excitation of a system with
initial value w(t=0) = −1 is shown in Fig. 6.8(a). Rotations around the w-axis
should be called precession, around any other axis (Rabi) nutation, in analogy
with classical gyroscopes. For ΩRt = π the atomic system rotates from w =
−1 into the completely ‘inverted’ state with w = 1! An electric field pulse
driving a transition with ΩRt = π is therefore called a π-pulse; π/2 pulses
rotate the vector to the equatorial plane. They play an important role for the
generation of quantum state superpositions, e.g. in Ramsey spectroscopy (see
Prob. 11.2).

6.2.5
Microscopic dipoles and ensembles

Extending the classical Lorentz model of Sect. 6.1.1 we have to find again the
transition from the microscopic model to macroscopically measurable phys-
ical quantities. From quantum mechanics it is known that the calculation of
expectation values predicts the distribution of measured values for an ensem-
ble. Thus the w component of the Bloch vector is measured from the number
of atoms in the excited state Ne and in the ground state Ng,

w =
Ne − Ng

Ne + Ng
=

ΔN
N

. (6.34)
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Fig. 6.8 Dynamics of Bloch vectors: (a) Ω = (−ΩR, 0, 0);
(b) Ω = (0, 0,−δ); and (c) Ω = (−ΩR, 0,−δ). The torque vector
Ω = (ΩR, 0,−δ) defines the normal vector to the plane in which the
Bloch vector rotates.

The w component equals the normalized occupation number difference, and
more strictly speaking inversion occurs for w > 1 only, when more particles
are in the excited than in the ground state. More loosely w and ΔN are called
inversion irrespective of their values.

In a physical system at thermal equilibrium the occupation number nth de-
creases with increasing energy of the quantum state, nth e−E/kT. In this case
the occupation number difference Ne − Ng and hence w are always negative.
Optical transitions are furthermore very energetic in comparison with thermal
energies (2 eV vs. 1/40 eV), thus the thermal equilibrium value of an unper-
turbed sample is typically w = −1.

For the determination of the macroscopic polarization density of a sample
we use the particle density N/V. For a system of identical particles we obtain,
in close analogy to the classical case,

P =
N
V

deg(u + iv). (6.35)

In contrast to Eq. (6.12) deg is now the quantum mechanical transition dipole
moment and (u, v) depend in a nonlinear way on the intensity of the driving
field.

6.2.6
Optical Bloch equations with damping

We have learned that the motion is undamped according to (6.31) whereas an
optical atomic excitation is damped by multiple processes. Among them there
is the radiative decay but also collisions and other phenomena. For now we
introduce phenomenological relaxation rates which are justified more deeply
in Sect. 12.3.1.

The longitudinal relaxation rate γ = 1/T1 describes the energy loss of the two-
level system characterized by the difference in occupation numbers, and the w
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coordinate of the Bloch vector, respectively. In equilibrium without a driving
light field, the stationary thermal value of the inversion w0 = −1 must be
reproduced.

The transverse relaxation rate γ′ = 1/T2 describes the damping of polariza-
tion, i.e. of the u and v components of the Bloch vector. In an ensemble the
macroscopic polarization can also get lost because each particle precesses with
a different speed and so the particles lose their original phase relation (in the
precession angle). For pure radiation damping we have T2 = 2T1. The polar-
ization vanishes as well, when the light field is switched off.

The complete set of optical Bloch equations including damping is

u̇ = δv − γ′u,
v̇ = −δu − γ′v + ΩRw,
ẇ = −ΩRv − γ(w − w0).

(6.36)

Its similarity to the classical equations (6.8) and (6.9), a result of the Lorentz
model, cannot be overlooked any more. Apparently the ratio of the Rabi fre-
quency ΩR to the damping rates γ and γ′ determines the dynamics of the
system. We expect oscillatory properties as in the undamped system only
when

ΩR � γ, γ′. (6.37)

This limiting case where the driving forces are much stronger than the damp-
ing forces is called strong coupling and is of great importance in the interaction
of matter with strong laser fields (see Sect. 12.4).

Often the optical Bloch equations are written in the more compact complex
notation using the language of the density matrix theory from quantum me-
chanics (see App. B.2). With ρeg = u + iv and w = ρee − ρgg we find

ρ̇eg = −(γ′ + iδ)ρeg + iΩRw,
ẇ = −Im{ρeg}ΩR − γ(w − w0).

(6.38)

6.2.7
Steady-state inversion and polarization

6.2.7.1 Steady state inversion and saturation intensity

We consider the situation when transients have settled, i.e. a time t � T1, T2
has passed since switching on the light field, or u̇ = 0 in (6.36). The stationary
solution wst is related to the inversion equation (6.34), w0 = ΔN0/N, without
a driving light field:

wst =
w0

1 +
Ω2

R
γγ′

1
1 + (δ/γ′)2

=
w0

1 + s
=

ΔN0

N
1

1 + s
. (6.39)
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In a light field with intensity I, the ‘saturation parameter’

s =
s0

1 + (δ/γ′)2 with s0 =
I
I0

=
Ω2

R
γγ′ (6.40)

determines the significance of coherent processes with dynamics determined
by the Rabi frequency and in comparison with incoherent damping processes
determined by the relaxation rates γ and γ′. Owing to Ω2

R = |−degE0/h̄|2 =
|−deg/h̄|2(2I/cε0), the saturation intensity I0 can be calculated as

I0 =
cε0

2
h̄2γγ′

d2
eg

. (6.41)

From Fig. 6.9 it is clear that the saturation intensity sets the typical scale for
the onset of coherent processes.
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Fig. 6.9 Effect of a light field on the equilibrium values of the differ-
ence in occupation numbers (‘inversion’) wst and the polarization
components ust and vst as functions of the saturation parameter
s(δ=0) = I/I0 according to Eqs. (6.39) and (6.44). With the light
field vanishing, the values w0 = −1, −0.6, −0.3, +0.3 and +0.6 have
been used.

Using the known result for spontaneous emission γ = d2
egω3/3πh̄ε0c3 (see

Eq. 6.49)), the saturation intensity can be determined just by knowing the reso-
nance wavelength λ and the transverse relaxation rate γ′. We get a useful cor-
relation with the resonant cross-section of the absorption σQ from Eq. (6.21),

I0 =
2πhcγ′

3λ3 =
h̄ωγ′

σQ
, (6.42)

which can be interpreted in the following way. Apparently, at the saturation
intensity, the energy of just one photon flows through the resonant absorption
cross-section σQ during the transverse coherence time T′ = 1/γ′.

If only radiative decay is possible, as e.g. in dilute gases or atomic beams,
then the saturation intensity with γ′ = γ/2 depends only on the properties of
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the free atom and is given by

I0 =
πhcγ

3λ3 .

As an example, we present the saturation intensity for several important
atoms. They can be realized technically using continuous wave laser light
sources without special effort except for the case of the hydrogen atom. The
‘strength’ of the transition is characterized by the decay rate γ/2π = Δ1/2,
given in Tab. 6.3 in units of the natural linewidth. It is perhaps strange
at first glance that the saturation intensity becomes smaller with decreasing
linewidth and therefore weaker lines, but it has to be taken into account that
coherent coupling needs more and more time to reach excitation.

Tab. 6.3 Saturation intensity of some important atomic resonance lines.

Atom H Na Rb Cs Ag Ca Yb
Transition 1S→2P 3S→3P 5S→5P 6S→6P 5S→5P 4S→4P 6S→6P
γ/2π (106 s−1) 99.5 9.9 5.9 5.0 20.7 35.7 0.18
λ (nm) 121.6 589.0 780.2 852.3 328.0 422.6 555.8
I0 (mW cm−2) 7242 6.34 1.63 1.06 76.8 61.9 0.14

According to Eq. (6.39) increasing driving field intensities reduce the oc-
cupation number difference ΔN and inversion wst which can be expressed
conveniently by its dependence on the saturation intensity,

wst = w0
δ2 + γ′2

δ2 + γ′2(1 + I/I0)
.

The evolution of wst(I/I0) is shown in Fig. 6.9 for δ = 0 and different unper-
turbed or unsaturated values of the inversion. Note that the sign of wst depends
on the sign of the unsaturated inversion only!

6.2.7.2 Steady-state polarization

The simplest experimental quantities of light-matter interaction are the index
of refraction n and absorption coefficient α, which by means of Eq. (6.20) and
using Eqs. (6.23) and (6.35) are related to the polarization or v component of
the Bloch vector,

α = 2n”k = −2π

λ

N
V

v
ε0E deg. (6.43)

For a more detailed exploration of the properties of the equilibrium absorption
coefficient in Sects. 6.4.3 and 11.2.1, we must therefore evaluate the stationary
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(u, v) values and find

vst = w0
1 + s

γ′ΩR
δ2 + γ′2 ,

ust = δ
γ′ vst.

(6.44)

Sometimes it is technically more convenient to express the Rabi frequency ac-
cording to (6.40) again by the saturation intensity and w by the occupation
numbers (6.34). For ust and vst we then obtain the more transparent form

vst =
ΔN0/N

1 + I/I0 + (δ/γ′)2

√
I
I0

(γ/γ′)1/2

1 + (δ/γ′)2

→ ΔN0/N
1 + I/I0

√
I
I0

(
γ
γ′

)1/2

for δ → 0.

(6.45)

The intensity dependence of the polarization is presented in Fig. 6.9 as a
function of the normalized intensity I/I0 in the special case of perfect reso-
nance at δ = 0. It increases very rapidly and decreases at high intensities as
1/

√
I/I0, i.e. with the amplitude of the driving field. For low intensities we

find again the limiting classical case. Then (ust, vst) correspond with the (u, v)
coordinates of the Lorentz oscillator from Eq. (6.8) and of course exhibit as
well the frequency characteristic from Fig. 6.2.

The treatment of an ensemble of two-level atoms according to quantum me-
chanics thus predicts that as in the classical case a light field will always be
absorbed for arbitrary intensities because according to (6.45) vst ∝ ΔN0 < 0:
The polarization then lags the field and always causes absorption. If, however,
an initial inversion w > 0 can be realized, we expect a change of sign for vst
(Eq. (6.44)) and as a consequence also for α (Eq. (6.43)). A light field travelling
in such a medium will no longer be attenuated but amplified – the condition
for the laser.

6.3
Stimulated and spontaneous radiation processes

In the previous section we investigated the coupling of an atom to a
monochromatic light wave. Three different radiation processes were iden-
tified:

1. By coupling to the driving field, an atom can be promoted from the
ground state to the excited state. This process is called ‘stimulated ab-
sorption’ and can only take place if there is an applied external field.

2. An analogous process takes place as well from the excited to the ground
state, and is called ‘stimulated emission’. The stimulated processes de-
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Fig. 6.10 Two-level quantum system with Einstein coefficients, stimu-
lated and spontaneous radiation processes.

scribe the coherent evolution of the atom–field system, i.e. phase rela-
tions play an important role.

3. If an atom is in the excited state, it can decay to the ground state by
‘spontaneous emission’. This process is incoherent, always takes place
(apart from the exceptions in so-called cavity QED, Sect. 12.3.3) and has
been taken into account phenomenologically in Eq. (6.36) by introducing
the damping constants.

Excursion: The spectrum of black bodies
Just before the end of the 19th century, the spectrum of black bodies was very carefully
studied at the Physikalisch-Technische Reichsanstalt, Berlin (the historic German Na-
tional Laboratory for Standards and Technology). At that time, light bulbs for public
lighting had only very recently been introduced, and the intention was to control their
output and increase their efficiency. This blackbody spectrum has since played an out-
standing role in modern physics in general and our understanding of light sources in
particular. During these investigations, it turned out that the formula given by Wien
for low frequencies, SE(ω) ∝ ω3 exp(−h̄ω/kT), no longer matched the experimental
results. At the same time, in England, Lord Rayleigh gave a different, more appropri-
ate, radiation formula for low frequencies, S′

E(ω) ∝ ω2T.
Max Planck arrived at his famous radiation formula by a clever interpolation, here

in the modern notation of the spectral density SE(ω) of the blackbody radiation field,

SE(ω) =
8π

c3
h̄ω3

exp(h̄ω/kT) − 1
. (6.46)

Today we know that this formula is derived from the product of the density of states
of the radiation field at frequency ω and the occupation probability according to Bose–
Einstein statistics. This formula, published for the first time by Planck in Berlin on 14
December 1900, was the beginning of a sequence of ideas leading to modern physics.
Thermal light sources, the concepts of optics and a problem of truly applied research
– the efficiency of light bulbs – all played an important role in the birth of quantum
physics!

The unbroken fascination of radiation physics has recently also been confirmed by
radio-astronomical measurements. It is remarkable that the most exact measurement
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Fig. 6.11 Left: Spectrum of the 2.7 K cosmic background radiation.
Right: Celestial maps of the intensity fluctuations. Top: Dipole asym-
metry. Bottom: Residual fluctuations with maximum ΔT/T � 10−5.
After [133].

of the universal black body spectrum (6.46) is now obtained from the spectrum of the
cosmic background radiation. The difference between the measured values and the
theoretical curve in Fig. 6.11 is in fact not visible! The average temperature of this
radiation, often interpreted as the ‘afterglow’ of the now very much cooled down Big
Bang, can be determined as T = 2.726 ± 0.005 K.

The measurements by the Cosmic Background Explorer (COBE) satellite [133, 31] are
so exact that the temperature fluctuations of radiation related to the average detected
from a certain direction can be mapped on a celestial map. The spectacular result
shows a dipole-like asymmetry of the order ΔT/T � 10−3, which can be explained
by the proper motion of our Galaxy relative to a homogeneous radiation background.
Beyond that, the microwave radiation is isotropic except for smaller spatial fluctua-
tions of about ΔT/T � 10−5. It is assumed [31] that those small fluctuations reflect the
density fluctuations of the early Universe and have acted as seeds for the observable
matter, which is not homogeneously distributed across the Universe.

The terms ‘stimulated emission’ and ‘spontaneous emission’ were developed
by Einstein in relation to thermal broadband light sources, since both types
were necessary for thermodynamic reasons. Coherent coupling of light fields
and atoms was neither conceptually nor experimentally conceivable at that
time.

6.3.1
Stimulated emission and absorption

Let us now investigate how we can obtain the limiting case of a broadband
incoherent light field from the Bloch equations. For this purpose we use the
complex form in Eq. (6.38) and assume |ρeg| � w � −1. With the equilibrium
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value ρeg we obtain without difficulty

ẇ = − γ′Ω2
R

γ′2 + δ2 w − γ(w − w0).

We are interested in the first term, containing the stimulated processes (emis-
sion and absorption) because of Ω2

R = d2
egE2

0 /h̄2 ∝ I, and we take the broad-
band spectrum into account by integrating over all detunings δ and defining
E0 to be the mean quadratic field amplitude,

ẇ = π(d2
eg/3)E2

0 /h̄2 − γ(w + 1).

The coupling of unpolarized field and atomic dipole generates a factor 1/3 by
averaging over the space directions, and with ρee = (w + 1)/2 we find the
form

ρ̇ee =
πd2

eg

3ε0h̄2 u(ν0)w − γ(w + 1)/2 = Begu(ν0)(ρgg − ρee) − γρee. (6.47)

Here we call u(ν0) = ε0E2
0 /2 the energy density at the resonance frequency

ν0. The coefficient

Beg =
πd2

eg

3ε0h̄2 (6.48)

is called the Einstein B coefficient and determines the rate of stimulated emis-
sion and absorption, respectively. With these coefficients we can also give the
rate equations for an ensemble of absorbers subject to this radiation field:

ρ̇ee = Begu(ν0)(ρgg − ρee) − γρee,
ρ̇gg = Begu(ν0)(ρee − ρgg) + γρee.

6.3.2
Spontaneous emission

Rigorous calculation of the spontaneous emission rate requires a treatment ac-
cording to the rules of quantum electrodynamics, i.e. with the help of a quan-
tized electromagnetic field. In fact the calculation of the spontaneous emission
rate by V. Weisskopf and E. Wigner [176] in 1930 was the first major success of
this, then very new, theory. It will be made explicit in Sect. 12.3.1.

We here choose a much shorter way by using the result of the Larmor for-
mula (6.11) known from classical electrodynamics. It says that the radiation
power of an accelerated electric charge is proportional to its squared accelera-
tion,

P = γhν0 =
2

3c3
e2

4πε0
ẍ.
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We assume that, during the characteristic decay time γ−1, just the excitation
energy hν0 is emitted. From quantum mechanics we adopt the result ẍ = xω2

0,
and by ad hoc multiplication with the factor 2 delivered only by quantum
electrodynamics, we obtain the result

γ = Aeg = 2 × P
hν0

=
d2

egω3
0

3πh̄ε0c3 (6.49)

for the Einstein A coefficient.
By comparison with Eq. (6.47), we confirm the result that Einstein obtained

from purely thermodynamic reasoning,

A
B

=
h̄ω3

0
π2c3 = h̄ω

ω2

π2c3 . (6.50)

With ρ(ω) = ω2/π2c3, the latter form contains just the state density of the
radiation field for the frequency ω (see App. B.3). If the driving field contains
photons in a certain mode nph, then the ratio of spontaneous and stimulated
emission rate in this mode has to be

A : B = 1 : nph. (6.51)

The occurrence as well as the rate of spontaneous emission can be derived
from fundamental, thermodynamical arguments. Nevertheless it is accessible
to experimental modifications, as will be described in Sect. 12.3.3.

6.4
Inversion and amplification

The treatment of light-matter interaction in Sect. 6.2.7 predicts the prepara-
tion of an amplifying medium only if we succeed in populating an excited
state more intensely than a lower-lying ground state, i.e. Ne > Ng. Formally
speaking this corresponds to a negative temperature, since the Boltzmann factor
Ne/Ng = exp (−(Ee − Eg)/kT) can only become larger than unity if T < 0 –
an indication that light amplifying media are not in thermal equilibrium.

6.4.1
Four-, three- and two-level laser systems

It is impossible to obtain inversion by optically exciting a two-level system,
as outlined in Sect. 6.2.7. In a system with four states, however, we can build
a dynamic equilibrium that generates a stationary inversion between two of
the four levels by supplying energy, and so fulfil the requirement for running
a laser. An inversion (and thus the requirement for laser operation) can be
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obtained with three levels as well. However, the four-level system causes a
strict separation of the states directly contributing to the pumping process and
the laser process. That is why it is preferred for a transparent treatment.

The idealized system is presented in

�=

Q

Q$

=
�
2

=

Q


Q=
�

Fig. 6.12 Four-level system with inversion
between the upper (|e〉) and lower (|g〉)
levels. The circles indicate the population
of the levels in dynamic equilibrium.

Fig. 6.12. The pumping process promoting
(pumping) particles from the ground state
|0〉 to the pump level |p〉 at a total rate
R = VR can be driven by electron im-
pact in a discharge, by absorption from the
light of an incandescent lamp or a laser, or
by other mechanisms. We will get to know
some of them in the chapter about lasers.

Our focus is on the two levels |e〉 and |g〉,
which from now on are to be referred to
as ‘laser levels’. Inversion (and hence the
condition for laser operation) can also be

obtained with three levels if e.g. the pump level |p〉 and the upper laser level
|e〉 are identical.

The four level system provides strict separation of all levels by their role in
the laser process. A simplified laser model (See Sect. 8.1) is restricted to the
laser levels |e〉 and |g〉 (two level laser model). In this model, the contribution
of the other auxiliary levels (|p〉 and |0〉 in Fig. 6.12) is implemented by taking
into account the pump rate R and the depopulation rate γdep.

6.4.2
Generation of inversion

We consider the rate equations for the occupation numbers n0, np, ne and ng.
We focus on weak pumping processes, where most of the atoms remain in the
ground state, and we may keep n0 � 1 to a good approximation. By a short
consideration or calculation, it can be found that for these conditions the rate
equation system can effectively be limited to the laser states |e〉 and |g〉. The
dynamics is determined by the population rate R of the upper state, by its
decay rate γ, by the partial transition rate γeg ≤ γ falling to the lower laser
level, and finally by the depopulation rate of the lower laser level γdep:

ṅe = R − γne,
ṅg = γegne − γdepng.

(6.52)

The stationary solutions nst
e = R/γ and nst

g = γegR/γγdep are found, and
the difference in the occupation numbers can be calculated in equilibrium but
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in the absence of any light field that could cause stimulated emission:

n0 = nst
e − nst

g =
R
γ

(
1 − γeg

γdep

)
. (6.53)

If the depopulation rate γdep of the lower state is larger than the decay rate
of the upper state, then apparently an inversion, n0 > 0, is maintained in this
system because γeg/γdep < 1. The inversion is a non-equilibrium situation
from the thermodynamic point of view and requires an energy flow through
the system.

Since the imaginary part of the polarization is now also positive (Eq. (6.44)),
we expect the polarization not to be absorbed by the field causing it but in con-
trast to be intensified! A field growing stronger, though, reduces this inversion
according to Eq. (6.45), but maintains the amplifying character (Fig. 6.9). With
this system, the requirements for an optical amplifier are met. It is known that
an amplifier excites itself by feedback and works as an oscillator. We call these
devices ‘lasers’.

6.4.3
Optical gain

If inversion occurs (w0 > 0), then, because of the positive vst > 0, a negative
absorption coefficient is caused (Eq. (6.19)), also known as the optical gain coef-
ficient. Its unit is cm−1 as well. By evaluation of Eq. (6.43) with the stationary
values for vst we obtain:

α =
2π

λ

N
V

[
w0

1 + s

−d2
egE/h̄γ′

ε0E (1 + (δ/γ′)2

]
.

The result is more transparently expressed with the help of Eqs. (6.21) and
(6.34),

α =
N
V

σQ
−ΔN0/N

(1 + s)(1 + (δ/γ′)2)
.

Especially for δ = 0 we find the straightforward relation

α =
N
V

σQ
−ΔN0/N
1 + I/I0

. (6.54)

According to Fig. (6.9), it is clear that the inversion – and so the gain – is
reduced under the influence of a light field. For laser operation, we will call
this saturated gain. In the case of very low intensities I/I0 � 1, the gain is
constant and it is called small signal gain. This value is usually given for a laser
material.
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Fig. 6.13 Negative dispersion was observed
already in 1930 by Ladenburg [110, 111].
The diagram shows the ’N’-number, which
is evaluated from a measurement of the in-
dex of refraction of the strongest transitions
(wavelengths in Ångstrom) of the 1s–2p sys-
tem (compare Fig. 7.5). It is a measure of

the number Ng(1 − Ne/N) in Eq. (6.55). Ini-
tially the number of neon atoms in the lower
1s levels Ng rises rapidly. With increasing
current 2p levels become excited more effi-
ciently, causing a reduction of absorption and
dispersion.

We can express Eq. (6.54) also with ΔN0 = Ne − Ng,

α =
Ng

V
σQ

1 − Ne/Ng

1 + I/I0
. (6.55)

In this version the contribution of negative dispersion introduced in 1925 by
Kramers and Heisenberg [107] is recognized. This negative dispersion was
already observed in 1930 by Ladenburg and Kopfermann [111], more than 25
years before the first description of the optical maser or laser by Schawlow
and Townes [154].
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6.4.4
The historical path to the laser

Tab. 6.4 Selected milestones on the route to the laser [19, 169].

Year Event Ref.

1917 A. Einstein publishes the Quantentheorie der Strahlung (Quantum theory of
radiation) and introduces the A- and B-coefficients. [52]

1925
H. A. Kramers and W. Heisenberg publish a theoretical manuscript on nega-
tive dispersion in atomic gases. [107]

1930
R. Ladenburg and H. Kopfermann demonstrate negative dispersion of a
neon discharge at the Kaiser-Wilhelm-Institut for physical chemistry in
Berlin.

[111]

1951
W. Paul visits Columbia University in New York and reports his work on
magnetic hexapole lenses, which can be used to focus atomic and molecular
beams.

[61, 169]

1954 J. Gordon, H. Zeiger and C. Townes use Paul’s focusing method to generate
inversion in an ammonia beam and realize the first maser.

[69]

1954
N. Basov and A. Prokhorov publish a theoretical manuscript on molecular
amplifiers at the Lebedev Institute in Moscow. [13]

1958
A. Schawlow and C. Townes describe the laser or optical maser, respectively,
in an extensive manuscript. [154]

1960
T. Maiman operates the ruby laser as the first pulsed and visible laser at
Hughes Research Laboratories. [121]

1960
A. Javan, W. R. Bennett, and D. R. Herriott realize the first continuous-wave
(cw) He-Ne gas laser at Bell Laboratories. [90]

1962
A. White and J. Rigden operate the best-known visible laser line, the He–Ne
laser at 633 nm wavelength. [177]
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Problems

6.1. Doppler-broadened cross-section For gas lasers a realistic absorption or
gain coefficient, respectively, is determined by the Doppler-broadened cross-
section. Use the velocity distribution from Sect. 11.3.2 to estimate an effective
cross-section for an atomic resonance line, i.e. a transition with moment deg =
ea0.

6.2. Classical Bloch equations Compare the optical Bloch equations
(Eq. (6.36)) and the equations for the classical dipole oscillator (Eq. (6.8)). Con-
trast the significance of the parameters. If the dynamics of the (undamped)
Bloch vector can be described as motion on the Bloch sphere, which geometric
form is appropriate for the classical dipole? Why is it an approximation for
the Bloch sphere?

6.3. Hanle effect An oscillating linear electric dipole re-radiates its excitation
energy according to the radiation pattern from Fig. 2.5. For instance, in free
space no radiation field is expected to travel in the direction of the detector, if
as in the drawing the linearly polarized E field is directed towards the detec-
tor.

A dipole exhibiting a magnetic mo-
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Fig. 6.14 Schematic for observing the
Hanle effect.

ment μ, too, precesses around the
axis of an external magnetic field Bz

with Larmor frequency ωL = μ⊥Bz/h̄
where μ⊥ is the component of the
dipole orthogonal to the magnetic
field. This situation occurs frequently
for atoms, and it modifies the radia-
tion distribution because the orienta-
tion of the electric dipole can rotate.
Consider a simplified classical model
which was proposed as long ago as
1924 by W. Hanle [75]. At t = 0
electric dipoles are excited which radiate at Bz = 0 the amplitude E(t) =
E0 exp (−iω0t) exp (−γt/2) into the direction of the detector. For Bz = 0 as-
sume that the dipoles precess with frequency ωL, around the axis of the Bz

field. The average intensity at the detector is calculated by integration over all
times, ID =

∫ ∞
0 I(t) dt.

(a) Linear polarization E ‖ Bz, π-polarization. Show that the magnetic field
does not influence the fluorescence intensity registered at the detector, ID(t) =
const.
(b) Linear polarization E ⊥ Bz, σ+ and σ− polarization. Show that for
the polarization analyser position α the intensity at the detector is ID(t) =
I0 exp(−γt) cos2[ωt − α]. Calculate and sketch the average intensity at the
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detector as a function of the external magnetic field for analyser positions
α = 0, π/4, π/2, 3π/4.

6.4. Can a sodium atom be saturated with sunlight? The sodium D line at
λ = 589 nm has a natural linewidth of 10 MHz corresponding to a saturation
intensity of I0 = 63.4 Wm−2. (a) On the Earth a sodium atom is separated by
DS−E = 1.5 × 108 km from the Sun. Is it possible to saturate the D line with
sunlight? (b) Is the sodium D line saturated if the atom is placed directly on
the surface of the Sun (radius rS = 7 · 105 km)? (c) Determine the temperature
at which on the surface of the Sun the atom is just saturated. (Hint. Consider
the Sun to be an ideal blackbody and use Planck’s formula for the spectral
energy density (Eq. (6.46)). The temperature of the Sun is 5 700 K.)

6.5. Bloch equations: magnetic resonance and optical transitions The optical
Bloch equations used to describe light-matter interaction at optical frequencies
are identical to the Bloch equations applied to the methods of magnetic res-
onance, of which nuclear magnetic resonance (NMR) is the most important.
Discuss the differences of the optical and magnetic systems in the solutions
by studying the relevant time constants. Estimate the spontaneous decay rate
of a magnetic transition by extending Eq. (6.49) to a typical magnetic moment.

6.6. Kramers–Kronig relations An important result of theoretical electrody-
namics are the Kramers–Kronig relations, according to which the real and imag-
inary parts of the susceptibility are connected with each other by

χ′′(ω) = − 1
π
P

∫ ∞

−∞

χ′(ω)
ω′ − ω

dω′ and χ′(ω) =
1
π
P

∫ ∞

−∞

χ′′(ω)
ω′ − ω

dω′.

Here P denotes the principal value of the integral. Show that the susceptibility
according to Eq. (6.14) fulfils the Kramers-.Kronig relation.
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7
The laser

The laser has become an important instrument, not only in physical research
but also for almost all fields of everyday life. Nearly 60 years after its first
experimental realization the laser must be counted among the most significant
inventions of the 20th century.

In this chapter we introduce the basic principles of lasers by presenting sys-
tems of central importance and with some technical details. An introduction
to the theoretical description of the most important dynamic physical prop-
erties of lasers is given in Sect. 8.1. A special chapter (Chap. 9) is devoted to
semiconductor lasers which because of their compact design and inexpensive
production are playing a central role in the still growing scientific as well as
economic relevance of lasers and laser-based optical instruments.

Laser = Light Amplification by Stimulated Emission of Radiation

The word laser has become a well-recognized word in everyday language,
and is derived from its predecessor, the maser, (the acronym ‘maser’ meaning
‘microwave amplification by stimulated emission of radiation’).

Natural maser and laser sources A laser is fundamentally a source of in-
tense, coherent light fields. Laser light appears absolutely artificial to us, and
our ancestors certainly never happened to experience the effect of a coherent
light beam.1 In the cosmos, though, there exist several natural sources of co-
herent radiation. Their wavelengths are usually too long to be considered a
laser and are thus identified as masers [129]. They occur in the vicinity of hot
stars, where inversion can be sustained in for instance molecular gases. An ex-
ample with a relatively short wavelength is the hydrogen gas surrounding a
star named MWC349 in the Cygnus constellation, which is excited to lumines-
cence by the ultraviolet radiation of this hot star. The hydrogen gas arranged
in a disc amplifies the far-infrared radiation of the star at the wavelength of
169 μm several million times, such that it can be detected on Earth.

1) Though interference and coherence phenomena can be observed
even in our everyday environment – for example, take a piece of
thin, fine fabric and watch some distant, preferably coloured, lights
through it, e.g. the rear lights of a car. You will observe a diffraction
pattern. And the twinkling stars have fascinated humankind all
along.
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Of course very different conditions regarding density and temperature pre-
vail in space in comparison with environments on Earth. Of the 130 cosmic
maser lines derived from 10 different molecules known today only two are
observed in the laboratory. Apart from vibrational transitions of the HCN
molecule [155] it is interestingly enough precisely that line of the ammonia
molecule which was used by C. Townes and coworkers [69] to operate the
first maser in 1954. Cosmic lasers provide astronomers with interesting data
on the dynamics of large interstellar molecular clouds.

Laser amplifiers and oscillators The laser has historical roots in high-
frequency and gas discharge physics. It was known from the maser that it was
possible to construct an amplifier and oscillator for electromagnetic radiation
with an inverted molecular or atomic system. In a famous publication [154]
A. Schawlow (1921–1999, Nobel prize 1981) and C. Townes (born 1915, Nobel
prize 1964) had theoretically predicted the properties of an ‘optical maser’,
later called a laser.

The optical properties of atomic gases had already been studied in dis-
charges for a long time. The question was raised whether an inversion and
thus amplification of light could be achieved by a suitable arrangement. So it
becomes understandable that the first continuous-wave laser realized by the
American physicist Ali Javan (born 1928) in 1960 [90] with an infrared wave-
length of 1.152 μm was a surprisingly complex system consisting of a gaseous
mixture of helium and neon atoms.

F
F

8
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Fig. 7.1 Left: Analogy between a laser and
an electronic amplifier (V), which becomes an
oscillator by feedback coupling. The oscilla-
tor frequency can be selected, e.g. by a filter
(F) in the feedback path. For the laser, the
feedback is achieved using resonator mirrors.

Right: For clarification, a ring resonator with
three mirrors has been chosen. The spec-
tral properties of the amplifying medium as
well as the wavelength-dependent reflectivity
of the resonator mirrors determine the fre-
quency of the laser.

The laser bears a close analogy to an electronic amplifier that is excited to
oscillations by positive feedback. Its oscillation frequency is determined by
the frequency characteristic of gain and feedback (Fig. 7.1). It is known that
an amplifier oscillates with positive feedback if the gain becomes greater than
the losses,

oscillation condition: gain ≥ losses.
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Once oscillation has started, the amplitude grows more and more until all the
pump current supplying the gain is used up to just compensate losses and
outcoupling of the laser or oscillator circuit, respectively. The effective gain
then equals the losses. This is called a ‘saturated gain’ (see Sect. 8.1.3.1).

As we already know from the chapter about light and matter, an inversion
of the laser medium is necessary to achieve an intensification of a light wave.
If the loss coefficient is αV , then the gain condition according to Eq. (6.54) reads

N
V

σQ
−ΔN0/N
1 + I/I0

> αV .

Using the simplest picture there always have to be many more atoms in the
upper excited state than in the lower one. If this condition is not fulfilled,
the laser oscillations die or do not even start. An ideal laser is supposed to
deliver a gain as large as possible and independent of the frequency. Since no
such a system has yet been found, a multitude of laser systems is used. The
most important variants roughly divided into classes (Tab. 7.1), will now be
introduced with their technical concepts, strengths and weaknesses.

Tab. 7.1 Laser types.

Gaseous Liquid Solid state
Fixed frequency neutral atoms rare-earth ions

ions 3d ions

Multiple frequency molecules

Tunable dyes 3d ions
semiconductor
colour centres

Fig. 7.2 Helium–neon laser in an open experimental set-up. The cur-
rent is supplied to the discharge tube by the two cables. The resonator
mirrors and the laser tube are mounted on finely tunable bearings.
Compare Fig. 7.4.
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7.1
The classic system: the He–Ne laser

The helium–neon laser (He–Ne laser) has played an unsurpassed role in scien-
tific research on the physical properties of laser light sources, e.g. experimental
investigations of coherence properties. Just for this alone it is the ‘classic’ of all
laser systems. We shall introduce several important laser features using this
system as an example.

7.1.1
The amplifier

The helium–neon laser obtains its gain from an inversion in the metastable
atomic excitations of the Ne atom (the luminescence of Ne atoms is also
known due to the proverbial neon tubes).

In Fig. 7.3 the relevant atomic levels with some important features and some
selected laser wavelengths (‘lines’) are presented. Since the gas mixture is
quite dilute, we can easily understand the He–Ne laser using the picture of
independent atoms. The Ne atoms are excited not directly by the discharge
but by energy transfer from He atoms, which are excited to the metastable 1S0
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Fig. 7.3 Energy levels of He and Ne atoms with the most
prominent optical transition at 632.8nm. For nomenclature,
the spectroscopic terms are used. For the energy levels,
the lifetimes are given as well.
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and 3S1 levels by electron impact. The Ne atom has nearly resonant energy
levels so that an efficient energy transfer is enabled by resonant impacts. In
the He–Ne laser, the excitation and the laser transition are split up into two
different atomic systems, which is helpful for the realization of the desirable
four-level system, though there is a problem at the lower laser level of the
Ne atoms (Fig. 7.3), which is metastable as well and cannot be emptied by
radiative decay. In a narrow discharge tube, collisions with the wall lead to
efficient depopulation of the lower laser level.

7.1.1.1 Operating conditions

The inversion can only be maintained in a rather dilute gas mixture compared
to the atmospheric environment. The He pressure p is some 10 mbar, and the
He : Ne mixing ratio is about 10 : 1. The He discharge is operated at a current
of several milliamps and a voltage of 1–2 kV, and it burns in a capillary tube
with a diameter of d ≤ 1 mm (Fig. 7.2). At its walls the metastable Ne atoms
(Fig. 7.3) fall back to the ground state again due to collisional relaxation and
are available for another excitation cycle. The discharge is ignited by a voltage
pulse of 7–8 kV.

���,�����= ����
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Fig. 7.4 Schematic representation of a helium–neon laser. The big
cathode cup prevents fast erosion caused by the discharge. The Brew-
ster windows at the ends of the laser tube reduce reflection losses at
the windows and uniquely determine the laser polarization.

All He–Ne lasers have this construction principle in common, only the con-
struction length and the gas filling pressure being slightly different depending
on the application. Optimum conditions for the product of pressure p and di-
ameter d are empirically found at

p · d � 5 mbar mm.

The output power of commercial He–Ne lasers varies between 0.5 mW,
which will just not damage the eyes, and 50 mW. The power depends on the
discharge current and the length of the tube. Both can only be increased to a
certain amount. The gain is proportional to the density of inverted Ne atoms,
but this already reaches a maximum at a few tens of milliamps since increas-
ing electron collisions de-excite the atoms. The length of the tube cannot be
significantly expanded over � = 1 m, for the following reasons. On the one
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hand, the diameter of the Gaussian modes grows with increasing mirror dis-
tance and does not fit into the capillary tube any more. Furthermore, with a
larger construction length, the 3.34 μm line starts oscillating as a superradiator
even without mirrors, and thus withdraws energy from laser lines competing
for the same reservoir of excited atoms.

7.1.1.2 The laser resonator

The resonator mirrors can be integrated into the discharge tube and may be
once and forever adjusted during manufacturing. Especially for experimental
purposes, an external resonator with manually adjustable mirrors is used.
The tube has windows at its ends. In the simplest case the resonator only
consists of two (dielectric) mirrors and the discharge tube. To avoid losses,
the windows are either anti-reflection-coated or inserted at the Brewster angle.

Example: Radiation field in the He–Ne laser resonator
The laser mirrors determine the geometry of the laser radiation field according
to the rules of Gaussian optics (see Sect. 2.3). They have to be chosen such that
the inverted Ne gas in the capillary tube is used as optimally as possible. For
a symmetric laser resonator with mirror radii R = 100 cm (reflectivity 95%
and 100%), and separated by � = 30 cm, one obtains for the red 633 nm line a
TEM00 mode with the parameters:

confocal parameter b = 2z0 = 71 cm,
beam waist 2w0 = 0.55 mm,
divergence Θdiv = 0.8 mrad,
power inside/outside Pi/Po = 20 mW/1 mW.

There are no problems of fitting the laser beam over the complete length to the
typical cross-section of the plasma tube of about 1 mm. Even in a distance of
10 m it has just a cross-section of about 4 mm.

7.2
Mode selection in the He–Ne laser

We devote the next two sections to the physical properties of the He–Ne laser
(mode selection and spectral properties) because it is a good model to present
the most important general laser properties and since for the He–Ne laser the
physical properties have been investigated particularly thoroughly.

The aim of mode selection in every continuous-wave (‘cw’) laser is the
preparation of a light field oscillating both in a single spatial or transverse
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mode, and in a single longitudinal mode, i.e. at just a single optical frequency
ω. The methods used with the He–Ne laser can be applied to all other laser
types with slight modifications. The desirable transverse mode is mostly a
TEM00 or closely related mode. It has fewer losses due to its comparatively
small cross-section and thus is often intrinsically preferred anyway. In case of
doubt the relevant spatial mode can be selected by using a suitable adjustment
of the resonator or insertion of an additional aperture.

7.2.1
Laser line selection

If several laser lines of the neon atom have a common upper laser level (e.g.
2s, Fig. 7.5), only that one with the highest gain can be observed. If the laser
line couples completely different levels (e.g. 2s–2p and 3s–3p), then the lines
can be activated simultaneously.
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Fig. 7.5 Wavelength selection in the He–Ne
laser. Left: Part of the energy level scheme
of the neon atom showing the important laser
transitions. The common notation does not
follow the customary singlet/triplet convention
according to the LS coupling scheme. The

notation used here goes back to Paschen,
who simply numbered the levels consecu-
tively. An s level splits into 4, and a p level
into 10 angular momentum states. Right:
Littrow prism as a dispersive end mirror for
wavelength selection.

Owing to the helium discharge in the neon gas, the 2s state as well as the 3s
are populated, with the occupation of the uppermost 3s2 substate dominating
in the 3s group. The largest gain factors are obtained at the wavelengths of
0.633, 1.152 and 3.392 μm. Transitions with a low gain can be excited if the
feedback coupling by the resonator selectively favours or suppresses certain
frequencies by means of some suitable optical components. In general, all
dispersive optical components – such as optical gratings, prisms and Fabry–
Perot etalons – are appropriate. One of the simplest methods is the installation
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of a Littrow prism as shown in Fig. 7.5. The Littrow prism is a Brewster prism
divided in half so that the losses for p-polarized light beams are minimized.
The backside of the Littrow prism is coated with dielectric layers to make a
highly reflective mirror. Since the refraction angle depends on the wavelength,
the laser line can be selected by tilting the Littrow prism.

Another specialty is the extremely high gain coefficient of the infrared
3.34 μm transition (typically 103 cm−1), causing the line to start oscillating al-
most every time. It can be suppressed by using infrared-absorbing glass and
limiting the length of the plasma tube. The latter fact is unfortunate since it
imposes a technical limit to the output power, which otherwise increases with
length.

7.2.2
Gain profile, laser frequency and spectral holes

For the example of the He–Ne laser, we are now going to ask how the os-
cillation frequency of a laser line depends on the combined properties of the
gas and the resonator. The spectral width of the fluorescence spectrum (the
width of the optical resonance line) is determined by the Doppler effect caused
by the neon atoms moving at thermal speed of several 100 m s−1 in a gas at
room temperature. This broadening is called inhomogeneous (see Sect. 11.3.2),
since atoms with different velocities have different spectra. With regard to
the laser process this especially means that the coupling of the neon atoms
to the laser light field depends very strongly on their velocity. For the red
laser line at 633 nm, the Doppler linewidth at room temperature is about
ΔνDopp = 1.5 GHz according to Eq. (11.9) and can just be resolved with a
high-resolution spectrometer (e.g. Fabry–Perot).

In Fig. 7.6 the gain profile and its significance for the laser frequency is pre-
sented. It makes the laser begin oscillating if the gain is higher than the losses.
Within the gain profile the laser frequency is determined by the resonance
frequencies of the laser resonator (here indicated by the transmission curve
showing maxima at frequencies separated by the free spectral range ΔFSR). At
these ‘eigenfrequencies’ the laser may start oscillating, as we shall investigate
more deeply in Sect. 8.1. True lasers are slightly shifted off the resonances of
the empty resonator, an effect that is called mode pulling.

At the eigenfrequencies of the He–Ne laser one can observe spectral holes
(the so-called Bennett holes). The atoms make up the difference between their
rest-frame frequency ν0 and the laser frequency νL by their velocity vz in the
direction of the resonator axis, and the atoms of a gas laser contribute to the
gain only within their homogeneous, i.e. their natural, linewidth. This situ-
ation is called saturated gain. In equilibrium the effective gain is reduced at
these frequencies to that value just corresponding to the losses (including the
decoupling at the resonator mirrors).
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Fig. 7.6 Gain profile of a He–Ne laser in operation. Without the laser
field, the small signal gain corresponds to the neon Doppler profile
(dashed line); the laser operation modifies the gain profile by so-called
spectral or Bennett holes (see text). Two holes symmetric to v = 0 m/s
occur because in a standing wave the Doppler shift acts in two direc-
tions.

The small signal gain from Fig. 7.6 can be measured by sending a very weak
tunable probe beam through the He–Ne laser and measuring the gain directly.
Since in a resonator with standing waves atoms can couple to the light field in
both directions, two spectral holes can be observed at

νL = ν0 ± kvz.

This observation also indicates that two different velocity groups of atoms
contribute to the gain of the backward and forward running intra-cavity wave,
respectively. Thus a very interesting case occurs when both holes are made to
coincide by e.g. changing the resonator frequency by length variations with
the help of a piezo-mirror. At vz = 0 a lower gain than outside the overlap re-
gion of the holes is available and the output power of the laser decreases. This
collapse is called Lamb dip after Willis E. Lamb (born 1913)2, and it initiated
the development of Doppler-free saturation spectroscopy.

7.2.3
The single-frequency laser

In Fig. 7.6 only one resonator frequency lies within the gain profile such that
the laser threshold is exceeded. Since the free spectral range ΔFSR = c/2� of

2) W. E. Lamb has become immortal in physics mainly by the discov-
ery of the Lamb shift also named after him, for which he received the
Nobel prize in 1955. He also contributed significantly to the pioneer-
ing days of laser spectroscopy.
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the He–Ne laser exceeds the width of the Doppler profile at λ = 633 nm below
10 cm, for typical, i.e. larger, construction lengths, generally 2–4 frequencies
start to oscillate because in the inhomogeneous gain profile there is no com-
petition between the modes about the available inversion. But we can still
insert additional (and low-loss) dispersive elements into the resonator which
modulate the spectral properties of the gain profile in a suitable way to filter
the desired laser frequency from the available ones. To discriminate between
adjacent resonator modes, highly dispersive elements such as Fabry–Perot
etalons are required.

Example: Gain modulation with intra-cavity etalons
Etalons cause a modulation of the effective laser gain which is periodic with
ΔFSR, the free spectral range (Eq. (5.19)) separating adjacent transmission max-
ima. The periodicity can be chosen by the etalon thickness or length � and
refractive index n. Tilting the etalon causes the transmission maxima to shift,
and from geometrical considerations following Sect. 5.5 one obtains

νmax = NΔFSR(α) = N
c

2�
√

n2 − sin2 α
� N

c
2�n

[
1 − 1

2

(α

n

)2
]

.

Small tilts by α change the free spectral range only slightly but are enough due
to the high order N to tune the centre frequency efficiently. The monolithic

!R4




�

��
�
�
.
2

�.
.
��

�

��J����

�.

8&�

Fig. 7.7 Frequency selection by intra-cavity
etalons. Left: ‘Thin’ etalon and ‘thick’ etalon.
For rough tuning the thin etalon is tilted where
the walk-off caused by the tilt is tolerable. The
thick etalon is constructed with an air gap
at the Brewster angle, which can be varied

in length by a piezo-translator. Right: Com-
bined effect of an etalon (ΔFSR) and the laser
resonator (ΔRes) on the transmission (and
thus on the gain). For this example the length
of the etalon is about one-fifth of that of the
resonator.
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thin etalon presented in Fig. 7.7 is simple and intrinsically stable, but when
tilted it leads to a walk-off and thus increased losses. The air-spaced etalon
(the variable air gap is cut at the Brewster angle to keep the resonator losses
as small as possible) has a more complex mechanical construction but avoids
the walk-off losses of the tilted device.

The intra-cavity etalons often do not need any additional coating. Even
using only the glass–air reflectivity of 4% a modulation depth of the total gain
of about 15% is obtained according to Eq. (5.17). With regard to the small gain,
in many laser types this is completely sufficient.

7.2.4
Laser power

We shall now investigate how to
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Fig. 7.8 Output power of a laser as a function
of the transmission T of the outcoupling mirror,
and the gain V, normalized to the resonator
losses A.

optimize the laser output power,
i.e. for practical reasons generally to
maximize it. The properties of the
amplifier medium are physically de-
termined and thus can be influenced
only by a suitable choice, length, den-
sity, etc. The losses can be kept
as small as possible by design and
choice of the components of the res-
onator. Finally there is only the
choice of the mirror reflectivity as the
remaining free parameter, which also
acts as a loss channel. We consider a
Fabry–Perot interferometer with gain
as a model. For this we make use of the considerations about dissipative res-
onators from Sect. 5.5. The laser is always operated in the resonance case. We
here anticipate the relation between gain V, losses A and transmission T of
the only outcoupling mirror more accurately dealt with in Sect. 8.1, Eq. (8.18),

Iout = I0
T(V − A − T)

A + T
,

and investigate it graphically as a function of the transmission T in Fig. 7.8.
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7.3
Spectral properties of the He–Ne laser

7.3.1
Laser linewidth

Until now we have taken monochromatic optical light fields for granted, i.e.
we have assumed that the optical wave can be described by a single exactly
defined frequency ω. In the chapter about laser theory we will see that laser
light comes closer to this deeply classical idea of a perfect harmonic oscillation
than almost any other physical phenomenon. The physical limit for the spec-
tral width of a laser line measured according to the so-called Schawlow–Townes
limit (Sect. 8.4.4) amounts to several hertz or even less! This physical limit is
imposed due to the quantum nature of the light field. It has been mentioned
already by the authors in that paper proposing the laser in 1958. According to
this the linewidth of the laser is (see Eq. (8.33))

ΔνL =
N2

N2 − N1

2πhνLγ2
c

PL
,

where νL is the laser frequency, γc = Δνc the damping rate or linewidth of
the laser resonator, PL the laser power and N1,2 the occupation numbers of the
upper and lower laser level, respectively.

Example: Schawlow–Townes linewidth of the He–Ne laser
We consider the He–Ne laser from the previous example. The laser frequency
is νL = 477 THz, the linewidth of the resonator is Δνc = 8 MHz (according to
the data from the example on p. 260), while all internal resonator losses are
neglected according to Eq. (5.20). The He–Ne laser is a four-level laser so that
we have N1 � 0. For an output power of 1 mW we calculate a laser linewidth
of just

ΔνL � 2πh × 477 THz (8 MHz)2

1 mW
= 0.13 Hz.

The extremely small Schawlow–Townes linewidth of the red He–Ne line
corresponds to a Q value ν/Δν � 1015! Even today laser physicists think of
this limit as a thrilling challenge because it promises to make the laser the
ultimate precision instrument wherever a physical quantity can be measured
by means of optical spectroscopy.

From the beginning the He–Ne laser has played an extraordinary role for
precision experiments, and it is indeed a challenge even just to measure this
linewidth! It is thus useful to illustrate the methods used to measure the
linewidth of a laser.
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Fig. 7.9 Scanning Fabry–Perot interferometer for the spectral analysis
of laser radiation.

7.3.2
Optical spectral analysis

The spectrum of a laser oscillator, like that of any other oscillator, can be in-
vestigated using several methods. A Fabry–Perot interferometer is used as
a narrowband filter. Its mid-frequency is tuned over the area of interest. A
photodiode measures the total power transmitted within the filter passband.

Alternatively the laser beam can be superimposed with a second coherent
light field (local oscillator) onto a photodiode. The photodiode generates the
difference frequency or ‘heterodyne’ beat signal. The superposition signal in
turn can be analysed by radio-frequency methods or Fourier analysis.3

7.3.2.1 The Fabry–Perot spectrum analyser

In the simplest, and therefore very often used, method a tunable optical filter
is used, also called in brief a ‘scanning Fabry–Perot’, usually a confocal optical
resonator. One of its mirrors can be displaced (‘scanned’) by several λ/4 cor-
responding to several free spectral ranges with the help of a piezo-translator.
The resolution of the optical filter usually reaches some megahertz and there-
fore can be used only for rough analysis or as a laser with a large linewidth
(like e.g. diode lasers, see Chap. 9).

If the linewidth of the laser is smaller than the width of the transmis-
sion curve of the Fabry–Perot interferometer, some information about the fre-
quency fluctuations can still be obtained by setting its frequency to the wing
of the filter curve and using this as a frequency discriminator (Fig. 7.9). So
any frequency variations are converted to amplitude fluctuations, which in
turn can be analysed by means of radio-frequency techniques or by Fourier
transformations.

3) Superposition of two electromagnetic waves with different frequen-
cies is usually called ‘heterodyning’, while superposition of identical
frequencies is called ‘homodyning’. Heterodyning is generally pre-
ferred since the noise properties of both detectors and receivers are
favourable at higher frequencies.
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Fig. 7.10 Heterodyne method for the determination of the laser
linewidth. Top: Superposition with a reference laser used as a local
oscillator. Bottom: Superposition according to the autocorrelation
method. PD = photodiode; BS = beam splitter; AOM = acousto-optical
modulator, driver frequency νS.

7.3.2.2 The heterodyne method

When applying the heterodyne method it is important to closely match the
wavefronts of both light fields and enter the photodiode with excellent flatness
so that the detector is exposed to the same phase everywhere. Otherwise the
beating signal is strongly reduced.

In Fig. 7.10 the scheme is presented according to which a heterodyne signal
can be achieved at radio frequencies. A second laser can be used as a local os-
cillator. Its frequency should be much more ‘stable’ than the laser to be tested.
Furthermore, it must not deviate too far from the test frequency, since above
1–2 GHz high-speed photodiodes become more and more unwieldy (the ac-
tive area shrinks more and more to avoid parasitic capacitances and to gain
bandwidth) and expensive.

The autocorrelation method is an alternative in which the laser in a way
‘pulls itself out of the mud’. One part of the laser light is split off by an AOM
(acousto-optical modulator, see Sect. 3.8.4) and at the same time is shifted by
its driver frequency νS, which is typically some 10 MHz. One of the two light
beams is now delayed over a long optical fibre so that there is no longer any
phase correlation (‘coherence’) between the light waves. Both light waves are
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superposed onto a photodiode as before and the mixed signal is investigated
using a radio-frequency spectrum analyser.

The method is completely analogous to a Michelson interferometer. It is
operated at a path difference larger than the coherence length. There is no
visibility (i.e. the average of the interference signal vanishes) but a fluctuating
instantaneous beat signal that delivers a good measure of the spectral proper-
ties of the laser.

7.4
Applications of the He–Ne laser

For the production of He–Ne laser tubes, the manufacturing technology of
radio tubes was readily available and very suitable. Radio tubes were being
replaced by transistors in the 1960s, so a high production capacity was avail-
able when the He–Ne laser was developed. Historically, its rapid distribution
was significantly supported by this fact.

The best-known wavelength of the He–Ne laser is the red laser line at
632 nm, which is used in countless alignment, interferometric and reading de-
vices. The application of the red He–Ne laser declined rapidly since mass
produced and hence cheap red diode lasers (Chap. 9) have become available,
which can be operated with normal batteries, are very compact and yet offer
very acceptable TEM00 beam profiles, too. The He–Ne laser still plays an im-
portant role in metrology (the science of precision measurements). The red
line is used, for example, to realize length standards. The infrared line at
3.34 μm constitutes a secondary frequency standard if it is stabilized on a cer-
tain vibrational resonance transition of the methane molecule [72].

7.5
Other gas lasers

Stimulated by the success of the helium–neon laser, many other gas systems
have been investigated for their suitability as a laser medium. Gas lasers have
a small gain bandwidth and are fixed-frequency lasers when their small tunabil-
ity within the Doppler bandwidth is neglected. Like the He–Ne laser, they
play a role as instrumentation lasers provided they have reasonable physi-
cal and technical properties, such as e.g. good beam quality, high frequency
stability and a low energy consumption. Some gas lasers are in demand be-
cause they deliver large output power, not in pulsed, but in continuous-wave
(cw) operation. In Tab. 7.2 are listed those gas lasers which nowadays have
practical significance. It is technically desirable to have a substance already
gaseous at room temperature. That is why the rare gases are particularly
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Tab. 7.2 Overview: gas lasers.

Laser Short form CW/P∗ Laser lines Power
Neutral-atom gas lasers

Helium–neon He–Ne CW
633 nm

1.152 nm
3.391 nm

50 mW
50 mW
50 mW

Helium–cadmium He–Cd CW 442 nm
325 nm

200 mW
50 mW

Copper vapour Cu P
511 nm
578 nm

60 W
60 W

Gold vapour Au P 628 nm 9 W

Noble-gas ion lasers

Argon-ion laser Ar+ CW
514 nm
488 nm

334–364 nm

10 W
5 W
7 W

Krypton-ion laser Kr+ CW 647 nm
407 nm

5 W
2 W

Molecular gas lasers

Nitrogen N2 P 337 nm 100 W

Carbon monoxide CO CW 4–6 μm 100 W

Carbon dioxide CO2 CW 9.2–10.9 μm 10 kW

Excimers F2, ArF, KrF,
XeCl, XeF

P 0.16–0.35 μm 250 W

*CW = continuous wave; P = pulsed.

attractive. Among them argon- and, even more so, krypton-ion lasers have
achieved technical significance.

7.5.1
The argon laser

The argon-ion laser plays an important role since it is among the most power-
ful sources of laser radiation and is commercially available with output pow-
ers of several tens of watts. However, the technical conversion efficiency, i.e.
the ratio of electric power consumption and effective optical output power, is
typically 10 kW : 10 W. For many applications this is absolutely unacceptable.
In addition, it is also burdened with the necessity to annihilate most of the en-
ergy spent by a costly water cooling system. Therefore, the frequency-doubled
solid-state lasers (e.g. Nd:YAG, see Sect. 7.8.2) have widely replaced the argon
laser. In the ultraviolet range, however, there is no competitor to the Ar-ion
laser in sight yet.
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7.5.1.1 The amplifier

Excitation of the high-lying Ar+ states is obtained by stepwise electron impact.
That is why there is a very much higher current density necessary than in a
He–Ne laser. The upper laser level can be populated from the Ar+ ground
state as well as from other levels above or below it. The krypton laser follows
a quite similar concept, but it has achieved less technical importance.
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Fig. 7.11 Lasing process of the argon-ion laser and a cross-section
of the plasma tube. A magnetic field supports concentration of the
plasma current near the axis. The copper discs have additional bores
to allow reflux of the argon ions.

7.5.1.2 Operating conditions

In the 0.5–1.5 m long tubes a discharge is operated maintaining an argon
plasma. The cross-section through the plasma tube in Fig. 7.11 indicates the
elaborate technology that is necessary due to the high plasma temperatures.
The inner bores of the plasma tube are protected by robust tungsten discs,
which are inserted into copper discs in order to rapidly remove the heat. A
magnetic field additionally focuses the plasma current onto the axis to protect
the walls against erosion. Since, as a result of diffusion, the argon ions move
to the cathode, the copper discs have holes for the compensating current. An
argon laser consumes gas since the ions are implanted into the walls. There-
fore, commercial ion lasers are equipped with an automatic reservoir. The gas
pressure is 0.01–0.1 mbar.
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7.5.1.3 Features and applications

Ar ions have several optical transitions up to the ultraviolet spectral range
which can be operated with a high output power. For this reason they have
dominated the market for fixed-frequency lasers with high pump power until
about the year 2000, but frequency-doubled solid-state lasers (see Sect. 7.8.2.1)
have proven to be more economic. Most laser laboratories cannot be imag-
ined without high-power visible laser sources because they are used to excite
or, more loosely, to ‘pump’ other, tunable lasers like e.g. dye lasers and Ti–
sapphire lasers.

7.5.2
Metal-vapour lasers

The copper- and gold-vapour lasers were commercially successful because
they offer attractive specifications for high-power (quasi-) cw applications:
they are pulsed lasers but with very high repetition rates of about 10 kHz –
to our eyes they are perfectly continuous. The pulse length is some 10 ns and
the average output power can be 100 W. The most important wavelengths are
the yellow 578 nm line and the green 510 nm line (2P1/2,3/2 → 2D3/2,5/2) of
the copper atom.

The physical reasons for this success, which cannot necessarily be expected
given the high operating temperature of the metal vapour of about 1500 ◦C,
are the large excitation probability by electron impact (the discharge is sup-
ported e.g. by a neon buffer gas) and the high coupling strength of the dipole-
allowed transitions.

7.6
Molecular gas lasers

In contrast to atoms, molecules have vibrational and rotational degrees of
freedom and thus a much richer spectrum of transition frequencies, which
in principle also results in a complex spectrum of laser lines. The electronic
excitations of many gaseous molecules are at very short wavelength, where
the technology is involved, and in the interesting visible spectral range not
very many systems have been realized. Exceptions include the sodium-dimer
laser (Na2), which however has not achieved any practical significance since
sodium vapour contains a reasonable density of dimers only at very high tem-
peratures, and the nitrogen laser, which is today used only for demonstration
purposes. However, it is quite simple to construct!
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Excursion: Can a laser be operated just with air?
The short answer is: Yes! The 78% nitrogen fraction of the air can be used as a laser
amplifier. And even better, a primitive ‘air laser’ is so simple to construct that with
some skill (and caution because of the high voltage!) it can be copied in school or in
scientific practical training. The original idea of a simple nitrogen laser was already
presented with instructions in Scientific American in 1974 [166]. It is still costly insofar
as a vacuum apparatus is necessary for the control of the nitrogen flow. In a practi-
cal project carried out by high-school students [182], the laser – with slightly reduced
output power – was operated directly with the nitrogen from the air.
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Fig. 7.12 Simple home-made ‘air laser’. Good parallel alignment of
the knife edges is essential for successful operation.

In the simplest version a spark discharge along the knife edges in Fig. 7.12 is em-
ployed. The spark is generated according to the circuit diagram in Fig. 7.13. First,
the knife edges are charged to the same high voltage potential. The breakdown of the
air then takes place at the sharp tip of the spark gap so that between the two knife
edges the full voltage is abruptly switched on. The discharge runs along the knife
edges and also turns off rapidly again due to the high-voltage sources used with large
source impedance. Suitable high-voltage sources are available in many institutions,
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Fig. 7.13 Left: Molecular potentials in the nitrogen molecule
(schematic). The discharge generates inversion in the C3Πu/B3Πg
system. Right: Circuit diagram of the air laser.
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but a small voltage multiplier can also be built by oneself without any great expense.
The central experimental challenge is a reproducible and stable discharge as experience
shows.

Between the knife edges a line-shaped occupation inversion of nitrogen molecules
is generated, which leads to laser emission on the 337.1 nm UV line. In Fig. 7.13 rele-
vant molecular levels are shown along with their designations. The lower laser level is
emptied only very slowly since the two involved states belong to the triplet system of
the molecule (parallel electronic spins of paired electrons), which has no dipole tran-
sitions to the singlet ground state. Therefore, the inversion of energy levels cannot be
maintained by a continuous discharge either, and laser operation breaks off after few
nanoseconds.

Strictly speaking, the ‘mirror-less air laser’ is not a laser but a so-called ‘superradia-
tor’. Here, superradiance occurs as a result of spontaneous emission which is amplified
along the pencil-like inversion zone (amplified spontaneous emission, ASE). It is emitted
as a coherent and well-directed flash of light.

7.6.1
The CO2 laser

The most important examples of the molecular gas laser are the carbon
monoxide and carbon dioxide (CO and CO2) lasers, which are based on
infrared transitions between vibration–rotation energy levels. The CO2 laser
is one of the most powerful lasers in general and thus plays an important role
for materials processing with lasers [84].
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Fig. 7.14 Important configurations of CO2 lasers. The conventional
laser (a) is operated with a sealed tube and longitudinal discharge.
To increase the output power, a longitudinal gas flow (b) or a radio-
frequency wave guide laser (c) can be used. The highest power can
be achieved if the gas flow as well as the discharge are operated
transversely to the laser beam (transversely excited, TE laser) (d).
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7.6.1.1 Gain

The molecular states involved in the laser process of the CO2 laser can be
found in Fig. 7.15: a symmetric (v1) and an antisymmetric (v3) stretching vi-
bration as well as a bending vibration (v2). Vibrational quantum states of the
CO2 molecule are identified by quantum numbers (v1, v2, v3).

The (001) level decays by dipole transitions, which are very slow due to the
ω3 factor of the Einstein A coefficient, however, allowing convenient build-
up of inversion in this level. The most important laser transition takes place
between the (001) and the (100) level.

The CO2 lasers are excited by a discharge. The occupation of the upper
laser level is possible directly, but is much more favourable with the addition
of nitrogen. Metastable N2 levels not only can be excited very efficiently in a
discharge but also can transfer the energy to the CO2 molecules very profitably
as well.

The (100) level is emptied
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Fig. 7.15 Transitions relevant for the CO2 laser. Num-
bers in parentheses give quantum numbers (v1, v2, v3).

very rapidly by collisional pro-
cesses. In addition, it is
energetically adjacent to the
(020) level, which itself ensures
quick relaxation to thermal
equilibrium also with the (000)
and (010) levels. For this, the
so-called vv-relaxation plays
an important role, which is
based on processes of the
(020) + (000) → (010) + (010)
type. The heating of the CO2
gas associated with these processes is not desirable because it increases the
occupation of the lower laser level. It can be significantly reduced by adding
He as a medium for thermal conductivity.

In Fig. 7.15 we have completely neglected the rotational levels of the
molecule, though they cause a fine structure of the vibrational transitions
leading to many closely adjacent laser wavelengths (Fig. 7.16). A typical CO2
laser makes available about 40 transitions from the P and S branches of the
rotation–vibration spectrum. The gain bandwidth of each line (50–100 MHz)
is very small since the Doppler effect no longer plays a significant role at low
infrared frequencies. The laser lines of a CO2 laser can be selected by a grating
used as one of the laser mirrors.
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Fig. 7.16 Emission lines of the CO2 laser on the 9.6 μm and the
10.6 μm lines. If one resonator mirror is replaced by a grating (with
mirror-like reflection in −1st order), tuning can be quite easily achieved
by rotating the grating. The terms ‘R’ and ‘P’ branch are taken from
molecular spectroscopy. At the R branches of the spectrum the rota-
tional quantum number J of the molecule is decreased by 1, and it is
increased by 1 at the P branches, J → J±1.

7.6.1.2 Operating conditions

The CO2 laser is among the most powerful and robust of all laser types. It
makes available a high and focusable energy density that is highly favourable
for contactless material processing and laser machining. Owing to the strong
application potential, multiple technically different CO2 laser types have been
developed, a selection of which is displayed in Fig. 7.14. The operation of
the CO2 laser is disturbed by induced chemical reactions. Thus the laser gas
needs to be regenerated, either by maintaining a continuous flow through the
laser tube or by adding some suitable catalysts to the gas, e.g. a small amount
of water, which oxidizes the undesired CO molecules back to CO2. Output
powers of some 10 kW are routinely achieved in larger laser systems.

7.6.2
The excimer laser

Excimer lasers play an important role for applications since they offer very
high energy and furthermore the shortest UV laser wavelengths, although in
the pulsed mode only. The term excimer is a short form of ‘excited dimer’, and
means unusual diatomic molecules (dimers) that exist in an excited state only.
Today the term has been transferred to all molecules that exist only excitedly,
e.g. ArF or XeCl to mention just two examples important for laser physics.

The level scheme and the principle of the excimer laser are presented in
Fig. 7.17. Since the lower state is intrinsically unstable, the inversion condi-
tion is always fulfilled once the excimer molecules have come into existence.
In order to generate them, the gas is pre-ionized with UV light to increase
the conductivity and thus to increase the efficiency of excitation in the follow-
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ing discharge. The lifetime of the excimer molecules is typically about 10 ns,
which also determines the pulse period of this laser type.

Generation and handling of a
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Fig. 7.17 Laser process within the excimer laser.

gas of excimer molecules are quite
costly. The gas is corrosive and the
laser medium ages after some thou-
sands or millions of pulses (with
typical repetition rates of 10–1000
pulses per second). That is why se-
lected materials and sophisticated
gas exchange systems are used. The
strong demand for excimer lasers
for medical applications and their
increasing use as a light source for
optical lithography in the semicon-
ductor industry (see ‘Excursion’ in
Sect. 4.3.2) have already made the

KrF laser at 248 nm a mature product. In the near future, the ArF (193 nm)
laser as well as even the laser with the shortest commercially available wave-
length, the F2 laser, will probably follow.

7.7
The workhorses: solid-state lasers

The world’s first laser, constructed by T. Maiman (born 1927) [121], was a
pulsed ruby laser. Its red light (λ = 694.3 nm) is emitted by the chromium
dopant ions of the Cr:Al2O3 crystal, and therefore it was a solid-state laser.
Though today the ruby laser plays a role for historical reasons only, solid-state
lasers have received increasing attention since many types can be excited effi-
ciently by diode lasers. Furthermore, electrical power inserted into the system
can be converted into light power with an efficiency up to 20%. Solid-state
lasers are thus among the preferred laser light sources because of their robust
construction and economical operation.

7.7.1
Optical properties of laser crystals

Optically active ions can be dissolved in numerous host lattices, and such sys-
tems can be considered as a frozen gas if the concentration of the former is not
higher than a few per cent at most. Nevertheless the density of these impurity
ions within the crystal is much higher than the particle density within a gas
laser and thus allows a higher gain density if there are suitable optical tran-
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sitions. Of course, the host lattices have to have a high optical quality since
losses by absorption and scattering impair laser oscillation. Impurity ions can
be inserted into a host crystal particularly easily if they can replace a chemi-
cally similar element. Therefore many host materials contain yttrium, which
can be replaced very easily by rare-earth metals.

Another important property of the host crystals is their thermal conductiv-
ity, since a large amount of the excitation energy is always converted into heat
within the crystal. Inhomogeneous temperature distributions within the laser
crystal cause e.g. lensing effects due to the temperature sensitivity of the index
of refraction, which may alter the properties of the Gaussian resonator mode
significantly. Since few laser media fulfil all requirements simultaneously, the
growth of new and improved laser crystals is still an important field of re-
search in laser physics.

Tab. 7.3 Selected host materials [14].

Host Formula Thermal conductivity ∂n/∂T * Ions
(W cm−1 K−1) (10−6 K−1)

Garnet YAG Y3Al5O12 0.13 7.3 Nd, Er, Cr, Yb

Vanadate YVO YVO4 Nd, Er, Cr

Fluoride YLF LiYF4 0.06 −0.67(o)
−2.30(e)

Nd

Sapphire Sa Al2O3 0.42
13.6(o)
14.7(e)

Ti, Cr

Glass SiO2 typ. 0.01 3–6 Nd, Yb

* (o),(e): Ordinary (extraordinary) index of refraction in birefringent materials.
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Fig. 7.18 Absorption spectrum of the erbium ion Er3+ in the host ma-
terials YAG (top) and YAlO3 (bottom) according to [3].
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In the simplest case the properties of the free ions are modified only slightly
when the dopant ions are dissolved in the host material. The energy levels
of the erbium ion in different systems may be taken as an example (Fig. 7.18).
This laser can be described very well using the concept of a ‘frozen’ glass laser.

A most important group of dopant elements are the rare-earth ions. Their
unusual electron configuration makes them very suitable for laser operation.
Another group is formed by the ions of simple transition metals, which allow
one to build laser systems tunable over large wavelength ranges. These are
the so-called vibronic lasers including colour centre and Ti–sapphire lasers.

7.7.2
Rare-earth ions

The 13 elements following lanthanum (La, atomic number 57) with N = 58
(cerium, Ce) to 70 (ytterbium, Yb) are called the lanthanides or rare-earth met-
als.4

Being impurity ions, the lanthanides are usually triply ionized, with elec-
tron configuration [Xe]4fn with 1 ≤ n ≤ 13 for the nth element after lan-
thanum. The optical properties of an initially transparent host crystal are de-
termined by the 4f electrons, which are localized within the core of these ions
and thus couple only relatively weakly to the lattice of the host crystal.

To a good approximation the electronic states are described by LS coupling
and Hund’s rules [180]. Because of the large number of electrons that each
contribute orbital angular momentum � = 3, there are in general a multitude
of fine-structure states, which lead to the wealth of levels in Fig. 7.19.

Example: Energy levels of the neodymium Nd3+ ion
The Nd3+ ion has three electrons in the 4f shell. According to Hund’s rules,
they couple in the ground state to the maximum total spin S = 3/2 and total
orbital angular momentum L = 3 + 2 + 1 = 6. From the 4I multiplet the
ground state is expected to be at J = 9/2 due to the less than half-occupied
shell. Unlike the free atom or ion, the magnetic degeneracy in the m quantum
number is lifted by anisotropic crystal fields in the local vicinity. The coupling
to the lattice oscillations (‘phonons’) leads eventually to the homogeneously
broadened multiplets in Fig. 7.20.

The rigorous dipole selection rules of the free atom (Δ� = ±1) are lifted
by the (weak) coupling of the electronic states to the vicinity of the electrical

4) The rare-earth metals are not rare at all within the Earth’s crust.
Since their chemical properties are very similar, it was difficult for
quite a long time to produce them with high purity. The element
promethium (Pm) cannot be used because of its strong radioactivity.
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Fig. 7.19 Energy levels of the rare-earth metals with selected desig-
nations. The range currently (2006) accessible by diode laser radiation
for optical excitation is marked (energy levels from [80]).
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Fig. 7.20 Energy levels of neodymium Nd3+ ions within the solid-
state. The details of the splitting depend on the host lattice.
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crystal field that causes a mixture of 4fn and 4fn−15d states. The energy shift by
this interaction is quite small, but for the radiative decay the dipole coupling
is now predominant and reduces the lifetimes of the states dramatically to the
range of some microseconds (see Prob. 7.5). Therefore, intensive absorption
and fluorescence of the rare-earth ions can be observed on transitions between
the fine-structure levels.

On the other hand, fluorescence cannot be observed from every level since
there are competing relaxation processes caused by the coupling of the ionic
states to the lattice oscillations, or phonons, of the host lattice, which can lead
to fully radiation-free transitions. Those processes are the more probable, the
more the fine-structure levels are lying next to each other. In Fig. 7.18 the
fluorescence lines are quite narrow, showing that the atomic character of the
ions is largely maintained.

7.8
Selected solid-state lasers

From Fig. 7.19 it can easily be imagined that there are countless laser me-
dia containing rare-earth ions [96]. We have selected special solid-state lasers
that play an important role as efficient, powerful or low-noise fixed-frequency
lasers. Those lasers are used, for example, as pump lasers for the excitation of
tunable laser systems or for materials processing that demands intensive laser
radiation with good spatial coherence properties. Tunable lasers, which in-
creasingly employ solid-state systems, will also be discussed in a subsequent
section about vibronic lasers (Sect. 7.9).
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Fig. 7.21 Laser transitions of neodymium lasers and absorption spec-
trum.
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7.8.1
The neodymium laser

The neodymium laser is among the systems already developed in the very
early days of the laser. It was originally excited with high-pressure noble-gas
lamps. Only a small amount of their light energy was absorbed, while the
larger part was removed as heat and dissipated. Although the idea to excite
neodymium lasers by laser diodes arose quite early, it could not be realized
until the advent of reliable high-power laser diodes by the end of the 1980s.
Nowadays, neodymium lasers are primarily excited by efficient, and indis-
pensable, laser diodes, and no end to this successful development is in sight
even after more than ten years. In Tab. 7.3 we have already presented hosts
that have great significance for practical applications.

7.8.1.1 The neodymium amplifier

The energy level structure of neodymium ions has already been presented
above (Sect. 7.7.2). We have already mentioned as well that with ions within
the solid-state a much higher density of excited atoms can be achieved than
within the gas laser. In most of the host crystals this is valid for concentrations
up to a few per cent. Above this level the ions interact with each other causing
detrimental non-radiative relaxations. But there are also special materials, e.g.
Nd:LSB (Nd:LaScB), which stoichiometrically contain 25% neodymium. Ow-
ing to the extremely high gain density of these materials, remarkably compact,
intense laser light sources can be built.

The 4I9/2 → 4F5/2 transition of the Nd3+ ion can be excited very advan-
tageously by diode lasers at the wavelength of 808 nm where the upper 4F3/2
laser level is populated very rapidly by phonon relaxation. Since the lower
4I11/2 level is emptied just as quickly, the neodymium laser makes an excel-
lent four-level laser system.

7.8.1.2 Configuration and operation

Because of its widespread application potential, there are numerous technical
variants of the neodymium laser. Before diode laser pumps were available
with sufficient quality, the crystal within a continuous-wave laser was gen-
erally excited by a high-pressure Xe lamp placed at the second focus of an
elliptical cavity in order to achieve a high coupling efficiency (Fig. 7.22(a)).

Using diode lasers, life has become much more easy in this respect. In
Fig. 7.22(b) such a linear laser rod pumped from the end (‘end-pumped laser’)
is presented. One of its end mirrors is integrated into the laser rod. With this
arrangement the pump power is inhomogeneously absorbed so that the gain
also varies strongly along the laser beam. That is why a Z-shaped resonator
(see Fig. 7.23) is often used to allow symmetrical pumping from both ends.
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Fig. 7.22 Configurations of neodymium lasers. PL: laser output; S1,2:
laser end mirrors; IP drive currents. (a) Pump lamp and laser bar lo-
cated at the two foci of an elliptical resonator. (b) Neodymium laser
longitudinally pumped with a diode laser. (c) In the slab laser, the
pump energy is supplied transversely. The laser beam is guided by
total internal reflection within the crystal.

Further enhanced output power can be achieved by using so-called ‘slab’
geometries in which the pump energy is supplied transversely. With this lay-
out the light of several pumping diode lasers can be used at the same time.
It is technically advantageous to operate the heat-producing laser diodes spa-
tially separated from the laser head. The pump light is then transported to the
laser amplifier by fibre bundles in a literally flexible way, and optimal geomet-
ric pump arrangements can be used. Even with considerable output power of
several watts, the laser head itself measures no more than 50×15×15 cm3. The
end of technological developments in this field is still not in sight.

7.8.2
Applications of neodymium lasers

Neodymium lasers have been used in countless applications for a long time,
and the more recent advent of efficient diode laser pumps at the wavelength
of 808 nm has lent additional stimulus. Here we present two recent exam-
ples that symbolize the large range of possible applications: one is the pow-
erful frequency-doubled neodymium laser, which has replaced the expensive
argon-ion laser technology more and more, and the other is the extremely
frequency-stable monolithic miser.

7.8.2.1 Frequency-doubled neodymium lasers

In Fig. 7.23 we have presented a neodymium laser concept that allows the
generation of very intense visible laser radiation at 1064/2 = 532 nm. The
pump energy is applied to the Nd:YVO4 material through fibre bundles, and
the Z-shaped resonator offers a convenient geometry to combine the power of
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Fig. 7.23 Powerful frequency-doubled neodymium laser. The light of
the laser diodes is supplied through fibre bundles over dichroic mirrors
(DM). Within the resonator, 1064 nm light circulates at high intensity.
The nonlinear crystal is used for the frequency doubling. HR = high
reflector [141].

several diode lasers and generate very high-power at the fundamental wave-
length at 1061 nm. In one arm of the laser the light is focused into a nonlinear
crystal (here LBO, see Sect. 13.4), which causes efficient frequency doubling.

In principle, it has been clear for a long time that intense visible laser ra-
diation can be generated with the concept presented here. Before it could
be used for producing commercial devices, however, not only technological
problems caused by the large power circulating in the resonator had to be
solved, but also physical issues such as e.g. the so-called ‘greening problem’.
This is caused by mode competition [11] leading to very strong intensity fluc-
tuations. It can be solved by operating the laser either at a single frequency or
at a large number of simultaneously oscillating frequencies.

7.8.2.2 The monolithically integrated laser (miser)

The passive frequency stability of any common laser (i.e. in the absence of
active control elements) is predominantly determined by the mechanical sta-
bility of the resonator, which undergoes length variations due to acoustic dis-
turbances such as environmental vibrations, sound, etc.

It is therefore advantageous to build laser resonators as compact and also as
light as possible, since devices with a small mass have higher mechanical reso-
nance frequencies, which can be excited less easily by environmental acoustic
noise. In the extreme case, the components of a ring laser (see Sect. 7.10) –
laser medium, mirrors, optical diode – can even be integrated into one single
crystal. T. Kane and R. Byer [97, 60] realized this concept in 1985 and called it
miser, a short form of the term ‘monolithically integrated laser’.
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Fig. 7.24 Monolithic neodymium ring laser. The beam is led out of
the plane between B and D. In connection with a magnetic field (see
text), this ‘out-of-plane’ configuration realizes an optical diode and
makes unidirectional operation possible. (With permission by Innolight
GmbH.)

The miser is pumped by diode laser light. The ring resonator is closed by
using total internal reflection at suitably ground and polished crystal planes.
An interesting and intrinsic optical diode is also integrated into the device.
The so-called ‘out-of-plane’ configuration of the resonator mode (in Fig. 7.24
the trajectory BCD) causes a rotation of the polarization of the laser field due
to the ‘slant’ reflection angles in analogy to a λ/2 device. In addition, a mag-
netic field in the direction of the long axis of the miser causes non-reciprocal
Faraday rotation. In one of the directions the rotations compensate each other,
whereas in the other direction they add. Since the reflectivity of the exit facet
depends on the polarization, one of the two directions is strongly favoured in
laser operation.

7.8.3
Erbium lasers, erbium-doped fibre amplifiers (EDFAs)

Erbium (Er) ions can be dissolved in the same host crystals as neodymium
ions and are especially interesting for applications at infrared wavelengths
near 1.55 μm.

They can be excited by strained quantum well (SQW) laser diodes (see
Sect. 9.3.4.2) at 980 nm very efficiently. Another long-wavelength laser transi-
tion at 2.9 μm is used mostly for medical applications. A favourable feature is
the eye-safe operation at these long wavelengths. A significant technological
breakthrough was achieved by D. Payne and E. Desurvire [45] in 1989 when
they were able to demonstrate amplification at the wavelength of 1550 nm by
using Er-doped optical fibres. Erbium-doped fibre amplifiers (EDFAs) have very
soon become an important amplifier device (gain typically 30–40 dB) for the
long-distance transmission of data. It is due to them that today the residual
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Fig. 7.25 Part of the energy level scheme of the erbium laser showing
the two important laser transitions. The exact transition wavelength
depends on the host crystal.

losses of optical fibres in this third telecommunications window (see Fig. 3.12
on p. 101) do not impose any constraints on the achievement of even the high-
est possible transmission rates over large distances. This breakthrough again
was not conceivable without the availability of inexpensive and robust diode
lasers for excitation, as we will discuss in more detail in the following subsec-
tion about fibre lasers.

7.8.4
Fibre lasers

The total gain of an optical wave in a laser medium is determined by the in-
version density (which determines the gain coefficient) and the length of the
amplifying medium. E. Snitzer already mentioned in 1961 [162] that optical
wave guides or fibres with suitable doping of the core should offer the best
qualifications to achieve high total gains.

Although the attractive concept of fibre lasers had already been recognized
quite early, the advent of robust and convenient diode lasers was instrumen-
tal in making fibre lasers attractive devices. Even the mediocre transverse
coherence properties of an array of laser diodes (see Sect. 9.6) are far superior
to conventional lamps as used in the conventional neodymium laser config-
uration in Fig. 7.22 with regard to focusability and can be used for efficient
excitation of the small active fibre volumes.

Fibre lasers are a field of active technological development that is ongoing,
and an excellent account of the state of art is given in [47]. We will limit our-
selves to the presentation of a few specific concepts since the layout of a fibre
laser does not differ basically from other laser types – one might say that it
just has a very long and thin amplifying medium [187].
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Tab. 7.4 Elements and wavelengths of selected fibre lasers.

Wavelength (μm) Element Wavelength (μm) Element
3.40 Er 0.85 Er
2.30 Tm 0.72 Pr
1.55 Er 0.65 Sm
1.38 Ho 0.55 Ho
1.06 Nd 0.48 Tm

1.03–1.12 Yb 0.38 Nd
0.98 Er

7.8.4.1 Cladding pumping

An interesting trick to make the application of the pump energy more effi-
cient has been developed with the so-called ‘cladding pumping’. It is quite
obvious that monomode fibres with a narrow core should be used as the ac-
tive medium for the sake of obtaining good-quality transverse laser modes.
But then efficient coupling of the pump laser radiation from high-power laser
diodes becomes difficult, since direct concentration or focusing of their power
into the small active fibre core volume is difficult.
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Fig. 7.26 Cladding pumping in the fibre laser.

This problem can be overcome by using a double fibre cladding that gener-
ates a multi-mode wave-guide around the active fibre core. The pump power
is coupled into this multi-mode fibre, and again and again it scatters into the
core and is absorbed there. To optimize the scattering, the core is given for
instance a slightly star-shaped structure instead of a purely cylindrical one.

Table 7.4 contains a number of available wavelengths for fibre lasers widely
spread across the infrared and visible spectrum. With fibre laser media not
only very low threshold values for lasing are achieved but also a remarkable
output power of several tens of watts. Fibre lasers have not reached the end
of their development by any means. Continued interest is also being shown
in the development of light sources for blue wavelengths. There are several
concepts, e.g. the so-called ‘up-conversion’ lasers, which can emit blue or even
shorter-wave radiation from higher energy levels excited by stepwise absorp-
tion of several pump photons.
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7.8.4.2 Fibre Bragg gratings

To make fibre lasers practicable, many rel- MF���$,�

Fig. 7.27 Production of a Bragg
reflector (qualitatively).

evant components for the control of a light
beam, e.g. mirrors, output couplers and mod-
ulators, have been directly integrated into the
fibre. For their detailed discussion, we refer
the reader to the specialist literature [186] and
restrict ourselves to the example of fibre Bragg
gratings (FBGs) [112] used as efficient mirrors
and spectral filters.

The Bragg grating is realized by a periodic
modulation of the refraction coefficient along
the direction of propagation. For this, the Ge-
doped fibre core is exposed to two intense UV beams crossing each other at
an adjustable angle θ. The UV light induces changes that can be of chemical
or photo-refractive nature5 and are proportional to the local intensity of the
standing-wave field. The period Λ of the Bragg mirror can be determined by
the choice of the crossing angle and the UV wavelength λ, Λ = λ/(2 sin θ).

7.8.5
Ytterbium lasers: higher power with thin-disc and fibre lasers

In a recent development the dominance of the Nd lasers is challenged by Yb
lasers, which can be dissolved within the host materials of Tab. 7.3 as well as
rare-earth ions. Many physical and technical details about Yb can be found
in [47].

This relatively new laser material offers putative advantages in the quest
for ever more output power: Yb-ion doping can reach 25% and thus strongly
exceeds the 1–2% limit for Nd ions, offering higher gain density. Also, the
Yb ions are excited at 940 nm (Nd: 808 nm) while lasing takes place typically
between 1030 and 1120 nm. Therefore less heat is generated which generally
impairs the laser process. Finally, Yb suffers less from excitation into non-
lasing states and reabsorption of fluorescent light than Nd.

Technological breakthroughs have furthermore supported the advancement
of Yb lasers. The thin-disc technology and improved performance of fibre
lasers reduce the problems of heat dissipation associated with laser rods in
high-power applications. Commercially available output power exceeds 4 kW
while excellent coherence properties are preserved.

The most important advantage of the thin-disc concept (Fig. 7.28) compared
to conventional laser rods is the much improved removal of heat generated

5) For the photo-refractive effect, charges are released by illumination
and transported within the crystal lattice, which causes a spatial
modification of the refractive index up 10−3.
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Fig. 7.28 Left: Part of the energy level scheme of the ytterbium laser
showing the pump and the laser transition. The exact transition wave-
length depends on the host crystal. Right: Cavity and pump geometry
for a thin-disc laser. The pump is sent through the crystal in multi-pass
configuration for efficient absorption.

in the excitation process. The thin-disc is mounted on a heat sink and has a
favourable surface to volume ratio. Heat gradients occur in the longitudinal
rather than in the transverse direction, and hence the Gaussian resonator is
much less disturbed by heat gradients, resulting in laser beams with excellent
mode purity. As a consequence of the thin-disc arrangement single-pass ab-
sorption of the diode laser pump light is relatively small. However, the multi-
pass configuration (several tens of times in applications) allows the pump en-
ergy to be delivered with up to 90% efficiency to the small laser volume.

7.9
Tunable lasers with vibronic states

Even around 1990, the market for tunable laser light sources was dominated
by dye lasers due to their convenience and – using multiple chemicals – tun-
ability across the visible spectrum. Since then technical development has
favoured solid-state systems, which are particularly interesting if they can be
excited by diode lasers.

The tunability of so-called vibronic laser materials comes from the strong
coupling of electronic excited states of certain ions (especially 3d elements)
to the lattice oscillations. In principle, also semiconductor or diode lasers are
among them, and we shall devote the next subsection to them due to their
special significance. Even the dye laser can be conceptually assigned to this
class since their band-like energy scheme is generated by the oscillations of
large molecules. Figure 7.29 offers an overview about important tunable laser
materials.
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Fig. 7.29 Tuning ranges of selected laser systems (pulsed and
continuous-wave). The frequency-doubled range of the Ti–sapphire
laser is hatched.

7.9.1
Vibronic laser materials

Vibronic laser materials are tunable over large wavelength ranges. Here we
present some important systems with their physical properties, and we ex-
plain the technical concepts of widely tunable ring lasers in which these laser
materials are normally used.

0*
 1*
 **
 <*
 )*
 +*
 (*
 �
*


��.��=���� �����.���

�K�2L
�����$������������������7

�
��

��
3


��
�

��
.

�����1*1��2

=
�

�
�

��
�

��


�


$
��

Fig. 7.30 Left: Vibronic states of solid-state
ions. The shaded curves indicate the (quasi-
)thermal distributions in the configuration co-
ordinate Q. If the equilibrium positions at the
ground and the excited state do not coincide,
absorption and emission wavelengths are
well separated and offer optimum conditions

for a four-level laser system. Relaxation to a
thermal or quasi-thermal distribution takes a
few picoseconds only. Right: Absorption and
fluorescence spectra of a Ti–sapphire crystal.
The fluorescence spectrum was excited at a
pump wavelength of 454 nm.
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7.9.1.1 Transition-metal ions

The 3d transition metals lose their outer 4s electron in ionic solid-states and
additionally some 3d electrons, their configuration being [Ar]3dn. Often the
third as well as the fourth ionization state of these ions can be found. Crystal
fields have much more effect on the 3d electrons than on the 4f electrons of the
rare-earth metals, since those form the outermost shell of electrons. The cou-
pling to the lattice oscillations (which are described by a configuration coor-
dinate Q) leads to a band-like distribution of states. The transitions are called
‘vibronic’. On the one hand, these transitions have a large bandwidth, which
accounts for broadband absorption as well as for fluorescence. No less impor-
tant is the very short relaxation time, which leads to the thermal equilibrium
position of the vibronic states within picoseconds. The chromium ions and
especially the titanium ions have belonged to this important class of laser ions
since the first demonstration in the 1980s [130]. The extraordinary position of
the Ti–sapphire laser can clearly be recognized in Fig. 7.29, too.

7.9.1.2 Colour centres

In contrast to the optical impu-
8

8�

8�

85

Fig. 7.31 Models of some colour centres.

rities of rare-earth and transition
metals, colour centres are gener-
ated not by impurity atoms but
by vacancy lattice sites. They
have been investigated for a long
time. In an ionic crystal such va-
cancies have an effective charge
relative to the crystal to which
electrons or holes can be bound.
Different types are collected in
Fig. 7.31. Like the transition-metal ions, the electronic excitations have a
broadband vibronic structure and are well suitable for the generation of laser
radiation.

The operation of a colour centre laser is technologically quite costly. They
have to be held at the temperature of liquid nitrogen (77 K) and some of
them even require an auxiliary light source. By this means colour centres are
brought back from parasitic states in which they can drop through sponta-
neous transitions and which do not take part in the laser cycle.

However, owing to a lack of better tunable alternatives, the colour centre
lasers still have continued relevance for near-infrared wavelengths between
1 and 3 μm. They may soon experience replacement because of the improve-
ment of optical parametric oscillators and the application of so-called ‘period-
ically poled’ nonlinear crystals (see Chap. 13).
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7.9.1.3 Dyes

Especially for wavelengths of 550–630 nm the dye laser is still a tunable light
source without competition. In this range of the visible spectrum, our colour
sensual perception changes quickly from green to yellow to red. For this rea-
son the light of dye lasers is superior to all solid-state lasers so far developed
with regard to aesthetic and emotional quality.

Dyes are organic molecules with a carbon–carbon double bond, i.e. with a
pair of electrons. In Fig. 7.32 the typical energy level scheme of a dye is pre-
sented. The paired ground state (S0) consists of a 1S0 state, i.e. orbital angular
momentum and total spin vanish. The dye molecules are dissolved (in alco-
hol or, if they are ejected from a nozzle into free space, in liquids with a higher
viscosity such as glycol). The electronic states have a vibration–rotation fine
structure that is broadened to continuous bands because of the interaction
with the solvent, similar to the vibronic ions. After absorption, the molecules
relax rapidly to the upper band edge where the laser emission takes place.
Some classes of dye molecules are also shown in Fig. 7.29.

In complete analogy to two-
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Fig. 7.32 Laser process in the dye laser (sche-
matically). S1, S2, T1: Molecular electronic singlet
and triplet states, respectively.

electron atoms like helium, there
are a singlet and a triplet system
in dye molecules [180], only the
transitions between them (in-
tercombination lines) are not as
strongly suppressed. The lifetime
of the triplet states is very long,
however, so that the molecules
accumulate there after several
absorption–emission cycles and
no longer take part in the laser
process. Pulsed dye lasers can be

operated in an optical cell, which is stirred, but with continuous-wave laser
operation, glass cells rapidly alter. Instead, creation of a jet stream expanding
freely into air has been successful. The liquid is ejected into a jet stream from
a flat ‘nozzle’ into the focus of a pump laser and laser resonator. The surface
of the jet stream has optical quality. One of the most robust dye molecules
is rhodamine 6G, which delivers an output power of up to several watts.
Furthermore, it can be used for a long time, in contrast to many other dyes,
which age rapidly.
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7.10
Tunable ring lasers

The success of vibronic laser materials is closely related to the success of the
ring laser, which allows user-friendly setting of a wavelength or frequency. It
is quite remarkable that with this device the fluorescence spectrum of these
materials, which has a spectral width of some 10–100 nm or 100 THz, can be
narrowed to some megahertz, i.e. up to eight orders just by a few optical com-
ponents!

In contrast to the linear standing-wave laser, a travelling wave propagates
in the ring laser. In the linear laser the so-called ‘hole burning’ occurs since
the amplification has no effect in the nodes of the standing-wave field (see
Prob. 7.1). For this reason the gain profile is periodically modulated and
makes the oscillation of another spectrally adjacent mode possible, which fits
to the periodic gain pattern and the resonator. In the ring laser the entire gain
volume contributes to a single laser line. Therefore it is the preferred device
for spectroscopic applications with high spectral resolution.
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Fig. 7.33 Ring laser system with optical components for frequency
control. SA = servo-amplifier.

In Fig. 7.33 we show one of numerous proven concepts of a ring laser. This
layout is usually called a bowtie resonator. The foci of pump laser beam and
laser mode are tightly overlapped between two spherical mirrors, which in the
rest of the laser generate a Gaussian mode propagating with low divergence,
which is also coupled out by one of the partially transparent resonator mirrors.
To avoid losses the amplifier (Ti–sapphire rod, colour centre crystal, or dye
laser jet) as well as other optical components are inserted into the resonator
at the Brewster angle. An optical diode (see Sect. 3.8.6) allows unidirectional
operation.

For wavelength control in general, several optical components with hierar-
chical spectral resolution (free spectral range) are used, which we list here: a
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Lyot or birefringent filter (p. 133) ensures rough spectral narrowing, one or
two etalons (thin and thick etalon, see Sect. 5.5) with different free spectral
ranges select a single resonator mode. For tuning from the MHz to GHz scale,
the resonator length can be varied with different elements: a pair of so-called
‘galvo plates’ varies the light path by a small synchronous rotation of the glass
plates mounted at the Brewster angle, albeit at relatively low scanning speed.
More rapid tuning is required for frequency stabilization. For this purpose the
resonator length is adjusted by means of a light mirror mounted on a piezo-
translator which allows implementation of 100 kHz bandwidth servo-loops;
even higher actuation speed may be achieved by phase modulators (EOMs,
see Sect. 3.8.1) inserted into the resonator.

In experiments a voltage-controlled variation of the laser wavelength is de-
sirable. For this purpose so-called feed-forward values are applied to the opti-
cal components of the ring laser. Simultaneously, the laser frequency is com-
pared to the also voltage-controlled reference frequency of a passive optical
resonator (e.g. according to p. 267) and is servoed to this value by suitable elec-
tronic feedback circuitry. With this method, typical continuous tuning ranges
of 30 GHz or 1 cm−1 are achieved, which offer excellent conditions for experi-
ments in high-resolution spectroscopy.

Usually the commercially available ring lasers are quite voluminous de-
vices. But it is also possible to build very compact and therefore inherently
more stable devices, as C. Zimmermann et al. [189] have demonstrated very
successfully with tiny Ti–sapphire lasers not exceeding several centimetres in
diameter (though in standing-wave configuration).
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Problems

7.1. Spatial hole burning Consider a laser crystal with homogeneously
broadened gain profile. The crystal is 1 cm long and mounted at the centre of a
15 cm long, linear resonator. The centre wavelength of emission is 1 μm.

The standing wave of the operating laser causes spatially inhomogeneous
reduction of amplification so that further modes can start oscillation. What
gain bandwidth is necessary to sustain oscillation of more than one mode?
Sketch the intensity distribution and the inversion density for the laser crystal.
What is the difference if the crystal is mounted directly in front of one of the
mirrors?

7.2. Single-mode operation Even for a gain medium with very large band
width ΔG single-mode operation of the laser can in principle be obtained by
construction of a correspondingly short resonator. However, this is technically
not very practicable.

Consider the example of a Ti–sapphire laser with ΔG = 47 THz. Instead
of using a short resonator an etalon is introduced into the linear resonator of
length L, and with a free spectral range which satisfies ΔFSR ≥ ΔG/2. Show
that in this case the condition L ≤ cF/ΔG suffices to obtain single-mode oper-
ation.

7.3. Gain of the laser The losses of a resonator built from two mirrors with
reflectivities R1 = 100% and R2 = 99% are dominated by mirror transmis-
sion. The laser line transition of the gaseous medium has a cross-section
σ = 10−12 cm2, the gas pressure is 1 mbar, and the length of the gas tube is
10 cm. (a) Calculate the inversion density necessary for laser operation above
threshold. (b) How large is the density of particles in the upper laser level, if
the lower one is emptied instantaneously? (c) How large is the amplification
at threshold?

7.4. Properties of the Nd:YAG laser The total lifetime of the upper 4F3/2
laser level (Fig. 7.21) is dominated by radiative decay (98% probability) and is
240 μs. the branching ratio for the most important line at 1.06 μm is about 14%.
At 300 K it is homogeneously distributed across the bandwidth of 200 GHz.
(a) Calculate the fluorescence rate of the 1.06 μm line. (b) Calculate the absorp-
tion cross-section at 1.06 μm. (The index of refraction for YAG is n = 1.82.) (c)
Suppose that in a laser crystal 1% of all Y3+ ions have been replaced with the
Nd3+ laser ion. What is the single-pass amplification if the inversion is 1%?
(The density of YAG is 4.56 g cm−3, the length of the crystal 1 cm.) Neglect
occupation of the lower laser level.

7.5. Transition matrix element of rare-earth ions The laser transitions of the
rare-earth ions occur between fine-structure energy levels of the electronic 4f
state with Δ� = 0, i.e. they are not allowed according to the dipole selec-
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tion rules of quantum mechanics for radiative transitions. Owing to the non-
spherical symmetry, however, a bit of 5d character is mixed into the 4f wave
function. Estimate the mixing coefficient by comparing a strong dipole transi-
tion (dipole moment = charge e × Bohr radius a0) at the Nd:YAG 1.06 μm line
with the observed radiative lifetime of 250 μm.

7.6. Which laser for which problem? You are planning an experiment in
atomic physics or quantum optics and want to buy a laser to efficiently excite
the atoms. Which type of laser do you get in order to work with the atoms
from Tab. 6.3. Justify your selection when several alternatives exist.

7.7. Compensation of astigmatism The ring laser construction of Fig. 7.33
causes astigmatism. Thus, for the field components parallel and orthogonal
to the plane of the resonator there exist different conditions for stability (see
Sect. 1.9.5). Identify the origin of the astigmatism and make suggestions for
optical elements compensating the astigmatism. (Hint: see Fig. 1.15.)

7.8. Servo-speed of piezo-elements in stabilized lasers Consider the piezo-
mirror of the tunable ring resonator of Fig. 7.33. The piezo-tube with expan-
sion coefficient 0.8 μm/100 V has capacity 15 nF. The weights of the tube and
the attached mirror are 2 g and 4 g, respectively. Estimate how rapidly the
length of the resonator can change if the current of the piezo-driver is limited
to 10 mA.
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8
Laser dynamics

In this chapter we shall take a closer look at the dynamical properties of laser
light sources, e.g. the response of a laser system to changes in the operating
parameters or to fluctuations of amplitude and phase of its electromagnetic
field. For this we first have to investigate theoretically the correlation between
the microscopic properties of the laser system and macroscopically measur-
able quantities like intensity and phase.

8.1
Basic laser theory

In Sect. 6.2 we studied the response of a simplified polarizable system with
only two states to an external driving field. There we found that this polariza-
tion can amplify a light field and thus itself become a source of electromagnetic
fields.

We know the relation between polarization and electric field already from
the wave equation,(

∇2 − n2

c2
∂2

∂t2

)
E = − 1

ε0c2
∂2

∂t2 P. (8.1)

Here we have already taken into account that laser radiation is often gener-
ated by particles diluted in a host material with refraction coefficient n. The
electric field E contains the dynamics of the laser field, while the polariza-
tion P contains the dynamics of the atoms or other excited particles, which is
determined in the simplest approximation according to the Bloch equations
(6.36).

8.1.1
The resonator field

In general, multiple eigenfrequencies can be excited in a laser resonator so that
we expect a complicated time evolution of field and polarization. This situa-
tion though is mostly undesirable for applications. Therefore we concentrate
on the special case of only one single mode of the resonator being excited. In
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many cases this situation is in fact routinely achieved for practical laser opera-
tion. Formally speaking, we decompose the field into its eigenmodes labelled
by index k, factorizing thereby spatial and temporal dependence:

E(r, t) = 1
2 ∑

k
[Ek(t) e−iΩkt + c.c.]uk(r). (8.2)

The amplitudes Ek(t) correspond to an average of the amplitude in the res-
onator volume V. The spatial distributions uk obey an orthogonality relation,

1
V

∫
V

ukul dV = δkl , (8.3)

and Ωk is the passive eigenfrequency of the resonator (without a polarizable
medium), so that the Helmholtz equation (Eq. (2.12)) is valid:

∇2uk(r) = −n2Ω2
k

c2 uk(r).

The polarization can be expanded within the same set of functions uk(r),

P(r, t) = 1
2 ∑

k
[Pk(t) e−iΩkt + c.c.]uk(r).

Owing to (8.3) Eq. (8.1) decomposes into a set of separate equations, of which
we use only one but for the very important special case of the single-mode or
single-frequency laser:(

Ω2 +
d2

dt2

)
E(t) e−iωt = − 1

n2ε0

d2

dt2 P(t) e−iωt.

From this equation, among other things we have to determine the ‘true’ oscil-
lation frequency of the light field.

8.1.2
Damping of the resonator field

A rigorous theory of the damping of the resonator field cannot be presented
here but can be found in e.g. [65, 175]. As for the Bloch equations, we limit
ourselves to a phenomenological approach and assume that the energy of the
stored field relaxes with rate γc. The field amplitude then has to decay with
γc/2,

d
dt

En(t) = −γc

2
En(t).

Note that the stored energy (Eq. (2.15)) thus decays with rate γc. Another
frequently used measure of resonator damping is the Q-factor (derived from
quality). For a resonator with eigenfrequency Ω it is given by

Q = Ω/γc.
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Damping of the field is caused not only by the outcoupling of a usable light
field Eout,

Eout(t) = 1
2 γoutEn(t),

but also by scattering or absorption losses within the resonator,

γc = γout + γloss. (8.4)

We now insert the damping term into the wave equation (8.1) as well. The
spatial dependence is eliminated and we find(

Ω2 + γc
d
dt

+
d2

dt2

)
E e−iωt = − 1

ε0c2
d2

dt2 P e−iωt.

We are interested first of all in the change of the amplitude, which is slow
compared to the oscillation with the light frequencies ω or Ω. In the slowly
varying envelope approximation (SVEA), which has already been used several
times, we neglect contributions scaling like[

d
dt

E(t), γcE(t)
]
� ωE(t)

and obtain

(−Ω2 + ω2)E(t) + 2iω
d
dt

E(t) + iγcωE = − ω2

n2ε0
P(t).

In the customary approximation (−Ω2 + ω2) � 2ω(ω − Ω) for ω � Ω, we
get the simplified amplitude Maxwell equations,

d
dt

E(t) = i
(

ω − Ω + i
γc

2

)
E(t) +

iω
2n2ε0

P(t). (8.5)

In the absence of polarizable matter, i.e. P(t) = 0, we recover a field oscillating
with the frequency ω = Ω which is dampened with rate γc/2 exactly as we
expected. The macroscopic polarization is already known from (6.12), and its
dynamics is described through the optical Bloch equations (6.36). There the
occupation number difference w(t) occurs, which we replace by the inversion
density N and the total inversion n, respectively, with the definition

N (t) =
n(t)
V

=
NAt

V
w(t).
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The entire system of atoms and light field is then described by the Maxwell–
Bloch equations:

d
dt E(t) = i

(
ω − Ω + i

γc

2

)
E(t) +

iω

2n2ε0
P(t),

d
dt P(t) = (−iδ − γ′)P(t)− i

d2
eg
h̄ E(t)N (t),

d
dtN (t) = −1

h̄ Im{P(t)∗E(t)} − γ[N (t)−N0].

(8.6)

Lasing can only start if the inversion is maintained by an appropriate pump-
ing process generating the unsaturated inversion density N0 = n0/V (see
Eq. (6.53)). All in all there are five equations since field strength E and polar-
ization P are complex quantities.

Using this system of equations, several important properties of laser dy-
namics can be understood. Let us introduce another transparent form of the
equations that can be obtained when we normalize the intensive quantities
field amplitude E(t), polarization density P(t) and inversion density N (t)
to the extensive quantities field strength per photon a(t), number of dipoles
π(t) and total inversion n(t). For this we use the average ‘field strength of a
photon’ 〈Eph〉 =

√
h̄ω/2κε0Vmod (already introduced in Sect. 2.1.8). Here κ

accounts for the dielectric properties of the laser material (see Eqs. (2.4) and
(2.8)):

a(t) := E(t)
√

2κε0Vmod
h̄ω

,

π(t) := N(u + iv) = VP(t)/deg.
(8.7)

Furthermore, for the Rabi frequency ΩR and the detuning δ (between elec-
tric field frequency and the eigenfrequency of the polarized medium) it is ad-
vantageous to use normalized quantities,

g := −deg

h̄

√
h̄ω

2κε0V
and α :=

(ω − ω0)
γ′ =

δ

γ′ . (8.8)

The coupling factor g describes the rate (or Rabi frequency) with which the in-
ternal excitation state of the polarizable medium is changed at a field strength
corresponding to just one photon. The alpha parameter α is the detuning nor-
malized to the transverse relaxation rate γ′. It will again be of interest in the
section about semiconductor lasers, where it has considerable influence on the
linewidth.
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With the normalized quantities, Eqs. (8.6) have a new transparent structure:

(i) ȧ(t) = i(Ω − ω + 1
2 iγc)a(t) + 1

2 igπ(t),

(ii) π̇(t) = −γ′(1 + iα)π(t) − iga(t)n(t),

(iii) ṅ(t) = −g Im{π(t)∗a(t)} − γ[n(t)− n0].

(8.9)

The field amplitude a(t), the polarization π(t) and the inversion n(t) are cou-
pled by the single-photon Rabi frequency g. At the same time, there is damp-
ing with the relaxation time constants γc, γ′ and γ, respectively. The dynam-
ical properties of the laser system are determined by the ratio of these four
parameters, which we have compiled for important laser types in Tab. 8.1.

Tab. 8.1 Typical time constants of important laser types.

Laser Wavelength Rates
λ (μm) γc (s−1) γ (s−1) γ′ (s−1) g (s−1)

Helium–neon 0.63 107 5 × 107 109 104–106

Neodymium 1.06 108 103–104 1011 108–1010

Diode 0.85 1010–1011 3–4 × 108 1012 108–109

Eqs. (8.9) already have great similarity to the quantum theory of the laser
field which we introduce in Chap. 12. By analogy, for instance, normalized
amplitudes may be simply promoted to field operators, a(t) → â(t), to obtain
the correct quantum equations.

8.1.3
Steady-state laser operation

We are now interested in stationary values ast, πst and nst, and begin first by
using Eq. (8.9(ii)),

πst = −i
gastnst

γ′(1 + iα)
= −i

κnst

g
(1 − iα)ast. (8.10)

Here we have already introduced the quantity

κ :=
g2

γ′(1 + α2)
, (8.11)

which plays the role of the Einstein B coefficient, as we will see more clearly
in the relation with Eq. (8.20). Also, κnst may be interpreted as the rate of
stimulated emission.

8.1.3.1 Saturated gain

We insert the result into (8.9(i)), sort into real and imaginary parts and find a
very transparent equation with

ȧ(t) = {i[ω − Ω − 1
2 κn(t)α]− 1

2 [γc − κn(t)]}a(t). (8.12)
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This equation describes dynamical properties of the amplitude of the res-
onator field in a good approximation if the damping rate of the polarization
γ′ dominating in Eq. (8.9) is much larger than all the other time constants. In
that case π(t) can always be replaced by its quasi-stationary value.

For the moment we are only interested in the stationary values for the in-
version nst and the amplitude ast:

0 = [i(Ω − ω − 1
2 κnstα)− 1

2 (γc − κnst)]ast. (8.13)

If a laser field already exists (ast = 0), the real and imaginary parts of Eq. (8.13)
have to be satisfied separately. Especially the real part clearly illustrates that
the rate of stimulated emission κnst corresponds exactly to the gain rate GS,
for it has to compensate exactly the loss rate γc,

nst = γc/κ or G = γc = κnst. (8.14)

Once the laser oscillation has
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Fig. 8.1 Saturated gain and laser power.

started, the gain no longer depends
on the pumping rate but only on
the loss properties of the system.
This case is called ‘saturated gain’
G = GS = γc. When the laser has
not started yet, the (small signal)
gain increases linearly with the
inversion according to Eq. (6.53),
G = κn0. This relation is presented
in Fig. 8.1.

8.1.3.2 Mode pulling

The imaginary part of Eq. (8.12) delivers the ‘true’ laser frequency ω with
which the combined system of resonator and polarized medium oscillates.
We replace κnst = γc, use α = (ω − ω0)/γ′ according to Eq. (8.8) and get the
result

ω =
γ′Ω + γcω0/2

γ′ + γc/2
.

According to this, the eigenfrequencies of either component are weighted with
the damping rates for the polarization of the respective other part. The true
oscillation frequency always lies between the frequencies of the amplifying
medium (ω0) and the resonator (Ω).
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8.1.3.3 Field strength and number of photons in the resonator

According to Eq. (8.7) the photon number and the normalized field strength
are connected by nph(t) = |a(t)|2. Therefore from the third equation of (8.9) it
can be derived that

nph = |ast|2 =
γ

γc
(n0 − nst). (8.15)

Only when the unsaturated inversion n0 meets the saturated value nst does
laser oscillation start because the photon number must be positive. Below that
threshold we here get the result nph = 0. In a refined theoretical description
we will see in Sect. 8.3 that even below the threshold stimulated emission leads
to an increased photon number in the resonator.

8.1.3.4 Laser threshold

Above threshold, the unsaturated inversion n0 must be larger than the inver-
sion at steady-state operation, nst, and thus delivers a value for the pumping
power or rate Rth at the laser threshold according to n0 ≥ nst and Eq. (6.53).
A transparent form is obtained by using the coupling parameter g according
to Eqs. (8.8) and (8.14),

Rth =
γcγ

κ

1
1 − γ/γdep

= γnst
e . (8.16)

In this model at threshold apparently the entire pumping energy is still lost
due to spontaneous processes since the laser field has not started lasing yet.
Above threshold we can now describe the number of photons within the laser
resonator (8.15) by means of the pumping rate,

nph =
1 − γ/γdep

γc
(R − Rth)

γ/γdep→0−→ 1
γc

(R − Rth), (8.17)

which has a simple form especially for the ‘good’ four-level laser (γ/γdep → 0).
For the interpretation of Eq. (8.16), it can also be taken into account that

most lasers are operated in an open geometry. Then the coupling constant
according to (8.8) is connected to the natural decay constant according to (6.49)
by g2 = γ(3πc3/ω2εVmod) with Vmod for the mode volume of the resonator
field. Using (8.11) one calculates

Rth = γcγ′ 1 + α2

1 − γ/γdep

ω2εVmod

3πc3 .

It is intuitively clear that a smaller outcoupling (low γc, see Eq. (8.4)) reduces
the laser threshold. According to this relation there are also advantages for
small transition strengths (low γ, γ′), fast depopulation rates for the lower
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laser level (large γdep) and good correspondence of laser frequency and reso-
nance frequency of the amplifying medium (α = 0). The attractive construc-
tion of UV lasers suffers among other things from the influence of the tran-
sition frequency ω visible here. On the other hand, the concentration of the
resonator field onto a small volume Vmod is favourable. We are going to fol-
low this path further in Sect. 8.3 under the heading threshold-less lasers and
micro-lasers.

8.1.3.5 Laser power and outcoupling

The outcoupled laser power is directly connected to the number of photons in
the resonator according to

Pout = hνγoutnph = hνγout
γ

γc
(nst

0 − nst). (8.18)

It is furthermore worth while to consider the influence of outcoupling on res-
onator damping,

Pout = hνγout

(
R

γout + γloss
− γ

κ

)
. (8.19)

For very small outcoupling (γout � γloss), the output power increases with
γout, passes through a maximum, and at R/(γout + γloss) = γ/κ laser oscilla-
tion dies out. In order to achieve an output power as high as possible, γout has
to be controlled by the reflectivity of the resonator mirrors. With the example
of the helium–neon laser in Fig. 7.8 on p. 265, we have already investigated
this question in slightly different terms.

8.2
Laser rate equations

The Maxwell–Bloch equations (8.6) and (8.9) describe the dynamical be-
haviour of each of the two components of the electric field E(t) and a(t),
respectively, and the polarization density P(t) and the dipole number π(t),
respectively. Furthermore, the inversion has to be taken into account through
its density N (t) or the total inversion n(t). The equations raise the expecta-
tion of, in principle, a complicated dynamical behaviour that finds its special
expression in the isomorphy of the laser equations with the Lorentz equations
of non-linear dynamics that literally lead to ‘chaos’.

However, most conventional lasers behave dynamically in a very well-
natured way – or in good approximation according to the stationary descrip-
tion that we just have dealt with intensively. They owe their stability to a fact
that also simplifies the mathematical treatment of the Maxwell–Bloch equa-
tions enormously. The relaxation rate of the macroscopic phase between laser
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field and polarization, γ′, is typically very much larger than the relaxation
rates of inversion (γ) and resonator field (γc). Under these circumstances the
polarization density follows the amplitude of the electric field nearly instan-
taneously and therefore according to Eq. (8.10) can always be replaced by its
instantaneous ratio to field strength a(t) and inversion density n(t),

π(t) � −−iga(t)n(t)
γ′(1 + iα)

.

Once the polarization density has been ‘eliminated adiabatically’, it is not
worth further investigating the phase dependence of the electric field because
it is only interesting in relation to the polarization. Instead of this we investi-
gate the time-varying dynamics of the photon number according to

d
dt
|a(t)|2 = a(t)

d
dt

a∗(t) + a∗(t)
d
dt

a(t).

We obtain the simplified laser rate equations where we use the pumping rate
R � n0/γ instead of the unsaturated inversion n0,

(i) d
dt nph(t) = −γcnph(t) + κnph(t)n(t),

(ii) d
dt n(t) = −κnph(t)n(t)− γn(t) + R.

(8.20)

Unlike common linear differential equations, these equations are connected
nonlinearly by the coupling term κnph(t)n(t), which is the rate of stimulated
emission:

Rstim = κnph(t)n(t). (8.21)

Because of stimulated emission the rate of change of the photon number de-
pends on the number of photons already present.

At first we again study the equilibrium values nph and nst. Equation (8.20(i))
yields two solutions, the first of which, nph = 0, describes the situation below
the laser threshold. There the inversion grows linearly with the pumping rate
according to (8.20(ii)) and (6.53) (we again assume the case of a ‘good’ four-
level laser with γ/γdep � 1):

nph = 0 and nst = n0 � R/γ.

When laser oscillation has started (nph > 0), then according to (8.20(i)) the
inversion in equilibrium must be clamped at the saturation value nst, and
Eq. (8.14) is again found.

As expected we recover the behaviour of Fig. 8.1. The gain only grows until
laser threshold is reached and then becomes saturated, i.e. a constant value
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due to gain clamping. From (8.20(ii)) we find that at the same time the steady-
state number of photons increases with pump rate R according to

nph =
1
γc

(
R − γγc

κ

)
=

1
γc

(R − Rth) . (8.22)

The value Rth = γγc/κ just corresponds to the pumping power at the thresh-
old. A linear dependence of laser power (∝ nph) on the pumping rate R is pre-
dicted, which is indeed a frequent property of common laser types, as shown
for diode lasers, for example, in Fig. 9.12.

8.2.1
Laser spiking and relaxation oscillations

The laser rate equations (8.20) are nonlinear and can in general only be in-
vestigated by numerical analysis. In Fig. 8.2 we present two examples where
the laser is switched on suddenly. For t < 0 we have R = 0 and the switch-
ing is instantaneous, at least compared to one of the two relaxation rates γ

(inversion density) or γc (resonator field). The numerical simulation can eas-
ily be carried out with many programs of computer algebra and shows very
well the phenomenon of ‘laser spiking’, being observed, for example, at fast
turn-on (nanoseconds or faster) of neodymium or diode lasers (see Fig. 8.4).
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Fig. 8.2 Numerical evaluation of relaxation oscillations. Left: Inver-
sion n(t) (proportional to the gain), and output power Pout(t). Right:
Phase-space representation. The system parameters in Eq. (8.20) are
chosen to be: κ = 1, γc = 2, γ = 0.02, R = 0.1.

Relaxation oscillations in a narrower sense occur when the gain (or the loss
rate) changes suddenly. Fluctuations of gain are induced by the variations
of the pumping processes, e.g. by switching on or off an optical pump laser.
For many purposes, e.g. for the stability analysis of frequency and amplitude
of a laser oscillator, it is sufficient to consider small deviations of the photon
numbers and the inversion from their equilibrium values:

nph(t) = nph + δnph(t) and n(t) = nst + δn(t).
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We insert into Eq. (8.20), neglect products of the type δn δnph and obtain the
linearized equations:

(i) d
dt δnph = κnphδn =

(
κR
γc

− γ
)

δn,

(ii) d
dt δn = −(γ + κnph)δn − γcδnph.

(8.23)

For simplicity we introduce the normalized pumping rate ρ = R/Rth =
κR/γγc, which has the value 1 at threshold, and for both x = {δnph, δn} we
obtain the standard equation of the damped harmonic oscillator,

ẍ + γρẋ + γγc(ρ − 1)x = 0. (8.24)

From this we infer without further difficulties that the system can oscillate for

(γc/γ)
[

1 −
√

1 − (γ/γc)
]

< ρ/2 < (γc/γ)
[

1 +
√

1 − (γ/γc)
]

with normalized frequency

ωrel/γ =
√

(γc/γ)(ρ − 1)− (ρ/2)2, (8.25)

and is damped with the rate

γrel = γρ/2 = γR/2Rth. (8.26)

Especially solid-state lasers typically
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Fig. 8.3 Relaxation oscillations as a
function of γc/γ and ρ.

have long lifetimes in the excited laser
level and thus large γc/γ ratios, e.g.
103–104 for semiconductor lasers and
104–105 for Nd lasers. In Fig. 8.3 it
can be seen that in this case relaxation
oscillations are triggered immediately
above the laser threshold at ρ = 1.
They can also be driven by external
forces, e.g. by modulating the pump-
ing rate appropriately, and they play an
important role for the amplitude and
frequency stability of laser sources (see
Sect. 8.4), since they are induced by
noise sources of all kinds.
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Example: Relaxation oscillations in the Nd:YAG laser
We consider the 1064 nm line of the Nd:YAG laser with the following charac-
teristic quantities:

natural lifetime τ = 240 μs, γ = 4.2 × 103 s−1,
resonator storage time τc = 20 ns, γc = 5.0 × 107 s−1,
normalized pump rate R/Rth = 1.0–1.5.
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Fig. 8.4 Spiking and relaxation oscillations in the Nd:YAG laser. The
power of the pumping laser diode is modulated by a square signal.
Complete modulation (left) causes spiking; partial modulation (right,
6%) causes relaxation oscillations. Compare this with Fig. 8.2.

The properties of the relaxation oscillations observed in experiment corre-
spond to the theoretical estimates. For the Nd:YAG parameters the second
term in Eq. (8.25) can be neglected in calculating the oscillation frequency due
to γ � γc,

ωrel �
√

γγc
√

ρ − 1 � 72 kHz
√

ρ − 1,

and according to (8.26) the damping rate is γrel � 2 × 103 s−1 R/Rth.

8.3
Threshold-less lasers and micro-lasers

We have already seen in the section about spontaneous emission that a reflect-
ing environment changes the rate of spontaneous emission. In principle, this
effect occurs in every laser resonator, though it is mostly so small that it can
be neglected without any problems. The influence is so small because in open
resonator geometry (Fig. 8.5) the more or less isotropic spontaneous radiation
of an excited medium, e.g. of an atomic gas, is emitted only with a small frac-
tion into that solid angle which is occupied by the electric field modes of the
laser resonator.
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These changes though can no longer be neglected if the resonator becomes
very small, or if, as a result of large steps of the refraction coefficient of the
laser medium, the emitted power is more and more confined to the resonator.
For this case, the modified effect of the spontaneous emission is often taken
into account by the so-called ‘spontaneous emission coefficient’ β. The β fac-
tor indicates which geometrical part of the radiation field couples to the laser
mode (rate βγ), and which part is emitted into the remaining volume (rate
(1 − β)γ).

Spontaneous emission can

�

�

Fig. 8.5 Relaxation and pumping rates of the laser.
The β coefficient of spontaneous emission is a coarse
measure for the fraction of spontaneous emission
coupled to the laser mode (β, shaded area) and
to the other solid angle (1 − β).

be considered as stimulated
emission by a single pho-
ton, and therefore we set the
coupling coefficient βγ =
κ(nph=1). With this trick
we can account for sponta-
neous emission in the laser
rate equation (8.20(i)), and by
replacing nph → nph + 1 we
obtain

(i) d
dt nph(t) = −γcnph(t) + βγnph(t)n(t) + βγn(t),

(ii) d
dt n(t) = −βγnph(t)n(t)− βγn(t) − (1 − β)γn(t) + R.

For the steady-state situation the equations can immediately be simplified to

(i) 0 = −γcnph + βγnst(nph + 1),

(ii) 0 = R − βγnphnst − γnst,

where spontaneous emission is especially prominent through the factor
nph+1 in (i). In order to solve this system of equations, it is convenient to
express the pumping rate as a function of the photon number in the resonator.
We substitute nst in (ii) by means of (i) and obtain

R
γc

=
(

1
β

+ nph

) nph

nph + 1
. (8.27)

Far above the laser threshold, i.e. for nph � 1/β ≥ 1, the relation between
pumping rate and photon number obviously turns again into the result (8.17),
as expected. According to the condition (8.27) the laser threshold is reached
when the photon number in the resonator meets or exceeds the value 1/β. So
in a common laser (β � 1) at threshold there are already very many photons
present in the laser mode. To be more exact, there are so many that the rate
of stimulated emission into the laser mode precisely equals the total sponta-
neous decay rate. Above this threshold, additional pumping power is used
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Fig. 8.6 Threshold behaviour of laser oscillators. Photon number in
the resonator as a function of the pumping rate.

predominantly to increase the photon number and thus to build up the coher-
ent radiation field.

Excursion: Micro-maser, micro-laser and single-atom laser
Experiments first with the so-called micro-maser, and later on with the micro-laser,
have had a strong stimulating effect on the concept of the ‘threshold-less’ laser. The
term ‘micro-’ does not refer so much to the miniaturized layout but rather to the mi-
croscopic character of interaction. The coupling between the field of a micro-laser or
micro-maser is so strong that an excited atom does not forego its energy once and
forever to the electromagnetic field like in a common laser. For this so-called strong
coupling regime, which is described in more detail in Sect. 12.4, the rate g of Eq. (8.8) has
to be larger than every other time constant (see Tab. 8.1):

g � γ, γc, γ′.

Then the resonator field stores the emitted energy and the atom (the polarized matter)
can reabsorb the radiation energy. So the energy oscillates between atom and resonator
(Fig. 8.7). This situation can be realized already – or even particularly well – with a
single atom, and thus the term ‘single-atom maser’, which was very often used at first.

In order to realize the situation of a micro-maser experimentally, resonators with
extremely long radiation storage times have to be used. Since superconducting res-
onators for microwaves have been available for a longer time, the micro-maser was
realized before the micro-laser. The description of the micro-maser requires a joint
treatment of atom and field according to quantum theory within the framework of the
so-called Jaynes–Cummings model, which goes far beyond the scope of this excur-
sion. However, it is intuitively clear that the transmission of the combined system of
resonator and atom exhibits a different spectral behaviour from the empty resonator
following the ordinary Lorentz curve.
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Fig. 8.7 In a single-atom laser (‘micro-laser’) the coupling between
atom and field is so strong that the oscillation energy oscillates like for
two coupled pendula.

4

A A
����

Fig. 8.8 Calculated transmission spectrum of an empty resonator (left)
and a resonator with excited atoms (right). A single photon is sufficient
to cause the so-called ‘vacuum Rabi splitting’.

Threshold-less lasers are extraordinarily interesting for applications in in-
tegrated optics. For example, semiconductor components may be designed
where single electron–hole pairs are directly converted into single photons.
Current research follows different routes to construct radiation fields confined
to a small mode volumes, with long storage times, and intense coupling to the
excited medium. At optical wavelengths a small mode volume also means
using miniaturized resonators. For the traditional layouts following the linear
resonator, the integration of highly reflective mirrors to achieve large storage
densities though is difficult. A solution is offered by the appropriate use of
total reflection. Tiny electrical resonators from a monolithic substrate with
very high quality have already been realized. At the rim of mushroom- or
mesa-shaped semiconductor lasers and dielectric spheres made from silica,
circulating field modes, so-called ‘whispering-gallery modes’, have been pre-
pared and shown to be long-lived. Recently also micro-resonators with an
oval geometry have been discussed for micro-laser applications because they
allow a particularly strong coupling of laser medium and radiation field (see
Sect. 5.6.4) [134].
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8.4
Laser noise

All physical quantities are subject to fluctuations, and the laser light field is
no exception: the perfect harmonic wave with fixed amplitude and phase
remains a fiction! But the laser light field approaches this ideal of a har-
monic oscillator more closely than any other physical phenomenon. Accord-
ing to an old estimate by Schawlow and Townes, the coherent laser light field
shows extremely small fluctuations of amplitude and phase. Not the least for
this reason it has continued to inspire wide areas of experimental physics to
this day. The ‘narrow linewidth’ (sub-Hertz) has already been introduced in
Sect. 7.3.1 with the example of the He–Ne laser. It promises extremely long
coherence times (>1 s) or enormous lengths (>108 m), which can be used for
high-precision measurements for a wide variety of phenomena.

Usually the so-called ‘Schawlow–Townes limit’ of the linewidth is hidden
by technical and generally much bigger fluctuations. If this fundamental limit
is realized, however, it offers information about the physical properties of the
laser system. In this section we investigate what physical processes impair
ideal oscillator performance.

8.4.1
Amplitude and phase noise

The stationary values of the laser light field (Sect. 8.1.3) have been determined
through the photon number nph and the true laser frequency ω on p. 302.
There we assumed that the phase evolution of the field behaves like a perfect
oscillator according to classical electrodynamics:

E(t) = Re{E0 exp[−i(ωt + φ0)]}.

The coupled system of polarized laser medium and resonator field though
is also coupled to its environment, e.g. by the spontaneous emission causing
stochastic fluctuations of the field strength and the other system quantities.1

More realistically we thus introduce noise terms,

E(t) → Re{[E0 + eN(t)] exp[−i(ωt + φ0 + δφ(t))]}.

Here we assume that we can distinguish contributions to amplitude noise
(eN(t)) and to phase noise (δφ(t)) which are slow in comparison with the
oscillation frequency, i.e. (deN/dt)/eN, dδφ/dt � ω. This separation is not
unambiguous, but the two types yield rather different noise spectra.

In Fig. 8.9 the effect of white, i.e. frequency-independent, noise of the am-
plitude and phase, respectively, on the power spectrum of the electromagnetic

1) In the micro-maser (see p. 310) though the aim is to eliminate exactly
this coupling to the environment.



8.4 Laser noise 313

��


&'��	

��


��	 ��	

���������J���� �������,� �

&'��	

Fig. 8.9 Field spectrum for (a) white amplitude noise and (b) white
phase noise, respectively. The spectral width of the carrier frequency
in (a) is limited only by the resolution of the spectrum analyser.

field (for the definition see App. A.1) is presented. The exact calculation re-
quires information about the spectral properties of the noise quantities.

8.4.1.1 Amplitude fluctuations

We begin with the amplitude fluctuations and first assume perfect phase evo-
lution (δφ(t) = 0). If the fluctuations of the noise amplitude are entirely ran-
dom, i.e. very ‘fast’ even during the integration time T of the analyser, they are
only correlated at all at delay time τ = 0 (‘delta-correlated’) and we can de-
scribe the correlation function of the noise amplitude using the mean square
value e2

rms = 〈|eN(t)|2〉,
〈eN(t)〉 = 0 and 〈eN(t)e∗N(t + τ)〉 = e2

rmsTδ(τ).

With this information we can calculate the correlation function of an electro-
magnetic field with amplitude fluctuations where we take advantage of the
Poynting theorem (see App. A.2),

CE(τ) = 〈Re{E(t)}Re{E(t + τ)}〉 = 1
2 〈Re{E(t)E∗(t + τ)}〉

=
1

2T

∫ T/2

−T/2
Re{[E0 + eN(t)][E∗

0 + e∗N(t + τ)]} dt

= 1
2 |E0|2 + e2

rmsTδ(τ).

The finite integration interval causes errors of magnitude O(1/ωT), which
can be neglected since at optical frequencies ωT is always very large. Using
the Wiener–Khintchin theorem (Eq. (A.9)) the spectrum

SE( f ) = 1
2 E2

0δ( f ) + e2
rms/Δ f

can be obtained. The ‘Fourier frequencies’ f give the distance to the much
larger optical carrier frequency ω = 2πν. The second contribution causes a
‘white noise floor’, and we have already replaced T = 1/Δ f to indicate that
in an experiment the filter bandwidth always has to be inserted here. The first
contribution represents the carrier frequency like for a perfect harmonic oscil-
lation. The delta function indicates that the entire power in this component
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can always be found in one channel of the spectrum analyser and so its width
is always limited by the filter bandwidth.

8.4.1.2 Phase fluctuations

In order to study the influence of a fluctuating phase, we follow the presenta-
tions of Yariv [185] and Loudon [118] and calculate the correlation function of
an electromagnetic field E(t) = Re{E0 e−i[ωt+θ(t)]} with a slowly fluctuating
phase θ(t) again using the Poynting theorem (see App. A.2),

CE(τ) = 1
2 |E0|2〈Re{ei[ωτ+Δθ(t,τ)]}〉

= 1
2 |E0|2Re{eiωτ〈eiΔθ(t,τ)〉}.

(8.28)

The average extends only over the fluctuating part with Δθ(t, τ) = θ(t + τ)
− θ(t). Though we do not know the exact variation in time (that is just the na-
ture of noise), we assume it to exhibit stationary behaviour so that properties
such as the frequency spectrum do not depend on time itself. If the statisti-
cal distribution of the average phase deviations Δθ(τ) is known, we can use
the ensemble average over the probability distribution p(Δθ(τ)) instead of the
time average to calculate the average in (8.28). For symmetric distributions we
have to take only the real part into account,

〈eiΔθ(τ)〉 = 〈cos Δθ(τ)〉 =
∫ ∞

−∞
cos Δθ p(Δθ(τ)) dΔθ. (8.29)

The sought-after probability distribution is completely characterized when
p(Δθ(τ)) is explicitly given or, for a known type such as the normal distribu-
tion, one of its so-called statistical moments, e.g. the mean square deviation
Δθ2

rms, is given.
How do we obtain the required
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Fig. 8.10 Phasor model of the laser field with phase
diffusion.

statistical information? From
the point of view of experi-
mental physics, one would sim-
ply measure the phase fluctua-
tions, for example by heterodyn-
ing the laser field under inves-
tigation with a stable reference
wave to determine the macro-
scopic phase. Theoretical models
are, however, necessary to estab-
lish a connection with the micro-

scopic physical properties of the laser system.
Let us first concentrate on the widely known phase-diffusion model. For

this we study the phasor model of the amplitude of the laser field in Fig. 8.10.
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By the Maxwell–Bloch equations, only the amplitude of the laser field is fixed,
but not the phase, since there is no restoring force binding the phase to a cer-
tain value. Thus the phase diffuses unobstructedly away from its initial value.
We will see that for this – if technical disturbances can be excluded – especially
spontaneous emission processes are responsible.
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Fig. 8.11 One-dimensional random walk. Every single step is ran-
domly set in either the + or − direction. The thick line marks the mean
square deviation.

The phase can change in one dimension only and therefore our model is
one-dimensional, too. We assume that the phase is subject to small leaps oc-
curring at a rate R still to be determined. The leaps are completely indepen-
dent of each other, i.e. in every single case the direction of the next step is
entirely random. This results in stochastic motion known from the Brown-
ian motion of molecules. Therefore it is also called a random walk and is often
compared to the walk of a drunk who is not aware of his next step.

Using the random-number generator of the computer, such motions can
easily be simulated. In Fig. 8.11 several trajectories are presented and ad-
ditionally the time-dependent expectation value of the square fluctuation is
shown. The root mean square deviation of the Gaussian normal distribution
after N steps is (ΔN2

rms)1/2 = (〈N2〉 − 〈N〉2)1/2 =
√

N, as is well known.
Since the number of steps increases in proportion with time τ, the r.m.s. de-
viation has to be proportional to

√
τ. Therefore we can construct the normal

distribution

p(Δθ(τ)) =
exp(−Δθ2/2Δθ2

rms)√
2π Δθrms

with
∫ ∞

−∞
p(Δθ) dΔθ = 1,

with mean square value (Δθrms)2 = θ2
0 Rτ and θ0 for the length of a single step.

Now we can evaluate the integral of Eq. (8.29), obtaining the simple result

〈cos Δθ(τ)〉 = exp(−Δθ2
rms/2) = exp(−θ2

0 Rτ/2).

The complete correlation function (ω = 2πν) reads

CE(τ) = 1
2 〈E(0)E∗(τ)〉 = 1

2 |E0|2 ei2πντ−θ2
0Rτ/2.
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The correlation function can also be interpreted as the average projection of
the field vector onto its initial value at the time τ = 0. Its form is identical
with the time dependence of a damped harmonic oscillator. We calculate the
spectrum again according to the Wiener–Khintchin theorem (Eq. (A.9)) and
find that white phase noise (Fig. 8.9) leads to a Lorentz-shaped line with width
Δω = 2πΔν1/2 = θ2

0 R centred at the carrier frequency ν:

SE(ν + Δν) =
|E0|2

T
θ2

0 R/2
(2π f )2 + (θ2

0 R/2)2
. (8.30)

8.4.2
The microscopic origin of laser noise

The considerations of the previous section are generally valid for oscillators of
every kind. We now have to correlate the macroscopically observed proper-
ties to the specific microscopic properties of the laser. A rigorous theory (i.e. a
consequent theoretical calculation of correlation functions as in Eq. (8.28)) re-
quires a treatment according to quantum electrodynamics, for which we have
to refer to the relevant literature. The theories by Haken [73] and by Lax and
Louisell [119] respectively are among the important successes in the quantum
theory of ‘open systems’ and were presented shortly after the invention of the
laser. We have to limit ourselves here to simplified models, but we can put
forward some reflections about the nature of the noise forces.

The fluctuations of laser light field reflect several noise sources. The best-
known process is caused by the spontaneous emission out of the amplifying
medium into the environment. These radiation processes do not contribute to
the laser field but cause stochastic fluctuations of the inversion and the (di-
electric) polarization. Since the amplitudes of resonator field and polariza-
tion relax back to their steady state, amplitude and phase fluctuations result.2

Other noise processes are caused because the resonator field also suffers from
random losses, or because the pumping process transfers its noise properties
to the stimulated emission. It is normally ‘incoherent’, i.e. the excitation states
are produced with a certain rate but with a random, typically Poissonian, dis-
tribution. In a semiconductor laser, electron–hole pairs are injected into the
amplification zone. For large current density the charge carriers repel each
other, and successive arrival times are more evenly spaced out. It has been

2) In another formulation it is often said that spontaneous emission
radiates ‘into the laser mode’. In this interpretation, polarization
and laser field both separately have to relax back again to their equi-
librium relation. Since in the theoretical description used here the
coupling of resonator field and polarization is already completely in-
cluded, the interpretation chosen here appears to be physically more
conclusive.
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shown that this ‘regularization’ of the pumping process also gives rise to a
decrease of the intensity fluctuations [184]!

Many processes can be heuristically interpreted through the ‘grainy’ struc-
ture of the quantized light field. Let us therefore study changes of amplitude
and phase of the laser field when ‘photons’ are added to or taken away from
it.

8.4.3
Laser intensity noise

The time evolution of the laser amplitude was investigated in Sect. 8.2.1 for
the system reacting to sudden changes of the pumping rate, for example
through deterministic switching events. In our simple model such changes
are now caused by small random changes of the photon number nph(t) =
nph + δnph(t) fluctuating around the mean value nph.

8.4.3.1 Quantum limit of the laser amplitude

Let us estimate the mean square deviation 〈δn2
ph〉 of the photon number, and

hence the field amplitude, without ascertaining the distribution more exactly.
For this we rewrite the linearized equation (8.24) for the photon number by
inserting the stationary photon number nph from Eq. (8.22):

d2

dt2 δnph + (κnph + γ)
d
dt

δnph + γcκnphδnph = 0.

We multiply this equation by δnph and arrive at

1
2

d2

dt2 δn2
ph −

1
2
(κnph + γ)

d
dt

δn2
ph − 1

2

(
d
dt

δnph

)2

+ γcκnphδn2
ph = 0. (8.31)

When we search for the steady-state solution of the mean value 〈δn2
ph〉, we

can eliminate the average of the derivatives 〈(d/dt)δnph〉 but not that of the
square of the fluctuation rate [(d/dt)δnph]2:

− 1
2 〈[(d/dt)δnph]2〉 + γcκnph〈δn2

ph〉 = 0. (8.32)

We cannot give a rigorous theoretical description here, but for an intuitive
treatment we can use Eq. (8.23(i)), [(d/dt)δnph]2 = (κnphδn)2. It is reasonable
to assume an inversion undergoing random fluctuations and hence obeying
Poisson statistics induced by both spontaneous emission and the stochastic
pumping process, and yielding mean square value δn2 = nst. We can now
evaluate Eq. (8.31) and find with γc = κnst from (8.14)

〈δn2
ph〉 = 〈(d/dt)δn2

ph〉/γcκnph = nph.
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Fig. 8.12 Distribution of the photon number of the laser field. The fluc-
tuations of the photon number are stabilized by an effective potential
(see Eq. (8.32)).

Most importantly, we find that the number of photons in the resonator fluc-
tuates by an amount proportional to

√
nph. A more exact analysis shows that

the distribution indeed again has the shape of a Poisson distribution (which
for large numbers is essentially a Gaussian distribution).

The investigation of the photon number distribution offers an intuitive pic-
ture, which we study in a bit more detail in Fig. 8.13. The total number of
photons is proportional to the field energy (E2 ∝ hνnph). Removal or addition
of one ‘photon’ changes the field energy by the amount hν.

8.4.3.2 Relative intensity noise (RIN)

The fluctuations of the external laser power P(t) = P0 + δP(t) are measured in
an experiment. Using Eq. (8.22) the fluctuations of the photon number can be
converted into the r.m.s. deviation of the laser power δPrms = 〈δP2〉1/2. Thus:
δPrms =

√
hνγout

√
P.

Intensity fluctuations of the idealized laser are caused by quantum fluctua-
tions only, the fundamental physical limit. According to the results of the pre-
vious section, their relative significance decreases with increasing laser power
because

√
δn2

ph/nph = 1/
√

nph. Moreover, many laser types show noise con-

tributions that are not always exactly identified but increasing proportionally
to the output power.

For the quantitative characterization of the amplitude noise, the relative in-
tensity noise has been introduced:

RIN :=
δP2

rms
P2 ,

which is a phenomenological quantity and can be straightforwardly mea-
sured. For a more exact analysis of the intensity noise, again its spectral dis-
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tribution has to be determined. In the simplest case of completely random
fluctuations, it shows a flat spectrum, i.e. white noise of Fig. 8.9.3 In the sec-
tion about semiconductor lasers we will find that in the intensity spectrum,
for example, the relaxation oscillations play a role as well.

8.4.4
Schawlow–Townes linewidth

When all technical disturbances are


�T'��	U

�T'��	U

&'

�!,
� �

'

Fig. 8.13 Effect of a ‘photon’ on the time
evolution of the laser field. See also
Fig. 8.10.

eliminated – mechanical, temperature,
ambient air pressure fluctuations etc.
– the laser linewidth is determined
only through spontaneous emission
processes. It is then called Schawlow-
Townes linewidth ΔST. Here we use
the phase diffusion model following
Eq. (8.30) to calculate its value. For this
derivation we have to evaluate the vari-
ance of the phase fluctuations caused
by individual spontaneous emission
events occurring at the rate Rspont:

ΔνST = 〈θ2
SE〉Rspont.

In Fig. 8.13 a simple phasor model is shown which illustrates the influence of
a randomly emitted photon onto the field amplitiude of the laser field.

The length of the electric field vector of the laser field is proportional to√
nph � 1. In these units, spontaneous emission causes a field contribution

of length unity which has a random phase with respect to the laser field. Thus
in Fig. 8.13 it has a random direction. The resulting field, the sum of the orig-
inal laser field and the field of the spontaneously emitted photon, is slightly
modified in both amplitude and phase. The small phase shift of an individual
event is δφ = θST � cos α/

√
nph. The variance, the r.m.s. value, then has the

value 〈cos2 α/nph〉 = 1/2nph.
Spontaneous processes contribute at a ratio 1 : nph to the stimulated proces-

ses, the ratio of the Einstein-A- and B-coefficients (Eq. (6.51)), with regard to
the evolution of the resonator field. The rate is proportional to the number of
excited particles nst

e , so that drawing on Eqs. (8.14) and (8.21) we can write

Rspont = Rstim/nph = κnst
e = γcnst

e /nst.

On the other hand, according to Eq. (8.18), we can connect the photon num-
ber with the output power, nph = P/hνγout � P/hνγc. So finally we arrive at

3) We should be aware of the fact that even ‘white noise’ has an upper
limit frequency – otherwise the r.m.s. value of the fluctuation would
be unbounded according to Eq. (A.6)!
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the linewidth

ΔνST =
nst

e
nst

πhν

P
γ2

c . (8.33)

In a ‘good’ four-level laser the first factor is nst
e /nst � 1. This surprising for-

mula was presented by Schawlow and Townes as long ago as 1958 [154], and
is called the Schawlow–Townes linewidth. As we already calculated in the sec-
tion about He–Ne lasers, an extremely small linewidth of a few Hertz or less
is expected even for conventional lasers. Larger linewidths are only observed
for small resonators with low mirror reflectance, like e.g. in semiconductor
lasers. They are also subject to an additional broadening mechanism caused
by amplitude–phase coupling (see Sect. 9.4.2).

8.5
Pulsed lasers

In Sect. 8.2.1 on relaxation oscillations, we found (see Fig. 8.2) that switch-
ing processes can induce short laser pulses with intensities much higher than
average. With pulsed lasers, a large amount of radiation energy, in common
systems up to several joules, can be delivered within a short period of time.
Its peak power depends on the pulse length.

One important method for generating short and very intense laser pulses is
realized by the so-called ‘Q-switch’ concept. Another method creates a coher-
ent superposition of very many partial waves (‘mode locking’) resulting in a
periodic sequence of extremely short laser pulses.

8.5.1
‘Q-switch’

Pulsed neodymium lasers are among the most common systems offering very
high peak powers. In such pulsed lasers, the pump energy is supplied through
an excitation pulse, e.g. from a flash lamp. The pump pulse (Fig. 8.14) builds
up the inversion until the laser threshold is passed. Then stimulated emission
starts and the system relaxes to the equilibrium value. In the neodymium
laser the amplitude damping occurs so fast that the output power follows the
excitation pulse with small relaxation oscillations.

Alternatively, lasing can initially be suppressed by increasing the resonator
losses with a Q-switch. If the accumulation time is short compared to the
decay period of the upper laser level (for the neodymium laser, e.g. 0.4 ms),
the laser medium acts as an energy storage device and the inversion continues
to increase. If the Q-switch triggered by an external impulse is again set to
high Q factor or low loss mode, stimulated emission begins and now, by fast
exhaustion of the accumulated energy, a laser pulse is generated that is short
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Fig. 8.14 Time chart of pulsed laser oscillation with and without
(dashed lines) Q-switch.

compared to the non-switched operation with much higher peak power. The
repetition rate of such a laser system usually lies between 10 Hz and 1 kHz.

8.5.1.1 Technical Q-switches

Q-switches have to fulfil two conditions: in the open state the resonator Q
factor has to be reduced efficiently, whereas in the closed state its insertion
loss has to be small compared to other losses. Typical systems for a Q-switch
are presented in Fig. 8.15 and described below.
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Fig. 8.15 Q-switch and cavity dumping: (a) electro-optical (Pockels
cell), (b) acousto-optical (Bragg cell) and (c) mechanical (rotating
prism). See text.

(a) Pockels cell The Pockels effect already described in Sect. 3.8.1 makes
a voltage-driven retarder plate available. In combination with a polarizer
(Fig. 8.15), the resonator transmission can be modulated very efficiently. The
switching time of a Pockels cell is in the nanosecond domain. It is primarily
limited by the capacitance of the crystal electrodes and the resistance of the
electrical leads.

(b) Acousto-optical modulator (AOM) In the acousto-optical modulator
(see also section 3.8.4), a radio-frequency generator induces an acoustic wave
causing a periodic variation of the refraction coefficient. Laser radiation is
deflected by diffraction off this grating out of the resonator, and frequency-
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shifted at the same time. The radio-frequency power can be switched by suit-
able semiconductor components with nanosecond rise times.

(c) Rotating prism The Q-switch can also be realized by a mechanical rotat-
ing prism, which allows the laser to start only in a narrow acceptance angle
range.

8.5.1.2 Cavity dumping

The Pockels cell and the acousto-optical modulator (AOM) of Fig. 8.15 pro-
vide a second output port. This may be used for the so-called cavity dumping
method. For this, in the closed laser oscillator, a strong oscillation builds up
within the resonator first. Through an external pulse triggering the AOM or
Pockels cell, this energy is then dumped out of the resonator. The method can
also be combined with the mode locking concept of the following section in
order to achieve particularly high peak powers.

8.5.2
Mode locking

Even the simplest superposition of two laser beams with different frequencies
ω and ω + Ω causes periodic swelling up and down, as is well known from
amplitude modulation. For equal partial amplitudes with I0 = cε0|E0|2 we
have

E(t) = E0 e−iωt + E0 e−iωt e−iΩt e−iφ,

I(t) = 1
2 cε0|E(t)|2 = I0[1 + cos(Ωt + φ)].

When we neglect the dispersive influence of the optical elements, laser res-
onators of length n� (n is refraction coefficient) provide an equidistant fre-
quency spectrum with Ω = 2πc/2n� (Eq. (5.19)) that virtually offers itself for
synthesis of time-periodic intensity patterns. Mode locking establishes a tech-
nical procedure to physically realize Fourier time series consisting of many
optical waves.

While for two waves the phase φ causes only an overall phase shift of the
sinusoidal modulation pattern, the pattern originating from superposition of
multiple waves also depends on individual phase positions, as we show in
Fig. 8.16 with the example of eight superimposed waves. We can calculate the
field amplitude in general according to

EN(t) =
E0√

N
e−iωt eiNΩt/2

N

∑
n=1

αn e−inΩt e−iφn ,
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Fig. 8.16 Intensity variation in time for the superposition of up to eight
harmonic waves. The vertical bars indicate the relative strength and
phase position of the partial waves. Upper left: Amplitude modulation
with two waves for comparison.

where important characteristic quantities include

pulse sequence frequency f = Ω/2π,
and pulse period T = 2π/Ω.

The mid-frequency is called the ‘carrier frequency’ ω0 = ω − NΩ/2, and
different waves with frequency differences Δ f = n f = nΩ/2π contribute
to the total wave with phases φn. The partial amplitudes have been chosen
in such a way that the intensity I0 = (cε0/2)E2

0 ∑n α2
n is distributed among

partial amplitudes with αnE0 and ∑n α2
n = 1. Thus the intensity distributions

in Fig. 8.16 are comparable to each having the same mean power. In Fig. 8.16
three characteristic situations are presented:

1. In the upper right part all partial waves have identical amplitudes αn =√
1/n and are in phase with φn = 0 for all n. For this situation, very

sharp periodic maxima with a small peak width Δt ≈ 2π/(NΩ) = T/N
occur. The secondary maxima are characteristic for an amplitude distri-
bution with a sharp boundary.

2. In the lower right part the partial waves are in phase as well, though
the amplitudes have been chosen αn ∝ exp{−[(2n − N − 1)/2]2/2}, i.e.
following a Gaussian distribution, which is symmetrical to the carrier
frequency ω0 . By this distribution, the side lobes that occur between the
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maxima in the previous example are suppressed very efficiently and the
laser power is concentrated to the maxima. The achievable peak power
though is slightly lower. This situation resembles closely the conditions
of a real laser resonator. In Fig. 8.17 a frequency spectrum of a peri-
odic train of 27 ps Ti–sapphire laser pulses measured in a Fabry–Perot
resonator is shown.

3. In the lower left part of Fig. 8.16 for comparison the situation for random
phases φn of the partial waves is presented, which makes a noisy but
periodic pattern.

Let us now study the relation between pulse length and bandwidth (see
Sect. 3.6) and therefore consider a periodic series of Gaussian-shaped pulses
with E(t) = ∑n E0 exp{−[(t − nT)/Δt]2/2}e−iωt. According to the theory of
Fourier series, we can obtain the nth Fourier amplitude for nΩ from

En = E0

∫ τ/2

−τ/2
e−(t/Δt)2/2 e−inΩt dt ≈ E0 e−(nΩΔt)2/2.

For this, to a good approximation for very sharp pulses, only that single pulse
centred at t = 0 is taken into account, and the integration limits are extended
to ±τ/2 → ±∞. We define a bandwidth by 2π fB = ΩB = 2NΩ with 2N
being the effective number of participating laser modes. The contribution of
the modes to the total power drops to 1/e of the central mode at n = N. The
bandwidth fB and pulse length 2Δt (measured at relative amplitude value

Fig. 8.17 Frequency spectrum of the 27 ps pulses of a mode-locked
Ti–sapphire laser recorded with a Fabry–Perot resonator with 7.5 mm
distance between the mirrors or ΔFSR = 20 GHz. The smaller pictures
show an enlarged detail and the absorption of a caesium vapour cell in
the ray trajectory [22], respectively.
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1/e) are connected to each other and to the peak width ΔtFWHM

Δt =
1

NΩ
=

ΔtFWHM√
8 ln 2

=
ΔtFWHM

2.35
.

8.5.3
Methods of mode locking

In order to achieve pulses as short as possible, it is first important to use
a laser amplifier with a very large bandwidth. For a sufficiently long life-
time of the upper laser level, the excitation can conveniently be generated
by a continuous-wave laser. The stored energy is withdrawn from the laser
medium by pulses separated typically by 12.5 ns, a time that is short com-
pared to, for example, the lifetime of 4 μs of the upper Ti–sapphire laser level.
For other systems like the dye laser, also the so-called ‘synchronous pumping’
excitation scheme is used. In that case and owing to the short lifetime of the
upper laser level, the pumping laser delivers a periodic and exactly synchro-
nized sequence of short pulses. As a certain special case, which we skip here,
we just mention the diode laser. By suitable modulation of the injection cur-
rent (Sect. 9.4.1) it directly delivers very short pulses down to 10 ps. It has been
intensively studied because of its significance for optical communication.

Table 8.2 contains important examples of lasers used for the generation
of extremely short pulses, and for comparison the limited potential of the
helium–neon classic. The typical repetition rate of mode-locked lasers is
80 MHz and 12.5 ns pulse distance, respectively, which is determined by the
characteristic construction lengths � setting the repetition rate at T = 2n�/c.

Tab. 8.2 Mode locking and bandwidth.

Laser Wavelength Bandwidth Pulse duration Pulse length
λ (nm) fB (THz) 2Δt �P = 2cΔt

Helium–neon 633 0.001 150 ps –
Nd:YLF 1047 0.4 2 ps 0.6 mm
Nd:glass 1054 8 60 fs 18 μm
GaAs diode 850 2 20 ps 6 mm
Ti–sapphire 900 100 6–8 fs 2 μm
NaCl–OH− 1600 90 4 fs 1.5 μm

Mode locking within the laser resonator is achieved by modulation of the
resonator losses synchronized to the pulse circulation. In Fig. 8.18 the mode
coupler is set to transmission only when the pulse passes and to opaque oth-
erwise. This modulation can be controlled either actively by the Q-switch
components of Fig. 8.15, or by passive nonlinear elements. Among them is
the so-called ‘saturable absorber’, which is mainly used for dye lasers. A sat-
urable absorber (optical saturation of an electric dipole transition is treated in
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Sect. 11.2.1) has an absorption coefficient that dies away at intensities above
the so-called saturation intensity Isat,

Fig. 8.18 Laser with mode locking. In the resonator, a spatially well-
localized light pulse is circulating. Mode locking is achieved actively,
e.g. by modulation of the cavity Q factor, or passively by saturable
absorbers or Kerr lens mode locking. On the lower right a spectrum of
the contributing modes is shown.

By means of an intense laser pulse circulating in the resonator (Fig. 8.18), the
absorber is easily saturated and hence resonator losses are rapidly reduced
during pulse passage. This passive modulation leads to self-locking of the
laser modes. A variant of the passive mode locking not studied intensively
any more (colliding pulse mode locking, CPM laser) uses two pulses circulating
in the resonator that hit each other exactly in the saturable absorber.

The most successful method in technical applications at this time is the so-
called Kerr lens mode locking (KLM), which causes a time-dependent variation
of the resonator geometry due to the intensity dependence of the refraction
coefficient

n = n0 + n2 I(t).

Kerr lens mode locking is an example of the application of self-focusing and
will be discussed in more detail in the section on nonlinear optics (Sect. 14.2.1).
The dispersive nonlinearity reacts extremely fast, essentially instantaneously,
to variations of the intensity, and therefore is advantageous for very short
pulses. At the centre of a Gaussian-shaped beam profile (for positive n2) the
refractive index is increased more strongly than in the wings, and hence causes
self-focusing, which changes the beam geometry as presented in Fig. 8.19.
Since the resonator losses depend on the beam geometry (the alignment of
the resonator!), this phenomenon has the same effect as a saturable absorber
and can be used for mode locking.

Kerr lens mode locking was discovered by W. Sibbett et al. in the Ti-sapphire
laser in 1991 [164]. It has led to revolutionary simplifications for the genera-
tion of ultra-fast pulses due to its particularly simple application, since the

α(I(t)) =
α0

1 + I(t)/Isat
.
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Fig. 8.19 Time dependence of resonator losses and the influence of
a Kerr lens on the beam geometry. The mode-locking effect can be
supported by the use of an additional aperture.

nonlinear passive mode locker, the Kerr lens, is intrinsic to the Ti-sapphire
amplifier crystal.

The KLM method alone though is not sufficient to generate pulses shorter
than about 1 ps. In Sect. 3.6.1 we investigated the influence of dispersion and
group velocity dispersion (GVD) on the shape of propagating light pulses,
which naturally play an important role when the shortest light pulses are to
be generated in a laser resonator containing several dispersive elements. The
GVD can be compensated through the arrangement of prisms of Fig. 14.5 on
p. 525. The prism combination is traversed twice per round trip in the res-
onator. In a ring resonator two pairs of prisms have to be supplied to recom-
bine the beams again. Another technique for dispersion control is offered by
dielectric mirrors with specially designed coatings (chirped mirrors). Very com-
pact femtosecond oscillators can be built with them.

Here we have considered the mode-locked lasers only in their simplest situ-
ation, that is for steady-state conditions. The operation of mode-locked lasers
though raises many interesting questions about laser dynamics, for which we
refer the reader to the specialized literature. Such questions include, for ex-
ample, the starting behaviour. How does the passively locked laser get to this
state at all? From a naive point of view, we can make, for example, inten-
sity fluctuations responsible for this, which may always be triggered by slight
mechanical vibrations.

Another phenomenon is the ampli-

Fig. 8.20 Amplified spontaneous emission,
preceding each laser pulse.

fied spontaneous emission (ASE), which
sometimes causes annoying side effects
in experiments. It occurs because, dur-
ing the pumping phase between the
pulses, the amplifier already emits ra-
diation energy, which is intensified in
the direction of the desired laser beams
due to the geometry.

The ASE can be suppressed by, for example, saturable absorbers that
transmit light only above a certain threshold intensity or separate it from the
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laser beam by external spatial filtering since the ASE in principle has much
larger divergence.

8.5.4
Measurement of short pulses

The measurement of the temporal properties (especially pulse duration) of
short pulses is limited to about 100 ps by common photodiodes and oscillo-
scopes due to their limited bandwidth (several GHz). On the electronic side,
the so-called streak camera can be used, a channel plate generating an electron
beam that is deflected rapidly similar to an oscilloscope. It leaves a trace on
the camera and so converts the time dependence into a local variation. With
recent models a time resolution down to 100 fs can be achieved.
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Fig. 8.21 Autocorrelator for the measurement of the time dependence
of very short laser pulses. In the direction of the photodiode (PD), a
signal only occurs when the laser pulses are correctly superimposed in
both time and space in the nonlinear crystal (NLC).

A purely optical standard method is offered by the autocorrelator, e.g. real-
ized by the schematic set-up of Fig. 8.21: a pulsed laser beam is split into two
partial beams and superimposed in a nonlinear crystal in such a way that a
frequency-doubled signal (details about frequency doubling will be presented
in Sect. 13.4) occurs. A signal is only registered on the photodiode if the par-
tial pulses are superimposed correctly. The voltage signal as a function of the
displacement Δx = cΔt of one arm relative to the other one,

IPD(Δt) ∝ E(t)E(t + Δt),

also has pulse shape, but is the result of a convolution of the pulse with itself
(therefore autocorrelation), from which the pulse shape has to be deduced by
some suitable transformations or models.
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8.5.5
Tera- and petawatt lasers

The new potential for generating extremely short laser pulses has also opened
a window to the generation of extremely intense laser ‘flashes’, at least for
a very short period in time. The field intensities are so large that matter is
transferred to completely new states, which at best can be expected in special
stars.

Even with a ‘common’ femtosecond oscillator (Ti–sapphire laser, 850 nm,
f = 80 MHz, 〈P〉 = 1 W, medium power), using appropriate components
for the compensation of group velocity dispersion [168], pulses can be gen-
erated with a duration of only 2Δt = 10 fs. Even though such pulses only
contain small amounts of energy Epulse, they already make available consid-
erable peak power Pmax and peak field intensities Emax:

Epulse = 1 W/80 MHz = 12.5 nJ,
Pmax ≈ Epulse/(2Δt) � 1 MW,
Emax ≈ 2Pmax/(πw2

0cε0) = 7 × 107 V cm−1.

For the calculation of the field intensity, we have assumed the laser power to
be concentrated onto a focal spot with a diameter of 10 μm. Besides, there,
even a 1 mW He–Ne laser reaches field intensities of about 1 kV cm−1! Ac-
cording to this an increase of the pulse energy to 1 J, which can be achieved
today using table-top equipment, promises a power of about 100 TW and even
the petawatt range is in sight. For this, field intensities of up to 1012 V cm−1

are achieved, about 1000 times the ‘atomic field intensity’ Eat = e/4πε0a2
0 =

109 V cm−1 experienced by an electron in the lowest hydrogen orbit!
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Fig. 8.22 Chirped pulse amplification. By stretching, the peak power
is decreased far enough that amplification without damage becomes
possible.

However, the generation and use of such intense laser pulses are hindered
by this highly interesting strong interaction with matter. In common materials
(initiated by multiphoton ionization) dielectric optical breakdown occurs and
destroys the amplifier. An elegant solution for this situation is offered by the
method of chirped pulse amplification (CPA, see Fig. 8.22), for which the short
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pulse is first stretched (in space and time) to decrease the peak power. The
stretched pulse is amplified and the stretching is reversed immediately before
the application to recover the original pulse shape.
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Fig. 8.23 Grating stretcher and compressor for femtosecond pulses.

Optical gratings have proven to be very suitable components for achieving
stretching as well as compression [165]. The concept of a grating stretcher and
compressor is presented in Fig. 8.23. The grating deflects red and blue parts
of an incident pulse in different directions. In the stretcher two gratings are
combined with 1 : 1 imaging properties. In a completely symmetric layout
(dashed upper grating on the left in Fig. 8.23) the upper grating would not
change the shape of the impulses at all, only at the drawn position.

8.5.6
White light lasers

Recently so-called white

��� $�� ��

Fig. 8.24 Interference pattern observed when a white
light laser is superposed with itself. The light beam was
dispersed by a prism to demonstrate simultaneous
interference of all contributing colours. With permission
from Harald Telle and Jörn Stenger.

light lasers and super continua
have become an exciting ob-
ject of research. It seems con-
tradictory at first to speak of
white light in this context
since the bias from classical
optics suggests an absolutely
incoherent light source with
this term. White light cov-
ering the full spectral range

of visible colours can, however, be generated from ultra-short pulse lasers.
White laser light is dispersed by a gratings like common white light and
exhibits the full range of colours. In contrast to conventional light sources,
however, this light field shows well-modulated interferences, as shown in
Fig. 8.24. It is thus coherent and truly laser light!
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Ultra-short, intense laser pulses are the basis for nonlinear processes trans-
forming their original, relatively narrow spectrum (typically less than 10%
of the visible spectrum) into an extremely broadband spectrum which may
cover the entire visible spectrum and beyond. The generation of coherent
white light is a field of active research and not yet fully understood, but it
seems clear that it is essential to provide efficient nonlinear conversion pro-
cesses with fibres driven in the strong guiding limit. Remember that most
optical fibres (see Sect. 3.3) are operated in the weak guiding limit where small
steps in the index of refraction of order 1% provide guiding but also cause the
optical wave to be spread out over a relatively large cross-section. In photonic
fibres (see Sect. 3.5.6) [145, 147] the strong guiding limit can be realized where
the optical wave is confined to the narrow core with diameter 1–2 μm, much
stronger than in any weakly guiding fibre, by large index of refraction steps
corresponding to the glass–air interface. In such fibres, nonlinear conversion
is not only supported by the large intensities obtained in the narrow core, but
also by the unusual dispersion properties of the fibres.
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Fig. 8.25 White light generation with a tapered optical fibre.

Another example of a schematic set-up for white-light generation using a
tapered fibre [174] is given in Fig. 8.25. The fibre is drawn out to extremely
narrow cross-sections ( � 1 μm) from a conventional fibre (initial diameter
125 μm) providing efficient coupling into the tapered section. Several pro-
cesses of the nature described in Chaps. 13 and 14 on nonlinear optics are
responsible for the spectral broadening occurring during propagation of the
short light pulse through the tapered section.
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Problems

8.1. Rate equations and Q-switch Write a computer program in order to nu-
merically study the rate equations (8.20). How do you set initial conditions?
Study the influence of pump and loss rates. Make a model for a Q-switch.

8.2. Schawlow–Townes limit (a) Give a qualitative explanation, why the
Schawlow–Townes laser linewidth is inversely proportional to the laser inten-
sity, ΔνST ∝ 1/P. What is the origin of the dependence on the resonator damp-
ing rate γ2

c? (b) Compare the Schawlow–Townes linewidth of a He–Ne laser at
633 nm and a GaAs semiconductor laser at 850 nm for similar output powers
of P = 1 mW. Determine for this purpose the damping rates of resonators with
� = 20 cm, nref = 1 and R1 = 100%, R2 = 99% for the He–Ne laser, and � =
300 μm, nref = 3.5 for the GaAs laser. The mirrors of the semiconductor laser
are formed by the cleaved facets of the laser crystal. (c) Assume that the He-Ne
laser is used for precision frequency measurements. If the precision is limited
only by the Schawlow–Townes limit, what are the maximum tolerable length
fluctuations? What variation of the index of refraction inside the resonator is
allowed?

8.3. Q-switching, pulse length and peak power Use the laser rate equations
to make a simple model for a Q-switched laser pulse. Spontaneous emission
is completely neglected for these intense pulses. We divide the pulse into two
phases (Fig. 8.26): the increasing part I with rise time τr, and the decreasing
part II with decay time τd.

(a) For an estimate of the rise time,
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Fig. 8.26 Description of the laser pulse
and the time evolution of amplification.

we neglect the variation of the inversion.
How does the photon number nph grow?
Give the rise time as a function of n/nst,
where n describes the non-saturated, nst
the saturated inversion. (b) Once the gain
is exhausted, the photon number starts to
decay in the second phase. Which time
constant is relevant, and how large is
the entire pulse length? Nd:YAG and
Nd:YLF laser ions have the same absorp-
tion and emission cross-section, respec-

tively, but the lifetime in the YAG crystal is only half as long as in the YLF
crystal. Which one is more advantageous for large peak powers? (c) Estimate
the photon number by neglecting pump rate and inversion decay during the
duration of the pulse. Assume an initial inversion n(t0) > nst and stop the
growth of the photon number nph when n(t) = nst.
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9
Semiconductor lasers

Immediately after the demonstration of the ruby laser (1960) and the helium–
neon laser (1962), the lasing of diodes, or ‘semiconductor lasers’, was also
predicted and a little bit later was realized experimentally.1 However, it took
more than 20 years for those components to become commercially successful
products, since numerous technological problems had to be overcome. The
first laser diodes, for example, could operate only at cryogenic temperatures,
while applications in general require operating temperatures close to room
temperature. Moreover, GaAs was the first relevant material for the manufac-
ture of laser diodes, and not silicon, which, then as now, otherwise dominates
semiconductor technologies.

Today, laser diodes belong to the most important ‘opto-electronic’ devices
because they allow the direct transformation of electrical current into (coher-
ent!) light. Therefore there are countless physical, technical and economic
reasons to dedicate a chapter of its own to these components and related laser
devices.

9.1
Semiconductors

For a detailed description of the physical properties of semiconducting mate-
rials, we refer the reader to the known literature [101]. Here we summarize
properties of importance for the interaction with optical radiation.

9.1.1
Electrons and holes

In Fig. 9.1 the valence and conduction bands of a semiconducting material are
presented. Free electrons with negative charge carry the current in the con-
duction band (CB), whereas holes with positive charge2 do so in the valence

1) John von Neumann (1903–1957) carried out the first documented
theoretical consideration of a semiconductor laser in 1953. This un-
published manuscript was reproduced in [173].

2) It should not be forgotten that the term hole is only an – albeit very
successful – abbreviation for a basically very complex physical
many-particle system. Most of the physical properties (conductiv-
ity, Hall effect, etc.) of the electrons of the valence band can be very
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Fig. 9.1 The band model for semiconductors. Electrons and holes
can move freely and independently from each other. CB = conduc-
tion band; VB = valence band; Eg = bandgap energy; EA = excitation
energy of the dopant impurities.

band. The distribution of the electrons into the existing states is described by
the Fermi function f (E),

fel(E, εF) = [1 + e(E−εF)/kT]−1, (9.1)

which is determined by the Fermi energy for electrons of the conduction band
εF = εCB and temperature T. Especially at T = 0 all energy states below
the Fermi energy are completely filled, and above it completely empty. The
distribution of holes – missing electrons – is described in analogy by

fh = 1 − fel = [1 + e(εF−E)/kT]−1. (9.2)

Without external bias voltage, the equilibrium occupation numbers of elec-
trons and holes are characterized by a common Fermi energy εF = εCB =
εVB. In forward-biased operation at a pn junction a non-equilibrium, current-
carrying situation relevant for laser operation arises with different Fermi en-
ergies for electrons and holes, εCB = εVB.

Some important situations of the Fermi distribution in intrinsic and doped
(see Sect. 9.1.2) semiconductors are presented in Fig. 9.2. At T = 0 the Fermi
energy gives exactly the energy up to which the energy levels are occupied.

9.1.2
Doped semiconductors

An intrinsic semiconductor consists of a pure crystal, e.g. the technologically
most important material Si from main group IV in the periodic table or the
III–V compound GaAs. In such a material the Fermi energy is found close to
the middle of the bandgap. The occupation probability of the states can then
approximately be described according to Boltzmann’s formula

fel(T) � e−Eg/kT .

well described as if there were free particles with a positive charge
and a well-defined effective mass.
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Fig. 9.2 Fermi distribution in intrinsic, n- and p-doped semiconductors
with dopant energy levels, respectively. εF: Fermi energy.

The bandgap energy Eg depends on the material and is of the order of a few
eV; therefore at room temperature (kT � 1/40 eV) there are only very few elec-
trons in the conduction band. The revolutionary significance of semiconduc-
tors arises in principle from the possibility to increase the conductivity dra-
matically via doping (e.g. in Si, with impurity ions from main groups III or
V) and even via different concentrations for holes and electrons (Fig. 9.1). The
deficit or excess of electrons of the impurity atoms generate energy states near
the band edges which are easy to excite at thermal energies. Electron charge
carriers are generated in this way in an n-doped semiconductor, and holes in a
p-doped system, respectively. The Fermi energy lies in this case near the accep-
tor (p doping) or the donor (n doping) level (Fig. 9.2). Already at room tem-
perature such a doped semiconductor exhibits a large conductivity caused by
electrons in n-type and holes in p-type material.

9.1.3
pn junctions

If electrons and holes collide with each other, they can ‘recombine’, emitting
dipole radiation at optical or near-optical frequencies. Such processes are fa-
cilitated by having an interface between p- and n-doped semiconducting ma-
terial (a pn junction), which is the heart of every semiconductor diode. The
properties of a pn junction which depend crucially on the sign of the bias volt-
age are summarized in Fig. 9.3.

• Zero-bias equilibrium (left). At the interface, electrons diffuse into the p-
doped area and holes into the n-doped one, where they can recombine.
At the barrier, a layer called depletion zone is emptied of charge carriers
and an electrical field is generated, counteracting any further diffusion.

• Reverse bias (middle). The depletion zone is enlarged.
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• Forward bias (right). A current flows through the junction, electrons and
holes flood the barrier layer and cause recombination radiation. Within
the conduction and valence bands, there is thermal equilibrium charac-
terized by two different Fermi energies for electrons and holes.
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Fig. 9.3 A pn junction with free charge car-
riers. The dashed line indicates the Fermi
energy εF. Left: Zero-bias equilibrium. At the
interface, electrons diffuse into the p-doped
area and holes into the n-doped one, where
they can recombine. At the barrier, a layer is
depleted of charge carriers and an electrical
field is generated, counteracting any further

diffusion. Middle: At reverse bias, the deple-
tion zone is enlarged. Right: At forward bias,
a current flows through the junction, elec-
trons and holes flood the barrier layer and
cause recombination radiation. Within the
conduction and valence bands, there is ther-
mal equilibrium characterized by two different
Fermi energies for electrons and holes.

9.2
Optical properties of semiconductors

9.2.1
Semiconductors for opto-electronics

From the opto-electronic point of view, the energy gap at the band edge is the
most important physical quantity, since it determines the wavelength of the
recombination radiation. It is presented in Fig. 9.4 for some important opto-
electronic semiconductors as a function of the lattice constants, which have
technological meaning for the formation of compound crystals. A particular
gift of Nature for this is the extremely small difference of the lattice constants
of GaAs and AlAs. Because of the excellent lattice match, the bandgap can be
controlled over a wide range by the mixing ratio x in (AlxGa1−x)As compound
crystals (Fig. 9.5).

Other compound crystals have been in use as well for quite a long time. Es-
pecially, the wavelength of 1.55 μm that is most important for optical telecom-
munications can be obtained from a quaternary InGaAsP crystal. Silicon, the
economically most significant semiconducting material, does not play any
role, since it does not have a direct bandgap but only an indirect one (see
Sect. 9.2.4).



9.2 Optical properties of semiconductors 337




�

�

0

1

*

<

)

0 0I* * *I* <

;" '

0˝'

��- <˜'

��

����

0˘

<˜.

=3��

>��̆

- ��

0˝; �

=3�

>��

;" .
0˝.

��?�̆

>���

�
�

�
�

$
�

=
��


F

	

1



<*

+*


�**


;";�

�
�
3

�

�
$
�,

��
�
2

	

Fig. 9.4 Bandgap energy of some important semiconducting materi-
als. Materials for which lasing has been realized already are marked
with a cross. At the right-hand side, some technically relevant laser
wavelengths are given.

Fig. 9.5 Bandgap energy in AlGaAs and InGaAsP as a function of the
mixing ratio.

Excursion: Blue luminescent gallium nitride, a scientific fairytale
The development of laser diodes experienced rapid progress in the 1980s and 1990s,
but 1996 will go down in history as a very special year. In that year, Shuji Naka-
mura, with the Japanese company Nichia Chemical Industries Ltd, was able to present
the world’s first blue laser diodes to an astonished audience. He had made the
devices based on GaN, which had been considered completely unsuitable for opto-
electronics! This research was supported neither commercially nor academically, and
success would not have been possible without the confidence of his boss, Nobuo
Ogawa. With no experience at all on this topic in his company and not very much
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in touch with semiconductor lasers, since 1989 he had allowed the then 36-year-old
engineer to pursue a research programme that went against all established opinions
about the potential of gallium nitride [132].

In fact, there had been commercial interest in blue luminescence long before the
interest in blue laser radiation, since only with blue light sources was there the hope to
produce fully coloured screens based on semiconductors. Worldwide large sums had
been invested in research on ZnSe, which was supposed to have the biggest chance
of success. In textbooks, it could be read that GaN was unsuitable in spite of its well-
known and attractive physical properties ((Al,Ga,In)N has a direct bandgap of 1.95–
6.2 eV ), since it could not be p-doped. This assertion though could not be maintained
any more after 1988, when Akasashi et al. were successful with the preparation of such
crystals, though at first with a costly electron-beam technique. S. Nakamura succeeded
crucially in the thermal treatment of GaN samples by replacing the NH3 atmosphere
by N2. He found that the ammonia atmosphere dissociated and the released hydrogen
atoms passivated the acceptors in GaN.

With this, though by far not all the problems were solved, the gate to the blue laser
diode had been widely opened. Less than 10 years after this discovery, blue laser
diodes could be bought in spite of all predictions – an event from the scientific book of
fairytales.

9.2.2
Absorption and emission of light

In a semiconductor, electrons are excited from the valence band to the conduc-
tion band on absorption of light with a wavelength

λ < Eg/hc,

so that electron–hole pairs are generated. Under certain conditions, e.g. at
very low temperatures, absorption of light can be observed already below the
band edge. During this process no freely mobile charge carriers are gener-
ated, rather pairs bound in ‘excitonic’ states with a total energy slightly below
the edge of the conduction band. Excitons, which resemble atoms made from
pairs of electrons and holes, will however not play any role in our considera-
tions.

If free electrons and holes are available, they can recombine under emission
of light that again has a wavelength corresponding roughly to the band edge
due to energy conservation. The ‘recombination radiation’ though has fur-
thermore to fulfil momentum conservation3 for the electron–hole pair (h̄kel,
h̄kh) as well as for the emitted photon (h̄kph):

energy: Eel(kel) = Eh(kh) + h̄ω,
momentum: h̄kel = h̄kh + h̄kph.

(9.3)

3) In a crystal it is more exact to speak about quasi-momentum conserva-
tion.
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Fig. 9.6 Left: Electronic density of states and
simplified dispersion relation for direct semi-
conductors (GaAs). The different curvatures
of the bands are the origin of the different ef-
fective masses (see Eq. (9.4)). In equilibrium
there are charge carriers only at the band
edges (shadowed areas indicate states filled
with electrons). Optical transitions start and

end with hardly any change of the k vector
since the momentum of the photons is not
visible on this scale. They can only take place
if electrons of the conduction band meet an
unoccupied state, a hole in the valence band.
Right: For indirect semiconductors (Si), direct
optical transitions are suppressed.

The k-vectors of the charge carriers are of magnitude π/a0 with a0 indicating
the lattice constant and therefore very much larger than 2π/λ. That is why
optical transitions only take place if the lowest-lying electronic states in the
E–k diagram (the ‘dispersion relation’) are directly above the highest-lying
hole states.

In Fig. 9.6 the situation for two particularly important semiconductors is
schematically presented. In the so-called ‘direct’ semiconductor GaAs, at
k = 0, a conduction band edge with ‘light’ electrons meets a valence band
edge with ‘heavy’ holes (the effective mass of the charge carriers is inversely
proportional to the curvature of the bands); there direct optical transitions are
possible. Silicon, on the other hand, is an indirect semiconductor. The band
edge of the electrons occurs at large kel values, that of the holes at k = 0; thus
silicon cannot radiate! There are however weaker and more complex pro-
cesses, e.g. with the participation of a phonon which supplements a large k
contribution and thus ensures momentum conservation in Eq. (9.3) at negligi-
ble energy expense.

The recombination radiation is caused by an optical dipole transition with
a spontaneous lifetime τrec of typically

recombination time τrec � 4 × 10−9 s.

The recombination rate is also called the ‘inter-band’ decay rate and is very
slow compared to the collision time T′ of the charge carriers with defects and
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phonons within the conduction and valence bands. This ‘intra-band’ scatter-
ing takes place on the picosecond time scale

relaxation time T′ � 10−12 s,

and ensures that, owing to relaxation within each of the bands, there is an
equilibrium state determined by the crystal temperature.

9.2.3
Inversion in the laser diode

In a semiconductor, coherent light is generated by stimulated recombination
radiation. In the beginning the pn junctions had to be very deeply cooled
down to the temperature of liquid helium in order to suppress loss processes
competing with luminescence and to generate an adequate inversion density
for lasing. The development of the heterostructure laser, which we are going
to discuss a little later, has overcome this problem and contributed decisively
to the still growing success of semiconductor lasers.

The amplification is determined among other things by the number of
charge carriers that can emit recombination radiation at a certain energy dif-
ference. For this, their density of states has to be calculated from the (E, k)
dispersion relations,

Eel = ECB +
h̄2k2

2m∗
el

and Eh = −
(

EVB +
h̄2k2

2m∗
h

.

)
(9.4)

With ECB,VB we denote the edges of the conduction and valence bands. In
the vicinity of the band edges the disperion relation is quadratic like for free
particles, and the curvature is proportional to the inverse effective mass m∗
(Fig. 9.6) which for example for GaAs yields electrons with m∗

el = 0.067mel and
heavy holes with m∗

h = 0.55 mel. In the three-dimensional volume we have
k2

x + k2
y + k2

z = k2 and using ρel,h(k) dk = k2 dk/2π2 (see App. B.3), the density
of states for electrons and holes are separately calculated according to

ρel,h(E) dE =
1

2π2

(
2m∗

el,h

h̄2

)3/2

(E − ECB,VB)1/2 dE,

with E for electrons and holes counted from each band edge ECB,VB. With
this relation we can also determine the density of charge carriers for electrons
and holes. We introduce the two quantities αel = (ECB − εCB)/kT and αh =
(εVB − EVB)/kT and replace the integration variable by x = (E − ECB)/kT
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and x = (EVB − E)/kT, respectively, giving

nel,h =
∫ ∞

ECB,VB

ρel,h fel,h(E, εCB,VB) dE

=
1

2π2

(
2m∗

el,hkT

h̄2

)∫ ∞

0

exp(−αel,h)
√

x dx
exp(x) + exp(−αel,h)

.

Estimates can be obtained easily by inserting the characteristic effective
masses for GaAs. We obtain after a short calculation for T = 300 K:{

nel

nh

}
=

{
4.7 × 1017 cm−3

1.1 × 1019 cm−3

}
e−αel,h

∫ ∞

0

√
x dx

ex + e−αel,h
. (9.5)

For every charge carrier density, analysis of the implicit equation (9.5) deter-
mines a Fermi energy for both conduction and valence bands, ({nel, nh} ↔
{ECB, EVB}), where we typically assume that electrons and holes have the
same concentration. In a laser diode this density of charge carriers is main-
tained by the injection current (see p. 344).

Example: Charge carrier densities in GaAs
A case of special interest occurs
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Fig. 9.7 Density of charge carriers and
Fermi energies.

at αel,h = 0 since there the Fermi
energy just reaches the edges of
the valence and conduction bands.
This case can even be resolved ana-
lytically:

nel = 4.7 × 1017 cm−3
∫ ∞

0

√
x dx

ex + 1

= 3.2 × 1017 cm−3.

In general, Eq. (9.5) has to be eval-
uated by numerical methods. The
result of such an evaluation is pre-
sented in Fig. 9.7.

Owing to the smaller effective masses, the electron concentration makes the
Fermi energy εCB increase faster than the hole concentration εVB, and it reaches
the band edge first. Through strong p-doping, though, the Fermi energy in
the currentless state (i.e. free of charge carriers) is shifted closer to the valence
band, so that εVB gets to the valence band edge at a lower density of charge
carriers.

As we will see later (Eq. (9.9)) it is already sufficient for inversion if the
difference of the Fermi energies εCB − εVB is larger than the bandgap energy
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Eg. There the so-called ‘transparency limit’ is reached since the radiation field
is no longer absorbed but amplified.

In terms of lasing we are more interested in which states can contribute to
a transition with energy E = h̄ω > Eg = ECB(k) − EVB(k), or where we can
expect inversion. We obtain the rate of stimulated emission from the Einstein
B-coefficient. A selected k vector contributes with a rate

Rk
CV = BCVU(ω(k))

{
f CB
el (Eel(k))

(
1 − f VB

el (Eh(k))
)}

to the total rate of stimulated emission at frequency ω = (Eel − Eh)/h̄. In
this term the occupation probabilities at the energy difference of the direct
transition h̄ω in the valence band ( f CB

el (Eel(k))) and conduction band (1 −
f VB
el (Eh(k))) are taken into account. The energy density of the radiation field

is given by U(ω(k)). The rate for absorption is derived accordingly,

Rk
VL = BVLU(ω(k))

{
f VB
el (Eh(k))

(
1 − f CB

el (Eel(k))
)}

.

The total rate of transitions at frequency ω has to be determined from the
sum RCV(ω) = ∑k Rk

CVδ(ω − (Eel − Eh))ρ(k) d3k. From the joint dispersion
relations for electrons and holes,

E = Eel − Eh = Eg +
h̄2k2

2m∗
el

+
h̄2k2

2m∗
h

,

we find using the methods from App. B.3 the so-called reduced density of
states with reduced mass μ−1 = m∗−1

el + m∗−1
h and ρ(ω) = h̄ρ(E):

ρred(ω) =
1

2π2

(
2μ

h̄

)3/2

(ω − Eg/h̄)1/2. (9.6)

Then the difference of emission and absorption rates can be calculated with
BCV = BVC from

RCV − RVC = BCVU(ω)[ f CB
el (1 − f VB

el ) − f VB
el (1 − f CB

el )]ρred

= BCVU(ω)[ f CB − f VB]ρred.
(9.7)

The role of inversion, which in conventional lasers is given by the occupation
number difference of the excited state (Ne) and lower state (Ng) of the laser
transition, is now taken over by the product

(Ne − Ng) → ( f CB − f VB)ρred[(ECB − EVB)/h̄],
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with the first factor controlled by the injection current. The existence of inver-
sion clearly depends on the sign of the factor ( f CB − f VB), or

f CB
el > f VB

el and
1

1 + eEel−εCB
>

1
1 + eEh−εVB

.

A small transformation uncovers

Eel − Eh = h̄ω < εCB − εVB,

and we find that frequencies with gain must be smaller than the correspond-
ing difference of the Fermi levels, εCB and εVB. On the other hand only energy
differences above the bandgap energy can be amplified, hence the inversion
condition for semiconductor lasers can be written

εCB − εVB > Eg.

For GaAs this situation is typically reached with charge carrier densities nel =
nh = 1018 [cm−3], as detailed in the example on p. 341.

9.2.4
Small signal gain

Consider a pulse of light propagating in the z direction with group velocity vg

and spectral intensity I(ω) = vgU(ω). The change of the intensity by absorp-
tion and emission respectively is described according to Eq. (9.7). After a short
travel length Δz = vgΔt we can thus write ΔI = (RCV − RVC)h̄ωΔz. Then the
absorption and emission coefficients respectively are determined according to
Eq. (6.23),

α(ω) =
ΔI
IΔz

=
(−RVC + RCV)h̄ω

vgU(ω)
.

We use the identity BCV = ACV/[h̄ω(ω2/π2c3)] = ACV/[h̄ωρph(ω)] accord-
ing to Eq. (6.50) to relate the Einstein coefficient to the microscopic properties
of the semiconductor. Then we can write with τ = A−1

CV

α(ω) =
1

vgτ

ρred(ω)
ρph(ω)

( f CB − f VB) = α0( f CB − f VB), (9.8)

where we have introduced the maximum absorption coefficient α0(ω), which
is proportional to the reduced density of states.

For an estimate we use specifications characteristic for GaAs lasers: wave-
length λL = 850 nm; reduced effective mass μ = 0.06mel; recombination time
τrec = 4 × 10−9 s; group velocity vg � c/3.5. For typical separations of the
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laser frequency from the band edge of 1 THz = 1012 Hz, corresponding to 2 nm
in terms of wavelengths, one can calculate

α0 = 6.8 × 103 cm−1
√

(νL − Eg/h)/THz.

The very large gain factors α0 are somewhat reduced in a room-temperature
laser by the Fermi factor from Eq. (9.8).

Like in the gas laser, amplifica-
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Fig. 9.8 Absorption and (small signal) gain at a pn
junction for a given density of charge carriers at
T = 0 K and at elevated temperature.

tion in the laser diode is achieved
when stimulated emission over-
comes the losses caused by out-
coupling, scattering and absorp-
tion. In Fig. 9.8 we have calcu-
lated the gain and loss profile
for an example. At T = 0 the
Fermi distributions are step-like
and therefore the value of the
absorption coefficient is exactly
at α0(ω). Moreover, it becomes
immediately clear that an inversion of the charge carriers can occur only if
there are different Fermi energies in the conduction and valence bands,

εCB − εVB > hν > Eg. (9.9)

The charge carrier distribution corresponds to a dynamic equilibrium that can
only be sustained for forward biased operation of the diode. The more exact
calculation of the semiconductor gain is an elaborate matter since it depends
on the details of the technical layout, which is much more complex as we are
going to see later on.

Example: Threshold current of the semiconductor laser
The threshold current density required can easily be determined when the
critical density of charge carriers nel ≥ 1018cm−3 is known. The density of
charge carriers is transported by the injection current to the pn junction and
recombines there spontaneously with rate τ−1

rec = 2.5 × 108 s−1:

dnel

dt
= − nel

τrec
+

j
ed

.

Without difficulties we derive the stationary current density for a width of the
space charge zone d = 1 μm of the pn junction,

j =
neled
τrec

≥ 4 kA cm−2.
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For an active zone with a typical area of 0.3× 0.001 mm2, this current density
already corresponds to 12 mA, which has to be concentrated exactly onto this
small volume. It is obvious that it is worth while to technically reduce the
natural width of the diffusion zone of the charge carriers in order to lower the
threshold current density. This concept is precisely pursued by heterostruc-
ture and quantum film lasers.

9.2.5
Homo- and heterostructures

Although the basic concept for the operation of a semiconductor laser origi-
nates from the early days of the laser, it was initially mandatory to cool the
pn junction to cryogenic temperatures to obtain lasing at all. The light mobile
electrons have a large diffusion length (≥0.5 μm), so that large threshold cur-
rents were required, and at room temperature the gain could not overcome the
losses caused especially by non-radiative recombination and reabsorption. In
the 1970s, however, this problem was solved by the concept of ‘heterostruc-
tures’, and ever since laser diodes have continued their triumphant route as
sources for coherent light. In a heterostructure two different materials (e.g.
with different composition and different bandgaps, compare Fig. 9.4) are ad-
jacent to each other. The interface creates potential steps which inhibit the
diffusion of charge carriers across the barrier. For laser materials the bandgap
is chosen in such a way that electrons and holes are confined between two
layers with a larger bandgap in a zone with a smaller bandgap (‘double het-
erostructure’). Otherwise the light generated at the centre would be absorbed
again in the outer areas of the amplification zone.
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Fig. 9.9 Band structure for electrons and holes: homostructure, het-
erostructure and quantum films. The quantum film limit is usually en-
tered at thickness below 200 Å.

This advantage of heterostructures compared to simple homostructures is
schematically presented in Fig. 9.9. The strongly simplified potential scheme
indicates that the motion of the charge carriers is now limited to a narrow
layer (�0.1 μm) in order to realize an accordingly high gain density by their
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strong confinement. Furthermore, when the refractive index in this area is
higher than in the adjacent layers, a favourable wave guide effect is obtained,
which in this case is called ‘index guiding’. Also, the spatial variation of the
charge carriers causes changes of the refractive index and wave guiding again,
which is called ‘gain guiding’ in this case. With further miniaturization of the
active layer we get to the realm of quantum film systems, which are not just
simply smaller but also show qualitatively novel properties (see Sect. 9.3.4).

9.3
The heterostructure laser

The most important material for the manufacture of opto-electronic semicon-
ductors until now has been GaAs. As a direct semiconductor, not only does
it offer the necessary microscopic properties, but also, by variation of the
GaxAl1−xAs compound crystal composition, it offers widespread technical
potential to adjust the bandgap and the refractive index to the requirements
for applications. The characteristic wavelength at 850 nm has technological
significance as well, because it lies in one of three spectral windows (850, 1310,
1550 nm) suitable for the construction of optical networks. Today, the concepts
of the AlGaAs laser have been transferred to other systems as well, like, for
example, InAlP.

Fig. 9.10 Layer systems for laser diodes. Left: Plain homostructure.
Middle: The current flux is narrowed by insulating oxide layers and
causes a concentration of the inversion density. The inhomogeneous
amplification, or charge carrier density, furthermore generates a wave
guide, which leads the light field along the gain zone (‘gain guiding’).
Right: Double heterostructures generate a precisely controlled amplifi-
cation zone as well as an optical wave guide for the light field.
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9.3.1
Construction

9.3.1.1 Laser crystal

Laser crystals are produced through epitaxial growth.4 The composition of
these layers can be controlled along the growth direction by regulating the
precursor flux. The vertical double heterostructure (DH) is controlled by such
growth. The lateral structuring on the micrometre scale is engineered through
methods known from micro-electronics, e.g. optical lithography processes.
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Fig. 9.11 Standard package for laser diodes. The semiconductor de-
vice itself is hardly visible and has typical dimensions of 0.3 mm edge
length. This type is called an edge emitter.

Owing to the construction, the laser field propagates along the surface of the
crystals, and outcoupling takes place at the edge of a cleavage face. Therefore
this type is called an ‘edge emitter’, in contrast to an alternative layout where
light is emitted perpendicularly to the surface. This type will be introduced
shortly in Sect. 9.5.2.

Laser crystals with a length of about 0.2–1 mm are produced by simply
cleaving them from a larger epitaxially grown wafer. They can basically be
inserted into a suitable package (Fig. 9.11) without any further treatment and
be contacted with standard techniques to facilitate handling. The transverse
geometric properties of the laser field are determined by the shape of the
amplification zone. In the far field an elliptical beam profile is generally ob-
served caused by the diffraction off the heterostructure and the transverse
wave guiding. The light of edge-emitting laser diodes thus has to be colli-
mated, which is quite costly for the purposes of application, and is one reason
for the development of surface emitters, which offer a circular beam profile
from the beginning.

4) During epitaxial growth, thin monolayers of the (semiconducting)
material are homogeneously deposited on a monocrystalline sub-
strate from molecular beams.
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9.3.2
Laser operation

In the most frequent and simplest case, the cleavage faces of the crystal already
form a laser resonator. At a refractive index n = 3.5 the intrinsic reflectivity of
a GaAs crystal is 30% and is often sufficient to support lasing due to the large
gain coefficients of semiconductors. In other cases the reflectivity of the cleav-
age faces can be modified by suitable coatings. In Fig. 9.12 the output power
of a semiconductor laser as a function of the injection current is presented.

For many applications, e.g. spectroscopy or optical communications, the
use of single-mode lasers (both transverse and longitudinal) is important.
The homogeneous gain profile of the laser diode offers excellent precon-
ditions to implement single-mode operation even though the free spectral
range of semiconductor lasers at �typ = 0.3 mm is, in spite of the substantial
ΔνFSR = 150 GHz, still very small compared to the gain bandwidth of 10 THz
and more. In fact parasitic laser oscillations (‘sidebands’) are very efficiently
suppressed in many components.

The threshold currents of a
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Fig. 9.12 Current–power diagram of a laser diode.
At large currents a ‘roll-over’ can occur due to
heating of the pn junction.

laser diode vary depending on
the layout, but the aim is al-
ways a laser threshold as small
as possible. It has to be kept
in mind that large current den-
sities of 100 kA cm−2 and more
occur, causing strong local heat-
ing and thus leading to damage
of the heterostructures. For the
same reason the threshold cur-
rent grows with temperature. In

high-power lasers the so-called ‘roll-over’ occurs, for which increase of the
injection current no longer leads to increase of the output power but on the
contrary reduces it due to the heating of the pn junction! The relation between
threshold current Ith and temperature follows an empirical law with a charac-
teristic temperature T0 and current I0,

Ith = I0 exp
(

T − T0

T0

)
. (9.10)

In conventional heterostructure lasers the characteristic temperature has val-
ues of about T0 = 60 K but in other layouts such as VCSEL or quantum -film
lasers (see Sect. 9.3.4) these values are increased in a favourable direction up
to 200–400 K so that the temperature sensitivity of the components is signif-
icantly reduced. A qualitative semiconductor laser output power vs. pump
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curve is presented in Fig. 9.12 and reflects features of the idealized laser of
Fig. 8.1. From the slope of the power, the differential quantum efficiency can
be obtained, which is typically 30% or more:

differential quantum efficiency =
e

hν

dP
dI

.

Sometimes there are so-called ‘kinks’ in the power–current diagram. They
are an indication of a modification of the laser mode, e.g. caused by a charge
carrier profile switching geometrically from one spatial mode to another at
this particular current.

9.3.3
Spectral properties

9.3.3.1 Emission wavelength and mode profile

The emission wavelength of a semiconductor laser is determined by the com-
bined effect of gain profile and laser resonator as it is for other laser types.
We first consider the wavelength selection of the ‘freely operating’ laser diode
without any additional optical elements.

Single-mode operation occurs in

�2=�����

�
�

3


�
�

$
�,

�

N���;��$���.N

�.�������2
��.��H

�*
��
B�	

Fig. 9.13 Mode jumps of diode lasers caused
by temperature variations (’mode chart’).

many types of laser diodes. It is
favoured by a gain profile that is ho-
mogeneously broadened as a result
of a large intra-band relaxation rate.
So at the gain maximum the mode
starts lasing by itself. However,
the detailed geometry of the of-
ten complex multi-layer laser crys-
tal can also allow multi-mode laser
operation, and even in components
explicitly called ‘single-mode laser’
usually further parasitic modes may
only be suppressed by a certain fi-
nite factor (typically ×100, or 20 dB).

Although the construction length of the resonator is generally very short
(0.3–0.5 mm, n � 3.5) and already for conventional components delivers a free
spectral range of 80–160 GHz (which can be much larger for VCSEL lasers),
there are still many resonator modes in the gain profile at a typical spectral
width of some 10 nm or some THz.

The refractive index determining the resonator frequency depends sensi-
tively on the temperature as well as on the charge carrier density and the in-
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jection current respectively, so that the exact laser frequency νL can be tuned
over considerable ranges by controlling these parameters:

1. Increasing the temperature of an external heat sink (e.g. a Peltier cooler)
typically causes a redshift, i.e. a frequency change with rate dνL/dT =
−30 GHz K−1.

2. Variation of the injection current causes a shift dνL/dI = ηth + ηn.
The shift is due to temperature changes within the heterostructure
(ηth � −3 GHz mA−1) and also modifications of the charge carrier den-
sity (ηn � 0.1 GHz mA−1). For slow current variations, the frequency
change is dominated by the thermal redshift, but for modulation fre-
quencies exceeding fmod ≥ 30 kHz, the influence of the charge carrier
density dominates (see Sect. 9.4.1.2).

Unfortunately tuning by temperature and current at the pn junction only
does not usually allow generation of every frequency within the gain profile.
It is impaired by ‘dark’ zones (Fig. 9.13) since the gain profile and the mode
structure of the resonator do not vary synchronously with each other. External
optical elements can, however, also be used to access those forbidden domains
(see Sect. 9.5.1).

9.3.3.2 Electronic wavelength control

When the exact frequency or wavelength of the laser radiation is important,
like, for example, in spectroscopic applications, then the temperature at the
laser diode junction and the injection current have to be controlled very pre-
cisely. The high sensitivity to temperature and current fluctuations sets high
technical demands on the electronic control devices. If technically caused fre-
quency fluctuations are to be kept lower than the typical 5 MHz caused by in-
trinsic physical processes (see Sect. 9.4.2), then according to the variation rates
given in the preceding section obviously a temperature stability δTrms ≤ 1 mK

!����5�
����� ,���

45.�3�
4� ���2E

45.�.��

.��3���

���.����5�
�������.����

:� ���2�

.��3���

A6

A6

��.��2���������

Fig. 9.14 Left: Temperature control for laser diodes may use thermis-
tors as temperature sensors. Right: Current control will typically inject
a well-stabilized current that resists rapid variations. Fast modulation
may then be realized by directly injecting additional small currents.
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and a current stability δIrms ≤ 1 μA have to be achieved with appropriate
servo-controllers.

Considering it more exactly, the spectral properties of the servo-controllers
have to be investigated, but this would by far exceed the scope of this book.
However, it is quite easy to see that the temperature control cannot have a
large servo bandwidth due to its large thermal masses. The bandwidth of the
current control is basically limited only by the capacitance of the laser diode it-
self, but it is advisable in terms of servo-control methods to limit the constant-
current source to a small internal bandwidth in order to reduce the current
noise and instead of this to provide some additional fast high-impedance
modulation inputs like, for example, in Fig. 9.14.

For wavelength stabilization the devices described here have a merely pas-
sive effect – they warrant tight control of operational parameters of the laser
diode but do not interrogate the wavelength itself. For many applications, e.g.
optical wavelength standards, still better absolute stabilities are required and
deviations from a desirable wavelength must be directly sensed, for instance
through a spectroscopic signal, and corrected through suitable servo-controls.

,���.�������5�
��.�


����2

���2

�
��2

�

��2

��22
��22 �

��2 �
��2 ���2 
����2

���������J�����.�����


�

�
��

�
�

��
�J

�
�

�
��
.
�

��
�

� B5���2

"7/568%�
��.�

J�����2�����
��.�

J�����2�����
��.�

:�!5����������.���� 3


����
�

��
=

���
�
��

��$
��

�
�,

lateral micro-/nano structuring

Fig. 9.15 Semiconductor miniaturization and semiconductor laser
types with reduced dimensionality.
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9.3.4
Quantum films, quantum wires, quantum dots

Conventional heterostructures serve to hinder the diffusion of electrons and
holes and to concentrate the gain into a small zone. The charge carriers though
move in a well with dimensions of about 100 nm like more or less classical
point-like particles. By further miniaturization (see Fig. 9.15) we reach the
realm of quantized electronic motion in which the dynamics of the charge
carriers in the vertical direction orthogonal to the layer system is characterized
by discrete energy levels according to quantum mechanics.

Once miniaturization reaches the quantum border in one dimension, a ‘two-
dimensional electron gas’ is created, which we shall call a ‘quantum film’ here.
In the literature there are also other terms used, e.g. quantum well (QW) lasers.
Structures with reduced dimensionality offer lower threshold currents, larger
gain and lower temperature sensitivity than conventional DH lasers, advan-
tages already essentially acknowledged since the early 1980s.

9.3.4.1 Inversion in the quantum film

The two-dimensional character of the charge carrier gas causes a change in
the density of states (DOS, see App. B.3), the fundamental origin of improved
operation characteristics like, for example, low threshold current and lower
temperature sensitivity.
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Fig. 9.16 Band structure (middle) and density of states (left) in a
quantum film. On the left the dashed curves show the correspond-
ing density of states for the bulk material. The hatched curves on the
right indicate the wave function of the stored electrons and holes in the
1D transverse potential.

In addition to the kinetic energy of the transverse quantum state EQi, there
are two continuous degrees of freedom with momentum components k⊥i. For
the electrons and holes in the ith sub-band of the quantum film we find (k2

⊥i =
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k2
⊥ix + k2

⊥iy):

Ei = EV,L + EQi +
h̄2k2

⊥i
2m∗

el,h
.

Among the interesting properties of quantum film lasers is the possibility
to control the transition wavelength by choosing the film thickness �, which
determines the energy separation of the quantum states in the electronic and
hole-like state. According to quantum mechanics we have EQ1 � h̄2/2m∗

el�
2.

The density of states in the k plane is ρel,h(k) dk = k dk/2π2 and can be
converted into an energy density with dE = h̄2k/m∗

el,h dk. In the transverse

direction each quantum state (energy Eel,h
Qi , quantum number i) contributes

with the density π/�,

ρel,h(E) dE = ∑
i

m∗i
el,h

h̄2�
Θ(E − Eel,h

Qi ).

The theta function has the values Θ(x) = 1 for x > 0 and Θ(x) = 0 for x ≤ 0.
Also the effective masses m∗i

el,h may depend on the quantum number. The
density of state grows step-like (see Fig. 9.16) in a quantum film every time
the energy reaches a new transverse quantum state. There it has exactly the
value corresponding to the volume material (dashed line in Fig. 9.16).

The advantage of the QW laser becomes evident when we determine the
dependence of the Fermi energy on the charge carrier concentration as we did
on p. 341. With terms similar to the 3D case, e.g. αi

el = EL + Eel
Qi − εL, we

obtain

nel,h = ∑
i

m∗i
el,hkT

h̄2�
e−αi

el,h

∫ ∞

0

dx

ex + e−αi
el,h

.

This integral can be analytically evaluated. Using the parameters of GaAs at
T = 300 K and for a quantum film with a thickness of � = 100 Å, we find the
relation

nel = 3.3 × 1015 cm−3 ln (1 + e−αi
el,h),

from which the Fermi energy can be obtained. The value of the first factor is
two orders of magnitude smaller than for the volume material (Eq. (9.5))! This
indicates that in the QW laser inversion can be expected already at consider-
ably smaller charge carrier concentrations and thus smaller threshold current
densities than in conventional DH lasers.

9.3.4.2 Multiple quantum well (MQW) lasers

For a fair comparison with conventional DH lasers it has to be taken into ac-
count that the total gain of a quantum film is smaller than that of a DH laser
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simply due to the smaller volume. This disadvantage can be largely compen-
sated by introducing multiple identical quantum films in the volume of the
laser light field.

In Fig. 9.17 a multiple quantum

�

'
&-B

Fig. 9.17 Concept of a multiple quantum well
(MQW) structure consisting of three quantum
films. SCH: separate confinement heterostructure.

well (MQW) structure is schemati-
cally presented. The charge carri-
ers are to be ‘caught’ in the poten-
tial wells but the relaxation rate, e.g.
through collision with a phonon, is
quite small due to the small film
thickness. To increase the con-
centration of the charge carriers in
the vicinity of the quantum films,
an additional heterostructure is pro-
vided – the separate confinement het-
erostructure (SCH) in Fig. 9.17. This

structure also acts as a waveguide for the resonator field and focuses the
light intensity onto this zone, which is usually much smaller than an opti-
cal wavelength. Today MQW lasers have become a standard product of the
opto-electronics industry.

Another interesting innovation has been introduced with the ‘strained
quantum well’. They offer additional technical advantages since the effec-
tive masses are increased as a result of mechanical strain in the crystal lattices
by a factor of 2. Thereby the density of states as well as the threshold current
density decrease again.

Let us once again summarize the advantages of quantum film lasers com-
pared with conventional double-heterostructure lasers:

1. The modified density of states causes lower threshold currents since
fewer states per charge carrier are available, which can consequently
be filled with lower currents. Typically threshold current densities of
50–100 A cm−2 are achieved. The lower threshold indirectly improves
again the temperature sensitivity since there is less excess heat gener-
ated in the heterostructures.

2. The differential gain is larger than for the DH lasers since the electrically
dissipated power growing with the current causes a lower reduction of
the gain.

3. The threshold condition depends less strongly on the temperature. For
conventional DH lasers the transparency threshold grows with T3/2, in
quantum film lasers only in proportion to T. The characteristic temper-
atures according to Eq. (9.10) are about 200 K.
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Fig. 9.18 Evolution from the double-heterostructure laser over quan-
tum films and wires to quantum dots.

9.3.4.3 Quantum wires and quantum dots

The reduced dimensionality of semiconductor structures can be extended by
construction: two-dimensional quantum films become quasi-one-dimensional
quantum wires and even zero-dimensional quantum dots when suitable
methods of lateral microstructuring are chosen. In Fig. 9.18 this evolution
with its effect on the density of states is presented.

The properties of the density of states continue the tendency of the quan-
tum film laser to realize overall gain already at small current densities. While
the layer stack of the quantum film laser can simply be manufactured by con-
trolling the growth processes (in Fig. 9.18 in the vertical direction), the lateral
properties have to be manufactured in general by a completely different pro-
cess. On the one hand, there is no longer a big difference between manufactur-
ing quantum wires and quantum dots from the technological point of view;
on the other hand, the necessary lateral structural dimensions of 0.1–0.2 nm
are not easily achievable with standard methods of optical lithography. Also,
the strictly periodic formation of quantum dots shown in Fig. 9.18 has been
difficult to realize up to now, but on the other hand it is not necessary for the
laser process either. Multiple quantum dots have been produced using self-
organization of a heterogeneous growth process [178, 71].

9.4
Dynamic properties of semiconductor lasers

Among the technically more attractive properties of the laser diode is the po-
tential to modulate it directly by varying the injection current. For instance,
the speed of switching the laser on and off determines the rate for generat-
ing digital signals and thus transmitting information. A rate equation ap-
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proach makes an excellent approximation since the transverse relaxation is
dominated by the fast rate of intra-band scattering, γ′−1 = T2 � 1 ps, and
hence the polarization effects remain in equilibrium with the field amplitude
(Sect. 8.2). To understand the dynamics of laser diodes, we use the amplitude
equation (8.12) and the rate equation (8.20(ii)),

Ė(t) = {i[Ω − ω − 1
2 καn(t)] + 1

2 [κn(t) − γc]}E(t),

ṅ(t) = −κn(t)nph(t) − γn(t) + R.
(9.11)

Here we use n(t) for the charge carrier density. The current density j ‘feeds’
the dynamics with R = j/ed, we replace |E(t)|2 → nph(t), and furthermore we
now use the photon lifetime γc → 1/τph and recombination time γ → 1/τrec
instead of the damping rates. At steady state (ṅ = ṅph = 0) we find

nst =
1

κτph
and nph =

1
κτrec

(
j

jth
− 1

)
,

where jth = ed/κτrecτph. Mostly we are interested in small deviations from
the stationary state. Then we can linearize,

n(t) = nst + δn(t) and nph = nph + δnph,

and find the equations of motion, in which we set j0/jth = I0/Ith,

˙δnph(t) =
1

τrec

(
I0

Ith
− 1

)
δn(t),

˙δn(t) =
jmod

ed
− 1

τrec

I0

Ith
δn(t)− 1

τph
δnph.

(9.12)

9.4.1
Modulation properties

We consider the effect of small harmonic modulations of the injection current
jmod = j0 + jm e−iωt on the amplitude and the phase of the laser light field.

9.4.1.1 Amplitude modulation

The modulation of the number of photons is equivalent to the variation of the
output power. Therefore we use δnph(t) = δnph0 e−iωt and δn(t) = δn0 e−iωt

and we can replace δnph0 = −(I0/Ith − 1)δn0/iωτrec. After a short calculation
we get

δnph0 = −τph jm
ed

I0/Ith − 1
ω2τrecτph − (I0/Ith − 1) + i(I0/Ith)ωτph

, (9.13)

resulting in an amplitude modulation coefficient proportional to

|δnph0| =
τph jm

ed
I0/Ith − 1√

[ω2τrecτph − (I0/Ith − 1)]2 + ω2τ2
ph(I0/Ith)2

. (9.14)
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In Fig. 9.19 we present the response of a typical laser diode to a current modu-
lation with frequency fmod = ω/2π calculated from Eq. (9.14). We have used
a spontaneous recombination time τrec = 2 × 10−9 s and a photon lifetime of
τph = 10−12 s. The frequency of the relaxation resonance grows with injec-
tion current as expected according to Eq. (8.25). Experimental data are well
represented by this function.

For applications, e.g. in op-
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Fig. 9.19 Amplitude modulation of a diode laser
as a function of the modulation frequency.

tical communications, a large
modulation bandwidth is im-
portant. In addition to this, the
frequency response is to stay
flat up to frequencies as high as
possible, and furthermore there
should not be any major phase
rotations (δnph0 is a complex
quantity!). Today in compact
VCSEL components modula-
tion bandwidths of 40 GHz and
more are achieved, and an end
of this development is not yet in
sight.

9.4.1.2 Phase modulation

Next we investigate the evolution of the phase Φ(t) separating off the steady
state in Eq. (9.11) with

E(t) → E exp[i(Ω − ω − αγc/2)] exp[iΦ(t)]

and find the coupling

Φ̇(t) = 1
2 ακ δn(t)

of charge carrier dynamics and phase evolution. We again expect a harmonic
dependence Φ(t) = Φ0 e−iωt, which after a short calculation we can also ex-
press by the modulation amplitude of the photon number nph and so obtain
the very transparent result where α = (ω − ω0)/γ, Eq. (8.8):

Φ(t) = Φ0 e−iωt =
α

2
δnph0

nph
e−iωt.

The result shows that the factor α describes the coupling of the phase change
to the amplitude change. In laser diodes it has typical values of 1.5–6. [It
usually vanishes in gas lasers since those oscillate very close to the atomic
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or molecular resonance lines (α � 0).] It also plays a significant role for the
linewidth of the laser diode, as we will see in the next subsection.

Up to now we understood the
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Fig. 9.20 Phase modulation of semiconductor
lasers. The modulation index consists of thermal
and charge carrier density contributions.

amplitude as well as the phase
modulation only as a consequence
of the dynamic charge carrier den-
sity. The modulation current more-
over causes a periodic heating of
the heterostructure, which modi-
fies the optical length of the laser
diode resonator as well and even
dominates the modulation depth
up to typical critical frequencies
of some 10 kHz. Both the tem-
perature and charge carrier den-
sity modulation, which we have al-
ready identified on p. 350 as the
origin for the detuning of laser wavelength with injection current, contribute
to the low-frequency limit of the phase modulation amplitude.

9.4.2
Linewidth of the semiconductor laser

When the linewidth of a laser diode is calculated according to the Schawlow–
Townes formula (Eq. (8.33)), a higher value than e.g. for the He–Ne laser is
already expected from the beginning due to the large linewidth of the empty
resonator γc � 1012. In experiments, still larger linewidths of 10–100 MHz
are observed for a typical 1 mW laser diode and set in relation to the ‘pure’
Schawlow–Townes limit ΔνST. This broadening is described by the so-called α

parameter which was already introduced in our simple laser theory describing
the amplitude–phase coupling (Eq. (8.8)),

Δν′ST = (1 + α2)ΔνST.

With semiconductor lasers this is often called Henry’s α parameter because
C. Henry discovered that, albeit known from the early days of laser physics, it
plays a much more significant role for diode lasers than for gas lasers [81].

The α factor was initially introduced as an ‘abbreviation’ for the normalized
detuning in Eq. (8.8). A more detailed analysis shows that it gives the differ-
ential ratio of real and imaginary parts of the susceptibility or the refraction
coefficient as well,

α = Δn′/Δn′′.
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It can only be calculated with elaborate methods and detailed knowledge of
the diode laser construction and is thus preferably obtained from experiment.

Example: ‘Pure’ Schawlow–Townes linewidth of a GaAs laser
We determine the linewidth according to Eq. (8.33) of a GaAs laser for 1 mW
output power and at a laser frequency of νL = 350 THz at 857 nm. The small
Fabry–Perot resonator with a length of 0.3 mm and a refraction coefficient 3.5
leads, for mirror reflectivities of R = 0.3, to a linewidth and to decay rates of
Δν = γc/2π = 3 × 1010 which are much larger than for a typical GaAs laser
and cause a very much larger Schawlow–Townes linewidth:

ΔνST � πh × 350 THz (2π× 50 GHz)2

1 mW
= 1.5 MHz.

In practice Δν′ST = (1 + α2)ΔνST with α ranging from 1.5 and 6 is found for
enhanced linewidths.

9.4.3
Injection locking

In a conventional laser the oscillation of the light field starts by itself from the
noise. We are going to study now how a laser oscillator reacts if it is already
irradiated by an external monochromatic light field. The considerations are in
principle valid for almost all types of lasers but they are particularly impor-
tant for the applications of laser diodes since in this way the preparation of
a light field with good coherence length and high output power in function-
ally separated components (in a so-called ‘master–slave’ arrangement) can be
achieved.

In Fig. 9.21 we have
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Fig. 9.21 Injection locking. The coherent light field of
the ’master laser’ is injected into a ‘slave laser’ and
leaves its coherence properties on it. The isolator
serves to decouple the master laser from any radiation
emitted by the slave laser.

schematically presented a
situation typical for laser
diodes. In the ‘master
laser’ a laser light field with
well-controlled coherence
properties is prepared. Its
light is injected into a ‘slave
laser’ and determines the
dynamical properties of the
latter under conditions we are going to investigate here. The slave laser itself
may generally have less advantageous coherence properties as long as it
makes high output power available, e.g. in Fig. 9.21 from a broad stripe laser
or a tapered amplifier.
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Let us insert the coupling of the laser light field E in Eq. (9.11) to an external
field Eext in a heuristic way. The coupling term must have the same structure
as the outcoupling term (i.e. Ė ∝ (γext/2)Eext where γext is the damping rate
due to the outcoupling mirror) but the external field oscillates with its own
frequency ωext. We replace κn → G and write

Ė(t) = [i(ω − Ω − 1
2 αG) + 1

2 (G − γc)]E(t) + 1
2 γextEext e−i(ωext−ω)t+iϕ.

Then we find equations for the equilibrium which we separate into real and
imaginary parts,

(i) 1
2 (G − γc) +

γext

2
Eext

E
cos ϕ = 0,

(ii) (ωext − Ω − 1
2 αG) +

γext

2
Eext

E
sin ϕ = 0,

(9.15)

which describe the amplitude (i) and the phase (ii), respectively. If we limit
ourselves to the case of small coupling, the modifications of the field ampli-
tude can be neglected. Then we can use the modified saturated gain,

G = γc − 2ΔM cos ϕ,

from Eq. (9.15(i)) by introducing the frequency

ΔM :=
γext

2
Eext

E
=

γext

2

√
Iext

I
.

From Eq. (9.15(ii)) we obtain the relation

ωext − (Ω + αγc/2) + αΔM cos ϕ = ΔM sin ϕ.

The result can be presented even more conveniently with tan ϕ0 = α and
ωfree := Ω + αγc/2, which is the laser oscillation frequency in the absence
of an injected field. For α = 0 it is known as the Adler equation:

ωext − ωfree = ΔM

√
1 + α2 sin(ϕ − ϕ0). (9.16)

Then we can derive immediately the limiting conditions for the so-called cap-
ture or ‘locking range’:

−1 ≤ ωext − ωfree

ΔM
√

1 + α2
≤ 1.

We find that the slave oscillator locks to the frequency of the external field. The
locking range 2ΔM is larger when more power is injected and when the cou-
pling is stronger, i.e. when the reflectivity of the resonator is lower. According
to our analysis for a laser diode, which has typically a low reflectivity, the
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locking is furthermore supported by the phase–amplitude coupling described
by the factor

√
1 + α2.

The phase condition shows that the locking is made possible through a suit-
able adjustment of the phase angle ϕ between master and slave oscillators. A
more detailed analysis of the stability, which we skip here, shows that only
one of the two adjustment solutions is stable according to Eq. (9.16).

Outside the capture range

Fig. 9.22 Frequency characteristic and phasing
of a slave laser on injection locking.

the locking condition cannot
be fulfilled but the external
field there causes a phase mod-
ulation as well which already
leads to a frequency shift of the
slave oscillator. The theoretical
analysis is a bit more costly but
it shows among other things
that close to the locking range
additional sidebands are gen-
erated from the master and the
slave light field due to nonlin-
ear mixing processes.

9.4.4
Optical feedback and self-injection locking

The coherence properties of laser diodes are extraordinarily sensitive to back-
scattering from outside. Every randomly caused reflection can trigger con-
siderable and uncontrollable frequency fluctuations. For critical applications,
e.g. in spectroscopy, therefore, optical isolators with a high extinction ratio
have to ensure that the back-scattering occurring at every optical element is
suppressed.

The feedback from external components can be described as a form of ‘self-
injection locking’ in immediate analogy to the injection locking described in
Sect. 9.4.3,

Ė(t) = [i(ω − Ω − 1
2 αG) + 1

2 (G − γc)]E(t) + r(ω)E(t) e−iωτ,

with τ := 2�/c giving the delay time needed by the light to travel from the
laser source to the scattering position at a distance � and back again. The
reflection coefficient r(ω) of the optical element may also depend on the fre-
quency, like e.g. for the resonator in Fig. 9.22 according to Eq. (5.14).
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In direct analogy to the case of normal injection locking, the analysis leads
again to a characteristic equation for the frequency which now depends criti-
cally on the return phase ωτ:

ω − ωfree = r(ω) =
√

1 + α2 sin[ω(τ − τ0)].
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Fig. 9.24 The effect of feedback on the oscillator frequency of a laser
diode. Left: A simple mirror with two different reflected waves. Right:
Folded resonator according to Fig. 9.23. The shadowed curve shows
the expected transmission of the resonator at tuning of the laser fre-
quency in the positive direction.

An overview can be most

Fig. 9.23 Optical feedback from a folded resonator.
Feedback can only take place in the case of resonance
of laser frequency and resonator.

simply obtained graphically.
In Fig. 9.24 we present the
situation for a simple mir-
ror (left) and a Fabry–Perot
resonator (right). It is evi-
dent from Fig. 9.24 that back-
reflections from acoustically
vibrating set-ups changing
the return phase will always
cause frequency fluctuations.
A stable resonator, however,
forces the laser frequency to oscillate at its eigenfrequency if the right condi-
tions are chosen. Thus coupling to the external resonator results in improved
coherence properties – the resonator works like a passive flywheel counter-
acting the phase fluctuations of the active oscillator. [41]

9.5
Laser diodes, diode lasers, laser systems

A laser diode emits coherent light as soon as the injection current exceeds
the threshold current through the semiconductor diode. Specific applications,
however, set different demands for the wavelength and the coherence proper-
ties of the laser radiation. In order to control these properties, the laser diode
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is used in different optical layouts and is integrated into ‘systems’ that we
are going to call ‘diode laser’ to distinguish it from the opto-electronic ‘laser
diode’ component.

Owing to the microscopic dimensions of the laser crystal, additional devices
like filters may be immediately integrated during manufacture. Such concepts
are realized with the so-called DFB, DBR and VCSEL lasers. Another possi-
bility is to achieve frequency control by coupling the laser light back into the
resonator as described in the previous section.

9.5.1
Tunable diode lasers (grating tuned lasers)

Among the most unwanted properties of laser diodes are the mode hops that
prevent continuous tuning along the entire gain profile as shown in Fig. 9.13.
This problem can be overcome by using an anti-reflection coating on the laser
diode facets and inserting the chip as an amplifying medium in an outer res-
onator with suitable mirrors and filter elements. This ‘extended cavity’ con-
cept, though, gives up many advantages of the semiconductor laser, such as
e.g. the compact layout. Therefore the ‘external cavity’ method is preferred.
The external grating is mounted in the so-called Littrow arrangement for feed-
back (Fig. 9.25). There the grating reflects about 5–15% of the power exactly
back in −1st order into the light source while the rest is reflected away for
applications. It thus causes frequency-selective feedback and a corresponding
modulation of the gain profile. So by turning the grating most laser diodes
can now be tuned to almost every wavelength within their gain profile with-
out any further modifications of their facet reflectivities.
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Fig. 9.25 Construction of a diode laser system according to the Littrow
principle. The −1st order of the grating is retro-reflected into the laser
diode. The zeroth order makes light available for applications.
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9.5.2
DFB, DBR, VCSEL lasers

The integration of periodic elements for frequency selection has not only been
studied with semiconductor lasers but for them it is an attractive choice be-
cause the methods of microlithography are required for manufacturing any-
way. The concepts of the DFB laser (distributed feedback) and DBR laser (dis-
tributed Bragg reflector) are implemented with lateral structures on a suit-
able substrate (edge emitters), while the VCSEL laser (vertical cavity surface-
emitting laser) is realized by a vertical layer stack.

We already know the function of the integrated Bragg end mirrors from the
fibre laser (Sect. 7.8.4), and both edge-emitting types differ only in the layout
of the Bragg reflector. For the DBR laser it is set aside from the active zone as
a selective mirror (and some parameters, such as the centre wavelength, can
possibly be controlled, e.g. by injecting a current for refractive index control).
For the DFB laser the active zone and the Bragg grating (which is a phase
grating in general) are integrated in one element.

Because of simpler and more reliable manufacturing methods, today the
DFB laser is in more widespread use than the DBR variant among the edge
emitters. Studying the spectral properties of the periodic DFB structure in
more detail, one finds that light wave propagation is strongly suppressed in a
region centred at the wavelength corresponding to the periodicity of the grat-
ing [167, 185]. The cause of this can be seen qualitatively in Fig. 9.27. We can
define two stationary waves, which experience a lower average refraction co-
efficient n− = n − δn at one position and a higher one n+ = n + δn at another
position, so that for the same wavelength two frequencies ν± = n±c/λ at the
same separation from the centre wavelength ν0 = nc/λ are allowed. A gain
maximum is, however, generated exactly at this position if the so-called λ/4
shift of the period is inserted at the centre of the DFB structure.

A conceptual example of a VCSEL [33, 94] is presented in Fig. 9.28. The
layer structures are epitaxially grown. The active zone has a length of just
one wavelength within the material, i.e. λ/n � 250 nm at an emission wave-
length of 850 nm. It is host to several closely adjacent quantum films with a
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Fig. 9.26 Principal elements of DBR and DFB lasers.
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Fig. 9.27 Grating with uniform period and with λ/4 shift in the DFB
laser. The effective spectral gain profile is qualitatively drawn on the
right-hand side.

typical thickness of 8 nm. Since the gain length is extremely short, the Bragg
mirrors have to have a very high reflectivity of 99.5%. For this, typically 20–40
AlxGa1−xAs/AlyGa1−yAs layer stacks are required with a refraction coeffi-
cient contrast as high as possible.

For the VCSELs the concentration of the injection current onto the desired
cross-sectional area of the laser field is a huge technical challenge. In today’s
solutions, for example, the resistance of certain layers is strongly increased by
proton bombardment, though this causes disadvantageous crystal damage in
adjacent material. Using another method the upper Bragg stack is structured
into round mesa-like mirrors and finally a thin Al0.97Ga0.03As layer is chem-
ically transformed into an insulating oxide, thus creating current apertures
with an inner diameter of only a few micrometres.
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Fig. 9.28 Concept of VCSEL lasers. (The electron microscope photo-
graph was provided by Dr. Michalzik, University of Ulm [94].)
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9.6
High-power laser diodes

The direct conversion of electrical energy into coherent light with an excel-
lent efficiency promises a wealth of applications. Coherent light provides this
energy for e.g. cutting and welding in materials processing with a very high
‘quality’, so to speak, because its application can be controlled with a very
good spatial and time resolution. So interest in increasing the output power
of laser diodes up to the range of 1 kW and more was quite natural from the
beginning.

The ‘quality’ of a laser beam for machining applications depends on the to-
tal power available but at the same time depends crucially on its spatial prop-
erties, i.e. the transverse coherence. For practical evaluation, it is customary to
use the beam parameter product of beam waist w0 and divergence angle θdiv
(see p. 48). When this is normalized to the corresponding product for a perfect
TEM00 Gaussian beam, it is called the M2 factor [167]:

M2 =
w0θdiv(measured)

w0θdiv(perfect)
. (9.17)

It is a measure of the performance of beam cross-section and divergence, and
gives an estimate of the fraction of laser light propagating within the dominant
Gaussian mode, for only this can be focused to the optimum, i.e. limited by
diffraction, or transmitted through a spatial filter (see Fig. 2.11). The M2 factor
grows with decreasing beam quality and should differ as little as possible from
unity.

As already indicated in Fig. 9.12, the power increase just by increasing the
injection current is seriously limited. On the one hand, owing to the excess
heat, the ‘roll-over’ effect occurs; on the other hand, the light intensity be-
comes so high that the emitting facets suffer spontaneous damage, often lead-
ing to the total loss of the device. These problems are particularly severe for
layers containing Al. For this reason in high-power lasers mostly Al-free quan-
tum films are used at least for the gain zone. It is generally observed that
the output power for a conventional single laser diode stripe with a facet of
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Fig. 9.29 Concepts for high-power laser diodes: laser diode arrays,
broad-area laser and tapered amplifier.
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about 1 × 3 μm2 is limited to not more than some 100 mW. Therefore the out-
put power of semiconductor devices can in principle only be increased by
spreading the gain over facets as large as possible or over many facets and
the volumes connected to them. Today the output power is increased by us-
ing laser arrays, broad-area and tapered amplifier lasers as schematically pre-
sented in Fig. 9.29.

1. Several laser diode stripes can be placed on a single substrate without
any problem. If the separations of the single stripes are not too big, the
fields of adjacent modes overlap slightly and are coupled through their
phase evolution, i.e. the output power of all individual stripes is coher-
ently coupled, or ‘capable of interfering’. The far field of a laser array
depends on the relative phase positions of the single stripes. In Fig. 9.30
we show calculations of the idealized field distribution of two and four
identical Gaussian emitters, considering all possible combinations of rel-
ative phase positions. A realistic laser array often shows a far field with
two ‘ears’. Their origin becomes evident from this consideration.

Fig. 9.30 Beam shapes of laser arrays: (left) the symmetric phase
positions of the individual stripes; (right) the antisymmetric phase posi-
tions.
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2. In a broad-area laser diode a wide diode volume is used for amplifica-
tion, as the name indicates. However, the control of the transverse field
distribution becomes more and more difficult with increasing power, so
that broad-area lasers are limited to quite low powers (sub-watts).

3. Tapered amplifiers of trapezoidal shape are used to boost laser light
from lower power to high power while transferring high spatial and
longitudinal coherence. For this concept, the term MOPA (master os-
cillator power amplifier) has become established. The trapezoidal form
has been chosen here to realize maximum gain, but to keep the power
density low at the same time to avoid damage. With this concept M2

factors of 1.05 at output powers of some watts are achieved.



Problems 369

Problems

9.1. Gain of the semiconductor laser Consider a GaAs semiconductor laser
at T = 0 K. For the intrinsic charge carrier concentration we take n = 1.8×106

cm−3, for the recombination lifetime τ = 50 ns, and for the bandgap Eg =
1.42 eV. The effective mass of electrons and holes is 0.07 mel and 0.5 mel, re-
spectively. Calculate the central emission wavelength, the bandwidth and the
maximal gain within the bandwidth for an amplifier with dimensions: length
d = 200 μm, width w = 10 μm, and height h = 2 μm. The current injected into
the laser pn junction is 1 mA.

9.2. Bit rate Calculate the bit rate that can be handled by the amplifier of the
previous problem. Compare with the bandwidth of an individual audio chan-
nel which requires a bit rate of 64 kbit s−1.

9.3. Beam profile of a broad stripe laser The divergence of a Gaussian beam
(see Sect. 2.3) with wavelength λ = 850 nm is calculated to be θ = λ/πw0 in
the far field. All other beam geometries with larger divergence can be charac-
terized with the M2 factor according to Eq. (9.17), or θ = M2λ/πw0.

A broad stripe laser shows

�
�

Fig. 9.31 Components of a broad stripe laser diode

an elliptic profile with a shorter
and a longer axis, see Fig. 9.31.
Immediately at the diode facet
beam the near-field full width at
half-maximum (FWHM) in the
narrow direction is 2w0 = d⊥
= 0.8 μm. The measured diver-
gence is θ⊥,meas = 20◦. In the
wider, horizontal direction the corresponding values are 2w0 = d|| = 100 μm
and θ‖,meas = 10◦, respectively. Determine the M2 value of the laser beam.
Note: The divergence angle is defined by the 1/e2 points.
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10
Sensors for light

The application of optical instruments depends critically on how sensitively
light can be detected by means of suitable devices. Here we are rather blessed
by the human eye, which is – despite all the weaknesses of its imaging optics
– an enormously sensitive and versatile receiver.

From the historical point of view, above all, we find light-sensitive plates at
the beginning of the development of optical sensors. Photographic emulsions
in which light causes a permanent chemical change have been developed to
high sensitivity, high resolution and countless applications in more than a cen-
tury of intensive work.

However, in a physical experiment or in a technical application, when the
intensity of a light beam has to be detected and evaluated, then solid-state
detectors (and among them especially semiconductor detectors) have out-
performed film for quite a long time. They not only deliver an electrical signal
that can be saved and recorded without a slow sequence of chemical processes
but also are advantageous with regard to linearity.

Until recently, films used to be unbeatable for taking high-contrast pictures
with high resolution. With the culture-driving development of semiconductor
technology, and the opportunity of processing larger and larger (electronic)
data streams faster and faster, that field of application runs into danger of
being replaced by opto-electronic components, too. We report about this in
the section about image sensors.

Optical sensors generally consist of physical materials that can be coarsely
divided up into two classes according to the effect of the incident light beam:

1. Thermal detectors. Ideal thermal detectors are black bodies (see Sect. 6.3).
This means that they absorb all incident light. The energy current of the
incident light leads to a temperature increase compared to the environ-
ment, which is measured and converted into an electrical signal.

Among the thermal detectors are thermopiles, bolometers and pyroelec-
tric detectors. The strengths of thermal detectors are their broad spectral
sensitivity and their robust layout. Their most significant disadvantage
is a slow rise time.
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2. Quantum sensors. In a quantum detector, a light beam is converted
into free charge carriers using the internal or external photo-effect. The
current or the charges are directly measured. The often used picture,
according to which in a photodiode photons are simply converted into
electrons and counted, has to be taken with a pinch of salt. However, a
more strict theoretical description of the photon counter is beyond the
scope of this text [139, 122].

Among the quantum detectors are photomultipliers, on the one hand,
and photoconductors and photodiodes, on the other. The historical de-
velopment from electron tube to semiconductor technology can also be
observed with these components. As suggested by the name, by means
of quantum detectors single electrons can be recorded. Their rise time
is rarely more than 1 μs, but often they have to be cooled and are sub-
ject to stronger spectral limitations than thermal detectors. In principle,
also the emulsions of photographic films belong to the class of quantum
sensors, since an individual photon is necessary to reduce each AgBr
molecule and thus to cause blackening.

When an optical sensor has to be chosen for a certain application, from the
physical point of view it is of interest, for example, whether the detector has
a sufficient sensitivity and a fairly short rise time to dynamically record the
desired quantity. These properties can be found from the manufacturers’ data
sheets. For more insight we first have to strike out a bit further and talk about
the noise properties of detector signals.

10.1
Characteristics of optical detectors

10.1.1
Sensitivity

In an optical sensor, light pulses are ultimately converted into electric signal
voltages U(t) or signal currents I(t). Since all electronic quantities are subject
to similar procedures when measured, we use subscripts VU and VI for their
identification. The responsivity R describes the general response of the de-
tector to the incident light power PL without taking details like wavelength,
absorption probability, circuit wiring, etc., into account:

responsivity R =
(VU , VI)

PL
. (10.1)

The physical unit of responsivity is usually V W−1 (especially for thermal de-
tectors) or A W−1.
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10.1.2
Quantum efficiency

In a quantum detector photons are converted into electrons. Even single elec-
trons may be amplified in such a way that their pulses can be registered and
counted. Not every incident photon triggers an electron since the absorption
probability is lower than unity, or because other processes compete with the
photo-effect. The probability for registering an event for each incident photon
is called the quantum efficiency η. The rate of arrival of photons rph at a detector
with area A can easily be determined according to

rph =
1

hν

∫
A

dx dy I(x, y). (10.2)

If the entire radiation power is absorbed, Eq. (10.2) simplifies to rph = PL/hν.
In an ideal quantum detector, this should become the photo-current I = erph,
but in physical reality there are competing processes reducing the quantum
efficiency. According to Eq. (10.1) the responsivity can be expressed in terms
of these elementary quantities:

R =
rel

rph

e
hν

= η
e

hν
. (10.3)

A practical rule of thumb can be obtained by using the wavelength λ = c/ν

in μm instead of the frequency:

R = η
λ/μm
1.24

[A W−1],

from which the quantum efficiency can be determined for a known responsiv-
ity.

10.1.3
Signal-to-noise ratio

A quantity can only be recognized if it emerges ‘from the noise’, i.e. if it is
larger than the intrinsic noise of the detector. Formally the quantitative con-
cept of ‘signal-to-noise ratio’ (SNR) has been introduced,

SNR =
signal power
noise power

.

In this case we use a generalized concept of power PV( f ) for an arbitrary
physical quantity V(t) = V( f ) cos(2π f t). The average power is

PV( f ) = 1
2V2( f ). (10.4)

The physical unit of these powers is A2, V2, . . ., depending on the basic value.
A fluctuating quantity like noise current or voltage is determined not only by
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one amplitude at one frequency but also by contributions at many frequencies
within the bandwidth Δ f of the detector. The average power in a frequency
interval δ f can be measured with a filter of this bandwidth and with mid-
frequency f . Therefore we define the power spectral density

v2
n( f ) =

δV2( f )
δ f

,

so e.g. i2
n( f ) in A2 Hz−1 for current noise, and e2

n( f ) in V2 Hz−1 for voltage
noise. Since the contributions are not correlated, the square sum of the power
contributions in small frequency intervals can be summed to give the average
of the noise power (see App. A.1):

PV =
∫

Δ f
v2

n( f ) d f . (10.5)

If the noise in the bandwidth Δ f is constant, the value of the noise power
simplifies to PV = v2

nΔ f . For example, the r.m.s. value of the noise current
Irms =

√
PI of a photodiode–amplifier combination reads Irms = (i2

nΔ f )1/2,
with i2

n the constant value of the current noise spectral density.
Often the unphysical noise amplitude is given instead of the noise power,

noise amplitude = (noise power spectral density)1/2,

given in e.g. A Hz−1/2 or V Hz−1/2. Very generally the noise contribution can
be reduced by limiting the bandwidth of the detector. This advantage has to
be traded in for reduced dynamic properties – faster signal variations can no
longer be registered.

10.1.4
Noise equivalent power (NEP)

The noise equivalent power (NEP) is the radiation power that is necessary to
exactly compensate the noise power at the detector or to obtain a signal-to-
noise ratio of exactly unity. The lower the designed bandwidth of the detector,
the lower is the minimum detectable power, but again at the expense of the
bandwidth. The minimum detectable radiation power is therefore referred to
1 Hz bandwidth and is given by the unphysical noise amplitude density,

NEP =
(noise power spectral density)1/2

responsivity
.

Its physical unit is W Hz−1/2. The manufacturer of a detector prefers to quote
the spectral maximum of the responsivity; though it has to be taken into ac-
count that the value depends on the optical wavelength λ as well as on the
electrical signal frequency f .
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10.1.5
Detectivity ‘D-star’

For the sake of completeness, we mention the concept of ‘detectivity’ D and
D∗ introduced to make different detector types comparable with each other.
First, just the complement of the noise equivalent power D = NEP−1 was
introduced as the detectivity. The variant of the ‘specific detectivity’ called ‘D-
star’ (D∗) has found widespread use since the responsivity of many detectors
is proportional to the square root of the detector area A1/2:

D∗ =
√

A
NEP

. (10.6)

The reason for this is the limitation of the detection sensitivity by the thermal
background radiation, especially for infrared detectors: the larger the detector
area, the more black body radiation is absorbed. The physical unit of D∗ is
cm/(WHz−1/2) = 1 jones, where the name of the inventor of the detectivity is
used for abbreviation. D∗ is a measure for the signal-to-noise ratio in a band-
width of 1 Hz when a detector with an area of diameter 1 cm is illuminated
with a radiation power of 1 W .

10.1.6
Rise time

Often very fast events are to be recorded by means of optical detectors, which
means that the detector has to react very rapidly to variations of the incident
radiant flux. The ‘rise time’ τ is the time during which the current or voltage
change of the detector reaches (1-1/e) or 63% of the final value when the light
source is switched on suddenly. In analogy to that, the ‘fall time’ is also de-
fined. They depend on the layout of the detector and can be influenced within
the physical limits. Thermal detectors are inert and react with delay times
of many milliseconds. The ‘rise time’ of semiconductor detectors is generally
limited by the capacitance of the pn junction and is only a few picoseconds in
special cases. The finite response time of a detector can be taken into account
by, for example, adding the time or frequency dependence to the responsivity
of Eq. (10.3),

R( f ) =
R(0)

1 + (2π f τ)2 .

The charge impulse of a photomultiplier can as well be shorter than 1 ns,
though here the longer time of travel through the dynodes layout has to be
taken into account. The times of travel in cable connections also have to be
taken into account in servo-control applications, since they limit their band-
width.
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10.1.7
Linearity and dynamic range

A linear relation of detector input power and output voltage or current pro-
vides optimal conditions for a critical analysis of the quantity to be measured.
However, there is always an upper limit – ultimately due to the strong tem-
perature load at high light power – at which deviations from linearity can be
observed. The lower limit is mostly given by the noise equivalent power. A
quantitative measure for the dynamic range can be given according to

dynamic range =
saturation power

NEP
.

The dynamic range between these limits can be, for example for photodiodes,
an impressive six magnitudes or more.

10.2
Fluctuating opto-electronic quantities

In this section we collect physically different contributions of electrical noise
generated in opto-electronic detectors. Besides the intrinsic contributions
of the receiver–amplifier combination, like dark current noise and amplifier
noise, above all there is the photon noise of the light source.

10.2.1
Dark current noise

A detector generates a fluctuating signal Vn(t) even when there is no incident
light signal at all. In fact, the detector sensitivity is decreased not by the av-
erage of the background – this can be straightforwardly subtracted – but by
its fluctuations. In a thermal detector, spontaneous temperature fluctuations
cause the dark noise. In a quantum detector, generally charge carriers spon-
taneously generated, e.g. by thermionic emission, are responsible for this. In
the simplest case, the noise power density of the dark current ID is i2

D = 2eID
according to the Schottky formula (Eq. (A.13) in App. A.1.2). A proven but
sometimes costly method for reducing the dark noise is to apply cryogenic
cooling of the detector.

10.2.2
Intrinsic amplifier noise

Photomultipliers and avalanche photodiodes (APDs) have an internal ampli-
fication mechanism that multiplies the charge of a photo-electron by several
orders of magnitude. The amplification factor G though is subject to fluctu-
ations contributing to noise as well. The excess noise factor Fe is calculated
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according to

F2
e =

〈G2〉
〈G〉2 = 1 +

σ2
G

〈G〉2 , (10.7)

and can also be expressed through the variance of the amplification, σ2
G =

〈G2〉 − 〈G〉2. It affects dark and photo-currents in indistinguishable ways.

10.2.3
Measuring amplifier noise

Depending on the applica-

�3
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Fig. 10.1 Noise sources of an idealized amplifier. Vol-
tage sources (ei) have negligible, current sources (in)
infinite inner resistance. RS is the resistance of the
detector, AV the amplification.

tion, a detector may oper-
ate as a voltage or a cur-
rent source characterized by
its internal resistance RS. At
the input of an idealized test
amplifier, we find the volt-
age noise amplitude ei, which
consists of the uncorrelated
contributions of the detector, e2

S, with source resistance RS, and the contri-
butions of current and voltage noise of the amplifier (i2

n and e2
n, respectively):

e2
i = e2

S + e2
n + i2

nR2
S.

The noise voltage at the exit of the amplifier is then e = AV ei. The noise
amplitude of the detector consists of the contributions of the dark current, the
parallel resistance of detector and amplifier input, and the photon current i2

ph,

e2
S = R2

S

(
i2
ph + i2

D +
4kT
RS

)
.

The last contribution takes the thermal or Johnson noise of the detector resis-
tance into account. For optical detection, the most desirable situation is ob-
tained when the noise of the photo-electrons generated by the signal source
(i2

ph) dominates all intrinsic amplifier contributions,

i2
ph > i2

D +
4kT
RS

+
e2

n

R2
S

+ i2
n. (10.8)

In practical applications it has to be taken into account that all the quantities
mentioned previously depend on frequency. If possible the frequency of the
signal can be selected to minimize background noise. Advantageous condi-
tions are generally found at high frequencies since all devices at frequencies
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below a certain corner frequency fc show the so-called 1/ f or flicker noise, which
approximately increases with 1/ f towards low frequencies. The typical spec-
tral behaviour of the amplifier noise is presented in Fig. 10.2.
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Fig. 10.2 Spectral properties of typical amplifier noise, schematically.

10.3
Photon noise and detectivity limits

By conversion of light into photo-electrons in an opto-electronic circuit, some-
thing like a copy of the photon current emerges. It is obvious that the fluctu-
ations of the photon current are mapped onto the electron current, too. Now,
for the rigorous description of the processes occurring during conversion of
light into photo-electrons, a quantum theory of the electromagnetic field is
required, but quantum electrodynamics does not offer an intuitive approach
and is hence omitted here.

Instead, we assume that the probability of observing an event in a short
time interval is proportional to Δt by taking into account the arrival rate of the
photons (Eq. (10.2)) and the quantum efficiency η,

p(1, Δt) = ηrph(t)Δt. (10.9)

Furthermore we assume that, for sufficiently small Δt, no double events occur
and that the probabilities in sequential time intervals are statistically indepen-
dent. The last assumption means that the photo-emission process does not
have any after-effects in the detector; this is not necessarily the case any more
at high charge carrier density because they repel each other due to Coulomb
forces.
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These conditions lead to Poisson statistics of the counting events. The prob-
ability of finding K events in an arbitrary time interval τ is

pτ(K) = p(K, t, t+τ) =
KK

τ

K!
e−K.

The average Kτ is according to Eq. (10.3)

Kτ = ηrphτ. (10.10)

Random conversion of photons into photo-electrons leads to fluctuations of
the photo-electron current. In addition, also the light intensity PL(t)/A can
vary. If it happens in a deterministic way, i.e. predictably, we can define the
power Wτ integrated in the interval τ,

Wτ(t) =
∫ t+τ

t
PL(t′) dt′,

and with the abbreviation α = η/hν we obtain the probability distribution

pτ(K) =
(αWτ)K

K!
e−αWτ . (10.11)

The properties of the light source are reflected in the statistics of the photo-
electrons, and therefore we consider the light field of a laser and a thermal
light source as important examples.

10.3.1
Photon statistics of coherent light fields

The average power of a laser is constant; therefore the arrival rate of pho-
tons rph is constant as well, and we can directly take over the average from
Eq. (10.10). The statistical distribution is characterized by the variance

σ2
Kτ

= (K2 − K
2
τ),

which has the known value for Poisson statistics

σ2
Kτ

= Kτ. (10.12)

From this relation it is also clear that relative fluctuations decrease with in-
creasing number of events,

σKτ

Kτ
=

1√
Kτ

, (10.13)

and become very small for large Kτ. The noise caused by the grainy particle
structure of the current is called shot noise. It also sounds very loud like the
audible drubbing caused by raindrops falling on a tin roof.
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We expect a random sequence of charge pulses for the photo-electron cur-
rent. The spectrum of the current noise depends on the frequency and can be
obtained directly from the Schottky formula (Eq. (A.13) in App. A.1.2),

i2
coh = 2eIph. (10.14)

This noise current also accounts for the contribution caused by the random
conversion of photons into photo-electrons when the quantum efficiency is
lower than 100%. We can furthermore interpret the Schottky formula by iden-
tifying the r.m.s. value of the counting statistics σ2

Kτ in the time interval τ with
the variance of the number of charge carriers, σ2

Kτ
= 1

2 I2
rms/e2, which again

leads to the result of Eq. (10.14) (the factor 1
2 occurs because the power spec-

tral density is defined for positive Fourier frequencies only; see App. A.1).
A coherent light field generates the photo-current with the lowest possible

noise, and therefore it comes very close to our idea of a classical wave with
constant amplitude and frequency. We may interpret the noise as a conse-
quence of the ‘granularity’ of the photo-current, and of its Poisson statistics.
Though it has to be pointed out that we did not derive this result here but
rather have put it in from the beginning.

10.3.2
Photon statistics in thermal light fields

A thermal light field generates an average photo-current as well, though the
intensity is not constant like in a coherent laser beam but subject to strong
random fluctuations. Therefore, for the integrated power Wτ we can also give
only probabilities pτ,W(Wτ) with

∫
dWτ pWτ(Wτ) = 1 here. The additional

fluctuation of the amplitude results in Mandel’s formula, which is formally sim-
ilar to a Poisson transformation of the probability density pWτ (see Eq. (10.11)):

p(K) =
∫ ∞

0

αWτ

K!
e−αWτ pτ,W(Wτ) dWτ. (10.15)

This contribution has double Poisson character, so to speak. It can be shown
that the average of the counting events is

Kτ = αWτ

as before, and the variance is

σ2
Kτ

= Kτ + α2σ2
Wτ

. (10.16)

Thus the variance of a fluctuating field, like, for example, black body radiation
(see the excursion on p. 245), is in principle larger than for a coherent field.
We will see, however, that detection of these strong fluctuations is possible at
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very short time scales only and hence beyond the dynamic properties of most
photodetectors.

We can interpret the relation (10.16). The first term is caused by the random
conversion of photons into photo-electrons and is a microscopic property of
the light–matter interaction which cannot be removed. The second term rep-
resents the fluctuations of the recorded light field and also occurs without the
randomness of the photo-electron generation process.

The calculation of σ2
W in (10.16) is not a trivial problem at all. We consider

the cases of extremely short and very long integration intervals τ. A thermal
light field is characterized by random amplitude fluctuations. For very short
time intervals, even shorter than the very short remaining coherence time τc
of the light source of about 1 ps, we can assume a constant intensity so that
Wτ = PLτ. The intensity itself is randomly distributed and thus follows a
negative exponential distribution,

pτ,W = e−W/Wτ / Wτ .

By insertion into Eq. (10.15) and integration, the Bose–Einstein distribution of
quantum statistics is obtained,

pτ(K) =
1

1 + Kτ

(
Kτ

1 + Kτ

)K

. (10.17)

The variance of this field is

σ2
K = Kτ + K2

τ ,

and can be interpreted like (10.16) before. Its relative value always remains
close to unity:

σK

Kτ
=

√
Kτ

1 + Kτ
.

The distribution from Eq. (10.17) is well known for a light field when K is
replaced by n and Kτ by the mean thermal number of photons,

nph =
1

ehν/kT − 1
. (10.18)

The coherence time of a thermal light source though is so short that there exist
hardly any detectors with appropriately short response and integration times.
The more important limiting case for the thermal light field thus occurs for
integration times τ � τc. For this case it can be shown [122] that the variance
σK is well approximated by

σ2
K = Kτ

(
1 +

Kττc

τ

)
. (10.19)
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Thus for most cases σ2
K � Kτ as for the thermal light field (cf. Eq. (10.12)). Inci-

dentally, these noise properties cannot tell us about the properties of the light
field, coherent or thermal! The second term in Eq. (10.19) can be interpreted
as the number of photons reaching the detector during a coherence interval.
Only when this number becomes larger than unity can a significant increase
of the fluctuations be expected.

Ambient radiation of a light source mostly corresponds to the spectrum of
the black body radiation at 300 K. Its maximum lies at a wavelength of 10 μm
and decreases rapidly towards the visible spectral range. Unavoidably at least
part of this radiation also enters the detector. Especially for infrared detectors
the sensitivity is in general limited by the background radiation. For ther-
mal radiation it is still valid that the coherence time is very short, so that the
variance of the photo-electron noise of the thermal radiation can be calculated
according to (10.19).

In order to determine the emission rate of photo-electrons rel, we have to
multiply the average photon number nph of Eq. (10.18) with the density of
oscillator modes ρ(ν) = 8πν2/c3 at frequency ν, to integrate over the detec-
tor area A. Accounting for the quantum efficiency η(ν) and in addition the
radiative flux from half the solid angle 2π, we arrive at

rel = A
∫ ∞

0
dν η(ν)

2πν2

c3
1

ehν/kT − 1
.

The spectrum of the charge carrier fluctuations is proportional to the vari-
ance of the arrival rate, which we can now calculate according to Eq. (10.19);
as for the coherent light field, we obtain a white shot noise spectrum. Since
the photo-emission vanishes below a certain critical frequency νg or a critical
wavelength λg = c/νg, the noise spectrum for a detector with the bandgap
Eg = hνg can be calculated according to

i2
n = 2e2rel = 2e2A

∫ ∞

νg
dν η(ν)

2πν2

c2
1

ehν/kT − 1
.

When we additionally assume the quantum efficiency has maximum value
η(ν) = 1 everywhere, then according to Eq. (10.6) we obtain the maximum
specific detectivity D∗(λg, T) of an ideal background-limited photodetector (BLIP
detector), which depends on the environmental temperature T and the critical
wavelength λg,

D∗(λg, T) =
λg

hc

(
2
∫ ∞

c/λg
dν

2πν2

c2
1

ehν/kT − 1

)−1/2

.

This reaches a minimum at λ = 14 μm (Fig. 10.3). For large wavelengths D∗
has to increase linearly since the thermal radiation power does not change any
more.
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Fig. 10.3 Specific detectivity for some important semiconductor detec-
tors.

10.3.3
Shot noise limit and ‘square-law’ detectors

According to Eq. (10.14) the photo-electron noise generated by detection of a
coherent laser beam is proportional to PL. This most favourable case is mainly
realized with photodiodes. If the power is chosen large enough according to

PL ≥ hν

η

1
e2

(
2eID +

4kT
RS

+
e2

n

R2
S

+ i2
n

)
=

hν

η
rth, (10.20)

then the photon noise of the light beam dominates all other contributions in
Eq. (10.8), which do not depend on the light power. This case is called the
‘shot-noise-limited’ detection. Incidentally, the term within the large brackets
in Eq. (10.20) can be interpreted as the rate rth at which the detector–amplifier
combination randomly generates charge carriers. Defining the minimum light
power by the value where the same number of charge carriers is generated
(SNR ≈ 1), we find

Pmin =
hν

η

√
rthΔ f

in a bandwidth Δ f . For sufficiently long integration times (or correspondingly
small bandwidth), in principle, arbitrarily small power may be registered. In
practice, this potential though is impaired by the dynamics of the signal and
slow drifts of the detector–amplifier properties.

Quantum detectors are also called ‘square-law’ detectors since the trigger
probability of a photo-electron is proportional to the square value of the field
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strength |E(t)|2 = 2PL(t)/cε0A of the radiation field illuminating the detector
area A. This is especially important for applying so-called heterodyne detec-
tion. For this method the field of a local oscillator ELO e−iωt (see Sect. 7.3.2.2) is
superimposed with a signal field ES e−i(ω+ωS)t on the receiver. In general one
chooses PLO � PS. The photo-current will thus experience a variation in time

Iph � eη

hν

(
PLO + 2

√
PSPLO cos ωSt

)
.

If LO and signal fields oscillate with the same frequency ω, it is called a ‘ho-
modyne’ detection; otherwise (ωS = 0) it is a ‘heterodyne’ detection. Super-
position of optical fields on a square-law detector generates products of local
oscillator and signal fields oscillating at difference frequencies, and thus it acts
as an optical mixer.

The detection of a signal at a higher frequency is usually an advantage since
it occurs at a lower noise power spectral density (Fig. 10.2). When the LO
power is increased until its shot noise density i2

LO = 2e2ηPLO/hν dominates all
other contributions, the minimum detectable signal power no longer depends
on the thermal noise properties of the detector. One has IS = 2eη

√
PminPLO/hν

and the minimum power I2
S has to be larger than the noise power i2

LOΔ f in the
bandwidth of measurement, Δ f ,

Pmin = hνΔ f /η.

In other words, within the time resolution Δ f−1 of the detector, the signal light
has to release at least one photo-electron to make detection possible.

10.4
Thermal detectors

Thermal detectors consist of a temperature sensor coated with an absorber
material, e.g. special metal oxides known from illumination technologies.
Over wide wavelength ranges they have very ‘flat’ spectral dependences and
are therefore very sought-after for calibration purposes.

In order to achieve a high sensitivity, i.e. a large temperature increase ΔT,
the sensor should have a low heat capacity K as well as a low heat loss rate
V to the environment caused by heat conduction due to the construction,
convection and radiation. The temperature change of the probe follows the
differential equation

d
dt

ΔT =
PL

K
− V

K
ΔT, (10.21)

from which it can be seen immediately that a thermal detector integrates the
incident light power for short times. In equilibrium the obtained temperature
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increase is ΔT = PL/V, from which the responsivity Rth is determined with
the voltage–temperature coefficient of the thermal probe, CTV,

Rth = CTV/V.

However, compromises
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Fig. 10.4 Thermal detectors.

are necessary since the rise
time is determined by the
coefficient τ = K/V ac-
cording to Eq. (10.21). In
the ideal case the minimum
detectable power of a ther-
mal detector is caused by
unavoidable spontaneous
temperature fluctuations,
the spectral power density
t2 = 4kBT2V/[V2 + (2πK f )2]
of which determines the the-
oretical responsivity limit (kB
= Boltzmann constant). For
signal frequencies f far above
the detector bandwidth
Δ f = 1/2πτ, the idealized
noise equivalent power can
be given:

NEPth = T
√

2kBV.

Obviously it is profitable to lower the environmental temperature – a method
that is used in particular for bolometer receivers.

10.4.1
Thermopiles

In these, the light energy is absorbed by a thin blackened absorber plate in
close thermal contact with a thin-layer pile of thermocouples made, for exam-
ple, of copper–constantan. Since the voltage difference of a single element is
very small, some 10–100 of them are connected in series with the ‘hot’ ends
receiving the radiation field to be detected and the ‘cold’ ends kept at ambient
temperature. The voltage of the thermopile is proportional to the temperature
increase and thus to the power uptake of the absorber.

Thermopiles are mainly used in optics to determine the intensity of high-
power light sources, especially laser beams. Owing to their integrating char-
acter, they are also capable of determining the average power of pulsed light
sources.



386 10 Sensors for light

10.4.2
Bolometers

The temperature increase by illumination can also be measured by means of
a resistor with a large temperature coefficient. This is called a ‘bolometer’.
For this application, especially semiconductor resistors called thermistors are
of interest.

Bolometers are mainly used in a bridge circuit. Only one of two identical
thermistors in the same environment is exposed to radiation so that fluctua-
tions of the environmental temperature are already compensated. Very high
sensitivities are obtained with bolometers operated at cryogenic temperatures
when the heat capacity of the thermistor is very low.

10.4.3
Pyro-electric detectors

In pyro-electric sensors a crystal is used with an electrical polarity that de-
pends on temperature, e.g. LiTaO3. The crystal is inserted into a capacitor.
When the temperature changes, a charge is induced on the metallized faces,
generating a transient current. The sensitivity for a crystal with pyro-electric
coefficient p, heat capacity K and distance d between the capacitor electrodes
is

R = p/Kd. (10.22)

A pyro-electric detector registers only changes of the incident light power.
According to Eq. (10.22) its sensitivity is significantly enhanced by thin-layer
technology. Therefore the thickness of the crystal is only some 10 μm, which
allows fast rise times. Wide spectral applicability of these detectors is achieved
by using an appropriate broadband absorber.

Pyro-electric detectors are cheap and robust, and are often used, for exam-
ple, in the manufacture of motion sensors.

10.4.4
The Golay cell

An unusual thermal detector is the radiation sensor called a Golay cell after its
inventor. It is often used as a result of of its high responsivity. The temper-
ature increase by light absorption causes a pressure increase in a small con-
tainer filled with xenon. On one side the container is closed by a membrane
that bulges due to the pressure increase. The small mechanical motion of the
surface can be read out very sensitively by means of a ‘cat’s eye technique’.
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10.5
Quantum sensors I: photomultiplier tubes
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Fig. 10.5 Layout of a photomultiplier tube (PMT) with transparent dyn-
ode. The circuitry operates the PMT in the counting mode.

10.5.1
The photo-electric effect

It may be somewhat surprising that Albert Einstein got his Nobel prize for
physics in 1921 for his 1905 light quanta hypothesis of the photo-electric effect
and not for any other of his scientific triumphs. He not only used Planck’s
hypothesis that light energy could be absorbed only in light quanta with fixed
value Ephoton = hν but also expanded it by attributing quantum nature to the
light field itself. According to Einstein’s simple concept the maximum kinetic
energy Emax of an electron that is emitted from the surface of a material with
work function W is

Emax = hν −W. (10.23)

In general, though, only a few emitted electrons reach the maximum energy
Emax. More importantly, the photo-electric effect vanishes completely for fre-
quencies ν ≤ W/h, the cut-off frequency or wavelength, which depends on
the work function W of the used material.

The photo-electric effect, or more shortly the photo-effect, is the origin of all
electric quantum sensors for light detection.

10.5.2
Photo-cathodes

Common metals mostly have very high values for the work function between
4 and 5 eV, corresponding to cut-off wavelengths between about 310 and
250 nm according to Einstein’s equation (10.23). In vacuum it is also possible
to use caesium, which immediately corrodes under atmospheric conditions
but has the lowest work function of all metals with WCs = 1.92 eV. By coating
a dynode with caesium, a photo-cathode becomes sensitized for light frequen-
cies extending nearly across the entire visible spectral range (λ < 647 nm).
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The probability of triggering a photo-electron by the absorption of a photon,
the quantum efficiency (QE), is generally lower than unity. Owing to its high
QE, approaching 30%, the semiconductor CsSb3 is very often used for photo-
cathode coating. It is inserted into vacuum tubes made from different glasses
with differing transparencies. Such combinations have led to the classification
of the spectral responsivity using the term S-X cathode (X = 1, 2, . . .). The tri-
alkali cathode S-20 (Na2KCsSb) has been used for a long time now, and 1%
QE is achieved even at 850 nm.
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Fig. 10.6 Spectral responsivity of several important photo-cathodes.

Cs-activated GaAs offers 1% QE even further into the infrared at 910 nm
wavelength. Still further in the infrared spectral range, the InGaAs photo-
cathode does not exceed 1% QE at any wavelength, but still has 0.1% QE at
1000 nm. In this spectral range, though, the internal photo-effect in semicon-
ductors has a very high quantum efficiency; therefore here the photomultiplier
tubes compete with the avalanche photodiode discussed below, which can be
considered as semiconductor-based photomultiplier tubes.

Conversely there are situations in which a light detector ought to be sensi-
tive only to UV wavelengths since then visible light such as daylight no longer
contributes to the signal background and its noise. For this purpose so-called
solar-blind cathodes are used made of, for example, Cs2Te or CsI.

10.5.2.1 Amplification

The success of photomultiplier tubes (PMT) is not conceivable at all with-
out the enormous amplification obtained with a secondary electron multiplier
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(SEM), which is connected to the photo-cathode. In a SEM, electrons are ac-
celerated and cause multiple secondary electrons to be ejected from the anode.
The multiplication factor for a layout with n dynodes at applied voltage UPMT
is δ = c[UPMT/(n + 1)]α. The up to 15 steps cause an avalanche-like amplifi-
cation of the photo-current Iph = GIel,

G = const × Uαn
PMT, (10.24)

with geometry and dynode material causing a slight attenuation of the theo-
retical amplification factor of a single step by a factor α = 0.7–0.8. At the end
of a cascade subjected to a total voltage of about 1–3 kV, a charge pulse with
105 to 108 electrons is available. The high intrinsic gain G leads to extreme
sensitivity, which reaches values of RPMT � 104–107 A W−1 according to

RPMT =
ηGe
hν

,

depending on layout and circuit wiring. Since the gain depends sensitively
on the applied voltage due to (10.24), the voltage supply has to be stable and
low-noise.

10.5.2.2 Counting mode and current mode

The input channels of any electronic measuring amplifier usually expect a
voltage at the input. Thus the current of the photomultiplier tube has to be
converted into a voltage by a load resistance RL. Especially for low currents
the PMT works like an ideal current source, and thus RL can be chosen arbi-
trarily large. In practice, however, the rise time is limited by the load resistance
and the stray capacitance of the anode to the layout

τ = RLCS.

In addition, large load resistances cause the anode to discharge slowly. Thus
the voltage of the last dynode stage is decreased and therefore also the effi-
ciency of the anode for collecting secondary electrons: the characteristic curve
becomes nonlinear and the photomultiplier tube saturates for a certain light
power.

For the circuitry wiring, the counting mode and the current mode are distin-
guished. The counting mode is suitable for very low light powers. The gain
G is chosen very high and RL so low that for a standard 50 Ω impedance typi-
cal voltage pulses of some 10 mV and some nanoseconds width are observed.
These pulses can be processed directly using commercial counting electron-
ics. They cause the ‘clicks’ of the photon counter. Because of the similarity to a
Geiger–Müller tube for α and β particles, this is also called the Geiger mode. Of
course, a statistical distribution of impulses with different heights and widths
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is generated, from which signal photon pulses are selected by electronic dis-
criminators.

The current mode is used for larger light intensities, with lower gain G and
a load resistance adjusted to the desired bandwidth. The resistance should be
chosen high enough to approach as close as possible an ideal current source.

10.5.2.3 Noise properties of PMTs

A small current flows through a photomultiplier tube even when the tube
is operated in total darkness. It is called the ‘dark current’ ID and is mainly
caused by thermionic emission of electrons from the photo-cathode, which are
amplified indistinguishably from photo-electrons.

In the counting mode of the photomultiplier tube, we can directly use the
Schottky formula (Eq. (A.13) in App. A.1.2) if we insert the effective aver-
age charge 〈Ge〉 of a single photo-electron to determine the power density of
the shot noise of the dark counting rate RD. In this case the noise equivalent
power is calculated as:

NEPcount =
√

2RD

η
hν, (10.25)

where we have used the average gain 〈G〉.
If a photomultiplier tube is used in the current mode, the fluctuations of

the gain also cause noise: the noise power density of the current is then i2
n =

〈2GeID〉 = 2e〈G2〉〈ID〉/〈G〉, since the instantaneous gain is strictly related to
the instantaneous current ID. In current mode the result of (10.25) is increased
by the excess noise factor Fe = 〈G2〉/〈G〉2 of Eq. (10.7):

NEPcurrent = Fe

√
2ID/〈eG〉
η〈G〉 hν.

Their enormous sensitivity has led to numerous applications for photomulti-
plier tubes, and in addition has caused the development of many specialized
types. The most common models are the so-called side-on PMTs, in which
the photo-electron is ejected from an opaque photo-cathode and first counter-
propagates the light beam. The head-on models are equipped with a trans-
parent photo-cathode. From their rear the photo-electrons are sent into the
secondary emission multiplier. They are advantageous when photo-cathodes
with a large area are required, for example in scintillation detectors. For ap-
plications in servo-control devices, though, photomultiplier tubes have certain
disadvantages when not only the rise time but also the delay time (caused by
the travel time within the detector) play a role.
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10.5.2.4 Microchannel plates and channeltrons

Microchannel plates (MCPs) are actually a variant of the secondary electron
multiplier. A single microchannel consists of a glass capillary tube with a
diameter of 6–20 μm. The wall is coated with a semiconducting material (e.g.
NiCr) with relatively low conductivity. The ends of the tube are coated with
a metal and operate as photo-cathode and anode, respectively; a high volt-
age drops along the walls and generates a ‘continuous dynode’. This type of
secondary emission multiplier with a single channel is also known as a chan-
neltron. Using an appropriate coating of the input facet, they can be converted
into very compact photomultiplier devices. Their disadvantage is the satura-
tion behaviour, which generally begins at lower currents than in photomulti-
plier tubes because of the high wall resistance.

A microchannel plate consists of sev-
BF

Fig. 10.7 Microchannel plate (MCP),
schematic.

eral thousand densely packed capillary
tubes subjected in parallel to a high-
voltage source and working like an ar-
ray of SEM tubes. As MCP-PMTs they
have advantages due to their excel-
lent time resolution and their low sen-
sitivity to magnetic fields (which in-
fluence the amplification behaviour of
every SEM). Moreover, they allow the
detection of very low light intensities
with spatial resolution and are there-
fore used to build the image intensifiers
discussed in Sect. 10.7.3.

10.6
Quantum sensors II: semiconductor sensors

In semiconductors, the photo-electrons do not have to be knocked out of the
material but can internally generate free charge carriers. The internal photo-
effect is used in two different types of photodetectors: photoconductors and pho-
todiodes. In photoconductors the photo-electric change of the conductivity is
measured, while photodiodes are sources of photo-current.

10.6.1
Photoconductors

For the excitation of intrinsic photo-electrons, often a much lower energy is
necessary than for the ejection of an electron out of a material. Photoconduc-
tors mostly manufactured using thin-layer technology therefore display their
strength as infrared receivers.
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In an intrinsic semiconductor, charge carriers can be generated by thermal
motion or absorption of a photon. In this case the cut-off wavelength λg is
determined by the energy of the bandgap according to Eq. (10.23). In Ge, for
instance, it is 0.67 eV, corresponding to a cut-off wavelength of 1.85 μm.

Tab. 10.1 Band gaps of selected semiconductors.

Material Eg (eV) at 300 K λg (μm)
1 CdTe 1.60 0.78
2 GaAs 1.42 0.88
3 Si 1.12 1.11
4 Ge 0.67 1.85
5 InSb 0.16 7.77

Tab. 10.2 Activation energies of dopants.

Material EA (eV) at 300 K λA (μm)
1 Ge:Hg 0.088 14
2 Si:B 0.044 28
3 Ge:Cu 0.041 30
4 Ge:Zn 0.033 38

The spectral sensitivity can be extended to even larger wavelengths by us-
ing extrinsic (doped) semiconductors. The cut-off wavelength then increases
with the activation energy EA of the donor atoms. Ge is used particularly of-
ten since its cut-off wavelength is extended for example by Hg dopants up to
the 32 μm limit.

10.6.1.1 Sensitivity

In a photoconductor the optically induced change of the conductivity is mea-
sured. Thus roles are played not only by the rate of charge carrier generation
rL – which behaves like the response of all quantum sensors – but also by the
relaxation rate τ−1

rec – which ensures that the semiconductor returns to thermal
equilibrium. For simplicity we assume the entire light power to be absorbed
in the detector volume. Then the charge carrier density at constant light in-
tensity is nel,ph = ηPLτrec/hνVD.

However, the measured quantity is the conductivity σ and the current
I = AσU/�, respectively, flowing through a photoconductor of length � with
effective diameter A when there is a voltage U across over it. It depends not
only on the charge carrier densities nel and ph but also on the mobilities μel
and μh of the electrons and holes, respectively. Owing to their low mobility,
the holes contribute only negligibly to the conductivity, and hence

σ � enμel. (10.26)
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By means of the photo-effect, conductivity is generated within the photo-
conductor. It lasts until the electron–hole pair has recombined either still in
the photoconductor itself, or at the interfaces to the metallic connections. On
the other hand, during the recombination time, a current flows that is de-
termined by the mobility of the electrons. In the semiclassical Drude model
the drift velocity of the electrons can be connected with the applied voltage
vel = μelU/�, and also with the time τd = �/vel that it takes an electron to
drift out of the photoconductor via the metallic leads. From I = Aenelvel the
responsitivity can be calculated as

R =
ηe
hν

τrec

τd
.

Thus a photoconductor has an intrinsic gain G = τrec/τd, which can some-
times be smaller than unity. Moreover, the gain is obtained at the expense of a
reduced detector bandwidth since the recombination rate τrec determines the
temporal behaviour of the photo-cell as well.

10.6.1.2 Noise properties

The conductivity that is generated by thermal motion can be suppressed by
routine cooling of the detector. So strictly speaking Eq. (10.26) has photo-
electric and thermal parts,

σ = e(nph + nth)μel.

The steady state of the conductivity in a photoconductor is determined by
charge carrier generation and balanced by the recombination rate, which it-
self is a random mechanism. The shot noise of a photoconductor is called
generation–recombination noise and is larger by a factor of 2 compared to the
photomultiplier tube or the photodiode,

i2
GR = 4eI

τrec

τd
.

At wavelengths of 10 μm and beyond, the detectivity is generally limited by
the thermal radiation background. Real detectors to a large extent operate at
this limit.

10.6.2
Photodiodes or photovoltaic detectors

Semiconductor photodiodes are among the most common optical detectors
altogether because they are compact components and have many desirable
physical properties, e.g. high sensitivity, a fast rise time and a large dynamical
range. In addition, they come in numerous layouts and are straightforwardly
interfaced with electronic semiconductor technology.
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Fig. 10.8 Layouts of Si photodiodes. Left: conventional design. Right:
in the pin layout, the separation of the charge carriers is reached par-
ticularly fast.

Their effect is based on the pn junction layer, which forms the so-called
depletion layer where free charges are eliminated (see below). New electron–
hole pairs are generated by absorption of light and accelerated by the internal
electric field and thus cause a current flow in the test circuit. The depletion
region acts as a nearly perfect current source, i.e. with high internal impedance.

10.6.2.1 pn and pin diodes

A depletion layer is formed close to the pn junction (Fig. 10.8). Holes in the
p-doped material and electrons in the n-doped material, respectively, diffuse
to the opposite side and recombine there. The holes cause a positive space-
charge zone at the n side; since the electrons are in general more mobile than
the holes, the corresponding negative zone is more extended on the p side.
This process is finished when the electric field caused by the space charge
prevents further diffusion of electrons and holes, respectively. A Si diode gen-
erates a known voltage drop of 0.7 V across the depletion layer.

The construction of an efficient photodiode has the goal to absorb as much
light as possible in the barrier layer so that the electric field, which can be in-
creased still further by an external bias voltage, rapidly separates the electron–
hole pairs. In contrast to a photoconductor, then recombination can no longer
occur. This process can constructively be supported by inserting an insulating
layer between the n and p layers, making the detector a pin photodiode. With
this, the absorbing volume is increased and additionally the capacitance of the
barrier layer limiting the rise time is decreased.

10.6.2.2 Operating modes

In Fig. 10.9 a family of electrical characteristic curves of a photodiode is pre-
sented. The diagram results by adding the negative photo-current −Iph to the
characteristic curve with I = Is(eeV/kT − 1) for a common diode.
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There are three operating modes:
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Fig. 10.9 Family of characteristics
of a photodiode.

• Photovoltaic mode. When the photodiode
is connected to an open circuit, then it is
operated in the photovoltaic mode. Current
flow is negligible (I = 0), and the responsivity
is given in V W−1. This operating mode is
also used in solar cells.
• Short-circuit mode. In the short-circuit
mode, the current generated by the photo-
electrons is measured and given in A W−1.
• Voltage bias operating mode. In this most
common operation mode, the barrier layer is
further extended by a bias voltage so that a
higher quantum efficiency and shorter rise times are achieved.

10.6.3
Avalanche photodiodes

The principle of the avalanche photodiode (APD) has been known for a long
time. However it was not possible to manufacture technically stable prod-
ucts until recently. In a way the APD realizes a photomultiplier based on
semiconductor devices. If a very large bias voltage of several 100 V (in the
reverse direction) is applied across the depletion region, then photo-electrons
can be accelerated so strongly that they generate another electron–hole pair.
Exactly as in the photomultiplier a large amplification of the photo-electron
can be achieved by a cascade of such ionization events. Therefore also the
term ‘solid-state photomultiplier’ is used occasionally.

The gain of APDs reaches 250 or more. Like in the usual pin Si photodiode,
the photo-electrons are released in the depletion region with a correspond-
ingly high quantum efficiency. Therefore the responsivity of APDs can exceed
100 A W−1.

For high light intensities, avalanche photodiodes are operated like photo-
multiplier tubes in current mode. The gain, however, is sufficient to operate
them in the Geiger mode for photon counting, also. With the ionization not
only electrons but also holes are generated. If both charge carriers are gen-
erated with the same efficiency, then the detector is ‘ignited’ by a first charge
carrier pair and does not lose its conductivity since new electron–hole pairs
are generated continuously.

In silicon the ionization coefficient for electrons is very much larger than
that for holes. The current flow, however, cannot be stopped until all holes
have left the depletion layer and only then can a new charge pulse be gener-
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ated. In order to keep the resulting dead time as short as possible, the dis-
charge can be passively quenched by a current-limiting resistor. Better condi-
tions can be provided by interrupting the discharge current actively through
suitable servo-loops.

10.7
Position and image sensors

The application of the highly integrated concepts

Fig. 10.10 Quadrant detectors for
the localization of a laser beam.

of semiconductor technology to photodetectors,
not only to Si, but also to other materials, is
quite obvious. Typically four photodiodes are
combined on a Si substrate with relatively large
area, forming a ‘quadrant detector’. This serves,
for example, to determine the position of a light
beam. By means of difference amplifiers, the de-
tection of slight motions is possible with remark-
able sensitivity. In another layout, photodiodes
are used line-wise or column-wise with ‘diode

arrays’ in order, for example, to measure simultaneously the spectrum of a
monochromator (see Fig. 5.7) without mechanically actuating a grating. In a
line camera a movable mirror provides the line feed and thus allows recording
of a full two-dimensional picture.

A two-dimensional array of photo-capacitors without movable parts can be
applied for image formation. In such an array, the intensity distribution of a
real image is stored as a two-dimensional charge distribution. The technical
challenge is to ‘read out’ the information saved in the capacitor charges on
demand using electronic devices and at the same time to convert it into a time
sequence of electrical impulses that are compatible with conventional video
standards. For this purpose the concept of CCD (charge-coupled device) sen-
sors developed in the 1970s based on MOS (metal–oxide–semiconductor) ca-
pacitors has gained wide acceptance, since such a sensor exhibits particularly
low noise. Only in the infrared spectral range, when the sensors have to be
cooled and the MOS capacitance decreases, do conventional pn capacitances
equipped with MOS switches have advantages.

10.7.1
Photo-capacitors

The charge generated by illumination in a common pn photodiode in the pho-
tovoltaic operating mode and with an open circuit does not drain but is stored
in the capacitance of the space-charge region. It operates as a potential well
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for the electrons released nearby, and we can call it a ‘photo-capacitor’. Such
devices are of particular interest for image sensors since the image informa-
tion can be first saved in the photo-capacitances and then be read out serially.
Of course the charge will drain eventually by thermal motion, but the storage
time is from several seconds up to minutes or hours depending on the system
and temperature.

The MOS capacitors have
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Fig. 10.11 MOS photo-capacitor. Electrons opti-
cally generated are stored in the depletion region.

proven themselves as photo-
capacitors. At the metal–oxide–
semiconductor interface, which
is also known as a Schottky con-
tact, a potential is generated that
serves to store photo-electrons.
With MOS capacitors, large ca-
pacitance values are achieved.
They prevent the stored charges from reducing the potential well, and thus
the capacitor does not saturate with just a few photo-electrons or holes. A
model of a MOS capacitor consisting of a metallic or polycrystalline Si gate,
an SiO2 oxide layer and p-Si is presented in Fig. 10.11. For positive gate
voltage UG a potential well for electrons is formed. Electrons ejected in the
space-charge region and stored in the potential well can later be released by
decreasing the gate voltage. The storage time of photo-capacitors is limited
by thermal relaxation and varies at room temperature from seconds up to
several minutes.

10.7.2
CCD sensors

The heart of modern digital cameras is the CCD chip, which in its detector
array generates a charge proportional to the intensity of the incident radia-
tion and stores it in photo-capacitors until it gets read out by control electron-
ics [28]. In comparison to the photographic plate, the CCD camera has the
advantages of a large linear range, high quantum efficiency of 50–80% and
direct generation of a voltage signal that can be digitized and processed by
computer.

The key to the success of CCD sensors is the read-out method, presented in
Fig. 10.12 using the example of a three-phase system. It is organized such that,
by voltage control sequences of the gate electrodes, the charge stored in a sen-
sor or pixel is transferred to the adjacent capacitor. The clock frequency of this
periodic sequence can be more than 20 MHz. The average of the charge loss
during the transmission is below 10−6. Therefore, even for many hundreds of
transmission steps generally more than 99.99% of the charge content of a pixel
arrives at the read-out amplifier.
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Fig. 10.12 Three-phase operation of a CCD cell.

An image sensor has to be read out line-wise. In order to prevent a long
dead time being caused by this, and in addition to be able to accumulate
more charges, the CCD sensors consist of an illuminated ‘image region’ and a
dark ‘storage region’. The formation of an image is finished by transferring all
columns from the illuminated part in parallel and within 1 ms to the adjacent
storage zone. While being transferred line-wise through a read-out register
step by step to the read-out amplifier, already the next picture can be taken in
the illuminated part.

The sensitivity of a CCD sensor is determined by the noise properties of
each pixel, which on the one hand depend on the fluctuation of the thermally
generated electrons, and on the other hand are mostly dominated by the so-
called ‘read-out noise’. This is added to the charge content of a pixel by the
read-out amplifier. Since this noise contribution occurs only once per read-
out process, it is often favourable to accumulate charges generated photo-
electronically on the sensor for as long as possible. For this, though, only
slow image sequences can be achieved. The noise properties of a CCD sensor
are often given in the unit ‘electrons/pixel’ indicating the r.m.s. width of the
dark current amplitude distribution.

The spatial resolution of a CCD sensor is determined by the size of the pix-
els, whose edge length today is typically 1–25 μm. The resolution of course
cannot be better than the optical image system, i.e. the camera lens. The de-
termination of the positions of small objects is, however, sometimes possible
with subpixel resolution. If the point-spread function of the optical imaging
system is known, it can be fitted to the distribution extending over several
pixels. The centre value can then be evaluated with subpixel resolution.
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10.7.3
Image intensifiers

For image amplifiers, the extremely sensitive properties of a photomultiplier
based on the conversion of light into electrons are used in detectors with spa-
tial resolution. The potential for applications of image amplifier tubes and
their variants is quite high since they allow more than just the taking of pic-
tures of extremely faint objects. The concept can be transferred to many kinds
of radiation, e.g. infrared radiation or X-rays, which are not visible to the hu-
man eye and common cameras at all, but can cause localized ejection of elec-
trons. Such devices are also called image converters.
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Fig. 10.13 Concepts for image amplifiers of first and second genera-
tion.

In Fig. 10.13 we present two widely used concepts for optical image inten-
sifiers. On the left is the first-generation concept, in which a picture is guided
through fibre optics to a photo-cathode. The electrons emitted there are accel-
erated by electro-optics and projected onto a luminescent screen. Its lumines-
cence can be observed by eye or by camera. There can be up to 150 lm lm−1 of
image intensification.1

On the right, a model of the so-called second generation is shown. Here
by means of a channel plate (MCP, see p. 391) a gain of 104 and more can
be achieved. The spatial resolution of the incident optical image is slightly
decreased by the spread of the electron bunches emitted from the MCP. The
image of a single fluorescing atom in Fig. 12.18 was taken with such an ICCD
camera.

Image intensifiers not only allow the observation of very faint signals. The
high voltage necessary at the channel plate for amplification can be switched
on and off on a nanosecond scale and this makes it possible to realize cameras
with extremely high shutter speed.

1) Here the SI unit lumen (lm) is used, which measures the light cur-
rent emitted by a point source with one candela (cd) light intensity
into a solid angle of one steradian (sr): 1 lm = 1 cd sr−1. Light inten-
sity is measured in the SI unit candela (cd). At 555 nm wavelength
its value is 1 cd = (1/683) W sr−1; at other wavelengths, it is referred
to the spectrum of a black body radiator operated at the melting
point of platinum.
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Problems

10.1. Thermal detectors Consider the differential equation for the increase in
temperature ΔT of an ideally black detector with heat capacity K and total
heat loss rate V. What determines the rise time τ? Derive the sensitivity R of
a thermopile with the gross Seebeck coefficient CTU .

The power density t2 of the spontaneous temperature fluctuations at fre-
quency f and the absolute temperature T is t2 = 4kBT2V/(V2 + (2πK f )2).
Show that the noise equivalent power far below the maximal bandwidth, i.e.
for 2π f τ � 1, is NEP = T

√
2kBV.

10.2. Photo-cell Design a simple electric circuit which transforms the change
of conductivity in a photoconductor into a linear voltage change.

10.3. Photovoltaic detector (I) Study the I–V characteristic curves of the pho-
todiode (Fig. 10.9). Identify the positions where (a) the photovoltaic mode, (b)
short-circuit mode and (c) the bias mode are located.

10.4. Photovoltaic detector (II) What laser power incident on a Si photodiode
is required to operate the detector with shot-noise-limited conditions? The
sensitivity is R = 0.55 A W−1 at 850 nm, the impedance of the photodiode is
100 MΩ, and the dark current is ID = 100 pA. Take an amplifier with noise
figures en = 10 nV Hz−1/2 and in = 1 pA Hz−1/2.

10.5. Photomultiplier What is the minimal power detectable for a photomul-
tiplier operated in current mode in a bandwidth of Δ f = 1 Hz with the follow-
ing specifications: quantum efficiency η = 10%, laser wavelength νL = 600 nm,
and dark current ID = 1 fA. What is the rate of clicks indicating the arrival of
photons?
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11
Laser spectroscopy

In Chap. 6 on light and matter, we theoretically investigated the occupation
number and the polarizability of an ensemble of atomic or other microscopic
particles. In experiments, these quantities though are not observed directly
but through their effect on certain physical properties of a sample. Here, we
concentrate on all optical methods, such as the fluorescence of an excited sam-
ple or the absorption and dispersion of a probe beam. There are also numerous
alternative methods of detection, e.g. the effect on acoustic or electrical prop-
erties of the sample. For a wider overview over the extended field of laser
spectroscopy, we refer the reader to [44], for example.

!6

!6
A�.�

Fig. 11.1 Laser spectroscopy. The spectral properties of a sample can
be detected by laser-induced fluorescence (LIF) or by absorption. For
the detection of dispersive properties, interferometric experiments are
necessary.

11.1
Laser-induced fluorescence (LIF)

Fluorescence is caused by spontaneous emission. We observe it, for exam-
ple, when a laser beam passes through a gas cell. It corresponds to radiation
damping and can only occur when an atom is in an excited state. In the Bloch
equations (6.36) we have taken the fluorescence into account phenomenologi-
cally with the decay rates γ and γ′. A single particle in the excited state emits
energy h̄ω during its lifetime γ, and an intense resonant laser beam keeps half
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of all particles excited on average. We can also express the saturated fluores-
cence power Psat by the saturation intensity I0 according to Eq. (6.42):

Psat = h̄ω
γ

2
=

γ/2
γ′ σQ I0.

More generally, the intensity of the fluorescence to be observed is proportional
to the excitation probability (w + 1)/2, where w is the z component of the
Bloch vector (see Sect. 6.2.3), and to the particle density N/V. In addition, we
have to take the experimental set-up (losses, solid angle of observation, . . .)
into account with a geometry factor G. The observed fluorescence intensity
may then be defined by Ifl = GPsat,

Ifl = G
N
V

h̄ωγ
1
2
(1 + w) = G

N
V

Psat
s

1 + s
.

The saturation parameter s is proportional to the intensity of the exciting
laser field I according to Eq. (6.40). For large excitation field intensity (s � 1)
it can be found immediately that

Ifl � G
N
V

Psat.

In the limiting case of low excitation (s � 1) laser-induced fluorescence
(LIF) allows linear mapping of selected properties of a sample such as particle
density, damping rates γ, γ′, and so on. The spectral dependence of the low-
intensity resonance line at ω0 is Lorentz-shaped in the stationary case,

Ifl(ω) � G
N
V

Psats = G
N
V

γγ′

2
I

(ω − ω0)2 + γ′2 ,

and a fluorescence profile like in Fig. 6.2 is obtained. With laser-induced flu-
orescence, for example, spatially resolved density measurements of known
atomic or molecular gases can be carried out.

11.2
Absorption and dispersion

Like fluorescence, linear absorption and dispersion of the driving laser field
occurs at low saturation intensities only. Therefore we determine the more
general absorption coefficient and the real part of the refractive index accord-
ing to Eq. (6.23),

α(ω) = − ω
2I(z)Im{E (z)P∗(z)} = N

V
ω

2I(z)degE0vst,

n′(ω)− 1 = c
2I(z)Re{E (z)P∗(z)} = N

V
c

2I(z)degE0ust.
(11.1)
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When we insert the dipole components (d = deg(ust + ivst)) from Eqs. (6.44),
we again obtain the relations

α(ω) = −N
V

γ
2γ′

w0σQ

1 + I/I0 + [(ω − ω0)/γ′]2
,

n′(ω)− 1 = −N
V

γ
2γ′ λ

2π
w0σQ(ω − ω0)/γ′

1 + I/I0 + [(ω − ω0)/γ′]2
,

(11.2)

by also accounting for Eqs. (6.21( and (6.41). From these relations the limiting
case of small intensities can be reduced again to the classical case (6.20) with-
out any further difficulties (I/I0 � 1 and w0 = −1). There, the absorption
coefficient and refraction coefficient depend only on atomic properties (decay
rates γ, γ′, detuning δ = ω − ω0, particle density N/V) and not on the inci-
dent intensity. Conversely, these physical quantities can be determined using
absorption spectroscopy. Since the determination of the refractive index gen-
erally requires an interferometric method, and thus considerable instrumental
effort, the absorption measurement is the preferred method.

11.2.1
Saturated absorption

For increasing intensity (I/I0 � 1) the ‘saturation’ of a resonance plays a more
and more important role since the absorption coefficient becomes nonlinear:
it itself depends on the intensity. For the sake of clarity we introduce the
resonant unsaturated absorption coefficient α0 = −σQw0(N/V) × (γ/2γ′)
(= σQ(N/V) × (γ/2γ′) for optical frequencies), and with the new linewidth
Δω = 2γsat according to Eq. (11.4) we write

α(ω) = α0
γ′2

(ω − ω0)2 + γ′2(1 + I/I0)
= α0

γ′2

(ω − ω0)2 + γ2
sat

. (11.3)
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Fig. 11.2 Saturation of resonance lines. Normalized fluorescence
intensity as a function of normalized detuning δ/γ′. The parameter
gives the incident laser power normalized to the saturation intensity,
I/I0. The maximum fluorescence intensity occurs at even occupation
of the atomic levels.
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So, in spite of the saturation at large intensity I ≥ I0, the Lorentz shape of
the resonance line is preserved, though it becomes wider. It is also straight-
forward to show that on resonance (ω = ω0) the intensity no longer decreases
exponentially following Beer’s law but decreases linearly for large I/I0 ac-
cording to

dI
dz

= −α(I)I � −α0 I0.

Here it is worth introducing another new parameter,

γsat = γ′√1 + I/I0. (11.4)

11.3
The width of spectral lines

The observation of fluorescence and absorption spectra are among the sim-
plest and thus most common methods of spectroscopy. Physical information
is contained in the centre frequency value of a line as well as in its shape and
width. As a measure for the width (Fig. 11.3), usually the full width at half-
maximum is used, i.e. the full frequency width between the values for which
the resonance line reaches the half-maximum value.1 For intensities below the
saturation value, I/I0 � 1, the transverse relaxation rate γ′ can be inferred
from Eqs. (6.40) and (11.2),

FWHM Δω = 2πΔν = 2γ′.

Fig. 11.3 Important spectral line shapes:
(a) Lorentz line, (b) Gaussian profile, and (c) profile of time-of-flight
broadening, presented for identical half-widths.

For a free atom, which can release its energy only by radiative decay, we
have γ′ = γ/2 and thus

Δω = 2πΔν = γ. (11.5)

1) Often the short forms FWHM and HWHM for full width and half-
width at half-maximum, respectively, are used.
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In dilute atomic or molecular samples, the Q value or factor of the resonance,
i.e. the ratio between resonance frequency and FWHM, can easily assume very
large values of 106 and more for optical frequencies of 1014–1015 Hz,

Q = ν/Δν.

It is obvious that, for decreasing linewidth Δν of a spectral line, the Q value
and thus the ‘definition’ of the centre wavelength or frequency of a resonance
line increases. The precise experimental preparation and measurement of such
‘sharp’ resonances is a primary goal for spectroscopists. This goal requires
a deep understanding of the physical mechanisms determining the position
of a line, its width and shape. Usually the natural linewidth caused by the
spontaneous decay of excited states is considered to be the lower limit. It has
been known, though, for a long time that this decay rate can be modified by
properties of the environment. For instance, the results of measurements are
systematically influenced in the vicinity of conductive or reflecting walls (see
Sect. 12.3.3) [124].

Let us now present the most important limiting cases only; an extensive
microscopic theory would go far beyond the scope of this chapter. Also the
interaction of different broadening mechanisms is often complex, has to be
described by mathematically elaborate convolutions and so is neglected here.

11.3.1
Natural width, homogeneous linewidth

The dream of the precision spectroscopist is a motionless particle in free space
[43] whose resonance linewidth is limited only by the finite lifetime τ of
an excited state according to Eq. (11.5). It is called the ‘natural linewidth’
Δν = Δω/2π = γnat/2π and is identical with the Einstein A coefficient of the
spontaneous decay rate,

γnat = AEinstein =
1
τ

.

For an estimate of the natural width of typical atomic resonance lines, a char-
acteristic dipole can be estimated with the Bohr radius, deg = ereg = ea0. For
a red atomic resonance line (λ = 600 nm) we find from Eq. (6.49):

AEinstein � 108 s−1.

The resonance frequency of a free undisturbed particle is still shifted by
the Doppler effect (Δω = kv = 2πv/λ; see below), which we discuss in the
next section. However, for a long time it has been possible to prepare almost
motionless atoms and ions routinely in atom and ion traps using the method
of laser cooling; see Sect. 11.6 [126]. Since the motion-induced frequency shift
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is caused only by the component of motion in the direction of the exciting or
emitting light, the natural linewidth of an atomic or molecular resonance can
be observed also with atomic beams.

The natural linewidth is identical for all particles of an ensemble. Such line
broadening is called ‘homogeneous’.

11.3.2
Doppler broadening, inhomogeneous linewidth

During the emission of a photon, not only the energy difference between the
internal excitation states of the atom is carried away but additionally the mo-
mentum h̄k. For low velocities (v/c � 1) we can take the difference between
the resonance frequency in the laboratory frame (ωlab) and in the rest frame
(ωrest = (E − E′)/h̄) from momentum and energy conservation,

mv′ + h̄k = mv,

E′ + 1
2 mv′2 + h̄ωlab = E + 1

2 mv2.

In nearly all cases the atomic momentum is much larger than the recoil expe-
rienced by the emission process, h̄k/mv � 1. Thus we can neglect the term
h̄2k2/2m in

m
2

v2 =
m
2

v′2 +
h̄2k2

2m
+ h̄kv � m

2
v′2 + h̄kv,

and arrive at the linear Doppler shift:

ωlab = ωrest + kv. (11.6)

The direction within the laboratory frame (k) is determined either by the
observer (in emission) or by the exciting laser beam (in absorption). The
radiation frequency of a source appears to be blue-shifted towards shorter
wavelengths if it travels towards the observer, and red-shifted towards longer
wavelengths if it moves away.

In a gas the molecular velocities are distributed according to the Maxwell–
Boltzmann law. The probability f (vz) of finding a particle at temperature T
with velocity component v in an interval dvz is

fD(vz) dvz =
1√

π vmp
e−(vz/vmp)2

dvz, (11.7)

where
∫ ∞
−∞ dvz fD(vz) = 1. The most probable velocity vmp is (kB is Boltzmann

constant, T is absolute temperature)

vmp =
√

2kBT/m.
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For common temperatures the velocities of the molecular parts of a gas gener-
ally are between 100 and 1000 m s−1 so that typical shifts of kv/ω = v/c �
10−6–10−5 or some 100 to 1000 MHz are expected. The natural linewidth
of atomic or molecular resonance transitions is in general much smaller and
therefore masked by the Doppler shift. For this reason the methods of Doppler-
free spectroscopy (Sect. 11.4) have been an important topic of research for many
years.

If the emission of the particles is otherwise undisturbed, the spectral line
shape and width of the absorption line of the gas can be obtained from the
superposition of all contributing undisturbed absorption profiles according to
Eq. (11.3),

αD(ω) =
∫ ∞

−∞
dvz fD(vz)α(ω + kvz).

If α(ω) has Lorentz shape, the line profile αD described by this mathemati-
cal convolution is called a Gauss–Voigt profile. At room temperature in many
gases the decay rate γ of an optical transition is much smaller than the typical
Doppler shift kvmp. Then the distribution function fD(vz) virtually does not
change in that range where α(ω + kvz) differs significantly from zero. It can
be replaced by its value at vz = (ω − ω0)/k and pulled out of the integral.
The integration over the remaining Lorentz profile results in a constant factor,

αD(ω) = α0 fD

(
ω − ω0

k

)
πγ′

k
√

1 + I/I0
,

and with
√

π ln 2 = 2.18 we arrive eventually at the Gaussian profile

αD(ω) =
2.18α0√
1 + I/I0

γ′

ΔωD
exp

[
− ln 2

(
ω − ω0

ΔωD/2

)]
. (11.8)

Here we have already introduced the Doppler FWHM or Doppler width

ΔωD = ω0

√
8kBT ln 2

mc2 .

The absorption coefficient is reduced by approximately the factor γ′/ΔωD
since the line intensity is now spread over a very much bigger spectral range.
It is useful to express the Doppler width in units of the dimensionless atomic
mass number M and the absolute temperature T in kelvin,

ΔνD = ΔωD/2π = 7.16 × 10−7
√

T/M νrest, (11.9)

where νrest is the resonance frequency of the particle at rest.
Doppler broadening is an example of an ‘inhomogeneous’ linewidth. In

contrast to the homogeneous line, each particle contributes to the absorption
of the fluorescence line with a different spectrum depending on its velocity.
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11.3.3
Pressure broadening

In a gas mixture atoms and molecules continuously experience collisions with
neighbouring particles that disturb the motion of the orbital electrons for a
short time. During the collision the frequency of the emission is slightly
changed compared to the undisturbed case. For neutral atoms or molecules
the interaction can be described, for example, by a van der Waals interaction
causing a mutual polarization of the collision partners. In a plasma the inter-
action of the charged particles is much stronger.

Tab. 11.1 Relevant times for collisional broadening.

Process Formula∗ Conditions Duration

Optical cycle τopt = 1/νopt 10−14–10−15 s

Interaction time τia = datom/vtherm T = 300 K 10−12–10−13 s

Time between
collisions

τcoll = nσAvtherm
T = 300 K,
n = 1019 cm−3 10−7–10−9 s

Natural lifetime τ = A−1
Einstein 10−8 s

∗ datom = 2 Å, σA = πd2
atom/4.

It is useful to consider first the relevant time scales that determine collisional
processes and are compiled in Tab. 11.1. The interaction between neutral par-
ticles is generally short-range, i.e. it is significant only over a short distance of
the order of the diameter of the atom or the molecule. The duration of the in-
teraction time τia can therefore be estimated from the typical transit time across
an atomic diameter. For thermal velocities according to this some 10–1000 os-
cillation cycles occur during the collision. The mean time interval between
collisions (or the inverse collision rate) τcoll can be determined from the col-
lision cross-section σA and the mean velocity v following the known formula
τcoll = nσAv. It is much larger than the interaction time τia even under at-
mospheric conditions, and thus electronic motion is rarely disturbed by the
collisions. In a simple model all details of the molecular interaction are there-
fore negligible and the effect of the collision can be reduced to an effective
random phase shift of the otherwise undisturbed optical oscillation.

Let us first consider the intensity spectrum δI(ω) of a damped harmonic
wave-train that starts at t0 and is simply aborted after a randomly chosen
time τ:

δI = I0

∣∣∣∣∫ t0+τ

t
e[−i(ω0−ω)−γ′]t dt

∣∣∣∣2 = I0 e−2γ′t0

∣∣∣∣∣ e[i(ω0−ω)−γ′]τ − 1
i(ω0 − ω) − γ′

∣∣∣∣∣
2

.

The dependence on the start time t0 can be eliminated immediately by integra-
tion, I(ω) = 2γ′ ∫ δI(ω, t0) dt0. The phase jumps (and thus the periods of the
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undisturbed radiation times) are distributed randomly and occur with a mean
rate γcoll = τ−1

coll. Then we can calculate the shape of the collision-broadened
spectral line with the probability distribution p(τ) = e−τ/τcoll /τcoll,

I(ω) = I0

∫ ∞

0

∣∣∣∣∣ e[i(ω0−ω)−γ′]τ − 1
i(ω0 − ω)− γ′

∣∣∣∣∣
2

e−τ/τcoll

τcoll
dτ.

The result is

I(ω) =
I0

π

γ′ + γcoll

(ω0 − ω)2 + (γ′ + γcoll)2 .

The Lorentzian line shape is maintained; the effective collisional broadening
rate γcoll though has to be added to the transverse relaxation rate γ′. Since all
particles of an ensemble are subject to the same distribution of collisions, this
line broadening is homogeneous like the natural line shape.

Spectral lines are affected not only by pressure broadening but also by a
pressure shift of the centre of mass of a line. With increasing pressure, the
number of collisions between the particles of a gas increases. Naively we can
imagine that the volume available for the binding orbital electrons is reduced,
and in quantum mechanical systems volume reduction is always associated
with an increase of the binding energy. The pressure shift therefore generally
causes a shift to blue frequencies.

11.3.4
Time-of-flight (TOF) broadening

Light–matter interaction of atoms and molecules in a gas or in an atomic beam
is mostly restricted to a finite period. For example, for v = 500 m s−1, an atom
needs τtr = 2 μs to pass a beam of diameter d = 1 mm. However, the re-
laxation of many optical transitions occurs on the nanosecond scale, during

�
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Fig. 11.4 Disturbance of radiative processes by collisions in a neu-
tral gas. The duration of the collisions is very short compared to the
collision rate (τ−1

coll) and to the lifetime of the excited state. The influ-
ence of collisions can be modelled through random phase jumps of an
otherwise undisturbed wave.
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which time an atom travels a few micrometres at most. The stationary solu-
tions for (6.36) are a good approximation in these cases. However, in focused
laser beams or for slowly decaying transitions, equilibrium is never reached,
and the line shape is dominated by transient interaction corresponding to the
finite time of flight τtr. Slow or long-lived transitions are of particular interest
since the corresponding very sharp resonance lines are excellent objects for
precision measurements at low intensities. The two-photon spectroscopy of
the hydrogen atom (see the example on p. 416) is an exceptionally beautiful
example of this.

Slow transitions (with small transi-��
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Fig. 11.5 Atomic trajectories crossing a laser
beam with Gaussian profile.

tion dipole moment) which are only
briefly subjected to a weak light field
have ΩR < γ′, τ−1

tr , and we can
assume that the population of the
ground state is virtually unchanged
(w(t) � w(t = 0) = −1). Let us
consider atoms or molecules crossing a

laser beam which is assumed to have Gaussian envelope with 1/e2 radius w0.
The Rabi frequency ΩR(z) = (degE0/h̄) exp[−(z/w0)2]/

√
π is now a function

of position, and we have to solve the first optical Bloch equation of (6.38),

d
dt

ρeg = v
d
dz

ρeg = −(γ′ + iδ)ρeg + iΩR(z).

We calculate the mean absorption coefficient of a single dipole with velocity
v from Eq. (6.23),

〈α(v)〉 =
ω

2I
1

w0

∫ ∞

−∞
dz Im{degE (z)ρeg(z, v)}. (11.10)

Before the particle enters the light field there is no dipole moment. Thus we
have ρeg(z=−∞) = 0, and the general solution can be given by

ρeg(z, v) = i
degE0

h̄
e−(γ′+iδ)z/v

∫ z

−∞

dz′

v
e(γ′+iδ)z′/v e−(z′/w0)2

.

If the typical time of flight is small compared to the typical decay time, γ′ �
τ−1

tr , we can neglect γ′. By inserting ρeg(z, v) then the integral in Eq. (11.10)
can be evaluated analytically,

〈α(v, δ)〉 =
ω

2I
|degE0|2

h̄
w0

v
e−(δw0/2v)2

.

In order to determine the absorption coefficient of a gaseous sample with a
cylindrical laser beam, we would still have to average over all possible trajec-
tories, but this results only in a modified or effective beam cross-section whose
details we skip over here.
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The summation of the velocity distribution in a two-dimensional gas
( f (v) dv = (v/v2) exp[−(v/v)2] dv, as the velocity component along the
direction of the laser beam does not play any role here) results in

α(δ) =
∫ ∞

0
dv f (v)〈α(v)〉 = α0 e−|δw0/v| = α0 e−|δτtr|,

whose form has already been presented in Fig. 11.3(c). The effective width of
this line is determined by τtr = w0/v.

11.4
Doppler-free spectroscopy

The linewidth of atomic and molecular resonances at room temperature is
usually dominated by the Doppler effect. The intrinsic and physically attrac-
tive properties of an isolated particle are revealed only at velocity v = 0. Laser
spectroscopy offers several nonlinear methods where light–matter interaction
is effective for selected velocity classes only. The result is called ‘Doppler-free’
spectroscopy.

11.4.1
Spectroscopy with molecular beams

As soon as tunable lasers be-
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Fig. 11.6 Fluorescence spectrum of an indium
atomic beam obtained with a blue diode laser.

came available in the 1970s, high-
resolution optical spectra were ob-
tained with molecular or atomic
beams. In such an apparatus, where
the transverse velocities of mole-
cules are reduced to near zero by ge-
ometric collimation, resolutions of
Δν/ν � 108 and better are routinely
achieved.

The example in Fig. 11.6 was
recorded with an indium atomic
beam. The transverse velocities
were limited to v ≤ 5 m s−1 by ap-
propriate apertures so that the residual Doppler effect kv ≤ 10 MHz was sig-
nificantly smaller than the natural linewidth of 25 MHz. Blue diode lasers (see
excursion on p. 337) have been used for this purpose for a short time only
– before the year 2000 they were still hardly imaginable equipment for such
experiments.
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11.4.2
Saturation spectroscopy

By a resonant laser light field, atoms are promoted to the excited state, and as a
result the occupation number difference is modified. In an inhomogeneously
broadened spectral line profile such as the Doppler profile, then for not too
large intensities a spectral hole is ‘burnt’ into the velocity distribution, which
is qualitatively presented in Fig. 11.7.

In a gaseous sample the laser absorption spectrum reflects the velocity dis-
tribution of the atom, as described above. Atoms resonant with the laser are
excited and thus change the absorption properties of this velocity class. This
modification can be probed with a second, auxiliary laser. in the simplest ar-
rangement the absorption spectrum of one of two counter-propagating laser
beams is measured.
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Fig. 11.7 Principle of saturation spectroscopy. Inset: A laser beam
with frequency ω is used to ‘burn’ a spectral hole into the ground-state
velocity distribution at kv = ω0 − ω; simultaneously, an excited-state
population with a narrow velocity distribution is generated.

Figure 11.7 shows the basic arrangement for the so-called ‘saturation spec-
troscopy’. In order to simplify the theoretical description, we assume that the
intensities of saturation (Isat) and probe beam (Ip) are small in comparison
with the saturation intensity (Eq. (6.42)), Isat,p/I0 � 1, and do not directly
influence each other. Let us calculate the absorption coefficient according to
Eq. (11.2) by again using the Maxwell–Gauss velocity distribution fD(v) from
Eq. (11.7) and carrying out the Doppler integration:

αp(δ) =
ω

2I

∫ ∞

−∞
dv fD(v)degEv+

st(δ, v).

We now distinguish the forward (‘+’) and the backward (‘−’) travelling laser
beams and from Eq. (6.44) we use

v+
st(δ, v) = −γ′degEw−

st /{1 + [(δ − kv)/γ′]2},
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but following (6.39) we insert w−
st = −1/(1 + s−) � −(1 − s−) in order to

account for the modification of the occupation number by the second counter-
propagating laser beam which has the saturation parameter

s− = (Isat/I0)/{1 + [(δ + kv)/γ′]2}.

Since the Doppler profile varies only slowly compared to the narrow Lorent-
zian contributions of each velocity class, at the detuning δ = ω0 − kv we can
again pull fD(v) out of the integral:

αp(δ) = α0 fD(δ/k)
(

1 − 1
π

Isat

I0

∫ ∞

−∞
dv

γ′2

γ′2 + (kv − δ)2
γ′2

γ′2 + (kv + δ)2

)
.

The evaluation of the integral [114] again results in a Lorentzian curve
which, due to our assumption of a very low saturation (s± � 1), has the
natural linewidth 2γ′:

αp(δ) = α0 fD(δ/k)
(

1 − Isat

I0

γ′2

γ′2 + δ2

)
.

The saturation resonance occurs exactly at the velocity class with v = 0. A
more complete calculation shows the width corresponding to the width satu-
rated by both laser fields according to Eq. (11.4) [114],

γsat = γ′[1 + (Isat + Ip)/I0].

The concept of saturation spec-

Fig. 11.8 Doppler profile with Lorentz-
shaped saturation resonance. The Doppler-
free line leads to an increased transparency.

troscopy explains the occurrence of
spectral holes in the Doppler profile (or
in other inhomogeneously broadened
spectral lines). In realistic experiments,
though, it is influenced by further phe-
nomena such as, for example, optical
pumping or magneto-optical effects, all
of which are collected a bit less pre-
cisely under the term ‘saturation spec-
troscopy’.

A simple experiment, though complex in its interpretation, can be carried
out with diode lasers and a caesium- or rubidium-vapour cell. Their vapour
pressure at room temperature already leads to absorption lengths of only a
few centimetres. In Fig. 11.9 characteristic absorption lines are presented to-
gether with an energy diagram of the caesium D2 line at 852.1 nm.

From the 2S1/2, F = 3 hyperfine state three transitions with different fre-
quencies to 2P3/2, F′ = 2, 3, 4 are available. From our simple analysis we thus
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Fig. 11.9 Saturation spectrum of a caesium-vapour cell at the 852.1
nm D2 line. Here the F = 3 → F = 2, 3, 4 lines of the D2 line are
presented. The second hyperfine transition from the ground state
(F = 3 → F = 3, 4, 5) is at a distance of 9.2 GHz and cannot be
seen here. The transition F = 3 → F = 5 is forbidden according to
dipole selection rules (ΔF = 0,±1). The separations of the hyperfine
structure levels in the excited state are given in MHz.

expect three line-shaped incursions in the absorption, but we observe six in-
stead! And not only this. If the magnetic field is manipulated – in the upper
spectra the geomagnetic field of 0.5 G is reduced to below 0.01 G by means of
compensating coils – then even a reversal of selected lines can be observed.
The reasons for this complex behaviour are explained in detail in [157] and
can only be sketched here.

1. Number of lines. For velocities v = 0 two different excited states can
be coupled at the same time if the frequency differences are compen-
sated by the Doppler effect. They also cause velocity-dependent popu-
lation redistribution and lead to additional resonances called cross-over
lines. In Fig. 11.9 three of those cases are presented for example at
ω = (ωF=3→F=4 + ωF=3→F=3)/2. Here they are particularly prominent
since one of the laser fields can empty one of the two lower hyperfine
levels (F = 3) in favour of the other one (F = 4) by optical ‘depopula-
tion pumping’, which effectively removes these absorbers from the other
light beam.

2. Line reversal. In simple laboratory set-ups there is no care taken about
compensating the geomagnetic field of 0.5 G. Then the lower form of the
spectrum in Fig. 11.9 is observed. The geomagnetic field, which does
not have any well-defined direction relative to the laser polarization, is
too small to split the lines visibly. But atoms are microscopic gyromag-
nets, and they can rapidly change their orientation by precession, and
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therefore all of them without exception can be excited by the light field.
Effectively, the m quantum number is not a ‘good’ quantum number in
the geomagnetic field.

If this precession is suppressed, atoms can be trapped in ‘dark states’
due to optical pumping, and thus no longer participate in the absorption
process and increase the transparency. But also the opposite effect occurs
if they are pumped back to absorbing substates with the right choice of
frequencies or polarizations (in Fig. 11.9: orthogonal linear polarizations
of pump and probe beam induce repopulation pumping) and by this
increase the absorption. A detailed understanding here requires detailed
knowledge of the level structure.

11.4.3
Two-photon spectroscopy

In the interaction of light and matter usually electric dipole transitions are of
interest because their relative strength dominates all other types. We under-
stand these processes as absorption or emission of a photon, without actually
defining the term ‘photon’ [115] more precisely here. In Chap. 12 we discuss
the ’photonic’ or quantum nature of light fields in more detail.

Besides the dipole interaction, also higher multipole transitions or mul-
tiphoton processes occur. The latter are nonlinear in the intensities of
the participating light fields. A simple and illustrative example is two-
photon spectroscopy. For this in an atom or a molecule a polarization
P2ph ∝ E1(ω1)E2(ω2) is induced causing absorption of radiation. Two-photon
transitions follow different selection rules regarding the participating initial
and final states – for example Δ� = 0,±2 has to be fulfilled for the angular-
momentum quantum number. Furthermore the calculation of the transition
probabilities may raise problems where we expect ad hoc from second-order
perturbation theory of quantum physics that matrix elements have to have
the form [159]

Mi f = ∑
s

( 〈i|dE1|s〉〈s|dE2| f 〉
Ei − Es − h̄ω1

+
〈i|dE2|s〉〈s|dE1| f 〉

Ei − Es − h̄ω2

)
.

Transition rates are proportional to |Mi f |2, and the square value will also be
proportional to the product I1 I2 of both participating fields. A more detailed
calculation shows that, as in the one-photon process, a Lorentz line with width
2γ′ = 2/T2 is obtained which in the case of free atoms is identical with the nat-
ural linewidth. A simplified model for anharmonic oscillators as well conveys
an impression about the origin of the two-photon absorption (Sect. 13.1).

Like in saturation spectroscopy, two-photon spectroscopy allows the non-
linear generation of signals at velocity v = 0. Here the absorption has to occur
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from two exactly counter-propagating laser beams with identical frequency
since in that way the linear Doppler shift is just compensated:

(E1 − E2)/h̄ = ω1 + kv + ω2 − kv
= ω1 + ω2.

As a result Doppler-free spectra

��.����J����

��;3

Fig. 11.10 Two-photon spectroscopy: Doppler
background and Doppler-free resonance line.

are obtained whose linewidths are
limited by the natural lifetime or
the time of flight for very long-lived
states (see Sect. 11.3.4). In contrast
to saturation spectroscopy, though,
not only one selected velocity class
at v = 0 contributes to the signal
with width Δv = γ/k but all veloc-
ity classes! The total strength of the
Doppler-free resonance therefore

is as large as that of the Doppler-broadened one and can be very easily
separated from it (Fig. 11.8).

Example: The mother of all atoms – two-photon spectroscopy of the hydro-
gen atom

The hydrogen atom is an atom of
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Fig. 11.11 Two-photon resonance of the 1s–2s tran-
sition of atomic hydrogen. See text.
By permission of T. W. Hänsch [87].

outstanding interest for spectro-
scopists. In contrast to all other
systems, it is a two-body sys-
tem and allows direct compari-
son with theoretical predictions,
especially of quantum electro-
dynamics.2 Its energy levels
are principally determined just
by the Rydberg constant, which
as a result of two-photon spec-
troscopy is today the most ex-
actly measured physical con-
stant of all.

The most interesting transition
wavelength for precision measurements is the 1s–2s transition driven by
×243 nm. This wavelength can be generated experimentally in a much more
convenient way than the 121.7 nm of the directly adjacent 1s–2p Lyman α line.

2) This assertion though is challenged since at present the physical
significance of the extremely precise measurement is limited by
the relatively insufficient knowledge of the structure of the proton,
which consists of several particles and is in fact not point-like as
assumed by Dirac theory.
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Furthermore, and in contrast to the adjacent 2p state (lifetime 0.1 ns), the decay
rate of this metastable level is only about 7 s−1 and promises a very unusually
narrow linewidth of just 1 Hz!

For many years T. W. Hänsch (born 1941, Nobel prize 2005) and his cowork-
ers have studied more and more exactly the 1s–2s transition of atomic hy-
drogen and are steadily approaching this ultimate goal of spectroscopy. At
present their best published value is about Δν � 1 kHz at 243 nm [87], i.e. for
a transition frequency of ν1s2s = 2466 THz already a Q value of more than 1012!
By a phase coherent comparison of the optical transition frequency with the
time standard of the caesium atomic clock, the 1s–2s transition frequency has
meanwhile become the best-known optical frequency of all (and thus wave-
length as well, see p. 39) [56]:

f1s2s = 2 466 061 413 187.103(46) kHz.

During detection of the 1s–2s spectrum, another interesting spectroscopic ef-
fect occurs: the observed lines are asymmetric and slightly shifted to red
frequencies with increasing velocity of the atoms. The reason for this is the
Doppler effect of second order, which is not suppressed in two-photon spec-
troscopy. For the hydrogen atom it plays an important role due to its low
mass and therefore high velocity. Only for very low velocities is the relatively
symmetric signal of Fig. 11.12 observed.

The line shift caused by the second-order Doppler effect is proportional to
Δν2o = ω(v/c)2/2 and can be explained by the time dilation known from the
special theory of relativity. In a moving atomic inertial reference frame time
seems to run more slowly than for an observer at rest in the laboratory frame.

In the experiment the ob-
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Fig. 11.12 Second-order Doppler effect of the
two-photon spectrum of atomic hydrogen.

servation has been made that
the different line shapes of
Fig. 11.12 are a function of
the temperature of the nozzle
from which the hydrogen atoms
are ejected into the evacuated
spectrometer. They have a ve-
locity distribution correspond-
ing to the nozzle temperature,
and they travel through the
exciting UV laser beam for a
length of about 30 cm. The
linewidth is determined by the time of flight.
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11.5
Transient phenomena

So far we have considered the interaction between a light field and matter
particles by means of the optical Bloch equations (Eqs. (6.36)) and mostly con-
centrating on stationary solutions. In the last section, though, we had to in-
vestigate the dynamic behaviour in order to describe time-of-flight broaden-
ing of long-lived states. It is in general always necessary to take the dynamic
properties into account whenever the interaction time scale is short compared
to the relevant damping times T1,2.

Let us study important special cases as examples of dynamic light–matter
interaction: π pulses, rapid turn-on processes, and the effect of a sequence of
short light pulses.

11.5.1
π pulses

First, we consider once again the undamped case of the optical Bloch equa-
tions (6.31). For the frequent case of an atom initially in the ground state
(w(t=0) = −1), for δ = 0 the resonant solution,

(u, v, w)(t) = (0, sin θ(t), cos θ(t)),

can be easily found. The light field simply causes rotation of the Bloch vector
in the vw plane. The rotation angle θ(t) is determined by the pulse area,

θ(t) =
∫ t

−∞
ΩR(t′) dt′ = −deg

h̄

∫ t

−∞
E0(t′) dt′, (11.11)

where ΩR(t) ∝
√

I(t). If the rotation angle assumes the value θ = π, then
the atom is promoted exactly from the ground state to the excited state. If the
value is 2π, then the atom finishes the interaction again in the ground state.

Let us estimate what kind of light pulse is required to drive a π pulse for an
atomic resonance line that has dipole moment deg � ea0 = 0.85 × 10−29 C m.
It is clear that the total rotation angle θ(t → ∞) depends on the so-called
pulse area only. For a light pulse with constant intensity and period T, the
necessary intensity and pulse duration can be determined according to (6.30),
π = (ea0/h̄)E0T. The numerical value for the corresponding intensity seems
to be enormously high at first,

I0 � 120 kW mm−2 (T/ps)−2.

But it has to be taken into consideration that the pulses are very short, so
that the average power of a picosecond laser does not need to be very high.
Standard pulsed lasers of the mode-locked type (see Sect. 8.5.2) operate at a
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pulse rate of 80 MHz, and for an area of 1 mm2 an average total power of
〈P〉 = 80 MHz × T × P0 � 10 W × (T/ps)−1 is necessary. Commercial laser
systems offer average output powers exceeding 1 W, which is quite sufficient
if the pulse lengths are slightly increased to 10 ps. Even then the excitation
time is only about 1/1000 of the lifetime of an excited atomic state.

11.5.2
Free induction decay

At both the beginning and the end of an interaction period in light–matter
coupling, transient oscillations can occur like for the classical damped oscilla-
tor of Sect. 6.1.1. While stationary behaviour is characterized by an oscillation
at the driving frequency ω, immediately after turn-on (or turn-off) we also ex-
pect dynamic evolution at the eigenfrequency ω0 of the system, which though
is damped out very rapidly (with time constant γ−1). General time-dependent
solutions of the (optical) Bloch equations have already been given by Torrey
[2] in 1950. However, they are transparent and easily understood only for
special cases, such as for example at exact resonance (δ = 0). The dynamic
phenomena are also known as ‘optical nutation’.

An interesting case occurs for the so-called free induction decay (FID). It de-
scribes especially the decay of the macroscopic polarization of a sample in
the absence of laser light, for example after the application of a very short
laser pulse with large intensity. The polarization of an individual particle may
live for a much longer time than the macroscopic polarization of an ensemble,
which is affected by ‘dephasing’ of the individual particles.

The evolution of the Bloch vector components depends of course on the
detuning, u = u(t, δ). We conveniently use Eq. (6.38) for analysis. For very
large intensity (ΩR � δ) and very short time, we can neglect the detuning at
first, since, during the coupling period, the Bloch vector does not have any
time to precess by a significant angle. Thus a short and strong initial pulse
rotates the dipole ρeg to the angle given by Eq. (11.11) and we arrive at

ρeg(0, δ) = u(0, δ) + iv(0, δ) = i sin θ, (11.12)

where we fully neglect the time elapsed. Once the light pulse is turned off,
free precession occurs according to

ρeg(t, δ) = i sin θ e−(γ′+iδ)t. (11.13)

In a large sample, there often exists an inhomogeneous distribution f (ω0) of
eigenfrequencies of the individual particles and thus of the detunings. In a
gas cell this distribution is determined, for example, by the Doppler shift, with
δD = ΔωD/2

√
ln 2,

f (δ) =
1√
π

e−(δ/δD)2
.
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Following an excitation with a π/2 pulse with sin θ = 1, the free evolution
of the macroscopic polarization is calculated from

P(t) =
NAt

V
deg e−iω0t

∫ ∞

−∞
f (δ) e−(δ/δD)2

e−(γ′+iδ)t dδ. (11.14)

If γ′ � δD we can neglect the slow decay, and the integral straightforwardly
yields

P(t) =
NAt

V
deg e−iω0t e−(δDt/2)2

.

The macroscopic polarization thus decays with the relaxation time T∗
2 ,

T∗
2 =

4 ln 2
ΔωD

� γ′−1 = T2,

much faster than the microscopic polarization whose relaxation determines
the fastest time scale for individual particles. This rapid decay is a conse-
quence of the dephasing of the precession angles of the microscopic dipoles.
Experimental observation for typical atomic resonance transitions in a gas
cell must have resolution better than 1 ns and requires considerable effort;
thus slower and weaker transitions are more appropriate to observe this phe-
nomenon.

In the middle row in Fig. 11.13 the time evolution of the radiation field is
presented, which is caused by the macroscopic polarization and contains the
cooperative radiation field of all excited microscopic dipoles of the sample.
At the beginning, constructive interference of the microscopic dipole fields
generates a radiation field propagating exactly in the direction of the exciting
laser beam. For a perfectly synchronized phase evolution, a well-directed, ac-
celerated and exhaustive emission of the excitation energy would be observed
due to the so-called ‘superradiance’. In an inhomogeneous sample, however,
this emission ceases very rapidly as a result of the destruction of the phase
synchronization (‘dephasing’); the stored excitation energy is then released
only by common spontaneous emission with a lower rate and isotropically.

11.5.3
Photon echo

The method of ‘photon echoes’ for inhomogeneously broadened lines – like
many other optical phenomena – has been stimulated by the ‘spin echo’
method at radio frequencies, which was discovered by I. Hahn for nuclear
magnetic resonance. If a sample is excited by two or more short light pulses
(T � γ′−1), under certain conditions it emits an ‘echo pulse’ that follows the
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Fig. 11.13 Free induction decay (FID) and
photon echo. In this example a sample is
excited by a π/2 pulse and after a time
T � γ−1 is subject to another π pulse that
causes inversion of precession (top row). Af-
ter the excitation light pulse, free induction
decay is observed at first, which emerges
from the initially cooperative emission of all
excited atoms and is emitted into the direction

of the excitation laser (middle row). After-
wards the polarization of microscopic par-
ticles continues to decay by spontaneous
emission. After time 2T an echo pulse is
observed in the direction of the excitation
pulses. The precession of the Bloch vector
components in the uv plane is marked in the
bottom row.

excitation pulses in their direction and seems to appear from nowhere. This
contradiction is again due to the different evolutions of the microscopic and
macroscopic polarizations in a large sample of atoms, molecules, or other mi-
croscopic objects, which we have already just met in free induction decay.

The photon echoes can of course be observed only within the natural life-
time of the microscopic polarization. Let us consider the evolution of an in-
dividual single dipole with detuning δ under the effect of two resonant light
pulses. After time T the dipole has reached the value

ρeg(t, δ) = i sin θ e−(γ′+iδ)T

according to Eqs. (11.12) and (11.13). The application of a π pulse now gen-
erates an inversion of the (v, w) components (‘phase reversal’). Formally this
situation is identical with an inversion of the detuning, i.e. after the π pulse
we have

ρeg(t, δ) = i sin θ e−(γ′−iδ)T e−(γ′+iδ)(t−T).

The development of the macroscopic polarization can now be given again by
Eq. (11.14),

P(t) =
NAt

V
deg e−iω0t e−[δ0(t−2T)/2]2 e−γ′t.
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After time t = 2T the precession phase angle of each of the microscopic
dipoles coincides again; macroscopic polarization is thus restored and once
more causes cooperative emission of a macroscopic and coherent radiation
field in the direction of the exciting light beam. This pulse is called a ‘photon
echo’.

11.5.4
Quantum beats

Simultaneous excitation of two or more electronic states by a short light pulse
causes observation of a damped oscillation in the fluorescence. These oscilla-
tions are usually called quantum beats.

In order to realize coherent superposition of several adjacent quantum
states, the inverse period of the light pulse T−1 (or in other words its ‘band-
width’ Δν = 1/T) has to be larger than the frequency separation of the states
from each other. Thus the spectral structure of the system is in fact not re-
solved by the exciting light pulse!

A simple quantum mechanical description assumes that the coherent su-
perposition of two excited states decays freely and spontaneously after the
excitation. For a single decaying channel it can be shown that one can de-
scribe the time evolution of the excited state with the wave function |Ψ(t)〉 =
e−γ′te−iωt |e〉. Furthermore the observed fluorescence intensity is proportional
to the square of the induced dipole moment |〈g|d̂eg|e(t)〉|2 and the following
can be easily calculated:3

Ifl = I(0) e−2γ′t.

If two states |e1,2〉 with excitation frequencies ω1,2 are prepared in a coherent
superposition |Ψ(t=0)〉 = |e1〉+ |e2〉, then one has

|Ψ(t)〉 = |e1〉 e−i(ω1−γ′
1)t + |e2〉 e−i(ω2−γ′

2)t,

and the emitted field contains also the beat frequency Δω = ω1 − ω2. For the
special case γ′

1 = γ′
2 one can calculate

Ifl = I(0) e−γ′t(A + B cos Δωt).

The quantum-beat method has proven to be very useful, e.g. to investi-
gate the fine structures of excited atomic or molecular states with broadband
pulsed laser light, which themselves do not provide the necessary spectral res-
olution. For a systematic experiment it is, though, necessary to use laser pulses

3) For a rigorous theoretical treatment, one has to consider quantum
states |e〉|0〉, the product states for the excited atom and the electro-
magnetic vacuum field, and all states |g〉|1k〉 for the ground state
and field modes with wave vector k. Here we restrict ourselves to
an ad hoc treatment of the time evolution of the excited state only.
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of good quality, i.e. precisely known shape (so-called ‘transform-limited
pulses’) to guarantee coherence conditions.

11.5.5
Wave packets

A natural extension of quantum beats is offered by wave packets in micro-
scopic systems which are generated by coherent superposition of many quan-
tum states. With extremely short laser pulses (10 fs corresponds to a band-
width of 17 THz!), for example, in a molecule, numerous vibrational states
can be superimposed coherently [15]. A large density of electronic states is
also offered from Rydberg states in atomic systems. Rydberg atomic states
have very large principal quantum numbers n > 10 [64]. Neither the atomic
Rydberg states nor the molecular vibrational states are usually very strongly
radiating states, and therefore it is quite difficult to detect them with common
fluorescence detectors. In vacuum, though, the weakly bound Rydberg states
can be detected by field ionization, and the molecular states by multiphoton
ionization. These charged products can be detected with such high sensitivity
and selectivity that only a few excited particles are required for such experi-
ments.
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Fig. 11.14 Two-photon stepwise ionization of Na2 molecules as a
function of the delay time between the two pulses. The ion current is
plotted as a function of the delay of the ionization or ‘probe’ pulse from
the excitation or ‘pump’ pulse. The duration of the laser pulses was
70 ps. The oscillation shows a beat signal which originates from the
superposition of two contributions with periods 306 and 363 fs [15].

With this evolution of the old quantum-beat method, it is conceivable that
a wave packet is prepared from excited quantum states by a light pulse and
subsequently propagates freely, i.e. undisturbed by further light interaction.
As long as we use a perfect harmonic oscillator the wave packet will even
propagate dispersion-free and return periodically to the origin.

Real molecules though have a strong anharmonicity, which leads to the loss
of phase coherence of the atomic wave function like for the free induction de-
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cay. The total wave function is then more or less spread over the energetically
allowed space. For many systems however – in this case without application
of an external pulse – the wave packet re-occurs. The phenomenon of collapse
and revival of an oscillation was already predicted by Poincaré for classical
oscillators. It occurs always when a finite number of oscillations are superim-
posed; the larger the number, the more time this return takes.

The dynamic evolution of a wave packet in molecules or Rydberg atoms
can be investigated experimentally by so-called ‘pump–probe’ experiments.
With the first pulse a physical excitation is generated; with the second one
the dynamic evolution is probed after a variable time delay. We introduce
a transparent example, multiphoton ionization of the model system of Na2
molecules, in a qualitative way.

A molecular beam with Na2 molecules is excited by a sequence of laser
pulses (pulse period 70 fs, λ = 627 nm). The first laser pulse transfers mole-
cules from the ground state (v = 0) to an excited state in which several oscil-
lation states (v � 10–14) are superimposed. A further laser pulse generated
by the same laser in this experiment generates Na+

2 molecules by two-photon
ionization. These ions can be detected by a secondary electron multiplier, e.g.
a channeltron with a probability approaching 100%. In the experiment more
filters such as mass spectrometers are used to separate the Na+

2 signal from the
background. If the ionization pulse is delayed, an oscillation of the ion current
can be observed as a function of the delay time. Since a beat is observed, the
spectrum has to consist of two oscillation frequencies. The first one at 306 fs
is caused by the oscillation of the wave packet in the molecular potential, the
second one at 363 fs by the interaction of the detection laser with yet another,
higher-lying molecular potential.

Using laser pulses of an extremely short period, it has become possible to
resolve the dynamics of molecular wave packets directly on the femtosecond
time scale. These and other methods are used more and more in the so-called
‘femto-chemistry’.

11.6
Light forces

When light–matter interaction is analysed, usually the influence on the inter-
nal dynamics, e.g. of atoms and molecules, is in the foreground. Absorption
and emission of light, though, also changes the external mechanical state of
motion of a particle. Photons have momentum h̄k and during absorption
and emission this momentum has to be transferred to the absorber as a re-
sult of momentum conservation. For these processes we expect recoil effects,
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and the corresponding forces are called light forces.4 Though the photon pic-
ture derived from quantum mechanics is very useful, light forces are known
from classical light–matter interaction in an analogous way – for example, the
Poynting vector describes the momentum density of the propagating electro-
magnetic field. So let us begin with a study of the mechanical effect of a planar
electromagnetic wave on a classical Lorentz oscillator.
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Fig. 11.15 First observation by R. Frisch [62] of the deflection of an
atomic beam by light forces. The data are taken from the original pub-
lication. The solid line shows the atomic beam profile without the light
beam, and the dashed line that with the light beam. The difference is
given in the lower part.

An inhomogeneous electric field exerts a force on a particle carrying a
dipole, whether induced or permanent, which we may describe component-
wise, d = (dx, dy, dz). For an oscillating dipole, we furthermore have to aver-

age over an oscillation period T = 2π/ω of the field, 〈F〉 = T−1
∫ T

0 F(t) dt:

Fel
i =

〈
∑

j
dj(t)

∂

∂Xj
Ei(t)

〉
or Fel = 〈(d(t) ·∇)E(t)〉 . (11.15)

While this analysis seems straightforward, there is a problem. In a planar
wave travelling in free space, the electromagnetic field is transverse, and thus
in the linear Lorentz model the induced dipole has to be transverse. The elec-
tric field of a planar wave, on the other hand, can change only in the prop-
agation direction k; hence d ⊥ ∇ and one should not expect any electrical
force at all from Eq. (11.15). In a realistic light beam, though, with, for exam-
ple, a Gaussian-shaped envelope, of course transverse electric dipole forces do
occur, which we illustrate for the case of a standing-wave field in Sect. 11.6.4.

We must not forget, however, that there are also magnetic forces in general
acting on neutral polarizable atoms. They are caused by the Lorentz force on
the electric current in the atom, which is given by the time derivative of the

4) The reader is referred to [126] for more details on this topic.
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dipole moment,

Fmag = 〈ḋ×B〉 =
1
c
〈ḋ×(ek×E)〉, (11.16)

and these magnetic forces exert a net force on the entire atom.

11.6.1
Radiation pressure in a propagating wave

Let us calculate this latter force for a linear electronic Lorentz oscillator with
eigenfrequency ω0 subject to a planar, transverse wave E ⊥ k. By using the
complex polarizability α = α′ + iα′′ (see Sect. 6.1), we find

ḋ(t) = −iωα(δ)E(t) with α(δ) =
q2/2mω0

δ − iγ/2
,

and the average over an electromagnetic cycle is evaluated by means of the
Poynting theorem (App. A.2), which picks out the imaginary or absorptive
part of the polarizability. We finally arrive at

Fmag = kα′′(δ)|E|2 = kα′′(δ)I/cε0. (11.17)

The force derived here predicts a light force that is parallel to the wave vector
k of propagation and the intensity I of the light field. It is called ‘radiation
pressure’ or ‘spontaneous force’ since it depends on the absorption and spon-
taneous re-emission of photons.

�� ��

Fig. 11.16 Absorption–emission cycle and momentum transfer of the
spontaneous force. During absorption, momentum is always trans-
ferred in the direction of the laser beam. The recoil of spontaneous
emission is exerted in random directions. Thus on average for many
cycles there is no momentum transferred on emission.

We expect that the classical treatment is a good approximation for low in-
tensities (I/I0 � 1, where I0 is the saturation intensity from Eq. (6.41)). For
larger intensities, we have to treat the internal atomic dynamics according to
the Bloch equations. We may seek a shortened path to the results of the semi-
classical treatment by replacing the classical Lorentz oscillator in an ad hoc
way by the Bloch oscillator through d · E = αE · E → (u + iv)h̄ΩR. Using the
normalized intensity s0 from Eq. (6.41), we now obtain

Fmag = Ma = h̄k
γ

2
s0

1 + s0 + (2δ/γ)2 with s0 = I/I0. (11.18)
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The force grows linearly with ‘photon momentum’ k and (for small s0) with
the intensity I of the light field. It is proportional to the absorptive compo-
nent with the characteristic Lorentz line shape. The force is also a result of
spontaneous emission and proportional to the corresponding rate γ. The ra-
diation pressure force is therefore interpreted as a spontaneous force, too. For
large intensities (s � 1) it saturates at the value Fsp → h̄γk/2 while exerting
maximum acceleration

amax = h̄kγ/2M. (11.19)

Tab. 11.2 Overview of mechanical parameters for important atoms subject to light forces (see
text for details).

Atom λ γ vth a/g τ � N
(nm) (106 s−1) (m s−1) (ms) (cm)

1H 121 600 3000 1.0×108 0.003 4.5 1 800
7Li 671 37 1800 1.6×105 1.2 112 22 000

23Na 589 60 900 0.9×105 0.97 42 30 000
133Cs 852 31 320 0.6×104 5.9 94 91 000
40Ca 423 220 800 2.6×105 0.31 13 34 000

On average, a strongly driven atom is excited with a probability of 50% and
can take on the momentum h̄k with each emission cycle. In Tab. 11.2 we have
collected the relevant physical parameters for the mechanical effect of light
on some important atoms. For their ‘cooling transitions’ with wavelength λ

and decay rate of spontaneous emission γ, we list the following: vth = initial
thermal velocity of the atomic beam; a/g = maximum acceleration a caused
by radiation pressure (light force), normalized to the gravitational accelera-
tion g = 9.81 m s−2; τ = stopping or deceleration time for thermal atoms; �
= stopping or deceleration distance for thermal atoms; and N = number of
photons scattered during this stopping time.

Excursion: Zeeman slowing
The spontaneous force is per- ���2�����2�
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Fig. 11.17 A Zeeman slower for the deceleration of
atomic beams. The magnetic field compensates the
variation of the Doppler shift caused by deceleration.

fectly suited to slow down
atoms from large thermal
velocities (several 100 m s−1)
to extremely low ones (some
mm s−1 or cm s−1), provided
we can exploit the maximum
acceleration. In the laboratory
system, however, the atomic
resonance frequency ω0 is shifted by the Doppler effect, ωlab = ω0 + kv, and an atom
would lose resonance with the slowing laser – which is effective only within a natural
linewidth – after only a few cycles.
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This problem can be overcome by either tuning the laser synchronously with the
slowing-down process (‘chirp slowing’), or by compensating the Doppler shift by
means of a spatially variable magnetic field in which the Zeeman effect5 (δZee = μB/h̄,
with μ = effective magnetic moment, and typically μ/h̄ = 2π × 14 MHz mT−1) com-
pensates the change by the Doppler shift (‘Zeeman slowing’):

δ = ωL − (ω0 + kv − μB/h̄).

For Zeeman slowing along the atomic trajectory, a constant acceleration v = −aspt as
large as possible is desirable. The compensation field is thus formed according to

B(z) = B0
√

1 − z/z0.

The construction length z0 cannot be changed in general. It determines that only veloc-
ities with v ≤ v0 = (2aspz0)1/2 can be slowed down, as found by a short calculation.
Moreover, it also sets limits for the magnetic field strength, B0 ≤ h̄kv0/μ.

In Fig. 11.18 the effect of laser slowing on the initial thermal distribution is shown.
At the end of the Zeeman slower a narrow distribution is generated whose mean ve-
locity is tunable by the laser frequency and the magnetic field. Its width is limited by
the so-called Doppler temperature (see Eq. (11.23)). The Zeeman slower is well suited
to prepare ‘cold’ atomic beams with large intensities [117]. A ‘cold’ atomic beam not
only exhibits a low mean velocity but also has much smaller velocity spread than the
initial thermal beam.

;3�������

;3��

;3��$ % �

���2���3��������2 .	

�,�2�����.���������

3 �
�

�

 �

 0

 1

 *




Fig. 11.18 Left: Evolution of the velocity in the Zeeman slower. Veloc-
ity and magnetic field are given in terms of their corresponding Doppler
and Zeeman shifts. Right: Experimental velocity profiles of an atomic
beam at the exit of the Zeeman slower.

11.6.2
Damping forces

Let us consider the effect of the spontaneous light force exerted by two
counter-propagating laser beams with identical frequency. For this effectively

5) More precisely the Zeeman shift depends on the magnetic quantum
number m and the Landé g-factors of the excited and ground states:
μ = μB(mege − mggg) (here μB = Bohr magneton). Optical pumping
with circularly polarized light leaves only the highest m value with
mg � 1 of significance.
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one-dimensional situation, we assume that the forces according to Eq. (11.18)
simply add up, i.e. we neglect interference effects:

F = F+ + F− =
h̄kγ

2

(
s0

1 + s0 + (2δ+/γ)2 − s0

1 + s0 + (2δ−/γ)2

)
. (11.20)
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Fig. 11.19 Light forces for counter-propagating laser fields depending
on the velocity or detuning.

The Doppler shift δ± = δ0 ± kv now depends on the direction of the light wave
(Fig. 11.19). For a red-detuned laser field (δ0 < 0), the atomic Doppler-shifted
resonance frequency lies always closer to the laser frequency of the counter-
propagating beam. In this case the atom is always slowed down by radiation
pressure – its motion is damped like by a damping force. Very low velocities
with kv/δ0 � 1 are of special interest in order to estimate the ultimates limit
for the reduction of velocities. We use an expansion of the force equation
(Eq. (11.20)) in terms of the velocity v and find

dp
dt

= F � −8h̄k2δ0

γ

s0

[1 + s0 + (2δ0/γ)2]2
v = −αmv. (11.21)

For δ0 < 0 we find a viscous damping force with coefficient α. While the
radiation pressure causes only retardation or acceleration, true laser cooling
relies on such damping forces.

The one-dimensional concept of laser cooling can be extended to three di-
mensions by exposing an atom to counter-propagating laser beams in all di-
rections of space. For this at least four tetrahedrally arranged laser beams
have to be used. This situation corresponds to the strongly damped motion in
a highly viscous liquid and is called ‘optical honey’ or ‘optical molasses’.

11.6.3
Heating forces, Doppler limit

The spontaneous light force not only causes an acceleration in the propagation
direction of the beam (which can be combined with cooling) but also a fluctu-
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ating force leading to heating of an atomic ensemble.6 In a simple model we
can consider the heating effect by the stochastic effect of the photon recoil h̄k
caused by spontaneous emission in analogy with the Brownian motion or dif-
fusion of molecules. If N photons are randomly scattered, then for the average
pN and the variance (Δ2 p)N = p2

N − pN
2 of the atomic momentum change by

the isotropic emission, we have

pN = 0 and (Δ2 p)N = p2
N = Nh̄2k2.

The heating force or power can now be estimated from the scattering rate for
photons, dN/dt = (γ/2)s0/[1 + s0 + (2δ/γ)2], so(

d
dt

p2
)

heat
=

h̄2k2γ

2
s0

1 + s0 + (2δ/γ)2 = 2D, (11.22)

where the relation with the diffusion constant D is taken from the theory of
Brownian motion. In equilibrium, we expect the heating and the cooling or
damping power to exactly compensate each other,

(d p2/dt)heat + (d p2/dt)cool = 0.

For the cooling power we use relation (11.21),

d
dt

p = −αp and
(

d
dt

p2
)

cool
= −2αp2,

and for the stationary state we thus obtain

p2 = D/α = MkBT.

It is associated with a characteristic temperature that is obtained by explicit
insertion of D and α from (11.21) and (11.22),

kBTDopp = − h̄γ

2
1 + (2δ/γ)2

4δ/γ
. (11.23)

When this temperature reaches its lowest value at 2δ/γ = −1 with kBTDopp =
h̄γ/2, it is called the Doppler temperature.

The Doppler limit has played an important role for many years since it was
considered the fundamental limit of laser cooling. It was therefore a big sur-
prise when in experiments considerably lower, so-called sub-Doppler, tem-
peratures were observed. Optical pumping processes are the origin of sub-
Doppler laser cooling, and thus they occur only in atoms with a complex mag-
netic fine structure.

6) This fact reflects the very fundamental law that dissipative processes
(here, damping forces) are always associated with fluctuations and
thus heating processes.
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Excursion: Magneto-optical trap (MOT)

In optical molasses, atomic gases are cooled down to the millikelvin (mK) range and
lower by very efficient laser cooling. However, atoms cannot be stored in the intersec-
tion region of four or more laser beams only by radiation pressure, because they diffuse
out of the overlap volume – the dissipative forces do not define a binding centre. This
problem has been solved by the invention of the magneto-optical trap (MOT), in which
the radiation pressure is spatially modified by a quadrupole field.
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Fig. 11.20 Magneto-optical trap. (a) Schematic set-up with three pairs
of counter-propagating laser beams. A set of two coils carries oppos-
ing currents which generate a quadrupolar magnetic field with a zero
at the centre. (b) Spatial dependence of energy levels for a model
J = 0 to J = 1 atomic transition. In given direction, the magnetic field
increases linearly from the centre.

In one dimension, the MOT can be explained using the simplified example of an
atom with a J = 0 → J = 1 transition (Fig. 11.20(b)) which is exposed to a pair of
counter-propagating light beams with circular polarization of opposite handedness in
a linearly increasing magnetic field (σ+σ− configuration). Away from the centre and
for red detuning (ωL < ω0), a sufficiently slow atom is always much more in reso-
nance with the laser beam whose radiation pressure is directed to the centre of the
quadrupole field. Thus the atom will experience a force directed towards this centre.

In three dimensions, a spherical quadrupole field has to be used. It is generated by
two parallel coils with currents flowing in opposite directions (‘anti-Helmholtz coils’).
The handedness of the circular polarizations has to be chosen in accordance with the
magnetic field (Fig. 11.20(a)). The simple one-dimensional concept has proven success-
ful in three dimensions as well. The realization of the MOT with simple vapour cells
has significantly contributed to its widespread use. The MOT is used in numerous
laboratories in experiments with laser cooled samples of neutral atoms. In the MOT,
an equilibrium between loading rate (by capture of atoms from the slow part of the
thermal distribution) and loss rate (by collisions with ‘hot’ atoms) is built up, which
typically contains some 108 atoms and has a volume of 0.1 mm diameter. The resid-
ual pressure of the cell must not be too high, because the loading of atoms into the
magneto-optical trap must not be interrupted by collisions with fast atoms during the
capture process (which takes some milliseconds).



432 11 Laser spectroscopy

11.6.4
Dipole forces in a standing wave

Let us now evaluate the magnetic force, Eq. (11.16), for the case of a standing-
wave field generated from counter-propagating plane waves. In this standing
wave the B field is shifted by 90◦ with respect to the electric field,

E(z) = 2E(t) cos(kz) and B(z) = (2i/c)ek×E(t) sin(kz),

and the time average picks out the real part in this case (compare Eq. (11.17)):

Fmag = kα′(δ) sin(2kz) |E|2.

This force is called the dipole force and can be derived from a potential

Udip = α′(δ)I(z)/2cε0.

The interpretation is obvious as well: the force shows a dispersive frequency
characteristic, i.e. it changes sign with detuning from the resonance frequency.
An interesting application of dipole forces in a standing wave is realized with
‘atom lithography’ and is described in the excursion above.

In order to proceed to the semiclassical description, we may again use the
trick from the previous section (see Eq. (11.18)), which yields here

Udip = 1
2 h̄δ ln(1 + s).

Dipole forces derive from a conservative potential and thus should be dis-
turbed by spontaneous events as little as possible. Therefore, in applications a
large detuning δ � γ′ is chosen and correspondingly small saturation param-
eters s � (I/I0)/(δ/γ′)2 /Eq. (6.40)) are obtained, so that to a good approxi-
mation the dipole potential results in

Udip(r) � I
I0

h̄γ′2

2δ
.

Dipole forces, though, only exist if the intensity of the electromagnetic field
depends on position, for example in the standing wave mentioned above.
Also a Gaussian beam profile makes an inhomogeneous light field and in-
deed provides an optical dipole trap for atoms and molecules [70], closely
resembling the macroscopic optical tweezers of Sect. 11.6.6. Dipole forces
always occur when coherent fields are superimposed. The details can be com-
plicated because of the three-dimensional vector nature of the fields, and can
cause the appearance of ‘optical lattices’ [91]. These are standing-wave fields
with periodicity in one to three dimensions in which laser-cooled atoms move
like in a crystal lattice.
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Fig. 11.21 Atom lithography – see text for details.

Excursion: Atom lithography

By means of standing-wave fields, apparently strong forces can be exerted on the mo-
tion of atoms. Direct experimental proof is not very simple since the atomic trajectories
are manipulated on a microscopically small scale. A transparent example for the ap-
plication, though, is the so-called ‘atom lithography’, which is an example of atom
nanofabrication [125]. With this method the dipole forces of a standing wave serve to
periodically modulate the intensity of an atomic beam when it is deposited onto a sur-
face. The surface is physically or chemically modified only where the atoms hit. The
experimental concept is presented in Fig. 11.21 and is as outlined below.

(a) A substrate is exposed to an atomic beam that has just passed a standing wave
generated by a mirror arranged behind the substrate.

(b) The simulation of atomic trajectories in a half-wave shows that the atoms are fo-
cused onto the surface in close analogy to an optical lens. Even spherical aberra-
tions are visible. Here the standing wave creates an array of cylindrical lenses with
width λ/2 each. The periodic field of micro-lenses generates changes on the sub-
strate by either growing layers (‘direct deposition’) or causing chemical reactions
(‘neutral atom lithography’) with dimensions considerably below optical wave-
lengths. Therefore atom lithography is included in the class of methods allowing
structuring at nanometre scales.
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(c) An example is nanoscale grooves manufactured with this method. A Cs atomic
beam is sent through a near-resonant standing-wave light field at λ = 852 nm. The
atoms modify the reactivity of a so-called self-assembled monolayer of organic thi-
ole molecules covering the surface and corresponding to the resist in conventional
optical lithography. In the final steps the chemical pattern is transformed into an
array of grooves by wet etching processes.

11.6.5
Generalization

Let us briefly discuss the relation of electric and magnetic forces again that we
started at the beginning of this section. We can also express the magnetic force
(Eq. (11.16)) according to

Fmag =
〈

d
dt

(d×B)
〉
− 〈

d×Ḃ
〉

.

The first term vanishes when averaged over a period. If the particle velocity is
small, Ṙ � c, furthermore dB/dt � ∂B/∂t = ∇×E can be replaced, yielding

Fmag = 〈−d×∇×E〉 ,

or component-wise

Fmag
i =

〈
∑

j
dj

[
∂

∂Xi
Ej − ∂

∂Xj
Ei

]〉
.

Comparison with Eq. (11.15) shows that the total force can generally be deter-
mined from

F = Fel + Fmag =

〈
∑

j
dj∇Ej

〉
.

11.6.6
Optical tweezers

In the last section we investigated the mechanical effect of light beams on mi-
croscopic particles such as atoms. Especially for dipole forces we can give a
macroscopic analogue that is used more and more widely, the so-called ‘opti-
cal tweezers’ [137].

The dispersive properties of an atom are in fact similar in many ways to
those of a transparent dielectric glass sphere for which we can describe the
effect of macroscopic light forces qualitatively and in terms of ray optics.

In Fig. 11.22 the position of a glass sphere is either transversely shifted away
from the axis of a Gaussian laser beam (left) or longitudinally shifted away
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Fig. 11.22 The effect of optical tweezers in terms of ray optics. White
arrows: forces on the glass sphere. Dotted arrows: momentum change
of the light rays. The transversal profile of a laser beam is indicated
above the spheres.

from the focus of a focused beam. Taking into account that the refraction of
light beams causes transfer of momentum just as for atoms, we can infer from
the directional changes of the beams that there is a mechanical force exerted
on the glass sphere.

Optical tweezers are useful as non-material micro-manipulators in micros-
copy; for instance bacteria in liquids can be caught, trapped and moved.
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Problems

11.1. Lock-in amplifier Consider the experimental set-up from the drawing:
A sample is irradiated with laser light. The frequency of the laser beam is
modulated at ωL(t) = ω0

L + δωmod cos 2π fR. The fluorescence of a Lorentzian
resonance line is observed with a photodiode, yielding the spectral line shape
L(x) = 1/(1 + x2) with x := (ωL − ωA)/γ. Here ωA marks the resonance
frequency, γ the resonance linewidth.
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Fig. 11.23 Schematic diagram of a lock-in amplifier. The phase-
sensitive rectifier is the most important component.

(a) The signal L(x, t) delivered by the photodiode is mixed with the reference
signal, R(t) = R0 sin (2π fRt + φ). Mixing is equivalent to electronic multi-
plication and generates an intermediate signal M(x, t). Calculate M(x, t) and
show that a low pass with cut-off frequency fG � fR generates an output sig-
nal S(x) which is proportional to the derivative dL(x, t)/dx of the original line
shape. How does the signal depend on the modulation amplitude δωmod? (b)
Sometimes it is useful to replace the fundamental modulation frequency fR by
its multiples 2 fR or 3 fR. Calculate the output signals for this case. (c) What
limits the bandwidth of the lock-in amplifier? What is the price to be paid for
increased bandwidth?

11.2. Ramsey spectroscopy and spin echo The method of separated oscillating
fields, for which N. Ramsey (born 1915) was awarded the Nobel price in 1989,
was originally invented for microwave spectroscopy of the hyperfine states
of atoms travelling in an atomic beam. In that case, the undamped Bloch
equations (6.31) can be used as a very good approximation. Today, Ramsey’s
method is in widespread use also in optical spectroscopy because for selected
quantum states laser light transitions with Rabi frequencies exceeding the de-
cay rates of these states are straightforward to obtain.

Begin by considering the undamped Bloch equations. For an arbitrary state
vector in a two-level system we have |ψ〉 = cg|g〉+ ce|e〉, and the Bloch vector
components are u = {u = c∗e cg + cec∗g, v = −ic∗e cg − cec∗g, w = |ce|2 + |cg|2}. (a)
Show that a resonant microwave- or light pulse (Rabi frequency ΩR, duration
τ, detuning δ) rotates the Bloch vector u(τ) about the u axis into the state
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u(τ) = Θ(τ)u(0). Give the rotation matrix explicitly. Take the initial value
u = (0, 0,−1). Graphically sketch the probability Pg(τ) = |cg(τ)|2 to the find
the atom after a pulse with duration τ in state |g〉.
(b) Show that the free precession of the Bloch vector in the absence of any
driving field describes a rotation about the w axis depending on detuning and
give the rotation matrix. How does a Bloch vector u = (0, 0,−1) evolve after
excitation with a resonant π/2 pulse (i.e. with Ωτ = π/2)?
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Fig. 11.24 Sequential operations of a Ramsey experiment.

(c) In Ramsey’s method, two resonant π/2 pulses (duration τ, delay time T)
are applied onto the system. In the measurement, the population of the excited
(Pe) or the lower (Pg) quantum state is recorded. Write a matrix formalism
for the sequence of operations in the Ramsey method. Calculate and sketch
the time evolution of the w component of the Bloch vector for initial states
u(0) = (0, 0,−1), and for all atoms with identical interaction time. Show
Pe(τ) as a function of T. What is the origin of the interferences?
(d) In experiments, the Ramsey interferences or oscillations are frequently sub-
ject to a damping which can be interpreted as dephasing in an inhomogeneous
ensemble, i.e. an ensemble with a distribution p(δ) of small detunings δ. Con-
sider a model where the detunings are characterized by Gaussian distribution,
p(δ) = exp [−(δ − δ)2/(2σ2)]/

√
πσ. Determine the influence of this distribu-

tion onto the Ramsey signal.
(e) In a modified experiment, apply first a π-pulse after time T, and the sec-
ond π/2 pulse only with delay time 2T. Study the distribution of populations
around time 2T. Show that the so-called refocusing pulse causes a revival of
the population oscillations after time 2T, also called echo pulse. Interpret the
action of the π-pulse. What is the phasing of the echo signal?

11.3. Doppler effect and two-photo-spectroscopy In an atom or molecule
travelling with velocity v an excitation is induced from an energy state Ea to
Eb by absorption of a photon with wave vector k and frequency νlab. Accord-
ing to the special theory of relativity the frequency of the moving atom in its
rest frame is shifted in the frame of the laboratory by the Doppler effect, νlab =
νrest(1 − (v/c)2)1/2/(1 − v‖/c) with v‖ = k · v/k. (a) Expand the frequency
shift in terms of v/c. (b) A two-photon transition may be induced by absorp-
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tion of one photon from two counter-propagating laser beams each. Show that
for this two photon transition the first order Doppler shift is suppressed. Fur-
thermore show that the now dominating second order Doppler effect causes a
shift νlab = (νrest/2)× (1− (v/c)2/2). (c) Calculate the line shape in a thermal
gas as a function of the temperature T. Neglect the natural line width and use
the thermal distribution p(E) = 2

√
E exp (−E/kBT)/[(kBT)3/2√π] in a gas.
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12
Photons – an introduction to quantum optics

The question whether the quantum properties of the electromagnetic field
(and not only of material particles) play a significant role for light–matter in-
teractions is the central topic of quantum optics. Here we have to explore in
more detail concepts like ’photon’, ’stimulated emission’ and ’spontaneous
emission’ beyond the interpretation we have already given in Chap. 6. Spon-
taneous emission is one of the most fundamental processes of light–matter
interaction at the microscopic, quantum level – a single atom and a single
photon. Before we can treat this seminal problem which contributed in an
outstanding way to the emergence of quantum electrodynamics (QED), we
have to introduce some formal methods for the description of quantized light
fields.

12.1
Does light exhibit quantum character?

It seems obvious today that physical properties of matter at microscopic scales
must be described by quantum theories. But the connection of the micro-
scopic and the macroscopic points of view is not always so clear, a discrep-
ancy contributing to the hierarchy of theories given in Tab. 6.1, too. Namely, a
large number of phenomena of light–matter interaction can straightforwardly
be explained with semiclassical theories (the realm of quantum electronics in
Tab. 6.1), i.e. a quantum theory of matter interacting with a classical electric
field characterized by amplitude and phase. Semiclassical treatment is suf-
ficient for the majority of processes discussed in the chapters on laser spec-
troscopy (Chap. 11) and nonlinear optics (Chaps. 13, 14).

The answer to the question as to which phenomena cannot be physically
understood without the quantum properties of the electromagnetic field is in-
deed not so easy to find. For instance, the widespread view that the photo
electric effect constitutes a proof for the quantum nature of light turns out
to be an elegant way of describing a resonance phenomenon induced by the
quantum structure of a conducting material such as a metal but not the quan-
tum nature of the electromagnetic fields [139]. On the other hand the quantum
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nature of light is of unrivalled and well-recognized importance for the birth
of quantum theory. In 1900, Max Planck introduced the quantum hypothesis
to account for experimental contradictions regarding the spectrum of black
bodies (see Sect. 6.3). Albert Einstein received the Nobel prize in 1921 ’for his
services to Theoretical Physics, and especially for his discovery of the law of
the photo-electric effect’, dating back to his famous annus mirabilis, 1905. The
term ’photon’ was not used before G. Lewis [115] wrote (1926) in a correspon-
dence:

I therefore take the liberty of proposing for this hypothetical new atom,
which is not light but plays an essential part in every process of radiation,
the name photon.

Practically speaking, the quantum nature of light becomes visible, if e.g. in-
dividual atoms only interact with a light field, or if the intensity of a light field
is so low that sensitive photon counters must be used for detection. It is gener-
ally accepted that the following phenomena and their theoretical description
have experimentally established the need for a quantum theory of light, which
includes the field of quantum optics:

• Lamb shift. The relativistically correct theory of the hydrogen atom by
P. Dirac predicts that the electronic 2S1/2 and 2P1/2 states with main
quantum number n = 2 are perfectly degenerate. In 1947, however,
W. Lamb discovered a small splitting. It has since been called the Lamb
shift and is explained through the so-called vacuum fluctuations of the
electromagnetic field.

• Spontaneous emission. The first successful calculation of the rate
of spontaneous emission (perhaps the most fundamental of all light–
matter-interaction processes) was carried out in 1930 by V. Weisskopf
and E. Wigner [176] on the basis of the quantization of the electromag-
netic field introduced by P. Dirac.

• The spectrum of resonance fluorescence. The fluorescence spectrum
of a driven atom, one of the simplest possible quantum oscillators, is
different from the spectrum of a classical oscillator.

• Photon correlations, ’bunching’ and ’anti-bunching’. When instead of
the spectrum the complementary temporal dynamics of a light source
such as a single atomic oscillator is recorded by a photon counter, the
fluctuations – quantitatively determined by temporal correlation mea-
surements of the intensity – have so-called non-classical character.

In this chapter we will treat these phenomena with the exception of the
Lamb shift, which is a standard topic for many textbooks on quantum electro-
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dynamics (see e.g. [150]), supplemented with more recent developments. Be-
fore we can describe these phenomena theoretically, it is necessary to prepare
theoretical tools for the description of the electromagnetic field in quantum
theory.

12.2
Quantization of the electromagnetic field

A rigorous foundation of the quantization of the electromagnetic field requires
the application of the Lagrange formalism, which exceeds the scope of this
book and so the reader is referred to standard textbooks on advanced quan-
tum electrodynamics, e.g. [150, 37]. Here we restrict ourselves to a heuristic
approach taking advantage of the analogy of the Hamilton formalism in clas-
sical and quantum physics.

Let us consider a volume V with perfectly conducting walls and decompose
its electromagnetic field into its eigenmodes. From the beginning we normal-
ize the amplitude Ek,ε(t) = Eωαk,ε(t) of each eigenmode in such a way that
for |αk,ε(t)|2 = 1 the volume V stores the energy of exactly one ’photon’ (see
Sect. 2.1.8) with energy h̄ω,

Eω =
(

h̄ω

2ε0V

)1/2
with cε0

∫
V
|Eω|2 dV = h̄ω. (12.1)

Each eigen mode has an index k for the wave vector and ε for the polarization
state. These numbers will later be equivalent to the quantum numbers of the
quantum field. The electromagnetic field constructed from these quantities is

E(r, t) = Y(r, t) = ∑
k,ε

|αk,ε|Eω sin(ωt − kr)

= −i ∑
k,ε

Eωε
[
αk,ε(t)eikr − α∗k,ε(t)e−ikr

]
= −i(E(+) − E(−)).

We could have used just as well the definition X = E(+) + E(−), which differs
from Y only in the phase, which may be chosen freely at this point. X and Y are
called quadratures of the electromagnetic field. In interferometric experiments
the phase can be defined by a strong (that is, classical) local oscillator field,
and the two quadratures can be measured by interference with the in-phase
and out-of-phase components of the local oscillator.

According to Maxwell’s equations the (normalized) amplitudes αk,ε(t) de-
pend on the current density which has Fourier components

jk,ε =
1
V

∫
d3rεj(r)e−ikr .
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The amplitude αk,ε(t) obeys the equation of motion

α̇k,ε(t) + iω αk,ε(t) =
i√

2ε0h̄ωk
jk,ε(t) .

In free space we have jk,ε(t) = 0 and thus αk,ε(t) = αk,ε(0)e−iωt. For accel-
erated charges we have Fourier components jk,ε(t) = 0, and the field is now
driven, for instance by the oscillating current of an atom.

We now take the next step towards a quantum theoretical description of
electromagnetic fields by the direct analogy of classical field amplitudes and
quantum field operators, i.e. we simply promote the normalized amplitudes
of the classical electromagnetic field to field operators:

αk,ε(t) → âk,ε(t) and α∗k,ε(t) → â†
k,ε(t).

As a consequence, the operator of the electromagnetic field now reads

Ê = −i(Ê(+) − Ê(−)) = −i ∑
k,ε

Eωε
[

âk,ε(t)eikr − â†
k,ε(t)e−ikr

]
, (12.2)

while the Hamilton operator takes the well-known form

Ĥfield = ∑
k,ε

h̄ωk(a†
k,εak,ε + 1/2) . (12.3)

Quantum states of the elec-
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Fig. 12.1 The quantum state ladder of the harmonic os-
cillator (potential and quantum states on the left) is per-
fectly analogous to the quantum states of an electromag-
netic field mode. Electromagnetic field operators are con-
structed from raising (â†) and lowering operators (â).

tromagnetic field are fully clas-
sified by quantum numbers
(k, ε) and the photon occupa-
tion number nk (see Fig. 12.1
and below). The sum of
all electromagnetic field states
from Eq. (12.3) with respect
to quantum numbers corre-
sponds to the continuous spec-
trum of free space. Light–
matter interaction in realis-
tic physical situations such as
spontaneous emission or the
Lamb shift is dominated by

this wide spectrum. Another limiting case is realized when light–matter in-
teraction takes place in an intense laser field. In many cases then all modes
of the electromagnetic field except the driving mode of the laser field can be
neglected.
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The Hamilton operator of an individual electromagnetic state in (12.3) is
formally equivalent to the Hamilton operator of a material particle with mass
m confined by harmonic potential V(x) = mω2x2/2. With spatial and mo-
mentum operators, {x̂, p̂}, we have (see e.g. [150, 37])

Ĥ = h̄ω(aa† + 1/2) =
p̂2

2m
+

ω2x̂2

2m
.

For the harmonic oscillator we thus find

x̂ =
√

2mh̄/2ω (a + a†) and p̂ = −i
√

2mh̄ω/2 (a − a†).

Because of the formal analogy with the quadratures of the electric field op-
erator we expect, that X̂ = (Ê(+) + Ê(−)) and Ŷ = −i(Ê(+) − Ê(−)) obey an
uncertainty relation like x̂ and p̂.

Let us now use the Dirac notation to collect important relations for the field
operators, the annihilation (â), the creation (â†), and the number operator
n̂ = â† â:

â†
k,ε |n〉k,ε = (n + 1)1/2 |n + 1〉k,ε,

âk,ε |n〉k,ε = n1/2 |n − 1〉k,ε,
â†

k,εak,ε |n〉k,ε = n̂|n〉k,ε = n |n〉k,ε.
(12.4)

Every number state |n〉 can be generated from the vacuum state |0〉 through
n-fold application of the creation operator,

|n〉 =
1√
n!

(â†)n|0〉 and 〈n| =
1√
n!
〈0|(â)n. (12.5)

The state of the electromagnetic vacuum – i.e the field without any photons –
is described by a product state, for instance

|Vac〉 = |0000 . . . 0000〉
where every digit represents the occupation number of some specific mode of
the field. We can use this state to show immediately, that the expectation value
of an electromagnetic field vanishes but not the variance, which is a measure
for the intensity of the so-called vacuum fluctuations:

〈Vac|Ê|Vac〉 = 0 and 〈Vac|ÊÊ†|Vac〉 > 0 . (12.6)

The variance is furthermore proportional to the energy density U = ε0〈EE∗〉.
This quantity diverges in any volume having an infinite number of states as
well as in every single point. This observation hints at the limited validity
of this type of quantum electrodynamics but is beyond the scope of this text
[150].



444 12 Photons – an introduction to quantum optics

12.3
Spontaneous emission

One of the simplest, perhaps even the simplest of all, processes of radiation–
matter interaction is constituted by the radiative decay of an initially excited
atom in free space. This event, where a single atom makes the light source and
emits precisely one photon into its empty environment (the vacuum), is called
spontaneous emission. Here again the use of the word photon offers a convenient
manner of speaking.

One should be aware of possible misinterpretation caused by the photon
picture. When only microscopic objects are participating in the processes of
light–matter interaction then the role of the detector can no longer be ne-
glected.

A consistent view regards a pho-
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Fig. 12.2 For light–matter interactions at the mi-
croscopic level the role of the light source, the
radiation field, and detector must all be taken
into account.

ton as that incident that occurs with
the ’click’1 of the detector which
is always an object of our macro-
scopic world. Here, an individual
atom emits a radiation field in close
analogy to a classical microscopic
dipole antenna. The total energy
emitted corresponds to the energy
h̄ω of a photon. In the language of

the quantum theory of measurements the detector causes reduction (or pro-
jection) of the spreading wave-function of the electromagnetic field onto the
electron generated at the detector by the photo-electric effect. This electron is
amplified by e.g. the photomultiplier (see Sect. 10.5) yielding an electric pulse
which can be recorded and counted by conventional electronics.

12.3.1
Vacuum fluctuations perturb excited atoms

In the realm of classical electrodynamics the treatment of radiation fields emit-
ted by dipole oscillators and their back-action onto the motion of the charged
particles (’radiation reaction’) leads into contradictions which cannot be re-
solved within the theories of Maxwell and Newton (see Sect. 6.1.1.[138]) Nei-
ther does quantum mechanics alone – the treatment of electronic motion in
atoms by the rules of quantum mechanics – deliver a conclusive concept. As
is well-known the dipole moment of an atom vanishes in every pure quan-
tum state – so how can a radiation field arise? Indeed, in Sect. 6.2.6 we have
used a purely phenomenological approach by introducing a damping term in
the semiclassical theory of light–matter interaction, for instance in the optical
Bloch equations presented.

1) The electric pulse from photon detectors such as photon multiplier
can always be converted electronically into an acoustic ’click’.
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Only when a full quantum theory of the electromagnetic field is applied
does a consistent theory of radiative damping become possible. Let us con-
sider the radiative decay of an atom or molecule prepared in an initial excited
state |i〉 into a final state | f 〉. In a perturbative approach, the transition rate
can be calculated by Fermi’s golden rule,

Wi→ f =
2π

h̄
|Mif |2δ(Ef − Ei), (12.7)

where Mif denotes the matrix element (having the dimension of an energy)
corresponding to the transition. For the case of an excited atom radiating
spontaneously into its vacuum environment, we can write the quantum states
as product states (later we will call them dressed states) of atomic states |e〉, |g〉
and field states with indices α = (k, ε). At the beginning (t = 0) the field is in
the vacuum state, but in the end there are many different modes that can be
excited. Thus we have initial and final states

|i〉 = |e〉|000....000〉,
| f 〉α = |g〉|000..1α..000〉. (12.8)

For the dipole operator we use like in Sect. 6.2.2 the atomic lowering and rais-
ing operators σ̂ = |e〉〈g| and σ̂† = |g〉〈e| yielding d̂ = −er̂ = −ereg(σ̂ + σ̂†).
The field operator is now expressed with operators (12.2),

d̂ · Ê = −er̂·ε(â + â†)Eω = −e(reg ·ε)Eω(â + â†)(σ̂ + σ̂†).

Near resonance we can again apply the rotating wave approximation from
Sect. 6.2.3, i.e. neglect terms âσ̂ and â†σ̂† which oscillate rapidly with 2ω. One
obtains an effective operator for the dipole interaction,

V̂dip = −d̂ · Ê � e(reg ·ε)Eω(âσ̂† + â†σ̂) = h̄g (âσ̂† + â†σ̂). (12.9)

This is called the Jaynes-Cummings model and has gained enormous relevance
since it allows one to describe the quantum nature of light–matter interaction
in an exactly solvable model. The coupling constant

g = eregEω/h̄ = ereg

(
ω

2h̄ε0V

)1/2

is called the vacuum Rabi frequency. It describes the coupling strength of an
atomic dipole to an electromagnetic field in the absence of any excitation. The
amplitude Eω = (h̄ω/2ε0V)1/2 (Eq. (12.1)) may be interpreted as the average
electric field strength of a single photon with energy h̄ω stored in a volume V.

In order to calculate the total transition rate according to Eq. (12.7) we now
have to take all possible final states α into account. Replacing the energies by
transition frequencies and using δ(E) = h̄δ(ω) in (12.7) we find

Wi→ f = 2π ∑
α=k,ε

|gα|2δ(ω − ωif ).



446 12 Photons – an introduction to quantum optics

Nest we replace the summation by integration in k-space over the volume Vk,
∑k → ∫

Vk
d3k, and with density ρk(k) = 1/(2π)3 (see App. B.3). The density

of states in free three-dimensional space is derived from:

ρfree(ω) = 2
∫

Vk

d3k ρk(k)δ(ω − |ck|) =
ω2

π2c3 .

The factor 2 accounts for the two orthogonal polarizations allowed for each
field mode. In the final evaluation, the scalar product reg·ε of the dipole oper-
ator (Eq. (12.9)) is averaged in 3D space and causes another factor of 1/3:

Wi→ f =
1
3

2π

h̄
e2r2

if
h̄ωif

2ε0

ω2
if

π2c3 =
e2r2

if ω3
if

3h̄ε0πc3 .

This result is identical with the Einstein-A-coefficient for spontaneous emis-
sion and also the result by Wigner and Weisskopf which is discussed in the
next section. This agreement is by no means obvious since the golden rule
applied here is valid only for short times, when the initial state has not yet
significantly changed.

The decay rate Wi→ f = Ai→ f = γ = 1/τ determines the natural line width
γ = Δω = 2πΔν in spectroscopic observations of an electromagnetic transi-
tion; see Sect. 11.3.

Fig. 12.3 Exponential decay of the excitation probability according to
Weisskopf and Wigner theory. Fermi’s golden rule perfectly agrees for
short times.

12.3.2
Weisskopf and Wigner theory of spontaneous emission

The theoretical problem of spontaneous emission was solved for the first time
in 1930 by V. Weisskopf (1908–2002) and E. Wigner (1902–1995) [176] who ap-
plied the ideas of quantum electrodynamics developed by P. Dirac (1902–1984)
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[48]. Following their treatment let us consider an atomic superposition state
with eigenstates from (12.8),

|Ψ(t)〉 = Ci(t)e−iωit|i〉 + ∑
α

Cf αe−i(ω f +ω)t| f 〉α.

The interaction picture of quantum mechanics gives the equation of motion
ih̄|Ψ̇(t)〉 = V̂dip|Ψ(t)〉. Application of the dipole operator (12.9) and inspec-
tion of the coefficients yields the system of equations

Ċi(t) = −i ∑
α

gαe−i(ω−ωif)t Cf α(t),

Ċ f α(t) = −ig∗αei(ω−ωif)t Ci(t).

Since infinitely many states | f 〉α and coefficients Cf α contribute to the evolu-
tion, the system of equations is infinitely large, too! Let us integrate the second
equation formally,

Ċi(t) = −∑
α

|gα|2
∫ t

0
e−i(ω−ωif)(t−t′) Ci(t′) .

We now apply the so-called coarse-grained solution where we assume that Ci(t′)
� Ci(t) and hence can be pulled out of the integral. Finally we apply the well-
known result from complex analysis (P denotes the principal value integral)

lim
t→∞

∫ t

0
dt′ e−i(ω−ωif)(t−t′) = πδ(ω − ωif ) −P i

ω − ωif
. (12.10)

The imaginary part in Eq. (12.10) causes a very small frequency shift, in anal-
ogy with a classical damped oscillator. It corresponds to the famous Lamb
shift which is however measurable for very few atomic resonance lines only.2

Here we assume that this contribution is already included into the resonance
frequency ωif . We finally obtain

Ċi(t) = −γ

2
C(t) with γ = 2π ∑

α

|gα|2.

The sum over quantum numbers α is calculated as in the preceding section
and yields the same coefficient. In this case we have derived an exponen-
tial law of decay valid at all times, in excess of the perturbative approach by
Fermi’s golden rule.

2) For hydrogen, the degeneracy of the S1/2 and P1/2 states facilitates
this observation of the Lamb shift. In all other atoms quantum states
are generally isolated, and a shift can only be detected if a theoret-
ical model gives the unperturbed position of the atomic state with
sufficient accuracy.
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Fig. 12.4 Interaction of an excited atomic state (sharp resonance line
at ω = ωatom) with the electromagnetic vacuum, here represented by
its density of states ρfree(ω). In this picture, the natural linewidth of the
excited state is a result of the mixing of a discrete atomic state with the
continuous spectrum of the electromagnetic vacuum.

While in conventional quantum mechanics all atomic eigenstates have ex-
act, sharp eigenvalues and are stable in time, the interaction with the electro-
magnetic vacuum induces decay of excited states. Long-lived states occur if
the coupling with the electromagnetic field is weak, e.g. in the metastable 3S
state of the helium atom.

12.3.3
Suppression of spontaneous emission

The natural decay of an excited atomic or molecular quantum state seems to
have inevitable, fundamental character. In an environment with conducting
surfaces the decay process can, however, be modified or even turned off. As
an example we consider an atom which for the sake of transparency we model
as a microscopic dipole antenna positioned between two large mirror planes
with separation d. The radiation field of the atom is reflected from the walls
and interacts again with the radiating dipole. Depending on the phase the
reflected field is reabsorbed and inhibits decay, or constructively interferes
with the emitted field enhancing the decay. One can construct the reflected
radiation field from the method of image charges (Fig. 12.5) and then calculate
the modified decay rate of the original atom in analogy to an antenna array of
image dipoles [124]. It is even simpler to determine which waves are allowed
to propagate between the mirrors. The metallic walls form a simple wave
guide with a cut-off frequency and wavelength for electric fields polarized
orthogonal to the normal to the walls. The cut-off frequency is

ωc = πc/d.
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Thus the atomic radiation field cannot propagate if the separation of the mir-
rors is smaller than half the resonance wavelength, d < πc/ωatom = λatom/2,
and spontaneous emission is suppressed. Since optical wavelengths of atomic
transitions have μm scales, an experiment was carried out with atoms trav-
elling between a pair of 10 mm long mirrors separated by a very tiny gap of
d = 1.5 μm only. It was found that atoms entering the gap in an excited state
with life time 1.6 μs were still excited when leaving the gap after 20 μs [124].

12.3.4
Interpretation of spontaneous emission

The example of suppression of spontaneous emission shows impressively that
the radiation properties of a microscopic particle are influenced by the envi-
ronment. Spontaneous emission in particular is not an inevitable law of Na-
ture, as was pointed out by D. Kleppner with the phrase turning off the vacuum
[104]. This interpretation draws on a picture where spontaneous emission is
induced, stimulated by the fluctuating field of the electromagnetic vacuum.
While this picture is close to our intuition one has to keep in mind that from
the theoretical point of view there is no compelling argument for interpreta-
tion – one could alternatively also regard the fluctuations of electric motion in
the atom as the first cause initiating spontaneous emission.

The modification is strongest in highly reflecting cavities. This field of cav-
ity QED has been studied for many years now [18]. The experimental demon-
stration of cavity QED phenomena has not only delivered many proofs and
illustrations [86, 92] for the relevance of quantum electrodynamics. It has
also opened the view that quantum properties of matter can be controlled and
made useful for applications.
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Fig. 12.5 Suppression of spontaneous emission between plane mir-
rors. Left: Image charge model. At small separation d < λ/2 the
interference field of the dipole and its image dipoles causes suppres-
sion of the radiation field for the σ, enhancement for the π-orientation.
Right: Modified decay rate for σ- and π-orientation as a function of
mirror separation, normalized to the decay rate in free space Γfree.



450 12 Photons – an introduction to quantum optics

12.3.5
Open quantum systems and reservoirs

In quantum theory, microscopic physical systems are treated with the Hamil-
ton operator: ’Give me your Hamiltonian, and I predict the properties of
your system.’ A shortcoming of this approach, though, is the closed nature
of Hamiltonian systems. In general they have only few degrees of freedom,
and damping is not of relevance. All real systems are, however, coupled to the
environment with a continuous spectrum of degrees of freedom. These envi-
ronments are also called bath, or reservoir. Examples include the electromag-
netic vacuum, black-body radiation, or the lattice vibrations (phonons) of solid
materials which can be characterized by a temperature. While energy coupled
to a true bath never returns to its original system (for instance in spontaneous
emission), it was known to Poincaré already at the end of the 19th century that
in closed (sub)systems of Hamiltonian character there is a reoccurrence of the
excitation of the initial state always.
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Fig. 12.6 The coupling of a two-level system (representing ’matter’)
with an intense coherent light field is described by the Rabi frequency
ΩR. At the same time, matter is always coupled to a bath which
causes damping. Depending on which of the two rates is larger, the
case of weak or strong coupling is realized (Sect. 12.4).

The most important bath in optics is the electromagnetic vacuum which is
the subject of quantum electrodynamics. It is subject to fluctuations which
are for instance manifest in its spectrum [175]. Spontaneous emission is a
fundamental example of a simple Hamiltonian system with only two degrees
of freedom coupled to a reservoir with a very large number of states. The
treatment by Weisskopf and Wigner allows one to calculate the strength of the
coupling of an atom and its bath, the electromagnetic vacuum. For a detailed
analysis we refer to [65, 175].

12.4
Weak coupling and strong coupling

Already the damped optical Bloch equations (6.36) are essentially governed by
two time constants, or rates, respectively: the Rabi frequency ΩR = d · E/h̄ de-
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scribes the (coherent) coupling of light and matter; the relaxation rates {γ, γ′}
take radiative damping phenomenologically into account. (In fact, quantum
electrodynamics does not give new insight into the consequences of damping,
but it provides a more rigorous justification of radiation damping.) It is useful
to distinguish two limiting cases of radiation–matter interaction in accordance
with the ratio of Rabi frequency and damping rates. The limiting case of strong
coupling is of particular interest since it produces phenomena which can only
be realized with intense laser fields, not with classical light sources.

• Weak coupling: ΩR � γ, γ′. Optical excitation of e.g. atoms or mole-
cules with thermal light sources or with low-intensity laser beams is
typically a case of weak coupling. In this case only a few particles are
excited, and the steady-state values of the occupation probability are
nearly unchanged. The w component of the Bloch vector (see Sect. 6.2.3)
remains near its initial value w = −1 to a good approximation. Rate
equations are usually sufficient to describe the dynamics of the system.
The energy absorbed from the exciting light field is irreversibly trans-
ferred to the damping reservoir.

• Strong coupling: ΩR � γ, γ′. Once the intensity of a driving laser field
exceeds the saturation intensity, I/I0 > 1 (Eqs. (6.40) and (6.42)), the
coupling of light field and polarizable matter is stronger than damping
induced through coupling to the bath, usually the electromagnetic vac-
uum. For time scales that are short compared to the damping time 1/γ,
then transient phenomena occur, for instance oscillations of the occupa-
tion numbers (see Fig. 6.6), where the energy is periodically exchanged
between the driving light field and the absorbing medium. In this case,
the spectral lines are broadened (saturation broadening, see Sect. 11.2.1),
or they show the AC Stark effect (see next section). At strong coupling
conditions the driving field–matter system undergoes coherent evolu-
tion, i.e. with fixed phase relation, for time scales t < γ−1.

12.4.1
AC Stark effect and dressed-atom model

The spectrum of a resonance line which is excited by a very strong laser, i.e.
with multiple saturation intensity I/I0 � 1 (Eq. (6.42)), causes saturation
broadening of the resonance line as discussed in Sect. 11.2.1. Let us modify the
experiment by resonantly exciting the e–g transition with a strong laser field
(Fig. 12.7) and probing the system with an auxiliary transition h–e and a weak
second laser. Instead of a single resonance line the spectrum of the probe laser
exhibits a doublet which is called Autler–Townes doublet or AC Stark splitting.

The splitting of the atomic level can be understood with the so-called
dressed-atom model [35]. We have used product states from atomic and
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Fig. 12.7 AC Stark or Autler–Townes splitting
of a two-level system of the neon atom. The
intensity of the Stark laser which is tuned into
exact resonance, ωge = ωStark, is 10 times
the saturation intensity. (a) Energy level dia-
gram. (b) Experimental spectrum recorded

with a weak probe laser (PS, Pp: powers of
Stark and probe laser, respectively). (c) Cal-
culated spectrum (ΩS

R, Ωp
R: Rabi frequencies

relevant for the Stark and the probe laser
transition, respectively). Adapted from [17].

field quantum states already in Sect. 12.3.2 in order to simplify the nota-
tion of Weisskopf–Wigner theory. Here we extend this method. We consider
products of the atom quantum states {|g〉, |e〉} with frequency difference
ω0 = (Ee − Eg)/h̄, and a strong light field with near-resonant frequency ωL
and number quantum states |n〉 with a large photon number n � 1, too. Near
resonance (ω0 � ωL) the

unperturbed dressed states {|g, n + 1〉, |e, n〉}

have nearly identical (degenerate) energy. The light field corresponds pre-
cisely to a single mode which is for instance realized by a Gaussian beam
travelling in free space. More rigorously we should use the so-called coherent
states from Sect. 12.6.2.2 which are constructed from a superposition of field
states with different photon numbers and provide a more realistic description
of a strong laser field. The result is not significantly modified by this simplifi-
cation, however.

In Fig. 12.8 the energy values of the unperturbed dressed states are given
with dashed lines as a function of atomic resonance frequency correspond-
ing to a ground-state energy of −h̄ω0/2 and +h̄ω0/2 for the excited state.
The energy expectation value of the unperturbed Hamiltonian Ĥ = h̄ωLâ† â +
h̄ω0σ̂†σ̂ is then Eg,n+1 = (n + 1)h̄ωL − h̄ω0/2 and Ee,n = nh̄ωL + h̄ω0/2, re-
spectively. Introducing the detuning δ = ωL − ω0 we can rewrite the energies
Eg,n+1 = (n + 1/2)h̄ωL − h̄δ/2 and Ee,n = (n + 1/2)h̄ωL + h̄δ/2, respectively.
At resonance ωL = ω0 the unperturbed quantum states {|g, n + 1〉, |e, n〉} are
perfectly degenerate for any photon number n.
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Fig. 12.8 Energy diagram of the dressed-atom model as a function
of atomic excitation energy h̄ω0 and for different photon numbers n.
Dashed lines: Unperturbed states. Solid lines: Dressed states with
dipole interaction. Adapted from [35].

The degeneracy at the resonance h̄ωL = h̄ω0 is lifted due to light–matter in-
teraction. Formally this is described by the total Hamiltonian which includes
the Jaynes–Cummings operator (12.9),

Ĥ = h̄ωLâ† â + h̄ω0σ̂†σ̂ + h̄g(â†σ̂ + σ̂† â).

The energies of the new eigenstates can be calculated from the {|g, n +
1〉, |e, n〉} base states by conventional diagonalization. We use(

Hee Heg

Hge Hgg

)
=

(
−h̄δ/2 h̄g

√
n + 1

h̄g∗
√

n + 1 h̄δ/2

)
,

where we have omitted the constant h̄ωL(n + 1/2) term. The matrix eigenval-
ues Λ± are calculated with standard methods, and one finds that they agree
with half the Rabi frequency ΩR (Eq. (6.33)),

Λ± = ±((h̄δ/2)2 + (h̄g
√

n + 1)2)1/2 = h̄ΩR/2. (12.11)

In Fig. 12.8 the new eigenvalues |±, n〉 are shown with solid lines. They have
the general form

|+, n〉 = cos θ |e, n〉 + sin θ |g, n + 1〉,
|−, n〉 = sin θ |e, n〉 − cos θ |g, n + 1〉.
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with

cos θ =
(Ω + δ)/2

((Ω + δ)2/4 + g2(n + 1))1/2 ,

sin θ =
g
√

n + 1
((Ω + δ)2/4 + g2(n + 1))1/2 .

For an illustration let us study two important limiting cases:

• AC Stark splitting, δ = ωL−ω0 = 0. Here we have Ω = ΩR =
2g

√
n + 1, and the mixing angles are exactly equal, θ = π/4, cos θ =

sin θ = 1/
√

2. The width of the splitting is Λ+ − Λ− = 2g
√

n + 1 = ΩR,
which for large photon numbers varies only slowly with

√
n. It is also

called Autler–Townes or Rabi splitting.

• AC Stark shift, |δ| � g. Away from the resonance we have cos θ � 1,
sin θ � 0, and thus the original states are only slightly modified. By
Taylor expansion of Eq. (12.11) we find

Λ+ − Λ− = h̄δ

(
1 +

g2(n + 1)
δ2/4

)1/2

� h̄δ +
h̄g2(n + 1)

δ/2
.

Thus at large detunings the separation of the atomic energy levels expe-
riences a small shift proportional to the intensity, I = (cε0/2)E2

ω(n + 1).
The alternative calculation of this light shift or AC Stark shift by second
order perturbation theory is a standard textbook problem in quantum
mechanics (see e.g. [36]).

12.5
Resonance fluorescence

The term resonance fluorescence denotes the process where an individual atom
absorbs or scatters radiation from a light field, typically a laser field, by stim-
ulated or spontaneous emission. Stimulated emission causes reinforcement
of the driving light field while spontaneous emission radiates the absorbed
energy into all directions. Resonance fluorescence has played a central role
in the history of quantum optics, since the only difference with spontaneous
emission itself is the addition of a driving light field. The dynamics of this
process is governed by quantum fluctuations which become apparent in the
spectral properties of the combined physical system of light and matter. A
complementary situation occurs in the temporal evolution of the radiation
field of the atom. For instance, the so-called anti-bunching phenomenon (see
Sect. 12.6.4.2) carries information about the dynamical evolution of the atomic
radiation field.
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12.5.1
The spectrum of resonance fluorescence

Today, trapped individual ions and atoms make ideal objects to study res-
onance fluorescence in detail, but it was studied before with dilute atomic
beams, too [78]. The arrangement of such an experiment and the spectrum
recorded with the apparatus are shown in Fig. 12.9. With increasing intensity
one observes a splitting of the initially solitary resonance line into the so-called
Mollow triplet which is named after the author of the first theoretical calcula-
tion of this spectrum [128]. Such experiments, albeit they are conceptually
straightforward, were made possible only by the advent of widely tunable
laser sources in the 1970s.
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Fig. 12.9 Experimental analysis of resonance fluorescence from a
sodium atomic beam irradiated with resonant light at λ = 589 nm. Left:
Schematic experimental apparatus. Right: Spectrum as a function
of laser intensity. Two-level systems were obtained by the method
described in Sect. 6.2.1. Adapted from [78] and with kind permission
by H. Walther.

12.5.2
Spectra and correlation functions

Optical spectra are counted among the most valuable experimental quantities
in many areas of physics, yielding information about the energetic structure
and – in a complementary way – temporal dynamics. As was shown pre-
viously (Sect. 12.3.2) the electromagnetic vacuum and quantum fluctuations
play an important role in the discussion of the physical description of the
spectrum of spontaneous emission. Theoretical prediction of the spectrum of
a light field can be obtained by deriving the time-dependent correlation func-
tion based on the quantum properties of light and matter. The complementary
spectrum is then calculated by Fourier transform.
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The spectrum of a dynamical physical quantity such as the electric field
strength E(t) is straightforwardly measured by monitoring the power I(ω) ∝
{|E(t)|2}ω = {E(t) · E∗(t)}ω transmitted through a spectral filter at frequency
ω and with bandwidth Δω. The power spectral density is then obtained from
i(ω) = I(ω)/Δω. This concept can be generalized for arbitrary physical
quantities A where |A|2 is the generalized power. For calculating the spec-
tral properties we take advantage of the Fourier transform where products
such as E(t) · E∗(t′) as well as the correlation functions already introduced in
Sect. 5.2.1 play an important role. The correlation functions can be obtained
from the equations of motion of the system and allow the derivation of the
spectral properties of the light fields involved. In Sect. 12.6.1 we will directly
explore the complementary temporal dynamics associated with the correla-
tion functions yielding advanced information on the coherence properties of
light fields.

The light field radiated by an excited atom is proportional to its dipole mo-
ment, or in quantum physics to the expectation value of the dipole operator,
Ê+ ∝ eregσ̂†, Ê− ∝ eregσ̂ etc. Using the dipole operators from Eq. (6.26) the
intensity Ifl(t) incident on a detector can be written as

Ifl(t) =
cε0

2
〈Ê+(t)Ê−(t)〉 = βI0〈σ†(t)σ(t)〉 = β

I0

2
(〈σz〉 + 1) . (12.12)

Here we have normalized the total fluorescence to its maximum value given
by the saturation intensity I0 = πhcγ/λ3 (Eq. (6.42)). The factor β ≤ 1 de-
scribes the geometrical fraction of the total fluorescence that reaches the de-
tector. Formally we have again the structure of the pseudo-spin system of
Eq. (6.28). The fluorescence intensity is proportional to the occupation number
of the upper state because of σz + 1 = |e〉〈e|. In a more precise description the
field at the detector is proportional to the retarded value of the atomic dipole
radiator, Ê+(t) ∝ σ̂†(t̃ = t − |r|/c). For stationary problems this retardation
has no consequences, however, and can be neglected.

A classical physical quantity such as the electric field strength E(t) is con-
nected with its Fourier components E (ω) by

E(t) =
∫ ∞

0
�e(E (ω)eiωt) dω

= 1
2

∫ ∞

0

{
E (ω)eiωt + E∗(ω)e−iωt

}
dω.

Here E(t) is a real number, hence E (ω) = E∗(−ω) and

E (ω) =
1
π

∫ ∞

−∞
E(t)e−iωt dt.
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In a measurement the spectral power density SE(ω) of this quantity is deter-
mined with a filter of bandwidth Δω,

SE(ω) =
cε0

2
|E (ω)|2Δω

=
cε0

2
lim

T→∞

1
(2π)2T

∫ T/2

−T/2
E∗(t′)e−iωt′ dt′

∫ T/2

−T/2
E(t)eiωt dt.

If the spectrum is not explicitly dependent on time we can substitute t′ − t → τ

yielding

SE(ω) = lim
T→∞

cε0/2
(2π)2T

∫ T/2

−T/2

∫ T/2

−T/2
E∗(t′)E(t′ + τ)eiωτ dt′ dτ.

For the stationary case (which is characterized by dynamic fluctuations, of
course!) we let the integration time T grow very large. Introducing the time
averaged ({...}t) correlation function we have

GEE(τ) = {E∗(t)E(t + τ)}t =
1
T

∫ T/2

−T/2
E∗(t′)E(t′ + τ) dt′. (12.13)

Thus the spectrum SE(ω) can theoretically be obtained by calculating the
Fourier transform of the autocorrelation function GEE(τ) which is no longer ex-
plicitly dependent on time:

SE(ω) =
cε0/2
(2π)2

∫ ∞

0
GEE(τ)eiωτ dτ. (12.14)

This relation is also known as the Wiener–Khintchin theorem (see App. A.1).
For τ = 0 the correlation function is simply proportional to the intensity,
GEE(τ) = {E∗(t)E(t)}t = 2I/cε0. Using this result we introduce the nor-
malized coherence function of the first order,

g(1)(τ) =
{E∗(t)E(t + τ)}t

{E∗(t)E(t)}t
=

cε0

2
GEE(τ)

I
, (12.15)

which is defined in straight analogy with the visibility of a classical interfer-
ometer (Eq. (5.5)). Thus the spectrum of such a classical system can be calcu-
lated once the time evolution of E(t) is known.

Example: Spectrum of a driven classical oscillator
Classical charged oscillators are driven by an electromagnetic field Ee−iωLt

as described in Sect. 6.1. The harmonic oscillator with ωosc � ωL, mass m and
charge −e obeys the equation of motion (6.1),

ẍ + γẋ + ω2
oscx = (−e/m)Ee−iωLt,
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which we have reduced for the sake of simplicity to a single coordinate again.
The field emitted is proportional to the dipole moment, d(t) ∝ Edip(t). In

addition to the stationary solutions for d(t) = −ex(t) treated in Sect. 6.1.1 we
have to consider the transient solutions now, too.

For an oscillator initially at rest we have x(t=0) = 0 and d(t) = d0(e−iωLt −
e−iωoscte−γt/2). The correlation function is now evaluated from the stationary
and the transient solution using Eq. (12.13). We find contributions at frequen-
cies ωL, ωosc and |ωL − ωosc|. Neglecting the latter one which occurs at radio
frequencies we find:

GEE(τ) =
cε0

2
|E0|2{e−iωLτ − e−iωoscτe−γτ/2/(γT)}.

Finally, the Fourier transformation

��J����
A�.�

Fig. 12.10 Spectrum of a driven classical os-
cillator. Driving frequency ωL, oscillator
frequency ωOsz.

according to (12.14) yields the delta
function in Fig. 12.10 at ωL and the
resonance at ωosc. This Lorentzian
shaped spectral contribution is only
relevant for the initial, transient dy-
namics and thus depends on the
averaging time T. The contribution
to the total spectrum is of order 1/γT
which becomes very small, even neg-
ligible, at long observation times. It
is hence of technical and not of fundamental physical nature. The delta-like
line represents the light field scattered by the dipole oscillator driven by an
external, monochromatic field. This process is called Rayleigh scattering and
occurs for all types of polarizable matter at low light field intensities, i.e. in
the classical limit.

12.5.3
Spectra and quantum fluctuations

In classical physics, i.e. for classical fields, correlation functions, products
like E(t)E(t′), can be calculated once the time evolution of e.g. the field
E(t) is known. In quantum mechanics, the correlation function is calculated
from the expectation value of the corresponding product of field operators,
{E(t)E∗(t′)}t → {〈Ê(−)(t)Ê(+)(t′)〉}t. Since these operators do not necessar-
ily commute, the expectation value of the operator product is in general not
identical with the product of its individual expectation values,

GÊÊ = 〈Ê(−)(t)Ê(+)(t + τ)〉 = 〈Ê(−)(t)〉〈Ê(+)(t + τ)〉.
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We can define an analogue of the classically expected correlation function
through

Gcl
EE(τ) = 〈Ê(−)(τ)〉〈Ê(+)(0)〉, (12.16)

and we use this definition to extract contributions which have genuine quan-
tum character by

GÊÊ(τ)− Gcl
EE = 〈Ê(−)(τ)Ê(+)(0)〉 − 〈Ê(−)(τ)〉〈Ê(+)(0)〉.

This difference of the full quantum correlation function and the classical ana-
logue is useful for physical interpretations of radiation–matter processes.

Explicit calculation of expectation values like 〈Ê(−)(τ)Ê(+)(0)〉 is beyond
the scope of this book. Here we restrict ourselves to demonstrate application
of the Onsager–Lax or quantum regression theorem [175]. For so-called Markov
processes3 the operator products obey a set of equations of motion identical
with those of the operators themselves. For a set of operators Ôi(t) with linear
equations of motion,

∂

∂t
〈Ôi(t)〉 = ∑

j
Gij(t)〈Ôj(t)〉, (12.17)

we use the corresponding system of equations for the expectation values of
the correlation functions,

∂

∂τ
〈Ôi(τ)Ôk(0)〉 = ∑

j
Gij(τ)〈Ôj(τ)Ôk(0)〉. (12.18)

If the solutions for the equations of motion (12.17) are known, the solutions for
Eqs. (12.18) are known, too. Spectral properties of the system are then calcu-
lated using the Wiener–Khintchin theorem (Eq. (12.14)). The spectral proper-
ties of interacting light–matter systems can be treated by means of the optical
Bloch equations (6.36) from Sect. 6.2.6 which are an example for the system of
operator equations (12.17). It is remarkable that for the description of the sys-
tem stationary solutions are no longer sufficient however. Transient solutions
play a central role, reflecting the fact that quantum fluctuations continuously
cause small perturbations of the system with subsequent relaxation back to-
wards the equilibrium state.

12.5.4
Coherent and incoherent contributions of resonance fluorescence

Let us try to distinguish classical and non-classical contributions in the fluo-
rescence spectrum of e.g. atoms. Let us consider first the classical analogue

3) Markov processes have no memory (they are delta correlated).
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by evaluating Eq. (12.12) using the expectation values of the fields amplitudes
Ê ∝ σ̂:

Icoh = βI0〈σ†(t)〉〈σ(t)〉.
The solutions for the stationary amplitude are straightforwardly taken from
〈σ(t)〉 = 〈σ†(t)〉∗ = 1

2 (ust + ivst) e−iωLt using the solutions {ust, vst} of the
optical Bloch equations for the two-level atom, Eqs. (6.44) and (6.45). For the
special case of perfect resonance (δ = ω−ω0 = 0) we find for an atom in free
space (γ′=γ/2)

〈σ(t)〉 = 〈σ†(t)〉∗ = −i
vst

2
e−iωLt =

−i√
2

√
I/I0

1 + I/I0
e−iωLt

and

Icoh = β
I0

2
I/I0

(1 + I/I0)2 , (12.19)

respectively. The correlation function, (cε0/2)Gcl
EE(τ) = I0〈σ†(τ)〉〈σ(0)〉, can

be determined from these solutions, too, and the spectrum is calculated by
Fourier transform (Eq. (12.14)), yielding

Scoh
E (ω) =

I0

2
I/I0

(1 + I/I0)2 δ(ω − ωL)
I/I0 � 1→ 0. (12.20)

It turns out that this spectrum is delta-shaped in close analogy with the
Rayleigh scattering line of the fictitious classical oscillator from the example
on p. 457. Note that the intensity of this contribution vanishes with increas-
ing intensity of the driving field! The total fluorescence intensity is calculated
from Eq. (12.12), and with 〈σz〉 = wst = −(1 + I/I0)−1 we find

Ifl(t) = β
I0

2
(〈σz〉 + 1) = β

I0

2
I/I0

1 + I/I0
.

Now we can extract the contribution caused by quantum fluctuations by cal-
culating the so-called incoherent part Iinc from

Ifl = βI0
[〈σ†〉〈σ〉+ (〈σ†σ〉 − 〈σ†〉〈σ〉)]

= Icoh + Iinc = β
I0

2

[
I/I0

(1 + I/I0)2 +
(I/I0)2

(1 + I/I0)2

]
.

In Fig. 12.11 both the coherent and the incoherent fractions are shown as a
function of the normalized intensity I/I0. At large intensities the incoherent
part survives alone,

Iinc =
I0

2
(I/I0)2

(1 + I/I0)2
I/I0�1→ 1

2
I0.
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Fig. 12.11 Coherent and incoherent contributions in resonance fluo-
rescence of a two-level atom.

The distribution of coherent and incoherent contributions marks the difference
of polarization and excitation or occupation. At low intensities an atom couples
vacuum field states with the driving light field in a fully coherent way, like
a microscopic beam splitter. Strong light fields, on the other hand, generate
occupation of the excited state. Spontaneous emission from the excited state
generates a light field which is uncorrelated in phase (incoherent) with the
driving field.

12.5.4.1 The Mollow triplet

The dressed-atom model (Sect. 12.4.1) offers a convenient approach to un-
derstand the shape of the spectrum of resonance fluorescence. This model
fully describes the properties of an atom interacting with a strong light field
above the saturation intensity I > I0. While all processes of stimulated
emission are implicitly accounted for by this model, spontaneous emission
causes scattering of light fields out of the intense laser beam, i.e. transitions
|i, n〉 → | f , n − 1〉. Let us restrict our discussion to the most prominent case
of exact resonance. There, each state |±〉 contains even amounts of the unper-
turbed atomic ground and excited states {|g〉, |e〉}. Therefore, spontaneous
emission is allowed for all transitions |±, n〉 → |±, n − 1〉 and with equal
strength, as shown in Fig. 12.12.

We can use the reduced energy level scheme of Fig. 12.12 to find the lines
of the resonance fluorescence spectrum. For intense laser beams (large n) the
splitting of neighbouring doublets (ΩR = 2g

√
n + 1) is equal for slightly dif-

ferent photon numbers n to a very good approximation. Thus we find two
transitions with identical frequency ωL = ω0 forming the central line. Fur-
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thermore there are two sidebands at ωL = ω0 + ΩR and ωL = ω0 + ΩR,
respectively. The spectral triplet is called Mollow triplet [128] and agrees very
well with the measurements for large intensities (I/I0 � 1) shown in Fig. 12.9.

We have so far found the position

�

��?� $��?�

�

��?� $��?�

�� $��?�

�� $��?�

Fig. 12.12 Reduced energy level diagram of
the dressed-atom model with allowed tran-
sitions. Compare this with Fig. 12.8.

of the spectral lines, but not yet ob-
tained information about their line
shapes. As outlined in Sect. 12.5.2,
the theoretical calculation of the line
shapes is based on the Onsager–Lax
theorem but exceeds the scope of the
present book. Instead, we only quote
the result following the discussion by
D. Walls [175] and add some physical
interpretation.

For the calculation of the spectrum
of resonance fluorescence Ifl(ω) it
is necessary to determine the cor-
relation function using Eq. (12.13),
Gσσ(τ) = (2I0/cε0)〈σ†(τ)σ(0)〉, with
subsequent Fourier transform following (12.14),

Ifl(ω) = I0

∫ ∞

0
〈σ†(τ)σ(0)〉eiωτ dτ. (12.21)

Here the term 〈σ†(τ)σ(0)〉 is time-dependent. It resembles the transient phe-
nomena occurring in the usual optical Bloch equations (Sect. 6.2.3). For in-
stance, the complete solution for the occupation number with initial value
〈σz(t=0)〉 = 0 is

〈σz(t)〉 =
1

1 + I/I0

[
1 − e−3γt/4

(
cosh(κt) +

3γ

4κ
sinh(κt)

)]
with κ =

[
(γ/4)2 − Ω2

R
]1/2 .

For large Rabi frequencies ΩR � γ/4 we have κ � ±iΩR, i.e. the transient
corresponds to a damped oscillation. The initial condition for the correlation
function is 〈σ†(0)σ(0)〉 = (〈σz〉+ 1)/2.

We give the result for the spectrum in the case of perfect resonance and for
strong fields, I/I0 � 1:

SE(ω) =
I0

2π

I/I0

1 + I/I0

(
δ(ω − ω0)
1 + I/I0

+
γ/4

(γ/2)2 + (ω − ω0)2

+
3γ/16

(3γ/4)2 + (ω−(ω0+ΩR))2 +
3γ/16

(3γ/4)2 + (ω−(ω0−ΩR))2

)
.
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The sidebands of the spectrum of resonance fluorescence appear exactly at the
frequencies of the transient phenomena; see Figs. 12.9 and 12.12. One may
interpret this observation with continuous relaxation of small perturbations
induced by quantum fluctuations.

12.6
Light fields in quantum optics

Up to now our characterization of light fields has been dominated by their
spectral properties. A thermal field (also chaotic field) has a broad spectrum and
shows strong amplitude fluctuations while laser light exhibits high spectral
purity and small amplitude variations, as described in Sect. 8.4.1. The noise
properties of light fields were of obvious importance already in the sections
on detectors, Sects. 10.3.1 and 10.3.2. Here we want to extend our discussion
to the quantum nature of those types of light fields which are of fundamen-
tal importance in experiments. For this purpose we heuristically extend the
formal tools for the description of quantum fields. For more rigorous theories
which require e.g. a quantum theory of the generation of photo-electrons in
photomultipliers, we refer to presentations like [66, 118, 175]. An extensive
overview of experimental work is found in [10].

12.6.1
Fluctuating light fields

An idealized classical light field has fixed amplitude and phase. All real light
fields are subject to fluctuations, however, in both amplitude and phase. These
variations are easily caused by disturbances of the light source originating in
environmental conditions such as acoustic vibrations or temperature modifi-
cations. The technical noise can be eliminated by suitable servo-control mea-
sures, albeit the implementation may be very involved.

Beyond the technical noise all light fields exhibit intrinsic fluctuations
caused by the quantum nature of the field. They are responsible for the
physical limits of the ultimate physical coherence properties of a light source.
For their characterization we have already introduced correlation functions in
Sect. 5.2. For instance, the longitudinal or temporal coherence is measured
with a Michelson interferometer (Sect. 5.4). It is quantitatively determined
by measuring the interference contrast – the visibility (Eq. (5.5)) – as a func-
tion of the difference in the length of the two arms. The temporal first order
correlation function GEE(τ) (Eq. (12.13)) has already played a central role in
the theoretical treatment of the spectrum of resonance fluorescence. It was
shown that classical electrodynamics and quantum electrodynamics can lead
to different predictions for the spectral properties, documenting the quan-
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tum nature of light. In this section we extend the concepts characterizing
fluctuations by introducing the second order coherence which allows to un-
ambigously distinguish light fields of classical and non-classical character.

12.6.1.1 First-order coherence

Consider an electromagnetic field Ê(t) superposed with itself at some detec-
tor with a time delay τ, measuring Ê(t)∗Ê(t + τ). This can be achieved for in-
stance with a Michelson interferometer (Sect. 5.4) with path length difference
d = cτ. In analogy with classical electrodynamics (Eq. (12.15)) the photode-
tector records the (normalized) signal

g(1)(τ) =
〈Ê∗(t)Ê(t + τ)〉
〈Ê∗(t)Ê(t)〉 =

〈â†(t)â(t + τ)〉
〈â†(t)â(t)〉 . (12.22)

(Here 〈...〉 symbolizes both the calculation of expectation values and temporal
averaging.) The first-order coherence function is evaluated exactly like the
visibility (Eq. (5.5)) defined in Sect. 5.2.1 by analysing the interference contrast.
The first-order coherence can be different for quantum fields and their classical
counterparts. It is difficult though to experimentally identify the difference
because in both cases we have

0 ≤ |g(1)(τ)| ≤ 1.

There is thus no unambiguous signature in first-order coherence for a typical
quantum field. Again in analogy with the definition of visibility for conven-
tional interferometer fields with |g(1)| = 1 are called coherent or more pre-
cisely first-order coherent, with |g(1)| = 0 called incoherent.

12.6.1.2 Second-order coherence

Very prominent differences with unique signatures for non-classical field
states are found for the so-called coherence of the second-order. It is straight-
forwardly defined for classical as well as for quantum fields by extending the
definition of first-order coherence. For simplicity we concentrate on the case
of a signal generated at a single location. For classical fields, the correlation
function of the second-order corresponds to the intensity–intensity correlation
function. It is measured by comparing the intensity recorded with a detector
at different times {t, t + τ}:

g(2)
cl (τ) =

{E∗(t)E∗(t + τ)E(t + τ)E(t)}t

{E∗(t)E(t)}t
=

{I(t + τ)I(t)}
{I(t)}2 . (12.23)
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Writing the instantaneous intensity I(t) = {I} + δI(t) with average value
{δI(t)} = 0 one finds

{I(t + τ)I(t)} = {({I} + δI(t + τ))({I}+ δI(t))}
= {I}2 + {δI(t + τ)δI(t)}
→ {I}2 + {δI(t)2} for τ → 0.

For τ = 0 the quantity {δI(t)2} > 0 gives precisely the variance of the inten-
sity fluctuations. Thus we have for classical fields

1 ≤ g(2)
cl (τ=0) ≤ ∞. (12.24)

Very generally we expect, too, that for large times τ any correlation is lost, that
is {δI(t + τ)δI(t)} = 0 and

g(2)(τ) → 1 for τ → ∞.

It is worth noting that the result in Eq. (12.24) holds for τ = 0 only, otherwise
we can only infer from the positive definiteness of the intensity and Eq. (12.23):

0 ≤ g(2)
cl (τ=0) ≤ ∞ for τ = 0

In quantum optics, the normalized second-order correlation function has a
form which is conveniently written with annihilation and creation operators,

g(2)(τ) =
〈â†(t)â†(t + τ)â(t + τ)â(t)〉

〈â†(t)â(t)〉2 . (12.25)

For τ = 0 we use the number operator n̂ = â† â = ââ† + 1 and find

g(2)(τ=0) =
〈n̂(n̂ − 1)〉

〈n̂〉2 .

Here, all expectation values are calculated from products of operators with
their Hermitian conjugates. They are hence positive definite. In contrast to
the case of the second-order correlation function for classical fields, however,
no further general properties are found, as a consequence of for instance the
non-commutativity of the operators. We thus have

0 ≤ g(2)(τ=0) ≤ ∞. (12.26)

By comparison with Eq. (12.24) we can now give a criterion by which we
can unambigously distinguish fields with predominant classical and quantum
character:

0 ≤ g(2)
non-class.(τ=0) < 1.

Light fields which fulfil this condition are called non-classical light fields.
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Fig. 12.13 Theoretical prediction for the second-order correla-
tion function g(2)(τ) for different types of light fields. The region
0 ≤ g(2)(τ) < 1 is only accessible with non-classical light fields.
Details of the different kinds of light fields are explained in Sect. 12.6.2.

12.6.1.3 Hanbury-Brown and Twiss experiment

An important experimental concept for the observation and analysis of fluc-
tuating light fields was proposed in 1956 by the Australian astronomers
R. Hanbury-Brown and R. Q. Twiss [74]. Their set-up was stimulated by
the intention to determine the diameter of stars by analysing intensity corre-
lations in the light fields received from the same star but with two separate
telescopes. The idea was to overcome the resolution limit of conventional
telescopes which is insufficient to directly observe the size of a star. As ex-
plained in Sect. 4.4.1 the light of a star is equivalent to a point-like source, i.e. a
source with perfect transverse coherence. When the light fields received from
of a single star by two independent telescopes are superposed, interference
should take place in analogy with Young’s double-slit experiment. Also, the
interference contrast is expected to vanish once the separation of the two tele-
scopes exceeds d > λzS/2πD (see Sect. 5.3.1) where λ denotes the wavelength
of observation, zS the distance and D the diameter of the star. For a star with
known separation then the diameter could be inferred from a measurement
of the interference contrast.

In the initial experiments it was indeed attempted to directly measure
the first-order coherence function by means of a Michelson interferometer
(Sect. 5.4), i.e. by directly observing the interference of the fields received
by the telescopes. This method was, however, severely impaired by wave-
front disturbances caused by atmospheric turbulence relevant already at a few
metres of separation of the telescopes. The set-up by Hanbury-Brown and
Twiss overcomes this problem since the measured intensities are not sensitive
to phase disturbances and can even be compared a posteriori as a function of
delay time τ. The classic experimental scheme is shown in Fig. 12.14. The field
radiated by some light source is split and two detectors record the intensity as
a function of time. An electronic correlator (e.g. an electronic multiplier) then
calculates g(2)(τ).
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Fig. 12.14 Schematic of the Hanbury-Brown and Twiss experiment.
On the left we show the original idea of the experiment, intended to
determine the diameter of a star by means of intensity–intensity corre-
lations from two separate telescopes.
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Fig. 12.15 Hanbury-Brown and Twiss experiment with modern equip-
ment. A time-to-digits converter (TDC) records the arrival times of
photons. The analysis of the correlations is carried out a posteriori by
a computer program.

A more modern variant of the Hanbury-Brown and Twiss set-up is shown
in Fig. 12.15. In this case, the arrival times of photons are recorded. From
this record one determines the conditional probability to detect a second pho-
ton if a first one was already observed as a function of delay time (compare
Sect. 12.6.4.2 and Fig. 12.18).

12.6.2
Quantum properties of important light fields

Let us apply the concepts which we have developed for the description of the
quantum properties of optical fields to different types of light fields. In the
following, we will take isolated resonator modes or Gaussian beams with a
pure transverse TEmn-mode as a realization of quantum states of an optical
light field.
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12.6.2.1 Fock states or number states

The eigenstates |n〉k,ε of the number operator, n̂k,ε = â†
k,ε âk,ε, are called Fock

states with

n̂k,ε|n〉k,ε = n |n〉k,ε.

We have shown in Eq. (12.6) that Fock or number states4 |n〉 do not have a
definite amplitude, 〈n|Ê|n〉 = 0. The average photon number, on the other
hand, is uniquely defined, n = n. This is confirmed by the vanishing variance
Δn2 = 〈n|n̂2|n〉 − 〈n|n̂|n〉2 = 0.

For the coherence properties of the first and second-order we calculate
straightforwardly from Eqs. (12.22) and (12.25)

|g(1)(τ)| = 1
g(2)(τ) = 1 − 1/n < 1 .

The result shows that the Fock state exhibits first-order coherence. Further-
more we have strictly non-classical character because of g(2)(τ) < 1, i.e. there
is no classical analogue of this field state. Although Fock states seem to be the
natural quantum states associated with the field and number operators of the
electromagnetic field, their experimental realization is not so simple and an
active field of research.

12.6.2.2 Coherent light fields and laser light

The classical concept of an electromagnetic wave with amplitude and phase
has proven overwhelmingly successful within the wave theory of light. As
we have explained already in Sect. 12.2 there is a close formal analogy of
electromagnetic oscillations and harmonically bound particles with mass. In
1926 E. Schrödinger discovered the so-called coherent states (also Glauber states,
named after R. Glauber (born 1925, Nobel prize 2005)). With coherent states
an excellent approximation of a classical harmonic oscillator described with
amplitude and phase is obtained. This concept was applied by R. Glauber to
electromagnetic field states in the early 1960s [66].

The coherent state is constructed to be an eigenstate of the non-Hermitian
annihilation operator â (Eq. (12.4)),

â|α〉 = α|α〉. (12.27)

Seeking an expansion of this state in Fock states |n〉,
|α〉 = c ∑

n
〈n|α〉|n〉,

4) In most cases we will now drop the indices {k, ε}, which identify a
specific mode. It is in general clear which mode is meant.
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we use Eq. (12.5),

〈n|α〉 =
1√
n!
〈0|ân|α〉 =

αn
√

n!
〈0|α〉,

and find

|α〉 = c ∑
n

αn
√

n!
|n〉.

From the normalization condition 〈α|α〉 = 1 and the Taylor series ∑n |α|2n/n!
= exp(−|α|2) we can then directly give the expansion of the coherent state in
terms of Fock states,

|α〉 = e−|α|2/2 ∑
n

αn
√

n!
|n〉. (12.28)

It is not difficult to calculate the coherence properties of the coherent state:

|g(1)(τ)| = 1,
g(2)(τ) = 1.

It is obvious to use coherent states as the appropriate quantum states for the
description of laser light. Because of their enormous significance, let us collect
some important properties:

• Average photon number The average photon number is directly calcu-
lated from the definition (Eq. (12.27))

n = 〈α|n̂|α〉 = 〈α|â† â|α〉 = |α|2 and |α| =
√

n.

• Variance of the photon number We have 〈α|n̂2|α〉 = |α|4 + |α|2, and
thus one finds

Δn2 = 〈α|n̂2|α〉 − 〈α|n̂|α〉2 = |α|2 or Δn =
√

n.

• Coherent states are almost orthogonal It is not surprising that the co-
herent states are not orthogonal because they are eigenstates to a non-
Hermitian operator. However, for reasonably large α and β they are
almost orthogonal; the factor

〈α|β〉 = exp
(
−1

2
|α|2 − 1

2
|β|2 + α∗β

)
vanishes rapidly, if α and β are just slightly different.
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• Minimum uncertainty states, phase and amplitude One can show that
the variances of the quadratures of the electromagnetic field, X̂ and Ŷ
(see Sect. 12.2). [175] are independent of the amplitude of the coherent
state, α = |α|eiφ. Thus the coherent state should be considered the quan-
tum analogue of the classical field with amplitude and phase.

• Photon number distribution The probability to find n photons in a
given mode of the radiation field (i.e. to record a certain number of
counts in a certain time interval) is

pn = Δn2 = 〈n|α〉 = exp (−|α|2) |α|
2n

n!
= exp (−n)

nn

n!
.

This distribution corresponds precisely to the Poisson distribution.

12.6.2.3 Thermal light fields

A thermal light field – the type of light field for more or less all natural light
sources, also called chaotic light field – may be represented by its photon num-
ber distribution,

pn =
nn

(1 + n)1+n , (12.29)

where n is the average photon number. Experimental observation with an
incandescent lamp is quite difficult, though. The typical time scale of fluc-
tuation is characterized by the coherence time τc of the light source which is
roughly inversely proportional to the bandwidth of the light source. For a
white spectrum lamp this would require detectors to operate at the scale of a
few optical cycles in the femtosecond domain. At large averaging times on the
other hand, when rapid fluctuations are averaged out, the distribution (12.29)
approaches the Poissonian distribution valid for coherent states only.

The average photon number has been fixed by definition of (12.29), and the
variance of the field is calculated from this distribution,

〈n̂〉 = n and Δn2 = n2 + n.

One can furthermore show [118] that the first-order coherence functions for
the two most important spectral line shapes, Gaussian and Lorentzian, with
bandwidths Δω � τ−1

c are given by

g(1)(τ) = exp (−iωτ − (τ/τc)2/2) Gaussian shape,
g(1)(τ) = exp (−iωτ − |τ/τc||) Lorentzian shape.

The first-order coherence function is indeed identical for the classical and the
quantum description of thermal fields.
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An interesting relation can be shown for the second-order coherence func-
tion of a fluctuating chaotic light field [118]:

g(2)(τ) = 1 + |g(1)(τ)|2.

The special case τ = 0 yields for a light field showing perfect first-order co-
herence for short times

g(2)(τ=0) = 2.

This situation is called bunching. It was demonstrated with a so-called pseudo-
thermal light field [5]. It is discussed in Sect. 12.6.4.1 and shown in Fig. 12.17.

12.6.3
Photon number distribution

In an experiment, the photon number distribution is measured by recording
the number of photons, or more precisely the number of photo-electrons, gen-
erated in a detector as a function of the time interval T. In the experiment it
is furthermore important to select a single spatial mode of the radiation field,
too. For a laser beam this is simply the Gaussian beam, e.g. a TEM00 mode.
From an extended thermal source one has to equivalently select a sufficiently
small (point-like) surface area by apertures to warrant transverse coherence
(see Sect. 5.3.1, resulting in low intensity. From repeated measurements the
distribution of occurrences, i.e. the histogram in Fig. 12.16, can be extracted.

As mentioned above, the experimental observation of the distinctions be-
tween different types of light fields is challenging due to the fluctuations
which are inversely proportional to the bandwidth of the light source. Hence
they occur at very short time scales in particular for thermal sources. The
interesting part of the information is then easily averaged out for longer in-
tegration times T � τ of the detector. In Sects. 10.3.1 and 10.3.2 we have
already noted that laser light and thermal light have no measurable difference
with conventional set-ups and detectors.

Already in the early days of the laser so-called pseudo-thermal light sources
were used to simulate the fluctuations of a thermal light beam by manipulat-
ing a coherent laser beam. In the experiments by Arecchi and coworkers [4]
laser light was focused for this purpose onto a rotating ground glass disc. At
rest, diffraction and scattering from the rough surface of the disc causes the
speckle pattern that was described in Sect. 5.9. For a rotating disc, the inten-
sity at the detector shown in Fig. 12.16 fluctuates at an ever higher rate with
the rotation speed of the glass disc. Controlling the rotation speed and for
the conditions described in Fig. 12.16, allows one to set the effective coherence
time of the transmitted light to some 50–1000 μs which is a convenient domain
for experiments.
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Fig. 12.16 Photon number distribution for a (pseudo-)thermal and for
a coherent laser beam. In this experiment from 1965 a HeNe laser
was used as the light source. The pseudo-thermal light was generated
by focusing the HeNe laser beam onto a 20 μm diameter spot on a
rotating ground glass disc with typical length scale 3 μm of the random
surface structure. After [4].

Incidentally, E. Purcell [142] had predicted before that these noise properties
should also be compatible with the fluctuations of classical thermal and even
laser light sources. The experiments by Arecchi, however, showed that the
statistical distribution of photo-electrons is correctly described by the theory
of quantum electrodynamics which was applied to this case by R. Glauber
[66].

12.6.4
Bunching and anti-bunching

12.6.4.1 Bunching

The pseudo-thermal light source which was used to measure the photon num-
ber distribution of Fig. 12.16 can also be used to experimentally determine the
coherence or correlation function of the second-order, g(2)(τ) from Eq. (12.23).
The result is shown in Fig. 12.17 for the case of laser light and again for
pseudo-thermal light. Here, the delay time τ was normalized to the effective
coherence time τ0 which was controlled by the rotation speed of the ground
glass disc.

To the right of the experimental result we show examples of series ’clicks’
of a photon counter which are interpreted as photo-electrons generated by
photons recorded with a detector. Photons from a coherent (laser) light field
are recorded at fully random times, i.e. there is no correlation, no ’memory’ of
the arrival of a previous photon. One may imagine that the photons arrive at
the detector like raindrops on a tin roof which also arrive randomly. A thermal
light field, however, shows the bunching phenomenon. Once a photon has
been recorded it is more likely to immediately receive a second photon than
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Fig. 12.17 Left: Measurement of the nor-
malized second-order coherence function
for coherent (black dots) and thermal light
sources. Pseudo-thermal light was generated
by the method shown in Fig. 12.16. The dif-
ferent symbols are associated with the rota-
tion speed controlling the effective coherence

time τ0. From [5]. Right: Examples of photo-
electron series (’clicks’) for different types of
photon statistics: (a) thermal light source; (b)
laser light source; (c) light source with anti-
bunching effect. Compare with Fig. 12.13.
After [118].

at later times. The phenomenon of anti-bunching, in contrast, describes special
light sources where the photons seem to ’repel’ each other. In this case, the
arrival times of photons are more evenly spread out, more regular than for the
fully random case.

12.6.4.2 Anti-bunching

A single atom is a very special, simple microscopic light source. In Sect. 12.5.1
we have treated its spectral properties. The so-called anti-bunching phe-
nomenon occurs in resonance fluorescence and shows a clear signature for
a non-classical light field, that is g(2)(τ) < 1. Neglecting the background the
arrival of a photon in this experiment carries the information that an atom
was excited and is now in the ground state. The experimental data shown
in Fig. 12.18 are thus a measure of the probability of finding an atom in the
excited state again if a photon was recorded at time τ before the current event.
There are two properties which are particularly conspicuous.

After subtraction of the background of random coincidences no further pho-
tons are recorded for delay time τ = 0. This observation can be interpreted
with the excitation dynamics of the atom. It must be re-excited before another
photon can be emitted. In the language of the quantum theory of measure-
ment one can also say that recording of a fluorescent photon projects or pre-
pares the atom in its ground state.

With increasing delay time τ the conditional probability to observe a sec-
ond photon shows Rabi oscillations which are damped within some 30 ns –
the lifetime of the excited state of the caesium atoms used in this experiment –
to the equilibrium value. The atom is strongly saturated in this case. The cor-
responding spectrum of resonance fluorescence (see Sect. 12.5.1) would hence
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Fig. 12.18 Left: Raw data (dots) of the rate of photon coincidences
showing anti-bunching in resonance fluorescence of a single neu-
tral caesium atom stored in a magneto-optical trap (see excursion on
p. 431) The oscillations can be interpreted in terms of Rabi oscillations.
Right: Image of a fluorescing single Cs atom (wavelength 852 nm)
taken with an ICCD camera. Exposure time 1 s. After [67].

show sidebands corresponding to the oscillations observed here in the time
domain; compare Fig. 12.9.

The first anti-bunching experiment was carried out with an extremely di-
luted atomic beam [100]. Today this experiment can be carried out with single
trapped atoms (Fig. 12.18) [67], ions [46], or also solid-state sources [108, 152],
which do not need extensive equipment for storage of single microscopic par-
ticles. For the observation of anti-bunching it is mandatory to prepare an in-
dividual microscopic system such as a single atom or ion. In an ensemble of
N fluorescing atoms the rate of random coincidences grows like N(N − 1),
hence the anti-bunching signal vanishes rapidly within the background.

12.7
Two-photon optics

In previous sections we have studied photon correlation phenomena which
uncover information about the fluctuation properties of light fields. A typical
experiment measures photon coincidences as a function of delay time, and
the typical separation of two individual photons must be large enough (at
least tens of picoseconds) to be measurable with the experimental equipment.
Although there exist correlations between photons it remains impossible to
predict the arrival time of an individual photon at the detector.

Deterministic experimental control of single photons requires exactly that:
a light sources that allows the generation of a single photon states at a well-
defined instant in time, and propagation of this photon state from one point
to another. Such deterministic single-photon sources are very desirable devices
and an active field of laboratory research which in the future may offer tech-
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nically robust solutions. Since about 1995 efficient two-photon sources have
been available offering devices where loosely speaking pairs of photons are si-
multaneously generated but propagate in spatially well-separated directions.
The photon pairs – more precisely one should speak of a two-photon quan-
tum state – are still generated at random. Since they travel on different paths,
however, detection of one of the photons may serve as a flag to indicate the
presence of the other one.

The experimental realization of two-photon sources has made numerous
experiments possible where the quantum properties of the two-photon state
can be used very efficiently today. One example is the field of quantum cryp-
tography which allows fundamentally secure transmission of messages. The
development of two-photon light sources relying on spontaneous parametric
down-conversion was one of the achievements of L. Mandel (1927–2001), one
of the pioneers of quantum optics.

12.7.1
Spontaneous parametric fluorescence, SPDC sources

Spontaneous parametric fluorescence or spontaneous parametric down-conversion
(SPDC) may be considered the elementary process of the parametric oscilla-
tor which is discussed in detail in Sect. 13.6. Here we restrict ourselves to
a grossly simplified description. In a nonlinear material driven by a strong
monochromatic laser field (frequency ω0), a polarization is induced which
causes fluorescence of photon pairs with frequencies (ω1, ω2). Of course, the
material must be transparent for all relevant wavelengths. In a simplified
interpretation the conditions for photon pair production to be fulfilled are:
conservation of energy (h̄ω0 = h̄ω1 + h̄ω2) and momentum (’phase match-
ing’) in the crystal h̄k0 = h̄k1 + h̄k2:

ω0 = ω1 + ω2,
(n0ω0/c) e0 = (n1ω1/c) e1 + (n2ω2/c) e2.

In isotropic media it is impossible to meet all conditions simultaneously be-
cause of dispersion. For normal dispersion we have typically 2n0 > n1 + n2.
A solution is offered by birefringent materials (for details see Sect. 13.4.3). For
type I configuration both fluorescence photons have orthogonal polarization
with respect to the driving light field. For type II their polarizations are mutu-
ally parallel and orthogonal. Momentum conservation requires a small angle
between the directions of emission which is exaggerated in Fig. 12.19.

The geometry of phase matching for SPDC fluorescence is schematically
shown in Fig. 12.19. The nonlinear crystal is driven with a focused beam of
short-wavelength laser light. For symmetry reasons the allowed directions of
the fluorescence photons form a conical surface. For the type I configuration
the indices of refraction of the two colours ω1 and ω2 differ only slightly due



476 12 Photons – an introduction to quantum optics

�I�I

.�$

��

��=�:

.�$ ��

=�2=

Fig. 12.19 Spontaneous parametric down-conversion for type I phase
matching. For historical reasons the two fluorescence photons are
labelled signal (sig) and idler (id) photon. OA: Optical axis.

to dispersion, and the cones are perfectly superposed for the degenerate case
ω1 = ω2. In order to filter individual colours out of the rainbow-like spec-
trum one can use interference filters or apertures. A case of particular interest
occurs if two photons with identical colour are emitted. Such photons which
can be prepared by an interference filter at twice the wavelength of the pump
laser can interfere with each other.

With this two-photon SPDC source numerous experiments were carried out
which occasionally stretch our imagination [160]. Here we focus our attention
on the experiment by Hong, Ou and Mandel [83], which was the first one to
demonstrate the interference properties of the two photons. Later on we will
introduce the extended two-photon source invented by P. Kwiat and cowork-
ers [109]. Within only 10 years it has become a standard photon light source
in quantum optics. It is more and more simply called an SPDC source.

12.7.2
Hong–Ou–Mandel interferometer

The interferometer set-up conceived by L. Mandel and his coworkers is shown
in Fig. 12.20. The two photons generated by the SPDC source are superposed
on the beam splitter (BS) in analogy with a Michelson interferometer. A detec-
tor in each exit records the arrival of photons. A valid coincidence is recorded
only if a valid event has taken place simultaneously in both arms, i.e. if and
only if the two photons are distributed onto the two detectors.

The rate of coincidences is measured as a function of the difference in path
length taken by the photons on their route to the beam splitter. Here, the beam
splitter itself (BS in Fig. 12.20) is slightly displaced for this modification. The
apertures and the interference filters serve to single out indistinguishable flu-
orescence photons with identical colour. The result – the rate of coincidences
as a function of the path difference – is shown in Fig. 12.21.
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Fig. 12.20 Two-photon interferometer after Hong, Ou and Mandel.
SPDC: spontaneous down-conversion source for the generation of
photon pairs, see Fig. 12.19; BS: beam splitter; AP: apertures; IF:
interference filter; Det: detectors.

The rate of coincidences shows a sharp drop when the path length for the
two photons is identical, i.e. at zero path difference. In this case the two
photons arrive simultaneously at the beam splitter. Since no coincidences are
found, they must have travelled together in either of the two arms, activating
only one of the detectors. If the photons arrive separately at the detector, they
are transmitted with 50% probability into either of the two arms. Thus we
expect to find coincidences in 50% of all possible cases.

Let us consider a simple model for the interference effect of Fig. 12.21.
On arrival of a photon wavepacket in state |01〉0 a departing wavepacket
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Fig. 12.21 Left: Coincidence rate as a function of the beam splitter po-
sition (BS in Fig. 12.20), in the Hong–Ou–Mandel interferometer. After
[83]. Right: Designations of the quantum field states in Fig. 12.20.



478 12 Photons – an introduction to quantum optics

(|01〉1 + |10〉1)/
√

2 is generated at the beam splitter. A wave packet arriving
in state |10〉0 is transformed into (|01〉1 − |10〉1)/

√
2, since the reflection at the

beam splitter takes place at the thicker and the thinner medium, respectively.
With field operators

â†
1|00〉1 = |10〉1 and â†

2|00〉1 = |01〉1

we can describe the transformation of the incoming single-photon states by
the 50 : 50 beam splitter into the outgoing photon states by

ŝ1 = (â†
1 + â†

2)/
√

2 and ŝ2 = (â†
1 − â†

2)/
√

2.

Two-photon states arriving simultaneously at the detector can then be de-
scribed by the product operator ŝ1 ŝ2, and we find the new two-photon state
for perfect interference,

ŝ1 ŝ2|00〉1 = {(â†
1)

2 − (â†
2)

2}|00〉1/2 = (|20〉1 − |02〉1)/2 .

Quantum interference obviously causes both photons to propagate either in
one or in the other arm, but definitely not distributed into the two arms. This
interpretation precisely agrees with observation, the now so-called Hong–Ou–
Mandel dip in Fig. 12.21. The interference is only perfect for exact temporal
coincidence of the photons at the beam splitter. If the wave packets do not
overlap, the photons do not meet at the beam splitter. Then, each photon is
transmitted with 50% probability into the two interferometer arms, yielding a
coincidence measurement in 50% of all possible cases.

Finally, we have to explain the effective length of the photon wave packets.
The interference contrast in Fig. 12.21 vanishes for a path length difference of
Δx/2 = 16 μm (the factor of 2 takes into account that the displacement acts
on both arms) corresponding to a delay time Δτ = Δx/c � 100 fs. This time
corresponds to the (inverse) spectral width of the interference filters which
were used for the preparation of photons of identical colour.

12.8
Entangled photons

12.8.1
Entangled states according to Einstein–Podolski–Rosen

One of the best known – and very often mis-understood – paradoxes in
physics is the EPR paradox which was named after the authors of a famous
publication from 1935, A. Einstein, B. Podolski and N. Rosen [53]. Up till
the 1990s this topic was preferentially considered a curiosity rather than an
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important discovery in physics. This situation prevailed even though theoret-
ical work by J. Bell [16] had pointed out that the predictions by Einstein and
his colleagues, motivated by classical interpretations of physics, could be cast
into a theory with quantitative predictions distinguishing the quantum and
the classical world. A first experimental test was realized with the work by
A. Aspect and his coworkers in 1981 [9] which confirmed the prediction of
quantum theory and further shattered classical interpretations.

Let us now introduce the EPR paradox itself and the role of entanglement.
Its significance for optical experiments was significantly boosted in 1995,
when the already mentioned extended parametric two-photon source [109]
was announced. It allows efficient generation of entangled photon pairs, i.e.
two-photon states exhibiting pure quantum correlations. Ground-breaking
experiments including quantum communication and quantum teleportation
have become possible with this source.

12.8.1.1 The Einstein–Podolski–Rosen (EPR) paradox

Einstein never questioned the overwhelming success of quantum theory, nor
its potential to correctly predict the outcome of physical experiments. How-
ever, he was never satisfied with the wave function description and its prob-
abilistic interpretation. Apparently he was especially irritated by the uncer-
tainty relation. This states that the expectation values of quantities which are
represented by non-commuting operators such as position and momentum,
(x̂, p̂), or the components of a spin, σ̂ = (σ̂x, σ̂y, σ̂z), can never be predicted
with exact certainty. Measurement of one of the quantities seems to always act
back on the other one, lending some probabilistic character to that measure-
ment. Einstein considered quantum physics incomplete. He argued that there
should be some super theory reproducing the results of quantum mechanics
but in a fully deterministic way. As a consequence he created the following
requirements which a physical theory should obey:

If, without in any way disturbing a system, we can predict with certainty
(i.e., with probability equal to unity) the value of a physical quantity, then
there exists an element of physical reality corresponding to this physical
quantity. [53]

With a simple two-particle system Einstein and his co-authors constructed
a highly interesting physical situation with the only intention to point out the
contradictory nature of quantum theory. With correlated two-particle systems,
it seemed that the limitations of the uncertainty principle imposed on the ex-
pectation values of conjugated physical quantities could be lifted. A simpli-
fied physical example which is today the conceptual basis for most experi-
ments (Fig. 12.22) was introduced by D. Bohm [24]. It is based on a molecule
such as Hg2 which consists of two spin-1/2 atoms (two-level atoms with the
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Fig. 12.22 Gedanken experiment by Bohm and Aharonov [24] illustrat-
ing the idea of the EPR paradox. Two inhomogeneous magnetic fields
are used to determine the value of the spin components by means of
a Stern–Gerlach experiment. In quantum optics, this experiment is re-
alized with entangled photons. Then, the Stern–Gerlach magnets are
replaced with polarizers.

only internal degree of freedom described by the spin-1/2 operators σ1,2) for
atoms 1 and 2. The molecule has total spin 0. Thus the total spin wave func-
tion of the (singlet) system can be written

ΨEPR =
1√
2

(ψ+(1)ψ−(2)− ψ−(1)ψ+(2)) , (12.30)

where ψ+(1) defines the ’spin-up’ quantum state of atom 1 with spin +h̄/2
and with ψ−(2) for atom 2 correspondingly. When the system is dissociated
the particles separate from each other but the total angular momentum and
hence the quantum state described by (12.30) are preserved. In Fig. 12.22 atom
1 moves towards detector A, atom 2 towards B. Once the atoms have travelled
some distance no direct interaction is possible.

If we analyse the spin components of the system with two analysers, for in-
stance with the Stern-Gerlach magnets (A and B in Fig. 12.22), with coordinate
systems {eA}, {eB} both parallel to the z-direction, we expect perfect correla-
tion: If a measurement for atom 1 in the {eA} direction results in ’+’ (’−’),
the result for atom 2 is predicted to be ’−’ (’+’), without any uncertainty and
exactly as demanded by Einstein. Such correlations are actually well-known
from everyday life: Consider two little balls instead of the two-spin system, a
white and a black one. Put one of them into your left trouser pocket, the other
one into your right pocket. After a while you have completely forgotten which
ball resides in which pocket. But taking out one of the balls instantaneously
also defines the result for the other pocket – without any mutual disturbance
of these ’measurements’.

The problem becomes interesting when the analysers, the measurement ap-
paratus, no longer employ identical basis systems. For instance one could use
for {eB} the x axis which is orthogonal to {eA}. According to Einstein’s ar-
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gument a measurement at B would then instantaneously also imply the value
for the x component of atom 1 spin at A – in striking contrast to the predic-
tion of quantum mechanics which inhibits this measurement because of the
non-commutativity of the spin component operators. Einstein’s assumption
of the lack of completeness in quantum mechanics initiated D. Bohm to de-
velop a theory of so-called hidden variables [23, 24] with the idea of lending
deterministic character to quantum theory.

The gedanken experiment of Bohm does not rely on the application of a
molecular or atomic system. The concept can perfectly be realized with any
quantum two-level system. In quantum optics, for instance, photon pairs with
entangled polarization states are well suited to realize a quantum state consis-
tent with Eq. (12.30). A source of entangled photon pairs now employed in
numerous applications is presented in Sect. 12.8.4.

12.8.2
Bell’s inequality

For more than 30 years the EPR paradox was considered a mere curiosity.
Only when J. Bell in 1964 published the inequality now bearing his name [16]
was the route opened to create experimental situations which could quantita-
tively, by laboratory measurements, distinguish quantum theory from deter-
ministic theories with hidden variables.

The spin components σ̂1,2 are measured with analysers A and B, i.e. by the
scalar products σ̂1 · eA and σ̂2 · eB, respectively. In addition we assume that
there is an additional parameter or set of parameters which we call λ. For a
two-level system, the measurement can only have the results

A(eA, λ) = ±1, B(eB, λ) = ±1 . (12.31)

If we call ρ(λ) the probability distribution of λ, we can calculate the expecta-
tion values of the measurements E(eA, eB) from

E(eA, eB) =
∫

dλ ρ(λ)A(eA, λ)B(eB, λ) , (12.32)

provided that B cannot depend on eA and A not on eB. Furthermore we
can make use of the strict anti-correlation for parallel analysers, A(eA, λ) =
−B(eA, λ). Thus we also have

E(eA, eB) = −
∫

dλ ρ(λ)A(eA, λ)A(eB, λ) .

If we introduce yet another base unit vector eC, we can write

E(eA, eB) − E(eA, eC)=

= −
∫

dλ ρ(λ) (A(eA, λ)A(eB, λ) − A(eA, λ)A(eC, λ))

=
∫

dλ ρ(λ)A(eA, λ)A(eB, λ) (A(eB, λ)A(eC, λ) − 1) ,
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where he have inserted A(eB, λ)A(eB, λ) = 1 because of (12.31). The result
of the measurement A(eA, λ)A(eB, λ) cannot be smaller than −1. Thus the
inequality

|E(eA, eB) − E(eA, eC)| ≤
∫

dλ ρ(λ) (A(eB, λ)A(eC, λ) − 1)

must hold. With the definition (12.32) we finally obtain Bell’s inequality,

1 + E(eB, eC) ≥ |E(eA, eB) − E(eA, eC)|. (12.33)

The quantum mechanical expectation value EQ can be calculated explicitly for
the singlet state (12.30), yielding

EQ(eA, eB) =
∫

dV Ψ∗(σ̂1 · eA)(σ̂2 · eB)Ψ = −eA · eB .

We consider the special case eA · eB = 0, eA · eC = eB · eC = 2−1/2, and
by insertion into (12.33) we find

1 − 2−1/2 = 0.29 ≥ |0 + 2−1/2| = 0.71.

The result is manifestly different for quantum theory and hidden variables
theories!

12.8.3
Bell’s inequality and quantum optics

The orthogonal polarization states of photons had already caught D. Bohm’s
attention as a good candidate for two-state systems applicable in a test of Bell’s
inequality. The first optical experiments [9] were carried out in 1981 with
pairs of photons which were generated in a cascading decay of two subse-
quent atomic transitions. Since then experiments demonstrating the violation
of Bell’s inequality have been made more and more stringent. One reason for
this effort is the existence of so-called loopholes which reduce the significance
of an experiment, for instance the finite detection probability of the detectors.
This discussion has not been completed and exceeds the scope of the present
text. Here we restrict ourselves to the presentation of modern experimental
concepts.

From the very beginning of experimental studies of Bell’s inequalities in
most experiments a variant was analysed which had been proposed 1969 by
Clauser and coworkers [34]. They introduced a version which is tolerant with
respect to imperfections of the detector. Thus the condition Eq. (12.31) is ex-
pressed less rigorously:

|A(eA, λ)| ≤ 1, |B(eB, λ)| ≤ 1 . (12.34)
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One can show (see Prob. 12.4 and [34, 42, 158]) that a theory with hidden
variables obeying these conditions must fulfil the Clauser–Horne-Shimony–
Holt (CSHS) inequality

−2 ≤ S(eA, eA′ , eB, eB′) ≤ 2 (12.35)

with the definition

S(eA, eA′ , eB, eB′) = E(eA, eB) − E(eA, eB′) + E(eA′ , eB) + E(eA′ , eB′)

following Eq. (12.32). In an experiment, the expectation values are determined
from coincidence measurements occurring with rates R++(eA, eB) etc.:

E(eA, eB) =

R++(eA, eB) − R−+(eA, eB) − R+−(eA, eB) + R−−(eA, eB)
R++(eA, eB) + R−+(eA, eB) + R+−(eA, eB) + R−−(eA, eB)

.
(12.36)

Quite often the experimental set-up helps to simplify this relatively complex
form. For instance, the results do not depend on a specific orientation eA,B,
but only on the relative angle eA · eB = cos α.

12.8.4
Polarization entangled photon pairs

It is not so straightforward to produce two microscopic particles which show
entanglement, i.e. a non-factorizable quantum state like Eq. (12.30)5 with non-
local character. In 1995 P. Kwiat and his colleagues [109] created an extended
concept of the SPDC sources described in Sect. 12.7.1 which serves now as a
robust source of entangled photon pairs.

The fundamental concept is shown in Fig. 12.23. In contrast to the source
from Fig. 12.19 in this case type II phase matching is employed which pro-
duces photon pairs with orthogonal polarization states. The optical axis is
no longer orthogonal to the direction of propagation. It is tilted by an angle
which is close to the angle required for collinear phase matching (see details in
Sect. 13.4.3.1). Here one can obtain a situation where the ordinary and the ex-
traordinary fluorescence light is emitted into two cones with diverging axes.
The cones thus intersect at exactly two points where both polarizations ex-
ist. If one furthermore uses an interference filter to prepare photon pairs with
identical colour, the emitted photons are fully indistinguishable. They form a

5) There exist numerous natural entangled states in Nature, e.g. the
singlet ground state of the He atom corresponds to an entangled
state of its two electrons. However, this entanglement is not use-
ful for controlled applications since it is impossible to individually
manipulate the electrons.



484 12 Photons – an introduction to quantum optics

������������

��������

�I�I
F

B

�I�I

��

=�2=

.�$

��=�::

B

F

Fig. 12.23 Generation of polarization entan-
gled photon pairs by spontaneous parametric
downconversion; compare Fig. 12.19. Left:
Geometry of phase matching: the upper cone
has extraordinary (V) and the lower one or-
dinary (H) polarization. Middle: Photograph
of spontaneous fluorescence looking straight

into the crystal. O.A.: Optical axis. (After
[109] and with permission by A. Zeilinger.)
Right: Photon pairs emitted into the lined
cross-sections of the extraordinarily and the
ordinarily polarised cones exhibit entangle-
ment.

quantum state

|ΨEPR〉 =
1

2−1/2

(
|H〉1|V〉2 + eiφ|V〉1|H〉2

)
,

which corresponds precisely to the EPR state suggested by D. Bohm. Since the
photons propagate into different directions one can use retarder plates (e.g.
λ/2, see Sect. 3.7.3) to generate further EPR states, for instance (|H〉1|H〉2 +
eiφ|V〉1|V〉2)/

√
2. With the present source one can generate entangled photon

pairs at a rate of several 100 kHz and straightforwardly take advantage of the
quantum nature of the photon pairs with so-called Bell experiments.

12.8.5
A simple Bell experiment

The simple set-up shown in Fig. 12.24 agrees very well with the concept of
Bohm presented in Fig. 12.22. Today, blue laser diodes (Sect. 9.2.1) offering
some 10 mW output power are sufficient to generate a comfortable rate of
two-photon pairs from an SPDC source and realize a Bell experiment with
relatively simple means.

The result and shape of the correlation or coincidence measurements is
shown in Fig. 12.25. The SPDC source emits photon pairs with entangled po-
larizations with orientations defined by the axes of the SPDC nonlinear crys-
tal. The first analyser is oriented in a fixed position with respect to these axes.
At the 0◦ position of the λ/2 plate photons of the first light ray are detected in
a (0◦, 90◦) base, at 22.5◦, however, with (45◦, −45◦) base axes.

If we rotate the λ/2 retarder plate for the second light ray by an angle α, one
expects a variation of the coincidence rate ∝ sin2 α. For identical orientation of
the base sets no coincidences can be found at all because of the anti-correlation
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Fig. 12.24 Experimal set-up [171] for the measurement of polariza-
tion correlations of entangled photon pairs. LD: laser diode; SPDC:
SPDC source of photon pairs; M: mirrors; PA: polarization analyser,
consisting of a rotatable λ/2 plate and a polarizing beam splitter; PD:
photodetector operated in counting mode.

of horizontal and vertical polarization. At α = 45◦ we find the maximal possi-
ble rate of coincidences. In Fig. 12.25 the sin2 variation with α is shown. The
same dependence is also found for the case φ = 22.5◦ which is an immediate
consequence of entanglement already.

A central result of the CHSH inequality (Eq. (12.35)) – the physical interpre-
tation of the measured quantity corresponds to an attempt to quantitatively
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Fig. 12.25 Polarization correlations of photon pairs which are mea-
sured in two different sets of bases. The axes of the bases for the
SPDC source and analyser 1 (PA1) are indicated above the graphs;
see Fig. 12.24. After [171].
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grasp a measure of entanglement – can be obtained from measurements for
special orientations of the polarizer. A strong violation of the inequality is
expected for base orientations (a, a′, b, b′) = (45◦, 0◦, 22.5◦, −22.5◦). For this sit-
uation one calculates for the expectation value from quantum theory a result
which maximally violates the inequality:

SQM = 2
√

2 = 2.82 ≥ 2.

The result of the analysis of the experimental data from [171] yielded Sexp =
2.732 ± 0.017. This value violates any theory with hidden parameters by 40
standard deviations. It indicates the validity of quantum physics and renders
non-locality an implicit element of physical reality.
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Problems

12.1. ’Dressed states’ and three-level atom In Fig. 12.26 a three-level system
is shown which couples the two ground states |g1〉, |g2〉 with two laser light
fields E1,2 to the excited level |e〉. Use the Rabi frequencies Ω1,2 = d1,2E1,2/h̄ as
measures for the coupling strength. Laser 1 will be tuned across the resonance
(laser frequency ωL1 = ω1 + δ), the frequency of laser 2 is firmly set at exact
resonance, ωL2 = ω2. Determine the position of the energy levels using the

Q

Q$�
Q$�

A�
� �

A�

Fig. 12.26 Three level system with two driving light fields.

dressed-atom model (Sect. 12.4.1) as a function of detuning δ. For this purpose
the dressed-atom model is extended to three levels. Show that for perfect
resonance (δ = 0) a so-called dark state occurs which no longer couples to the
driving light fields.

12.2. Light-sensitive fireworks A manufacturer takes a new product to the
market: firecrackers which are ignited on exposure to light. The fuses are so
sensitive that a single photon suffices for ignition. Unfortunately an entire
shipment of functioning firecrackers is mixed up with a shipment of malfunc-
tioning samples.
In order to save at least part of the
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Fig. 12.27 Mach–Zehnder interferometer
for single photon detection. M: mirrors;
FC: firecracker; BS: beam splitters.

shipment a quantum optician proposes
the following test: The firecrackers are
placed into one arm of a Mach–Zehnder
interferometer (MZI, Fig. 12.27) where
they are exposed to a very dilute light
beam corresponding to isolated pho-
tons. The empty MZI is symmetrically
aligned, such that by interference all
light is detected in exit 1. The malfunc-
tioning fuse will not cause any modifi-
cation of the propagating light beam. A
functioning fuse, however, absorbs the light beam and fires the cracker. Which
events are registered by the detector? Show that 50% of the functioning fire-
crackers are ignited, 25% are falsely identified as malfunctioning, and 25% are
correctly sorted out as functioning devices.
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12.3. Transformation of Bell states An SPDC source generates pairs of polar-
ization entangled photons (Sect. 12.8.4) which are emitted in the singlet state
ΨEPR = (|H〉1|V〉2 + eiφ|V〉1|H〉2)/

√
2. Which optical elements can be used to

transform them to other entangled (non-factorizable) quantum states?

12.4. Clauser–Horne–Shimony–Holt (CSHS) inequality Suppose the expec-
tation value s of a correlation measurement of the components of two spin-1/2
particles by two different Stern–Gerlach analysers A and B with orientations
{eA, eB} depends on a hidden parameter λ with

s(eA, eA′ , eB, eB′) =

A(eAλ)B(eB, λ) − A(eAλ)B(eB′ , λ) + A(eA′λ)B(eB, λ) + A(eA′λ)B(eB′ , λ).

Show that for {A(eAλ), B(eB, λ)} = ±1 only the values s = ± 2 are possible.
Define the ensemble average using Eq. (12.32) through

S(eA, eA′ , eB, eB′) = E(eA, eB) − E(eA, eB′) + E(eA′ , eB) − E(eA′ , eB′).

Show that the condition

−2 ≤ S(eA, eA′ , eB, eB′) ≤ 2

must hold for theories with hidden variables λ. Furthermore, calculate the ex-
pectation value according to quantum mechancis for the singlet state (12.30);
see Sect. 12.8.2, too.
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Nonlinear optics I: optical mixing processes
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Fig. 13.1 A nonlinear polarization Pnl is generated in a dielectric ma-
terial at large intensities, in addition to linear interactions. It acts as the
source of a new electromagnetic field Enl, which acts back onto the
polarization.

Up to now we have mostly considered polarizations connected linearly with
the driving field. The theory of the linear response was completely sufficient as
long as only classical light sources were available. Since the invention of the
laser, we have been able to drive matter so strongly that, besides linear con-
tributions to the polarization (like in Eq. (6.13)), nonlinear ones also become
noticeable.

13.1
Charged anharmonic oscillators

We can modify the classical model of Sect. 6.1.1 to obtain a simplified micro-
scopic model of the properties of nonlinear interactions of light and matter.
For this purpose, we add a weak anharmonic force mαx2 to the equation of
motion of the linear oscillator. This model reflects, for example, the situation
of the potential of a charge in a crystal with a lack of inversion symmetry. At
the same time we neglect the linear damping by absorption and scattering,
which are undesired for the application and the study of nonlinear processes
and, as we will see, make the formal treatment even more complex. So we
consider the undamped equation

ẍ + ω2
0x + αx2 =

q
m
E cos(ωt).
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Fig. 13.2 Charged oscillator in an anharmonic potential. By the anhar-
monic motion, the harmonics of the driving frequency ω are excited. In
a real crystal, x(t) has to be replaced by an appropriate normal coordi-
nate.

We now seek a solution x(t) = x(1)(t) + x(2)(t) with x(1) as the already known
linear part, x(1)(t) = xL cos(ωt).1 The amplitude is xL = qE/m(ω2

0 − ω2) and
the small nonlinear perturbation (|x(2)| � |x(1)|) approximately fulfils the
equation

ẍ(2) + ω2
0x(2) = −α[(x(1))2 + 2x(1)x(2) + · · · ] � −αx2

L cos2(ωt).

We now split the nonlinear polarization into a constant and a term oscillat-
ing at twice the frequency of the driving field 2ω,

x(2) = x(2)
DC + x(2)

2ω .

We find the solution

x(2)
DC = − αx2

L
2ω2

0
,

x(2)
2ω = − αx2

L
2(ω2

0 − 4ω2)
cos(2ωt).

The first term describes the shift of the mean position of the charge caused
by the asymmetry of the potential. Thus the optical wave causes a constant,
macroscopic polarization of the sample, which we can as well interpret as
‘optical rectification’ or as ‘inverse Kerr effect’ (see Sect. 3.8.1).

The second term describes the first harmonic of the charge at frequency 2ω.
For suitable conditions, which will be discussed in more detail in Sect. 13.4
on frequency doubling, the sample emits a coherent electric field at this fre-
quency!

1) In transparent materials the electronic resonances are far away and
we can neglect the absorptive contribution (∝ sin ωt) to a good
approximation.
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In analogy with the linear case, we can introduce a nonlinear susceptibility
describing nonlinear light–matter interaction. It causes a harmonic wave at
frequency 2ω and is connected with a new polarization at this frequency,

P2ω(t) = − α(q/m)2

2(ω2
0 − ω2)2(ω2

0 − 4ω2)
E2 cos(2ωt).

We thus obtain a nonlinear susceptibility

χ(2ω) = − 1
ε0

α(q/m)2

2(ω2
0 − ω2)2(ω2

0 − 4ω2)
. (13.1)

It is interesting to note that it shows a resonance at ω0 = 2ω which may be
interpreted through two-photon absorption.

13.2
Second-order nonlinear susceptibility

We can generally describe the response of a sample to one or more optical
waves by means of nonlinear susceptibilities. In the following we only con-
sider monochromatic electric fields, which we split into positive and negative
frequency parts using the complex notation,

E(r, t) = (E(+) + E(−))/2,
E(+)(r, t) = E e−i(ωt−kr),
E(−)(r, t) = (E(+)(r, t))∗,

and correspondingly for the dielectric polarization P(±). If the field is linearly
polarized, the amplitude is calculated from

|E | =

√
I

ncε0
,

because, in this definition, |E|2 = E(+)E(−). The linear relation of field
strength and polarization is already known from Eq. (6.15). In order to avoid
the elaborate presentation using the convolution integral, we symbolize it here
by the � sign,

P(r, t) = ε0χ(1) � E(r, t).

Furthermore we use an additional superscript index ‘(1)’ to identify the lin-
ear or first-order contribution. In the most important case of monochro-
matic fields, a simple product is recovered from the temporal convolution
(Eq. (6.15)).
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At high field intensities the nonlinear contributions of the polarization also
lead to perceptible effects,

P(r, t) = Plin(r, t) + PNL(r, t)

= ε0[χ(1) � E(r, t) + χ(2) � E(r, t)� E(r, t) + · · · ].
Terms of second order and higher are the topics of nonlinear optics; they
are also called ‘nonlinear products’. In general, the interaction is anisotropic

(χ(1) = χ
(1)
ij , χ(2) = χ

(2)
ijk , etc., {i, j, ...} = {x, y, z}) and depends on the indi-

vidual vector components; thus nonlinear products for all the relevant field
components can occur ((E � E)ij = Ei � Ej, etc.).

13.2.1
Mixing optical fields: three-wave mixing

For each order of χ(n), a series of new frequencies is generated through the
‘mixing’ products, the e−iωit e−iωjt . . . e−iωnt terms. It is thus much simpler for
nonlinear optics to sort the contributions to the polarization by their frequency
components ω = ωi ± ωj ± . . . ± ωn. A general term for the polarization of
second order can, for instance, be given componentwise by

Pi(ω) = ∑
jk

∑
mn

χ
(2)
ijk (ω; ωmωn)Ej(ωm)Ek(ωn). (13.2)

Since in nonlinear optics a new wave is created as a result of the nonlinear
polarization we speak of three-wave mixing processes.

For a simplified one-dimensional and isotropic case (j = k), we can extract
all the frequency components of nonlinear polarization from

E(r, t)2 =

[
∑
m

(E(+)
m + E(−)

m )

]2

= ∑
i

[
(E(+)

m )2 + E(+)
m E(−)

m + 2 ∑
n =m

(E(+)
m E(+)

n + E(+)
m E(−)

n )

]
+ c.c.

Already by irradiation with just two optical waves (m = 1, 2) of different fre-
quency (ω1,2 in Eq. (13.2)) nonlinear polarizations at five different sum and
difference frequencies are produced, which act as the driving force for gener-
ation of a new wave at the mixing frequency:

P(2ω1) second harmonic frequency (1) (SHG),
P(2ω2) second harmonic frequency (2) (SHG),
P(ω1+ω2) sum frequency (SUM),
P(ω1−ω2) difference frequency (DIF),
P(ω=0) optical rectification (OR).

(13.3)
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Two field components each with frequencies ω1, ω2 generate a polariza-
tion at frequency ω. The corresponding susceptibility is characterized by the
notation

χ
(2)
ijk (ω; ω1, ω2), ω = ω1 + ω2.

The indices ‘ijk’ can represent every Cartesian coordinate from (x, y, z) and
take the tensorial character of the susceptibility into account. Therefore for
each frequency combination in principle there are 27 tensor elements in sec-
ond order.
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Fig. 13.3 Passive χ(2) processes. SUM = sum frequency generation;
SHG = second harmonic generation; DIF = difference frequency gen-
eration; OR = optical rectification.

Neglecting the Cartesian dependence for the moment, the following re-
lations can be found by splitting the polarization into Fourier components

Pi(r, t) = (P(+)
i + P(−)

i )/2 and by comparison with Eq. (13.3):

P(+)(ω=2ω1) = ε0χ(2)(ω, ω1, ω1)(E(+)
1 )2,

P(+)(ω=2ω2) = ε0χ(2)(ω, ω2, ω2)(E(+)
2 )2,

P(+)(ω=ω1+ω2) = 2ε0χ(2)(ω, ω1, ω2)E(+)
1 E(+)

2 ,

P(+)(ω=ω1−ω2) = 2ε0χ(2)(ω, ω1,−ω2)E(+)
1 E(−)

2 ,

P(+)(ω=0) = 2ε0[χ(2)(0; ω1,−ω1)E(+)
1 E(−)

1

+ χ(2)(0; ω2,−ω2)E(+)
2 E(−)

2 ].

13.2.2
Symmetry properties of susceptibility

The search for crystals with large nonlinear coefficients is a matter of contin-
ued scientific research. The symmetry properties of real crystals play an im-
portant role [27] and will be here subject to a short consideration with regard
to nonlinear optics. For the sake of simplicity, we restrict this discussion to the
second-order effects.
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13.2.2.1 Intrinsic permutation symmetry

Using two fundamental waves and one polarization wave, six different mix-
ing products can be generated if we additionally require ω = ω1 + ω2,

χ
(2)
ijk (ω; ω1, ω2); χ

(2)
ijk (ω1;−ω2, ω); χ

(2)
ijk (ω2; ω,−ω1);

χ
(2)
ijk (ω; ω2, ω1); χ

(2)
ijk (ω1; ω,−ω2); χ

(2)
ijk (ω2;−ω1, ω).

The upper row is identical to the lower one when coordinates (i, j) are per-
muted along with the corresponding frequencies,

χ
(2)
ijk (ω; ω1, ω2) = χ

(2)
ikj (ω; ω2, ω1).

13.2.2.2 Real electromagnetic fields

Since the harmonic time dependence of P(−) is connected with P(+) by re-
placement of ωi → −ωi, the following has to be valid:

χ
(2)
ijk (ωi; ωj, ωk) = χ

(2)
ijk (−ωi;−ωk,−ωj)∗.

13.2.2.3 Loss-free media

In loss-free media the susceptibility is real. Then we have

χ
(2)
ijk (ωi; ωj, ωk) = χ

(2)
ijk (−ωi;−ωk,−ωj). (13.4)

In addition, ‘complete permutation symmetry’ holds, i.e. all frequencies can
be permuted if the corresponding Cartesian indices are permuted at the same
time. For this it has to be taken into account that the sign of the commuted
frequencies has to change in order to meet the condition ω = ω1 + ω2,

χ
(2)
ijk (ω; ω1, ω2) = χ

(2)
jik (−ω1;−ω, ω2) = χ

(2)
jik (ω1; ω,−ω2).

In the last step we used Eq. (13.4). A proof of this symmetry can be based on
the quantum mechanical calculation of χ or the energy density in a nonlinear
medium.

13.2.3
Two-wave polarization

In the previous section we have seen that one or more new polarization waves
result as a mixing product of two input fields,

P(+) = ε0χ(2)(ω; ω1, ω2)E(+)
1 E(+)

2 ,

P(+)
1 = ε0χ(2)(ω1;−ω2, ω)E(−)

2 E(+),

P(+)
2 = ε0χ(2)(ω2; ω,−ω1)E(+)E(−)

1 .

(13.5)
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At the same time a new field at the frequency of the polarization wave has to
emerge, which by nonlinear interaction now itself contributes to the polariza-
tion at the already existing frequencies. This nonlinear coupling describes the
back-action of the nonlinear polarization onto the fundamental waves, e.g. the
exchange of energy. With the symmetry rules of Sect. 13.2.2, we can confirm
that for the approximation of loss-free media the χ(2) coefficients in Eq. (13.5)
are identical! In Sect. 13.3.1 we shall go further to investigate the coupling of
three waves.

13.2.3.1 Contracted notation

In nonlinear optics the ‘contracted notation’ is used very often, which at first
is defined by the tensor

dijk = 1
2 χ

(2)
ijk .

The notation is now simplified and the number of possible elements is reduced

from 27 for χ
(2)
ijk to 18 by contracting the last two indices (j, k) to a single index

l, i.e. dijk → dil. So because of the intrinsic permutation symmetry we have

jk : 11 22 33 23, 32 31, 13 12, 21
l : 1 2 3 4 5 6.

For example, the matrix equation describing frequency doubling reads with
the dij tensor

⎛⎜⎝ Px(2ω)
Py(2ω)
Pz(2ω)

⎞⎟⎠=2ε0

⎛⎜⎝ d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36

⎞⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ex(ω)2

Ey(ω)2

Ez(ω)2

2Ey(ω)Ez(ω)
2Ex(ω)Ez(ω)
2Ex(ω)Ey(ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13.6)

13.2.3.2 Kleinman symmetry

Often the resonance frequencies of a nonlinear material are much higher than
those of the driving fields. Then the susceptibilities – which typically have
forms similar to our classical model of Eq. (13.1) – depend only weakly on the
frequency and are subject to the approximate Kleinman symmetry. If further-
more the susceptibility does not even depend on the frequency, the Cartesian
indices can be permuted without permuting the corresponding frequencies
at the same time. The Kleinman symmetry reduces the maximum number of
independent matrix elements from 18 to 10.
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Fig. 13.4 Non-vanishing second-order coefficients deff for crystal
classes without inversion symmetry, represented by their standard
point symmetry group notation [27, 188]; for the crystal classifica-
tion scheme see [135]. Identical coefficients are connected by lines
(dashed: only for Kleinman symmetry). Full and open symbols indicate
opposite signs; square symbols vanish at Kleinman symmetry.

13.2.4
Crystal symmetry

A crystal with inversion symmetry cannot show any susceptibility of second
order at all. With the inversion of all coordinates, the sign of the field ampli-
tude changes as well as that of the polarization,

Pi(r) = dijkEj(r)Ek(r) r→−r−→ −Pi(r) = dijkEj(−r)Ek(−r).

Thus the inversion symmetry leads to dijk = χ
(2)
ijk /2 = 0, and from 32 crystal

classes those 11 exhibiting inversion symmetry are eliminated. The symmetry
properties of the remaining crystal classes significantly reduce the number of
non-vanishing nonlinear d coefficients that are independent of each other. In
Fig. 13.4 the non-zero coefficients for the different crystal classes are given in
the standard notation.

13.2.5
Effective value of the nonlinear d coefficient

In general nonlinear crystals are anisotropic and birefringent; indeed we are
going to detail that the asymmetry of birefringence really makes their efficient
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application possible. Frequently one finds quotations of effective values deff
depending on the so-called phase matching angles θ and φ given for the dil
coefficients, which are also tabulated [49].

13.3
Wave propagation in nonlinear media

In order to understand the propagation of waves in a nonlinear medium [30],
we first consider again the general form of the wave equation in matter,

∇ ×∇ × E(r, t) +
1
c2

∂2

∂t2 E(r, t) = − 1
ε0c2

∂2

∂t2 P(r, t).

The first term of the vector identity ∇ × ∇ × E = ∇(∇ · E) − ∇2E cannot
be removed in nonlinear optics as easily as for linear isotropic media because
∇ · E = 0 can no longer be inferred from ∇ · D = 0. Fortunately the first term
can be neglected in many cases of interest, especially for the limiting case of
planar waves:(

∇2 − 1
c2

∂2

∂t2

)
E(r, t) =

1
ε0c2

∂2

∂t2 P(r, t).

The polarization contains linear and nonlinear parts, P = P(1) + PNL. The
linear contribution has an effect only on one or more fundamental waves EF

driving the process and is taken into account through the refraction coefficient
n2 = 1 + χ(1), i.e. P(1) = ε0(n2 − 1)EF. Then a new wave equation is obtained
driven by the nonlinear polarization, PNL,(

∇2 − n2

c2
∂2

∂t2

)
E(r, t) =

1
ε0c2

∂2

∂t2 PNL(r, t).

If PNL(r, t) vanishes, the already known equation for the propagation of a
wave in a dielectric medium is found. In a dispersive medium, the refraction
coefficient depends on the frequency, n = n(ω). We now consider again each
frequency component ωi separately and also split the oscillating part from the
positive and negative polarization components,

PNL(r, t) = ∑
i
[P̃ i(r) e−iωit + P̃ ∗

i (r) eiωit]/2.

With this notation the wave equation separates into single-frequency Helm-
holtz equations and can be written as(

∇2 +
n(ω)2ω2

i
c2

)
E i(r) eikr = − ω2

i
ε0c2 P̃ i(r). (13.7)
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13.3.1
Coupled amplitude equations

To simplify Eqs. (13.8) we first consider only planar waves propagating in
the z direction. Additionally, it is generally realistic to assume again that the
amplitudes of the waves change only slowly compared with the wavelength,
or that the curvature of the amplitude is much smaller than the curvature of
the wave:∣∣∣∣∂2E (z)

∂z2

∣∣∣∣ � k
∣∣∣∣ ∂E (z)

∂z

∣∣∣∣ .

Then with

∂2

∂z2 [E (z) eikz] � eikz
[

2ik
∂

∂z
− k2

]
E (z),

the wave equation is reduced to an approximate form[
2ik

∂

∂z
− k2 +

n2(ω)ω2

c2

]
E (z) = − ω2

ε0c2 P̃(ω) e−ikz.

With k2 = n2(ω)ω2/c2 we can furthermore identify the wave vector of prop-
agation in a dielectric medium and arrive at

d
dz

E (z) =
ω2

ε0c2
i

2k
P̃(ω) e−ikz. (13.8)

Incidentally, a more exact consideration shows that not only a forward-
running but also a backward-running wave is generated, but only the
forward-running wave couples significantly to the fundamental wave ([159],
Chap. 33).

For each of the complicated wave equations from (13.7), we can therefore
draw up a simpler equation according to (13.8) replacing the polarization by
its explicit form, e.g. according to (13.5). The most important problems of
nonlinear optics can be solved with this standard method.

13.3.2
Coupled amplitudes for three-wave mixing

The nonlinear polarization is the origin of the coupling between the funda-
mental waves E1(ω1) and E2(ω2) and their mixing product E3(ω). For sym-
metry reasons the same χ(2) coefficient is valid for the nonlinear susceptibility
in all three cases; see Eq. (13.5). We introduce the abbreviation

Δk = k − k1 − k2,
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and write the polarization in the form

P̃3(z) e−ikz = 4ε0deffE1 eik1zE2 eik2z e−ikz = 4ε0deffE1E2 e−iΔkz.

It is applied to P1,2 correspondingly. The factor 4 occurs here because we have
to sum over all contributions to the polarization according to Eq. (13.2).

In order to study the evolution of amplitudes E1−3, these polarizations are
inserted into Eqs. (13.8), where for the sake of improved transparency we use
the complex conjugate of the equations for E1,2:

d
dz

E3(ω) = 2iωdeff
cn(ω) E1E2 e−iΔkz,

d
dz

E∗
1 (ω1) = −2iω1deff

cn(ω1)
E∗

3 E2 e−iΔkz,

d
dz

E∗
2 (ω2) = −2iω2deff

cn(ω2)
E1E∗

3 e−iΔkz.

(13.9)

In principle with these equations all relevant χ(2) processes can be addressed.
For passive processes, including frequency doubling, sum and difference fre-
quency mixing, and optical rectification, initial conditions E1, E2 = 0 and
E3 = 0 have to be considered; see Sects. 13.4 and 13.5. It is also possible to
understand the parametric oscillator (Sect. 13.6) using this set of equations.
It resembles an active medium in a way similar to the laser, where the initial
conditions now have the form E1, E2 = 0 and E3 = 0.

13.3.3
Energy conservation

The intensity I of a linearly polarized wave in a dielectric medium with re-
fraction coefficient n(ω) is

I = 1
2 n(ω)cε0|E|2.

By multiplying Eqs. (13.9) from the left side with the respective conjugate am-
plitudes n(ωi)cε0E∗

i /2, the Manley–Rowe relation is obtained,

1
ω

d
dz

I3(ω) = − 1
ω1

d
dz

I1(ω1) = − 1
ω2

d
dz

I2(ω2).

This describes the conservation of energy, since the expression is equivalent to

I3(ω) + I1(ω1) + I2(ω2) = 0,

which is straightforwardly shown by using ω = ω1 + ω2. This relation is
also called ‘photon conservation’, relating to an interpretation where in this
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process two photons with frequencies ω1 and ω2 are combined to make one
photon with frequency ω. One should keep in mind, however, that this is just
another expression for energy conservation. Nonlinear optics does not at all
have to invoke quantum physics for theoretical explanations here.
None the less the fact of the conservation of photon number is convenient and
helps to transform Eqs. (13.9) to normalized amplitudes

Ai =

√
n(ωi)

ωi
Ei.

The amplitude of the electromagnetic wave is now

I = cε0ω|A(r, t|2,

and we find

d
dzA3(ω) = iκA1A2 e−iΔkz,

d
dzA∗

1(ω1) = −iκA∗
3A2 e−iΔkz,

d
dzA∗

2(ω2) = −iκA1A∗
3 e−iΔkz,

(13.10)

with the material-dependent coupling coefficient

κ =
2deff

c

√
ωω1ω2

n(ω)n(ω1)n(ω2)
. (13.11)

13.4
Frequency doubling

The first important special case of the coupled amplitude equations (13.9) is
frequency doubling. It has a particularly great significance because with this
method coherent harmonics of a fundamental wave can be generated. By this
means, for example, coherent ultraviolet radiation becomes available at wave-
lengths where no tunable laser system exists. The Eqs. (13.9) are in this case
reduced to two equations due to the degeneracy of ω1 and ω1. We once again
recapitulate the form for the field intensity of the fundamental wave EFUN and
for the second harmonic ESHG,

d
dzESHG(2ω) = i2ω

cn(2ω)deffE2
FUN(ω) e−iΔkz,

d
dzEFUN(ω) = iω

cn(ω)2deffESHG(2ω)E∗
FUN(ω) eiΔkz.

Because of the degeneracy, the term for frequency doubling appears only once
in Eq. (13.2), and therefore the first equation is smaller by a factor of 2 than in
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Eq. (13.9). The so-called phase mismatch,

Δk = k2ω − 2kω =
2ω

c
(n2ω − nω), (13.12)

apparently depends on the difference of the refraction coefficients of the fun-
damental and harmonic waves. Owing to the fact that dispersion of common
materials is always present, we have n2ω = nω. For simplification we again
use normalized equations (13.10) with AFUN(ω) = (nω/ω)1/2EFUN(ω) and
ASHG(ω) = (n2ω/ω)1/2ESHG,

d
dzASHG = iκA2

FUN e−iΔkz,

d
dzAFUN = iκASHGA∗

FUN eiΔkz.
(13.13)

The coupling coefficient, κ = (2deff/c)/(ω3/n2ωn2
ω)1/2, here is also slightly

modified compared to (13.11),

13.4.1
Weak conversion

Usually only the fundamental wave enters a crystal of length �, i.e. we have
ASHG(z=0) = 0. In the weak conversion approximation, we assume that the
fundamental wave is only slightly weakened, i.e. AFUN � const. Then we
need to solve only the first equation of the system (13.13) and finally achieve
the harmonic amplitude at z = �,

ASHG = κ�A2
FUN(ω) eiΔk�/2 sin(Δk�/2)

Δk�/2
.
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Fig. 13.5 Evolution of the intensity ISHG of the second harmonic for
the limiting case of weak conversion. Only for perfect phase matching
can continuous growth of the nonlinear product be achieved. Other-
wise the radiation power oscillates between the fundamental and the
harmonic like the wave in the middle picture.
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The quantities that depend on the material are combined into the conver-
sion coefficient Γ,

Γ2 =
κ2

cε0ω
=

4d2
effω

2

c3ε0n2
ωn2ω

. (13.14)

Further, the intensity of the harmonic wave depends only on the crystal length
�, the incident intensity and the phase mismatch Δk:

ISHG = Γ2�2 I2
FUN

sin2(Δk�/2)
(Δk�/2)2 .

Depending on the magnitude of the phase mismatch Δk, it obviously oscil-
lates between the fundamental radiation field and the harmonic wave when
propagating through the crystal.

The phase mismatch according to Eq. (13.12) is |nω − n2ω| � 10−2 in typical
crystals with normal dispersion. That is why the intensity of the harmonic
oscillates with a period of a few 10 μm, which is called the ‘coherence length’,

�coh =
π

Δk
=

λ

4(n2ω − nω)
. (13.15)

Only in the case of perfect ‘phase matching’ at (nω − n2ω) = 0 does the
intensity grow continuously with crystal length,

ISHG = Γ2 I2
FUN�2. (13.16)

This relation suggests that for frequency doubling it is worth while to increase
the intensity by focusing and to make the crystal longer. Though by focusing,
as we know from the description of Gaussian beams (Sect. 2.3), a constant
intensity, a quasi-planar wave, is generated only in a narrow range around
the focus, so that a compromise between the demand for strong focusing and
long crystals has to be found.

13.4.2
Strong conversion

In the extreme case of strong conversion, the decrease of the intensity of the
pumping wave cannot be neglected any more. We consider the case of perfect
phase matching Δk = 0. In order to get real equations, let us introduce the
quantities ÃSHG = ASHG eiφ2ω and ÃFUN = AFUN eiφω with real amplitudes
Ã. Then we have

d
dz

ÃSHG = iκÃ2
FUN e−i(2φω−φ2ω),
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and we are now free to choose the relative phase of the amplitudes, for in-
stance e−i(2φω−φ2ω) = −i. As a result of energy conservation we have

d
dz

(|ASHG|2 + |AFUN|2) = 0.

Then for the case of a harmonic vanishing at the input facet at ASHG(z=0) = 0
and AFUN(z=0) = A0 (we immediately remove the ˜ marks) the real equa-
tions are:

d
dzASHG = κA2

FUN = κ|AFUN|2 = κ(A2
0 −A2

SHG),

d
dzAFUN = −κASHGAFUN.

The first equation can be solved by standard techniques and results in

ASHG(z) = A10 tanh(κA0).

Thus in principle 100% conversion efficiency can be achieved for frequency
doubling since at the end of a long crystal the harmonic intensity

ISHG(z) = I0 tanh2(ΓI(1/2)
0 z)

should be found. This result is important particularly for frequency doubling
with powerful pulsed lasers since it promises very efficient second harmonic
generation.
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Fig. 13.6 Refractive index for BBO and KNbO3 as a function of the
wavelength. In the uniaxial BBO crystal the ordinary refraction coeffi-
cient (no) of a fundamental wave is found in between the ordinary and
the extraordinary coefficient (ne) of half the wavelength, which corre-
sponds to the frequency-doubled wave and makes the angle phase
matching possible. In the triaxial KNbO3 (refractive indices na, nb, nc)
phase matching can be achieved by temperature tuning.
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13.4.3
Phase matching in nonlinear and birefringent crystals

We have already seen in Eq. (13.15) that frequency conversion takes place only
over a certain length depending on the dispersion n(ω). Birefringent crys-
tals such as BBO or KNbO3 (Fig. 13.6) with properties already introduced in
Sect. 3.7.1 make it possible to realize �coh → ∞ by choosing a direction of
propagation in which the refraction coefficients of fundamental and harmonic
wave are identical, n(ω) = n(2ω). Also, in Sect. 13.4.6 we shall discuss the
method of ‘quasi-phase matching’, which has arisen more recently as a suc-
cessful method of outwitting dispersion.

The simplest situation occurs in uniaxial crystals. For the ordinary beam,
polarization and propagation direction are perpendicular to the optical axis,
and the phase velocity is characterized by the linear ordinary refraction co-
efficient no(ω). Since frequency conversion usually takes place in crystals
with normal dispersion for the harmonic wave, the smaller refractive index
must always be chosen, i.e. in a negatively uniaxial crystal (ne < no) the har-
monic has to be chosen as the extraordinary beam, in a positively uniaxial
crystal (no < ne) as the ordinary one. Then phase matching can be achieved
by choosing the polarization of the fundamental wave orthogonal to the har-
monic (‘type I phase matching’). Alternatively, according to Eq. (13.6) the po-
larization of the fundamental wave can as well be spread over ordinary and
extraordinary beams (i.e. incidence under 45◦ to the crystal axes) using the
‘type II phase matching’, so that the four alternatives of Fig. 13.8 are available.

1
ne(θ)

=
cos2 θ

n2
o

+
sin2 θ

n2
e

.

13.4.3.1 Angle or critical phase matching

As we have already investigated in Sect. 3.7.1, the refraction coefficient ne(θ)
of the extraordinary beam depends on the angle between the optical axis and
the beam direction according to the ‘indicatrix’ since the polarization has com-
ponents parallel as well as perpendicular to the optical axis (Eq. (3.45)).

Phase matching can now be achieved by choosing appropriately the angle
between the fundamental wave and the optical axis. For a negatively (posi-
tively) uniaxial crystal, the angles of phase matching for type I/II are deter-
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Fig. 13.7 Phase matching by angle tuning
(‘critical phase matching’). On the left, the
‘indicatrix’ for a uniaxial crystal is presented.
In order realize angle phase matching, there
has to be an intercept between the ellipsoids
of the refractive indices for the ordinary (no)
and extraordinary (ne) beams. The funda-
mental must propagate at the phase match-

ing angle with respect to the optical axis. On
the right a typical set-up is shown, in which
the crystal angle can be adjusted. Funda-
mental and harmonic wave deviate from each
other since they correspond to the ordinary
and extraordinary beams, respectively. The
angle between fundamental and harmonic
wave is called the walk-off angle.

mined from the conditions

type I neg ne(θ, 2ω) = no(ω),

pos ne(θ, ω) = no(2ω),

type II neg ne(θ, 2ω) = 1
2 [no(ω) + ne(θ, ω)],

pos no(2ω) = 1
2 [no(ω) + ne(θ, ω)].

From Eq. (3.45) we have for the case of negative type I phase matching

cos2 θm

n0(2ω)
+

sin2 θm

ne(2ω)
=

1
n0(ω)

,

from which we can deduce the phase matching angle

sin 2θm =
n−2

o (ω)− n−2
o (2ω)

n−2
e (2ω)− n−2

o (2ω)
.

Similar relations are deduced for the other cases.
For applications nonlinear crystals are cut with respect to the input facet

(see Fig. 13.7) in such a way that for normal incidence propagation occurs near
to the ideal phase matching angle from the beginning. In order to minimize
losses these facets are frequently anti-reflection coated, too, sometimes even
for both the fundamental and the harmonic wave. An example of a crystal in
frequent use for angle-tuned phase matching is BBO; see Fig. 13.6.

Once angle phase matching is achieved, the walk-off problem occurs, since
the ordinary and extraordinary beams propagate with the same phase velocity
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Fig. 13.8 Polarization directions of fundamental and harmonic wave
for phase matching with birefringent crystals. In a crystal with nega-
tive (positive) birefringence, the shortest wavelength has to propagate
on the extraordinary (ordinary) beam. For type I matching all polariza-
tion directions are orthogonal. For type II matching one polarization
direction is used to achieve equally strong projections onto the optical
principal axes.

but not in the same direction. The walk-off angle ρ has already been discussed
with Eq. (3.46) for uniaxial crystals,

tan ρ =
n2(θ)

2

(
1

n2
o
− 1

n2
e

)
sin 2θ.

The harmonic wave therefore leaves the nonlinear crystal with an elliptical
beam profile. Furthermore, the intensity no longer grows quadratically with
the crystal length like in Eq. (13.16) but just linearly once the harmonic beam
has walked off by a full diameter of the fundamental beam.

13.4.3.2 Non-critical or 90◦ phase matching

The disadvantages of angle phase matching can be avoided if one succeeds
in matching the ordinary and extraordinary refraction coefficients at the con-
dition θ = 90◦. This situation is realized in special crystals where one of the
two refractive indices can be tuned over a quite large range by controlling
the temperature. Because of the long interaction length this method provides
particularly large conversion efficiency. For this reason KNbO3 (Fig. 13.6) is a
very important nonlinear material: it has a large nonlinear coefficient and it
allows 90◦ phase matching in the important near-infrared range. In Fig. 13.6
the refractive indices for the three axes (a, b, c) were presented. It shows that
for the a cut phase matching can be achieved for frequency doubling from 840
to 960 nm, and in the b cut from 950 to 1060 nm. Of course, the methods of
angle phase matching can also be employed with these crystals.

Besides ‘90◦ phase matching’, also the terms temperature and non-critical
phase matching are used for this type of phase matching.
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13.4.4
Frequency doubling with Gaussian beams
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Fig. 13.9 Focusing of a fundamental wave into a nonlinear crystal.
If the Rayleigh zone of the Gaussian beam is larger than the crystal
length, an almost planar wave propagates in the crystal volume. If the
focusing is too tight, phase matching is again violated in the strongly
divergent sections of the beam.

Having looked at the principle of phase matching from the point of view of
plane waves, we now have to study the influence of realistic laser beams. The
conversion efficiency increases with the intensity of the fundamental wave,
and so focusing is an obvious choice. On the other hand, too strong focusing
leads to large divergence, and reduces the effect again (Fig. 13.9). So intu-
itively an optimum effect is anticipated if the Rayleigh length roughly corre-
sponds to the crystal length.

A Gaussian beam (details about wave optics can be found in Sect. 2.3) in the
TEM00 mode has radial intensity distribution and total power given by

E (r) = E0 e−(r/w0)2
,

P =
πcε0

2
2π

∫ ∞

0
dr r|E (r)|2 = I0

πw2
0

2

near the beam waist, where the characteristic parameters are

w0 =
(

bλ
4πnω

)1/2
radius of the beam waist,

b = 2z0 confocal parameter,

θdiv = λ
πw0nω

divergence angle of the Gaussian mode.

Boyd and Kleinman [26] gave a detailed discussion of this problem in the
1960s, and worked out suitable mathematical tools for its treatment. In the
limiting case of weak conversion and weak focusing (i.e. b � �), it can be
dealt with by simple radial integration. At the end of a crystal of length � and
with perfect phase matching Δk = 0, the following field strength can be found
(κ according to Eq. (13.11))

ESHG(r) = iκE2
FUN�.
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With w2
SHG = w2

FUN/2, the beam waists of fundamental and harmonic wave,
the total output power depends on the fundamental input power and param-
eters such as the material constant Γ from Eq. (13.14) and the crystal length �:

PSHG = Γ2�2 I2
0
πw2

SHG
2

= Γ2�2P2
FUN

1
πw2

FUN
. (13.17)

This corresponds to the already known result of Eq. (13.16). Besides, it can
be calculated easily that the fundamental and harmonic wave have the same
confocal parameter bSHG = bFUN under these circumstances.

Boyd et al. have extended this analysis, initially derived for the case of 90◦
phase matching, to the angle phase matching situation. For this, normalized
coordinates for the propagation direction (z → t) and the walk-off direction
(walk-off angle ρ and x → u) are introduced,

t =
√

2π z
�a

with �a =
√

πwFUN/ρ,

u =
√

2(x − ρ�)
wFUN

,

and two new functions are defined by

F (u, t) =
1
t

∫ t

0
e−(u+τ)2

dτ,

G(t) =
∫ ∞

−∞
F 2(u, t) du.
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Fig. 13.10 Graphical representation of the functions G(t) and h(B, ξ)
(according to Boyd and Kleinman [26]).

The length �a is called the ‘aperture length’ and indicates when the harmonic
beam has left the volume of the fundamental wave by walk-off. As a result,
Eq. (13.17) is modified by the function G(t) ≤ 1,

PSHG =
Γ2�2P2

FUN

πw2
FUN

G(t).
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This describes the reduction of the output power caused by the walk-off com-
pared to beams that propagate with perfect overlap. In order also to describe
the influence of focusing, it is common to introduce the parameters

h(B, ξ) Boyd–Kleinman reduction factor,

B = 1
2 ρ(kl)1/2 birefringence parameter,

ξ = �/b normalized crystal length.

(13.18)

The result is

PSHG =
Γ2�2P2

FUN

πw2
SHG

1
ξ

h(B, ξ).

For 90◦ phase matching, we have B = 0, and for ξ = �/b < 0.4 we can
approximate h(0, ξ) = h0(ξ) � ξ, so that the previous result of Eq. (13.17) can
be reproduced. One generally finds

h(0, ξ) = h0(ξ) � 1 for 1 ≤ ξ ≤ 6,

and the maximum value

h0(ξ) = 1.068 at ξ = 2.84

is realized for a crystal length corresponding to nearly three times the Rayleigh
length.

Another useful approximation for h(B, ξ) can be obtained by drawing on
the birefringence parameter B (Eq. (13.18)). For 1 ≤ ξ ≤ 6 where h(B, ξ) �
hM(B) and hM(0) � 1 holds, the approximation

hM(B) � hM(0)
1 + (4B2/π)hM(0)

� 1
1 + �/�eff

at �/�eff � 1

is found. Here the effective crystal length �eff has been introduced,

�eff =
π

kρ2hM(0)
� π

kρ2 .

13.4.5
Resonant frequency doubling

The low conversion efficiency of nonlinear crystals can be used in a better way
if the light is recycled after passing through the crystal. This can be achieved
in passive resonators, some of the essential features of which we shall now
describe. Alternatively, some nonlinear components can be inserted into ac-
tive resonators. An important example for intra-cavity frequency doubling is the
powerful frequency-doubled neodymium laser from Sect. 7.8.2.
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Fig. 13.11 Frequency doubling in a ‘bowtie’ ring resonator. FUN = fun-
damental wave; SHG = second harmonic wave; SA = servo-amplifier;
NLC = nonlinear crystal; PT = piezo-translator.

13.4.5.1 Passive resonators

To the losses of the resonator by transmission (T) and absorption (A), we now
also have to add the conversion of the radiation power of the fundamental
into the harmonic wave. Ashkin et al. [8] have elaborated that the maximum
power of the harmonic wave can be determined from the implicit equation

P2ω =
16T2ηSPPω[

2 −√
1 − T

(
2 − A −√

ηSPP2ω

)]4 . (13.19)

Here the single-pass conversion efficiency (i.e. by single passage of the funda-
mental wave) for the crystal is indicated by ηSP = P0

2ω/P2
ω.

In Fig. 13.11 a ring resonator to enhance the fundamental wave intensity
is presented. The nonlinear crystal (NLC) is positioned at the focus of the
resonator. For optimum results, the fundamental wave has to be precisely
matched to the Gaussian mode of the resonator by external optical elements.
Furthermore, one of the resonator mirrors can be adjusted by a piezo-trans-
lator (PT). It is controlled by a servo-amplifier (SA) and ensures that the res-
onator length is resonantly matched to the fundamental wave (FUN). The er-
ror signal may, for instance, be obtained from the properties of the light re-
flected off the input mirror.

In the best case P2ω in Eq. (13.19) can be maximized by adjusting the trans-
mission T. This is not possible when mirrors with a fixed reflectivity are used,
but the frustrated total reflection can be used to achieve variable coupling of
a resonator with a driving field (see Fig. 13.12).

A compact layout for frequency conversion is offered by external res-
onators, which are directly made from the nonlinear crystal, i.e. ‘mono-
lithically’ manufactured (Fig. 13.12). They are well suited for temperature-
controlled phase matching (Sect. 13.4.3.2). The mirrors are integrated through
thin layers deposited onto the end facets of the nonlinear crystal or by means
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Fig. 13.12 Frequency doubling in monolithic resonators. In the lower
ring resonator the fundamental wave (FUN) is coupled by frustrated
total internal reflection (FTIR). The coupling strength is controlled by
varying the separation of the monolithic resonator and the coupling
prism.

of total internal reflection. The coupling into the ring can advantageously be
achieved by frustrated total internal reflection (FTIR) since the transmission is
set by varying the separation, and therefore optimum conversion conditions
according to Eq. (13.19) can be obtained.

13.4.6
Quasi-phase matching

For frequency conversion, the proper materials always have to be used under
special conditions, such as for example angle phase matching, since the gen-
erally small electro-optical coefficients do not allow any large tolerances. The
low conversion efficiency of a laser beam at a single pass through a nonlinear
material has driven the search for better materials (i.e. especially with higher
electro-optical coefficients) or improved methods, like the resonator enhanced
frequency doubling from the previous chapter. The search for new materi-
als, though, is laborious, and the effort for servo-controls is quite high with
resonant methods.

An alternative route has been opened through successful generation of so-
called ‘periodically poled’ materials where existing and reliable nonlinear ma-
terials are tailored in such a way that they allow efficient frequency conver-
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sion. The principle of quasi-phase matching is presented in Fig. 13.13. It was
already suggested shortly after the invention of the laser [7], but has led to re-
producible and robust results only with the manufacturing methods of micro-
electronics [120].

For the main fabrication method, a periodic pattern of alternating electrodes
is deposited onto the crystal. A high-voltage pulse then reverses the orienta-
tion underneath the electrodes and generates ‘periodic poling’ of the ferro-
electric domains of certain nonlinear crystals.2 As a consequence a periodic
sign change occurs in the coupling of fundamental and harmonic wave. Suc-
cessfully used crystals include LiNbO3 and KTiOPO4 (KTP). For the periodi-
cally manipulated form, also new abbreviations like e.g. PPLN for periodically
poled LiNbO3 are used.

We have already investigated

���,
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Fig. 13.13 Quasi-phase matching in nonlinear crystals.
The orientation of the ferroelectric domains is inverted
after each coherence length �c (‘periodic poling’, PP).
The wave in the lower part shows the effect of the
crystal without periodic poling. FUN: Input of fundamen-
tal wave. According to [58].

the role of the coherence length
�coh (Eq. (13.15)) in Sect. 13.4.1
for a material where the phase
evolution of fundamental and
harmonic wave is not matched
with the help of birefringence.
The coherence length �c sets
the scale for the period of
choice for the artificially in-
duced domain change. At the
domain walls phase reversal
of the coupling between fun-
damental and harmonic wave
takes place because of the
change of the sign of the d co-

efficient. Thus the retroactive conversion found in a homogeneous material is
suppressed by the periodic poling structure and the harmonic wave instead
continues to grow.

The theoretical description of frequency doubling in homogeneous mate-
rials can straightforwardly be extended to the situation of periodic poling,
where the modulation of the sign of the d coefficient is taken into account by
a Fourier series,

d(z) = deff

∞

∑
m=−∞

Gm e−ikmz and Gm =
2

mπ
sin(mπ�/Λ). (13.20)

Especially km = 2πm/Λ indicates the reciprocal vector of the domain lattice,
where Λ indicates the geometrical length of the period. In the end, only one
of the Fourier components plays a significant role, all the others contributing
only weak conversion similar to the mismatched situation without periodic

2) Of the 18 crystal groups allowing phase matching by using birefrin-
gence, only 10 are suitable for this method due to symmetry reasons.
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poling lattice. The important coefficient fulfils the ‘quasi-phase matching con-
dition’ Δk = km, and it is used in the orders m = 1, 3, . . . . Furthermore one
finds [58] that the effective d coefficient is reduced by the Fourier coefficient
(|Gm| < 1),

dQ = deffGm.

We can now adapt the coupled amplitude equations (13.13) to the new situa-
tion by the replacements Δk → ΔkQ = Δk − km and deff → dQ and κ → κQ
respectively in Eq. (13.11). The largest coefficient occurs in first order m = 1,
thus dQ/deff = 2/π from Eq. (13.20); higher orders though allow longer peri-
ods and therefore reduce the tolerance requirements in manufacturing.

The quasi-phase matching concept causes a reduction of the nonlinear co-
efficients but, more importantly, it offers efficient conversion largely indepen-
dent of the special crystal properties of birefringence. Successful operation of
the continuous parametric oscillators, the topic of the following chapter, has
been stimulated very much by structured materials with periodic poling [156].

13.5
Sum and difference frequency

13.5.1
Sum frequency

For this case we have to consider the full set of equations (13.10). In the
case of sum frequency generation there are already two fields with intensi-
ties I1,2(z=0) = I10,20 (and thus A1 � A2) present at the entrance of a crystal.
For the special case of a very strong pumping field I10 � I20 and perfect phase
matching (Δk = 0), Eqs. (13.10) are greatly simplified:

(i) d
dzASUM = iκA1A2,

(ii) d
dzA1 � 0,

(iii) d
dzA2 = iκA∗

1ASUM.

(13.21)

The solutions can be easily found by inserting (13.21(iii)) into (13.21(i)),

d2

dz2ASUM = −κ2|A1|2ASUM,
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and by applying initial conditions A1,2(z=0) = A10,20. With the inverse scal-
ing length,

K =

√
κ2 I10

cε0ω1
,

the normalized amplitudes and intensity evolve along z according to

A2(z) = A20 cos(Kz), I2(z) = I20 sin2(Kz),

ASUM(z) = A20 sin(Kz), ISUM(z) = (ωSUM/ω2)I20 sin2(Kz).
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Fig. 13.14 Weak conversion limit of sum frequency generation as a
function of the crystal length. Radiative power oscillates between ISUM
and the weaker of the two input components, here I2.

The intensity of the sum frequency wave has naturally to be larger by the
factor ωSUM/ω2 than I2 because energy is drawn from both pump waves.
When the weaker input component is entirely converted, difference frequency
generation (at the initial frequency ω2) occurs, until all radiation power is used
up again. Thus the intensity oscillates between the sum frequency and the
weaker of the two components I1,2.

13.5.2
Difference frequency and parametric gain

Let us again consider the case in which a third wave is generated from a strong
pumping wave (normalized amplitude dA1/dz � 0) by difference frequency
mixing with a second weaker wave. Then in analogy to Eq. (13.21) and in the
case of perfect phase matching (Δk = 0), the coupled amplitude equations are
approximately

(i) d
dzADIF = iκA1A∗

2,

(ii) d
dzA1 � 0,

(iii) d
dzA2 = iκA∗

DIFA1.

(13.22)
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The corresponding solutions are

A2(z) = A20 cosh(Kz), I2(z) = I20 cosh2(Kz),

ADIF(z) = −iA20 sinh(Kz), IDIF(z) = (ω1/ω2)I20 sinh2(Kz).

For Kz � 1 the intensity dependence shows an interesting behaviour,

I1(z) � I20 e2Kz and I2(z) � (ω2/ω1)I10 e2Kz,

where both waves are amplified in this ‘parametric process’ at the expense of
the pumping wave! A more general solution for Eq. (13.22) with coefficients
α, β to match initial conditions is given by

A1(z) = α sinh(Kz) + β cosh(Kz).

���.������$�,
 �

6:8

:��	

:6:8

:�

Fig. 13.15 Parametric gain for difference frequency generation.

13.6
Optical parametric oscillators

Nonlinear generation of coherent radiation is not only interesting for short-
wavelength production. In principle it promises generation of coherent and
fully tunable radiation over very wide wavelength ranges. For this purpose
the optical parametric oscillator (OPO) has been suggested and investigated for
a long time. This nonlinear process, more than all others, is affected by loss
processes that we have completely neglected up to now but will investigate
more deeply here.

First we phenomenologically add the losses γ suffered by the waves pass-
ing through the crystal to the coupled amplitude equations from Eq. (13.9),
and introduce the specific terms signal wave and idler wave of the parametric
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oscillator:(
d
dz

+ γ

)
AP(ω) = iκASAI e−iΔkz pumping wave,(

d
dz

+ γS

)
AS(ωS) = iκAPA∗

I eiΔkz signal wave,(
d
dz

+ γI

)
AI(ωI) = iκA∗

SAP eiΔkz idler wave.

Additionally, we again assume the intensity of the pumping wave to be
constant (dAP/dz � 0). From the ansatz AS(z) = ÃS e(Γ+iΔk/2)z and AI(z) =
ÃI e(Γ+iΔk/2)z, with constant amplitudes ÃS,I , the condition[(

Γ + γS + i
Δk
2

)(
Γ + γI − i

Δk
2

)
− κ2|AP|2

]
AS = 0 (13.23)

can be obtained. For constant AS = 0 this is exactly fulfilled if the term in
square brackets vanishes. This is the case for

Γ± = −γI + γS

2
± 1

2

√
(γI − γS − iΔk)2 + 4κ2|AP|2.

To simplify the interpretation, we consider the special case γ = γS = γI where
the relation for Γ± becomes particularly simple,

Γ± = −γ ± g, g = 1
2

√
−Δk2 + 4κ2|AP|2. (13.24)

The general solution for the coupled waves is

AS = (AS+ egz +AS− e−gz) e−γz e−iΔkz/2,

A∗
I = (A∗

I+ egz +A∗
I− e−gz) e−γz e−iΔkz/2,

and obviously for g > γ gain is expected. If at the entrance of the crystal there
are the amplitudes AS,I(z=0) = AS0,I0, then for the limiting case of weak
conversion, i.e. dAP/dz � 0, we find the following field strengths at the end
at z = �:

AS(�) = [AS0 cosh(g�)− (i/g)(ΔkAS0 + iκAPA∗
I0) sinh(gl)] e−gl eiΔk�/2,

AI(�) = [AI0 cosh(g�)− (i/g)(ΔkAI0 + iκAPA∗
S0) sinh(gl)] e−gl eiΔk�/2.

(13.25)

For perfect phase matching (Δk = 0) and for AS0 = 0, we reproduce the old
result from the difference frequency generation. How the incident fields are
really amplified obviously depends on their phase position at the entrance. If
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there is only one incident field then the second wave ‘searches’ the right phase
position for optimum gain. The solutions of (13.25) depend on the condition
that there is at least one field already present at the crystal entrance. In close
analogy to the laser, the fulfilment of condition (13.23) can also be understood
as a threshold condition. If the parametric gain is generated in a resonator,
then the parametric amplifier becomes a parametric oscillator.

Tab. 13.1 Comparison of laser and optical parametric oscillator (OPO).

Laser OPO

Process χ(1),
resonant

χ(2), χ(3), . . . ,
non-resonant

Mechanism occupation number
inversion

nonlinear
polarization

Pump process incoherent,
energy storable

coherent,
not storable

Like the laser the OPO
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Fig. 13.16 Gain and power of the parametrically gene-
rated fields in a parametric oscillator (see Fig. 8.1).

starts spontaneously if the
gain g overcomes the losses√

γIγS. Parametric oscillators
can be operated singly, dou-
bly or even triply resonant, to
keep the threshold as low as
possible, though again at the
expense of large efforts for
servo-controlling the optical
resonator. It is of course not
surprising that according to
Eq. (13.24) the gain is propor-

tional to the pumping intensity.
In the operation of tunable lasers (e.g. Ti–sapphire laser, dye laser) inversion

is commonly provided by powerful pump lasers. In contrast to the OPO a
coherent pumping field is, however, not essential for the laser process. In fact
incoherent processes, e.g. decay from the pump level, typically take part in
the occupation of the upper laser level.

Since the gain depends on the phase mismatch Δk according to Eq. (13.24),
the wavelengths of signal and idler wave, λS and λI, which have to fulfil the
equation

λ−1
P = λ−1

I + λ−1
S

due to energy conservation, can be tuned by varying the angle or the tem-
perature of the birefringent and nonlinear crystal. If the pump wavelength in
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Fig. 13.17 OPO with linear resonator. The matching of signal and idler
wave is achieved by turning the crystal axis if the phase matching is
achieved by angular matching. A multiply resonant set-up is in princi-
ple difficult to get.

the degenerate optical parametric oscillator (DOPO) is decomposed exactly into
two photons at ωS = ωI = ωP/2, the reverse process of frequency dou-
bling, then the corresponding phase matching condition has to be valid again,
n2ω(ωP) = nω(ωP/2). If ordinary dispersion,

nω(ωS,I) � nω(ωP/2) + n(1)(ωS,I − ωp/2) + · · · ,

is assumed, then a quadratic form for the phase matching condition of the
signal and idler frequency is expected near to the degeneracy point:

cΔk = 0 = n2ω(ωP)ωP − [nω(ωP/2)ωP + n(1)(ωS − ωI)2 + · · · ].

On the other hand, the difference of the refraction coefficient depends ap-
proximately linearly on the angle or the temperature, so that the quadratic
behaviour can also be found in the experimental dependence (Fig. 13.18).
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Fig. 13.18 Tunability of a parametric oscillator driven with a BBO crys-
tal: wavelength of signal and idler waves. The OPO is pumped by the
second (532 nm), third (355nm), fourth (266 nm) or even fifth (213 nm)
harmonic of a Nd laser at 1064 nm.
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Problems

13.1. Frequency doubling with KDP (a) Determine the angle for type I phase
matching at λ = 1 μm. The indices of refraction are nω

o = 1.496044 and n2ω
o

= 1.514928 for the ordinary, nω
e = 1.460993 and n2ω

e = 1.472486 for the extra-
ordinary beam. (b) Sketch the index ellipsoid and the direction of propagation
within the crystal with respect to the optical axis. How would you cut the
crystal? (c) Carry out the same estimates for type II phase matching. Which
index of refraction is relevant for the harmonic wave?

13.2. Temperature phase matching with KNbO3 Use the data for the indices
of refraction from Fig. 13.6 in order to estimate the wavelength regions for
which KNbO3 can be used for frequency doubling by temperature tuning.

13.3. Frequency doubling with short pulse We consider a pulsed plane wave
with Gaussian envelope and centre frequency ω:

E1(z, t) = 1
2{e1 A1(z, t) e−i(ωt−kz) + c.c.}, A1(0, t) = A0 e−(t2/2δ).

The index of refraction of the fundamental wave is n. Furthermore we as-
sume that the phase matching condition is fulfilled for a crystal of length �.
We neglect losses and wavefront deformations, and the group velocities of
fundamental and harmonic wave are called vg1 and vg2.

(a) Express A1(z, t) as a function of A1(0, t) and vg1. (b) Within the slowly
varying envelope approximation the wave equation within the crystal reads

∂A2

∂z
+

1
vg2

∂A2

∂z
= i

2ω

2nc
χeff A2

1(z, t).

Here χeff is the effective susceptibility. Substitute u = t − z/vg1 and v =
t − z/vg2, and introduce β = 1/vg1 + 1/vg2. (c) Solve the wave equation for
A2(u, v). (Hint: erf(x) = (2/

√
π)

∫ x
0 exp(−u2) du.) Give A2(z, t) for the initial

condition A2(0, t) = 0 for all t. (d) Transform to the rest frame which moves at
the group velocity of the harmonic wave vg2. Sketch how A2 develops in this
rest frame as a function of time. Give the amplitude at the end of the crystal.
(e) For which value t0 is A2(�, t) maximal? What is the shape of A2(�, t0)?
What happens at β�/δ � 1?
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Fig. 14.1 Selected χ(3) processes for which the state of the nonlinear
material is preserved: third harmonic generation (THG), an example of
four-wave mixing (FWM) and degenerate four-wave mixing (DFWM).

In analogy to the three-wave mixing processes of Sect. 13.2, it is not difficult
to compile a typology for four-wave phenomena. Three of the four waves
generate a polarization

Pi(ω) = ε0χ
(3)
ijk�(ω; ω1, ω2, ω3)Ej(ω1)Ek(ω2)E�(ω3), (14.1)

which is now characterized by the third-order susceptibility. This fourth-rank
tensor describing four-wave mixing (FWM) has up to 81 independent compo-
nents, and therefore is not even to be subjected to general symmetry consider-
ations, which could still be described with limited effort for the second-order
susceptibility. Instead it is important from the beginning to consider special
cases. For the formal consideration, there are basically no new aspects com-
pared to three-wave mixing – only the number of coupled amplitude equa-
tions is increased by one in four-wave mixing.
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14.1
Frequency tripling in gases

It is obvious in analogy to frequency doubling to ask for frequency tripling by
means of the χ(3) nonlinearity. In Fig. 14.1 it can be seen that third harmonic
generation (THG) is one of numerous special cases of four-wave mixing.

For practical reasons, this χ(3) process is really only used when frequen-
cies lying very deep in the ultraviolet spectral range are to be reached. While
nonlinear crystals are transparent (i.e. at wavelengths λ > 200 nm), it is an ad-
vantage to use frequency doubling and consecutive summation in a two-step
χ(2) process (Fig. 14.2). For example, the 1064 nm line of the Nd laser is trans-
formed, preferably with KTP and LBO materials, to the wavelengths 532 and
355 nm. For this a conversion efficiency of 30% using pulsed light is a matter
of routine. The UV radiation generated at 355 nm in this way is very suitable
to pump dye lasers in the blue spectral range.

&B� &M" 4B�

Fig. 14.2 Frequency tripling with two-step χ(2) and one-step χ(3) pro-
cesses.

If we neglect geometry effects, the polarization of third order is

P3ω = ε0χ(3)(3ω; ω, ω, ω)E3.

The condition for phase matching, which is

Δk = k3ω − 3kω,

in this case has to be obtained by adjusting the refraction coefficients of the
fundamental wave and harmonic as for the generation of the second har-
monic (Sect. 13.4). As already mentioned above, crystals are of limited use
for frequency tripling due to their very small χ(3) coefficients, poor trans-
parency and the danger of optically induced damage caused by extreme in-
put power and strong absorption of the UV harmonic. Gases, however, have
a high threshold of destruction and good transparency below the threshold of
photo-ionization, which is at λ � 50 nm for several noble gases.

The disadvantage of low density in a gas can be compensated by enhancing
the nonlinear process using a suitable molecular or atomic resonance in the
vicinity of the fundamental wave. Therefore, for the generation of UV light
at very short wavelengths, often alkali vapours are used, which allow near-
resonant amplification due to their transition frequencies at wavelengths in
the visible and near-UV range. They also exhibit a relatively rapidly varying
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refractive index with normal or anomalous dispersion depending on the posi-
tion of the fundamental frequency. The resonance lines of the noble gases are
in the deep UV (<100 nm) and mostly in the range of normal dispersion. By
adding the 100–10000-fold amount of noble gas atoms to an alkali vapour, the
phase velocity of the harmonic can be adjusted. Figure 14.3 shows a qualita-
tive example of phase matching for frequency tripling of the 1064 nm line of a
Nd laser: xenon gas is added to rubidium vapour.
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Fig. 14.3 Matching refractive indices for frequency tripling of the
1064 nm radiation in rubidium vapour (D2 resonance line at 780 nm)
by adding xenon gas.

Even if the generation of extreme ultraviolet (XUV) radiation in a gas con-
tainer were successful, the transport to the planned application still raises spe-
cial problems since the atmosphere and even the best-known window mate-
rial, cooled LiF, lose their transparency slightly below 100 nm. That is why
very short-wave coherent radiation has in general to be generated very close
to the experiment.

14.2
Nonlinear refraction coefficient (optical Kerr effect)

In the third order a nonlinear contribution to the polarization at the funda-
mental wave itself also arises. This is a special case of the degenerate four-wave
mixing (DFWM), which obviously occurs with well-matched phase propaga-
tion because Δk = k + k − k = k from the beginning. In analogy to the
traditional electro-optical Kerr effect, where the refraction coefficient depends
on the external electric field (see Sect. 3.8.1), nonlinear materials showing this
effect are often called Kerr media.

The contribution to the polarization of the fundamental wave at the driving
frequency ω is

PKE(ω) = ε0χ
(3)
eff (ω; ω, ω,−ω)|E (ω)|2E (ω),
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so that the total polarization is1

P(ω) = ε0[χ(1) + χ
(3)
eff |E (ω)|2]E (ω) = ε0χeffE (ω).

The total polarization clearly depends on the intensity, and it is convenient to
describe this phenomenon transparently anyway by an intensity-dependent
refraction coefficient,

n = n0 + n2 I,

with n0 the common linear refractive index and n2 a new material constant
describing this nonlinearity. By comparing to n2 = 1 + χeff and with I =
n0ε0c|E |2/2,

n2 � 1
n2

0cε0
χ

(3)
eff .

The nonlinear coefficient n2 naturally depends on the material. Its value
varies over a large range and is, for example, just 10−16–10−14 cm2 W−1 for
common glasses. However, it can be larger by several orders of magnitude in
special materials, e.g. in doped glasses. The propagation of the light field
will then strongly depend on the intensity distribution in both space and
time. Owing to this nonlinearity transverse intensity variations of a light
beam cause distortions of optical wavefronts, leading for instance to self-
focusing. In Sect. 3.6.2 we have already seen that the self-modulation of the
phase caused by longitudinal variations of the intensity, for example in a laser
pulse, can lead to the generation of solitons under certain conditions.

14.2.1
Self-focusing

The transverse Gaussian profile of
E"

Fig. 14.4 Self-focusing of a planar wave in a Kerr
medium (KM). The intensity profile of a Gaussian
beam causes a parabolic transverse variation of
the refraction coefficient and therefore acts like
a lens.

the TEM00 mode is certainly the best
known and most important inten-
sity distribution of all light beams. If
the intensity is sufficiently large, e.g.
in a short intense laser pulse, then in
a Kerr medium it causes an approxi-
mately quadratic variation of the re-
fraction coefficient and thus a lens
effect, which acts like a converging
lens for n2 > 0 and like a diverging
lens for n2 < 0 (Fig. 14.4).

The focal length depends on the maximum intensity. This effect is actually
related to the thermal lens where the refractive index variation is caused by an

1) There are several definitions of the susceptibility used, which differ
from each other mainly by geometry and factors accounting for
degeneracy. Here we use an effective susceptibility neglecting such
details.
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inhomogeneous temperature profile. The change of the refraction coefficient
is caused by local temperature variation there, by a nonlinearity here. Tem-
perature modifications can also be generated by a laser beam (e.g. through
absorption) but thermal changes are usually very slow (milliseconds) com-
pared to the very fast optical Kerr effect (femto- to nanoseconds) and thus
generally not desirable from the practical point of view.

14.2.1.1 Kerr lens mode locking

4��&�
EA"

red

blue

��9�.�����
2����=����

Fig. 14.5 Ti–sapphire laser with intrinsic Kerr lens mode-locking
(KLM) in the laser crystal. The pair of prisms compensates the disper-
sion. This simple layout generates typical pulse lengths of 50–100 fs.
With the mode aperture cw operation is put at an energetic disadvan-
tage against the pulsed operation.

One of the most important applications of self-focusing at present is the so-
called Kerr lens mode locking (KLM), which has made the construction of laser
sources for extremely short pulses nearly straightforward (see Sect. 8.5). The
self-mode-locking concept was discovered in 1991 [164] with a Ti–sapphire,
laser which could be switched from cw to stable pulsed operation by small
mechanical disturbances. The laser (Fig. 14.5) consists of just the laser crystal,
the mirrors and a pair of prisms for the compensation of the crystal dispersion
in the laser crystal and the laser components (see also Sect. 8.5.3 and Fig. 8.16).

The trick of self-mode-locking is to align the laser resonator in such a way
that during pulsed operation – at which only the induced Kerr lens is active
– the resonator field suffers from less losses than during cw operation. One
can control these losses for instance by means of an additional aperture in
the resonator. In order to switch the laser from cw to pulsed mode, intensity
fluctuations must be induced, e.g. by relaxation oscillations. It is sometimes
sufficient to cause mechanical disturbance – the laser operating mode is so to
say induced with a punch.

For stable pulsed and mode-locked operation it is necessary that the shape
of the pulse reproduces itself after one period of revolution. The short pulse
has a correspondingly wide frequency spectrum and is lengthened due to the
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dispersion of the laser crystal itself as well as other resonator components.
Thus prism pairs are used for compensation (Fig. 14.5). In materials with nor-
mal dispersion red wavelengths travel faster than blue components. Com-
pensation of this delay is achieved by the double prism compensator which
refracts the blue waves stronger than the red components, resulting in longer
geometric paths for red than for blue waves. Further modifications of the
pulse are caused by self-phase modulation; see Sect. 14.3.

14.2.1.2 Spatial solitons

Another consequence of self-focusing ought to be mentioned too. As we have
investigated in the section about quadratic index media, optical waves are
guided in axial media such as a gradient fibre. In a nonlinear medium it is
possible that an intense light beam causes ‘self-wave guiding’ through the
nonlinearity of the optical Kerr effect. A propagating beam tends to diverge,
as described by Gaussian beam optics, and as a result of diffraction. In a Kerr
medium, however, the intensity distribution may at the same time cause a
quadratic transverse index variation prompting a lensing effect. If it exactly
compensates diffraction, it allows stable and self-guided beam propagation
[102, 170].

We introduce the intensity-dependent

�

�

Fig. 14.6 Propagation of a spatial soliton
in a Kerr medium. Note that confinement in
the second transverse direction must be
achieved by other means.

transverse variation of the refraction co-
efficient in the x direction,

n(x) = n0 + n2 I(x) = n0 +
2n2|A(x)|2

cn0ε0
,

(14.2)

similar to the paraxial Helmholtz equa-
tion (2.29). For the sake of clarity, we in-
troduce κ = 2k2n2/cn2

0ε0, obtaining the
nonlinear Schrödinger equation (see Sect. 3.6.2),(

∂2

∂x2 + 2ik
∂

∂z
+ κ2|A|2

)
A = 0,

which of course has only its mathematical structure in common with quantum
mechanics. It is known that this equation has self-consistent solutions of the
form

A(x, z) = A0 sech
(

x
w0

)
exp

(
iz

4z0

)
.

The properties of this wave are similar to the Gaussian modes with a ‘beam
waist’ w2

0 = (κA0)2/2 and a ‘Rayleigh length’ z0 = kw2
0/2. The wave prop-
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agates along the z direction and is called a spatial soliton.2 In contrast to the
Gaussian beam (see Sect. 2.3) in a homogeneous medium, the beam parame-
ters (w0, z0) now depend on the amplitude A0! The self-stabilizing mode does
not propagate divergently either, but keeps its form undamped over large dis-
tances.

Note that from the beginning with Eq. (14.2) we have considered a one-
dimensional variation (in x) of the index of refraction only. It turns out that the
two-dimensional analogue with variations in both x and y does not yield sta-
ble solutions. Two-dimensionally stable modes of propagation can, of course,
be obtained if an additional wave guiding effect in the second direction is ap-
plied, introduced by, for example, saturation phenomena or other additional
nonlinearities.
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Fig. 14.7 Applications of the nonlinear optical
Kerr effect. Upper part: A Kerr medium (KM)
can be used in order to direct a signal beam
into one of two exits of a Mach–Zehnder in-
terferometer. In this ‘all-optical’ switch the
refraction coefficient of the Kerr cell causes
a phase delay depending on the status of

the control beam. Lower part: In a direc-
tional coupler (e.g. realized through surface
waveguides in LiNbO3) an incoming signal is
distributed into two output channels (Ch1 and
Ch2). The coupling efficiency can depend on
the input intensity and thus separate pulses
of different intensity.

14.2.1.3 Nonlinear optical devices

The nonlinear optical Kerr effect is quite interesting for certain applications,
e.g. in optical communications. Two examples are presented in Fig. 14.7. A
nonlinear switch is realized by changing the optical length in one branch of a
Mach–Zehnder interferometer through a control beam using the Kerr effect.
In this way the signal beam can be switched between the two exits. In a non-
linear directional coupler, the coupling efficiency depends on the intensity of

2) The ‘optical’ solitons varying in time discussed in Sect. 3.6.2 are
more widely known though.
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the input signal so that pulse sequences with two different intensities can be
multiplexed into two channels.

14.2.2
Phase conjugation
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Fig. 14.8 Left: Phase conjugation as a special case of degenerate
four-wave mixing. Middle: Simple set-up for phase conjugation (PCM
= phase conjugating medium, e.g. BaTiO3, CS2). Right: The phase
matching condition is always fulfilled in a trivial way.

Phase conjugation (or ‘wavefront reversal’) occurs as a special case of degen-
erate four-wave mixing (DFWM; Figs. 14.1 and 14.8). The phase adjustment is
fulfilled intrinsically and ideally since only one optical frequency is involved.
The polarization is again calculated according to Eq. (14.1),

PPC(ωS) = ε0χ
(3)
eff (ωS; ωP, ωP,−ωS)E (f)

P E (b)
P E∗

S .

Because ∑i ki = 0 the phase matching condition is always fulfilled in a triv-

ial way if two waves (in Fig. 14.8 the forward-running (E (f)
P ) and backward-

running (E (b)
P ) pump waves) counter-propagate each other. The phase con-

jugating process can be strongly enhanced by choosing a wavelength in the
vicinity of a one-photon resonance.

We now study a simplified theoretical description of phase conjugation, the
result of which differs only slightly from the more exact method. In this the
nonlinear change of the refraction coefficient for the pumping waves is also
taken into account. We especially assume that the intensity of the pump waves
does not change, dEP/dz � 0. Then only two waves instead of four need to be
considered,

PC = ε0χ
(3)
eff E2

PE∗
S ,

PS = ε0χ
(3)
eff E2

PE∗
C.

We set κ = ωχ
(3)
eff /2ncE2

P and consider the signal and conjugate waves propa-
gating in the positive and the negative z directions,

AC = AC0 eikz and AS = AS0 e−ikz.
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They have to fulfil the differential equations

d
dzAS0 = iκA∗

C0, AS0(z=0) = A(0),

d
dzAC0 = −iκA∗

S0, AC0(z=�) = 0.

The boundary conditions at the end of the crystal assume that a signal wave
exists at the front end (at z = 0) of the crystal but no conjugated wave yet at the
rear (z = �). Here the origin of the phase conjugation is clearly identified as
the newly generated conjugated wave AC0, which is driven by the conjugate
amplitude A∗

S0.
The solutions are found straightforwardly. For the signal wave as well as

for the conjugated one there is amplification:

AS0 =
A(0)

cos (|κ|�) and AC0 =
iκ
|κ| tan(|κ|�)A∗(0).

The phase conjugation has
�
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Fig. 14.9 Signal and conjugated wave within a phase
conjugating medium (PCM). Both waves are amplified.

a fascinating application for
wavefront reconstruction or
wavefront reversal. Before we
study this phenomenon in
more detail, we introduce
an alternative interpretation
derived from conventional
holography, which we have
discussed already in Sect. 5.8.
In holography a conjugated
wave is known to occur too!

The interference of a pump wave with the signal wave causes a periodic
modulation of the intensity and thus of the refraction coefficient in the phase
conjugating medium (PCM in Fig. 14.10) with reciprocal lattice vector K,

K = kP − kS and Λ = 1
2 λ sin(θ/2).

The counter-propagating pump wave exactly fulfils the Bragg condition,

sin(θ/2) =
λ

2Λ
,

and is diffracted by this phase grating into the direction precisely opposing
the signal wave.

Wavefront reversal is shown in Fig. 14.11 by comparison to a conventional
mirror. While a conventional mirror turns a wavefront around on reflection,
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Fig. 14.10 Real-time holography and phase conjugation. Left: Geom-
etry of relevant waves. Upper right: The forward-propagating pump
wave forms a grating by superposition with the signal wave. The
backward-running pump wave fulfils the Bragg condition for this grating
and is scattered in the direction of the signal wave. Lower right: A simi-
lar argument can be used for interference of the backward-propagating
pump wave and the signal wave.
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Fig. 14.11 Wavefront reversal or reconstruction using a phase conju-
gating mirror (PCM) and a conventional one (M).

a phase conjugating mirror (PCM) reverses the wave vector of propagation
while maintaining the shape of the wavefront. Any distortion caused by in-
homogeneous but linear media will be reversed and hence a laser beam with
initially smooth wavefronts will emerge from a PCM with identical shape.
A possible application is efficient focusing of intense laser radiation onto an
object with a surface inappropriately matched to conventional, i.e. Gaussian-
shaped, laser beams.
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Fig. 14.12 Application of a phase conjugating mirror for focusing of in-
tense laser radiation onto an optically inappropriately adjusted object.

14.3
Self-phase modulation

The nonlinear modification of the refraction coefficient takes effect not only
on the spatial wavefronts of laser light but also on the time-variant structure.
These nonlinear phenomena are not only important for short-pulse lasers be-
cause of their extreme peak intensities but also used for relevant applications.
Consider a light pulse with Gaussian amplitude distribution and characteris-
tic pulse length τ,

E(t) = E0 e−(t/τ)2/2 e−iωt and I(t) = I0 e−(t/τ)2
,

during passage through a nonlinear medium. The phase of the light pulse at
the end of a sample of length � develops according to

Φ(t) = nkz
∣∣
�

= n(t)k�
= (n0 + n2 I0 e−(t/τ)2

)ckt.

The instantaneous frequency is then

ω(t) =
d
dt

Φ(t) = [n0 − n2 I0 2(t/τ) e−(t/τ)2
]ck.

During the pulse this represents a shift from blue to red frequencies or vice
versa, depending of the sign of n2. This phenomenon is generally called a
frequency chirp. In the centre at exp[−(t/τ)2] � 1 a linear variation can be
found

ω(t) � ω0 − 2βt with β = ω0
n2 I0

n0

�

τ
.

Frequency chirp is not unusual; in fact, the laser pulses emitted by the sim-
plest versions of Kerr lens mode-locked lasers (Sect. 14.2.1.1) always tend to
exhibit such frequency variations. In previous chapters we have furthermore
encountered other situations where self-phase-modulation is important. It is
the origin of soliton propagation in optical fibres described in Sect. 3.6.2. And
the stretchers and compressors introduced in Sect. 8.5.5 can be used to control,
remove or enhance the chirp.
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Problems

14.1. Generation of the third harmonic wave Consider a gas in a cell
bounded with planes at z = 0 and z = �. A monochromatic, plane wave
propagates in the z direction, E(z, t) = 1

2 [Eex exp [−i(ωt − kz)]. (a) Describe
qualitatively the spectrum of the nonlinear polarization of the gas. What is
the role of the anisotropy of the system? (b) Give a scalar expression for the
nonlinear polarization at 3ω. (c) Calculate the field radiated at 3ω. Take the
initial condition A3ω(z=0) = 0 for the amplitude of the harmonic wave. How
does the intensity grow with z? (d) Vary the density of gas inside the cell.
How does the intensity of the harmonic wave at the exit of the cell depend on
the density?

14.2. Phase conjugating mirror I Imagine you were looking at yourself in a
phase conjugating mirror. What would you see?

14.3. Phase conjugating mirror II In a phase conjugating medium of effec-
tive length � we consider the amplitude of the conjugated wave with z de-
pendence AC(z) = AC(0) cos (|κ|(z − �))/ cos (|κ|�) and the signal wave with
AS(z) = iκ∗A∗

S(0) sin (|κ|(z − �))/ cos (|κ|�). The coupling constant of the in-
teraction with the pump waves reads κ = (ω/2nc)χ(3)AP1 AP2. (a) Sketch
the spatial dependence of the amplitudes and intensities inside the crystal
for the conjugated and for the signal wave. How does the system evolve for
π/4 < |κ|� = π/2? (b) Calculate and interpret the reflectivity of the conju-
gated beam which is defined by R = |AC(0)/AS(0)|2. Study the special case
|κ|� = π/2.

14.4. Dispersion compensation Describe qualitatively the effect of the prisms
on the dispersion of the resonator in Fig. 14.5. How can one tune the compen-
sation?
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A
Mathematics for optics

A.1
Spectral analysis of fluctuating measurable quantities

The Fourier transformation is the ‘natural’ method to describe the evolution
of an optical wave since in the end all optical phenomena can be considered
the summation of the action of elementary waves according to Huygens’ prin-
ciple. Exactly this action is calculated with the help of the Fourier transforma-
tion.

By fluctuations of a physical quantity we understand its irregular variations
in time. Deterministic physical predictions can be made not about the actual
behaviour of a time-variant quantity but about the probability distribution of
its possible values, e.g. the amplitude distribution of a signal voltage. From
the theory of probability, it is known that the distribution of a stochastic quan-
tity V(t) is completely determined when all of its moments are known. By
this, the averages 〈V〉, 〈V2〉, 〈V3〉, . . . are understood. Often a certain distri-
bution is known – or assumed – e.g. a Gaussian normal distribution for random
events. Then it is sufficient to give the leading moments of the distribution,
e.g. the average value 〈V〉 and the variance 〈(V − 〈V〉)2〉. The square root of
the variance is called the root mean square deviation or in short r.m.s. value Vrms,

V2
rms =

1
T

∫ T

0
[V(t) − 〈V(t)〉]2 dt = 〈V2(t)〉 − 〈V(t)〉2. (A.1)

In experiments, nearly all measurable quantities are ultimately converted
into electrical signals reflecting their properties. For processing dynamic elec-
trical signals, filters play a very special role since their use allows the desired
and undesired parts of a signal to be separated from each other. The action
of a filter or a combination of filters can be understood most simply by the ef-
fect on a sinusoidal or harmonic quantity with a varying frequency f = ω/2π.
Thus it is important for both theoretical and practical reasons to characterize
the fluctuations of a measurable quantity not only in the time domain but also
in the frequency domain, i.e. by a spectral analysis.

In physics and engineering sciences, the description of a time-dependent
quantity by its frequency or Fourier components has proven to be invaluable
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for a long time. The complex voltage V(t), for example, can be decomposed
into partial waves and described in frequency space,

V(t) =
1

2π

∫ ∞

−∞
V(ω) e−iωt dω =

∫ ∞

−∞
V( f ) e−2πi f t d f . (A.2)

We can interpret V( f ) d f as the amplitude of a partial wave at the frequency f
and with frequency bandwidth d f . The amplitude spectrum has the unit V Hz−1

and as a complex quantity it also contains information about the phase angle
of the Fourier components. The functions V(t) and V(ω) constitute a Fourier
transform pair with the inverse transformation

V(ω) =
∫ ∞

−∞
V(t) eiωt dt. (A.3)

The effect of a simple system of filters, e.g. low- or high-passes, on a harmonic
excitation can often be given by a transfer function T(ω). The advantages of
the frequency or Fourier decomposition according to Eq. (A.2) show up in the
simple linear relation between the input and output of such a network,

V′(t) =
1

2π

∫ ∞

−∞
T(ω)V(ω) e−iωt dω.

This method delivers satisfactory results for numerous technical applications.
This is especially valid in the case when the signal is periodic and the rela-
tion between time and frequency domain is exactly known. A noisy signal
varies sometimes rapidly, sometimes slowly, and consequently it has contri-
butions from both low and high frequencies. Thus the mathematical relation
according to Eq. (A.2) cannot be given since an infinitely expanded measure-
ment interval would be necessary. From a rigorous mathematical point of
view, even a very large time interval cannot be considered a sufficiently good
approximation since there is not even some information about the bounded-
ness of the function and thus about the convergence properties of the integral
transformation.

On the other hand, the Fourier component of an arbitrary signal1 can in-
deed be measured with an appropriate narrowband filter by measuring its
average transmitted power. In every spectrum analyser the signal strength V2

transmitted through a filter with tunable centre frequency f and bandwidth
Δ f is measured. The square is generated by electronic hardware, e.g. by rec-
tification and analogue quadrature of the input. Let us take PV(t) = V2(t) as
the generalized power of an arbitrary signal V(t).

1) In most cases the signal will be an electric current or voltage. In
optics the currents or voltages are generated with photo-detectors.
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For the formal treatment, we introduce the Fourier integral transform of the
function V(t) on a finite measurement interval of length T,

VT( f ) =
∫ T/2

−T/2
V(t) ei2π f t dt. (A.4)

The average total power in this interval is

〈V2〉T =
1
T

∫ T/2

−T/2
V2(t) dt.

We can introduce the Fourier integral transform according to Eq. (A.4) and ex-
change the order of integration (we leave out the index 〈 〉T in the following
since there cannot be any confusion),

〈V2〉 =
1
T

∫ T/2

−T/2

[
V(t)

∫ ∞

−∞
VT( f ) e−2πi f t d f

]
dt

=
1
T

∫ ∞

−∞

[
VT( f )

∫ T/2

−T/2
V(t) e−2πi f t dt

]
d f .

The variable 〈V2〉 is very useful because with its help we can calculate the
variance ΔV2 = 〈V2〉 − 〈V〉2 and thus the second moment of the distribution
of the quantity V(t), at least within the restricted interval [−T/2, T/2]. Since
V(t) is a real quantity, we have VT(− f ) = V∗

T( f ) according to (A.2) and we
can write

〈V2〉 =
1
T

∫ ∞

−∞
[VT( f )VT(− f )] d f =

1
T

∫ ∞

−∞
|VT( f )|2 d f .

Owing to the symmetry of VT( f ), it is sufficient to carry out the single-sided
integration 0 → ∞. We define the power spectral density SV( f ),

SV( f ) =
2|VT( f )|2

T
, (A.5)

obtaining a relation that may be interpreted as

〈V2〉 =
∫ ∞

0
SV( f ) d f . (A.6)

According to this, SV( f ) d f is exactly the contribution of the average power of
a signal V(t) transmitted by a linear filter with centre frequency f and band-
width Δ f . Towards higher frequencies the power spectrum SV( f ) usually drops
off with 1/ f 2 or faster so that the total noise power remains finite.

Often the formal and unphysical notation
√

SV( f ) with units V Hz−1/2 is
used, which again gives a noise amplitude. This always refers to a noise
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power, however. For optical detectors the noise amplitudes of voltage and
current in units of (V2 Hz−1)1/2 and (A2 Hz−1)1/2 respectively are most im-
portant and are thus given separately once again:

in( f ) =
√

SI( f ), en( f ) =
√

SU( f ). (A.7)

Then, the r.m.s. values of noise current and voltage in a detector bandwidth
B are Irms = in

√
B and Urms = en

√
B, respectively. In a rather sloppy way

they are often simply called ‘current noise’ and ‘voltage noise’, but one has to
be aware of the fact that in calculations always only the squared values i2

nB
and e2

nB are used, respectively. Also, for applications of this simple relation,
one assumes that the noise properties are more or less constant within the
frequency interval of width B.

A.1.1
Correlations

The fluctuations of measurable quantities can alternatively be described by
means of correlation functions. With correlation functions, one investigates
how the value of a quantity V(t) evolves away from an initial value,

CV(t, τ) = 〈V(t)V(t + τ)〉T =
1
T

∫ T/2

−T/2
V(t)V(t + τ) dt.

In this case we have already assumed a realistic finite time interval T for the
measurement. In general, we will investigate stationary fluctuations, which
do not themselves depend on time, so that the correlation function does not
explicitly depend on time either. Often useful physical information is given
by the normalized correlation function,

gV(τ) =
〈V(t)V(t + τ)〉

〈V〉2 ,

which for τ → 0 results in

gV(τ → 0) =
〈V(t)2〉
〈V〉2 = 1 +

ΔV2

〈V〉2 .

Here the term ΔV(t)2 = 〈(〈V〉 − V(t))2〉 results exactly in the variance. This
directly allows one to assess the fluctuations.

We can build a valuable relation with the spectral power density by using
the bounded Fourier transforms according to Eq. (A.4) and exchanging again
the order of time and frequency integrations,

CV(τ) =
1
T

∫ ∞

−∞

∫ ∞

−∞

∫ T/2

−T/2
VT( f ′)VT( f ) e−i2π f ′t e−i2π f (t+τ) d f d f ′ dt.
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For very long times T → ∞ we may replace the time integration by the Fourier
transform of the delta function, δ( f ) =

∫ ∞
−∞ ei2π f t dt, yielding

CV(τ) =
1
T

∫ ∞

−∞

∫ ∞

−∞
VT( f ′)VT( f )δ( f + f ′) e−i2π f τ d f d f ′

=
∫ ∞

0

2|VT( f )|2
T

e−i2π f τ d f .

With the help of Eq. (A.5) we can immediately justify the Wiener–Khintchin
theorem, which establishes a relation between the correlation function and the
power spectral density of a fluctuating quantity:

CV(τ) =
∫ ∞

0
SV( f ) e−i2π f τ d f (A.8)

and

SV( f ) =
∫ ∞

0
CV(τ) ei2π f τ dτ. (A.9)

A.1.2
Schottky formula

One of the most important and fundamental forms of noise is the so-called
shot noise. It arises if a measurable quantity consists of a flow of particles
being registered by the detector at random times, e.g. the photon flow of a
laser beam or the photo-electrons in a photomultiplier or a photodiode.

Let us consider a flow of particles that are registered by a detector as needle-
like sharp electrical impulses at random times. We are interested in the power
spectrum of this current of random events. If NT particles are registered dur-
ing a measurement interval of length T, the current amplitude can be given as
a sequence of discrete pulses registered at individual instants tk:

I(t) =
NT

∑
k=1

g(t − tk). (A.10)

The function g(t) accounts for the finite rise time τ of a real detector, which
would give a finite length even to an infinitely sharp input pulse. At first we
determine the Fourier transform

I( f ) =
NT

∑
k=1

Gk( f ),

with the Fourier transform of the kth individual event Gk( f ) = ei2π f tkG( f ):

G( f ) =
∫ ∞

−∞
g(t) ei2π f t dt. (A.11)
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Any single event has to be normalized according to
∫ ∞
−∞ g(t) dt = 1. If the

events are shaped like pulses of typical length τ = fG/2π, then the spec-
trum has to be continuous at frequencies far below the cut-off frequency fG,
G( f� fG) � 1.

By definition of the power spectrum (A.5) we have SI( f ) = 2〈|IT( f )|2〉/T.
Thus one calculates

|IT( f )|2 = |G( f )|2
NT

∑
k=1

NT

∑
k′=1

ei2π f (tk−tk′ )

= |G( f )|2
(

NT +
NT

∑
k=1

NT

∑
k′=1, =k

ei2π f (tk−tk′)
)

.

Averaging over an ensemble makes the second term in the lower row vanish,
and NT is replaced by the average value N. Thus the power density of the
noise is

SI( f ) =
2N|G( f )|2

T
, (A.12)

which depends only on the spectrum G( f )|2 of an individual pulse.
For ‘needle-like’ pulses with a realistic length τ, we anticipate an essentially

flat spectrum, i.e. a white spectrum in the frequency range f ≤ τ/2π. For ran-
dom uncorrelated pulses we expect not the amplitudes but the intensities to
add. If it is also taken into account that SI( f ) is obtained by single-sided inte-
gration (Eq. (A.5)), we can interpret all factors in Eq. (A.12).

In the special case of an electric current the relation with the noise power
spectral density is called the Schottky formula, which is valid for Fourier fre-
quencies below the cut-off frequency of the detector fG,

SI( f ) = 2eI, (A.13)

where we have used I = eN/T.
If the amplitude of the individual event fluctuates as well, e.g. if we have∫ ∞

−∞ g(t − tk) dt = ηk, then Eq. (A.12) is replaced by

SI( f ) =
2N〈η2〉|G( f )|2

T
. (A.14)

Now the average current is I = Ne η/T, with an average charge e η. In the
Schottky formula (A.13) an additional excess noise factor Fe = 〈η2〉/〈η〉2 is
introduced:

SI( f ) = 2〈eη〉〈I〉 〈η
2〉

〈η〉2 . (A.15)
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This variant is important for photomultipliers and avalanche photodiodes
subject to intrinsically fluctuating amplification.

Let us finally consider the special case of an amplitude distribution that has
only the random values η = 0 and η = 1. In this case we have Fe = 1, so that
events not being registered do not contribute to the noise.

A.2
Poynting theorem

The planar wave is the most important and most simple limiting case that is
treated for the propagation of optical waves. There the field vector at a defined
position is described by a harmonic function of time,

F = F0 e−iωt.

Often averages of products of harmonically varying functions are required.
For this, the Poynting theorem is very useful if physical quantities are de-
scribed by the real part of a complex harmonic function. If F and G are two
complex harmonic functions, then for arbitrary vector products ⊗ we have for
the average taken over a period

〈Re{F} ⊗Re{G}〉 = 1
2 〈Re{F ⊗ G∗}〉.
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B
Supplements in quantum mechanics

B.1
Temporal evolution of a two-state system

B.1.1
Two-level atom

A hypothetical two-level atom has only one ground state |g〉 and one excited
state |e〉 to which the raising and lowering operators

σ† = |e〉〈g| and σ = |g〉〈e|

belong. They are known as linear combinations of the Pauli operators,

σ† = 1
2 (σx + iσy), σ = 1

2 (σx − iσy).

The Hamiltonian of the dipole interaction can be described by

H = h̄ω0σ†σ + h̄g e−iωt + h̄g∗ eiωt, (B.1)

with ω0 = (Ee − Eg)/h̄ and using the semiclassical approximation as well as
the rotating-wave approximation (RWA). The dipole coupling rate g is derived
from

Vdip = (d(+) + d(−)) · (E(+) + E(−)),

where the operator of the dipole matrix element is qr = d = d(+) + d(−) and
the electric field E(r, t) = E(+) e−iωt + E(−) eiωt, and in general geometric fac-
tors accounting for the vectorial nature have to be taken into account [163]. For
instance, the rotating-wave approximation is of no relevance for a Δm = ±1
transition: because d(+) = 〈d〉(ex + iey) e−iω0t and E(+) = E0(ex + iey) e−iω0t,
we have exactly d(+) · E(+) = d(−) · E(−) = 0 in this case.
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B.1.2
Temporal development of pure states

In the interaction picture of quantum mechanics, the temporal development
of a state is described according to the equation

|ΨI(t)〉 = e−iHIt/h̄|ΨI(0)〉, (B.2)

with the interaction Hamiltonian

HI = h̄gσ† + h̄g∗σ

= h̄|g|(cos φ σx + sin φ σy).
(B.3)

With the Rabi frequency ΩR = 2|g|, then

|ΨI(t)〉 = e−i(ΩRt/2)(cos φ σx−sin φ σy)|ΨI(0)〉. (B.4)

The state development can be taken from the matrix equation

exp(−iασ · n) = 1 cos α − iσ · n sin α. (B.5)

B.2
Density-matrix formalism

For the expert reader, for convenience we here collect some results of quantum
mechanics for the density operator leading to the optical Bloch equations. The
density matrix formalism allows one to treat an ensemble of two-level atoms.

In a basis of quantum states |i〉 the density operator has the spectral repre-
sentation

ρ̂ = ∑
ij

ρij|i〉〈j|.

The equations of motion of the discrete elements can then be obtained from
the Heisenberg equation with the Hamiltonian H under study,

ih̄
d
dt

ρ̂ = [H, ρ̂].

For evaluation it is convenient to use the spectral representation of the Hamil-
tonian with elements Hij = 〈i|H|j〉,

d
dt

ρij = − i
h̄ ∑

k
[Hikρkj − ρikHkj]. (B.6)

According to this the density matrix of a two-level atom consists of the expec-
tation values(

〈σ†σ〉 〈σ†〉
〈σ〉 〈σσ†〉

)
.
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The Hamiltonian for the states |g〉 and |e〉 contains the undisturbed operator
of the free atom and in semiclassical approximation the dipole term

Vdip = −(degσ† + dgeσ)(E(+) e−iωt + E(−) eiωt),

so that

H = 1
2 h̄ω0(σ†σ − σσ†) + 1

2 (E(+)
0 e−iωt + E(−)

0 eiωt)(degσ† + dgeσ).

We will see that the expectation values 〈σ†〉 and 〈σ〉 oscillate with eiω0t and
e−iω0t, respectively. In the vicinity of a resonance we use the ‘rotating-wave
approximation’, for which the terms oscillating with ω + ω0 are neglected. We
abbreviate g = −degE0/2h̄ and find

H = h̄ω0σ†σ + h̄g e−iωtσ† + h̄g∗ eiωtσ.

From this the equations of motions are obtained as

ρ̇ee = ig∗ e−iωtρeg − ig eiωtρge = −ρ̇gg,

ρ̇eg = iω0ρeg + ig e−iωt(ρee − ρgg) = ρ̇∗ge.

In the RWA it is moreover convenient to introduce ‘rotating’ elements of the
density matrix ρeg = ρeg e−iωt and ρge = ρge eiωt. Dropping the overbars for
the sake of simplicity we obtain (detuning δ = ω − ω0)

ρ̇ee = −ρ̇gg = −igρge + ig∗ρeg,

ρ̇eg = −i(ω − ω0)ρeg + ig(ρee − ρgg) = −iδρeg + ig(ρee − ρgg).

From this system of equations the optical Bloch equations (6.36) can again
be obtained by suitable replacements. After introducing phenomenological
damping rates and ρeg = u + iv, for example, one obtains

u̇ = δv − 1
2 γu − 2 Im{g}w,

v̇ = −δu − 1
2 γv + 2 Re{g}w,

ẇ = 2 Im{g}u − 2 Re{g}v − γw.

(B.7)

B.3
Density of states

The calculation of the density of states (DOS) ρ(E) = ρ(h̄ω) as a function
of energy is a standard problem of the physics of many-particle systems. It
depends on the dispersion relation,

E = E(k),
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and on the dimension of the problem. In the general case it can be anisotropic
as well, though we here limit ourselves to the isotropic case. Two important
examples are the dispersion relations of the electron gas and photon gas:

electrons: E(k) =
h̄2k2

2m
,

photons: E(k) = h̄ω = h̄ck.

;�

;�

�;�

;�

;��  A

Fig. B.1 Densities of states in 1D and 2D k-spaces.

The density of states ρ(E) dE describes the number of states within an inter-
val of width dE in energy space. It is calculated in n dimensions as

ρ(E) = 2
∫

Vk

dnk ρk(k)δ(E − E(k))

= 2
1

(2π)n

∫
Vk

dnk δ(E − E(k)).
(B.8)

In k-space we assume a constant density, ρk(k) = (1/2π)n, within unit
volume1 and furthermore take into account the two-fold degeneracy due to
the polarization of electromagnetic waves and the electron spin, respectively.
Then we obtain the densities of states from Tab. B.1.

Tab. B.1 Densities of states in one, two and three dimensions.

1D 2D 3D
Electromagnetic radiation field: ω = ck, ρ(ω)

1
πc

dω
ω

πc2 dω
ω2

π2c3 dω

Free electron gas: E = h̄2k2/2m, ρ(E)
m
πh̄

(2mE)−1/2 dE
m

πh̄2 dE
m

π2 h̄3 (2mE)1/2 dE

1) For the calculation of physically measurable quantities, it has to be
summed over the volume of the many-particle system. Thus here
we set L = 1 for Eq. (B.8).
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Index

M2 factor 366
π pulse 239, 418
Q factor 298
V parameter 95
c, celeritas 39

a
Abbe number 10
Abbe’s refractometer 30
Abbean sine condition 156
ABCD matrices 21
ABCD matrices, conventions 22
ABCD matrices, Gaussian modes 50
ABCD matrices, wave guides 27
aberration, chromatic 172
aberration, spherical 169
aberrations 165
Abraham–Lorentz equation 222, 224
absorption 402
absorption cross-section 242
absorption, in optical materials 117
absorption, saturated 403
AC Stark shift 454
AC Stark splitting 451
achromat 173
acousto-optical modulator 140, 321
adiabatic elimination 305
Adler equation 360
afocal 25
afocal system 161
air laser 273
Airy disc 68
Airy function 197
alpha parameter 300
amplifier noise 376, 377
amplitude noise 312
angle matching 504
anharmonic oscillator 489
anisotropic optical materials 127
anomalous dispersion 223
AOMs 140
aperture aberration 169

argon laser 270
astigmatism 170
atom optics 29, 184
atomic beams 411
Autler-Townes doublet 451
Autler-Townes splitting 454
autocorrelation function 457
avalanche photodiodes 395

b
Babinet’s principle 73
bandgap, photonic 109
beam splitter 181
Bell experiment 484
Bell’s inequality 481
Bennett holes 262
birefringence 127
birefringence, beam walk-off 131
birefringence, microscopic model 128
birefringence, polarizers 135
birefringence, strain 127
birefringence, uniaxial crystals 128
birefringent filter 133, 294
Bloch waves 106
Bloch’s theorem 107
Bloch–Siegert shift 237
bolometer 386
Bragg diffraction 141
Bragg diffraction, pendulum solution 143
Brewster angle 85
Brewster condition 85

c
candela 399
cat’s eye 9
cavity dumping 322
cavity QED 449
cavity ring down spectroscopy 219
CCD sensors 397
channeltron 391
chaotic field 463
chaotic light field 470
chirped pulse amplification 329
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chromatic aberration 172
cladding pumping 287
Clausius–Mossotti equation 231
CO2 laser 274
coherence 177, 178
coherence function 457
coherence, first-order 464
coherence, longitudinal 189
coherence, second-order 464, 465
coherence, temporal 190
coherence, transverse 183
coherent state 468
coherent superposition 422
colour centre laser 291
coma 172
concave mirror, astigmatic aberration 19
concave mirror, astigmatism 19
concave mirrors 18
confocal parameter 48
conjugated plate 32
continuity equation 38
contracted notation 495
corner cube reflector 9
corner frequency 378
Cornu spiral 72
correlation function 179, 455
cosmic background radiation 246
Coulomb gauge 40
coupled amplitude equations 498
crystal field splitting 279
CSHS inequality 483
current noise 536
curved mirrors 16
CVD, chemical vapour depositon 13

d
dark current noise 376
dark state 487
DBR laser 364
defect, defect mode 112
density of states 543
density-matrix formalism 542
dephasing 420
depolarizing field 231
depopulation pumping 414
depth of focus 157
detector, pyro-electric 386
detectors, photovoltaic 393
detectors, quantum 372
detectors, thermal 371
DFB laser 364
dielectric function 228
dielectric interfaces 81
dielectric media 34
dielectric media, optically dense 231
dielectric media, optically thin 228, 229

dielectric susceptibility 35, 227
difference frequency 514
diffraction 60, 82
diffraction grating 185
diffraction, Bragg domain 141
diffraction, Raman–Nath domain 141
digital light processing 140
digital mirror device 140
diode laser, amplitude modulation 356
diode laser, arrays 367
diode laser, dynamics 355
diode laser, extended cavity 363
diode laser, external cavity 363
diode laser, heterostructure 346
diode laser, high-power 366
diode laser, linewidth 358
diode laser, optical feedback 361
diode laser, phase modulation 357
diode laser, quantum well 353
diode laser, tapered amplifier 368
diode laser, tunable 363
diode laser, wavelength 349
diode laser, wide stripe 368
dioptre 23
dipole character 45
dipole interaction 234
dipole operator 234, 445
dispersion 10, 402
dispersion length 123
dispersion relation 97
distortion (aberration) 172
DLP 140
DMD 140
Doppler effect broadening 262
Doppler effect, second order 417
Doppler width 407
double slit, atomic beams 184
double slit, electron beam 184
Drude model 88
dye laser 292

e
EDFA 285
Einstein coefficients 247, 248
electric polarizability 225
electro-optical modulators 136
electro-optical modulators, half-wave volt-

age 137
electromagnetic field, energy density 41
electromagnetic field, momentum current

density 42
electromagnetic field, quantization 441
EOMs 136
EPR paradox 478
erbium laser 285
erbium-doped fibre amplifier 285
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etalon 195
etalon, intra-cavity 264
evanescent wave field 86
excimer laser 276
eye 150
eye, adaption 151
eyepiece 152

f
Fabry–Perot interferometer 195
Fabry–Perot interferometer, resolution

200
Fabry–Perot spectrum analyser 267
Faraday effect 143
Faraday isolator 145
Faraday rotators 143
FBGs 288
femto-chemistry 140
Fermat’s principle 5
fibre absorption 101
fibre Bragg grating 288
fibre laser 286
FID 419
field operator 442
filter, spatial 102
finesse 200
finesse coefficient 197, 198
flicker noise 378
focal point 17
Fock state 468
focus 17
four-level system 248
four-wave mixing, FWM 521
Fourier components 36
Fourier optics 69
Fraunhofer diffraction 65
Fraunhofer diffraction, circular aperture

68
Fraunhofer diffraction, Gaussian transmit-

ter 67
Fraunhofer diffraction, single slit 66
free induction decay 419
free spectral range 199
frequency chirp 124, 531
frequency doubling 500
frequency doubling, Gaussian beams 507
frequency doubling, resonant 509
frequency doubling, strong conversion

502
frequency doubling, weak conversion

501
frequency modulation 137
frequency tripling 522
Fresnel diffraction 65, 70
Fresnel diffraction, circular aperture 72
Fresnel diffraction, straight edge 71

Fresnel formulae 84
Fresnel lenses 75
Fresnel zones 75
FTIR 87
full width at half-maximum 404
FWHM 404

g
gain, saturated 257, 262
gain, small signal 263
GaN laser 337
gas lasers 269
Gauss–Voigt profile 407
Gaussian beams 45
Gaussian beams, ABCD rules 50
Gaussian beams, beam radius 48
Gaussian beams, beam waist 48
Gaussian beams, confocal parameter 48
Gaussian beams, divergence 48
Gaussian beams, Gouy phase 49
Gaussian beams, higher modes 52
Gaussian principal mode 46
Gaussian rays, Gaussian principal mode

46
Glan polarizers 135
Glauber state 468
graded-index fibre 99
grating laser 363
grating, blazed 185
grating, holographic 185
grating, resolution 187
gravity wave interferometer 192
GRIN fibre 99
GRIN lenses 27
group index of refraction 121
group velocity 121
group velocity dispersion 122

h
Hagen–Rubens relation 91
halo 30
Hanbury-Brown and Twiss experiment

466
Hanle effect 227
HE/EH modes 98
Helmholtz equation 40
Helmholtz equation, paraxial 52, 53
Hermitian polynomials 54
Hermitian–Gaussian modes 53
Hertzian dipole 44
heterodyne detection 384
heterostructures 345
hidden variables 481
hole burning 293, 412
holes, spectral 262
hologram, in-line 212
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hologram, reconstruction 213
holographic recording 211
holography 211
homodyne detection 384
homostructures 345
Hong–Ou–Mandel dip 478
Hong–Ou–Mandel interferometer 476
host crystals 278
hot spot 74
Hubble Space Telescope 163
Huygens eyepiece 152
Huygens’ principle 60
HWHM 404
hybrid modes 96
hydrogen atom, spectroscopy 416

i
image amplifiers 399
image converter 399
image sensors 396
image, stigmatic 16
index ellipsoid 130
index of refraction 3
index of refraction, extraordinary 128
index of refraction, inhomogeneous 7
index of refraction, intensity-dependent

124
index of refraction, ordinary 128
indicatrix 130
injection locking 359
interferometer, Hong–Ou–Mandel 476
interferometry 177
intrinsic permutation symmetry 494
inversion 235, 239, 241, 249

j
Jaynes–Cummings model 310
Jaynes-Cumming operator 445
Jones vectors 58

k
Köhler illumination 155
Kerr effect 136
Kerr lens mode locking (KLM) 326, 525
Kirchhoff’s integral theorem 62
Kleinman symmetry 495
KNbO3 506
Kramers–Kronig relations 254

l
Laguerre Gaussian modes 78
Lamb dip 263
Lamb shift 440
lambda half/quarter plates 132
lambda meter 190
lanthanides 279

Larmor formula 223, 247
Larmor frequency 226
laser 255
laser cooling 429
laser diode, inversion 340
laser granulation 215
laser gyro 194
laser noise 312
laser outcoupling 304
laser power 265
laser rate equations 304
laser resonator, bowtie 293
laser resonator, Z-shaped 283
laser speckle 215
laser spectroscopy 401
laser spiking 306
laser theory 297
laser threshold 303
laser, amplitude noise 317
laser, disc 288
laser, end-pumped 282
laser, fluctuations 316
laser, gain profile 262
laser, helium–neon 258
laser, high-power 329
laser, line selection 261
laser, linewidth 266
laser, mode selection 260
laser, neodymium 282
laser, outcoupling mirror 265
laser, pulsed 320
laser, RIN 318
laser, single-atom 310
laser, single-frequency 263
laser, single-mode 263
laser, threshold-less 308
laser, transition-metal ions 291
laser, types 257
laser, vibronic 290
laser, white light 330
laser-induced fluorescence 401
law of refraction 4
LC modulator 138
least distance of distinct vision 151
lens aberrations 165
lens equation 149
lens matrix 22
lens systems 24
lens systems, afocal 25
lens systems, periodic 25
lens, achromatic 173
lens, biconvex 166
lens, diffraction limit 52
lens, magnetic 28
lens, planar convex 166
lens, thick 23
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lens, thin 23
lenses 16
lenses, designs 166
lenses, GRIN 27
lenses, meniscus 167
lenses, types 166
LIF 401
light field, non-classical 465
light forces 424
light propagation in matter 81
light pulse, distortion 123
light pulse, spectrum 118
light pulses 116
light rays, extraordinary 130
light rays, ordinary 130
light sensors 371
light shift 454
line shapes 404
linewidth 404
linewidth, Doppler 406
linewidth, heterodyne method 268
linewidth, homogeneous 405, 406
linewidth, inhomogeneous 407
linewidth, natural 405
linewidth, phasor model 314
linewidth, pressure broadening 408
linewidth, time-of-flight 409
liquid crystal modulator 138
lock-In amplifier 436
longitudinal relaxation 240
Lorentz field 231
Lorentz oscillator, in a magnetic field 226
Lorentz profile 223
LP modes 99
lumen 399
Lyot filter 133, 294

m
Mach–Zehnder interferometer 193
magnifying glass 151
Manley–Rowe relation 499
Markov processes 459
maser 255
maser, natural 255
material dispersion parameter 122
matrix optics 19
matrix optics, conventions 22
matrix, lens 22
matter waves 184
Maxwell’s equations 37, 38
Maxwell’s equations, relativistic invariance

40
Maxwell–Bloch equations 300
Maxwell–Lorentz equations 38
metal-vapour lasers 272
meter, definition 39

Michelson interferometer 189
micro-laser 308
microchannel plate 391
microscope 153
microscope, Abbe theory 156
microscope, cover glass 155, 175
microscope, resolving power 154
microscopy, confocal 159
microscopy, scanning near-field optical

159
minimum uncertainty states 470
mirage 7
miser 284
mode dispersion 101
mode locking 322
mode locking, KLM 326
mode matching 201
mode pulling 262, 302
molecular gas lasers 272
Mollow triplet 455, 461
monochromator 187
monolithic miniature laser 284
MOPA 368
MOS capacitors 396
multi-mode fibres 101
multiple-beam interference 195

n
neodymium amplifier 282
neodymium laser 282
neodymium laser, frequency-doubled 283
neodymium, quantum states 279
Newton equation 32
nitrogen laser 273
noise amplitude 535
noise properties of measurable quantities

533
nonlinear optical switch 527
nonlinear optics, crystal symmetries 493
nonlinear polarization 492
nonlinear products 492
nonlinear Schrödinger equation 126
normal dispersion 223
number state 468
numerical aperture 155
numerical aperture, optical fibre 15

o
obliquity factor 63
Onsager–Lax theorem 459
open quantum systems 450
optical axis 128
optical Bloch equations 236, 241
optical cavities 201
optical cavities, concentric 206
optical cavities, confocal 205
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optical cavities, damping 201
optical cavities, micro- 207
optical cavities, modes 201
optical cavities, plane parallel 205
optical cavities, resonance frequencies

203
optical cavities, symmetric 204
optical contact 133
optical diode 144, 285
optical fibres 91
optical Fourier transformation 69
optical gain 250
optical grating 185
optical images 149
optical isolators 144
optical Kerr effect 523
optical lithography 157
optical mixer 384
optical modulators 135
optical molasses 429
optical parametric oscillator, OPO 515
optical prisms 10
optical pumping 227, 233
optical resonator, coupling 198
optical spectra 455
optical spectral analysis 267
optical tweezers 434
oscillator strength 232
oscillator, spectrum 457
OWG 91

p
parabolic mirrors 18
parametric fluorescence 475
parametric gain 514
paraxial approximation 20
particle optics 27
PBG 109
PCF 114
periodically poled materials 511
phase conjugation 528
phase diffusion 315
phase matching 501, 504
phase matching, 90◦ 506
phase matching, non-critical 506
phase matching, temperature 506
phase matching, types I, II 504
phase modulation 137
phase noise 312
phase sensitive rectification 436
phase velocity 39, 40, 120
phase, random walk 315
phasor model 314
photo-capacitors 396
photo-refraction 288
photodiodes 393

photodiodes, biased 395
photodiodes, operation modes 394
photodiodes, photovoltaic 395
photon 440
photon echo 420
photon number distribution 471
photon recoil 424
photonic bandgap 109
photonic crystal fibre 114
photonic crystals 104
photonic materials 104
pin diodes 394
plasma frequency, metallic 88
pn junction 335
Pockels cell 322
Pockels effect 136
point-spread function 163
polarisation entanglement 483
polarization 56
polarization, dielectric 34
polarization, macroscopic 34
polarization, microscopic 241
polarizers 135
Porro prism 9
position sensors 396
power spectral density 535
Poynting vector 42
precision measurements 416
principal plane, principal point 32
principle of superposition 177
prism, minimum deflection angle 10
propagation constant 93
pseudo spin 235, 238
pseudo thermal light 471
pulse compressor 330
pulse distortion 120
pulse length–bandwidth product 118
pulse propagation 116
pulse shape 118
pulse shaping 139
pulse stretcher 330

q
Q factor 405
Q-switch 320
QED, quantum electrodynamics 221
quadrant detectors 396
quadratic index medium 99
quantities, opto-electronic 376
quantum beats 422
quantum dots 355
quantum efficiency 373
quantum electrodynamics 221, 439
quantum electronics 221, 222
quantum films 352
quantum fluctuations 458
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quantum optics 221, 222
quantum regression theorem 459
quantum sensors 372
quantum state reduction 444
quantum well 353
quantum wires 355
quasi-phase matching 511

r
Rabi frequency 237
Rabi frequency, single-photon 301
Rabi nutation 238
Rabi splitting 454
radiation formula 245
radiation reaction 224
radiative interaction, semiclassical theory

221
rainbow 30
Ramsey spectroscopy 436
rare-earth ions 279
Rayleigh scattering 458
Rayleigh zone 48
reciprocal lattice 106
reference star 165
reflection coefficient 84
reflection, dielectric 82
reflection, metallic 90
reflectivity 84
refraction coefficient, nonlinear 523
refractive index 3
refractive index, complex 87
refractive index, effective 97
refractive index, in conducting materials

88
refractive index, macroscopic 228
refractive indices, table 11
refractive power 23
relative intensity noise (RIN) 318
relaxation oscillations 306
relaxation, longitudinal 240
relaxation, transverse 241
repopulation pumping 415
reservoirs 450
resonance fluorescence 454
resonator field, damping 298
resonator, unstable 219
retarder plates 132
retarder plates, zero order 133
retro-reflector 9
ring laser 293
ruby laser 277
Rydberg constant 416

s
Sagnac interferometer 193
saturable absorber 325

saturated gain 301
saturation intensity 242, 243
saturation parameter 242
saturation spectroscopy 412
saturation spectroscopy, with Cs/Rb

vapour 413
scanning near-field optical microscopy

159
Schawlow–Townes linewidth 266, 319,

358
Schmidt mirror 169
Schottky formula 537
second harmonic generation, SHG 500
Seidel aberrations 167
self-focusing 524
self-injection locking 361
self-phase-modulation 531
Sellmeier equation 10
semiconductors 333
semiconductors, absorption of light 338
semiconductors, doped 334
semiconductors, emission of light 338
semiconductors, optical properties 336
sensors, optical 371
sensors, quantum efficiency 373
sensors, sensitivity 372
shot noise 537
shot-noise-limited detection 383
sidebands 138
signal-to-noise ratio 373
single lens 28
single-mode fibres 102
single-photon source 474
skin effect, anomalous 89
skin effect, normal 90
slab laser 283
SLMs 139
slowly varying envelope approximation

125
small signal gain 250
Snell’s law 4
SNOM 159
solid-state lasers 277
solitons, optical 124
spatial filter 56
spatial light modulator 139
spatial soliton 526
speckle pattern 215
spectroscopy, Doppler-free 411
spherical aberration 169
spin echo 436
spontaneous emission 245, 247, 316, 440
spontaneous emission rate 247
spontaneous emission, interpretation 449
spontaneous emission, suppression 448
spot diagram 166
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stability criterion 27
stability diagram 26, 27
step-index fibre, HE/EH modes 98
step-index fibre, LP modes 99
step-index fibre, TE/TM modes 98
step-index fibres 92
stimulated absorption 244, 246
stimulated emission 244, 246, 305
Stokes matrices 58
Stokes parameter 58
Stokes’ factor 63
strained quantum well 354
strong coupling 241, 310, 450
subpixel resolution 398
sum frequency 513
super continuum 330
superposition principle 38
superradiance 274
surface plasmons 146
SVEA 125

t
Taylor experiment 184
TE/TM modes 98
tele lens 175
telescope 160
telescope, Galilean 160
telescope, HST 163
telescope, magnification 162
telescope, resolving power 161
telescopes, reflector 163
TEM mode 47
temperature, negative 248
theory of relativity 39
thermal detectors 371, 384
thermal field 463
thermal lens 524
thermal light field 470
thermistor 386
thermopile 385
third harmonic generation 522
three-wave mixing 492
Ti–sapphire laser 291
total internal reflection 85
total internal reflection, frustrated 87
transient phenomena 418
transmission 84
transmission coefficient 84
transverse relaxation 241

triple mirror 9
two-level atoms 232, 233
two-level laser model 249
two-photon spectroscopy 415
two-wave polarization 494
Tyndall effect 45

u
unpolarized light 59

v
vacuum fluctuations 443
vacuum Rabi frequency 445
vacuum Rabi splitting 311
VCSEL laser 364
velocity of light 39
velocity of light, universal constant 39
visibility 180, 457
vision distance, standardized 151
voltage noise 536

w
walk-off 131
wave equation 38
wave equation, for step-index fibres 93
wave equation, with conductivity 88
wave guide, polarization maintaining

103
wave guides 91
wave guides, absorption 101
wave guides, planar 91
wave guides, single-mode 102
wave guides, weakly guiding 94
wave meter 190
wave packets 423
wave, evanescent 86
wavefront reversal 529
waves, dipole 44
waves, planar 42
waves, spherical 42
Weisskopf–Wigner theory 446
Wiener–Khintchin theorem 313, 457, 537

y
Yb laser 288
Young’s double-slit 177, 181

z
zoom lens 175
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