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Preface 

Though being taught as a subfield of classical electrodynamics, optics is now once again 
considered to be an important branch of physical sciences for the 21st century. Fur-
thermore, optics implicitly exists due to its propaedeutic contributions to the theory 
of classical fields and quantum mechanics. In lecture halls today we can easily demon-
strate coherence phenomena with laser light sources. It is hence appropriate also in 
lecturing to devote more room to the concepts of optics created since the 1960s. 

This textbook attempts to link the central topics of optics that were established 
200 years ago to the most recent research topics such as laser cooling or holography. 
To compromise between depth and breadth, it is assumed that the reader is familiar 
with the formal concepts of electrodynamics and also basic quantum mechanics. In 
scientific education, this textbook may serve as a reference for the foundations of 
modern optics: classical optics, laser physics, laser spectroscopy, nonlinear optics as 
well as applied optics may profit. Teaching will be complemented through materials 
presented by new media such as the internet. Nevertheless, the author strongly believes 
that conventional textbooks will continue to be a prime source of learning. Novel 
materials and complements will be made available, however, through the www.uni-
bonn.de/iap/ollE  website. 
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1 Light rays 

1.1 Light rays in human experience 

The formation of an image is one of our most fascinating emotional experiences. Even 
in ancient times it was realized that our 'vision' is the result of rectilinearly propa-
gating light rays, because everybody was aware of the sharp shadows of illuminated 
objects. Indeed, rectilinear propagation may be influenced by certain optical instru-
ments, e.g. by mirrors or lenses. Following the successes of Tycho Brahe (1546-1601), 
knowledge about geometrical optics made for the consequential design and construc-
tion of magnifiers, microscopes and telescopes. All these instruments serve as aids to 
vision. Through their assistance, 'insights' have been gained that added to our world 
picture of natural science, because they enabled observations of the world of both 
micro- and macro-cosmos. 

Thus it is not surprising that the 
terms and concepts of optics had 
tremendous impact on many areas of 
natural science. Even such a giant 
instrument as the new Large Hadron 
Collider (LHC) particle accelerator in 
Geneva is basically nothing other than 
an admittedly very elaborate micro-
scope, with which we are able to ob-
serve the world of elementary particles 
on a subnuclear length scale. Perhaps 
as important for the humanities is the 
wave theoretical description of optics, 
which spun off from the development of 
quantum mechanics. 

In our human experience, rectilinear 
propagation of light rays in a homo-
geneous medium — stands in the fore-
ground. But it is a rather newer under- 
standing that our ability to see pictures 

Fig. 1.1: Light rays. 
is caused by an optical image in the eye. 
Nevertheless, we can understand the formation of an image with the fundamentals of 
ray optics. That is why this textbook starts with a chapter on ray optics. 
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2 	 I Light rays 

1.2 Ray optics 

When light rays spread spherically into all regions of a homogeneous medium, in gen-
eral we think of an idealized, point-like and isotropic luminous source at their origin. 
Usually light sources do not fulfil any of these criteria. Not until we reach a large dis-
tance from the observer may we cut out a nearly parallel beam of rays with an aperture. 
Therefore, with an ordinary light source, we have to make a compromise between in-
tensity and parallelism, to achieve a beam with small divergence. Nowadays optical 
demonstration experiments are nearly always performed with laser light sources, which 
offer a nearly perfectly parallel, intense optical beam to the experimenter. 

When the rays of a beam are confined within only a small angle with a common 
optical axis, then the mathematical treatment of the propagation of the beam of rays 
may be greatly simplified by linearization within the so-called 'paraxial approxima-
tion'. This situation is met so often in optics that properties such as those of a thin 
lens, which go beyond that situation, are called 'aberrations'. 

The direction of propagation of light rays is changed by refraction and reflection. 
These are caused by metallic and dielectric interfaces. Ray optics describes their effect 
through simple phenomenological rules. 

1.3 Reflection 

We observe reflection, or mir-
roring of light rays not only on 
smooth metallic surfaces, but also 
on glass plates and other dielec-
tric interfaces. Modern mirrors 
may have many designs. In ev-
eryday life they mostly consist of 
a glass plate coated with a thin 
layer of evaporated aluminium. 
But if the application involves 
laser light, more often dielectric 
multilayer mirrors are used; we 
will discuss these in more detail 
in the chapter on interferometry 
(Chapter 5). For ray optics, the 
type of design does not play any 
role. 

Fig. 1.2: Reflection at a planar mirror. 

1.3.1 Planar mirrors 

We know intuitively that at a planar mirror like in Fig. 1.2 the angle of incidence 01  
is identical with the angle of reflection 02  of the reflected beam, 

01 = 02, 



Fig. 1.3: Refraction and reflec- 
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and that incident and reflected beams lie within a plane together with the surface nor-
mal. Wave optics finally gives us a more rigid reason for the laws of reflection. Thereby 
also details like, for example, the intensity ratios for dielectric reflection (Fig. 1.3) are 
explained, which cannot be derived by means of ray optics. 

1.4 Refraction 

At a planar dielectric surface, like e.g. a glass plate, reflection and transmission occur 
concurrently. Thereby the transmitted part of the incident beam is 'refracted'. Its 
change of direction can be described by a single physical quantity, the 'index of re-
fraction' (also: refractive index). It is higher in an optically 'dense' medium than in a 
'thinner' one. 

In ray optics a general description in terms of these quantities is sufficient to 
understand the action of important optical components. But the refractive index plays 
a key role in the context of the macroscopic physical properties of dielectric matter 
and their influence on the propagation of macroscopic optical waves as well. This 
interaction is discussed in more detail in the chapter on light and matter (Chapter 6). 

1.4.1 Law of refraction 

At the interface between an optical medium '1' with refractive index n 1  and a medium 
with index n 2  (Fig. 1.3) Snell's law of refraction (Willebrord Snell, 1580-1626) is 

valid, 

ni  sin 01  = n2 sin 021 	 (1.2) 

where 01  and 02  are called the angle of incidence and 
angle of emergence at the interface. It is a bit artifi-
cial to define two absolute, material-specific refractive 
indices, because according to Eq. (1.2) only their ratio 
n 1 2 -= ni /n2 is determined at first. But considering 
the transition from medium '1' into a third material 
'3' with n13, we realize that, since n23 = n21n13, we 
also know the properties of refraction at the transition 
from '2' to '3' . We can prove this relation, for exam-
ple by inserting a thin sheet of material '3' between '1' 
and '2'. Finally, fixing the refractive index of vacuum 
to nvac  - 1 — which is argued within the context of 
wave optics — the specific and absolute values for all 
dielectric media are determined. 

In Tab. 1.1 on p. 9 we collect some physical prop- tion at a dielectric surface. 

erties of selected glasses. The refractive index of most 
glasses l's  close to nglass = 1.5. Under usual atmospheric conditions the refractive index 
in air varies between 1.00002  and 1.000 05. Therefore, using n air  = 1, the refraction 
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properties of the most important optical interface, i.e. the glass-air interface, may 
be described adequately in terms of ray optics. Nevertheless, small deviations and 
variations of the refractive index may play an important role in everyday optical phe-
nomena in the atmosphere (for example, fata morgana, p. 6). 

1.4.2 Total internal reflection 

According to Snell's law, at the interface between a dense medium '1' and a thinner 
medium '2' (n 1  > n2 ), the condition (1.2) can only be fulfilled for angles smaller than 
the critical angle Oc, 

0 < 0, .= sin-1 (n2/ni)• 

Fig. 1.4: Total internal reflection at a dielectric sur-
face. The point of reflection of the rays does not lie ex-
actly within the interface, but slightly beyond (the Goos-
Haenchen effect [36, 881). 

1.5 Fermat's principle: the optical pathlength 

As long as light rays propagate in a homogeneous medium, they seem to follow the 
shortest geometric path from the source to a point, making their way in the shortest 
possible time. If refraction occurs along this route, then the light ray obviously no 
longer moves on the geometrically shortest path. 

The French mathematician Pierre de Fermat (1601-1665) postulated in 1658 that 
in this case the light ray should obey a minimum principle, moving from the source 
to another point along the path that is shortest in time. 

For an explanation of this principle, one cannot imagine a better one than that 
given by the American physicist Richard P. Feynman (1918-1988), who visualized 

(1.3) 

For 0 > Oc  the incident in-
tensity is totally reflected at 
the interface. We will see 
in the chapter on wave op-
tics that light penetrates into 
the thinner medium for a dis-
tance of about one wavelength 
with the so-called 'evanescent' 
wave, and that the point of 
reflection does not lie exactly 
at the interface (Fig. 1.4). 
The existence of the evanes-
cent wave enables the appli-
cation of the so-called 'frus-
trated' total internal reflection, 
e.g. for the design of polarizers 
(Chapter 3.5.4). 



(1.4) 

Fig. 1.5: Fermat 's 
and refraction at a 
surface. 

principle 
dielectric 

1.5 Fermat's principle: the optical pathlength 	 5 

Fermat 's principle with a human example: One may imagine Romeo discovering his 
great love Juliet at some distance from the shore of a shallow, leisurely flowing river, 
struggling for her life in the water. Without thinking, he runs straight towards his 
goal - although he might have saved valuable time if he had taken the longer route, 
running the greater part of the distance on dry land, where he would have achieved a 
much higher speed than in the water. 

Considering this more formally, we determine the time required from the point 
of observation to the point of the drowning maiden as a function of the geometric 
pathlength. Thereby we find that the shortest time is achieved exactly when a path is 
chosen that is refracted at the water-land boundary. It fulfils the refraction law (1.2) 
exactly, if we substitute the indices of refraction ni and n2  by the inverse velocities in 
water and on land, i.e. 

ni 	1)2 

n2 	vi 

According to Fermat's minimum principle, we have to demand the following. The 
propagation velocity of light in a dielectric cri  is reduced in comparison with the 
velocity in vacuum c by the refractive index n: 

cn, = cln. 

Now the optical pathlength along a trajectory C, where the refractive index n depends 
on the position r, can be defined in general as 

fe  c/n(r) 	c 

ds  f n(r) ds. 

With the tangential unit vector e t , the path ele-
ment ds = et  • dr along the path can be calculated. 

Example: Fermat's principle and refraction 
As an example of the use of the integral principle, we 
will again consider refraction at a dielectric surface 
and therefore vary the length of the optical path be-
tween the points A and B in Fig. 1.5 (rA0 = vector 
from A to 0 etc., e 1 , 2  = unit vectors), 

ropt 
	= niei • rAo + n2e2 . r013 , 

d.Copt = (ni ei  - n2e2 ) • dr. 

Now varying only the distance along the surface (N = 
surface normal) and taking into account dr I N, we 
can specify the condition 

(ni e i  - n2 e2 ) x N = 0, 

which is a vectorial formulation of Snell's law (1.2) re-
producing it at once. 

Lopt = C 
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1.5.1 Inhomogeneous refractive index 

In general, the index of refraction of a body is not spatially homogeneous, but has 
underlying, continuous, even though small, fluctuations like the material itself, which 
affect the propagation of light rays: n = n(r). We observe such fluctuations in, for 
example, the flickering of hot air above a flame. From the phenomenon of mirages, 
we know that efficient reflection may arise like in the case of grazing incidence at a 
glass plate, even though the refractive index decreases only a little bit towards the hot 
bottom.  

Again using the idea of the integral principle, this case of propagation of a light 
ray may also be treated by applying Fermat's principle. The contribution of a path 
element ds to the optical pathlength is &Copt =  n ds = net  dr, where et  = I ds is 
the tangential unit vector of the trajectory. On the other hand &Copt = V ropt • dr is 
valid in accordance with Eq. (1.4), which yields the relation 

net  = n—
dr 

VCopt  and n2  = (VC0pt) 2 , 
ds 

which is known as the eikonal equation in optics. We get the important ray equation 
of optics, by differentiating the eikonal equation after the path', 

d ( dr 
- --ds- n 	Vn. 	 (1.5) 
 dsj  

A linear equation may be reproduced for homogeneous materials (Vn = 0) from (1.5) 
without difficulty. 

Example: Fata morgana 
As a short example we will treat reflection at a hot film of air near the ground, which 
induces a decrease in air density and thereby a reduction of the refractive index. 
(Another example is the propagation of light rays in a gradient waveguide - section 
1.7.3.) We may assume in good approximation that for calm air the index of refraction 
increases with distance y from the bottom, e.g. n(y) = no (1 -E e - '9 ). Since the effect 
is small, E < 1 is valid in general, while the scale length a is of the order a = 1m-1 . 
We look at Eq. (1.5) for r = (y(x), x) for all individual components and find for the x 
coordinate with constant C 

dx 
n—

ds 
=C. 

We may use this result as a partial parametric solution for the y coordinate, 

d 	dy)
ci-79  d (n i  dx dx d ( ridy C an(y)  

dx dx ds) ds dx 	dx n 	ay • 

iThereby we apply d/ds et  - V and 

1 	 1 	 1 
—
d

VG (et • V)VG =– (VG • V)VG -i–
n

V(VG) 2  = 
n 	

—Vn2. 
ds 	 2n 



	

I . 6 Prisms 
	 7 

The constant may be chosen to be C = 1, because it is only scaling the x coordinate. 
Since 2n On/ ay = an2  I ay and n2 f..-_,  4(1 - 2E e -av), we get for E < 1 

2 	- a d2y(x) 
= -

1 —a 2n (y) _ - noEa e y  . 

	

dx 2 	2 ay 

This equation can be solved by fundamental methods and it is convenient to write the 
solution in the form 

1 n(x-s0)>>1 	2n , 
y = yo  ± - ln [cosh 2 (K(x - X0))]  

a 

    

Y 

  

)  

no n(Y) 

   

   

Fig. 1.6: Profile of the refractive index and optical path for a fata morgana. 

For large distances from the point of reflection at x = xo we find straight propagation 
as expected. The maximum angle 0 = arctan(2K/a), where reflection is still possible, 
is defined by K < noct(E/2) 1 / 2 . As in Fig. 1.6 the observer registers two images - one 
of them is upside down and corresponds to a mirror image. The curvature of the light 
rays declines quickly with increasing distance from the bottom and therefore may be 
neglected for the 'upper' line of sight. At (xo , yo ) a 'virtual' point of reflection may be 
defined. 

1.6 Prisms 

The technically important rectangular reflection is achieved with an angle of incidence 
of 0i  = 45°. For ordinary glasses (n '-' 1.5), this is above the angle of total internal 
reflection 0, = sin-1  1.5 = 42°. Glass prisms are therefore often used as simple 
optical elements, which are applied for beam deflection. More complicated prisms are 
realized in many designs for multiple reflections, where they have advantages over the 
corresponding mirror combinations due to their minor losses and more compact and 
robust designs. 
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Fig. 1.7: Reflection or 90° prism. This prism is used for rectangular beam deflection. It may 
also be used for the design of a retroreflector, whereby an optical delay At = At I c is realized 
by simple adjustment. 

Often used designs are the Porro prism and the retroreflector (Fig. 1.8) — other 
names for the latter are 'corner cube reflector', 'cat's eye' or 'triple mirror'. The Porro 
prism and its variants are applied for example in telescopes to create upright images. 
The retroreflector not only plays an important role in optical distance measurement 
techniques and interferometry, but also enables functioning of security reflectors - cast 
in plastics - in vehicles. 

Fig. 1.8: The Porro prism (left) is combined out 
of two rectangular prisms, which rotate the image 
plane of an object such that in combination with 
lenses one gets an upright image. The retrore-
flector (right) throws back every light ray indepen-
dently of its angle of incidence, but causing a par-
allel shift. 

in more detail. 

We may also regard cylindrical 
glass rods as a variant of prims where 
total internal reflection plays an im-
portant role. In such a rod (see 
Fig. 1.11) a light ray is reflected back 
from the surface to the interior again 
and again, without changing its path 
angle relative to the rod axis. Such 
fibre rods are used, for example, to 
guide light from a source towards a 
photodetector. In miniaturized form 
they are applied as waveguides in 
optical telecommunications. Their 
properties will be discussed in the sec-
tion on beam propagation in waveg-
uides (Section 1.7) and later on in the 
chapter on wave optics (Chapter 3.3) 

1.6.1 Dispersion 

Prisms played a historical role in the spectral decomposition of white light into its 
constituents. The refractive index and thus also the angle of deflection 6.  in Fig. 1.9 
actually depend on the wavelength, n = n(A), and therefore light rays of different 
colours are deflected with different angles. Under normal dispersion blue wavelengths 
are refracted more strongly than red, n(Ablue) > n(Ared)• 



red 
yellow 

blue 

1.6 Prisms 	 9 

Fig. 1.9: Refraction and dispersion at a symmetrical prism. The index of refraction n can 
be calculated from the minimum angle of deflection 6 = 6ir, in a simple manner. 

Refractive index and dispersion are very important technical quantities for the 
application of optical materials. The refractive index is tabulated in manufacturers' 
data sheets for various wavelengths, and (numerous different) empirical formulae are 
used for the wavelength dependence. The constants from Tab. 1.1 are valid for the 
formula which is also called Sellmeier equation: 

B À 2 	B2 A 2 	B3,\2
n2 = 1 + 	1 	±    (A in iim). 	 (1.6) 

A2  - 	C i  A2  - 	C2 	- 	C 3 

Tab. 1.1: Optical properties of selected glasses. 

Abbreviation 

Abbé number A 

Refractive index 

BK7 	SF11 

64.17 	25.76 

n for selected wavelengths 

Barium crown 
BaK 1 

57.55 

Flint glass 
F2 

36.37 

Name 
	

Boron crown 	Heavy flint glass 
LaSF N9 

32.17 

= 486.1 nm 	1.5224 	1.8065 	1.8690 1.5794 1.6321 

= 587.6 nm 	1.5168 	1.7847 	1.8503 1.5725 1.6200 
= 656.3 nm 	1.5143 	1.7760 	1.8426 1.5695 1.6150 

Dispersion constants of refractive index (see Eq. 1.6) 

B1 	 1.0396 	1.7385 	1.9789 1.1237 1.3453 

B2 	 0.2379 	0.3112 	0.3204 0.3093 0.2091 

B3 	 1.0105 	1.1749 	1.9290 
• 

0.8815 0.9374 

Cl 	 0.0060 	0.0136 	0.0119 0.0064 0.0100 

C2 	 0.0200 	0.0616 	0.0528 0.0222 0.0470 

C3 	 103.56 	121.92 	166.26 107.30 111.89 

Density p (g cm -3 ) 

2.51 	4.74 4.44 3.19 3.61 

Expansion coefficient AO (-30 to +70°C) x10 6  

7.1 	 6.1 7.4 7.6 8.2 

Strain birefringence: typically 10 nm cm -1 . 

Homogeneity of the refractive index from melt to melt: (5n/n ±1 x 10 -4 . 
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By geometrical considerations we find that the angle of deflection (5 in Fig. 1.9 
depends not only on the angle of incidence 0 but also on the aperture angle a of the 
symmetrical prism and of course on the index of refraction, n, 

a — 0 + arcsin [cos a sin 0 — sin(aVn 2  — sin2  O)]  , 

6min  = 	— 20symm  • 

The minimum deflection angle 6min  is achieved for symmetrical transit through the 
prism and enables a precise determination of the refractive index. The final result is 
expressed straightforwardly by the quantities a and (5min, 

= 
sin [(a + (5m i n )/2] 

71  
sin (a/2) 	• 

For quantitative estimation of the dispersive power K of glasses, the Abbe number 
A may be used. This relates the refractive index at a yellow wavelength (at A =- 
587.6 nm, the D line of helium) to the change of the refractive index, estimated from 
the difference of the refractive indices at a blue (A = 486.1 11m,  Fraunhofer line F of 
hydrogen) and a red wavelength (A = 656.3 nm, Fraunhofer line C of hydrogen), 

A = 
nF — nc 

According to the above, a large Abbe number means weak dispersion, and a small 
Abbe number means strong dispersion. The Abbe number is also important when 
correcting chromatic aberrations (see Chapter 4.5.3). 

The index of refraction describes the interaction of light with matter, and we will 
come to realize that it is a complex quantity, which describes not only the properties 
of dispersion but also those of absorption as well. Furthermore, it is the task of a 
microscopic description of matter to determine the dynamic polarizability and thus to 
establish the connection to a macroscopic description. 

1.7 Light rays in waveguides 

The transmission of messages via light signals is a very convenient method that has a 
very long history of application. For example, in the 19th century, mechanical pointers 
were mounted onto high towers and were observed with telescopes to realize transmis-
sion lines of many hundreds of miles. An example of a historic relay station from 
the 400 mile Berlin-Cologne-Coblenz transmission line is shown in Fig.1.10. Basically, 
in-air transmission is also performed nowadays, but with laser light. But it is always 
affected by its scattering properties even at small distances, because turbulence, dust 
and rain can easily inhibit the propagation of a free laser beam. 

Ideas for guiding optical waves have been in existence for a very long time. In 
analogy to microwave techniques, for example, at first hollow tubes made of copper 
were applied, but their attenuation is too large for transmission over long distances. 
Later on periodical lens systems have been used for the same purpose, but due to high 
losses and small mechanical flexibility they also failed. 



Fig. 1.10: Historic station No. 51 of the Berlin-
Cologne-Coblenz optic-mechanical 'sight' transmission 
line on the tower of the St. Pantaleon church, Cologne. 
Picture from Weiger (1840). 
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The striking breakthrough 
happened to 'optical telecom-
munication' through the devel-
opment of low-loss waveguides, 
which are nothing other than 
elements for guiding light rays. 
They can be distributed like 
electrical cables, provided that 
adequate transmitters and re-
ceivers are available. With 
overseas cables, significantly 
shorter signal transit times and 
thus higher comfort for phone 
calls can be achieved than via 
geostationary satellites, where 
there is always a short but un-
pleasant and unnatural break 
between question and answer. 

Therefore, propagation of 
light rays in dielectric waveg-
uides is an important chapter 
in modern optics. Some basics 
may yet be understood by the 
methods of ray optics. 

1.7.1 Ray optics in waveguides 

Total internal reflection in an optically thick medium provides the fundamental phys-
ical phenomenon for guiding light rays within a dielectric medium. Owing to this 
effect, for example, in cylindrical homogeneous glass fibres, rays whose angle with the 
cylinder axis stays smaller than the angle of total internal reflection 0, are guided from 
one end to the other. Guiding of light rays in a homogeneous glass cylinder is affected 
by any distortion of the surface, and a protective cladding could even suppress total 
internal reflection. 

Therefore, various concepts have been developed, where the optical waves are 
guided in the centre of a waveguide through variation of the index of refraction. These 
waveguides may be surrounded by cladding and entrenched like electrical cables. 

We will present the two most important types. Step-index fibres consist of two 
homogeneous cylinders with different refractive indices (Fig. 1.11). To achieve beam 
guiding, the higher index of refraction must be in the cladding. Gradient-index fibres 
with continuously changing (in good approximation, parabolic) refractive index are 
more sophisticated to manufacture, but they have technical advantages like, for exam-
ple, a smaller group velocity dispersion. 
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Fig. 1.11: Profiles of the refractive index and ray path in optical waveguides. Upper: waveg-

uide with homogeneous refractive index. Centre: waveguide with stepped profile of refrac-

tive index (step-index fibre). Lower: waveguide with continuous profile of refractive index 

(gradient-index fibre). 

Excursion: Manufacturing waveguides 

Si02:B303 SiO , :Ge02 

1. Sia4 +13C13 
2. SiCh + Ge 

+ 02  

1600°C  

 

2000 ` )C 

 

2000 °C 

  

Fig. 1.12: Manufacturing of waveguides. The preform is manufactured with appropriate 
materials with distinct indices of refraction, which are deposited on the inner walls of a quartz 
tube by a chemical reaction. 

The starting material is an ordinary tube made of quartz glass. It rotates on a lathe and is 

blown through on the inside by a gas mixture (chlorides like highly purified SiC14, GeC14, 
etc.). A oxyhydrogen burner heats a small zone of only a few inches up to about 1600° C, 
in which the desired materials are deposited as oxides on the inner walls (chemical vapour 

deposition, CVD). Thus by multiple repetition a refractive index profile is established, before 

the tube is melted at about 2000° C to a massive glass rod of about 10 mm diameter, a 

so-called preform. In the last step a fibre pulling machine extracts the glass fibre out of a 

crucible with viscous material. Typical cross-sections are 50 and 125 p.m, which are coated 

with a cladding for protection. 

1.7.2 Step-index fibres 

The principle of total internal reflection is applied in step-index fibres (Fig. 1.13), 
which consist of a core with refractive index n1 and a cladding with n2 < n1. The 
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relative difference in the index of refraction 
= ni - n2 

A 	 
ni 

is not more than 1-2%, and the light rays are only guided if the angle a towards the 
fibre axis is shallow enough to fulfil the condition for total internal reflection. 

For example, for quartz glass (n2 = 
1.45 at A = 1.5511m), whose core index 
of refraction has been enhanced by Ge02  
doping up to ni  = n2 + 0.015, according 
to 0, = sin-1 (n2/ni) one finds the crit-
ical angle 0, = 81.8°. The complemen-
tary beam angle relative to the fibre axis, 
aG = 90° - 9,, can be approximated by 

aG sin aG -V2A, 	 (1.8) 

since n2/ni -= 1 - L1, and thus is set in Fig. 1.13: Critical angle in a step - index fibre. 
relation to A, which yields a < 8.2° for 
this case. 

When light rays cross the axis of a fibre, propagation takes place in a cut plane, 
which is called the meridional plane. Skewed rays pass through the axis and are guided 
on a polygon around the circle. It can be shown that the rays must confine an angle 
a < a0  with the z axis to be guided by total internal reflection. 

Numerical aperture of an optical fibre 

To guide a light ray in an optical fibre, the angle of incidence at the incoupler must be 
chosen small enough. The maximum aperture angle Oa  of the acceptance cone can be 
calculated according to the refraction law, sin Oa  = n 1  sin aG = ni cos 9,. The sine of 
the aperture angle is called the numerical aperture (NA). According to Eq. (1.8) and 
cos Oc  V2A it can be related with the physical parameters of the optical fibre, 

NA = ni \/2L. (1.9) 

This yields, for example, NA = 0.21 for the quartz glass fibre mentioned above, which 
is a useful and typical value for standard waveguides. 

Propagation velocity 

Light within the core of the waveguide propagates along the trajectory with a velocity 
v(r(z)) cln(r(z)). Along the z axis the beam propagates with a reduced velocity, 
(vi ) --= v cos a, which can be calculated for small angles a(z) to the z axis according 
to 

(1 - -1 a2) . 	 (1.10) 
n i 	2 

In Chapter 3.3 on the wave theory of light, we will see that the propagation velocity 
is identical with the group velocity. 

13 

(1.7) 
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1.7.3 Gradient-index fibres 

Beam guiding can also be performed by means of a gradient-index fibre (GRIN), where 
the quadratic variation of the index of refraction is important. To determine the 
curvature of a light ray induced by the refractive index, we apply the ray equation 
(1.5). This is greatly simplified in the paraxial approximation (ds dz) and for a 
cylindrically symmetric fibre, 

d2 r 	1 dn = - 
dz 2  n dr 

A parabolic profile of the refractive index with a difference of the refractive index 
of A = (ni  — n2)/ni, 

n(r<a) =  n i  and 	n(r>a) = n2, (1.11) 

decreases from the maximum value ni  at r = 0 to n2  at r = a. One ends up with the 
equation of motion of a harmonic oscillator, 

d2r 2A 

dz 2 	a2  

and realizes immediately that the light ray performs oscillatory motion about the z 
axis. The period is 

2 
A = 	

na 
	 (1.12) 
V2A 

and a light ray is described with a wavenumber K = 2n/A according to 

r(z) = ro  sin(2nz/A). 

The maximum elongation allowed is ro  -= a, because otherwise the beam loses its 
guiding. Thereby also the maximum angle  ŒG  = V2A for crossing the axis occurs. It 
is identical with the critical angle for total internal reflection in a step-index fibre and 
yields also the same relation to the numerical aperture (Eq. (1.9)). As in the case of 
a step-index fibre, the propagation velocity of the light ray is of interest. Using the 
approximation eq. (1.10) we calculate the average velocity during an oscillation period 
with tan a a = dr(z)/dz, 

(v z ) = (c 
cos  a(r(z))\ 	c /1 A(ro /a) 2  cos 2 (Kz) 

n(r(z)) 	ni  \ 1 — (ro /a) 2  sin2 (Kz) 

and find after a short conversion the remarkable result 

(V z ) = 	( A ) 2  (-a  ) 2 1 - 

n i  2 j aG  j 

which actually means that, because A < 1, the propagation velocity within a gradient-
index fibre depends much less on the angle a than that within a step-index fibre. As we 
will see, this circumstance plays an important role for signal propagation in waveguides 
(see Chapter 3.3). 
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1.8 Lenses and curved mirrors 

The formation of an image plays a major role in optics, and lenses and curved mirrors 

are essential parts in optical devices. First we will discuss the effect of these compo-
nents on the propagation of rays; owing to its great importance we have dedicated an 
extra chapter (Chapter 4) to the formation of images. 

1.8.1 Lenses 

We define an ideal lens as an optical element that merges all rays of a point-like source 
into one point again. An image where all possible object points are transferred into 
image points is called a stigmatic image (from the Greek: stigma, point). The source 
may even be far away and illuminate the lens with a parallel bundle of rays. In this 
case the point of merger is called the focal point or focus. In Fig. 1.14, we consider a 
beam of parallel rays that passes through the lens and is merged in the focal point. 
According to Fermat's principle, the optical pathlength must be equal for all possible 
paths, which means that they are independent from the distance of a partial beam 
from the axis. Then the propagation of light must be delayed most on the symmetry 
axis of the lens and less and less at the outer areas! 

Fig. 1.14: Upper: Stigmatic lens imaging. All rays starting at object point P are merged 
again at image point . The light rays are delayed more near the axis of the lens body than 
in the outermost areas, so that all rays make the same optical pathlength to the image point. 
A lens may be figured as a combination of several prisms. Lower: A parallel beam of rays 
originating from a source at infinite distance is focused at the focal point at focal distance  f. 

For a simplified analysis, we neglect the thickness of the lens body, consider the 
geometrical increase of the pathlength from the lens to the focal point at a distance f 



The reflected partial rays meet 
they do in the case of a lens. It is known from geometry that the reflection points must 
then lie on a parabola. Near the axis, parabolic mirrors may in good approximation be 
substituted by spherical mirrors, which are much easier to manufacture. On the left-
hand side of Fig. 1.16 the geometrical elements are shown, out of which the dependence 
of the focal length (defined here by the intersection point with the optical axis) on the 
axis distance yo  of a parallel incident beam may be calculated, 

Fig. 1.15: Path of rays for a concave 
mirror. For near-axis incident light, 
spherical mirrors are used. 

Among curved mirrors, concave or parabolic 
mirrors play the most important role. They are 
very well known from huge astronomical tele-
scopes (see Chapter 4), because we entered the 
fascinating world of the cosmos with their aid. 
But they are used much more often in laser res-
onators (Chapter 5.6). 

Taking into account the tangential plane at 
the intercept of the surface normal at the lens 
surface, we can transfer the conditions of planar 
reflection to curved mirror surfaces. Concave 
mirrors mostly have axial symmetry, and the 
effect on a parallel beam of rays within one cut 
plane is visualized in Fig. 1.15. 

at the focal point or focus on the mirror axis, as 
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and expand the term as a function of distance r from the axis, 

£(r)=  Vf2 	r2 f 	+ 2r  ; 2  ) 
	

(1.13) 

To compensate for the quadratic increase of the optical pathlength t(r), the delay by 
the path within the lens glass — i.e. the thickness — must also vary quadratically. This 
is actually the condition for spherical surfaces, which have been shown to be extremely 
successful for convergent lenses! The result is the same with much more mathematical 
effort, if one explores the properties of refraction at a lens surface assuming that a lens 
is constructed of many thin prisms (Fig. 1.14). In the chapter on lens aberrations, we 
will deal with the question of which criteria should be important for the choice of a 
planar convex or biconvex lens. 

1.8.2 Concave mirrors 

f = R 	
R 	R [ 1 — 1 (y 0  ) 2  

— 	+ 	. 
2 cos a 2 	2 R 

In general we neglect the quadratic correction, which causes an aperture error and 
is investigated in more detail in Chapter 4.5.2. 

In laser resonators a situation often occurs in which spherical mirrors are simulta-
neously used as deflection mirrors, e.g. in the `bowtie resonator' in Fig. 7.35. Then the 
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Fig. 1.16: Focusing an incident beam that is parallel to (left) and oblique to (centre: top 
view; right: side view) the optical axis. 

focal width of the rays within the ray plane (fx ) and within the plane perpendicular 
to that one (fy ) will differ from h = R/2, 

R 	fo 	 R cos a 
fx = 	= 	and 	fy = 	= fo cos a. 

2 cos a cos a 	 2  

The geometrical situations in the top view (Fig. 1.16, centre) are easy to see. In the 
side view one looks at the projection onto a plane perpendicular to the direction of 
emergence. The projections of the radius and focal length are reduced to R cos a and 
f cos a, respectively. The difference between the two planes occurring here is called 
astigmatic aberration and sometimes can be compensated by simple means (see for 
example p. 126). 

1.9 Matrix optics 

As a result of its rectilinear propagation, a free light ray may be treated like a straight 
line. In optics, systems with axial symmetry are especially important, and an individ-
ual light ray may be described sufficiently well by the distance from and angle to the 
axis (Fig. 1.17). If the system is not rotationally symmetric, for example after passing 
through a cylindrical lens, then we can deal with two independent contributions in the 
x and y directions with the same method. 

The modification of the beam di-
rection by optical components — mir-
rors, lenses, dielectric surfaces — is de-
scribed by a trigonometric and there-
fore not always simple relation. For 
near-axis rays, these functions can of-
ten be linearized, and thus the math-
ematical treatment is simplified enor-
mously. This becomes obvious, for ex- 
ample, for a linearized form of the law Fig. 1.17: Key variables of an optical ray for 

simple translation. 
of refraction (1.2): 

n i 0i 
	 (1.14) 
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Here we have made use of this approximation already with the application of 
Fermat's principle for ideal lenses. Near-axis rays allow the application of spherical 
surfaces for lenses, which are much easier to manufacture than mathematical ideal 
surfaces. Furthermore, ideal systems are only 'ideal' for selected ray systems, otherwise 
they suffer from image aberrations like other systems. 

When treating the modification of a light ray by optical elements in this approx-
imation by linear transformation, matrices are a convenient mathematical tool for 
calculating the fundamental properties of optical systems. The development of this 
method made for the denomination matrix optics. The introduction of transformation 
matrices for ray optics may be visualized very easily, but they achieved striking impor-
tance, because they do not change their form when treating near-axis rays according 
to wave optics (see section 2.3.2). Furthermore this formalism is also applicable for 
other types of optics like 'electron optics', or the even more general 'particle optics'. 

1.9.1 Paraxial approximation 

Let us consider the propagation of a light ray at a small angle a to the z axis. The 
beam is fully determined by the distance r from the z axis and the slope r' = tan a. 
Within the so-called paraxial approximation, we now linearize the tangent of the angle 
and substitute it by its argument, r' a, and then merge r with r' to end up with a 
vector r = (r, a). At the start a light ray may have a distance to the axis and a slope 
of r i  = (r i , a i ). Having passed a distance d along the z axis, then 

r2 =-_ r i  + a i d, 

a2 =  al, 

holds. One may use 2 x 2 matrices to write the translation clearly, 

F2 =  Tri 
 = (1  d\  

. 	 (1.15) 

A bit more complicated is the modification by a refracting optical surface. For that 
purpose we look at the situation of Fig. 1.18, where two optical media with refractive 
indices n i  and n2  are separated by a spherical interface with radius R. If the radius 
vector subtends an angle 0 with the z axis, then the light ray is obviously incident on 
the surface at an angle 01 = al + 0 and  is related to the angle of emergence by the 
law of refraction. 

In paraxial approximation according to Eq. (1.2), n101 	n202 and 0 r i /R is 
valid, and one finds 

ri 	 r2 n 1  (ai -t- —
R 

= n2 (a2 
,

R
) • 

The linearized relations may be described easily by the refraction matrix B, 

r2 
a2 = B 

	

ri 	 1 	 0 	) 

	

( al 	= 	(ni 	— n2)/n2R 	ni/n2 	) 
(1.16) 



(r2 

	

( A B 	ri 

	

C D 	al) a2 
(1.17) 
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Fig. 1.18: Modification of a light ray at curved refracting surfaces. 

1.9.2 ABCD matrices 

The most important optical elements may be specified by their transformations, also 
called ABCD matrices, 

which we collect in Tab. 1.2 for look-up purposes and will be presented in the following 
in more detail. 

According to Fig. 1.18 the effect of a lens on a light ray is characterized by a 
refraction B at the entrance, a translation T in the glass and one further refraction 
B' at the exit. Now the matrix method shows its strength, because the effect of a lens 
can easily be expressed as a product L B'TB of three operations, 

(r2 

(12 	= L 

r1 
 ai ) = B'TB 	. 	 (1.18) 

Before we discuss the lens and some more examples in detail, we have to fix some 
conventions, which in general are used in matrix optics: 

1. The ray direction goes from left to right in the positive direction of the z axis. 

2. The radius of a convex surface is positive,  R>  0, and that of a concave surface is 
negative, R < O. 

3. The slope is positive when the beam moves away from the axis, and negative when 
it moves towards the axis. 

4. An object distance or image distance is positive (negative) when lying in front of 
(behind) the optical element. 

5. Object distances are defined to be positive (negative) above (below) the z axis. 

6. Reflective optics is treated by flipping the ray path after every element. 



d\ 
kO 1) 

10  
0 n /n 

(

1 	0 
ni-n2  flu  

n2R n2 

( 1 0 
k lif 1 

cos Kt K-  sin K 
-Ksin  K cos Kt 

Translation  

Refraction 
curved surface) 

Lenses 
Curved Mirrors  
(focal length f) 

Optical Fiber 
GRIN 

(length i) 
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Tab. 1.2: Important ABCD matrices. 

Operation 
	

AB CD-Matrix  

1.9.3 Lenses in air 

Now we will explicitly calculate the lens matrix L according to eq. (1.18) and we take 
into account the index of refraction nair  1 in Eqs. (1.15) and (1.16). The expression 

1  n—i d  d 

1 	1 	d(n — 1) 2 ] 
R' R 	RR'n n R' 

n R 

makes a complicated and not very convenient expression at first sight. Though it 
may allow the treatment of very thick lenses, by far the most important are the 
predominantly used 'thin' lenses, whose thickness d is small compared to the radii of 
curvature R, R' of the surfaces. With dl R, dl R' <1 or by direct multiplication B'B, 
we find the much simpler form 

0 ) 
L 

( n  — 1) (  - *,) 
and introduce the symbol D for the refractive power in the lensmaker's equation , 

1 	1 ) 	1 
D  = —(n — 1) (—

Ri 
— —

R 
= —

f
. 	 (1.19) 
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Thus the ABCD matrix for thin lenses becomes very simple 

10  
—Dl  o  

— I 1  
(1.20) 

where the sign is chosen such that convergent lenses have a positive refractive power. 
The refractive power is identical with the inverse focal length, D = 11 f . The refractive 
power D is measured in units of dioptres (1 dpt = 1 m-1 ). 
To support the interpretation of 
Eq. (1.20), we consider a bundle of 	G 
rays that originates from a point 
source G on the z axis (Fig. 1.19). 
Such a bundle of rays can be de- 

	 '- 
scribed at a distance g from the 
source according to 	 Fig. 1.19: Point image formation with a lens. 

( : ) = () () 	
(1.21) 

1  

We calculate the effect of the lens in 
the form 

L 

r 	a  ( g 	 —b 
\ 1 — g/fJ 	1 ) 

(1.22) 

The lens transforms the incident bundle of rays into a new bundle, which again 
has the form (1.21). It converges for a' < 0 to the axis, crosses it at a distance b > 
(convention 4) behind the lens, and creates there an image of the point source. If 
b < 0, then the virtual image of the point source lies in front of the lens and the lens 
has the properties of a dispersive lens. 

By comparison of coefficients, we obtain the relation between object distance g and 
image distance b from Eq. (1.22) for lens imaging: 

1 	1 	1 
(1.23) 

f g b 
This equation is the known basis for optical imaging. We refer to this topic again in 
Chapter 4 in more detail. 

Example: ABCD matrix of an imaging system 
For imaging by an arbitrary ABCD system, we must claim that a bundle of rays 
(r i , ai ) is again merged at a point at a certain distance d = d1 + d2: 

( r2 

 a2 ) 

1 di  ( A B ( 1 d2 
o 	)cY  D) 0  1 ) 	) • 

For stigmatic imaging r2 must be independent of al and by calculation one finds the 
condition diD + d2A + d1 d2C B = 0, which for B 0 can be fulfilled by suitable 
choice of d1  and d2 , even if C  <0. Thus the ABCD matrix takes exactly the form 
that we know already from lenses and lens systems. 
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1.9.4 Lens systems 

The matrix method enables us to explore the effect of a system consisting of two 
lenses with focal lengths fi and 12  at a distance d. We multiply the ABCD matrices 
according to Eqs. (1.20) and (1.15) and get the matrix M of the system 

M = L2 TLi  = 
( 

1 	0 	( 1 d 
—1/f 2  1 ) 0 1 ) 

( 

1 	0 

—1/fi 1 
) 

= 
( 

1  _ d 	 d fi 

(k + * fidf2) 1  — t ) 

(1.24) 

The system of two lenses substitutes a single lens with focal length given by 

11 	1 	d ± _ 	 

f 	f2 	fi 	1112 .  

We consider the following two interesting extreme cases. 

(1.25) 

(i) d < 11,2: Two lenses that are mounted directly next to each other, with no 
space between them, add their refractive powers, M ,-, L2 L 1  with D = Di ± 132. 

This circumstance is used for example when adjusting eyeglasses, when refractive 
powers are combined until the required correction is found. Obviously a biconvex 
lens can be constructed out of two planar convex lenses, expecting that the focal 
length of the system is divided by two. 

(ii) d = fi ± 12: If the focal points coincide, a telescope is realized. A parallel bundle 
of rays with radius ri  is widened or collimated into a new bundle of parallel 
rays with a new diameter (f2/nri. The refractive power of the system vanishes 
according to eq. (1.25), D = 0. Such systems are called afocal. 

A thin lens is one of the oldest optical instruments, and thin lenses may have 
many different designs due to their various applications. But since lens aberrations 
are of major interest, we will dedicate a specific chapter to the various designs (Chap-
ter 4.5.1). 

1.9.5 Periodic lens systems 

Fig. 1.20: Periodic lens system and equivalence to a two -mirror resonator. 

Periodic lens systems had already been analysed in early times to realize optical light 
transmission lines. For such an application it is important that a light ray does not 



M
 

s
„.S.  

'.., 

i.  './... 

.. 	. 

' y ..„. 

y., 	.. ./...?, 
V ..", 

/ 

..-.:, 

/ -v,...,.. - - 
X- 

V
.  

4 

d/r2  
3 

o 

confocal 

concentric 

1.9 Matrix optics 
	

23 

leave the system even after long distances. We consider a periodic variant of the lens 
system with focal lengths and f2 at a distance d. For that purpose we add one  
more identical translation to the transformation matrix from Eq. (1.24), which yields 
a system equivalent to a system of two concave mirrors (Fig. 1.20): 

B 
D ) 

( 1 	o)(1 	( 1 	0)(1 
- 1 /f2  1 	0 1 )-11 f i  1 	0 1 ) 

( 1d 
	

d 
—11 f2 1 —dl f2) ( 1  —11 f i  1 — fi) • 

Now for n-fold application the individual element will cause total transformation 

(Acnn, DB: 	( 	B 
)n 

A 
C D 

1 
	

3 	4 
	 d/r i  

Fig. 1.21: Stability diagram for lenses and optical resonators according to the condition 
(1.27). Stable resonator configurations are within the hatched area. The dashed lines indicate 
the positions of confocal resonators, d = (ri + r2)/2. Symmetric planar parallel, confocal and 
concentric resonators are at the positions circled 1, 2 and 3. 

Introducing 

1 	 d 	d 
cos() = —

2
(A +D) = 2 (1 — 	(1 — 	— 1, 

	

2fi 	2f2 
(1.26) 
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this matrix can be evaluated algebraically. Thus one calculates 

( A sin ne - sin (n - 1)0 	B sin ne 
( A B  C D ) 	

1 
 sin 0 	C sin ne 	D sin ne - sin (n - 1)0 ) • 

The angle 8 must remain real, to avoid the matrix coefficients increasing to infinity. 
Otherwise the light ray would actually leave the lens system. Thus from the properties 
of the cosine function, 

-1 < cos 8 < 1, 

and in combination with Eq. (1.26) we get 

0 < (1 - 	) (1 - 
	

<1. 	 (1.27) 
2f 	2f - 

This result defines a stability criterion for the application of a waveguide consisting of 
lens systems, and the corresponding important stability diagram is shown in Fig. 1.21. 
We will deal with this in more detail later on, because multiple reflection between con-
cave mirrors of an optical resonator can be described in this way as well (Chapter 5.6). 

1.9.6 ABCD matrices for waveguides 

According to Section 1.7 and with the aid of the wavenumber constant K 2n/A 
(Eq. (1.12)) a simple ABCD matrix for the transformation of a ray by a graded-index 
fibre of length f can be specified: 

G = 
) cos Ke K -1  sin Ke 

-K sin Kf cosKe 
(1.28) 

With short pieces of fibre  (Kt  < n/4) also thin lenses can be realized, and it can be 
shown that the focal point lies at f = K-1  cot Kt These components are called GRIN 
lenses. 

1.10 Ray optics and particle optics 

Traditional optics, which deals with light rays and is the topic of this textbook, was 
conceptually in every respect a role model for 'particle optics', which started around 
the year 1900 with the exploration of electron beams and radioactive rays. Since ray 
optics describes the propagation of light rays, it is convenient to look for analogies in 
the trajectories of particles. We will see in the chapter on coherence and interferometry 
(Chapter 5) that the wave aspects of particle beams are widely coined in terms of the 
ideas of optics as well. 

To re-establish the analogy explicitly, we refer to considerations about Fermat's 
principle (p. 4), because there a relation between the velocity of light and the index 
of refraction is described. This relation is particularly simple if a particle moves in a 
conservative potential (potential energy Epot (r)), like for example an electron in an 
electric field. As a result of energy conservation, 

Ekin(r) + E0(r) = Etot 
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we can immediately infer from Ekin  = mv2 /2 that 

v (r) = 

if the particles do not move too fast and we can adopt classical Newtonian mechanics 
(in a particle accelerator, the special theory of relativity has to be applied.). 

We can define an effective relative index of refraction by 

v(r i ) 	neff  (r 2 ) 	-V[Etot — Epot  (r 2 )]  

v(r2 ) 	neff (ri) 	-V[Etot — Ei)ot(ri)] 

2 
771  [Etot — Epot(r)], 

Fig. 1.22: Lenses for particle optics. Upper: So-called 'single lens' for electron optics with 
equipotential surfaces qU [81]. The potential is created by symmetric positioning of three 
conducting electrodes, the two outer ones lying on the same potential. Lower: Magnetic lens 
for atom optics with equipotential surfaces ip, • B1 [53]. An axial magnetic hexapole is formed 
out of circle segments, which are manufactured from a homogeneously magnetized permanent 
magnet (e.g. NdFeB or SmCo). The strength of the magnetic field rises as a square function 
of the radial distance. 

As in the case of light, it must satisfy an additional condition, to be defined absolutely. 
For example, we may claim that neff = 1 for Epot  = O. But then it is obvious that 
neff depends extremely on the velocity outside of the potential — particle optics has 
properties that are very much chromatic! The fundamental reason for this difference 
is the different relation between kinetic energy E and momentum p for light and for 
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particles having mass, which is also called the dispersion relation: 

Light 	E = pc, 
Particles 	E = p2 /2m. 

In charged particle beams a narrow velocity distribution can be created by acceleration, 
which makes the difference not very pronounced. But the broadness of the velocity 
distribution in thermal beams of neutral atoms induces significant problems. Indeed, 
this velocity distribution can be manipulated by so-called supersonic jets or by laser 
cooling (see Chapter 11.6) in such a way that even 'atom optics' can be established 
[53]. We present some important devices of electron and atom optics in Fig. 1.22. 



2 Wave optics 

At the beginning of the 19th century a few phenomena were known that could not be 
reconciled with simple rectilinear, ray-like propagation of light, and made wave theory 
necessary. The beginning is marked by Huygens' principle (after the Dutch mathe-
matician and physicist C. Huygens, 1629-1695), an explanation of wave propagation 
often used up to now and very intuitive. About 100 years later T. Young (1773-1829) 
from England and A. P. Fresnel (1788-1827) from France developed a very successful 
wave theory, which could explain all the phenomena of interference known at that 
time. After G. Kirchhoff (1824-1887) had given a mathematical formulation of Huy-
gens' principle, the final breakthrough occurred with the famous Maxwell's equations, 
which will serve also here as a systematic basis for the wave theory of light. 

The development of a common theoretical description of electric and magnetic 
fields by the Scottish physicist J. C. Maxwell (1831-1879) had a crucial influence not 
only on physics, but also on the science and technology of the 20th century. Maxwell's 
equations, which had at first been found through empirical knowledge and aesthetic 
considerations, caused for example Heinrich Hertz in 1887 to excite radio waves for the 
first time, thereby laying the foundation for modern telecommunications techniques. 

2.1 Electromagnetic radiation fields 

Electromagnetic fields are defined by two vector fields, 1  

E(r, t), electric field, 

and H(r, t), (magnetic) H field. 

They are caused by electric charges and currents. 

2.1.1 Static fields 

Charges are the sources of electric fields. The formal relation between field strength 
and charge density p and total charge Q, respectively, in a volume with surface S is 
described by Gauss's law in differential or integral form, 

V • E = P/€0 
	or 	js.  E • df = Q/eo . 	 (2.1) 

1 We follow the recent general literature, where usually the notation B(r, t) stands for the magnetic 
field or B field, while H(r, t) is simply called the (magnetic) H field. 
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Furthermore, an electrostatic field is irrotational (curl-free), which means that V x E .----- 
0, and it may be described as the gradient of a scalar electrostatic potential (1)(r), 

E(r) = —V(1)(r). 

The sources of the magnetic field are not charges, because it is known that 

V • H = 0, (2.2) 

but instead curls, which are caused by currents (current density j, total current I 
crossing a surface with contour C). According to Stokes' law 

VxH = j 	or 
	H • dl = / 	 (2.3) 

c 
is valid. The field strength of the H-field may be described as the curl of a vector 
potential A(r), 

1 
H(r) = —VxA(r, t). 

[to 

2.1.2 Dielectric media 

The considerations of the preceding section are only valid for free charges and currents. 
But usually these are bound to materials, which we can roughly divide into two classes, 
conductors and insulators. In conducting materials charges can move freely; in insu-
lators they are bound to a centre, but an external field causes a macroscopic dielectric 
polarization through displacement of charge. 2  For example, polar molecules may be 
oriented in a water bath, or a charge asymmetry may be induced in initially symmetric 
molecules (Fig. 2.1). In a homogeneous sample, negative and positive charges compen-
sate, and there is left only an effective charge density at the border of the polarized 
volume. If the polarization varies continuously, then the compensation is cancelled 
and one gets an effective charge density 

Ppol = —19!  • P(r,t). 

Of course, polarization charges must be accounted for as well, and therefore in 
dielectric matter it holds that 

1 , 
V . E = — Wfree + Ppol) - 

co 
In many important optical materials the polarization charge is proportional to the 
external field strength, and the coefficient is called the dielectric susceptibility x, 

P = eoXE. 

We introduce the dielectric displacement with the relative dielectric constant k = 1+X, 

D = co E + P = co kE, 

and thus we can write much more simply 

V • D = p. 

(2.4) 

(2.5) 

2 More precisely it is a polarization density. 
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U > 0 
Fig. 2.1: In a solid (left), charges are separated. In a glass with polar molecules (right), 
existing dipoles are oriented. 

An analogue to the dielectric polarization, namely a magnetic polarization M(r, t) 
x ma,gH(r,  , t) , may occur, which is in general called magnetization. Magneto-optical ef-
fects (e.g. the Faraday effect) may be of less importance than dielectric phenomena, 
but on the other hand they play a significant role in optical applications. In most of 
the cases we treat here, the assumption is justified that for the magnetic permeability 
of vacuum, ,umag  = 1 -k - Xmag = 1 is valid. 

2.1.3 Dynamic fields 

The magnetic or B field and  the  H field are related by 

B(r, t) = ,a0 11(r, t) , 

differing from each other only by 1u0 , the permeability of vacuum. It is known that a 
change of the magnetic field within a circuit loop induces a voltage. Thus we formulate 
the law of induction as the third Maxwell equation, 

le 
a 

VxE = --B or at  E • dl = — —
a 

B df 
at Js  (2.6) 

In analogy, a changing dielectric field strength causes a displacement current, idis  = 
E0(0/00E, and a time-dependent polarization causes a polarization current, j poi  = 
(a I OOP . This yields the complete fourth Maxwell equation for time-varying fields, if 
we consider these contributions in Eq. (2.3) (with (0/0t)D = idis  ±ipol): 

. 	 a 
VxH =3 +  D.  (2.7) 



V - n2E = 0, 	 VxE 

V • H = 0, 	VxH 

0  ii 
= 	ii°  at 

0 2 
= coNn E. 

(2.8) 
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2.1.4 Fourier components 

Electric and magnetic fields with harmonic time development are central to optical 
wave theory. When talking of Fourier components of an electromagnetic field we 
mean the Fourier amplitudes E, H:3  

E(r, t) 
H(r, t) 

= 91e{e(co, k) e ('_')}, 
_ gte {N(w,  k) e ---t(wt -kr)} .  

In general the relation for an amplitude in position and time space, A(r, 0, and the 
corresponding Fourier or (a.), k) dimension can be stated as 

(27 ) 1/2 f A(r,t)e - twt dt, A(r,c,j) , 	1  

(27 ) 3
/ 2 f A(r, t) e tkr d3 r.  1  

Of course, time and space variables may be Fourier-transformed simultaneously. It is 
particularly convenient to describe monochromatic fields, which have a fixed harmonic 
frequency w = 2nv, by Fourier components. Applying Maxwell's equations to this, the 
differential equations result in vector equations. We collect an overview of all variants 
in Tab. 2.1 and add the Coulomb-Lorentz force, which acts on a charge q at the point 
r and with velocity y = drldt. 

2.1.5 Maxwell's equations for optics 

For most applications in optics we can assume that no free charges and currents exist. 
It is the task of a microscopic theory to calculate the dynamical dielectric function 
c(w) = € 0 K(w) = €0 [1 ± x(c4.,)] from Eq. (2.4). For simple cases we will discuss this 
question in the chapter on the interaction of light with matter (Chapter 6). First of 
all we substitute the dielectric function €0 K by phenomenological means by the index 
of refraction n, 

E0k = EOn
2 

 , 

which can depend on frequency w and on position r, and find a set of Maxwell's 
equations, meaningful for optics, which features high symmetry: 

A(k, t) = 

Since we are particularly interested in the motion of charged, polarized matter, we 
must add the Lorentz force. These five equations are also called the Maxwell-Lorentz 
equations. They are specified in Tab. 2.1 in differential and integral form. 

3 We will write dynamic electromagnetic fields mainly in complex notation. Thereby the physical 
fields should always be considered as the real parts, even when this is not expressed explicitly like 
here. 
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Tab. 2.1: Summary: Maxwell-Lorentz equations. 

In vacuum 
	

In matter 	 In (w, k) space 

Charges are sources of electric field: 

V•E=p1 eo 	 V D = p 	 ik D plc()  

No magnetic charges exist: 

V • B = 0 	 ik B = 0 

Law of induction: 

VxE = — a B ikxE icoB 

Currents are curls of the magnetic field: 

c2 VxB = kyj gE 	VxH = gp 	= j — ica) 

Lorentz force: 

d2  
 rn 	r  
q(E + vxB) 

dt2   

2.1.6 Continuity equation and superposition principle 

We can draw two important conclusions from Maxwell's equations: 

1. Charges are conserved, as can be found easily by applying the divergence to 
Eq. (2.3) and applying Eq. (2.1) for the continuity equation: 

0 
V • j = —

at
p. 

2. The superposition principle is a consequence of the linearity of the Maxwell equa-
tions. Two independent electromagnetic fields E l  and E2 are superpositioned 
linearly to yield a superposition field Esup, 

Esup  = E1 + E2 	 (2.9) 

The superposition field is important as a basis for the discussion of interference. 

2.1.7 The wave equation 

Electromagnetic fields propagate in vacuum (nvac = 1) at the velocity of light, and 
they are a direct consequence of Maxwell's equations. In vacuum, there exist neither 
currents, j = 0, nor charges, p = O. This simplifies Maxwell's equations (2.1) and (2.6) 
significantly, 

a v E = 0 and VxH cos E. 
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With the vector identity V x (V xE) = V(V E) — V 2E and using c =110to co , 
we find the wave equation in vacuum, 

(v,2 	a2 

 t2
E(r,t) = 0. 	 (2.10) 

c2  0 

The corresponding one-dimensional wave equation can be written in the form 

( 0 1 0 ( 0 1 0) 
)

E(z,t) = 0, 
c Ot 	c at  

and by some straightforward algebra one finds solutions of the form 

E(z, t) = E(z ±  et).  

The solutions propagate with the phase velocity c, the value of which in vacuum is 
called the velocity of light c. The velocity of light is one of the most important 
universal constants. Its numerical value was measured ever more precisely up to 1983, 
since when it has been set by definition once and for all to the vacuum value of 

velocity of light, c = 299.792 458 m s-1 . 

Excursion: Velocity of light and theory of relativity 
According to our direct experience, light propagates 'instantaneously'. The Danish as-
tronomer Olaf Roemer (1644-1710) discovered in 1676 that the phases of Jupiter's moons get 
shorter when the planet approaches the Earth, and longer when it moves away from Earth. 
From that, he concluded that the propagation of light rays does not occur on an unmeasurably 
short time scale, but with a finite velocity, which he determined to be 225 000 km . 

f 	 I 	 I 

.11 

299850 

c (km/s) 
299825 

299800 

299775 

299750 

17th Congress on Measures 
and Weights (1983) 

= 299 792 458  mis)  

1900 1925 1950 1975 2000 2025 

Fig. 2.2: Values of the velocity of light before and after the 17th Congress on Weights and 
Measures (1983). The diamonds indicate the measured values of various laboratories including 
uncertainties [29]. 

Since 1983 the value of the velocity of light has been fixed once and for all by international 
convention. At first sight it may seem surprising that one may just define a physical universal 
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constant. But it must be considered that velocities are determined by the physical quanti-
ties time and distance, and therefore independent measurements of time and distance are 
always necessary. Time measurements can be performed by comparison with an atomic time 
standard (atomic clock) with extreme precision, but for distance measurements such a mea-
suring unit is not available. Therefore the procedure has been inverted and now — at least in 
principle — any distance measurement is derived from a much more precise time measurement: 

One metre is the distance that light covers in vacuum within 1/299 792 458 s. 

The velocity of light played a central role in the discovery of the special theory of relativity. 
In a famous interference experiment the US physicists Michelson and Morley registered in 
1886 that from the position of an observer light always propagates with the same velocity, 
which is independent of the motion of the light source itself. One of the consequences of 
this theory is that no particle or object, nor even any action of physical origin, can move or 
propagate faster than the velocity of light c. 

The theory of relativity epitomizes an outstanding intersection point of classical and mod-

ern physics. Owing to the theory, it is necessary that the equations of mechanical motion 

are modified for very high velocities. From the very start Maxwell's equations, describing 

the propagation of light, have been consistent with the theory of relativity. This property is 

called 'relativistic invariance'. 

The wave equation is simplified more if monochromatic waves with harmonic devel-
opment are permitted. We use complex numbers, because in that way many waveforms 
can be discussed formally in a clear manner. 

In general only the real part of the complex amplitude is considered as a physically 
real quantity. Inserting into eq. (2.10) 

E(r, t) --= 9iefE(r) e' t } 

yields, with co 2  = c2 k2 , the Helmholtz equation, which depends only on the position r: 
co 4_ k2 ) E(r)  = 0.  (2.11) 

In homogeneous material (i.e. for constant index of refraction n), the wave equation 
(2.10) experiences only one modification due to (2.8). The propagation is defined by 
another phase velocity, c —> cln, otherwise the wave propagates exactly as in vacuum. 
One gets 

[\72 _ (_n) 2  D2 
] 

E(r, t) = 0. 	 (2.12) 
\ c I Ot2  

In theoretical electrodynamics also the dynamic electric and magnetic fields are of-
ten and slightly more elegantly derived from a common vector potential A(r, t) = 
Ao e-i(cot-kr),  which on its part fulfils the Helmholtz equation (2.11): 

= icoA, 

H — 1 VxA = kx A. — tto 	 bto 

(2.13) 
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For a complete definition 
of the potential A, an addi-
tional condition to ensure so-
called gauge invariance is nec-
essary. For this purpose the 
so-called Coulomb gauge (V • 
A = 0) is a suitable choice, but 
in other situations alternatives 
like the Lorentz gauge for rel-
ativistic problems might offer 
advantages. From V - E = 0 
and Eq. (2.13) it follows that 
radiation fields are transverse 
in free space (i.e. they are or-
thogonal with respect to the 
wavevector k) (Fig. 2.3),4  

Fig. 2.3: In isotropic space, the directions of the electric 
(E) and magnetic (H) fields of an electromagnetic wave 
(here: linearly polarized) are perpendicular to each other 
and to the propagation direction with wavevector k as 
well. 

E•k=H•k=0. 

Furthermore (2.13) may yield the useful relation 

1 
H= 	ek x E. 

[toc 

This shows that the E and H field are also perpendicular to each other. 

2.1.8 Energy and momentum 

The instantaneous energy density U of an electromagnetic field is 

U = 1(0)1E1 2  +/-101 11 1 2 ) = EolE12. 	 (2.14) 

The total energy U of an electromagnetic field is obtained by integration over the 
corresponding volume V, 

U = co  f 1E(r)1 2  d3r. 
v 

Formally a 'photon' oscillating with frequency co has energy U = tuo. From that one 
can get the average field strength (1E1) = -Vhco/e0 V, which corresponds to one photon. 
This quantity is important if for example one wants to describe the coupling of an atom 
to the field oscillation of an optical resonator. 

Electromagnetic waves transport momentum and energy. The momentum current 
density is described by the Poynting vector S, 

S = Exil = ceoeklE1 2 , 
	 (2.15) 

4 Static fields of charge distributions are called longitudinal, because then according to Eq. (2.1) it 
holds that V • E = p(r) 0 O. Indeed longitudinal and transverse properties depend on the calibration. 
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which is proportional to the energy current density, since e = pc. In an experiment 
the intensity / = c(U) of an electromagnetic wave averaged over one period T , 27clw 
is measured most easily. It is related to the electric field amplitude 4 which for 
E(t) -= E0 cos  wt yields 

I = --ceoe, 3. 

2.2 Wave types 

Now we want to present some limiting cases of simple and important wave types. 

2.2.1 Planar waves 

Planar waves are the characteristic solution of the Helmholtz equation (2.11) in Carte-
sian coordinates (x, y, z): 

(Ç 	82 	02 

Ox 2  + 0y2  + Wg ± k2) E(r) = 0 - 	 (2.16) 

Planar waves are vector waves with constant polarization vector E and amplitude E0, 

E(r, t) = 

In general they have two independent, orthogonal polarization directions E, which we 
will discuss later in Chapter 2.4. Through the wavevector we define by k. r = const 
planes with identical phase sto = wt - kr (Fig. 2.4). 

2.2.2 Spherical waves 

In our experience, light propagates into all directions of space, while the intensity 
declines. Because of this, it would be convenient to describe ray propagation by spher-
ical waves as indicated in Fig. 2.4(a). In spherical coordinates (r, 0,0) the Helmholtz 
equation (2.11) can be written as 

(

1 0 0 1  0 a  0  1 82  
r Or Or r sin e ae r  sin  '' -00  ± r2  002 = 

But since electromagnetic waves have vector character, we have to look for solutions 
for 'vector' spherical waves. These are known and common, but are mathematically 
too complex in our case. But the problems are simplified, because in optics often 
only a small solid angle in a distinct direction is of practical importance. There the 
polarization of the light field varies only to a small extent and in good approximation we 
can apply the simplified, scalar solution of this wave equation. An isotropic, spherical 
wave has the form 

e -iGot-kr) 1 
E(r, t) = 91e{ So 	

kr 	
(2.18) Il 	f • 

The amplitude of the spherical wave decreases inversely with the distance E a r-1 , 
and its intensity with the square of the inverse distance I a r -2 . With the scalar 
spherical wave approximation, the wave theory of diffraction can be described in good 
approximation according to Kirchhoff and Fresnel (see Section 2.5). 

9:te feoc e —i(cot— kr) 1 .  
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(a) 

 

 

(e) 

 

Fig. 2.4: Snapshot of important wave types: (a) the isotropic (scalar) spherical wave has 
a simple structure; but it cannot describe electromagnetic waves correctly, which are always 
vector fields; (b) a planar wave with wavevector; (c) the dipole wave corresponds to a spherical 
wave with anisotropic intensity distribution; (d) yet at a distance of only a few wavelengths 
from the source the dipole wave is very similar to a planar wave. 

2.2.3 Dipole waves 

Dipole radiators are the most important sources of electromagnetic radiation. This is 
true for radio waves at wavelengths in the range of metres or kilometres, which are 
radiated by macroscopic antennas, and for optical wavelengths as well, where induced 
dipoles of microscopic atoms or solids take over the role of antennas. A positive and 
a negative charge ±q at a separation x have a dipole moment d(t) = qx(t). Dipoles 
can be induced by an external field displacing the centre-of-mass charge of the positive 
and negative charge distributions, for example of a neutral atom. Charge oscillations 
x = xo e-iwi  cause an oscillating dipole moment, 

d(t) = do e —iwt 
	

(2.19) 

which radiates a dipole wave and forms the simplest version of a vector spherical wave. 
Let us assume that the distance of observation is large compared with the wavelength 
r >> A = 2nc/co. Under these circumstances we are located in the far field of the 
radiation field. 

Although the separation lx1 between the charges is small compared with the wave-
length, we may describe the intensity distribution with the results of the Hertzian 
dipole. 5  The simplest form is shown by a linear dipole along the z axis, d = do e-iwt ez , 

5 The Hertzian dipole has vanishing spatial extent (x 0), but a non-zero dipole moment d. 
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Fig. 2.5: Angular distribution of the intensity (a 1E1 2 ) of a linearly and a circularly oscil-
lating dipole. 

and the field amplitude is stated in spherical coordinates (r,  O,  0): 
e —i(wt—kr) 

Elin  = k2d0 sin 0 	 eo. 
r 

The faces of constant phase are spherical faces again. Only the angle factor sin 0, 

which specifies exactly the component perpendicular to the direction of propagation, 
creates the antenna characteristics of a dipole. For a circular dipole, d = do  e-iwt  (ex  + 
iey ), we find 

e -i(4.0t-kr) 

Ecirc = k2  do cos 0 	
r 	

(cos  9 e0 + ie,p ). 

In Fig. 2.5 the intensity distribution of oscillating dipoles is shown. In contrast to 
a circular dipole, for a linear one directions occur into which no energy is radiated. 
The dipole character can be observed very nicely with the Tyndall effect by relatively 
simple means. One needs only a linearly polarized laser beam and a plexiglass rod 
(Fig. 2.6). The double refraction of the plexiglass rod causes a modulation of the 
polarization plane, and the observer, standing at the side, sees a periodic increase and 
decrease of the scattered light in the plexiglass rod. 

Fig. 2.6: Tyndall effect in a plexiglass rod. By birefringence the plane of polarization gets 
modulated. Therefore an observer at the side sees a periodic increase and decrease of the 
scattered light intensity. 

2.3 Gaussian beams 
Now we want to establish the connection between ray optics and wave optics, i.e. we 
want to describe in particular laser beam propagation through the methods of wave 
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optics. Observation of a laser beam yields characteristic properties which we will use 
to construct the so called Gaussian principal mode of laser beam propagation: Laser 
beams are extremely well bundled, i.e. they do not seem to change over distances 
of many metres, and they are axially symmetric. They truly form rays without any 
effort. Along the propagation direction z a light ray behaves very similarly to a planar 
wave with constant amplitude A-0 , which is a known solution of the wave equations 
(2.10) and (2.16), 

E(z,t) = jto e -i(wt-kz) 

On the other hand we know that, at large distances from a source, also laser light 
behaves more like another known solution of Eqs. (2.10) and (2.18), which is diver-
gent like the spherical or dipole wave discussed before with an amplitude inversely 
decreasing with distance from the source, 

e -i(wt-kz) 

E(z,t) = Ao 
k(z - izo)' 	

(2.21) 

where z = zo  separates the region where the wave will behave more like a plane wave 
(1z1 < zo ) and more like a spherically divergent wave (1z1 > zo ). Here zo  is a real 
number while the origin of the imaginary term will become transparent later. We 
will use this ad hoc approach to 'construct' the fundamental mode of coherent beam 
propagation. The 3d extension of the wave will be introduced by replacing kz --+ kr 
and expanding kr in the vicinity of the z-axis. 

2.3.1 The Gaussian principal mode or TEMoo  mode 

We now consider a cutout of a spherical wave close to the z axis  ('paraxial')  and 
separate longitudinal (z coordinate) and transverse contributions. Rays with axial 
symmetry depend only on the transverse coordinate p, and when substituting kr = kr 
we may furthermore use the approximation r = Vz2  p2  z p 2  /2z within the 
so-called Fresnel approximation for p <  z, r:  

E(r) = 	e   exp 	et A(r)  ikr 	A(z, p) 	.kp 2 	• icz 	 (2.22) 
kr 	 kz 	2z ) 

This form of course much resembles eq.(2.20) where the spatial phase is transversely 
modulated, respectively curved, with the Fresnel factor exp (ikp2 /2z). 

The linear substitution z 	z - iz o  is similar to a coordinate transformation and 
simply realizes one more solution which also introduces a phase shift for small z due 
to the imaginary term izo . With this substitution we already arrive at the Gaussian 
principal mode, 6  if we use a constant amplitude Ao: 

E(z, p) 	Ao 	
kP2 ) exp (i 

2(z - izo) 	
(2.23) 

k(z - iz o ) 

E(z,t) = Ao 	
kz 	

(2.20) 

A wave which combines the properties of plane waves and spherically diverging waves 
could have the structure 

e -i(wt-kz) 

6 The notion of 'mode', which appears here for the first time, is derived from the Latin modus, 
meaning measure or melody. 
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Gaussian modes propagate differently in free, isotropic space than, for example, waves 
in a dielectric waveguide, which depend on the inhomogeneous optical properties of the 
waveguide. In isotropic space the electric and magnetic fields, as well, are transverse 
to the direction of propagation and the waveforms are called transverse electric and 
magnetic (TEM) mode with indices (m, n). The basic solution is called the TEMoo 
mode. It is by far the most important form of all used wave types, and therefore will 
be analysed in more detail, before we consider the higher modes in Section 2.3.3. 

The presentation of the field distribution in Eq. (2.23) is not yet very transparent. 
Therefore we introduce the new quantities R(z) and w(z) through 

1 	z + izo 	1 	, 	2 
	+ z 

kw2 (z) • 	
(2.24) 

z — izo  z2  + 4 R(z) 

The decomposition of the Fresnel factor into real and imaginary parts creates two 
factors, a complex phase factor that describes the curvature of the phase front, and a 
real factor that specifies the envelope of the beam profile: 

exp (i 
2(z 

k
—
P2

i zo)
) 

2 

--4 exp i kP2 	exp 	P 	. 
2R(z) 	w(z) 

Fig. 2.7: A Gaussian principal mode close to the beam waist. In the centre nearly planar 
wavefronts are achieved, while outside the waves quickly adopt a spherical form. In the lower 
part the Rayleigh zone is hatched. 

The form of the Gaussian principal mode in Fig. 2.7 is thoroughly characterized by 
the parameter couple (wo , zo ). The following ideas and notations have been established 
to lend physical meaning to important parameters. 
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Rayleigh zone, confocal parameter b: 

b = 2z0  

The Gaussian wave exhibits its largest variation for —zo  < z < zo , within the so-called 
Rayleigh length zo  from Eq. (2.24). This region is called the Rayleigh zone and is also 
characterized with the confocal parameter b = 2z0 . The Rayleigh zone marks positions 
in the near field of the smallest beam cross-section or focal point (locus'). At z < zo 
a nearly planar wave propagates and the wavefront changes only marginally. The 
Rayleigh zone is the shorter, the more the beam is focused. In the context of images 
we also use the notion depth of focus (see Chapter 4.3.3). In the far field (z >> zo ) the 
propagation is again similar to a spherical or dipole wave, respectively. 

Radius of wavefronts R(z): 

R(z) = z[1 + (zo /z) 2] 	 (2.25) 

Within the Rayleigh zone R(z) --+  oc  holds at z < zo , whereas in the far field R(z) /-.' z. 
The largest curvature or the smallest radius occurs at the border of the Rayleigh zone 
with R(z o ) = 2z0 . 

Beam waist 2w0 : 

4 = Az0 /7t 

The beam waist 2w0 , or beam waist radius wo , specifies the smallest beam cross-section 
at z -,---- O. If the wave propagates within a medium of refractive index n, then A must 
be substituted by Ain. The diameter of the beam waist is then w(1 =- Azo /nn. 

Beam radius w(z): 

w 2 (z) = wo2  [1 ± (—
Z ) 

Zo 

2] 

Within the Rayleigh zone the beam radius w(z) stays approximately constant. But in 
the far field it increases linearly according to w(z) '' woz/zo . 

Divergence ediv: 

A 
w0  ediv — -- zo 	\/nzon 

In the far field (z >> b) the divergence can be determined from the relation e(z) =-- 
w(z)/z, z ---> oc.  
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Gouy phase n(z): 

n(z)= tan-1 (z/zo ) 	 (2.26) 

Passing through the focus the Gaussian wave receives a bit more curvature, i.e. shorter 
wavelength than a planar wave. For illustration, alternatively to (2.24), we can make 
the substitution 

1  wo  e —i tan —1 (z/zo) 

Z — iZo 	z0 W(Z) 

(the imaginary factor establishes the common convention, to find a real amplitude 
or vanishing phase at z = 0). By this function the small deviation from the linear 
phase evolution of the planar wave can be described, -7E/2 < n(z) < n/2. This extra 
phase is known by the name Gouy phase; half of it is collected within the Rayleigh 
zone. In travelling through the focus the phase is effectively inverted, which is remi-
niscent of two partial rays exchanging relative positions when crossing at a focal point. 

With these notations the total result of the Gaussian principal mode or TEM00  
mode is the following: 

E(p, z) = Ao 	w° 
e- {P/w(z)? eikP2  /2R(z) eiticz - 71(z)J. 	 (2.27) 

w(z) 

The first factor describes the transverse amplitude distribution, the second (Fresnel) 
factor the spherical curvature of the wavefronts, and the last one the phase evolution 
along the z axis. In physics and optical techniques in most applications a Gaussian 
principal mode or TEM00  mode is used 

Example: Intensity of a TEM00  mode 
The intensity distribution within a plane perpendicular to the propagation direction 
corresponds to the known Gaussian distribution, 

2 
CC° 	 CEO 	2 	wo  0w(z)? I(p, z) = —EE* = 

2 	2 	( 	
e- 2[ 

w(z)) 
with the axial peak value 

2 

i(0, Z) = —
2 

cE° 1.40 2 	w°  w(z) 

In general the 'cross-section' of a Gaussian beam is specified as the width 2w(z), where 
the intensity has dropped to 1/e 2  or 13% of the peak value. Some 87% of the total 
power is concentrated within this radius. 

Along the z axis the intensity follows a Lorentzian profile 1/[1+ (z/z0 ) 2 ]. It declines 
from its peak value  1(0,0)  = (c€ 0 /2)1.40 1 2  (see Fig. 2.7) and reaches half of this value at 
z = 4, The confocal parameter b then is also a measure for the longitudinal half-width 
of the focal zone. 

Owing to energy conservation, the total energy current density P = 27c f (p, z)p dp 
of a Gaussian wave cannot change, as can be verified by explicit integration, 

p dp 
— 	27,A2w2 10 

1112  (z) e

-2[p/ tv(z)? „„„2 A2 
0 0 	 " (1'0•".0* 

CEO 
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2.3.2 The ABCD rule for Gaussian modes 

The usefulness of Gaussian modes for analysis of an optical beam path is supported 
particularly by the simple extension of the ABCD rule (Section 1.9.2), known from ray 
optics. At every position z on the beam axis a Gaussian beam may be characterized 
either by the pair of parameters (wo , z0 ) or alternatively by the real and imaginary 
parts of q(z) = z — izo  according to Eq. (2.24). We know that both parameters of a 
light ray are transformed linearly according to Eq. (1.17) and that for every optical 
element a distinct type of matrix T with elements ABCD exists. The parameters 
of the Gaussian beam are transformed by linear operations with coefficients that are 
identical to the ones from ray optics: 

,i, 0 qo  Aqo  + B qi   

Cqo+ D •  

Now it is not very difficult to show that these operations may be applied multiple 
times and that the total effect T corresponds to the matrix product 1' 2 1' 1: 

A2  Ai qo  + Bi  + B2  
Ciqo + Di 	(242141 + B2C1 )qo + ... 

q2 = 1‘2 0 (1'1 0 go) = 

Example: Focusing with a thin lens 
As an important and instructive exam-
ple we now choose the effect of a thin 
lens of focal length f, with which a 
Gaussian beam with TEM00  mode has 
to be focused, and make a comparison 
with the predictions from ray optics. 
Let us look at the parameters of the 
wave in planes 1 (directly in front of 
the lens), 2 (directly after the lens) and 
3 (in the focus). 

Plane 1. A Gaussian beam with 
large beam waist 2w01  and infinitely 
large radius of curvature R(z=0) =  oc  
is very close to our expectations of a 
planar wave. Then, the Rayleigh length 
is also very large, since zoi = nwen. /A; 
eter of only 1 cm and a wavelength of 
the incident beam is at z = 0 and due 

Fig. 2.8: Focusing a Gaussian beam with a thin 
lens of focal length f.  

for example, it is 124m  long for a beam diam 
632 nm! Let us assume that the beam waist of 
to that q(z) is purely imaginary, 

2 
nwoi  

q1 = — izoi = i A 

(2.28) 

cf_ A1q0 ± B1  _i_ D2  
2  Clq0 + D1 m  

Thus we can describe the effects of all elements by the known matrices from Tab. 1.2. 
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Plane 2. The beam radius is not changed by the thin lens at once  (w02  = 
but the radius of curvature is changed, and is now given by 1/R2  = —1/f: 

1 	1 	.1  	 = 	+2 	. 
q2 (z=0) 	f 	zol 

Formal application of the lens transformation from Tab. 1.2 and with Eq. (2.28) would 
have yielded the same result. 

Plane 3. For the translation from the lens to the new focus we get 

q3 (f) = q2(0) + f, 

but the f position of plane 3 is initially unknown and must be determined from the 
condition that at the focus q3  = iA/7w,33  is purely imaginary. For that purpose we 
determine the real and imaginary parts of q2 , 

f  
( 

	

19 	+i  f   ) . q2 — 

	

1 + (f/Z01)- 	ZO1 

1 + (f/zoi ) 2 	1 + (AftrEwL) 2  ' 

which means that we again find planar waves there. According to ray optics we would 
have expected the focus to be located exactly at f = f. But if the focal length is short 
compared with the Rayleigh length of the incident beam, f < z01 , or equivalently, 
which is usually the case, Af/wea  < 1, then the position of the focal point will differ 
only marginally from that. 

More interesting is the question of how large the diameter of the beam is in the 
focus. We know that ray optics does not answer that, and we have to take into account 
diffraction at the aperture of the lens. At first we calculate the Rayleigh parameter 

1 	1 1+ (f/zoi) 2  
Z03 	f 	flzoi 	' 

and then determine the ratio of the beam diameter at the lens and in the focus, 

W03  = ( Zo3 ) 1/2 

In the form 

  

(2.29) 

  

,V1+ (f Izoi) 2  

Af 	1 	 AI  
, 	  

nwoi V1 ± (Afinwd1 ) 2  mum ' 

the first factor yields the Rayleigh criterion for the resolving power of a lens, known also 
from diffraction theory, which will be treated once more in the section on diffraction 
(Section 2.5, Eq. (2.48)). 

Obviously the real part of q3  is compensated exactly at 

f 	 f f , 

WO3 — 
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2.3.3 Higher Gaussian modes 

For a more formal treatment of the Gaussian modes we now also decompose the 
Helmholtz equation (2.11) into transverse and longitudinal contributions, 

A2 v2 ± k2 
= 

	

02 	02 

— 	+ 0y21  

and apply it to the electric field from Eq. (2.22). Assuming that the amplitude A is 
varying only very slowly on a wavelength scale, 

0 
—
Oz

./4 = A' < kA, 

we find the approximation 

	A eikP2/2z e
ikz 

	

'--' (2i k A' 	k 2  A) e ikp 2 12z e  
32 	 ikz 

	

3z 2 	kz 	 kz ' 
and finally get the paraxial Helmholtz equation, 

(\ 71 + 2ik —
0 z

) A(p, z) = 0. 
a 

(2.30) 

Obviously this is valid for A = const. This is not surprising, because by this we have 
just verified that, close to the z axis, the applied spherical wave fulfils the paraxial 
Helmholtz equation. The most fundamental solution of the paraxial Helmholtz equa-
tion we have already found by intuition and construction (Eq. (2.23),  P.  38), but the 
Gaussian principal mode is only one particular, although important, solution. We look 
for the higher solutions as variants of the principal solution, known from Eq. (2.27), 

= A(x, y, z) 	k(x 2  + Y 2 )  eikz 

	

z — izo 
	 exp (i 

2(z — izo) 	,  

and initially we want to use Cartesian coordinates, which deliver the best-known so-
lutions, called Hermitian-Gaussian modes. But there are also other solutions, for 
example the Laguerre-Gaussian modes, which are found when applying cylindrical 
coordinates. The paraxial Helmholtz equation (2.30) is 

	

(  a2 	2ikx 0 	02 	2i ky a 	a 
ax2 q(z) 0x 0y 2  q(z) ay 

± 2ik —
0 z

) A(x , y, z) = 0. + 	+ 	 + 	 (2.31) 

As for the principal mode, we look for amplitudes that depend symmetrically on x 
and y and cause only a small correction of the phase evolution along the longitudinal 
direction: 

A(x , y, z) = F(x)Ç(y) exp [—i7-1(z)]. 

We substitute this form in Eq. (2.31) and take into account that 1/(z — izo ) = 2(1 — 
iz/z0)/ikw 2 (z). By claiming exclusively real solutions for  F, , g and H, imaginary 
contributions cancel and we get 

_F l(x ) [g7-F(x) w 2
4

(z)  08x-r(x)] 

	

+ 	[ 	( ) 	Y 1  p,  
g,y) L6 g  'Y ' w , (z ) ay g(n)] +  2k& 7-((z) = 0.  

C74, 
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Expecting that the distribution of transverse amplitudes does not change along the z 

axis, we execute the variable transformation 

u = -\/- x/w(z) and 7) = -V-2- y/w(z) 

	

(the factor 	is necessary to normalize the new equations): 

	

1 	 1  
.F(u) 
	 [.F"(u) 2u7(u)] + 

g() 
 [g"(y) 2yg'(y)] + kw 2 (z)V(z) = O. 

y 
By this transformation we achieved a separation of the coordinates, and the equation 
can be solved via eigenvalue problems: 

.F"(u) - 2u.P(u) + 2mT(u) 
g"(y) - 2yg'(y) + 2ng(y) 

kw 2 (z)7-e(z) - 2(m + n) 

= 
= 
= 

0, 
0, 
0. 

(2.32) 

(00) 	 (10) 

(20) 
	

(21) 
	

(22) 

Fig. 2.9: Transverse intensity distribution of Hermitian-Gaussian modes of low order 

	

(1.A mn (x , y)I 2 	Hm (x)H,(y)1 2  ). 

The equation for the (u, v) coordinates is known as Hermite's differential equation. 
Its solutions are called Hermitian polynomials Hi(x), which are easy to determine 
according to the recursion relations 

H+1 (x)  = 	(X) — 	(X), 

Hj (X) = (_)j ex 2  di  (e-x2) 	 (2.33). 
dxi 

The Hermitian polynomials of lowest order are 

Ho (x) = 1, Hi (x) = 2x, H 2 (x) = 4x2  -2,  H3 (x) =- 8x 3  - 12x. 

The modulus squared specifies the transverse intensity distribution and is illustrated 
in Fig. 2.9 for the mode of lowest order. They form a system of orthonormal functions 
with the orthogonality condition 

[00 

(X)Hi/ (x)e
2

' dx = 	 (2.34) 

	

Loo 	 21/WC 
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The third equation from (2.32) is solved by 

7-1(z) = (n + m)71(z) 	 (2.35) 

with ii(z) = tan-1 (z/zo ) (eq. (2.21)). It enhances the phase shift of the Gouy phase 
and plays an important role in the calculation of the resonance frequencies of optical 
resonators (see Chapter 5.6). 

Thus the result for the modulation factor of the amplitude distribution for higher-
order Gaussian or TEM,,n  modes is 

A mn  = Hm  (/x/w(z)) Hn  (N/2 y w(z)) e -i(m+n)n (z)  , 	 (2.36) 

and particularly the result for the TEM00  mode is reproduced, of course. All modes are 
described by a Gaussian envelope, modulated by Hermitian polynomials. Therefore 
they are called Hermitian-Gaussian modes. 

A question might remain: Why have we chosen the Cartesian form of the paraxial 
Helmholtz equation, and why do cylindrical coordinates actually seldom appear? The 
reason is of technical nature, because at the interior of mirrors and windows small 
deviations from cylindrical symmetry are always present, and thus Cartesian Gaussian 
modes are preferred to Laguerre modes, which are found as solutions of equations with 
cylindrical symmetry. 

2.3.4 Creation of Gaussian modes 

In most experiments interest is focused on the TEM00  principal mode. By nature it is 
preferred in a laser resonator, because it has the smallest diffraction losses. According 
to Fig. 2.9 it is obvious that the effective face of a mode increases with the orders 
(in, n), so that the openings of a resonator (mirror edges, apertures) are of increasing 
importance. On the other hand, since the spatial amplification profile also has to 
match the desired mode, modes of very high order can be excited by intentionally 
misaligning a resonator (Fig. 2.10). 

TEMoo 
	

TEMoi 	TEM73 	 TEM48,0 

Fig. 2.10: Gaussian modes of higher order from a simple titanium-sapphire laser. The 
TEM48,0 mode has been reduced only a little bit. The asymmetry of the higher-order modes 
is caused by technical inaccuracies of the resonator elements (mirrors, laser crystal) [104]. 

Controlled shaping of light fields can also be achieved by a filter; thereby the notion 
of spatial filter is used. Such a spatial filter is shown in Fig. 2.11, which in its most 
simple form consists of a convex lens (e.g. a microscope objective) and a so-called 
pin-hole, with a diameter adjusted to the TEMoo  principal mode. 
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Fig. 2.11: Spatial filter. In front of the aperture the beam consists of a superposition of many 

Gaussian modes. It is shown, for the example of a TEMoi mode, how higher-order modes 

can be suppressed by the aperture. The fields in both 'ears' of the mode oscillate with opposite 

phase. 

Transmission of higher-order Gaussian modes is not only inhibited by the aperture, 
because the diameter increases rapidly with the order, but is also suppressed by the 
spatially alternating phase distribution. Therefore the aperture is not excited dipole-
like, as is the case for the TEM00  principal mode, but with a higher order, which, as 
everybody knows, radiates with lower intensity. 

At the output a 'cleaned' Gaussian beam propagates, which has lost intensity, of 
course. Excellent suppression of higher-order modes is achieved when a single-mode 
optical waveguide is used instead of a pin-hole (see Chapter 3.3). 

2.4 Polarization 

We have already noticed in the previous section that electromagnetic waves are vector 
waves with direction, which can be described in terms of two orthogonal polarization 
vectors c and c' in free space. 7  We consider a transverse wave propagating in the ez  
direction. The polarization must lie within the xy plane (unit vectors e x  and en ), and 
we consider two components, which may have different time-variant phases, 

E(z,t) = Ex ex  cos(kz — cot) + eyey  cos(kz — cot + 0). 	 (2.37) 

For 0 -= 0, 2m,  47E, . . ., these components have equal phases and the wave is linearly 
polarized, 

E(z, t) =  (Se x  + Eye)  cos(kz — wt). 

For q5 , TG,  3m,  . . ., they oscillate out of phase and in general yield an elliptically, or 
for Ex  -= sy  circularly, polarized wave: 

E(z,t) = Ex ex  cos(kz — cot) + Eyey  sin(kz — cot). 

7 The notion of 'polarization' is also used as dielectric polarization elsewhere. The kind of appli-
cation for which it is used is always clear from the context. 
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Fig. 2.12: The field of a circularly polarized wave (left-hand side) rotates around the prop-
agation axis every where with the same amplitude. The linearly polarized wave (right-hand 
side) is a common sine wave. 

Instead of Eq. (2.37) the field amplitude may also be written in the form 

E(z, t) = Ecos (aex  + bey ) cos(kz - 	a) 

E11(-be  x  + aey )sin(kz - wt + a), 

with a2  + b2  = 1, which corresponds to the ellipse in Fig. 2.13 rotated by the angle a. 
By comparison of the coefficients at (kz wt) = 0, n/2, one may calculate the angle 
a, 

x 	0 
tan (2a) = 2EE

y  cos 
  	6.2 	E2 • 

Furthermore in Fig. 2.13 the decomposition of a linear and elliptical polarization into 
two circular waves is illustrated. 

Fig. 2.13: (a) Elliptically polarized wave. The linearly polarized wave (b) and the elliptical 
wave (c) can be decomposed into two counter-running circular waves. 

2.4.1 Jones vectors 

In general any transverse polarized light wave can be decomposed into either two 
orthogonal and linear or two counter-running and circularly polarized waves. For 
example we find for the field of Eq. (2.37): 

E(z, t) = Ne{Exex  +  e e-iOey} e- i(wt-kz) 

= 91{(Ex  + i e-i (i)ey ) e+  + (Ex  - i e- i 0Ey )e } e- i(wt-kz). 
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Jones suggested the orthogonal unit vectors 

J  e+  = (e„ iey )/N/2 
e_ = (e, — iey)/12-  

and f e„ (e+  e_)/0 
ey  = —i(e+  — e_)/0 f (2.38) 

for the characterization of a polarization: ex , y  for linear, and e+  for circular, compo-
nents. Writing this for the individual components we find 

ex = 
1 
0 

1 ( 1 e  = 0 

1 	= 	+i 
) 

It is obvious from Eq. (2.38) that any linearly polarized wave may be decomposed 
into two counter-running circularly polarized waves and vice versa. Optical elements 
affecting the polarization, like for example retardation plates, can be described very 
simply with this formalism (see Chapter 3.5.4). 

2.4.2 Stokes parameters 

For the characterization of a polarization state of a wave by Jones vectors, we need the 
amplitudes and directions for two orthogonal components (ex , y  or e+) at any given 
time. Polarizations may fluctuate in time also. Hence for characterization G. G. Stokes 
suggested the use of the time averaged quantities 

so  =  
= (6?) — (q), 

S2 = (2E„Ey  cos 0), 
S3 = 2Ex  Ey  sin 0). 

The first parameter So  is obviously proportional to the intensity, and since one direc- 
tion is already fixed, only three parameters are independent of each other. Normalizing 

ix 	/ i \ 	 f l \ 	ix 	 1 

	

-1 	 0 	 0 

	

i 0 	 0 

	

Y \ 0 j 	\ 0) 	\l  

Fig. 2.14: Stokes parameters and vectors for distinct polarization states. From left to right: 
linearly x polarized, linearly y polarized, unpolarized, right circularly polarized. 

the S parameters to si  = Si /S0 , then so  = 1 is always valid and furthermore8 

 V =  s  +  s  +  s  < 1 	(--= 1 for perfectly polarized light). 

According to the superposition principle for the superposition of two waves S" = S+S' 
holds for the Stokes parameters. Stokes parameters also describe unpolarized light as 
shown on Fig. 2.14. 

8 We will find in the chapter on light and matter (Chapter 6) that this structure appears again in 
the Bloch vectors of the analogous atomic two-state systems. 



Fig. 2.15: Transmission of crossed polarizers. 
The hatching indicates the direction of polar-
ization. In the lower figure the third polarizer 
is inserted at 45° in between the other two po-
larizers. 

Diffracted wave 

Diffracted wave 

Fig. 2.16: Huygens' principle: diffraction at an 
aperture. 
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2.4.3 Polarization and projection 

A quite astonishing property of the polarization may be demonstrated impressively 
with a polarization foil. A polarization foil generates polarized light from unpolarized 
light through absorption of the component that oscillates in parallel with the aligned 
organic molecules of the foil. More polarization components will be treated within the 
chapter on wave propagation in matter (Chapter 3). 

In Fig. 2.15,  the left-hand side illus-
trates that two crossed polarizers result 
in the cancellation of the transmission. 
But it is quite astonishing that, when one 
more polarizer is inserted with polariza-
tion direction at 45° in between the two 
others, a quarter of the light transmitted 
by the first polarizer (neglecting losses) 
passes through the orthogonal polarizer! 
The polarization of the electromagnetic 
field is 'projected' onto the transmission 
direction of the polarizer, the polarizer 
affecting the field not the intensity. 

2.5 Diffraction 

Light diffraction has played an im-
portant role in the development of 
the wave theory of light. Even fa-
mous physicists doubted for a long 
time that 'light comes around a cor-
ner like sound', but already Leonardo 
da Vinci (1452-1519) knew that some 
light falls into the shadow of an illu-
minated object — against the predic-
tions of geometrical optics. 

C. Huygens gave a first illustrative 
idea to wave theory by interpreting 
every point in space as an excitation 

source of a new wave, a concept called today 'Huygens' principle'. It makes indeed 
many diffraction phenomena accessible to our intuition, but it assumes ad hoc that 
waves are always transmitted into the forward direction only. 

The general mathematical formalism of Huygens' principle is extremely elaborate, 
because the electric and magnetic radiation fields are vector fields, E = E(x, y, z, t) 
and B = B(x, y, z, t). Up to now there exist only a few general solved examples; 
the problem of planar wave propagation at an infinite thin edge solved in 1896 by A. 
Sommerfeld (1868-1951) counts as an exception. 
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An enormous simplification is achieved when substituting the vectorial field by 
scalar ones, whereby we have to determine the range of validity of the approxima-
tion. It is advantageous that light beams often propagate with only small changes of 
direction. Then the polarization changes only slightly and the scalar approximation 
describes the behaviour excellently. 

2.5.1 Scalar diffraction theory 

Here it is our objective to understand Huygens' principle by means of mathematics in 
scalar approximation by applying the superposition principle to the combined radiation 
field of multiple sources. 9  
Within this chapter we will for simplicity exclu- 
sively discuss the propagation of monochromatic 
waves:10 	 n1f * 

E(r, t) = E(r)e- iwt . 

The total field E(rp) at a point P (Fig. 2.17) is 
composed of the sum of all contributions of the in-
dividual sources Q, Q', .... We know already that 
spherical waves emerging from a point-like source 
Q have the scalar form of Eq. (2.18), 

11, 

E EQ  eikr/kr. 	 Fig. 2.17: The light field at P is 

To cover all fields incident on a point P, we look fed by the sources Q, , Q", 

at the sources on a surface S and the effect of these on a very small volume with surface 
S' around P (Fig. 2.18). We can make use of the Green's integral theorem, well known 
from mathematics, which for two solutions and of Helmholtz's equation (2.11) 
reads 

[OVO - OVV)] dS 
 = f 

 [0v20 ov2,0] d3r O. 

We let eikr/kr and E(rp) be used for and 0, and in Fig. 2.18(a) we cut out a 
sphere with very short radius r' and surface element dS' = r 2  dff er  about point P to 
be contracted to this point, 

ikr 	 pikr 

dS + dS') 
p 	

r 
VS EV 	 = O. 

On the surface of the small sphere around P we have dS' er  and thus VS • dS' = 
(0e/Or)r2  de'. We furthermore use -V eikr/r = (1/r 2  - ik/r) eikrer  and find 

e ikr 	pikr 	 ag 
VE EV 	r dS = 	[5(1 ikr) + r— 

Or
] eikr  c1SY . 

Is{ r 	 s,  
(2.39) 

   

9 This section is mathematically more tedious. The reader may skip it and simply use the results 
in eqs. (2.44) and (2.45). 

19 This treatment requires spatial and temporal coherence of the light waves, which will be discussed 
in more detail in the chapter on interferometry (Chapter 5). 
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(a) (b) 

Fig. 2.18: Kirchhoff 's theorem. (a) Choice of the surfaces according to Eq. (2.39). (b) The 
surface S is excited by a source Q and radiates towards the point P. 

Now we let the radius of the volume around P decrease more and more (r 0) and 
with 

(e - ikre +r-8E ) 
ar 

e ikr cify 

we can prove Kirchhoff's integral theorem: 

r-+0 4nElr,o  = 4nEp 

1 [ eikr 	pikr 
	VE eV  -

r 
dS. (2.40) 

In principle we can now predict the field at point P if we know the distribution of 
fields on the surface S. Owing to its relatively wide generality, however, the Kirchhoff 
theorem does not give the impression that it might be very useful. Therefore we want 
to study further approximations and apply them to a point source Q illuminating the 
surface S (Fig. 2.18(b)). Let us assume that a scalar spherical wave of the form 

e(p,t)  = 	e i(lcp-wt) 
kp 

propagates from there. We use spherical coordinates and just insert the spherical wave 
into Eq. (2.40), 

EQ  f reikr 
( a (eikP)) 	

e ikp 	 e ikr )) 

E(rP)  = 4nk 	OP P ) ) e 	
dS. 

P 	0 ( ar  

Then we make use of the approximation 

eikP 	k2 e ikp 

Op 10  (i 	

1  ) 	• kp ik 

k p 	(k p)2 	
e (2.41) 

for p and r, which is excellent already for distances of only a few wavelengths, since 
kp>> 1. Then also the Kirchhoff integral (2.40) can be simplified again crucially, 

iSQ 	eik(r+P)  
E(rp) =   	N(r, p) dS, (2.42) 

27E is  rp 
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whereby we have introduced the Stokes' factor N(r, p): 

ere, — ep  
N (r , p) = 	

es
= -- 22-- [cos (r, e s ) — cos (p, es )]. 	 (2.43) 

2 

To understand the Stokes' factor (also obliquity factor) and its meaning (respec-
tively to substitute it by the value '1' in most cases), we look at Fig. 2.19. Thereby 
we make use of a more realistic example, in which the rays are near the axis, which 
means that they propagate in the vicinity of the connecting line between Q and P. We 
can specify the 'excitation' originating from the surface element dS with 

dEs = (eQIkp) exp (ikp) cos (p, es ) dS, 

the 'modulus' at P with 

dEp = dEs cos (er , es ) exp (ikr) I i- , 

and thus find exactly the factors from Eq. (2.42). 
A remarkable property of the Stokes' factor is the suppression of the radiation in 

the backward direction, because according to Eq. (2.43) N --÷ 0 holds for ep  -- er ! In 
contrast to that, we find for near-axis rays in the forward direction N --+ 1, and we 
want to restrict ourselves to this frequent case in the following. The right part of Fig. 
2.19 shows the total angle distribution of the Stokes' factor for a planar incident wave 
with p = es . 

1,0 

0,5 

0,0 

-0,5 

-1,0 
0,0 
	

1 ,0 

Fig. 2.19: For the interpretation of the Stokes' factor. Left: geometric relations. Right: 
angle dependence of the Stokes' factor, N(r,plie,) = [1 + cos()]/2. 

We finally consider the propagation of near-axis rays for N L--2 1 in the geometry and 
with the notations of Fig. 2.20. Besides we assume that the surface S is illuminated 
with a planar wave. Then the field strength Es É_-' SQ1kp is constant, but the intensity 
distribution may be characterized by a transmission function T (, 7) ) (which in principle 
can be imaginary, if phase shifts are caused). According to Eq. (2.42) we can calculate 
the field strength at the point P 

ies 	eikr 

(2.44) 
A s 	r 
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Fig. 2.20: Fraunhofer diffraction for N 1. 

This result is also still too difficult for a general treatment. But further approxi-
mations are made easier by the circumstance that the distance between the diffracting 
object and the area of observation is in general large compared with the wavelength 
and the transverse dimensions, which are marked in Fig. 2.20 by a circle with radius 
a within the plane of the diffracting object. We express the distances r and ro  by the 
coordinates of the respective planes, 

r2 (x  02 + (y 71)2 z2 	 2  and 	ro x
2 
 + 

2 
z

2 
• 

We consider r as a function of ro , 

2 	2 (1 	2(X 	yr1) 	7)2 ) 
s 	 r = r0 	 2 	 2 

r0 

and expand r with kx  = — kxIr o  and ky = —ky/ro, 

r  =  r  1+  
2(kx e KO 

 ± 
) 	± 172 	

To 	
, K 	y 77 	+ 77 2  ) 

2 — 
kro 	 ro 	 kro 	2r02  

Then the phase factor in Eq. (2.44) decomposes into three contributions, 

exp(ikr) —> exp(ikro) exp[i(k x -kko)] exp (
ik(e +772) 

	

2ro 	) • 

The first factor just yields a general phase factor, the second depends linearly on 
the transverse coordinates of the diffracting plane and the plane of observation, the 
last one depends only on the coordinates of the diffracting plane (we have met the last 
factor already as the 'Fresnel  factor', when discussing Gaussian beams (see p. 38)). In 
many experiments the Fresnel factor differs only a little from 1, because ka2 /ro  < 1. 
Therefore it delivers the distinguishing property for the two important basic diffraction 
types, Fraunhofer and Fresnel diffraction (ro  z): 

(i) Fraunhofer diffraction a2  < Az, 
(ii) Fresnel diffraction 	a2  > Az but a < z. 

(2.45) 
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Since the 19th century diffraction phenomena have played an important role in the 
development of the wave theory of light, and up to now they are closely correlated 
with the names of Joseph von Fraunhofer (1787-1826) and Augustine Jean Fresnel 
(1788-1827). The radius a = VAz defines the region of validity of the Fraunhofer 
approximation within the diffracting plane. The usual condition is that in this case 
the object lies completely within the first Fresnel zone (see also p. 63). Besides, when 
the distance z to the diffracting object is just chosen large enough, one always reaches 
the far field limit, where Fraunhofer diffraction is valid. 

2.5.2 Fraunhofer diffraction 

The Fraunhofer approximation is applied in the far field of a diffracting object (e.g. a 
slit with typical dimension a), if the condition 

a2  < Az 

(2.45(i)) is fulfilled. For near-axis beams we can substitute the factor 1/r ,-- 1/r o  '-- 
1/z, and we find after inserting the approximations into Eq. (2.44) the expression 

iEs eikr° E(rp) =  	(e, 77) 	d dy. 	 (2.46) 
Az 	s 

But in the phase factor we keep ro , 

exp (ikro ) '--' exp (ikz)exp 
	y2))

, 2z 	
(2.47) 

because here even small deviations may lead to a fast phase rotation, which then plays 
an important role in interference phenomena. 

After that the field amplitude at point P has the form of a spherical wave, which 
is modulated with the Fourier integral T(k x , ky ) of the transmission function T (e, ii),  

= de dy T(e, 77) ei(Kg+kyn). 

Finally the great impact of Fourier transformation in many areas of physics has 
been significantly supported by its relevance for the treatment of optical diffraction 
problems. Now we want to discuss some important examples. 

Examples: Fraunhofer diffraction 
1. Fraunhofer diffraction at a long single slit 

We consider a long, quasi-one-dimensional slit (Fig. 2.21, width d) and assume 
again that the illumination may be inhomogeneous. Because we have introduced 
several approximations concerning ray propagation (e.g. Stokes' factor N = 1), we 
may not solve the one-dimensional case just by simple integration of the y coordinate 
in eq. (2.46) from —oo to oo. Instead we have to work out the concept of Kirchhoff's 
integral theorem for a line-like (instead of a point-like) source. From a line-like source 
a cylindrical wave originates, the intensity of which does not decline like 1/z 2  any 
more, but only with 1/z. It turns out that the result has a very similar structure. 

00 f 00 

foo 00 
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The amplitude of the cylindrical wave 
must decline with 1/Vi and the one-di-
mensional variant of Eq. (2.46) has the 
form 

In the case of a linear, infinitely long slit, 
the transmission function has the sim- 
ple form 7() ----- 1 for lel < d/2 and else 

E(rp) = is eikr°  

A -VT —cz 	r(
) 	d. 

is 

Fig. 2.21: Diffraction at a long slit. 	 T(e) = O. One calculates 

iEs eikro f  dI2 dei k" sin (kxd12z)  
E(x) =  	ck eik' 	ES 	 . 

Aircz J--d/2 	 AVkz kxd12z 

The intensity distribution I(x) ocie(x)12  is shown in Fig. 2.21 and distorted slightly 
in the grey colour scale for clarification. 

2. Fraunhofer diffraction at a 'Gaussian transmitter' 

We consider a Gaussian amplitude distribution, which one may create for example 
out of a planar wave by a filter with a Gaussian transmission profile. On the other 
hand we may just use the Gaussian beam from section 2.3 and insert an aperture only 
in thought — the physical result would be the same. 

On a screen behind the aperture the 
intensity distribution must have been 
induced only by the diffraction at this 
fictitious aperture! We use the form and 
notation from section 2.3 with the ficti-
tious transmission 

3-( ) = e—(Vw0)2/0i. 

The diffraction integral 

E(x) = 	, 	_ 	e 2  
eikro 	 e —(Vw0) 2  

AWkz 	 N/TE 
Fig. 2.22: Diffraction at a 'Gaussian 	can be evaluated with 
transmitter'. 

roo d exP [ — (/w0) 2] exP (ikxe) = Affr wo exP  
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and we find, using the notion on p. 40 (beam waist wo , length of the Rayleigh zone 
zo , etc.): 

ikro 	 ikz 
C(x) = i  wo e go 	(xzo/wo z)2 	so  wo e 	e ikx2 /2z e -(x/w(z)) 2 .  

AN/ kz 	 AN/kz 

The last approximation is valid in the far field (z >> z o ) and we find after some 
conversions that it corresponds there exactly to the Gaussian TEM00  mode from Sec-
tion 2.3. Indeed one could have started the search for stable modes in a mirror or 
lens system also from the viewpoint of diffraction. The amplitude distribution must 
be a self-reproducing solution (or eigenfunction) of the diffraction integral, which is 
'diffraction-limited'. Indeed integral equations are not very popular in teaching, which 
is why usually the complementary path of differential equations according to Maxwell 
is struck. 

In our discussion we have treated the x and y coordinates completely independently 
from each other. That is why wave propagation according to Gaussian optics occurs 
independently in x and y directions, an important condition for optical systems, the 
axial symmetry of which is broken, e.g. in ring resonators. 

3. Fraunhofer diffraction at a circular aperture 
One more element of diffraction, exceptionally 
important for optics, is the circular aperture, 
because diffraction occurs at all circle-like op-
tical elements, among which lenses are counted 
for example. We will see that the resolution 
of optical instruments is limited by diffraction 
at these apertures, and that diffraction causes 
a fundamental limit for efficiency, the so-called 
diffraction limit. 

We introduce polar coordinates (p,O) 
within the (77, plane and (r, O) within the 
(x,  y) plane of the screen. With these coordi-
nates the diffraction integral from Eq. (2.46) 
reads as 

Fig. 2.23: Diffraction at a circular 
aperture. 

e ik ro  ja 	1 
cl 

2m 
C(r) = -iSs 	p dp 	O e-i(krp z) cos (0-0 

Az 0  

This can be evaluated with the mathematical relations for Bessel functions, 
2n 

JO (X) = —
1 
f exp [ix cos (0)] 	and 

27t 0  

The result is 

E(r) _ies eikro ka2  Ji(kar I  z)  

z (karlz) 

L  dx' Jo(x') = xtli(x)• 

The central diffraction maximum is also called the 'Airy disc' (do not confuse this with 
the Airy function!). 
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The intensity distribution is determined by forming the modulus, 

I(r)  = i(r=o)  (2Jik(I:ra/rz/z))  2  

The radius rAiry  of the Airy disc is defined by the first zero of the Bessel function 
(x=3.83) = O. From karAi ry /ro = 3.83 = 2n1.22 we find the radius 

, 	zA 
rAiry = 1.22 

2a 

With these specifications we may already determine the Rayleigh criterion for a lens 
of diameter 2a D and with focal length z f,  

r Ai ry  = 1.22 
f 

, 
D 	

(2.48) 

which matches the result of the treatment of Gaussian beams except for small constant 
factors (see p. 43). 

2.5.3 Optical Fourier transformation, Fourier optics 

According to Eq. (2.46) in the far field a diffracting object creates an amplitude distri-
bution that corresponds to the complex amplitude distribution in the object plane and 
is a function of the spatial frequencies K n = —kniz and i  = —k/z. A convex lens 
focuses incident beams and moves the Fourier transform of the amplitude distribution 
into the focal plane at the focal length f (Fig. 2.24): 

,A(7 7 ,) 	7-(x, y) ei("x±"Y )  dx dy 

= 	 y)}. 

    

    

    

    

    

    

illumination  

Object 
	

Fourier Transform 
	

Reconstruction 

Fig. 2.24: A lens as an optical Fourier transformer. The image can be reconstructed by a 
second lens. The properties of the image can be manipulated in Fourier space, i.e. the Fourier 
plane. 
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Therefore when observing a Fraunhofer diffraction image, one uses conveniently a 
lens (directly after the diffracting object), to keep the working distance short. It can be 
shown that the factor  4 (77 , is independent of (77 , if the diffracting object is located 
at the front focal plane. Under these circumstances, studying the intensity distribution 

/( 77,) le(K77, k01 2 oc  -F{E(x, obviously one finds a power spectrum in the 
space frequencies of the diffracting object. 

But the Fourier transformation of a diffracting object by a lens would not be that 
exciting if it were not for the fact that it forms the basis for the Abbe theory of imaging 
in a microscope (see p. 113) or more generally of Fourier optics [62]. The treatment of 
this goes beyond the scope of the present book, but, referring to Fig. 2.24 and without 
going into details, we want to point out that a second lens compensates or reverses 
again the Fourier transformation of the first lens. Within the focal plane of the first 
lens, the Fourier plane, the image can now be manipulated. Just by use of simple 
diaphragms (amplitude modulation) certain Fourier components can be suppressed 
and one obtains a smoothing of the images. On the other hand one can also apply 
phase modulation, e.g. by inserting glass retardation plates, which affect only selected 
diffraction orders. This procedure is also the basis for the phase contrast method in 
microscopy. Imaging can also include a magnification by application of lenses with 
different focal lengths. 

2.5.4 Fresnel diffraction 

For Fraunhofer diffraction, not only must the screen lie in the far field, but also the 
size a of the radiation source must fit into the first Fresnel zone with radius ro  = 
which means that a < 'fa must be fulfilled. If this condition is not met, one may 
apply the Fresnel approximation, which for 

a2  > Az/n but a < z 

uses the full quadratic approximation in (x, y,  i ,  e): 

T2 (x  7.7 )2 	(y _ 2 	z2 

z  ( 1 	
(x  —i)2 	(71 02)1/2 

Z2 	2 	 

(x 77) 2  + (Y —  
2z 	2z 

Then according to Eq. (2.44) the diffraction integral reads as 

= z +  

e ikz 

E(rp) = 
Az 

ik 
07,0 exP 	[(x — 77) 2  + (Y 0 20 (2.49) 

Mathematically this is much more elaborate than the Fourier transformation in the 
Fraunhofer approximation (Eq. 2.46), but easy to treat with numerical methods. 



K 
\ I TCZ [no  

exp [i II  u2 ] du. 
2 

X->li -_,N. 

kJ 

60 	 2 Wave optics 

Examples: Fresnel diffraction 

1. Fresnel diffraction at a straight edge 
First we introduce the normalized variable u, 

—
2z

(x   k 
	

17)2 	-7t 2 0 = U(7)=0) = 	 

	

1 k 	 7EZ 

2 	
\ 

7tZ 
X, dr/ = 	—

k 
du

' 
- 	:=_- U , 	2/ 

 

into the diffraction integral and substitute (K is constant) 

E(x) = K Tx)  exp [—ik  
o 	2z 

Wit h  that we can calculate the intensity, which can be expressed with the aid of the 
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Fig. 2.25: Fresnel diffraction at a straight edge. 

At a large distance  (x, u 0  ---+ oo) from the edge we expect a homogeneous field and 
homogeneous intensity, which we can use for normalization: 
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CEO 02 / 	, 	CEO 
c., kX —> 00) = —
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Fresnel integrals, 

u 
C(u) := f

u 
 du' cos (-II  u12 ) 	and 	S(u) := j‘  du' sin 	 (-70) 

	

o 	2 	 o 	2 	, 

in a clear form: 

f uo 	 2 
exp [i

2
---71 u2 ] du 

J-00 

= 

1  2 	 1  2 
-1:3  { [C(Uo) + fl + [SOO + d } • = 



-2 0 2 4 

S(u) • 

E(r=0) = ies ei k z 2 sin(K/4) 

/(r=0) = 4 x —2— 
(2.50) 

cc°  1Es 12 sin2(ka2/4z). 
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Fig. 2.26: Cornu spiral and diffraction intensity behind a straight edge. 

As the result we gain the Cornu spiral and the intensity distribution behind a straight 
edge, which are both illustrated in Fig. 2.26. 

2. Fresnel diffraction at a circular aperture 
In order to evaluate the diffraction integral (2.49) for the case of near field diffraction 
at a circular aperture with radius a, we use x = r cos 0', y = r sin 0' , 7-1 = p cos and 
e = p sin 0: 

E(r, 0) = ies eikz e '2/2z 
Az 

2TE 
X 

a 

fo o 

f 
ikp 2  12z e —irpcos (0' — 95 ) p dp 

The angle integration can be carried out and substituting  ic := ka2  I z it yields the 
expected radially symmetric result 

1 
E(r) = ies  eikz  e/ 2  /2 	e —iKx2 12  jo(Kxr I a)x dx. 

Now the integral can be evaluated numerically and then yields the diffraction im-
ages from Fig. 2.27. On the optical axis (r = 0) the integral can also be solved 
analytically with the result 

Accordingly along the axis one finds up to four-fold intensity of the incident planar 
wave! For  ic < 1 the Fraunhofer approximation is reached and there sin(K/4) k/4 oc 
1/z is valid. On p. 63 we will interpret this result again with the aid of the Fresnel 
zones. Furthermore we will deal with the complementary problem, the circular obsta-
cle, on p. 62. 
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Fraunhofer limi 

Fig. 2.27: Example for Fresnel diffraction at a circular aperture from the Fresnel up to the 
Fraunhofer limit case. The right-hand figure indicates the intensity distribution at ka2  / z = 40. 

2.5.5 Babinet's principle 

Babinet's principle is nothing other than an 
S 1 	S2 	application of the superposition principle (Sec- 

+ tion 2.1.6). It often allows a clever formula-
tion for the analysis of diffraction phenomena, 
because it is particularly also linear within the 
diffracting plane. If we consider the light field, 
which is created by the two geometries S1 and 
S2,  then the total field, which propagates with-

Fig. 2.28: Diffraction at a circular out these objects, is just the sum of the two indi-
vidual diffracting fields. According to Fig. 2.28, 
we can compose the non-diffracted field (index 

ND) out of the diffracted field and the corresponding complementary field: 

END (rp) 

This statement, Babinet's principle, seems fairly banal at first sight, but it allows a 
clever treatment of complementary geometries. 

Example: Circular obstacle 
We can construct the light field diffracted by a disc with Babinet's principle and the 
result from a circular aperture. It consists of just the difference between the non- 

E
ND 

E + E 
comp 

obstacle: Babinet's principle. 

= E(rp) +Ecomp (rp). 
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diffracted field, in the most simple case a planar wave, and the complementary field, 
which originates from a circular aperture: 

1 
E(r) 	eikz (1 	eik(r1a) 2  /2 K  f e —ikx2  / 2  Jo (Kxr I a)x dx). 

The diffraction image at a circular obstacle consists of the superposition of a planar 
wave and a diffraction wave of the circular aperture. In the centre a bright spot can 
always be seen, which has become famous as the 'hot spot': 

E(r=0) = Es eikz  [1 ± 2i sin(K/4) e 4 ] and /(r=0) = c62°  IESI 2  

Fig. 2.29: Fresnel diffraction at a circular obstacle. In the centre the hot spot can be recog-
nized. Compare the complementary situation in Fig. 2.27. 

According to an anecdote, Poisson opposed Fresnel's diffraction theory on the 
grounds that the just achieved results were absurd; behind an aperture in the centre 
of the diffraction image a constant hot spot could not be observed. He was disproved 
by experiment — this observation is not simple, because the rims of the diffracting disc 
must be manufactured with optical precision (i.e. with only slight deviations in the 
micrometre range). 

2.5.6 Fresnel zones and Fresnel lenses 

In the case of Fraunhofer diffraction we can equate the Fresnel factor from eq. (2.5.4), 
exp[—ik(x2  + y2 )/2z], with 1 according to ka2 /z < 1, but this is not the case for 
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Fig. 2.30: Fresnel zones and zone plate. 

Fresnel diffraction. This factor specifies with what kind of phase 4)F the partial waves 
of the diffracting area contribute to the interference image, e.g. all with approximately 

(13F = 0 in the Fraunhofer limit case. 
However, if we slowly increase the radius 

r of the diffracting object at a fixed distance 
z, then starting at a l  = NrzX the partial 
waves contribute with opposite phase, since 
kai/z = Tc. Therefore we can refer to the 
criterion established by Fresnel 

2 aN  = NzA, 	 (2.51) 

to divide the diffracting plane according to 
the character of its phase position. 

In Fig. 2.30 the division with white and black zones is introduced, the outer radii of 
which increase according to Eq. (2.51). For clarification we look again at the diffraction 
at a circular aperture from the example on p. 61. According to Eq. (2.50) the bright-
ness reaches a maximum on the axis at  a2 /z) = 1, 3, ..., while at c/ 2 /zA = 2, 4, ... 
a minimum appears. 

In a radially symmetric aperture every Fresnel zone contributes with the same 
area and intensity to the total field on the axis. Partial waves stemming from the odd 
Fresnel zones accumulate a path difference of (N — 1)A/2 = 0, 2, 4, ... , A on the 
axis, which results in constructive interference. On the other hand, a contribution with 
opposite phase is created from the even zones (NA/2), which results in cancellation of 
the light field for equivalent numbers of even and odd zones. 

The suggestion to make use of this circumstance and use a diaphragm for every 
second zone dates back to Fresnel. The division into zones from Fig. 2.30 therefore 
stands exactly for the idea of a Fresnel zone plate. Alternatively one may also use 
a corresponding phase plate, which is better known under the name 'Fresnel lens' or 
'Fresnel  step lens' (Fig. 2.31). These lenses are often used in combination with large 
apertures, for example in overhead projectors. 

Fig. 2.31: Fresnel's stepped lens. 



3 Light propagation in matter 

We have seen that we can describe diffraction at dielectric interfaces, such as glass 
plates, with the help of refractive indices introduced phenomenologically. We may also 
consider diffraction as the response of the glass plate to the incident electromagnetic 
light wave. The electric field shifts the charged constituents of the glass and thus 
causes a dynamic polarization. This in turn radiates an electromagnetic wave and 
acts back on the incident light wave through interference. Here we will discuss the 
properties of matter with macroscopic phenomenological indices of refraction. Some 
fundamental relations with the microscopic theory will be introduced in Chapter 6. 

In the preceding chapter we discussed wave propagation in homogeneous matter 
and noticed that it differs from that in vacuum only by the phase velocity (Eq. (2.12)). 
Now we want to explore how interfaces or dielectrics with inhomogeneous refractive 
index affect the propagation of electromagnetic waves. 

3.1 Dielectric interfaces 

In order to discuss dielectric interfaces, we have to know how they affect electromag-
netic fields. We will only cite the relations important for optics, and leave it to the 
reader to consult textbooks on electrodynamics for proofs of the rules (of mathematical 
boundary conditions) with the help of Maxwell's equations (2.8). 

Suppose that an interface divides two media with refractive indices n1  and n2, 
and with normal unit vector eN . Then the electromagnetic radiation fields are fully 
characterized by 

(E2  — El) x eN = C) 	and 	(n3E2 — niE1) • eN  = 0, 
(H2  — H 1 ) x eN = 0 	and 	(H2  — Hi ) • eN = 0, 

where E1,2 and H1,2 are to be taken in direct proximity to, but on different sides of, 
the interface. We further note that in optics we may often restrict ourselves to the 
application of vector products from (3.1), so that the scalar products are accounted 
for by Snell's law. 

3.1.1 Diffraction and reflection at glass surfaces 

In the case of a transverse electromagnetic wave incident on a dielectric interface, we 
can distinguish two polarization configurations: the polarization may be either linearly 
perpendicular (s) or parallel (p) to the plane of incidence (Fig. 3.1). 

Opttcs, Lzglit and Laser. Dieter Meschede 

Copyright C) 2004 Wiley-VCH Verlag GmbH 8.c Co. KGaA 

ISBN: 3-527-40364-7 

(3.1) 
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Fig. 3.1: Electromagnetic fields at a dielectric interface for (left) s and (right) p polarization. 
The symbol 0 indicates the field vectors perpendicular to the plane of the drawing. 

Waves with s (resp. p) polarization of the electric field are called s (resp. p) waves. 
Alternatively the notions a and TE polarizations (resp. TE and TM waves) are also 
used. We have to treat the two cases for each component individually. Then ellip-
tical polarizations can be reduced to superpositions of these cases according to the 
superposition principle. 

(a) s polarization 

We consider the {E, H, k} to, triads of the incident (i), reflected (r) and transmitted (t) 
waves and use the notation from Fig. 3.1 with 

E, = Eoaez e — i(w.t — kar) 
, 

Ho, = 	EOa   k x e e —i( w‘a t—l)  
ttOCWa a 	z 	 . 

(3.2) 

The s-polarized electric field is perpendicular to the surface normal, which is why 

Et  = Ei  + Er 	 (3.3) 

is valid. If this relation is fulfilled everywhere and at all times at the interface, then 
obviously all waves must have the same frequency, and we can consider the time t = O. 
Besides, according to (3.1), for arbitrary y the relation 

eot eikYt Y  = Ecii e ikY iY 
 
+ ECIr eikYrY  

must hold, and thus all y components of the k vectors must be equal: 

kyt  = kyi  = kyr  • 
	 (3.4) 

Next we consider the components individually for the reflected and transmitted 
parts. Since the reflected wave propagates within the same medium as the incident 
wave, according to nik a2  = 74(kl, + lqa ) the relations 

kx2 r  kx2i 	and 	kxr  = —kxi 



Eor 
r = 	 

sin (0 — 0e ) 

sin (Oi + et) 
and 	t = 

sin (Oi + et) • 

2 sin(9 —°) 
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must be satisfied, because the positive sign creates one more incident wave, which 
is not physically meaningful. Thus the law of reflection is again established. For 
the transmitted wave, k t /n2 = ki/ni  must hold. From geometry one finds directly 
ki  = kvi / sin Ot  and thus also Snell's law (1.2) again, 

ni  sin 0i  = n2 sin Ot  

This is valid only for real refractive indices, but it can be generalized by the application 
of 

	

kx2  = k2 	/„2 	 L.  2 
t 	t 	n'yt 	 rcyi  

n 1  
(3.5) 

All results up to now have just confirmed the outcomes we knew already from ray 
optics. But by means of ray optics we could not make statements on the amplitude 
distribution, which is now possible by means of wave optics. According to (3.2) the 
tangential components of the H field are related to the E components, 

so  L.  
H Ya = 	ruxcx  • 

POCW 

These must be continuous due to (3.1) and therefore fulfil the equations 

kxtEot 

Eot 

= kxiEoi kxr Eor  = kx i (Eoi — Ear), 
= Epi &Jr, 

(3.6) 

which we have extended by the condition (3.3) to gain an equation system. It has the 
solutions 

kxi  — kxt 
Eor  = 	E0i 

kxi kxt 
and 

2kx i 
Eat — 

rt;x i + K;xt 

With the amplitudes, the corresponding intensities can be calculated without any 
problems. The reflection coefficient r and the transmission coefficient t may also be 
described according to 

r= 
o - 

ni  cos Oi  — n2 cos et  
ni  cos Oi + n2 cos et ' 

2n1  cos Oi  
ni  cos Oi + n2 cos et 

and by the use of ni/n2 = sin Ot / sin Oi  according to Snell's law, these can be modified 
to yield 

The dependence of the reflection coefficient and the reflectivity on the angle of 
incidence Oi  is illustrated in Fig. 3.2. Among other things the figure shows the change 
of sign of the reflectivity coefficient for the reflection at a more dense medium; there 
a phase jump of 180 0  occurs. 
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Fig. 3.2: Reflection coe cient and reflectivity at a glass plate with refractive index n = 1.5 
for s and p polarization. Full line: from vacuum into glass. Dashed line: from glass into 
vacuum. 

A very important special case occurs when light enters perpendicularly, i.e. at an 
angle ei = 0°. Then for the reflectivity R and transmission T, the Fresnel formulae 
are valid 

1E 2  R 	1.1 = 
iEd 2  

(n1 — n2 ) 

n1 + n2 

2 
EtI 2  = 

and T = 4nin2  ) 2  
n2 

(3.7) 

It is straightforward to calculate that, at a glass—air interface (n i  = 1, n2 = 1.5), 4% 
of the intensity is reflected. 

(b) p polarization 

The discussion of a p-polarized electric field oscillating within the plane of incidence fol-
lows the procedure just outlined, and may therefore be confined to the results. Snell's 
law is reproduced again, and for the amplitudes one finds the system of equations 

ktEot = kiEoi krEOr , 
kiEot  = kt (Eoi  — Eor), 

with the solutions 

k2  

	

EOr = t 	_nui 	and 
k + k 

	

? 	 ? 

2ki kt  
Eot = 

k? 

r= 	= 
Eoi 	tan (ei 0t) 

and is shown together with the reflectivity (dashed lines) in Fig. 3.2. It vanishes for 

Oi — et  = 0 	and 	0i + et  = ic/2. 

The reflection coefficient of the p wave obeys 

Eor 	tan (O — Ot) 
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The first condition is only fulfilled trivially for n1 = n2. The second one leads to the 
Brewster condition 

112 	sin 013 	sin OB - = 	= 	 = tan  9B,  
n1 	sin Ot 	sin (7E/2 — OB ) 

which yields the Brewster angle OB = 57° for the glass-air transition (n = 1.5). The 
Brewster condition may be interpreted physically with the angular distribution of the 
dipole radiation (see Section 2.2.3 and Fig. 3.3): the linear dielectric polarization in 
the refracting medium is transverse to the refracted beam and cannot radiate into the 
direction of the reflected wave, if the former makes a right angle with the refracted 
wave. 

Fig. 3.3: Left: At the Brewster angle OB only s-polarized light is reflected. Right: For total 
reflection at the denser medium (n i  > n2 ), an evanescent wave field is generated in the less 
dense medium. 

3.1.2 Total internal reflection (TIR) 

We want to analyse total internal reflection (TIR) in more detail, the influence of which 
on the transition from a denser medium into a less dense one may be recognized already 
in Fig. 3.2. We consider the component kx1  = k2  cos Ot  describing the penetration of 
the wave into the less dense medium. We adopt the solutions for propagating waves 
below the critical angle 0, = sin -1 (n2/ni), n1 > n2, which we know already from 
Eq. (1.3), by generalization of Snell's condition for Oi  > 0, to imaginary values. With 
W = sin Ot  = sin Oi /sin  0, > 1, one may write 

cos O = (1  _ sin2 0) 1/2 = (1  _ w2 ) 112 _ iQ,  t   

where Q is again a real number. Now we write the electric field for angles of incidence 
beyond the critical angle as a propagating wave, 

E(r, t) = E20 exp[—i(wt — k2r)]. 
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With k = k2(cos et ex + sin Ot  en ), one gets 

E =  E20 exp(—k2 Qx) exp[—i(wt — k2WY)I- 

For  9i  > Oc  the wave propagates along the interface. Furthermore, it penetrates into the 
denser medium, but is attenuated exponentially with penetration depth (S e  --= 271 /(k2Q) 
(Fig. 3.3). The wave within the less dense medium often is called the evanescent wave 
field or the laterally attenuated wave. 

Example: Penetration depth and energy transport for total reflection 
According to the preceding section, the penetration depth of a totally reflected wave 
is 

A/2n 
6e= 	

1 
 

k2Q 	\/n2 —n sin2  i 2 
2 	1 

For the case of a 90° prism from Fig. 1.7 (angle of incidence 45°, refractive index 
n 1  = 1.5), one calculates Q = 0.25 and Se  -= 0.2711m at 600 nm. 

Fig. 3.4: Frustrated total internal reflection. The width of the air gap must be less than the 
penetration depth of the evanescent wave. 

It is instructive to consider the energy transport according to Eq. (2.15) through 
the interface into the evanescent wave. It turns out that the normal component of the 
Poynting vector is purely imaginary, 

(S) • eN = (E x II) • eN 
= 91e{c€0 /2g 2iQ} = 0, 

and therefore no energy transport occurs through the interface. Actually this situation 
changes if we position a second interface nearby, as indicated in Fig. 3.4. Then the so-
called frustrated total internal reflection (FTIR) occurs. This applies not only when 
building optical beam splitters, but also to coupling light in different manners (by 
varying the air gap) into waveguides (see Fig. 3.6) or monolithic optical resonators, or 
for example to performing spectroscopy in the immediate vicinity of a surface. 
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3.2 Complex refractive index 

So far we have considered real indices of refraction, which are a good approximation 
for absorption-free media. Absorption may be taken into account phenomenologically 
by the generalization of the refractive index to a complex quantity, 

n = + in". 

Then in a homogeneous medium wave propagation may be described according to 

E(r, t) =  E0  e-i(wt-n/ 
kr) e -n"kr 

where obviously a = 2n"k, specifies the attenuation of the intensity (I a 1E1 2 ), here 
for propagation along the z direction: 

/(r) =  1 (0) exp( -az) =  1 (0)exp(-2n"k z z). 	 (3.8) 

3.2.1 Refractive index of conducting materials 

Nowadays dielectric multilayer mirrors are usually used for laser applications (see 
Chapter 5.7). But conventional mirrors made of evaporated metal layers also still 
play an important role in 'everyday optical technology' due to their low price and 
broadband effect. Metals are characterized by enormous conductivity, which also 
causes their high reflectivity. We consider a classical, phenomenological model for 
the conductivity a, which goes back to Paul Drude (1863-1906). It has been shown to 
be extremely powerful, and more recently a microscopic proof has been found by solid-
state quantum theory. In the Drude model the motion of a free electron is attenuated 
by friction forces with an attenuation rate 

(dy 	91e{q6,0 et}  

dt T 

which takes into account all internal losses within a crystal in a lumped sum. In 
equilibrium the ansatz y --= yo  e -iw t  yields an average velocity amplitude 

V() 	1 	VOT  1 
vo = 	 (3.9) 

0 
V x H =  p,ocrE + co —at-r 

in  -iw + 1/T 	in 1 - iwr 

With charge carrier density ,Af and current density j = a£ = N.  qv , one may determine 
the frequency-dependent conductivity of a metal, 

Afn2 
a(w)   

1 — iwr 
= E0C.Jp 

1 —

(4..)
P
i

T

un.' 	
(3.10) 

where we introduce the plasma frequency wp2  = J1rq2 /7-nco . The plasma frequencies 
of typical metals with large charge carrier densities (./V = 10 19 cm-3 ) have values 
ch;r, 1016 s-1 , which is beyond the frequencies of visible light. In semiconductors the 
conductivity may be adjusted by doping, and this frequency can be easily shifted into 
the visible or infrared spectral range. 

To analyse the influence of conductivity on wave propagation, we refer to the third 
Maxwell equation (2.7) and introduce the current density we have just determined, 
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This gives rise to a modification of the wave equation (2.10), 

(v2  1 02  
E(r t) 	a 	2  E = 0. 	 (3.11) 

c2  Ot2 	co c Ot 

According to k 2  = n2 (w)(w/c) 2  the solution E =  e0€  e—i[cot—n(w)kr] yields a complex 
refractive index depending on the conductivity of the medium, which has to be deter-
mined phenomenologically, 

.c.0 \ n2  ) = 1 i 	
* 

a(w) 	 (3.12) 
Eow  

It pays to distinguish the extreme cases of low and high frequencies. 

(i) High frequencies: WpT » wr» 1 

We expect this case for optical frequencies; according to (3.10) it holds that 

ico c.up2 /c.0 	and 	n2 (w) 	1 — (we/w) 2 . 

For w < we , the refractive index is purely imaginary, 

(w2 _ 2)1/2 
n =  j 	 = in", 	 (3.13) 

and the wave no longer propagates in this medium. Instead for w > wp , the wave 
penetrates into the medium, as in the case of total internal reflection, to a depth of 

= (nn k) -1  = 

  

  

Vw 2 w2 

For y-1  «w < wp , we get that n" w e /w is valid, and the penetration is called the 
'anomalous skin effect' with an approximately constant penetration depth (5as  which 
corresponds exactly to the plasma wavelength A = w e /2nc, 

8as — C/C1-/p — AID /27r. 

(ii) Low frequencies: WT < 1 < WpT 

At the lower end of the frequency spectrum, the conductivity is independent of fre-
quency to good approximation, 

2 0- (W) 	EoWp T, 

and in this case the imaginary part of the index of refraction is from Eq. (3.12) 

n" we /2VT/w. 

Now the refractive index determines the penetration depth, which is called the 'normal 
skin effect' for lower frequencies: 

A P  
(5ns — 

Vwr 

This case is less important in optics, but plays an important role in applications at 
radio frequencies. 



Fig. 3.5: Electromagnetic fields reflected at perpen-
dicular incidence. 
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3.2.2 Metallic reflection 

noindent Now we can use the results of the previous chapter to discuss metallic re-
flection. However, we confine ourselves to perpendicular incidence. Oblique incidence 
has many interesting properties but requires elaborate mathematical treatment, which 
can be reviewed in the specialist literature. 

For optical frequencies the lim-
iting case of high frequencies (wr > 
1) from the previous section ap-
plies, and we can use the purely 
imaginary refractive index (3.13) 

n = in" = ywp2  - w2 /w. 

We can take the boundary con-
ditions from Eq. (3.6) and use them 
directly for the air-metal interface, 
kt /ki = in", 

in"Eot = Ecli  + EOr,  1 

EO t = Epi ± Eor . 

Without any problems one finds 

and 
1 - in" 

So, =---  1+  in" goi 
2 

eot = 	oe i• 
1+  in" 

An interesting result shows up, when calculating the reflectivity, 

	

R
(Er r 	11 - in"I 2  

	

= 		  

	

1Ei12 	11 + in"1 2  

We have neglected ohmic losses (relaxation rate 7--1- !), which are, of course, always 
present in real metals. Indeed, one finds that within the visible spectral region impor-
tant metals like Al, Au and Ag have reflectivities of the order of 90-98%. Normally 
this value is reduced by oxidized surfaces, so that metallic mirror surfaces either have 
to be deposited on the backside of a glass plate or are covered with a transparent and 
thin protective layer. 

Example: Hagen-Rubens relation 
To take into account the ohmic losses in Eq. (3.10), we use the approximation 

ao 	iao 	i ) 
ŒP) = i  . , 	 — 

1 — ZWT WT (
1 
 WT ) 

, 

which gives for the refractive index at optical frequencies (wp  > w > T-1 ) the ap-
proximation 
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Furthermore, we use -V1 - i/wr'- .-' -41 - i/2cor) and find, with n" according to (3.13) 
and with ni/n" -,--- 1/2wr from 

w2 
 71 (W) '-' -w-I-3i (

2 

 i + 	= n ( 
2 	

n 
i + —

, ) 2 

2W1 	
rr2

T ) 	 n// 

for the reflectivity, the Hagen-Rubens relation 

R = 1 - 4W/n"2  r.' 1 - 2/wpr. 

Aluminium has a plasma frequency cop  r---' 1.5 x 10 16  s -1 , which suggests that for an 
optimum reflectivity of a fresh layer of 95% for visible wavelengths the average time 
between scattering events is r Fs-, 2 x 10-15  s. 

3.3 Optical waveguides and fibres 

Following up the section on beam propagation in waveguides (Section 1.7), we now 
want to explore the characteristics of wave propagation and solve the corresponding 
Helmholtz equation. Again we concentrate on waveguides that have a cylindrical cross-
section (commonly also called 'optical fibres'), and, as mentioned before in Section 1.7, 
constitute the backbone of optical networks - from short-range interconnections for 
local cross-linking of devices up to overseas cables for optical telecommunications. 

Fig. 3.6: Types of waveguides. Le 	Cylindrical, mechanically very flexible, fibres (light is 
coupled in and out by lenses) are used for transmission over long distances. Right: Waveguides 
with rectangular cross-section on the surface of suitable substrates (e.g. LiNb03) play an 
important role in integrated optics. Coupling can be performed via an edge or by frustrated 
total internal reflection (FTIR) with a prism on top. 

Waveguides are also an important basic element of integrated optics. Here, planar 
structures are preferred, onto which transverse structures can be fabricated by well-
known techniques of semiconductor technology. In LiNb03 , for example, the index of 
refraction may be varied within approximately 1% by in-diffusion of protons, creating 
waveguides on the surface of planar crystals that have a nearly rectangular profile of 
the index of refraction. 

A mathematical investigation of the waveforms of an optical fibre is rather tedious 
and involved. As an example, let us sketch the treatment of the cylindrical fibre, the 
most important type for applications. 
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Fig. 3.7: Step-index fibre with transverse field distribution. The curvature of the modes must 
be different in the core and the cladding. 

3.3.1 Step-index fibres 

The index of refraction in a step-index fibre (Fig. 3.7) is cylindrically symmetric and 
homogeneous within the core and the cladding, respectively. Its value declines from 
n 1  within the core at r = a step-like to the value n2  of the cladding. According to the 
geometry we look for solutions of the form E = E(r, 0) e —i(wt— Oz) . The wave equation 
for cylindrical (r, 0) components is complicated, since the er  and eo  unit vectors are 
not constant. 

For the Ez  and Hz  components, a scalar wave equation still holds, where Vi (r, 0) 
stands for the transverse part of the nabla operator, 

(v2, k2  - ,32 ) ii
e

zz 	= O. 

Fortunately, one gets a complete system of solutions if one first evaluates the compo- 
nents {Ez , Hz } and then constructs {Er , So, Hr., 7-4,}  by means of Maxwell's equations, 

V x H = —iw€0 /4E 	and 	V x E -= iwp,oH, 	 (3.14) 

the result of which is given in Eqs. (3.18) and (3.17). 
The propagation constant 0 must still be determined, and the Helmholtz equation 

for {Ez  , Hz } in cylindrical coordinates with k1,2 = ni,2w/c is 

7ô2  ± IT a  ± r12  aa:2  

(k? /32) ) { HEzz((rrl) 

With the help of the trial solutions {Ez , Hz } = {e(r), h(r)}e±i4 , this is reduced to a 
Bessel equation for the radial distribution of the amplitudes, 

( r ) 	0 er: 	he  (r) 	= 

The curvature of the radial amplitudes {e(r), h(r)} depends on the sign of k  - 02 •  
Within the core we can permit positive, convex curvatures corresponding to oscillating 
solutions; but within the cladding the amplitude must decline rapidly and therefore 



{BJe(k ir)1Je(kia) 	oc 
r--+0 

 (kir) 'e 	core, 

-+ OC 
BI-(e(nr)IKe(Ka) 	oc 	 cladding. 
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must have a negative curvature — otherwise radiation results in an unwanted loss of 
energy (see Fig. 3.7): 

within the core 	0 <  k 	= k? - 02 , 

within the cladding 	O>  —k 2  =  k  - [32 . 

In other words, the propagation constant must have a value between the wavenumbers 
ki  = niw/c of the homogeneous core and of the cladding material, 

niw/c <  3 < n2 w/c, 

and differ only a little from k1 , 2  for small differences in the index of refraction A = 
(ni  — n2)/n i  (Eq. (1.7)). Such waveguides are called weakly guiding. 

By definition it holds that ki + o = kf - k3. Since ki 	k2, the transverse 
wavevectors  k1  and i are small compared with the propagation constant 0, 

k2 2.6,(nic0/0 2 < 02 .  

The transverse solution must be finite, thereby keeping only the Bessel functions Jf 
(modified Bessel functions Ke) of the first kind within the core (cladding): 

{ AMkir)IJe(kia) 	OC 	(kir) 	core, 

Al(e(Kr)11(f(Ka) 	
T --+ 00 

OC 

'e  

e — kr ,\/vr 	cladding, 

r->0 

By defining the coefficients, we have already taken care that the components { ez , Hz } 
are continuous at r = a. For the {E0 , 7-41 contributions we obtain conditions from 
Eqs. (3.14), 

= 

H ( r (1)) = 

—i0 
 kf — (32  

— 0 2  

[ e (r) 	
a r r 	- f - 

l e (r) cobto a  h ( r) eiN 
, 

[r) 	
2 

d h( 	WC°71i 0   e(r) e. r 	0 Or 

(3.17) 

Here we use appropriate wavenumbers k i  for core (i = 1) and cladding (i = 2). In 
weakly guiding fibres we usually have f3/(kF — (3 2 )r 1/2Aki a >> 1; hence the (r, 
components are much stronger than the z components with which we started our 
solutions; these waves are nearly transverse. 

Once the radial contributions are calculated, all six field components are known: 

1 2  [h(r) 	+ ,37-10(r, (IS)] , 

wconi 

1  2  [ e(r) 	0E0 (r, 45)] • 
cutioni 

To determine the propagation constant (3, we substitute fe(r), h(r)} from eq. (3.16), 
use boundary conditions (3.1) at r = a, and obtain after some algebra a system of 

(3.15) 

e(r) = 

h(r)= 

(3.16) 

r(r4) = 

Nr(r4) = 
(3.18) 
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linear equations in A and B. It is cast in transparent form with symbols X = kia, 
Y  = Ka and .11  (x) = dJ (x) I dx, 

Bwl-to 4(X)  ±  K(Y) 7tA  ( 1 
- (3 X Je(X) Y K e(Y) 	\ 

nT4(X)  , nW(Y) 	i opp ( 1 
X Je (X) Y ( e (Y) ) 

and yields a characteristic eigenvalue equation 

(4(X) 	K(Y) 	k?J(X) k3K /f (Y) 
X Je(X) Y Ke(Y) 	X 'MX) Y Ke(Y) 

£202 
2 

( 12  + ) 

X Y 

Numerical treatment of this transcendental equation, for f = 0, 1, 2, ..., gives solu-
tions (Xe m , Ve rn ) and a propagation constant Oem ; this treatment is elaborate and is 
covered extensively in the literature [89J. As we did in section 1.7 on ray optics, we 
restrict ourselves to the case of weakly guiding waves at small differences of the indices 
of refraction n 1  r= n2 or k1 k2 (3 and end up with 

J(X) 	OY) ±,e  (  1 	1 ) 

X MX) Y K e(Y) 	x2 y2 

The derivatives can be replaced by the identities 

4(X) = ±,hTi(X) 
fMX) 	

and 	K(Y) = Kw_ (17) 
eKe(Y)  

and substitution delivers the conditions for each sign in ±1, which may be associated 
with two classes of modes, 

0, 

(3.19) 

HEem  modes: 

ate, modes: 

'it —1 (Xern  
Xe rn Je(X,e m ) 

Je+i(X.ern)  
X em Je(Xem ) 

Ke-1(Yern)  

Ye7TI Ke Y£m,) ' 

Ke ±i (Km)  
YemKe(Yem.) • 

Since ki + K 2  k? -  k,  a further condition is 

)(Ira  ye2rn v 2 ,  

(3.20) 

(3.21) 

where the V parameter is a measure for the number of modes. It increases with 
= w 2 ( 74 _ 74) a2/2 .  frequency w because of V 	 Graphical solutions for the propagation 

constant can now be obtained from Fig. 3.8. 
Eq. (3.19) gives one more condition for the coefficients (A, B) from eq. (3.16), which 

fix the amplitudes. The `+' sign holds for the HE modes, and the `-' sign for the EH 
modes: 

[A ± i(w p, o  I 13)B]e = 0. 	 (3.22) 

From this it can be seen that the electric and magnetic fields are 90° out of phase. 
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Fig. 3.8: Graphical solution of the values for  j3 in a step-index fibre for V = 10. Left: TE 

and TM modes. Right: HE and EH modes. 

Let us now have a look at some special cases. 

(1) f = 0: TE and TM modes 

For = 0 we have A = 0 (B = 0), i.e. either the E or the H field is purely transverse. 
Hence for = 0 the TE/TM denominations are sensibly used. We have indicated the 
graphical conditions for the (degenerate) TE0,, and TM0,, modes in Fig. 3.8. TE/TM 
modes will not be guided for V <X01  = ki  a = 2.405 because J0 (2.405) = 0. There is 
no guiding at all below the corresponding cut-off frequency w -cut - 2.405c/a(nT-n3) 1 / 2 , 
which is directly obtained from eq. (3.15). At J1 (5.520) = 0 the next mode appears, 
and the fibre is no longer monomode. 

(2) t >  0: HE and EH modes 

The lowest mode is the HEll  mode, which exists down to X = 0. Thus the core fixes 
the mode for arbitrarily weakly curved transverse amplitudes - the part of the energy 
propagating within the cladding increases more and more. On doing the mathemat-
ical treatment we assume the cladding to have an infinite extension - which involves 
technical limits. Owing to eqs. (3.20)  and (3.22), the HE and EH modes differ. This 
difference not only is revealed by the unequal propagation constants, but also mani-
fests itself in the domination of the z components in the corresponding H (HE), resp. 
E (EH), parts. 

(3) t >  0: LP modes 

By means of a recursion formula, one can show that the modes with indices HE.em  
and Elie+2 ,,, are degenerate. Their linear superposition results in linearly polarized 
transverse E and H fields, which are orthogonal and have a weak longitudinal field. 
Modes constructed in that way are so-called linearly polarized modes (LP), 

Elie+2,rn 
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3.3.2 Single-mode fibres 

For X values below 2.405 the step-index fibre is counted among the so-called single-
mode fibres. The lowest mode has a bell-shaped profile, which is very similar to the 
free TEM00  Gaussian mode. Coupling light into a multimode fibre in general excites 
a superposition of several modes, which propagate with different velocities ('mode 

 dispersion'). At the exit of a waveguide, this light field is again converted to a free 
mode whose transverse and longitudinal profiles are distorted due to several dispersion 
contributions. 

In a single-mode fibre this transverse distortion is suppressed, as is the effect of 
modal dispersion on the temporal structure of the pulses (see Section 3.4). A Gaussian 
beam may be very efficiently coupled into a bell-shaped fundamental mode of a single-
mode fibre. Indeed, single-mode fibres are often used as very efficient spatial filters, 
because only the desired principal mode out of the launched amplitude distribution 
will propagate. 

But even an ideal cylindrical step-index fibre is degenerate in respect of two or-
thogonal states of polarization. Therefore, in realistic fibres the state of polariza-
tion at the output cannot be predicted and fluctuates due to temperature changes 
and mechanical oscillations in the fibre curvature. These problems are solved by 
polarization-preserving single-mode fibres. They are realized, for example, with ellip-
tical cross-section, which yields different propagation constants for the principal axes. 
The polarization of the coupled-in light must be parallel to the principal axis, to make 
use of the characteristics of conserving the polarization. 

3.3.3 Graded-index fibre 

The term 'quadratic index media' covers all the common 
systems like gradient-index fibres with parabolic index profile 
(see Fig. 3.9) that we have already dealt with in the section 
on ray optics and may be treated like the limiting case of an 
infinite thick lens. Realistic gradient fibres have a quadratic 
profile in the centre only, which then continues into a step-
like form again. Instead, we look at a simplified, purely 
quadratic system, which reflects already the properties of a 
graded-index fibre. The index of refraction depends on the 
normalized radius r/a, and making use of the difference in 
the index of refraction, A --= (ni n2)/n1 (see Section 1 .7.3), 
we find 

n(p) = ni  [1 — A(r/a) 2 1 	and 	A < 1. 

Fig. 3.9: Simplified pro-
file of the index of refrac-
tion of a GRIN fibre. 

We seek solutions of the Helmholtz equation (2.11), whose envelope does not change 
along the direction of propagation, i.e. of the form E(x, y, z) =-- A(x, y) exp(ifiz), and 
get the modified equation 

{Vi + nlk2  2n1k2 A[(x/a) 2  + (y/y) 2 ] — 02 1A(x, y) = 0, 
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using fnik[l _ Aer/a)2112 , (n i k) 2 [1 — 2A(r/a) + • • .1. Let us assume now, as in 
the case of higher Gaussian modes (see Section 2.3.3), that the transverse distribution 
corresponds to modified Gaussian functions, 

A(x , y) = .F(x) e — (x 2  /xg)g(y)  

With this ansatz we find 

(Ft/ zi .F, 	g + (g 
X O 	xo 	 Yo 	Yo 

g' — ig) F + n? k2  .Fg 

+ [(A
4 

 27-4_ 2 A)  x2 + (A_ 2nTI.2 A)  y2] 	02i-g  =0, 
a2  ) 	Yil 	a2  

where the unpleasant quadratic term in general can be eliminated by choosing 

kxo = kyo = (ka) 1 / 2 /(2nTA) 1 / 4  >> 1. 

By substituting -V2 x/xo --4 u and 	y/yo ---+ y, we transform again to the Hermite 
differential equation that we already know from the higher Gaussian modes. With 
indices m and n we find 

2(7' — 2uF' + 2m.F)g + 2(g" — 2vg' + 2ng),T 
+ [nYk 2  x6 — ,32  x6 — 4(m + n + 1)].Fg = o. 

The terms of the upper row are constructed to vanish already on inserting the Hermite 
polynomials 7-t,,,, (see p. 45, Eq. (2.32)). After a short calculation one gets for the 
propagation constant, which is the centre of interest, 

w ni w  I  4V2A(m + n + 1) 
firnri(w) = neff = 	 1 	 . 

cy 	 n i ka 

The transverse distribution of the amplitudes also corresponds to the ones in Fig. 
2.9. But in contrast to the Gaussian modes, the mode diameters (xo , yo) do not change. 
This example of a simplified GRIN fibre illustrates that multimode fibres characterized 
by a frequency-dependent index of refraction show 'mode dispersion' in addition to 
'material dispersion'. This influences the form of pulses, because individual partial 
modes have different propagation velocities. 

3.3.4 Fibre absorption 

One could not imagine the success of optical fibres without their extraordinarily ad-
vantageous absorption properties (Fig. 3.10). On the short-wavelength side these are 
limited by Rayleigh scattering at small inhomogeneities (a 1/A4 ), and on the long-
wavelength side by infrared absorption caused by the wings of the phonon spectrum. 
The wavelengths 1.3 and 1.55 gm, very important for telecommunications, coincide 
with very small absorption coefficients, and simultaneously the group velocity disper-
sion vanishes at 1.3 gm (see p. 84). In between we find resonances that are caused, for 
example, by OH contamination in the glass. 
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Fig. 3.10: Absorption properties of optical fibres made of silicate glass. 

3.4 Light pulses in dispersive materials 

Electromagnetic waves are used to transmit information. To make sure that there is 
enough power available at the other end of the transmission line for the message to 
be read by a receiver, the material (e.g. an optical fibre) in which transmission occurs 
must be sufficiently transparent. Of course, these conditions are valid for all kinds 
of electromagnetic waves used for transmission of information, for radio waves with 
ultrashort or long waves, and for microwave systems as well. For optical wavelengths, 
the properties of the transparent medium are generally described by two frequency-
dependent indices: absorption is described by the absorption coefficient a(cd.)) and 
dispersion by the refractive index  n(u). 

Not only is a light pulse attenuated by the absorption of light energy, but also its 
shape is changed by the associated dispersion. Therefore, it is important to explore 
whether such a pulse is still detectable in its original shape at the end of a transmission 
line. We know that it is enough to describe a continuous, monochromatic field by an 
absorption coefficient a(w) and real index of refraction n(w), the spectral properties 
of which are shown qualitatively in Fig. 3.11. The amplitude of the field at point z, 
taking the propagation coefficient = n(w)c4) I c into account, then yields 

at the start, z = 0: 	E(0, t) = E0 e- zwt, 

at the point z: 	E(z, t) =  E0e- tpt--0(u4zi e-a(w)z/2 .  

A light pulse can be described as a wavepacket, i.e. by the superposition of many 
partial waves. For that purpose we consider an electric field 

E(0,t) = E(0, t) 

with carrier frequency vo  -= co0/21c and time-variant envelope E(z, t), which describes 
the pulse shape, but in general varies slowly in comparison with the field oscillation 
itself, 

a 
— E(t) 	woE(t). (3.23) 
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Fig. 3.11: Qualitative trends of the absorption coefficient and refractive index as functions 
of wavelength for transparent optical materials. The narrow band of visible wavelengths (VIS, 
400-700 nm) and the optical windows for telecommunications (COMM, 850, 1300, 1550 nm) 
are indicated. 

We determine the field spectrum E (z , v) of the light pulse by harmonic expansion: 
f oe 

(z , I)) 
= 

00 E(z,t) e i2nut dt 	
oo 

E(z, t) e i2n( u - vO t  dt, L 
E(z,t) 

f 

00 

00e(z,  v)  e —i2nvt dv  _ 
f oc 

00 
E(z, w) e-iwt  dch.12n. 

(3.24) 

Usually the spectrum of the wavepacket is located at I/ = vo because of Eq. (3.23) 
and its width is small compared to the oscillation frequency vo . In Fig. 3.12 we give 
two examples for important and common pulse shapes. 

Characteristic quantities of pulsed laser radiation include the spectral bandwidth 
A v and the pulse length At, which are not easily defined and even more difficult to 
measure. We may for instance employ the conventional variance 

oc 

 ((Av) 2 ) = (v 2  — v(3) = f 	vo) 2 1E (v)1 2  dv f 
00 	2 

le(1))1 dv, 

and, accordingly, in the time domain, 

((At) 2 ) = f cx) 	
f 

(t — (t)) 2 1E(t)1 2  dt 	E(t)1 2  dt, 

and show that the general relation 

2nAvtp  > 1/2 (3.25) 
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Fig. 3.12: Two important pulse shapes in the time domain and in frequency or Fourier 
space. For illustration, the Gaussian pulse is superimposed on the  seek  or cosh-1  pulse. The 
amplitudes are chosen in such a way that the pulses have the same total energy (f  1E(t)1 2  dt). 
The K values specify the product of half-width times pulse length from Eq. (3.26). 

holds between these two quantities. The equals sign is valid only for pulses without 
frequency modulation, such pulses being called 'Fourier-limited'. From the experi-
mental point of view it is easier to measure half-widths Avi/2  and Ati / 2  = tp  of the 
intensity. Then the pulse length times bandwidth product can be written as 

27[AviRtp  =  K, 	 (3.26) 

and this constant K is indicated for the two examples in Fig. 3.12. In general, its 
value is less than 0.5, because the half-width usually underestimates the variance. In 
Fig. 3.12 the much broader wings of the cosh-1  pulse can be seen as a reason for this. 

For monochromatic waves the absorption coefficient a and the propagation con-
stant (3 are often known for all partial waves of the wavepacket in the frequency domain. 
Then Eq. (3.24(i)) can also be described with the transfer function T(z, v), 

E(z,t) =  E(0, t) e i '63( v ) z e 2  = 7(z, v)E(0,t). 

A pulse is composed of many partial waves, and the correlation between the pulse 
shapes at the start and the end of a transmission line is described by a linear, frequency-
dependent transfer function y(z, v) in Fourier space: 

E(z,v) = 7(z, v)E (0, v). 

The temporal evolution of the field amplitude at the point z can now be determined 
according to 

E(z, t) = 
foo 

J-00  r(z, v)E(0, 	e -i27Evt dv.  



Fig. 3.13: Example: Dispersion parame-
ters of BK7 glass. 
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Incidentally, according to the convolution theorem of Fourier transformation, a 
non-local correlation in the time domain is valid, 

E(z,t) =
1.00 

. I 
— 00T (z ,t — t')E (0, t') de 

with 
00 

T(z,t) = f cc r(z, v) e —i2"t  dv. 

The optical bandwidth of common light pulses is generally narrow compared with 
the spectral properties of the transparent optical materials used in optical waveguides. 
Therefore, the following assumptions are reasonable. The frequency dependence of 
the absorption coefficient plays no role in pulse propagation. In good approximation 
it holds that 

a(v) '-' a(vo ) = const. 

The pulse shape is changed very sensitively by the frequency-dependent dispersion, 
and the propagation constant (3(v) = 2nvn(v) I c can be described by the expansion 

0(,,) , 00  + d0j(v _ vo)  + 21 
— 110)

2 
± (3.27) 

(30+,3'(v-v0)+1,3"(v-v0) 2 . 

Within this approximation the frequency dependence of the propagation constant f3(v) 
is described by the material-dependent parameters f3o , f3' and f3", the interpretation 
of which we now want to introduce. With -ro  = e 2  the corresponding transfer 
function reads as follows: 

T(Z, II ) = To  ei00 z e i0 f ( v _ vo ) e ifin (v—vo) 2 z / 2 .  

3.4.1 Pulse distortion by dispersion 

Let us now discuss the influence of the dispersive contributions in more detail. If the 
dispersion is independent of frequency, then we obtain the wave equation (2.12) once 
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more, in which the velocity of light in vacuum is substituted by the material-dependent 
phase velocity, 

00  = 27cn(vo)vo /c = 2nvo/vo. 

Let us first consider the case where /3" = O. Indeed, this case occurs with glass, and 
one may realize qualitatively in Fig. 3.11 that somewhere between lattice absorption 
and electronic absorption the curvature of the refractive index must disappear. This 
happens at a wavelength of A = 1.3 pun, which therefore offers an important window 
for transmission of information by optical communication. The pulse shape after a 
propagation length z is obtained from 

00 
E(z,t) = 7-0  eir3°' foo eioi(u-voz e(0, 	e- i27(vt dv.  

Substituting /3'z  --> 27rtg , after some algebra this yields the form 

oc 
E(z ,t) = To e 

iooz 
 e 

 -i27(v o t f ûo  E  ( 0  , 0 e -i2Tc(v - vo)(t-to dv 

-i(27E,,,t- 0 0 z) 

	

= To e 	 E (0, t - tg ). 

The only effect of dispersion is a delay of the pulse transit time by tg  = z/vg , 
which we interpret as a group delay time. This can be used for the definition of a 
group velocity vg , which can be associated with a 'group index of refraction' mg : 

v 	2n dv 	c 

1 	1 d  o  11  n(w)  w  d 	n(w)) ng (w) 

C 	• 

In most applications optical pulses propagate in a region of normal dispersion, 
i.e. at dn I dw > 0. Then according to Eq. (3.28) it holds that v g  < Vc7j = c n(w). 

Red frequency contributions propagate faster in a medium than blue ones, but the 
pulse keeps its shape as long as the group velocity is constant  ('dispersion-free'); this 
is a favourable condition for optical telecommunications, where a transmitter injects 
digital signals (IDA currents') in the form of pulses into optical waveguides, which have 
to be decoded by the receiver at the other end. In optical fibres this situation is similar 
to that in BK7 glass at A = 1.31.im, which can be seen in Fig. 3.13 for zero passage of 
the material parameter M(A) and will be discussed in the next section. 

Example: Phase and group velocities in glasses 
We can use the specifications from Tab. 3.1 to determine the index of refraction and 
the group refractive index as a measure of the phase velocity and group velocity in 
important optical glasses. The wavelength 850nm is of substantial importance for 
working with short laser pulses, because, on the one hand, GaAs diode lasers with 
high modulation bandwidth exist in this range (up to pulse durations of 10  Ps  and less) 
and, on the other, the wavelength lies in the spectral centre of the Ti-sapphire laser, 
which is nowadays the most important primary oscillator for ultrashort laser pulses 
of 10-100 fs and below. There, with the Sellmeier formula (1.6) and the coefficients 

(3.28) 
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Tab. 3.1: Indices of refraction of selected glasses. 

Abbreviation 	BK7 	SF11 LaSF N9 BaK 1 F 2 
Index of refraction at 850nm 

1.5119 1.7621 1.8301 1.5642 1.6068 

Group index of refraction 
ng 	 1.5270 1.8034 1.8680 1.5810 1.6322 

Material dispersion 

cM(A) (.1m -1 ) 	—0.032 —0.135 —0.118 —0.042 —0.075 

from Tab. 1.1, we calculate the values for Tab. 3.1. The values for the group refractive 
index are always larger than the values of the (phase) refractive index by a few per 
cent. 

For shorter and shorter pulses, the bandwidth increases according to eq. (3.25), 
and the frequency dependence of the group velocity influences the pulse propagation 
as well. This is specified as a function of frequency or wavelength by one of two 
parameters: the group velocity dispersion (GVD) D v (v) and the material dispersion 
parameter MN: 

Du ( v) _ 	1  d2  A  
(27 ) 2  

M ( ) - 	ddA  vlg  

d ( 1 ) day  Vg 

2 

2wnc Dv (v) ' 
Like before, we gain the pulse shape from 

E(z,t) = 	e -i(wot- 00z) 

X  f 00  6.0,0 eipv ( w-w0)2 z/ 2  C i(w-u-'° )( t-tg )  
27E • - 

This time the pulse is not only delayed, but also distorted in shape. We cannot specify 
this modification generally any more, but we have to look at instructive examples. 

Example: Pulse distortion of a Gaussian pulse 
At z = 0 the optical pulse E(0, t)  = E0  e21  2(t/t ) 2  e—ot with intensity half-width 
tp  has the spectrum 

s (O , w)  = eo e —[(w—wo)t p ] 2 /81n 2 .  

At the end of the propagation distance at z = f, the spectrum is deformed according 
to eq. (3.29). For the sake of simplicity we introduce fp = tp2 /41n 2D, and find 

e0  e—[(w—wo)tp]2/81n 2 ei(UeD)[(w—wo)t p 1 2 /81n 2 .  

Inverse Fourier transformation yields the time-dependent form 

E(e,t) = 70E0 e -i(2nvot-00,e) 

2 exp 	f 21n 2(t - t g ) 2  
x exp t2p[1 (wD)  

fiD t2p  [1 + (L/eD) 2 } ) • 

(3.29) 
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Hence not only is the pulse delayed by tg , but it is also stretched, 

ep (z=f) = tp V 1 + (fteD) 2 , 	 (3.30) 

and furthermore the spectrum exhibits the so-called 'frequency chirp', where the fre-
quency changes during a pulse: 

1 d 	 1 	t — zlv g  
v(t) = 	—4)(t) = +  

2n dt 	 it  eD t i23 [1 + (/ eD) 2 ] .  

Fig. 3.14: Pulse distortion manifests itself as pulse broadening and frequency chirp. The red 
frequency components run ahead (left-hand part of the pulse), whereas the blue ones lag behind 
(right-hand part). The neither distorted nor delayed pulse is also indicated for comparison. 

Now we can determine how far a pulse propagates within a material without sig-
nificant change of shape. For example, according to Eq. (3.30) it holds that the pulse 
duration has increased at 

= 
	 (3.31) 

by a factor of .\/. This propagation length is also called the 'dispersion length' and 
plays a similar role in the transmission of pulses as the Rayleigh zone does for the 
propagation of Gaussian beams (see p. 40). 

For BK7 glass from Tab. 3.1 it holds that D(A=850 nm) = 0.04 ps 2 /m. Then one 
finds for a GaAs diode laser and a conventional Ti—sapphire laser 

GaAs diode laser: 	tp  = 10  Ps  fp=------ 200 m, 
Ti—sapphire laser: 	tp  = 50 fs fp = 5 mm. 

It turns out that a short pulse is heavily distorted even by a 5mm BK7 glass window! 
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3.4.2 Solitons 

All optical materials show dispersion, resulting in pulse distortion as introduced above, 
which is often undesirable in applications. However, in some materials one can use 
nonlinear properties, which will be discussed in more detail later in the chapter on 
nonlinear optics (Chapter 12), to compensate dynamically for the effects of dispersion. 
Here we are particularly interested in the optical Kerr effect, describing the intensity-
dependent index of refraction, 

n(I) = no  + n21 . 	 (3.32) 

It is true that the values of the nonlinear index in glass are only in the range of n2 
10-15 /(W cm-2 ), but, since the power density in optical fibres is very high, this effect 
plays a role even at power levels of only a few milliwatts and enables the generation 
of so-called `solitons' [28]. Under certain circumstances, these can propagate with a 
stable shape in an optical fibre for more than thousands of kilometres. 

We study the influence of nonlinearity in a one-dimensional wave equation, taking 
the linear contribution into account by the index of refraction, resp. the propagation 
constant (3, as we did before, 

( 
az 
02 

2 	
2 

(w )) [(z,t) e-i(wot-O 	t2
pNL t), oz) 	1   02 	( 	 (3.33) coo a   

and consider a harmonic field E(z, t) = E(z,t) exp[-i(coot-(30 z)]. In the wave equation 
we separate the linear and nonlinear contributions of the polarization, 

P = co (n 2  - 1)E co (n, - 1 + 2n0n2 1 + • • .)E = co (n, - 1)E + PNL, 

so that 

PNL (Z, = 2c0n0n2- 
c 

02- 	1E(z,t)1 2 E(z,t)e - i (wa - f3°z ) . 

To obtain approximate solutions, we use the so-called slowly varying envelope approx-
imation (SVEA), where we neglect  OE/Oz < kE second derivatives, 

02 

az2 
E(z, t) e -iPot-00z) 	e-iwo t 

(200-
0,z 

- '302) E(z, t). 

We have already used this approximation when generating the paraxial Helmholtz 
equation (see Eq. (2.30)). 

The static dispersive properties of the materials are taken into account by Aco = 
- coo  and similarly to Eq. (3.27) by 

)3(w) 00 + Aw/vg  + Dv (Aw) 2  12 ± 

For bandwidths of the pulse that are not too large (Ace < wo ), we can use the equiv-
alence -iAcoE aElat, etc. - thereby ignoring a more stringent mathematical trans-
formation with the aid of a Fourier transformation - and write 

02(w) 	2430 a 

 P 

,opv  02 

Vg  at 	at2 	• 
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Now inserting all contributions into Eq. (3.33), we get the equation of motion of a 
soliton as the final result after a few algebraic steps, 

[ (t + —vig  : z ) ± —2i  Di, 08:2  iœylE(z, 01 2 1 E(z, t) = 0. 	 (3.34) 

Obviously the propagation of a pulse with envelope E(z, t) is described by a nonlinear 
coefficient 

'"Y = coc 2 n2fio/no, 

besides the two dispersion parameters, group velocity vg  and group velocity dispersion 
(GVD)  D. 

Even with the considerable approximations that we have used so far, the solution 
of this equation still requires some mathematical effort. Therefore we want to restrict 
ourselves to the indication of the simplest soliton solution (solitary envelope solution). 
A pulse (pulse length To ) that has the shape 

E(0, t) = Eo  sech (—t  ) 
To 

at the beginning of a fibre with dispersion length fp 
keeping its shape 

E(z, t) = Eo  sech 
(t — Z/Vg  ) eizi4z0  

if the conditions 

-y oc n2  > 0 	and 	Du  G 0 

are fulfilled, and, besides, the amplitude has a value equal to [89] 

E0 = (I-Dulh) 1/2 /70- 
These conditions are found in optical fibres in the region of anomalous group velocity 
dispersion (GVD < 0), typically at A>  1.31Am, with simultaneously moderate require- 
ments for pulse power. Besides the fundamental solution, solitons of higher order exist, I 
in analogy to the Gaussian modes, which are characterized by a periodic recurrence 
of their shape after a propagation length of fp, which we do not want to discuss here. 

Linn Mollenauer, who, together with his colleagues [74], was the first to demon-
strate long-distance transmission of optical solitons in optical fibres, introduced a very 
instructive model to illustrate the physical properties of a soliton (Fig. 3.15). He com-
pares the differently coloured wavelength contributions of a pulse with a small field 
of runners of different speeds, which disperses very quickly without special influences. 
As shown in the lower part of the figure, however, the dispersion can be compensated 
by a soft, nonlinear floor. 

Solitons play an important role in many other systems as well (one more example, 
spatial solitons, will be given in Section 13.2.1). The relationship of Eq. (3.34) with 
the nonlinear Schrödinger equation, 

. 0 1 + 1 02 +
21 --41  14'1 2 * = 0 , Ox 	2 Ot2  

may be demonstrated by the transformation into a moving frame of reference with 
X = z — vgt and the substitutions kli = ro /i'y/D,4 E and z/zo —' x = nl-Dvlx/Tô• 

(see eq. (3.31)) can propagate 

To 
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Fig. 3.15: A soliton field of athletes (with 

kind permission from Linn Mollenauer). 

3.5 Anisotropic optical materials 

When discussing the propagation of light in matter, we always assume the medium to 
be isotropic. Because of that isotropy, the induced dielectric displacement is always 
parallel to the inducing field and can be described for transparent materials by just 
one parameter, the index of refraction, D = c0n2 E. 

However, real crystals are very often anisotropic and the refractive index depends 
on the relative orientation of the electric field vectors with respect to the crystal axes. 

3.5.1 Birefringence 

Birefringence in calcite (calcareous 
spar) has been fascinating physicists 
for a long time (see Fig. 3.16) and 
is one of the most prominent opti-
cal properties of anisotropic crystals. 
Birefringent elements play an impor-
tant role in applications, as well, for 
example as retarder plates (p. 94), as 

Fig. 3.16: The calcareous spar crystal (5 x 5 x a birefringent filter for frequency se-
15  cm3  ) that Sir Michael Faraday gave to the Ger- lection (p. 95) or as nonlinear crys-
man mathematician and physicist Julius Plücker  tais for frequency conversion (Sec-
as a present in about 1850. tion 12.4). Crystal anisotropies can 

be induced by external influences, like 
mechanical strain (strain birefringence) or electric fields (Pockels effect). 

We restrict ourselves to the simplest case of uniaxial crystals, where the symmetry 
axis is called the 'optical axis' (0.A.), and thus the formal problem can be reduced 
from three to two dimensions. Light beams that are polarized parallel to the optical 
axis experience a different refractive index than beams with orthogonal polarization. 

In a simple microscopic model we may illustrate that the charges of the crystal are 
bound to its axes by spring constants of different strengths (Fig. 3.17). Therefore, they 
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Fig. 3.17: Left: Microscopic model of electromagnetic crystal anisotropy. Right: Electro-
magnetic field vectors and propagation vectors in an anisotro pic  crystal. 

are displaced by different amounts for identical excitation, and the relation between 
dielectric displacement D(r, t) and the incident electric field E(r, t) has to be described 
by a tensor, which has diagonal form, if the optical axis is used as one of the coordinate 
axes, 

D = CO  

( 

n2  0 0 0 
0 n2  0 0 
0 0 ne2  

) 

E, E ,  

( 

n-o 2 	0 	0 
0 n-2  o 	0 	D/CO. 
0 	0 ne-2  

1 
In uniaxial crystals (unit vectors e l  I 0.A., ell II 0.A.), there are two identical 

indices (ordinary index ni = no ) and one extraordinary refractive index (n11 = ne  
no). Selected examples are collected in Tab. 3.2. The difference An = no  — ne  itself is 
often called birefringence, and may have positive or negative values. 

Tab. 3.2: Birefringence of important materials at A = 589 nm and T = 200  C. 

Material 	no 	The 	An 	amax  
Quartz 	1.5442 	1.5533 	0.0091 	0.5 °  
Calcite 	1.6584 	1.4864 	—0.1720 	6.2° 
LiNb03 	2.304 	2.215 	—0.0890 	2.3° 

In Maxwell's equations (2.8) for op ics we also have to use the correct tensor relation 
instead of D = n2E and write more e actly 

ik • D = 0, 	ikxE 
ik • H = 0, 	ikxH 

From that we conclude directly 

kx (kxE) = —2D/e o c 2 . 

= 
= 

ii-lock)H, 
—icvD. 

(3.35) 

After some algebra (kx (kxE) = (k • E)k — k 2 E) we can write 

k(k • E) 
D = co n2  (E 

k2 	) ' 



Fig. 3.18: The index ellipsoid. 
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introducing the index of refraction n2  = (ck/w) 2 , which describes the phase velocity 
vo = cln of the wave. Its value has to be determined including the dependence on 
crystal parameters. 

In the next step we decompose the propagation vector k = ki ei + k11 e11 and with 
Di= e on E1 , etc., we may write the individual components as 

\ 
n2 ki2 (k E)  

ki E j_ = 	r., 
(n` —n o )k2  

and 4E11 = 
n2k211( k  ' E)  
(n2  — n)k2.  

The sum of these two components corresponds exactly to the scalar product k. E,  and 
with 

	

2 k2 	n2 k2 	) II 	 

	

k • E --= ( 
 n i 	

+ 	 (k • E) ( n2 _ ng)k2 	(n2 _ n )k2 

we obtain after short calculations a simplified form of the so-called Fresnel equation 
[11], 

1 	IC/k2 	k2/k2 
2'  n2  = n2  — no2  ± 

2 11 
 — ne  

which yields an equation linear in n2 , be-
cause the n4  contributions cancel after mul-
tiplying (k2  --= V, + q). Finally, substitut-
ing the components of the propagation vec-
tor k by ki  Jk = sin 0 and k i lk = cos 0, we 
reach the most important result for describ-
ing wave propagation in a uniaxial crystal: 

COS2  19 	sin2  0 
	± 	 

nc,2 	ne2  . 

This equation describes the so-called 'index 
ellipsoid' of the refractive index in a uniax- 
ial crystal, which we introduced in Fig. 3.18. 

1 
n2 (0) 

(3.36) 

3.5.2 Ordinary and extraordinary light rays 

Now, we consider the incidence of a light ray onto a crystal, the crystal axis of which 
makes an angle 0 with the propagation direction. If the light ray is polarized perpen-
dicular to the optical axis (0.A., Fig. 3.19), then only the ordinary index of refraction 
plays a role. The ordinary light ray (Eo ) obeys the ordinary Snell's law (Eq. (1.2)). 
If the polarization lies within the plane of propagation and optical axis, then different 
indices of refraction affect the components of the field parallel and perpendicular to 
the optical axis, and the light ray now propagates as an extraordinary light ray (Ee ). 

Since according to the boundary conditions in Eq. (3.1) the normal (z) component 
of the dielectric displacement is continuous, it must vanish for normal incidence. 
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Therefore, the dielectric displacement 
lies parallel to the polarization of the inci-
dent electric field. According to Eq. (3.35), 
the vector of propagation k is perpendicular 
to D and H and retains its direction in the 
extraordinary ray. The propagation direc-
tion of the ray continues to be determined 
by the Poynting vector S, 

S = ExH, 

   

Fig. 3.19: 
i.e. the direction of S makes the same angle rays in birefringence. 
with the wavevector k as it does with E and 
D. According to Fig. 3.19 it is sufficient to determine the angle 

tan p= Ez/Ex 

Ordinary and extraordinary 

from the electric field components in the crystal, in order to specify the angle of 
deflection of the extraordinary ray. 

The relation of D and E can be calculated without much effort, if we use the 
system of major axes with the optical axis, 

( D 
 ) 

= 
( 

cos 0 — sin 0 ( g 
sin 0 cos 0 ) 	0 

0 ) ( cos° sin 0 ( Ez  

n2 	— sin 0 cos 0 )  kEx  0 ) 

= 

	

( 

g cos2  0 + g sin2  0 (n, — no2 ) sin 0 cos 0 	E, 

	

(g — g) sin 0 cos 0 g cos2  0 + g sin2  0 	Ex  
) 

Because of the boundary conditions (3.1) the D, component must vanish, and we may 
conclude directly that 

1 (r/ — no2 ) sin 20 
tan p = 	  

2 n2  cos2  0 + no2  sin2  0 . 

The 'getting out of the way' of the extraordinary beam is called beam walk-off and must 
always be considered when using birefringent components. We can find an equivalent 
formulation of the beam walk-off angle using n,(0) from Eq. (3.36), 

n2(°) 
 /1 

 tan p = 
2 	n2  77,2  

(3.37) 

Example: Beam walk-off angle of quartz 
We calculate the maximum deflection angle for birefringence in a quartz crystal with 
the common methods and find 

Omax  = arctan(n e /no ) = 45.2°. 
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For Onax  we calculate the beam walk-off angle according to eq. (3.37), 

p = 0.53°. 

One could say that in general the beam walk-off angle amounts to only a few degrees; 
even for a material such as calcareous spar (see Tab. 3.2) with strong birefringence it 
is only about 6°. In nonlinear optics, for example, in the case of the so-called angular 
phase matching (see Section 12.4) the efficiency of frequency conversion is limited by 
beam walk-off. 

3.5.3 Retarder plates 

An important application of birefringent materials is the so-called 'retarder plates', 
with which the states of polarization can be manipulated, by adjusting the optical 
axis perpendicular to the direction of propagation. Ordinary and extraordinary light 
rays then propagate collinearly through the crystal, and their components are given 
by the projection onto the optical axis; the angles of those are adjusted relative to the 
incident polarization by rotation (see Fig. 3.20). 

O.A. 

Fig. 3.20: Retarder plates transform an incoming state of polarization into a new state, 

depending on their thickness and the angle of orientation of the optical axis O.A. (left). 
Important special cases: A/2 plate (centre); and A/4 plate (right). 

For the discussion we conveniently use Jones vectors, which have e.g. the form 
E = aex  +  be for a basis of linearly polarized light (Section 2.4.1). The ordinary and 
extraordinary beams are delayed with respect to each other within a plate of thickness 
d with phase shifts exp(ia.) = exp(inowd/c), resp. exp(ict e ) ----= exp(in ewdlc). In 
rotating the electric field first towards the coordinate system of the optical axis and 
then back again, the general transformation matrix can be specified as 

E' = 
( cos (15 — sin 0 ) ( eia° 	0 ) ( COS 0 	sin 0 ) E 

sin 0 cos 0 ) 	0 	eia. ) 	— sin 0 cos 0 

From that we gain after some manipulation 

E,

(

eia° cos2  0 + eia. sin2  0 ( eiao — eia.) sin 0 cos 0 
— ( e ia° — eia.) sin 0 cos 0 eia° cos 2  0 + eia. sin2  0 

E. 	(3.38) 

Let us now consider two important special cases, the A/2 plate and the A/4 plate. 
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(i) A/2 plate 

For the A/2 plate, the special case exp(iao ) = — exp(icte ) is chosen. Therefore, the 
optical pathlengths of the ordinary and extraordinary rays must differ by exactly half 
a wavelength. In this case, the Jones matrix MAl2  reads as 

MAl2 = ela° 
( cos 20 

— sin 20 
sin 20 
cos 20 ) 

and shows a rotation of an arbitrary initial state by angle 20 (Fig. 3.20 centre). 

(ii) A/4 plate 

For the A/4 plate, the special case exp(iao ) = j exp(iae ) is chosen, which corresponds 
to a difference in the optical pathlengths of a quarter wavelength. The Jones matrix 
MA/4 in this case reads as 

eia.  ( (1 + i) + (1— i) cos 20 	(1 — i) sin 20 
2 	— (1 — i) sin 20 	(1+ i) — (1 — i) cos 2çb 

ez(cto-k7c/4) ( 1 _i 	
for 0 = n/4. 

i 	) 

In particular, for the angle adjustment of 0 = 45°, the A/4 plates transform linear 
polarizations into circular ones, and vice versa. 

The differences in pathlengths of retarder plates are in general not exactly equal to 
A/2 and A/4, but to A(n + 1)/2 and A(n +1)/4 instead, and the number of total waves 
n is called the order. They serve their purpose independently of their order, but due 
to the dispersion, which in addition has different temperature coefficients for no  and 
ne , retarder plates of higher order are much more sensitive to variations in frequency 
or temperature than retarder plates with lower order. 

So-called retarder plates of zero order consist of two plates with nearly the same 
thickness but unequal differences in optical path A/2 or A/4. If two plates with crossed 
optical axes are mounted on top of one another, 1  then the influences of higher orders are 
compensated and there remains an effective plate of lower order, which is less sensitive 
to spectral and temperature changes. 'Real' plates of zero order would generally be 
too thin and therefore too fragile for manufacturing. 

Lyot filters 

The relative delay of the two partial waves in a birefringent plate of thickness d, the 
optical axis of which makes an angle 0 with the x axis, is A = 2n(n0  — ne )d/A and 
is wavelength-dependent. Combining retarder plates with polarizers, one can achieve 
wavelength-dependent and frequency-dependent transmission. Such applications are 
called birefringent filters or Lyot filters. 

MA/4 = 

1 They are often 'optically contacted', i.e. they are connected via two very well polished surfaces 
(whose planarities must be much better than an optical wavelength) only by adhesive forces. 
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Transmission 

Frequenz 

Fig. 3.21: Top left: Lyot filter built from two parallel polarizers and a wavelength dependent 
retarder plate oriented at 45° .  Optimum extinction occurs for wavelength where the retarder 
plate corresponds to a Al2-plate. Right: Transmission curves of Lyot filters with single re-
tarder plate of increasing thickness d, 2d, 4d, and of a filter composed of the three plates. 
Bottom left: Three-plate Lyot filter at Brewster angle for use within a laser resonator. 

In Fig. 3.21 a retarder plate (now of higher order) is positioned between two parallel 
polarizers. Only for distinct wavelengths does it serve as a A/2 plate, for example, and 
cancel transmission. 

The incident light is transformed in general into elliptically polarized light depend-
ing on the orientation of the optical axis. We can calculate the transmission of a light 
field polarized linearly in the x direction according to Eq. (3.38), 

— exp ( a° ae ) Hs ( a° ae ) 	sin (ao Cte) 
2 	 2 	

cos  2]  Ex , 

and with (ao  — ae ) = (no  — ne )27wdlc we find the transmitted intensity correlated 
with the incident intensity Ix  

= 

 x [

9 ( (no  — n e)nvd) 
 + sin

2 n — ne )nvd) 	2 C, 
cos- 	 cos z9 

In particular, for = 45° one finds a transmission modulated by 100% with the period 
(or the 'free spectral range') Av Ono  — ne )d. Positioning several Lyot filters with 
thicknesses dm  = 2md one behind the other, the free spectral range is maintained, but 
the width of the transmission curve is reduced quickly. 

Lyot filters, resp. birefringent filters, may be positioned in the ray path at the 
Brewster angle as well, to reduce losses substantially (Fig. 3.21). The optical axis lies 
within the plane of the plate, and the central wavelength of the filter with the lowest 
losses can be tuned by rotating the axis. Such elements are mainly used in broadband 
laser oscillators (e.g. Ti—sapphire lasers, dye lasers, Section 7.9.1) for rough wavelength 
selection. 
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3.5.4 Birefringent polarizers 

One more important application of birefringent materials is their use as polarizers. 
From the many variants we introduce the Glan air polarizer. Its effect is based on 
the various critical angles of total internal reflection for the ordinary beam (which is 
reflected for devices made of calcareous spar) and the extraordinary beam (Fig. 3.22). 

Applying a polarizer, both 
the extinction ratio and the ac-
ceptance angle are the most 
relevant numbers to determine 
the alignment sensitivity, de-
pending on the difference of 
the refractive indices for ordi-
nary and extraordinary beams. 
With Glan polarizers very high 
extinction ratios of  1: 106  and 
more can be achieved. One 
variant is the Glan—Thompson 
polarizer, where a glue is in- 

Fig. 3.22:  Clan  air polarizer. The acceptance angle is 

serted between the two prisms defined by the critical angles for total internal reflection 

with refractive index between for the ordinary and the extraordinary ray. 

no  and ne . Then total internal 
reflection occurs for the partial wave with the lower index of refraction only, the other 
one is always transmitted, in Fig. 3.22 the extraordinary wave. 

3.6 Optical modulators 

Materials in which the index of refraction can be controlled or switched by electric or 
magnetic fields offer numerous possibilities to influence the polarization or phase of 
light fields, thereby realizing mechanically inertia-free optical modulators for ampli-
tude, frequency, phase or beam direction. We will pick out several important examples. 

3.6.1 Pockels cell and electro-optical modulators 

The electro-optical effect addresses the linear dependence of the refractive index on 
the electric field strength and is also called the Pockels effect. If the index of refraction 
depends quadratically on the field strength, resp. linearly on the intensity, then we talk 
about the optical Kerr effect, which will be discussed in more depth in the chapter on 
nonlinear optics (Chapter 13.2). We came across self-modulation of an optical wave 
by the Kerr effect in Section 3.4.2 on solitons already. 

The electric field is created by electrodes mounted on the faces of the crystal. The 
changes in the index of refraction are in general determined by crystal symmetry. Here, 
we confine ourselves to a simple and important example, the uniaxial KDP crystal. 

The KDP crystal is mounted between two crossed polarizers and its optical axis is 
adjusted parallel to the propagation direction. A longitudinal electric field is created 
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with transparent electrodes (Fig. 3.23). 

Pol 2 

Fig. 3.23: Electro-optical modulator with a 
K DP crystal, switched to blocking mode. 

3 Light propagation in matter 

In the field-free state, there is axial 
symmetry, which is cancelled by the ex-
ternal field and induces an optically mar-
ginal biaxial crystal. Thereby the indices 
of refraction in the x and y directions, 
which are tilted by 45° against the posi-
tion of the polarizer, are changed by the 
same modulus of the angle, but in the 
opposite direction: 

= no  - rno3 U/2d 	and nox 
noy  = no  + rngU I 2d. 

In this arrangement the transmission is 
proportional to 

IT =  10  cos2  (2nrno3 U Id). 

When applying electro-optical modulators (E0Ms), the half-wave voltage, where the 
difference in the indices of refraction creates a phase delay of the x and y compo-
nents of A/2, is among the most important technical criteria. The maximum modu-
lation frequency is determined by the capacitive properties of the driver circuit. At 
very high frequencies (>200 MHz) transit time effects add, necessitating the use of 
travelling-wave modulators, in which the radio-frequency wave and the optical wave 
co-propagate. 

Example: Half-wave voltage of KDP 
The electro-optical coefficient of KDP is r = 11 pm V-I  at a refractive index of no = 
1.51. For a crystal length of d =  10 mm,  the half-wave voltage at a wavelength of 
A = 633nm is calculated as (E = U I d) 

U = 2 x -
A 1 

= 84 V cm-1 . 

2 rn,3, 

In this case the half-wave voltage does not depend at all on the length of the crystal. 
Therefore it is more convenient to choose arrangements with transverse electro-optical 
coefficients. 

Example: Phase modulation with an EOM 
If one adjusts the linear polarization of a light beam parallel to the principal axis of 
a crystal and leaves out the polarizers in Fig. 3.23, then the beam experiences not 
an amplitude modulation but a phase modulation, resp. frequency modulation. The 
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index of refraction depends linearly on the driving voltage and causes a phase variation 
at the output of the EOM, 

(DM = wt + m sin(Qt), 

E(t) = 91e {E0  exp(-iwt) exp[-im sin(Qt)il , 

where the modulation index m specifies the amplitude and is correlated with the 
material parameters through 

m = curnU 12c. 

(3.39) 

Fig. 3.24: Phase modulation with an EOM. The spectra are illustrated for modulation indices 
m = 0.1 (top) and m = 2.4 (bottom). The lengths of the bars indicate the contribution of the 
sideband, and the direction indicates the phase position according to Eq. (3.40). 

The corresponding instantaneous frequency experiences a harmonic modulation as 
well, 

w(t) = —
d

(I)(t) = + TrA2 cos(S2t), 
dt 

where the modulation shift M = rnS2 appears., Actually, we cannot strictly distin-
guish between phase modulation (PM) and frequency modulation (FM). However, the 
modulation index allows a rough and common categorization into distinct regions: 

m < 1 	phase modulation, 

m > 1 	frequency modulation. 

The difference gets more pronounced if we decompose the electromagnetic wave (3.39) 
with intensity 

e —im sin(Qt) 
	

(m) 2[J2(m) cos(Mt) J4 (m) cos(4Qt) • 

- 2i[Ji  (m) sin(Qt) 	(m) sin(3t) ± • • .1 

into its Fourier frequencies: 

E(t) = E0 e-iw t  [Jo (m,) 	(m)( e-ifu _ eiftt) 

j2  ( n ) ( e -i2s-tt 	eimt) 	j3 (rn)  (e-i3sit  - ei31-2t) (3.40) 
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We present these spectra for the cases m 0.1 and m = 2.4 in Fig. 3.24. For a 
small modulation index (PM), the intensity at a carrier frequency w is barely changed, 
but sidebands appear at a distance of the modulation frequency. The intensity of the 
sidebands is proportional to 4(m). For a big shift (FM), the intensity is distributed 
to many sidebands, and in our special case the carrier is even completely suppressed 
due to Jo  (2, 4) = 0. 

In contrast to harmonic amplitude modulation (AM), where exactly two sidebands 
are created, many sidebands appear for PM/FM modulation. Another important 
difference is that the AM variation can be shown ('demodulated') with a simple pho-
todetector, but PM/FM information cannot. 

3.6.2 Liquid crystal modulators 

Liquid crystal (LC) modulators are well known from liquid crystal displays (LCDs). 
By 'liquid crystals' we mean a certain type of order of slab-like or disc-like organic 
molecules within a liquid (which appear quite often). 

In the nematic phase (there exist also smec-
tic and cholesteric phases), all the molecular 
slabs point in one direction, without aligning 
their centres. If the molecules are exposed to 
a surface with a preferred direction (grooves, 
anisotropic plastics), then they become or-- 

mod ented in this direction. The enclosure of a liq-
uid crystal between glass plates with crossed 
grooves causes the rotated nematie phase shown 
in Fig. 3.25, where the molecular axes are ro-
tated continuously from one direction into the 

Fig. 3.25: Liquid crystal modulator. 	other. 
The rotated nematic phase rotates the plane 

of polarization of an incident polarized light wave by 90°. But the molecular rods can 
be aligned parallel to the field lines of an electric field in the direction of propagation. 
Then the polarization is not changed during transmission. Thus, an electric field can 
be used to switch the transmitted amplitude. LC displays use the same principle, but 
work in general in a reflection mode. 

3.6.3 Spatial light modulators 

The digital revolution is more and more also entering the world of optical devices. It 
has led to the development of modulators allowing spatial control of the intensity or 
phase of an extended light field, so called spatial light modulators or SLMs. Conceptu-
ally it is straightforward to use the fabrication methods of microelectronics and divide 
the LC described in the last section into an array of small and individually addressable 
pixels, and LCDs are an ubiquitous component of electric and electronic tools. With 



Fig. 3.27: A sector of 3x3 mirrors out of an 
array of 1280x1024. On the right .side one mir-
ror is removed to expose the electro-mechanical 
actuators. With permission by Texas Instru-
ments, from www.d1p.com/d1p_technology.  
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Fig. 3.26:  Puis  shaping using a spatial light modulator (SLM). The incoming ultrashort pulse 
(typically in the ferntosecond domain)) is dispersed into its spectral components. The SLM 
modifies the intensity of individual channels (here: 1-8) and generates small delays. With a 
second grating the pulse is recombined. 

improved optical quality LC arrays can be used to actively control a wavefront incident 
on such a device. 

While applications for versatile digital display technology are fairly obvious (see 
below) we here introduce another example where SLMs are used to control the shape 
of ultrashort pulses (For the generation of femtosecond pulses see section 13.2.1.). 
In Fig. 3.26 a very short pulse is dispersed by a grating and in combination with a 
lens a parallel wave front is generated with spatially varying color. Without SLM 
the second grating would undo the dispersion and simply restore the original pulse. 
The SLM can now be configured, if necessary by inserting additional optical elements 
such as polarizers etc., to introduce attenuation or delays in each channel (typically 
128 and more) individually. On recombination the pulse is now very different from 
the incoming pulse. This pulse shaping method is used to improve for instance the 
efficiency of chemical reactions induced by femtosecond laser pulses ( 'femto chemistry') 
[16]. 

In 1987 Larry Hornbeck of Texas In-
struments invented the digital mirror de-
vice (DMD) which can realize more than 
1.3 million hinge-mounted mirrors on a 
single silicon chip. Each individual mir-
ror in Fig. 3.27 has a square length of 
about 15 pm and corresponds to a pixel 
of a digital image. It is separated from 
adjacent mirrors by 1 pm, and it tilts 
up to 12° in less than 1 ms by micro 
electromechanical actuators. White and 
black is generated by directing each mir-
ror in and out of the light beam from the projection lamp. Since each mirror can 
be switched on several thousand times per second, also gray scales can be realized by 
varying the 'on' versus the 'off' time of the mirror. 
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The DMD offers digital light processing (DLP Tm) with excellent quality and is 
currently revolutionizing display technologies from large scale cinemas to home enter-
tainment. 

3.6.4 Acousto-optical modulators 

If a sound wave propagates within a crystal, it causes periodic density fluctuations, 
which induce a variation of the refractive index at the same frequency and wavelength. 
The periodic fluctuation of the refractive index has an effect like a propagating optical 
grating, at which the light ray is diffracted. Diffraction may be interpreted as a Bragg 
scattering or Bragg refraction off this grating. 

An acousto-optical modulator (AOM) con-
sists of a crystal, at the end of which is 
glued a piezo-element to excite ultrasonic waves 
(Fig. 3.28), the transducer. To avoid reflec-
tion and standing waves, a sound absorber is 
installed at its other end. 

The ultrasonic head is set vibrating me-
chanically with a radio frequency (typically 10- 
1000 MHz) and radiates sound waves through 
the modulator crystal. Then the light ray tran- 

Ultraamic head 	J 	sits a so-called extensive sound wave field and 
I I 	 experiences diffraction in this 'Bragg region' in 

RF-transmitter (S2, AM) 	one order, only. If the light ray transits through 
a thin sound wave field, as is the case with an 
optical grating, then several, here undesirable, 

Fig. 3.28: Acousto - optical modulator. diffraction orders occur. This boundary case is 
called the  'Raman-Nath region'. 

In order to discuss the influence of the sound wave on the propagation of the light 
ray in more detail, we consider the variation of the index of refraction in the x direction 
caused by a sound wave with frequency S-2 and wavevector q = qe,, 

n(t) = no  + 6n(t) = no  + Sno  cos(Qt - qx). 

We use the wave equation in the form of Eq. (2.12) and take into account that [no + 
Sn(t)] 2  n6 + 2noSn(t) + • • •. Furthermore, we confine ourselves to the variations of 
the x components, because we do not expect any change through the sound wave in 
the other directions, 

[ 02 	k2 _ k2 _ (nô 2noSn(t) 	02 

c
2 
	

a...) 
 w2-] E(r, t) = 0. 	 (3.41) 

0x 2 	z 	C2  

Now we shall consider how the amplitude of the incident wave evolves, which for 
simplification has only a linear polarization component, 

(r, t) = Eio (X, t) e-i(cut-kr). 



Fig. 3.29: Bragg geometry. 

3.6 Optical modulators 
	 103 

The modulated index of refraction leads to a time-dependent variation at frequencies 
w S2; therefore, we can 'guess' an additional field Ea8r, t), which we may interpret 
as a reflected field, 

u) Ea (r, t) = Eao(x,t) e- i(/t—k r r ,  

with w' = w + SZ and k' = k q, arising from diffraction off the sound wave. The 
oscillating refractive index has no influence on the propagation vector; therefore, even 
at this point it must hold that 

kr2 _ (k  q)2 nr)(w  Q)2/c2 (now I c) 2  

(because 	w). From that the Bragg condition 
immediately follows: 

q = -2kx . 

Now, we study Eq. (3.41) with a total field E = 
Ei + Ea , and again assume that the change in am-
plitude is negligible on the scale of a wavelength, 
i.e. 

02/5x2 [E(x ) e ikx] 	[— 7 2 ± 2ikEi  (X)] 
eikx 

With kx2  + ky2  + k,2  --= (n ow/c) 2  and (kx  + K)2  + 
j‘,2 _j_ k2 = [nop Qvc] 2 ,  after a short calculation z 	L 

we obtain the equation 

[

2ik a 	2c.v 2no &n  
2x 	 ° cos(Qt - qx) E 0 (x) 

ox 	
e-i(wt-ksx) 

2 a 	nobno  [-2ik 	+ 
x ax 	c2 	

cos(Qt qx) Eao (x) e -i [ ( w -42)t ±k xx] = O. 

To get a more simplified system for the two amplitudes Eio  and Eau, we use the 
cos terms in their complex form, sort according to the oscillator frequencies and ignore 
oscillating terms, where the incident field does not participate: 

• 0 	
2 	6 ,11  

0, 2zkx ax Ei°  w 	°Ea° 

0 	w 2 n, Sno  -2ikx Eao 	
c

( 	Eio = O. 

Finally, we substitute the x dependence by the dependence along the principal prop-
agation direction z (thereby Ea  propagates in the opposite direction to Et ). With 
kx  = k sin O  = (now I c) sin O it holds that 

. a pi _L.  k&n o   E  - 0,- ' 2no  sin° a° =  
(3.42) 

•a 	 O. 
j az -uja° 	-----L 62'ï/ko6Sn111 Ei°  

The solutions of this system are well-known harmonic oscillations with frequencies 

Ono 

no sin 0 
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In general, as  Eau  = 0 is valid at the entrance of an AOM, we find the pendulum 
solution 

Ei(z,t) = Eio  cos(tyz/2) e—i(wt—kr), 

Er(z,t) = Eau  Sin(7Z/2) e—i[(0)+Q)t—krr] 

So the reflected beam is actually frequency-shifted, as guessed above. For small 
z the reflected intensity is proportional to (7z) 2 . The modulation amplitude of the 
refractive index at sound intensity Is  is 

no  = \/M/s/2. 

The M coefficient depends on the material parameters and is introduced here only 
phenomenologically. For small powers the reflected (in other words, diffracted) inten-
sity is proportional to lEace, and thus, according to this result, proportional to the 
applied sound power. 

3.6.5 Faraday rotators 

Certain materials show the Faraday effect, where the oscillation plane of linearly po-
larized light is rotated independently of the initial orientation proportional to a longi-
tudinal magnetic field, 

Fig. 3.30: Faraday rotation. Only those field 
lines are shown which pass through the whole 
crystal. 

) ( cos a — sin a 
sin a cos a 

with 	a = V B f, 

where V (units deg m-1  T-1 ) is the Ver-
det constant , B is the magnetic field 
strength and f is the crystal length. The 
magnetization of a Faraday crystal af-
fects right-hand and left-hand polarized 
refractive indices with different indices of 
refraction: n+ =  n0  ± VBA/2n. 

E' = 

In contrast to the retarder plates in Section 3.5.3, the polarization transformation 
of an electromagnetic wave is not reversed in a Faraday rotator, if the wave is returned 
into the same configuration. The Faraday rotator is 'non-reciprocal' and therefore is 
suited extremely well for the design of isolators and diodes. As a result of the typically 
very small Verdet constants, relatively high magnetic field strengths are necessary. 
They can be more conveniently realized with permanent magnets made of SmCo or 
NdFeB. [112] 
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Tab. 3.3: Verdet constant of selected materials at 589 mm.  

Material 	 Quartz Heavy flint TGG* 

V (deg m' T-1 ) 	209 	528 	—145 
*TGG = terbium-gallium garnet. 

3.6.6 Optical isolators and diodes 

In most applications laser light is sent to the device under test via various optical 
components. Thereby back-reflections always occur, which even for very low intensities 
cause undesirable amplitude and frequency fluctuations of the laser light. Optical 
isolators offer the possibility to decouple experiment and light source from each other. 
The components introduced in the preceding sections play a central role in this. 

Fig. 3.31: Optical isolators. (i) Left: A/4 plate isolator. (ii) Centre: Faraday isolator. 
(iii) Right: The effect of an AOM isolator is based on frequency shifts. PBS = polarizing 
beam splitter. 

In Fig. 3.31 we present three concepts that may be applied to suppress reflections 
from the upper reflector: 

(i) The isolator on the left uses a A/4 plate, which transforms the linear polarization 
into circular polarization, e.g. a right-handed one. After reflection, the handedness 
is preserved but the wave propagates backwards. After the second passage through 



106 	 3 Light propagation in matter 

the retarder plate, the action of a A/2 plate is realized. The polarization is thus 
rotated by 90 0  and the wave is deflected at the polarizing beam splitter (see 
section 3.5.4). This arrangement is only sensitive to the reflection of circularly 
polarized light and hence is of limited use. 

(ii) In contrast to the previous case, the Faraday isolator allows the suppression of 
arbitrary reflections only in combination with a second polarizer between rotator 
and mirror. One disadvantage is the technically impracticable rotation by 450 , 
which can be compensated with a A/2 plate or a second rotator stage [112] . A 
two-stage isolator also offer S typically 60 dB extinction of reflections, in contrast 
to the typical 30 dB of a single-stage unit. 

(iii) From time to time the acousto-optical modulator is applied for isolation purposes. 
Its isolation effect is based on the frequency shift of the reflected light by twice 
the modulation frequency, which, for example, lies outside of the bandwidth of 
the laser light source. 



4 Optical images 

Images traditionally are among the most important applications in optics. The basic 
element in imaging is the convex lens, which for stigmatic imaging merges into one 
point again all the rays that originated from a single point. With the help of geometry 
(Fig. 4.1), we can understand the most important properties of a (real) optical image: 

1. a beam parallel to the axis is guided through the focal point by a convex lens; 

2. a beam that reaches the lens via the focal point leaves the lens parallel to the 
axis; 

3. a beam passing through the centre of the lens is not diffracted. 

From geometrical considerations, we can connect the distances g and b of object G 
and image B, respectively, with the focal length f, and deduce the lens equation, 

x' 	f (4.1) 
f 	x •  

We have already come across the form of the imaging equation , 

1 	11  
—

f 

= —

g 

+ —
b

, 	 (4.2) 

in Eq. (1.23), when discussing matrix optics. It evolves from the lens equation, when 
one uses the object and image distances, g = f +x and b= f +x'. 

We dedicate this chapter to lens imaging, as it is the basis for various optical 
instruments, which have substantially influenced the development of optics and have 
made possible — literally — our insights into the macro- and micro-cosmos. Besides 

Fig. 4.1: Conventional construction of a lens image with the common notations. 
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the basic principles, we first raise the question of the resolution capability of such 
instruments: what objects at very large distances can we make visible, and what are 
the smallest objects that we can observe with a microscope. 

In the lens of our eye, imaging occurs as well, and we have to take this into 
account for all our vision processes; therefore, we begin by presenting some of the 
more important properties of our 'own vision instrument'. 

4.1 The human eye 

Unfortunately, it is not possible here to go into the physiological origin of the vision 
process, and for that we refer the reader to the relevant literature. 

Fig. 4.2: Human eye, reduced to the most important optical 'components'. 

For our purposes it is sufficient to construct a 'reduced artificial standard eye'. 
The eye body in general has a diameter of  25 mm,  and several important optical 
properties are collected in Tab. 4.1. The refractive power of the total eye is achieved 
predominantly by the curvature of the cornea (typical radius 5.6 mm, difference in 
refractive index with respect to air An 0.37), while the variable crystalline lens 
guarantees 'focusing' by contraction. Recently, laser ablation with femtosecond lasers 
has become established as a very promising method for reshaping the cornea, and thus 
a patient's ability to see can be improved. 

By adaptation of the focal length of our eyes, we are generally able to recognize 
objects at a distance of 150 mm or more. As a standardized distance for optical 
instruments, often the conventional least distance of distinct vision of So  = 250 mm is 
chosen, where the best results are achieved with vision aids. 

4.2 Magnifying glass and eyepiece 

The simplest, and since ancient times very popular, optical instrument is the convex 
lens used as a magnifier. The effect can most quickly be understood by considering 
the angle a at which an object of height y is seen, since this angle determines our 
physiological impression of its size — a mountain 1000 m high at a distance of 10 km 
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Tab. 4.1: Optical properties of the human eye. 

Vitreous humour, aqueous humour n = 1.336 4/3 

Cornea 	 n = 1.368 
Crystal lens 	 n = 1.37-1.42 

Focal length, front 

Focal length, back 

Clear vision distance 

Pupil (diameter) 
Pupil (shutter time) 

Resolving power at 250 mm 

Sensitivity (retina) 

f = 14-17 mm 

f = 19-23 mm 
150  mm—oc,  So = 250 mm 

d=  1-8 mm 
'7-  = 1 s 

Ax 10 pin 
1.5 x 10-17  W/vision cell « 30 photon s -1  

seems to have the same size as a matchbox at a distance of 25 cm. Only our knowledge 
of their distance identifies objects according to their real sizes. 

Fig. 4.3: Vision without (left) and with magnifying glass. The magnification is caused by 
widening of the vision angle. The object lies in the focal length of the magnifier, and the 
position of the virtual image was chosen to be at the least distance of distinct vision So in 
this example. 

Without technical aid, we view an object of size y with the eye (Fig. 4.3) at an angle 
= tan(y/S0) y /So , which is determined by the least distance of distinct vision  S. 

Now, we hold the magnifier directly in front of the eye: the magnifier widens the angle 
at which we see the object. If we bring the object close to the focal length, x  f,  
then parallel rays reach the eye, so that the object appears to be removed to infinity. 
From geometrical relations, we can determine that 

amax 
f 

From that we can directly deduce the maximum magnification M of the magnifying 
glass, 

M = arnax  So 

a 	f • 

Thus, the smaller the focal length of a magnifying lens, the stronger is its magnification. 
However, since the least distance of distinct vision is defined as So — 250 mm, and 
because thicker and thicker, more curved, lenses are necessary at smaller focal lengths, 
the practicable magnification of magnifying lenses is limited to M  <25.  
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In contrast to the real image, discussed in the first section, the magnifying glass 
generates a virtual image. If the magnifying glass is not held directly in front of the 
eye like in Fig. 4.3, then the magnification is a little bit less, as one may straightfor-
wardly find out from geometrical considerations. However, the difference is in general 
marginal, and, anyway, an individual user looks for a suitable working distance by 
manual variation of the distances of magnifier, eye and object. 

In optical devices, such as microscopes and telescopes, real intermediate images are 
generated, which are then observed with a so-called eyepiece. The eyepiece in general 
consists of two lenses to correct for chromatic aberrations, which we will discuss in 
Section 4.5.3. In the Huygens eyepiece (Fig. 4.4), a real intermediate image is gener-
ated by the field lens, which is looked at with the eyepiece. The eyepiece fulfils exactly 
the task of a magnifying lens with an effective focal length focu  and a magnification 

Mocu = So /10,u  for an eye that is adapted to infinite vision distance. 

Example: Effective focal length and magnification of a Huygens eyepiece 

A Huygens eyepiece consists of two lenses at 
a separation of d = (fi + f2)/2, because there 
the minimal chromatic aberrations occur (see 
Section 4.5.3). We determine the effective fo-
cal length and magnification of a system con-
sisting of two lenses with fi  = 30 mm and 
/2 = 15 mm, for instance by application of the 
matrix formalism of 1.9. The system has an 
effective focal length of 

1 	1 	1 	11+12  
fOCII 

	

fi 	f2 	2 f1 f2 

+ h  
211 12  

= (20 mm) -1  

and thus a magnification of M.c. = 250/20 = 12.5x. 

4.3 Microscopes 

To see small things 'big' is one of the oldest dreams of mankind and continues to 
constitute a driving force for our scientific curiosity. The magnifying glass alone is 
not sufficient, as we know already, to make visible the structure of very small objects, 
like e.g. the details of a biological cell. However, by adding one or two lenses, which 
generate a real image at first, it has been possible since the 19th century to achieve 
up to 2000-fold magnifications — the microscope [56] 'opens' our eyes. 
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We consider a microscope (Fig. 4.5) 
in which an objective `obj' with focal 
length fobi generates a real intermediate 
image. The intermediate image plane is 
a suitable position to install, for exam-
ple, a graticule, the lines of which are 
seen simultaneously with the object un-
der test. For that purpose, an eyepiece 
`ocu' with focal length f ocu or more sim-
ply a scaling factor Mocu = Sollocu = 
250 mm/f01  is used, typically with mag-
nification factors 10 x or  20x.  In prac-
tice, objectives and eyepieces are lens 
combinations, in order to correct for aber-
rations (see Section 4.5.3). The total 
focal length fp, of the composite micro-
scope is evaluated according to Eq. (1.25) 
as 

1 	1 	1 
_ = 	 
fp. 	fob; 	loch, 	fobifocii •  

In general, microscopes have tubes with 
well-defined lengths of t = 160 mm, and 
since t >> f obi, focu, one may approxi-
mately specify 

	

— 
fobifocu 
	fobi focu  

160 mm • 

Fig. 4.5: Beam path within a microscope: t is 
the length of tube; f obi and focu are the focal 

lengths of objective and eyepiece; the black ar-
row shows the position of the  intermediate im-
age. 

We can determine the image size in two steps: (i) The object lies approximately 
in the focal plane of the objective, whereas the distance between the real image and 
the objective differs only a little bit from the length of the tube t. According to 
Eq. (4.1) it then holds that y/fob; y'/t and the objective gives rise to a magnification 

Mob — V/Y tifobi. (ii) The eyepiece further magnifies the image by the factor 

Mocu = y"/y' = SOC., as explained in Section 4.2 on the magnifying glass. The 
total magnification MI, of the microscope is then 

so  t 	so  

loch]. fobj 	fp, 

This last result shows that the microscope in fact acts like an effective magnifying lens 
of extremely short focal length. 

Example: Magnification of a microscope 
We construct a microscope with an eyepiece, magnification 10x, and an objective 
with focal length fob] = 8 mm. The magnification of the objective amounts to Mobi = 

MOCUMON 
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160 mm/8 mm = 20. The total magnification can be calculated according to /l4 = 
10 x 20 = 200. 

Standard microscopes are designed for a quick exchange of the optical elements, 
to change the magnification easily. Both eyepiece and objective are usually specified 
with the magnification, e.g. 100x ; the components of different manufacturers are in 
general interchangeable. The total magnification can be determined according to the 
procedure described above without difficulties. For precision measurements it is nec-
essary to calibrate the magnification factor by means of a suitable length standard. 

4.3.1 Resolving power of microscopes 

So far, we have looked at the microscope only from the geometrical optics point of view 
and assumed that a point is imaged into an ideal point, again and again. However, as a 
result of diffraction at the apertures of the lenses, this is not possible, so the resolving 
power is limited by diffraction. A first measure for the resolving power can be gained 
from the result for the diameter of the Airy disc. We require that the separation Axmin 
of the Airy discs of two distinct objects shall be at least as large as their diameter, see 
Eq. (2.48): 

Fig. 4.6: Resolving power and numerical 
aperture. The right half shows the enhance-
ment of the resolution with immersion oil. 
The resolution is influenced by illumination, 
as well. Here, a condenser lens is applied, 
which illuminates a maximum solid angle. 

Xmin > 1.22 fob
i

À •  

A 
D 

The systematic approach is given by the 
numerical aperture NA (or the Abbean 
sine condition — see next subsection). It 
is defined as in the case of the acceptance 
angle of optical fibres (Eq. 1.9) as the sine 
of half of the aperture angle (Fig. 4.6), i.e. 
of the extreme rays that still contribute to 
the image: 

NA = n sin a. 

Thereby n specifies the index of refraction 
in the object space. The spatial resolu-
tion of a microscope is usually defined by 
(Section 4.3.2) 

Axmin  > 
NA 
	 (4.3) 

For smaller magnifications, longer focal lengths and therefore smaller angles occur. 
Then these two conditions are equivalent due to sin a tan a  ± D/2f0bi . 

Since the object under test is always very close to the focal plane, the NA is a 
property of the objective used and is in general specified on standard components. 
The resolving power therefore is enhanced by short wavelengths (optical microscopes 



Fig. 4.7: Fourier image of a microscope, 
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use blue or even ultraviolet light for high resolution) and a large NA. In air with short 
focal lengths, which means objectives with large magnification, NA values of about 0.7 
are achieved. In order to achieve the theoretical values of resolution, when designing 
the objective the cover glass must be considered, which in general covers the objective 
as well (see Fig. 4.6). Thereby, for example, total internal reflection is troublesome, and 
limits the maximum angle within the cover glass to about 40°. By means of immersion 
fluids the NA value available can be enhanced significantly, using for example a liquid 
with an index of refraction that is adjusted to match that of the cover glass. Also, 
the exact form is of importance, if one is to achieve the total theoretical resolution; 
but the details are far beyond the scope of this book. The best optical microscopes 
achieve resolutions of about 0.2 gm with blue illumination. Shorter wavelengths and 
hence further improved resolution can be achieved by using alternative 'light', like e.g. 
electrons in an electron microscope. 

4.3.2 Abbe theory of resolution 

To determine the resolving power of a microscope even more accurately, we want 
to consider a periodic structure (a grating with period Ax) that we observe with a 
microscope. Ernst Abbe (1840-1905), professor of physics and mathematics at the 
University of Jena, Germany, and close coworker of Carl Zeiss (1816-1888), provided 
crucial experimental and theoretical contributions to the development of modern mi-
croscopy. 

The simplified situation for the grating mediate image 
is illustrated in Fig. 4.7, and the focal plane 	 c) 
or Fourier plane of the objective now plays 
a very crucial role. There, bundles of par-
allel rays are focused, and one observes the 
Fraunhofer diffraction image of the object, 
which is simple only for the chosen exam-
ple of a one-dimensional grating. However, 
the following point is crucial. Within the 
focal plane, the object generates the Fourier  focal  plane 
transform of the complex amplitude distri-
bution in the object plane, as we have al- 
ready seen in Section 2.5.3. A structure with 

objective 
a certain size a can only be reconstructed 
if, apart from the zero order, at least one 
more diffraction order enters the objective 
and contributes to the image. This is the 
Abbean sine condition: 

after Ernst Abbe. 
a>  A/ sin a. 

In the optical microscope, the Fourier spectrum of a diffracting or scattering object 
is reconstructed by the eyepiece and eye or camera objective to yield a magnified 
image. In principle, the reconstruction can be gained by a calculation or a numerical 
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procedure. In this sense, the scattering experiments of high-energy physics, where 
the far field of the diffraction of extremely short-wave matter waves off very small 
diffracting objects is measured, are nothing other than giant microscopes. 

Fig. 4.8: Optical lithography. Principle of the wafer stepper and UV illumination unit. The 
lens systems contain numerous components for the correction of aberrations. 

Excursion: Optical lithography 

From many points of view, optical lithography is the reverse of microscopy, because lithog-

raphy, which is nowadays one of the most powerful driving forces of the world economy, is 

primarily concerned with the miniaturization of electronic circuits to the smallest possible 

dimensions. The principle is introduced schematically in Fig. 4.8. With a 'wafer stepper', 

a mask ('reticule'), which contains the structure of the desired circuit, is projected at re-

duced scale step by step onto cm2  large areas. Thereby, adequate film material ('resist') is 

chemically altered such that afterwards in eventually several processing stages transistors and 

transmission lines can be produced. Manufacturers of lithography objectives, which nowa-

days may consist of 60 and more individual lenses, succeeded impressively in guiding the 

resolution of their wafer steppers directly along the resolution limit according to Eq. (4.3). 
At present miniaturization of electronic circuits is limited by the wavelength in use, nowadays 

in general the wavelengths of the KrF* laser at 248 nm and the ArF* laser at 193 nm. Further 

progress will entail enormous costs, because at these short wavelengths tremendous problems 

arise in manufacturing and processing of suitable, i.e. transparent and homogeneous, optical 

materials. 

4.3.3 Depth of focus and confocal microscopy 

Every user of a microscope knows that he or she has to adjust the image to make 
it 'sharp', and that the range of adjustments for which sharp images are generated 
decreases with increasing magnification. The longitudinal distance towards the direc-
tion of the optical axis where two points can both be just imaged sharply is called the 
'depth of focus'. A quantitative measure of the depth of focus may be obtained, for 
example, from the geometrical considerations in Fig. 4.9. 
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Fig. 4.9: Geometry of the depth of focus. 

Fig. 4.10: Principle of confocal microscopy. 

4.3 Microscopes 

The movement of an object point 
by 6g out of the 'true' object plane 
causes a spot with diameter Ax in 
the intermediate image plane. From 
Eq. (4.2) we can derive that for 
6g/ g «  1 the image distance moves 
approximately by 6b/b —6g/g. Ge-
ometrical considerations then yield 
directly the result Ax = (5b D/2bl = 

1 6g D/29 6g D /2f . If we require that this spot should stay smaller than the 
diffraction disc of the object point, then we find for a maximum tolerable movement 
Az: 

f 	Af 2 	A 
Az < Axn,

in D/2 (D/2) 2  NA2.  

Then, for larger magnifications, the depth of focus becomes very small, as well; it 
reaches the order of a wavelength. The small depth of focus for the reverse process 
of microscopy, reduction in optical projection lithography, causes high demands on 
the mechanical tolerances of wafer steppers in optical lithography. We can draw an 
analogy to Gaussian ray optics (see p. 42): the length of the Rayleigh zone of the 
focused coherent light beam has the same ratio with the diameter of the focal spot as 
the depth of focus has! 

Confocal microscopy uses the 
short depth of focus of an image with 
short focal length and large numer-
ical aperture to gain — beyond 'pla-
nar' information — three-dimensional 
information of the device under test. 
In Fig. 4.10 the basic principle of 

photo diode, confocal microscopy is shown: a co- 
computer herent light beam creates a narrow 

spot with little depth of focus within 
objective the probe. Only the light inten- 

sity reflected, resp. scattered, out of 
the spot is focused onto an aperture. 
Structures in other planes are pro-
jected into other planes and therefore 
they are largely suppressed by the aperture. 

The intensity transmitted through the aperture is continuously monitored by a 
photodetector and evaluated by a computer to yield an image. Confocal microscopy 
is an example of scanning probe microscopy, since the focal spot has to scan the 
sample. In our picture this is achieved by a movable beam steerer (`scanner'). Confocal 
microscopy achieves resolutions of about 111111; the advantage is access to the third 
dimension, which is, of course, only possible in transparent samples. 
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4.3.4 Scanning near-field optical microscopy (SNOM) 

The limited resolution of a microscope is a 'result' of Maxwell's equations. In free 
space the curvature of the electric field cannot occur on a scale much shorter than a 
wavelength. An ideal point light source is imaged by an optical imaging system into 
a small but finite spot at best, and this limits the resolution by diffraction to a value 
of about half a wavelength A/2 of the light in use. 

In the near field of a radiating system, this limit can be exceeded, since in the 
presence of polarizable material the propagation of electromagnetic waves is no longer 
restricted by the diffraction limit. A typical arrangement is introduced in Fig. 4.11. An 
optical fibre is pulled by a pipette pulling device to yield a tip, the radius of curvature 
of which is less than 100 nm. This receives a cladding, e.g. out of relatively low-loss 
aluminium, which leaves only a small aperture, which serves as radiation source or 
detector of the local light field (or both simultaneously). 

Fig. 4.11: Scanning near-field optical microscope. An aperture at the end of an optical 
fibre is used as a source or detector of radiation fields with a resolution of less than optical 
wavelengths. 

The end of the fibre, which is made to oscillate by a piezo-drive, experiences an 
attractive van der Waals force at a typical distance of micrometres and an attenuating 
force that may be used to adjust the distance as in force microscopy and therefore gives 
information about the surface topography of the sample. The optical information is 
recorded by detecting at the end of the fibre the light picked up or reflected at the 
tip. With smaller and smaller apertures, the spatial resolution increases, and can 
be pushed significantly below the wavelength in use (typically A/20), note that it 
depends essentially on the diameter of the aperture and not on the wavelength. On the 
other hand, the detection sensitivity decreases more and more, because the sensitivity 
decreases with a high power of the diameter of the aperture, and even 1 mW of light 
power damages the apertures. 
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After the celebrated success of scanning microscopy, which was initiated by tun-
nelling microscopy and force microscopy in the 1980s, nowadays scanning near-field 
optical microscopy (SNOM) has been established as yet another new method of scan-
ning microscopy. 

4.4 Telescopes 

Binoculars and telescopes are used to make terrestrial or astronomical objects more 
visible. In general, they are composed of two lenses or mirrors, the focal points of 
which coincide exactly, i.e. their separation is d = fi+ f2. In the Galilean telescope in 
Fig. 4.12, a concave (diverging) lens with negative focal length is used. Under these 
circumstances, the image matrix of the system reads as follows according to Eq. (1.24): 

— h/fi 	d 
0 	—11112 ) 

objeotive 

Fig. 4.12: Angle magnification in a Galilean telescope. 

The total refractive power of this system vanishes, Dtel = 0. Such systems are called 
afocal [85]; their action is based on angle magnification only. The objects are located 
effectively always at very large distances. From there, parallel bundles of rays originate, 
which are transformed into parallel bundles of rays at other, larger angles. 

4.4.1 Theoretical resolving power of a telescope 

Before we determine the magnification, we want to consider the kinds of objects we 
might be able to recognize. Therefore, we have to recall the resolving power of a convex 
lens, which we have determined already in Eq. (2.45). There, we have already seen 
that at a fixed wavelength the aperture of any imaging optics determines the smallest 
angle at which two point-like objects can still be distinguished. We reformulate this 
condition for telescopes: 

wavelength x distance 
minimum structural dimension 	  

aperture 

The consequences for (1) the human eye (pupil 1 mm), (2) a telescope with 10 cm 
mirror and (3) the 2.4 m mirror of the Hubble Space Telescope (HST) have been 
illustrated in Fig. 4.13. The shapes of objects can be recognized above the limiting 
lines 1-3, whereas below those lines the objects cannot be distinguished from points. 

Mtel = 



distance 
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Fig. 4.13: Pattern recognition of objects far away, with the eye (1), a telescope with 10 cm 

mirror (2) and the Hubble Space Telescope (3) /1 light year = 9.5 trillion km]. 

4.4.2 Magnification of a telescope 

In Fig. 4.12 we introduced the concept invented by Galileo Galilei, which is composed 
of a convex lens with focal length fobi  and a concave eyepiece with a focal length foci,. 
Geometrical considerations, such as the calculation of the system matrix Mtel , show 
easily that the magnification of the angle of binoculars is 

am 	fobi  magnification M =-- 	 =. 
J ocu 

A negative sign of M means that the image is inverted; therefore, the Galilean telescope 
of Fig. 4.12 offers a non-inverted image due to the concave lens with negative focu. 
Telescopes are large-volume devices, because large apertures and lengths of focus are 
advantageous. The minimum device length is 

ftelescope = fobj 	f0. 

4.4.3  Image distortions of telescopes 

Like all optical instruments, telescopes are affected by several aberrations (see next 
section). We restrict ourselves to selected problems; the Schmidt mirror sets an ex-
ample for the correction of spherical aberrations from p. 125. 

Lens telescopes and reflector telescopes 

Chromatic aberrations, which we will discuss in detail in Section 4.5.3, were identi- 
fied very early as an obstacle to improving lens telescopes technically. Isaac Newton 
(1688) was one of the first to discover that refractive lens optics, suffering from strong 
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dispersion, should be substituted by the reflective optics of reflector telescopes, which 
nowadays has become the standard device layout. 

Fig. 4.14: Reflector telescope (Cassegrain type) and Hubble Space Telescope. 

In Fig. 4.14 the Cassegrain concept is shown, which consists of a primary concave 
mirror and a secondary convex mirror. If the primary mirror has parabolic shape, then 
the secondary must have hyperbolic shape; however, other types (with other types of 
aberrations) are possible, as well. One of the newest instruments of this type is the 
Hubble Space Telescope, (HST) which since 1990 has delivered more and more new 
and fascinating pictures of stars and galaxies far away, not influenced by atmospheric 
fluctuations [48]. 

In the original configuration, a 
mistake in the calculation of the 
mirror properties had resulted in 
aberrations, which inhibited the 
total theoretically available reso-
lution of the HST! However, there 
was real delight after the optics of 
the telescope had been corrected 
by an additional pair of mirrors — 
after, so to speak, fitting 'specta-
cles' to the HST. 

To evaluate the quality of Fig. 4.15: Point-spread function of the Hubble Space 
an imaging system, often the Telescope after installation of the COSTAR correc-
so-called point-spread function is tion optics. After [22]. 

used, by means of which the im- 
age of a point according to wave theory is described, taking the exact form of the 
imaging system into account. In Fig. 4.15 the result for the calculation for the HST 
before and after the installation of the correction optics is shown. 
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Atmospheric turbulence 

The HST, with a mirror diameter of 2.4 m, does not have an extraordinary diameter; 
with 10 in the new Keck Telescope at the Keck Observatory in Hawaii offers much more 
than that. However, the resolution of the HST is much superior to that of terrestrial 
telescopes, because the resolving power of the latter is limited to effectively 10 cm by 
turbulent motion of the atmosphere (like the optical telescope in Fig. 4.13)! However, 
owing to their collecting power, giant terrestrial telescopes offer the possibility to study 
objects with very low light power in more detail. 

"guide star" 

sensor 

amuipidf4. 

Fig. 4.16: Left: Schematic of the new telescope at the Keck Observatory. Right: Artificial 

or reference stars for the application of adaptive optics. 

For the installation of huge mirror telescopes, one looks for environments with very 
favourable atmospheric conditions, e.g. in the Andes of Chile or on the Hawaiian Is-
lands. The 10m telescope at the Keck Observatory is one of the most modern facilities 
(construction year 1992). To use the total theoretical efficiency of a mirror, the optical 
shape — a sphere, hyperboloid or whatever — must be kept to within subwavelength 
precision. However, with increasing size, this requirement is more and more difficult to 
fulfil, because these heavy mirrors are even distorted by the influence of gravity, thus 
causing aberrations. Therefore, the Keck mirror was manufactured with 36 segments, 
the positions and shapes of which can be corrected by hydraulic positioning elements 
in order to achieve optimum imaging results. 

Actively tuned optical components are used more and more and are summarized 
under the term 'adaptive optics'. With newer developments it is possible to compen-
sate for atmospheric turbulence that changes on a time scale of ca. 100 ins. Typically, 
for that purpose the wavefront must be analysed and used to control a deformable 
mirror within a feedback loop. The wavefront in the upper atmosphere may be as-
sessed, observing atmospherically, by analysis of the light from a very bright reference 
star or by the positioning of an 'artificial star' (Fig. 4.16) [33], such as a laser light 
source, for example, in the upper atmosphere. 
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Fig. 4.17: Important lens types: (a) planar convex lens; (b) biconvex lens; (c) convergent 

meniscus lens; (d) planar concave lens. 

4.5 Lenses: designs and aberrations 

The spherical biconvex lens is, so to speak, the cardinal case of a convex lens and is the 
lens usually illustrated in figures. All spherical lenses cause aberrations, however, and 
the application of certain designs depends completely on the area of application. As a 
rule of thumb, we recall the paraxial approximation: the linearized form of Snell's law 
(sin 0 0, eq. (1.14)) is the better fulfilled, the smaller are the angles of refraction! 
Therefore, it is convenient to distribute the refraction of a beam of rays, passing 
through a lens, as evenly as possible to the two refracting surfaces. At selected points 
aberrations can be compensated by adequate choice of the surfaces. In a multi-lens 
system (doublet, triplet, ... ), several curved surfaces and thus degrees of freedom are 
available. However, the perfect lens system, correcting for several types of aberrations 
at the same time (see below), cannot be realized in this way, and thus all multi-lens 
systems (`objectives') are in general designed for specific applications. 

-5 mm 	-3 mm 	 +1 mm 

Fig. 4.18: Spot diagrams of a planar convex lens for two different orientations (after com-

mercial software for the analysis of aberrations). The specifications of the distances refer to 

the distances to the nominal focal point (here 66 mm). 
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Before introducing the technical discussion of aberrations, we want to collect some 
intuitive arguments for dealing with one or two lenses. More complex systems must 
be analysed numerically. 

4.5.1 Types of lenses 

Planar convex lenses 

This type of lens only has one curved surface and therefore may be manufactured 
quite cheaply. For typical indices of refraction of technical glasses of n = 1.5, one finds 
according to Eq. (1.19) f = —1/D'-._,  2R. To focus a light ray, the planar convex lens 
may be used in two different orientations. Fig. 4.18 indicates how spherical aberrations 
primarily affect the ability to focus. The so-called 'spot diagrams' show the evolution 
of the size of a spot along the optical axis. Obviously, it is convenient to distribute 
the focal powers to several surfaces — indeed, in the orientation of the lower part in 
Fig. 4.18, refraction occurs only on one side of the lens, resulting in reduced focusing. 

Biconvex lenses and doublets 

We may imagine a biconvex lens as composed 
of two planar convex lenses back to back, as indi-
cated in Fig. 4.19. Therefore, the focal powers add 
and we find for common glasses again according to 
Eq. (1.19) with n , 1.5: 

f ‘-- R. 

For  1:  1 imaging, the biconvex lens singlets have 
minimum spherical aberration, which is important, 
for example, for collimators. However, the refrac- 
tive powers of planar convex lenses add in exactly 

Fig. 4.19: Biconvex lens and pla- 
the same way if they are mounted with their spher- 
ical surfaces opposing each other. 

Thereby, in a 1: 1 image the refractive power is distributed to four surfaces and one 
achieves further reduction of aberrations. 

Meniscus lenses 

Meniscus lenses may minimize as singlets the aberrations for a given distance between 
object and image. Indeed, they are first of all part of multi-lens objectives and serve, for 
example, to change the length of focus of other lenses, without introducing additional 
aberrations or coma. Such systems are called aplanatic [64]. 

4.5.2 Aberrations: Seidel aberrations 

Here, we want to describe briefly the fundamental formal method, going back to Seidel, 
to classify aberrations. Since it is now necessary to deal with non-axial contributions 
as well, the complex numbers ro  = x + iy are convenient for the discussion. 

nar convex doublet. 
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We use the notation from Fig. 4.20, fol-
lowing the discussion of matrix optics (Sec-
tion 1.9). Then, for the correlation between 
the location of the object at ro  with slope 7-. )  
and an image point at r(z): 

r(z) = g(z, x, , y, y') 

= f 	ro , ro * , 	r() *). 

One may use the Laurent expansion, known 
from the theory of complex numbers, 

r(z) = 	Cao-r5 ro'ro*/3 r/o -Y r'0 *(5 . 
a,(376> o 

Fig. 4.20: Notation of aberrations. 

(4.4) 

A rotation by the angle 8 in the plane of the object, ro 	ro  eie , must cause a 
rotation by the same angle in the image plane, 

r(z) eie  = 
	

Cao,y5 ro a ro *O rocY ro,  * 6  eie(a-0±5_7) 

ct07(5  

From that one finds directly the first condition 

(i) 
(ii) 

ct—f3+-y—S=1, 
(4.5) 

while the second follows from the special case  e  = resp. r(z) 	—r(z), from direct 
reflection at the optical axis. It determines that only odd orders 1, 3, ... may occur. 

(a) Ray propagation in first order 

In first order (a +  3  + ey + = 1 in Eq. (4.5)), one finds (3 = = 0 and 

r(z) = Cmooro + Co l:nor. 

This form corresponds exactly to the linear approximation, which we already used as 
the basis of matrix optics and discussed in detail in Section 1.9. 

(b) Ray propagation in third order 

In third order (a +  3  + + = 3), in total six contributions arise, the prefactors 
of which are known as 'Seidel coefficients'. We find the conditions a + = 2 and 

+ = 1, which can be fulfilled with six different coefficients Co..y s and are itemized 
in Tab. 4.2. 

From the table we will now discuss several selected aberrations and the corrections of 
those in more detail. The coefficients are properties of the lens or the lens system, and 
in the past the theoretical determination of those has been possible only for certain 
applications due to the enormous numerical calculation expenditure. Nowadays, these 
tasks are done by suitable computer software. 
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Tab. 4.2: Seidel coefficients of aberrations. 

Coefficient a 0 -Y 6 oc 

C0021 

C1011 

C0120

C1110

C2001 

C2100 

0 

1 

0 

1 

2 

2 

0 

0 

1 

1 

0 

1 

2 

1 

2 

1 

0 

0 

1 

10 

0 

1 

0 

7- '3 

/2 r 	r 
/2  r r 
f 	2 r r 

r / r 2 

r 3  

Aberration 

spherical aberration 

coma I 
coma II 

astigmatism 

curvature of the image field 
distortion 

Aperture aberration or spherical aberration 

We have already introduced the effect of spherical aberration in Fig. 4.18 with the 
example of a planar convex lens with spot diagrams. It depends only on the aperture 
angle (r/0  in Eq. (4.4)), may be reduced by limiting the aperture, and is therefore 
called 'aperture aberration'. However, on doing this the imaging system very quickly 
loses light intensity. Therefore, for practical applications further corrections are nec-
essary, which can be achieved by choice of a combination of convenient radii of curva-
ture (`aplanatic systems') or by the use of a lens system, for example. In particular, 
spherical aberration is often corrected at the same time as chromatic aberration (see 
Section 4.5.3). 

Example: Aperture aberration of a thin lens 
Since spherical aberration is deter- 

	fi tt 8r(r) mined by the aperture angle only, we 
consider a point on the axis, ro  = 0, at 
a distance g from the lens (Fig. 4.21). 
As we have already discussed in more 

8z(75 detail on p. 21, the image point must 
also lie at r(z) = 0 and must be inde-
pendent of r. ) . From the combination of 
the linear approximation with the Sei- 

del approximation, one finds 

( 
1 	1 	1 	r 	 I 3 r(z) = 0 = g z —
g 

+ —
z 

— —
f 

ro  + Coonro . 

Within the paraxial approximation Eq. (4.2) is fulfilled exactly for z = b. But here 
the intercept with the optical axis depends on r. In linear approximation for small 
shifts it holds that z = b + z(ri) and r(z) = 0 for  rj  is valid for 

z = — Coo2iro 
/ 3 

Here, we have determined the so-called longitudinal spherical aberration. In a 
similar way the transverse spherical aberration (6r (r') in Fig. 4.21) may be calculated. 

Fig. 4.21: Spherical aberrations. 



compensation plate 
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/ secondary mirror 

or 

Fig. 4.22: Cassegrain—Schmidt 
telescope. 
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Example: Schmidt mirror 
An interesting variant of the commonly used 
Cassegrain concept is the so-called Schmidt telescope, 
which is additionally equipped with a compensator 
plate made of glass. It corrects not only the aperture 
aberration, but also chromatic aberrations, coma and 
astigmatism. Thereby large image fields up to 6° are 
achieved that are very suitable for a celestial survey 
campaign. Standard telescopes do not achieve more 
than about 1.5°. 

Schmidt's idea first takes into account that a 
parabolic mirror may generate perfect images very 
close to the axis, but on the other hand causes strong 
comatic distortions even at small distances, while a 
spherical mirror creates a much more regular image 
of a circular observation plane. In the vicinity of the 
axis the location of the spherical mirror may be de-
scribed according to the expansion 

y4 

	

Z = - 	 

	

4f 	64f3  + • • • 

where the first term corresponds exactly to the paraboloidal form. The compensator 
plate with refractive index n compensates exactly for the difference in optical path-
length between spherical and paraboloidal surface, if the variation of the thickness 
is 

y4 

A(Y) = 	 (n — 1)32f 3  

(the factor of 2 occurs due to reflection). This form — the solid variant in Fig. 4.22 — 
increases towards the aperture of the telescope, whereas the dashed variant in Fig. 4.22 
minimizes chromatic aberrations as well [11 ] . 

When the compensator plate is mounted within the plane of the centre of curvature 
of the primary mirror, then the correction is valid also for larger angles of incidence 
within good approximation. 

Astigmatism 

If the object points do not lie on the optical axis, then the axial symmetry is violated 
and we have to discuss the 'sagittal' and the 'tangential' planes of beam propagation 
separately. 1  The effective length of focus of a lens depends on the angle of incidence, as 

'Astigmatism of an optical lens also occurs for a component that is perfectly rotationally symmet-
ric. It should be distinguished from astigmatism of the eye, which is caused by cylindrical asymmetry 
of the cornea and creates image points at different distances even for axial points. 



sagittal image point 

ential imapoint 

point of least 
confusion 
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4 Optical images 

can be recognized in Fig. 4.23, where the light rays of the sagittal and tangential planes 
are concentrated into two different focal lines. Between these two lines there exists a 
plane where one may identify an image point of 'least confusion' as a compromise. 

Fig. 4.23: Astigmatism of a lens. Within the sagittal (dotted) and tangential planes (shaded), 
the image points lie at different distances. 

Example: Astigmatism of tilted planar plates 
When light passes through a planar plate at an oblique 
angle, this leads to different effective focal lengths 
and thereby to astigmatism. We have illustrated this 
qualitatively in Fig. 4.24. Thus a planar plate may 
be used to compensate for the astigmatism of other 
components as well. Astigmatism occurs nowadays, 
for example, as a property of light beams emanating 
from diode lasers, which in edge-emitting configu-
ration do not have axial symmetry in general (see 
section 9). 

In laser resonators, optical components are of-
ten installed at the Brewster angle. If curved con- 

Fig. 4.24: Astigmatism of a cave mirrors are used, then the astigmatism of those 
tilted planar plate. 	 (see p. 17) may be used for compensation by suitable 

choice of the angle [601. 

Coma and distortion 

Among all image aberrations, the one called 'coma' (from the Greek word for long hair) 
or asymmetry aberration is the most annoying. Coma causes a comet-like tail (that 
is where the name comes from) for non-axial object points, which we have illustrated 
qualitatively in Fig. 4.25. 
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According to Tab. 4.2 the image field curvature has a similar form to astigmatism, 
but it is axially symmetric. Distortion has two variants, pin-cushion and barrel dis-
tortion, which are also indicated in Fig. 4.25. This contribution depends on the radius 
only. 

11111.11111111111 
MONIPUMMI 
1111111h11111111 
111111111111111 

Fig. 4.25: Coma (left), barrel distortion (top right) and pin-cushion distortion (bottom right). 

4.5.3 Chromatic aberration 

Chromatic aberration is caused by dispersion of optical materials, since the index of 
refraction of the glasses used in lenses depends on the wavelength. The refractive 
power of a convex lens is in general higher for blue light than for red light. We discuss 
the effect of dispersion with the lens maker's equation (1.19) for a lens with refractive 
index n(A) and radii of curvature R and R' 

1 	1 	1 	
,( 1 
	1 

The object distance is fixed, of course, but the image distance changes with the index 
of refraction, 

1 An 1 
A-6 	( 1 	1  = 	 

R' R 	n — 1 f 

Fig. 4.26: Chromatic aberration and correction with so-called achromats. 

We know (see p. 22) that the refractive powers D of two directly neighbouring 
lenses add, and due to D = 1 1 f it holds that 1/ftot = 1/fi 1/f2. If the focal length 
of the combined system is not to change with wavelength any more, then 

A  1 	An i  1 	An2  1 
LA— = 	 + 	 = 0

'  ftot 	ni — 1 	n2 — 1  f2  
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and we find the condition, to correct for chromatic aberration: 

An2 
12 	 = 	• 	 (4.6) 

ni — 1 	n2 — 1 

To treat this situation more precisely, we have to use the linear expansion of the 
refractive index, 

An = 
dni 

AA + 
1 d2ni 

(AA)
2 

+ • • • . 

dA 	2 dA 2  

However, because certain standard wavelengths for AA have been agreed (see Tab. 
1.1), the above expression is sufficient. Since dispersion has the same sign for all kinds 
of known glasses, a lens without chromatic aberrations, which is called achromatic, 
must be composed of a convex and a concave lens (see Fig. 4.26). Lenses also play an 
important role in particle optics; there, it is much more difficult than in light optics to 
construct achromatic systems, since divergent lenses cannot be constructed so easily 

Incidentally, the radii of curvature of the two lenses are not yet determined by 
the condition (4.6) for correction of chromatic aberration. This degree of freedom 
is often used to correct not only for chromatic aberration, but simultaneously for 
spherical aberration of a lens. Therefore, with an achromat one often gets a lens that 
is corrected spherically, as well. 



5 Coherence and interferometry 

The principle of superposition from Section 2.1.6 delivers all the requirements needed 
to deal with the interference of wave fields. So one could treat interferometry and 
coherence just as part of wave optics, or as an implementation of the principle of 
superposition. But interference in interferometry is decisively determined by the phase 
relations of the partial waves. In particular, we will consider the quite unwieldy concept 
of coherence, leading to quantitative measures for the role of phases, which are always 
subject to fluctuations in the real world. 

Because of this enormous significance, we will devote this chapter to these aspects of 
wave optics. Nearly every field of physics dealing with wave and especially interference 
phenomena has taken up the concept of coherence, like e.g. quantum mechanics, which 
calls the interference of two states 'coherence'. With the help of quantum mechanics, 
interference experiments are described and interpreted with matter waves. 

Tab. 5.1: Basic interferometer types. 

Coherence type Two-beam interferometer Multiple-beam interferometer 

Transverse 	 Young's double slit 	 Optical grating 

Longitudinal 	Michelson interferometer 	Fabry—Perot interferometer 

The wealth of literature dealing with interferometry is not easily comprehensible, 
not least due to its significance, e.g. for the technique of precise length measurement. 
In this book, we are focusing on the types shown in Tab. 5.1 underlying all variants. 

5.1 Young's double slit 
The double-slit experiment first carried out by Thomas Young (1773-1829), an early 
advocate of the wave theory of light, is certainly among the most famous experiments 
of physics because it is one of the most simple arrangements to achieve interference. 
The concept is emulated in numerous variants in order to prove the wave properties 
of different phenomena, e.g. of matter waves of electron beams [76] or atomic beams 
[18], which are discussed later in a short digression (see p. 135). 

The fundamental effect of interference for light emanating from a double-slit ar-
rangement instead of a single slit is shown in Fig. 5.1. The conditions for and properties 
of this interference phenomenon are discussed in detail in Section 5.3. 

Optics, Light and Laser. Dieter Meschede 

Copyright C) 2004 Wiley-VCH Verlag GmbH & Co. KGaA 
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Fig. 5.1: Young's double-slit experiment. On the right is shown the interference pattern from 
a double slit. On the left is shown the pattern of a single slit (one slit blocked) for comparison. 
A logarithmic grey scale has been chosen to make the interference patterns visible. 

5.2 Coherence and correlation 

The concept of 'coherence' means the 'capability of interference' of wave fields. We 
shall see how we can also quantitatively describe it by 'coherence length' and 'coherence 
time'. These terms come from optical wave theory and state the distances or periods 
of time over which a fixed phase relation exists between (at least) two partial waves, 
so that Within this interval the principle of superposition can be applied without any 
trouble. 

When one calculates the distribution of intensity from the superposition of two 
coherent partial waves EL 2(r, t), first the amplitudes have to be added and then the 
square of the amount has to be set up: 

c  oh (r t) = TiEl(r,t) E2(r, 01 2  

= /i (r, t) ± /2 (r, t) 	ceo  Nef-Ei(r, t)E;(r,t)}. 

In the incoherent case, however, the intensities, are simply added, 

CEO /inc (r, t) = —2-
2  HEi(r, 	+ 1E2(r, 01 2  I = 	t) + /2(r, t), 

(5.1) 

and we see immediately that the difference is determined by the superposition term. 
This quantity /coh though can only be observed if there is a fixed phase correlation 

between El  and E2 at least during the time of the measurement, because every real 
detector carries out an average over a finite time and space interval. The times of 
fluctuation depend on the nature of the light source. For example thermal light sources 
exhibit fluctuations on the scale of pico-- and femtoseconds, which is not reached by 
detectors working typically on the nanosecond scale. 
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5.2.1 Correlation functions 

Quantitatively the relative time evolution of the phase of superposed fields can be 
understood by the concept of correlation. We define the general complex correlation 
function, also known as the coherence function, as 

F12  (r i ,  r2, t, 7) = (El (ri, t 4-7)-E;(r2,t)) 

1 t+TD /2 
= 	 Ei (r i ,t' + r)E;(r2, t') de , , 

TD D ft_TD /2 

which in the average (brackets ( )) only takes into account the finite integration time 
TD of the detector. It is obvious that the interference term in eq. (5.1) is a special 
case of this function. More exactly, this is the first-order correlation function. Fully 
developed theories of coherence make extensive use of correlation functions of higher 
orders, too. In the second order, for example, there are four field amplitudes related 
to each other [70]. 

In interferometry we will consider correlations that do not change with time, so 
that after averaging only the dependence of the delay is left. Additionally, we will 
generally determine the intensity of the superposition of waves, i.e. we will consider 
F12 at only one point r = r 1  = r2 , so that the simplified form 

Fi2(r,r) = 
CC() 

t + 7- )E; (r , t)) 
2 

(5.2) 
, lim 1  f T  E

1 
 (r

' 
 t ± 7) E; (r , t) dt 

T—,00 T 0   

is sufficient. In the case of very large delay times r,  we expect in general the loss of 
phase relations between E1  and E2, so that F12 statistically fluctuates around 0 and 
vanishes on average: 

F12(r, -/---->oo) -4  0. 

To make the connection with Eq. (5.1), we have to take into consideration that, 
in a typical interferometry experiment, the partial waves are created with the help 
of beam splitters from the same light source. The delay T then reflects the different 
optical pathlengths of the partial waves to the point of superposition. The function 

F12 (r, 7) describes their capability of forming interference stripes. 
It is very convenient to define the normalized correlation function ry12 (r, T) which 

is a quantitative measure for the interference contrast, 

, 	(c€0 /2)(E1 (r,T)EVr,0)) 
rY12(r,r) =  

V(1-1  (r)) (/2 (r)) 	• 

The function 712 is complex and takes values in the range 

0  l  2112(r,r)i  l 1 . 

An important special case of Eq. (5.3) is the autocorrelation function, 

(E1(r,r)E1(r,0)) 
'Yii(r,r) = (11(r)) 	' 

(5.4) 
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which in this case relates the amplitude of an electromagnetic field to itself with delay 
T. We shall see its important role in the quantitative analysis of coherence features. 

Now we can summarize the calculation of intensity for coherent and incoherent 
superposition by 

(/(r)) = (/ i (r)) + ( 12(r)) + 2V(/i(r))(/2(r))91e{712(r, T)}. 

In interferometry, the different paths of light beams coming from the same source 
generally cause a delay -7--  = (Si  — 82 )/c. In order also to define a quantitative measure 
of coherence, we introduce the visibility 

'max — 1-min 
V = r 	 f 	 (5.5) 

i max + /min 

with 'max  and /mi n  describing the maxima and minima of an interference pattern, 
respectively. Obviously, 17(r) also takes values between 0 and 1. In an interferometric 
experiment, the degree of coherence can be measured by determination of the visibility. 

The capability of interference could not have been taken for granted and has played 
an important part in the development of wave theory. The reason for the great signif-
icance of interferometry for wave theory is to be found in the fact that the physical 
features of a wave, i.e. phase and amplitude, can only be measured by superposition 
with another wave, i.e. by an interferometric experiment. Whether interference can 
be observed is crucially dependent on the coherence properties of the waves. 

5.2.2 Beam splitter 

The central element of an interferometric arrangement is the beam splitter. In the 
past, only by separation of an optical wave from a single light source' could one create 
two separated partial waves that were able to interfere. 

Fig. 5.2: Wavefront (left) and amplitude (right) beam splitters. Beam splitters have a second 
entrance, which is not always as visible as for the right-hand type. 

One can differentiate between two different types of beam splitters, as shown in 
Fig. 5.2. The `wavefront splitter' with the double slit is the classic form, and the 

'Today, we are able to synchronize two individual laser light sources so well that we can carry out 
interference experiments using them. 
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'amplitude splitter' is usually in the form of a partially reflecting glass substrate. In 
the case of advanced applications, the existence of a second entrance gains importance. 
The second entrance can easily be seen in the right-hand interferometer in Fig. 5.2. 

5.3 The double-slit experiment 

Let us now consider in detail the incidence of a planar wave on a double slit (Fig. 5.3). 
Both slits act as new virtual and phase-synchronous (`coherent') light sources. To 
understand the interference pattern on the screen, we have to determine the difference 
between the two optical paths '1' and '2'. If the distance z between the double slits and 
the screen is very much larger than the distance d between the slits themselves and the 
extent x of the interference pattern, i.e. d, x < z, we can determine the path difference 

A l 2 between paths 1 and 2 in a geometrical way according to the construction from 
Fig. 5.1, and calculate the intensity distribution according to Eq. (5.1). 

I(x)/lyn  

Fig. 5.3: Analysis of the diffraction pattern from Fig. 5.1. Left: Notations and geometry 
of the double slit. Right: The interference pattern is understood as the product of the single-
slit diffraction pattern (dotted line) and sinusoidal modulation (thin line). Here, width D = 
distance/4 = d14. 

If the path difference is an integer multiple of the wavelength, Ai2 nA, we expect 
constructive interference; in the case of half-integer multiples, we have destructive 
interference. The path difference Al2 at angle a is 

Al2 = dsin a, 

and on the screen for a x/z we expect a periodic fringe pattern varying as 

2nd x 
/(x) = —2  (1 + cos  A   z ) , 

with maximum intensity /(x=0) = io• 
During this analysis, we have assumed that the two slits are infinitesimally narrow. 

In a real experiment, of course, they have finite width, so we have to take into account 
single slit diffraction, also. The superposition of the two phenomena can be taken into 
account by means of Fraunhofer diffraction at a slit according to p. 55. The situation 
becomes very simple, if we displace the slits by e = ±dI2 = ±eo  from the axis. Calling 
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the box-shaped function for the slit (width D) again by r(e), we get for the diffraction 
integral with K x = 2TEX I AZ: 

oc 	s [r( — Co)  ek'm + 7(e + Co)  eu"9 

T(0 	de (eix d12 e—iK,d12). 

The intensity distribution is calculated as usual from I  = egg 1 2 /2 for linear polar-
ization, 

/0 2nd  x) sin2 (nxD/Az) 
I -= — (1 + cos 

2 	A z)  (nxD I Xz) 2  ' 

and we recognize immediately the complete interference pattern containing the product 
of the diffraction images of the single slit and of the double slit (Figs. 5.1 and 5.3). 

5.3.1 Transverse coherence 

If the light source has a finite extent, we can visualize it as consisting of point-like light 
sources that illuminate the double slit with the same colour or wavelength but with 
completely independent phases. In this case an additional phase difference appears 
that can be determined according to a similar construction as in Fig. 5.1. If one of 
these point sources S lies at an angle )3 to the axis, the whole phase difference is 

, 

	

4) 12 	k 	
2nd 

Al2 2-2  	(3) 
A 

for small angles a and /3. 
According to this, displacement of the light source causes a transverse shift of the 

interference pattern on the screen. If all shifts between 0 and 27( occur, the fringe 
patterns of all point sources are shifted with respect to, and extinguish, each other. In 
order to observe interference, the maximum phase shift A max  occurring between two 
point sources of light at a separation of  La  = zs  — 0') from each other and at a 
distance zs from the double slit must not become too large: 

2irdAa 

	

Amax = 	< 1 . 
Azs  

This condition is met if the angle S2 = 0 — 0' -= Aa/zs with which both of the 
source points are seen is sufficiently small, i.e. 

Aa 1 A 

	

— 	< 	 (5.6) 

	

zs 	2it d 
According to this, for a given wavelength A and a given distance zs, the ability to 
interfere ('interferability') can be achieved through a light source with a sufficiently 
small point-like area (Aa < Azs/27cd) or slit separation (d < Azs /2icAa) 

The coherence area of a source is to be determined by changing the slit separation 
d while the source distance is fixed. The central interference fringe (which is always 
a maximum) with its adjacent minima should be watched and evaluated according 
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to Eq. (5.5). The distance where the value V = 1/2 is obtained is defined as the 
transversal coherence length. 

Excursion: Double-slit experiments with matter waves 

d = 8pui 

e  of igh measurement T 

20 	40 	60 XdB (pm) 

Fig. 5.4: Diffraction of matter waves at a double slit. By courtesy of J. Mlynek and T. Pfau. 

We have dealt with double-slit interference as a purely wave phenomenon in the previous 
section, but we have also already referred to the application to other wave phenomena, in 
particular to matter waves. In this context, there is a very well-known fact that tests our 
intuition quite hard: an interference pattern is also generated by a single particle, by so-called 
'self-interference'. Although we always detect only one particle, its matter wave must have 
gone through both slits simultaneously! We gather this idea from the way in which quantum 
mechanics deals with it theoretically. It has been proven by experiments time and again, but 
stands in bizarre contradiction to our natural, i.e. macroscopic, view of a 'particle'. 

The first demonstration of the double-slit experiment with matter waves was given by 
Moellenstedt [76] using electron beams. For that experiment an electron beam was collimated 

and sent through an electric field arrangement corresponding to a Fresnel biprism. In recent 
times atom optics [1] has been established as a new field. With helium atoms a double-slit 
experiment has been carried out in perfect analogy to Young's experiment [18]. On the one 

hand, the de Broglie wavelength Ada; of neutral atoms with mass m and velocity y within 
the atomic beam is very small, AdeB = h/77/V 20 pm. That is why very tiny slit widths and 
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separations had to be used, d < 11.tm, in order to obtain resolvable diffraction. The atomic 
flux was accordingly very small. On the other hand, helium atoms in the metastable 3 S 
state can be detected nearly atom by atom by means of channel plates. This high detection 
sensitivity has made possible the atomic Young's experiment with neutral atoms. 

In the lower part of Fig. 5.4 the result of the experiment is shown. The small atomic 
flux density has even an additional advantage. At a pulsed beam source one can record the 
velocity of the atom by time-of-flight measurement and watch the change of the interference 
pattern. This can be directly interpreted as a consequence of the variation of the de Broglie 
wavelength, which can be immediately calculated from the time-of-flight measurement. 

Finally we may turn to the interpretation once more, and consider the light from the 

point of view of the particles or photons. For that we imagine an experiment in which the 

double slit is illuminated with such a weak intensity that there is only one photon at one time 

— the condition for self-interference is also met again. Sensitive photon-counting cameras are 

used to detect the interference pattern. We observe indeed a statistical pattern, which after 

some time generates a frequency distribution described exactly by the interference of the light 

waves. 

5.3.2 Optical or diffraction gratings 

If the number of slits is greatly increased, one obtains an optical grating, an exam-
ple of multiple beam interference. Optical gratings are used as amplitude, phase or 
reflective gratings, and are qualitatively introduced in Fig. 5.5. They are specified 
according to the number of lines per millimetre, typically 1000 line mm -1  or more for 
optical wavelengths. It is remarkable and impressive that even very fine gratings may 
'simply' be carved mechanically with diamonds. Optical gratings exhibit typically 
several orders of diffraction. For efficient application, grooves with special shapes are 
used to concentrate the intensity into a single or a few diffraction orders only, see Fig. 
5.5. Such gratings are called blazed gratings. 

Mechanically manufactured gratings, though, suffer from scattering losses and ad-
ditional faults with a long period (`grating ghosts'). Better optical quality is offered 
by components called 'holographic gratings' according to the method of manufacture. 
They are produced by methods of optical microlithography. A film ('photoresisf) on 
a substrate of optical quality is exposed to a standing light wave. The solubility of 
the exposed film depends on the dose, and thus a remnant of film is left over at the 
nodes of the standing wave (see Fig. 5.5). A reflection grating can be manufactured 
from this structure, e.g. by coating with a reflecting material. One disadvantage, in 
the case of a holographic grating, is that it is more difficult to control the 'blaze' by 
properly shaping the grooves. 

The condition for interference is identical with that of the double slit. We consider 
the beams radiating from the N lines of a grating with length L. Two adjacent beams 
have a path difference A that is a function of 0: 

A(0) = (kLIN) sin 0. 	 (5.7) 
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Fig. 5.5: Left: Amplitude, phase and reflective grating. The blaze of a reflective grating can 
be chosen in such a way that the diffraction is mostly directed into a certain desired order, 
for instance by shaping the grooves. Right: Manufacturing of a holographic grating with an 
asymmetric groove. The photoresist is illuminated by a standing-wave light field. At the nodes 
it is only weakly affected and thus remains insoluble. 

Under homogeneous illumination, the field amplitude is 

E= El + E2 + • • ' + EN 

= E0 (1 + e -i°  + e -2iA  ± • • • + 	 e -iw t  

= Eo  exp{ -i[wt 	1)An-
sin(NA/2)  
sin(A/2) 

ap- Fig. 5.6: Diffraction pattern of a grating consisting of six 
the single slits at two different wavelengths. The contribution 

at of the single slit (broken line, width = 0.6 x distance 

A = 3t/N. 	For large between slits) has been neglected. 

N the intensity is limited to 
/(A--.3/c/N)  2  N2 /(37t/2) 2 	0.05/max  only. The diffraction grating concentrates 
the radiation energy into the main maxima. 

The diffraction pattern 
(Fig. 5.6) of the grating has 
maxima at A = 2mn, with 
m = 0, +1, ±2, .... There the 
intensity is calculated from 
/0  ---= c€0 1E0 1 2  and  'max = 
c€0 1E(A=2m7r)1 2/2 = N2 10 . 
Diffraction between the in-
tensity maxima is strongly 
suppressed, and the grating 
can be used very advanta-
geously as a dispersive element 
for spectral analysis. 

The first minimum 
pears at A = 2rc/N, 
first secondary maximum 
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The spectroscopic resolution is of primary interest. According to the Rayleigh 
criterion, the main maximum of one wavelength is supposed to fall into the first null 
of the only just resolvable adjacent wavelength, i.e. according to Eq. (5.7) 

2ic L 2n 
A(0±60) - A(0) '-' —

A 
—
N 

cos° 60 = — 
 

N . 

The condition for the main maximum varies with the wavelength according to 
m SA = (L IN) cos 0 60 = A/N and so results finally in the resolution 

A 
R. = —

SA 
= mN. 

This increases with the number of illuminated slits N and with the order of interference 
m, as can also be easily seen in Fig. 5.6. 

Example: Resolution of an optical grating 
We determine the resolution of a grating with a diameter of 100 mm and number of 
grooves equal to 800 line mm-1  at A = 600 nm. We get 

R.  = 100 mm x 800mm-1  = 0.8 x 10 5 . 

From that a wavelength can be separated just at a difference of 

A 
	 7x  10-3 nm. 
mN 

5.3.3 Monochromators 

Grating monochromators are standard equipment in most optical laboratories, and 
they play an important role by offering one of the simplest instruments of spectroscopy 
with high resolution. They all have in common the use of reflective gratings, which 
are technically superior to transmission gratings. They differ only in those structural 
details dealing with operation or resolution. 

As an example we introduce the Czerny-Turner construction (Fig. 5.7). Here, the 
grating has to be completely illuminated to achieve the highest possible resolution, 
which is why the input light has to be focused on the entrance slit. The grating 
simultaneously serves as a mirror that is turned with a linear motion drive. One finds 
according to eq. (5.7) 

L 
mA = —

N 
(sin 0 - sin 0'). 

Because 0 = a/2 - OG and 0' = a/2 + OG (Fig. 5.7), one gets 

2L 
A = 

mN 
cos(a/2) sin OG, 

and hence the wavelength at the exit slit only depends on the rotation angle 0G. 
Spectral resolution depends on angular resolution in this instrument, and it im-

proves with the distance between the slits and the grating. Thus monochromators are 
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Fig. 5.7: Principle of the Czerny-Turner monochromator. 

offered with standard lengths of 1/8 m, 1/4 m, 1/2 m, etc., which are a coarse measure 
of their resolution. Above approximately 1 m they become large, heavy and impracti-
cable, so that resolution exceeding 106  is cumbersome to achieve. Through the advent 
of laser spectroscopy, which we will discuss in Section 11, resolution inconceivable with 
the conventional methods using grating monochromators has been reached. 

5.4 Michelson interferometer: longitudinal 
coherence 

The interferometer arrangement given 
for the first time by the American physicist 
M. Michelson (1852-1931) has become very 
famous. It was developed to identify exper-
imentally the 'ether' postulated in the 19th 
century to be responsible for the spreading 
of light. If the ether existed, the speed of 
light should depend on the relative speed of 
the light source in that medium. 

The results by Michelson and Morley 
could only be interpreted by assuming that 
the speed of light was independent of the ref- 
erence frame — a discovery that led Poincaré, Fig. 5.8: Michelson interferometer. BS = 

Lorentz and finally Einstein to the develop- beam splitter; Ml,  M2 = mirrors. 

ment of the theory of special relativity. 
The heart of a Michelson interferometer (Fig. 5.8) is the amplitude beam split-

ter, mostly consisting of a semitransparent mirror. An incident planar wave E = 
Ein  e—i(cat—kr) is separated into two partial waves with equal amplitudes 

ga"b  = Usually the beam splitter consists of a polished glass substrate coated ononesil ien. /T1-21e 
reflected and transmitted beams travel along different optical paths. The two paths 
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are different since the substrate acts on one of the two arms only. For compensa-
tion, sometimes an additional glass substrate of the same thickness is inserted into the 
other arm in order to make the interferometer arms as symmetric as possible. Using 
monochromatic laser light, this does not matter because the difference in the light 
pathlengths can simply be geometrically compensated. If the light is polychromatic, 
however, dispersion of the glass substrates caused by wavelength-dependent differences 
in the light paths is also compensated by the additional substrate. 

At the end of the two interferometer branches the two partial waves are reflected 
and pass through the beam splitter again. The interferometer generates two separate 
output waves E1  and E2, 

E1 = 	(Ea +  Sb)  = 
_l e. c i(wt_kr) (  2ikri 	2ikr + e 2  ) 

1 

2 In  

1 
E2 — 	(Ea. — SID) = 	

c 
„--i(c.ot—kr')( e2ikri 	e2ikr2 \ 

2 c'in 	
), 

at its exits. We calculate the intensity there and get from I = f oceS*/2 the results 

- /0 {1 	cos[2k(r i  — r2)]}, 

1 /n{1 — cos[2k(r i  — r2)1}. 2 - 

(5.9) 

According to this, the total intensity is distributed on both exits /0  =  11 +12  depending 
on the difference in light paths s = 2(r i  —r2 ). Note that, in this arithmetical treatment, 
the different signs in the sum of the partial beams (E1,2 = (Ea + eb)/V2-  ) are caused 
by the reflections at the beam splitter, in one case at the more dense, and in the other 
case at the less dense, medium. This 90° phase difference is also essential to satisfy 
energy conservation. 

5.4.1 Longitudinal or temporal coherence 

With the Michelson interferometer, the temporal coherence length fcoh = crcoh is 
measured by increasing the length of one branch until the interference contrast is 
decreased to the half. The coherence length is then twice the difference of the two 
branches, -coh —  ri  — r2  I in Fig. 5.8. Usually, the visibility from Eq. (5.5) is again 
used as a quantitative measure. 

The interference contrast is measured through the field autocorrelation function 
FEE. (SIC), according to Eqs. (5.2, 5.3) with T — SIC. This is linked to the spectral 
power density 

f cc  
SE(W) = 	FEE*(SIC)e iwsie  ds 

c o 

according to the Wiener—Khintchin theorem (see Appendix A, Eq. (A.9)). So a Fourier 
transformation of the interferometer's signal as a function of the path difference delivers 
information about the spectral properties of the light source. Analysis of the light 
from a sodium vapour lamp with the Michelson interferometer shows this connection 
very clearly, as we describe qualitatively in Fig. 5.9. This relation is also the basis 
of the Fourier spectrometer, which we mention here for the sake of completeness. 

(5.8) 
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0,5 

0 

Fig. 5.9: Interferometer signals of a Michelson interferometer for a single and a double 
spectral line, like e.g. the yellow D line of the Na vapour lamp. In the upper inset boxes the 
associated spectra are shown. 

Furthermore, the self-heterodyne method from section 7.3.2 can be considered as a 
variant on the Michelson interferometer. Here the path difference of the arm lengths 
even has to be so big that no stable interference can be observed in the time average. 
This method allows determination of the spectral properties of a narrowband laser 
light source. 

Example: The wavemeter 

Fig. 5.10: Wavemeter arrangement for the determination of laser wavelengths. For clarity 
the laser beam to be measured (broken line) is drawn only at the entrance and at the exit. 

The wavemeter, also known as the lambda meter, is a variant of the Michelson interfer-
ometer used in many laser laboratories. Monochromatic laser light sources have a very 
large coherence length Koh  >10 m). During continuous variation of the pathlength 
difference of the interferometer arms, they consequently generate a sinusoidal modula-
tion of the interferometer signal with period proportional to the frequency or inverse 
wavelength of the laser light according to Eq. (5.9). Comparison of the interferometer 
signal of an unknown wavelength An ew to a reference laser wavelength Aref amounts to 
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the determination of the unknown frequency or wavelength by simple division of the 
number of fringes counted when the reflector trolley slides along its track. 

In the wavemeter arrangement, two retro-reflectors are fitted to a mobile carriage 
(Fig. 5.10), so that the incident and reflected beams of the Michelson interferometer 
are spatially separated. At one exit the reference beam is directed to a photodiode 
in order to count the number of interferometer fringes for a certain travelling interval 
Nref.  . At the other exit it serves as a tracer beam for a differently coloured laser beam 
to be measured. Its interferometer fringes are counted on a second photodiode, Nmeas . 
Electronic division then yields the unknown wavelength through comparison with the 
reference laser: Ameas  = ArefNm  /AT eas, — ref • 

Excursion: Gravity wave interferometer 
A particularly unusual variant of the Michelson interferometer with huge dimensions has 
been constructed at several places around the world. For example, the project at Hannover 
(Germany) called GE0600 has an arm length of 600 m, while at other places even arm lengths 
up to 4 km have been realized. 

With a Michelson interferometer, as well as with every optical interferometer, minute 
lengths or variations of length can be measured with an accuracy far below the optical wave-
length. Exactly this feature can serve to detect distortions of space caused by gravity waves. 
Though they were predicted in detail by Einstein's theory of general relativity, they have not 
been directly observed yet since they only exert an extraordinarily weak force even on big 

masses. 

Fig. 5.11: Gravity waves are predicted to cause 
quadrupolar distortions of space, e.g. by radiation 
from a rotating binary star. Astrophysicists are 
using sensitive Michelson interferometers for the 
search. 

For a most sensitive proof of a change 
of length (5.e with an interferometer, the 
instrument itself has to have a length 
t as large as possible. According to 
the theory of general relativity, even for 
strong astronomical 'gravitational wave 
sources' like e.g. supernova explosions, 
relative sensitivities of (We ,------' 10-20  
are necessary. At a length of 1 km this 
corresponds to about 100th of a pro-
ton radius! Gravity waves spread like 
electromagnetic waves, they are trans-
verse, but have quadrupolar character-
istics (Fig. 5.11). 

The sensitivity can be increased by 
folding the light path in each arm. Nar-
rowband detection of the weaker but 

continuous and strongly periodic emission of a binary star system (see Fig. 5.11) promises an 
increase of sensitivity. To achieve sufficient signal-to-noise ratio of the interferometer signal, 
the use of very powerful laser light sources with superb frequency stability is necessary. At 

the present time neodymium lasers are preferred for this task. 
Not only could the proof of the existence of gravity waves offer the long-sought confirma-

tion of the theory of general relativity, but also, with gravity wave antennas, a new window 
could be opened for the observation of space. In the face of these expectations, the plans for 
the Laser Interferometer Space Antenna (LISA) [79] do not seem to be completely eccentric. 
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In this spaceflight project, in about 2008 it is planned to park a Michelson interferometer 
consisting of three spaceships (two mirrors and a beam splitter with light source) shifted by 
200  in Earth orbit around the Sun. This Michelson interferometer will have an arm length of 
5 x 106  km! 

5.4.2 Mach-Zehnder and Sagnac interferometers 

There are numerous variants of the Michelson interferometer that have different me-
thodical advantages and disadvantages. Two important examples are the Mach-
Zehnder and the Sagnac interferometers, the latter of which, strictly speaking, forms 
a class of its own. 

Mach—Zehnder interferometer 

The Mach—Zehnder interferometer (MZI) is derived from the Michelson interferometer, 
in which the reflections at the mirrors are no longer carried out at normal incidence 
and a second beam splitter is used for the recombination of the beams. The MZI is 
also used for spatially resolved studies of changes in the wavefronts passing objects of 
interest [42]. 

The reflection angle at the beam splitters (BS) and mirrors (M1, M2) in Fig. 5.12 
(left) is not necessarily limited to 90°. Several times the MZI concept has stimulated 
ideas for interferometric experiments in particle optics, since there mirrors and beam 
splitters can often be realized only under grazing incidence, with small deflection 
angles. 

Fig. 5.12: Mach—Zehnder (left) and Sagnac (right) interferometers. BS = beam splitter. 
The Sagnac interferometer can be realized with mirrors or with an optical waveguide. 

Sagnac interferometer 

The Sagnac interferometer also derives from the Michelson interferometer, in which 
the light beams are not reflected back to themselves but run back on diametrically 
opposed paths that are at first identical. But if the interferometer is rotating around an 
axis perpendicular to its plane, a phase shift between the opposing beams is predicted 
by the theory of special (and general) relativity. For the sake of simplicity, we consider 
a circular light path (radius R) in a fibre and with one beam splitter. The round-trip 
time is T = Lie = 27mRIc with n the refractive index of the fibre. We adopt the 



1 ±nvIc 
c± = c 

n± vie • 
(5.10) 
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result from the theory of special relativity that, in a medium moving at velocity 7), the 
speed of light as measured in the laboratory frame is modified according to [64] 

In the rotating fibre path (angular velocity SZ = v/R), in one direction the light travels 
towards the beam splitter, and in the other direction, away. Hence the effective round 
trip time is increased or decreased corresponding to the path 11S2T = vT travelled by 
the beam splitter, yielding the condition T± = L±/c± = (L + vT±)Ic± . From this 
implicit equation we extract T± = LI(c± ± v), and with a short calculation using the 
result Eq. (5.10) we find 1/(c± v) -, (n1 c)(1±(v Inc)). Surprisingly, the time difference 
T+  - T+  no longer depends on n, 

T+  - T_ r.' 2v I c2  = 2RQ/c2 . 

For light with frequency co, we now directly obtain the difference of the light paths or 
phase difference at the beam splitter from this: 

47R2  S2 	4F 
e2 

 
	= 1 — . 

 Ac . 

According to this, the interference signal is proportional not only to the angular ve-
locity u but also to the area F = TER2  of the Sagnac interferometer. The effective area 
and with it the sensitivity can be increased by the coil-like winding of a glass fibre 
(Fig. 5.12). 

Example: Phase shift in the Sagnac interferometer 
We determine the phase shift generated by the Earth's rotation (27r/24 h = 1.8 x 
10-6  s-1 ) in a Sagnac interferometer. The fibre has a length of 1 km and is rolled 
up into an area with a diameter of 2R=10 cm. The interferometer is operated with a 
diode laser at A = 780 nm. Thus 

A - 1.8 x 10-
6 Tr x 4(•0.1/2)2(103/n x 0.1) 

0.77 x 10-5  rad. 
(0.78 x 10 -6 ) x (3 x 108 ) 

This condition requires a high standard of experimental knowledge but can be realized 
in the laser gyro. 

If a laser amplifier is installed in a Sagnac interferometer, one has realized the 'laser 
gyro'. This is widely used since it allows very sensitive detection of rotary motion and 
acceleration, but for studies of this we refer the reader to the specialized literature. It 
should be emphasized, however, that in the laser gyro the waves running around to 
the left and to the right, respectively, have to have different frequencies. 
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5.5 Fabry-Perot interferometer 

We consider two plane parallel dielectric interfaces illuminated by a light beam at a 
small angle. Such an optical component can be easily made from a plane parallel 
glass substrate. In this case it is called a Fabry-Perot etalon (FPE) (from the French 
étalon, meaning 'calibration spacer' or `gauge'). It is often used for frequency selec-
tion in laser resonators or as a simple and very highly resolving diagnostic instrument 
for laser wavelengths. The light beams are reflected back and forth many times and 
so exhibit multiple beam interference in the longitudinal direction analogous to the 
diffraction gTating. 

Fig. 5.13: Multiple beam interference in the Fabry-Perot etalon (FPE). A ground glass 
substrate acts as a diffuser to generate light beam incident onto the etalon in many directions; 
The second lens L2 induces parallel light rays to interfere on a screen at the focal plane. 

The surfaces of an FPE are partly silvered and must be very smooth and plane. 
Furthermore, their relative tilt, or wedge, has to be very small. For precise measure-
ment, also the distance f of the spacing between the reflecting surfaces must be very 
well known and controlled. The optical length of the FPE depends on the index of 
refraction n of the substrate, 

'eopt = nt, 

which for a material such as glass changes relatively rapidly with temperature (dn I dT 
10-3  K-1 ). Stable, less-sensitive etalons are built with an air gap between glass sub-
strates fixed by spacers with small thermal expansion, e.g. quartz rods. If the distance 
t of the gap can be varied, e.g. by a piezo-translation, it is called a Fabry-Perot in-
terferometer. This type of instrument was used for the first time by C. Fabry and A. 
Perot in 1899. 

The condition for constructive interference can again be determined from the phase 
difference 6 between two adjacent beams. One determines the pathlength A-B-C in 
Fig. 5.14(a) and finds, with k = 2n/A, 

6 = ktopt  -= 2nkt cos 0 = 2nN, 	 (5.11) 
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where N is the order of the interference, usually a large number. This result perhaps 
contradicts our initial expectation, since, because of the geometry, each individual 
beam in the interferometer travels along an elongated path f/cos 0 tending to longer 
wavelengths and smaller frequencies. However, exactly the opposite occurs: tilting of 
an etalon shifts the interference condition to shorter wavelengths! 

Let us now add the individual contributions of each beam, where we now have to 
account for reflection and transmission. The change of intensity is described by the 
reflection and transmission coefficients, while the coefficients of the field amplitudes 
are defined by r = NrR and t = \TT: 

r, r' = amplitude reflectivity, 	R, R' = reflection coefficient, 

t, t'  = amplitude transmissivity, 	T, T'  = transmission coefficient. 

Phase jumps during reflection (it  phase shift for reflection off the denser material) 
are included with the total phase shift accumulated after one round trip and given by 

Then the transmitted partial waves contributing to the field amplitude Etr  at the 
interference point P are summed up in a complex geometric series, 

Etr = etEin  + rri  e i6  tt' Ein  + (7. 7) ) 2 e2id tt/Ein  + ... , 

yielding the result 
te Ein  

Etr = 	 
1 — rr' e i5  • 

(5.12) 

Fig. 5.14: Phase condition for the Fabry—Perot etalon. (a) Difference in the optical paths of 
the partial beams. (b) Self-consistent condition for the internal field. 

Alternatively, this result can be derived in a clear and efficient manner by consid-
ering only the wave circulating within the etalon right after the first mirror (see Fig. 
5.14), because in equilibrium it has to be reconstructed by interference of the internal 
wave after one full round trip and the incident wave: 

Eint  =  e 6  rr'Eint  ± tEin. 
From this, with Etr  = tiEint  , one again and immediately obtains the first result. 
Already, to satisfy energy conservation, there has to be a reflected wave. From this 
consideration, the effect of interference becomes still more transparent, 

r — r' ei6  r, 

Er  = rEin  — r't ei6  Eint — 	i6  i-fin• 	 (5.13) 1 rr , e  
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The minus sign occurs here because in this case there was one reflection - and hence 

one 71 phase jump - less compared to the circulating wave. 
Let us now explore Eq. (5.12) by considering the transmitted intensity. By taking 

the modulus, we first get 

TT' 
— 	 • 

11 — 'VRR' ei6I2 
This can be written more transparently by introducing the finesse coefficient,  F,  

4-V RR' 
F = 	

' 	
(5.14) 

(1-  

from which after a short calculation we get the Airy function 

TT' 	 1 

(5.16) 

and can even become identical with the incident wave if there are ideal loss-free mirrors 
with the same reflection coefficients: 

(R, T)  = (R' ,T') : 	/t r  = 	  

1 F sin2  (6 I 2) 
/t r  = 	. 

We will learn more about this case in Section 5.6 when we look at optical resonators. 
Now let us determine also the accumulated intensity circulating in the etalon along 

with the reflected intensity, 

1 r  
/int 	—7 tr , T 	' 

--= 	-Tin 	-rtr• 

Real resonators are always affected by losses, which should be as low as possible. If 
we take the losses per revolution simply into account with a coefficient A, we get the 
generalized finesse coefficient 

itr — Iin 
(1 — RR' ) 2  1 + F sin2  (6 2) • 

According to our calculation the transmitted intensity varies over the range 

(1  - R)(1  Ri )  < it r  < (1 —  R)(1 — R') 
(1 + V RR' ) 2  - 	(1 — RR' ) 2  

(5.15) 

4-VRR'(1 - A) 

	

FA = 	  
[1—  V RR' (1 - A) 

by which we can again calculate the transmitted power according to 

4TV(1 - A)  

	

r — 	 
(T + 

We can find analogous expressions for the reflected and the coupled power. 

A) 2  1 ± FA sin2  (6/2) • 

(5.17) 



T' =O 

T/A= I 

4(1.-A)/A 
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Example: Coupling of an optical resonator 
Optical resonators, which we shall discuss in more detail in Section 5.6, allow the 
storage of light energy, albeit only for relatively short times. Thus it is interesting to 
know the amount of an incident light field that is coupled into the resonator. This can 
be answered by the recent considerations. 

Again, the case of resonance = 0 is particularly important. We find these relations 
for the reflected and the transmitted fractions of the incident intensity: 

/r  
/in 

(T'  +A—TV 

A+T 
and 

Ar 	4774 (1 — A)  
(T' + A ± T)2  • 

The power circulating in the resonator can also be easily determined according to 

-Tres = itr IT' and is shown in Fig. 5.15 as a function of TIA and for the special but 
instructive case T' = O. 

Fig. 5.15: Influence of losses on the coupling of a Fabry—Perot resonator in the case of 
resonance = O. The normalized intensities of the reflected (Ir) and stored light fi eld (Ires) 

are displayed for the special case T' = O. 

The maximum of the coupled power is reached at T I A = 1. The power circulating 
there in the resonator is proportional to 1/A for low A. In this case the external losses 
(caused by the coupling mirror) are just equal to the internal losses. This situation is 
quite well known for resonators: only in the case of perfect 'impedance matching' is the 
full incident power coupled into the resonator, otherwise it is over- or under-coupled. 

5.5.1 Free spectral range, finesse and resolution 

According to Eq. (5.11), the Fabry—Perot interferometer delivers a periodic series of 
transmission lines as a function of the frequency co = ck of the incident light field. The 
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distance of adjacent lines corresponds to successive orders N and N + 1 and is called 
the 'free spectral range' AFSR 

1 

2nf 	Tci rc  

The free spectral range also just corresponds to the inverse circulation time 
the light in the interferometer. If the gap between the mirrors is empty (n = 1), then 
we simply have AFsR = cl2e. Typically, Fabry—Perot interferometers with centimetre 
distances are used whose free spectral range is calculated according to 

15 GHz 

f/cm 

and are usually designed for some 100 MHz up to several GHz. 
The Fabry—Perot interferometer can 

only be used for measurements if the 

AFSR = V1V+1 — 11 1V = (5.18) 

rcirc of 

AFSR 

AFSR 
periodicity leading to superpositions of 
different orders is visible. In that case 
the resolution between two narrowly ad-
jacent frequencies is determined by the 
width of the transmission maxima. It 
can approximately be calculated from 
Eq. (5.15) taking into account that most 
interferometers have large F coefficients. 
Then the sine function can be replaced 
by the argument, 

frequency 

Fig. 5.16: Free spectral range (FSR) and 
full width at half-maximum (FWHM) in the 
Fabry-Perot resonator. 

Itr 

If two spectral lines are assumed to be separable if their FWHMs Avi/ 2  do not 

overlap, the lowest resolvable frequency difference is determined from 6 = 1/F 1 / 2  = 

2nke, and for pairs of mirrors with identical reflectivity one obtains 

1—R  
Avv2 — AFSR nv-ri 	• (5.19) 

The ratio .F = AFsR/Av1/2 of free spectral range and resolution can be easily read 
from an oscilloscope screen like in Fig. 5.16. This measure is more common than the 
finesse coefficient F and is called the finesse 

Tr ffi 
4 	1 — R •  

The interferometric resolution v/Avv 2  is indeed considerably higher with 

7Z = 

and can easily exceed a value of  1Z> 108 . 

(5.20) 
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Example: Resolution of Fabry—Perot interferometers 
In Tab. 5.2 we have compiled some characteristic specifications for typical Fabry—Perot 
interferometers, which will play an important role as optical cavities in the next section. 
In the table it is remarkable that the half-width Avi / 2  always has a similar order of 
about 1 MHz. The reason for this is the practical applicability to the continuous laser 
light sources used in the laboratory, which exhibit typical linewidths of 1 MHz. 

Tab. 5.2: Characteristics of Fabry—Perot interferometers. 

f 	1—R=T AFsR AVi/2 	T 	Q at 600nm Tres 

(mm) 	 (GHz) (MHz) 	 (ms) 

300 1% 0.5 1.7 300 3 x 108  0.1 

10 0.1% 15 5 3 000 108  0.03 

1 20 ppm 150 1 150 000 5 x 108  0.15 

100 20 ppm 1.5 0.01 150 000 5 x 10 1 0  15 

5.6 Optical cavities 

Fabry—Perot interferometers are very important as optical cavities, which are necessary 
for the construction of laser resonators or are widely used as optical spectrum analysers 
(see details in Section 7.3.2). 

5.6.1 Damping of optical cavities 

An electromagnetic resonator stores radiant energy. It is characterized, on the one 
hand, by the spectrum of its resonant frequencies, also known as modes vqm „, and, on 
the other, by their decay or damping times Tr„, which are related to the stored energy 
14 oc E2  , 

1 eV 2 dE/dt 
= 	= —1 / 

U dt 	E 	, Tres• 

We can work out the loss approximately by evenly spreading the mirror reflectivities 
(R = r2 ) and other losses over one revolution Teirc = 6';'s1R ,  

ln[(1 — A)RR'] = ln 01 — A)RR'. 
ETcirc 	2 

From this, the relation 

rcirc 	 Tcirc 

in  01 — A)RR'  1—  01 — A)RR' 

is obtained, which is again related to the Q value or quality factor and the half-width 

Avi/2 by 

v 	1 
6,112 = — = 	• 

Q 	27Erres 

Tres = 
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For A —+ 0 and R 	, this result reproduces Eq. (5.19). The resonator's damping 
time Tr„ determines the transient as well as the decay behaviour of optical cavities. 
In Tab. 5.2 we have given some Q values and oscillation damping times  ires  • It is 
assumed that the absorptive losses can be neglected compared to the decoupling. 

5.6.2 Modes and mode matching 

For stability reasons, resonators no 
longer use plane mirrors in their con-
struction, but curved ones. 2  With our 
knowledge of Gaussian beams from sec-
tion 2.3, we can understand immediately 
how an appropriate resonator mode has 
to be constructed according to the fol- 
lowing principle: The surfaces of the mir- 	 2wo 

• 	 
rors must fit exactly the curvature of the 	 b = 2z 
wavefronts (see Fig. 5.17). 

Whether resonators work stably or un- 
stably can again be investigated by means Fig. 5.17: Gaussian wave and resonator mir- 

of the ABCD law of ray or Gaussian beam 
rois. 

 

optics. A pair of mirrors is completely equivalent to the periodic lens system from 
Section 1.9.5, if we replace the focal lengths by the radii R1 /2 and R2 /2. Thus from 
Eq. (1.27) we obtain the stability diagram (Fig. 1.21 on p. 23) for optical cavities 
according to 

(5.21) 

The characteristic parameters of an optical cavity consisting of two mirrors are their 
radii R1  and R2 and their separation L.  Between the mirrors, a Gaussian standing 

, wave with confocal parameter b = 2z0  and beam waist wo  is excited. The surfaces of 
the mirrors are at a separation corresponding exactly to the length of the cavity, 

= z1 +  Z2.  

The full solution of the Gaussian modes is described according to Eqs. (2.27) and 
(2.36), 

,  y,  z) = E0 	"
w() 	

(.N/ x I w(z))7 -1,,(N / I w(z)) 
z 

x exp{ — [(x 2  y2 )/w(z)] 2 } exp[ik(x 2  + y2 )/2R(z)1 (5.22) 

X exp{ —i[k z — (m n 1)77(z)]} 

In the middle line the geometric form of the Gaussian general solution is given, which 
is characterized by (R(z), w(z)) and (zo , wo ), respectively. Higher modes cause a trans-
verse modulation  7m,n  of this basic form (upper line). Along the z axis the phase is 
solely determined by the Gouy phase, the last line in Eq. (5.22). That is why we can 
at first concentrate on the geometric adjustment of the wavefronts which are described 
by R(z) according to eq. (2.22). 

2 Unstable resonators are also used, e.g. for the construction of high-power lasers [95]. 
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At z1,2 in Fig. 5.17 the radii of the wavefronts have to match the radii of curvature 
of the mirrors exactly, so 

1 2 	 Zo  , 	 2  
R1,2 = 	lZ1,2 ± Z02 ) =  Z1,2 + 	 

Z1,2 	 Z1 , 2 

By means of 

Z1,2 = 

we can then express the parameters of the Gaussian wave (zo , wo ) by the cavity pa-
rameters (R1, R21 f), 

z? 	
- f(R i  + .e) (R2 - ,e) (R2 - R1 - ,e)  

, 
(R2  - R 1  - 202 	 (5.23) 

rar 

Exploration of this formula has to take into account that, according to the conventions 
for ABCD matrices (p. 19), mirror surfaces with their centre to the left and right of 
the surface, respectively, have different signs. 

For the excitation of a cavity mode, the Gaussian beam parameters (z o , wo ) have 
to be precisely tuned to the incident wave. If this, the mode matching condition, is 
not met, only that share of the field is coupled in which corresponds to the overlap 
with the resonator mode. 

5.6.3 Resonance frequencies of optical cavities 

A resonator is characterized by the spectrum of its resonance frequencies. From the 
Fabry-Perot resonator, we expect an equidistant pattern of transmission lines at the 
distance of the free spectral range AFsR. For a more exact analysis, we have to take 
into account the phase factor (the Gouy phase, last line of Eqs. (5.22) and (2.23)), 
respectively). The phase difference must again be an integer multiple of 

43 7-nyi(zi) 

 

m n (Z2) = TrEk(Z1 — Z2 	(rn n + 1)[77(zi) - n(z2)]. 	(5.24) 

With t = z1  - z2 and n(z) = tan-1 (z/z0 ) we at first find 

 [tan  _i (— 	
ZO )1 zi  - ta 	z2  -/ 

2'0  

The resonance frequencies vqmn  are determined from Icqmfif = 27Envq,nt I c 

nliqrnn I AFSR- 
 We introduce the resonator Gouy frequency shift 

AGony  = [tan -1  ( z1 )  - tan -1 ( Z2 )] AFSR 
ZO 	 Zo 	it 

which varies between 0 and AFSR. We obtain the transparent result 

1qmn = q.AFsR (M, n + 1)AG 0n, y . 

(5.25) 

wo 
2 	Azo 

It shows a mode spectrum with a rough division into the free spectral range AFSR-

The fine structure is determined by resonance lines at the distance AG ony . 
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m+n= 0 1 2  3  •• 0 	1 	2 	3 	frequency 

Fig. 5.18: Mode or frequency spectrum of a Fabry-Perot resonator. 

5.6.4 Symmetric optical cavities 

We are now going to investigate the special case of a symmetric optical cavity consisting 
of two identical mirrors, R2 = R= -R1. In this important special case the form of 
eq. (5.23) is strongly simplified and can be interpreted as 

2(2R  — oe  
zo 

 =
and 	wo2  = 

2n 
/(2R  - f)f. 

4 
(5.26) 

The length of the symmetric cavity can be varied from = 0 to 2R before the region 
of stability is left. 

The parameters of the Gaussian wave in a 
symmetric optical cavity, (zo , wo ), are shown 
in Fig. 5.19, normalized to the maximum val-
ues zo. RI2 and womax = (AR/47[71) 1 / 2 . 
The instability of the plane-plane and the con- 0,5  0,5 
centric cavity is here also expressed by the sen-
sitive dependence of the mode parameters on 
the fIR ratio. 

In the symmetric cavity the Gouy phase 
(5.25) depends on the length and the radius 	0,0 	0,5 	1,0 	' 5  /R - 0  

0 

*•• 

of curvature according to 

2 
AGouy  = AFSR —7c tan -1 	 

2f 	

1/2

ie- f) 

Fig. 5.19: Rayleigh length and beam 
waist for a symmetric optical cavity. 

5.6.5 Optical cavities: important special cases 

The three special cases OR= 0, 1, 2 deserve particular attention because they exactly 
correspond to the plane parallel, confocal and concentric cavities. 

Plane parallel cavity: t/R. 0 

The Fabry-Perot interferometer or etalon described in the previous sections exactly 
corresponds to this extreme case. As we know from Fig. 1.21, it is an extreme case 
in terms of stability. In practical use it is also important that polished flat surfaces 
always have a slight convex curvature for technical reasons, so that an FPE consisting 
of two plane air-spaced mirrors always tends to instability. 
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qmn 	 q+1)mn 

4 	 

q+2  

plane parallel frequency 

Fig. 5.20: Path of rays and resonance frequencies of the plane parallel cavity. 

Confocal cavity: OR = 1 

If the focal length of the cavity mirrors coincide(fi  + f2  = R1 /2 + R2 /2 = t), the 
configuration of the confocal cavity is obtained. In the symmetric case we have R1 = 
R2= L.  

      

4sR/2  
q+1 

     

           

        

q+2 

  

       

  

R 

       

          

        

frequency 

    

20, (q-l)02, 
q10, q01, (q-1)21, 

 

          

Fig. 5.21: Path of rays and resonance frequencies of the confocal cavity. 

In this case, the modes are arranged at two highly degenerate frequency positions 
at a separation of 

Apslifoc -= cl4ne. 	 (5.27) 

The high degeneracy has its ray optical analogue in the fact that paraxial trajectories 
are closed after two revolutions. 

If the confocal cavity is irradiated by a laser 
beam without mode matching, many transverse 
modes are excited and the frequency separation 
cl4ne (Eq. (5.27)) can be observed as an effec- e < r 

verse modes to the left or right of the fundamen- 
tal modes if the length of the confocal cavity 
is slightly displaced from the perfect position 

Fig. 5.22: When confocal cavities are fIR =1, as indicated in Fig. 5.22. 
slightly displaced from their perfect mir- 	The high degeneracy makes the confocal cav- 
ror separation at /R  = tconfocIR = 1 , ity particularly insensitive in terms of handling 
the degeneracy of transverse modes is and convenient for practical spectral analysis 
lifted. 	 (see Section 7.3.2). In general, a larger linewidth 
will be observed than is to be expected according to the simple relation of Eq. (5.19). 

ncy 	 tive free spectral range and not as cl2n1. It is 
instructive to observe the emergence of trans- 
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This broadening is caused by the higher modes which suffer from stronger damping 
and show exact degeneracy only within the paraxial approximation. 

Concentric cavity: t/R. 2 

Obviously, this cavity is very sensitively dependent on the exact positions of the mir-
rors, but it leads to a very sharp focusing, which reaches the diffraction limit. In laser 
resonators, nearly concentric components are used to concentrate the pump laser as 
well as the laser beam into a small volume where large amplification density is realized. 

  

(400, 14- 	0, ... 

 

(q+1) 	10, ... 

  

  

L‘FSR 

    

        

concentric 

     

frequency 

Fig. 5.23: Path of ray and resonance frequencies of the concentric cavity. 

Excursion: Microcavities 
In recent times there has been great interest in miniaturized devices of optical cavities with 
dimensions of few  tm.  Since the radiation field is stored in a very small volume, a strong 
coupling of radiation field and matter can be obtained there. 

The external coupling is not simple in such cavities since the direction of the emission 
is not simply controllable. In this context, there have recently been investigations on oval3  
cavities [80], which help to solve this problem by their shape. 

In Fig. 5.24 the calculated intensity distributions for a cylindrically symmetric, an ellip-
tical and an oval cavity are shown. The connection with concepts borrowed from ray optics 
can be seen in particular for the oval cavity. 

Fig. 5.24: Distribution of light in circular, elliptical and oval microcavities. By courtesy of 
Dr J. Noeckel [80]. 

3 These are not elliptical cavities, which can be treated analytically and show a discrete spectrum. 
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5.7 Thin optical films 

Thin optical films play an important role for applications, since dielectric coatings to 
reduce or enhance optical reflections have found their way into everyday life. We shall 
limit ourselves to the interference phenomena associated with thin optical films, and 
we shall ignore almost completely the important aspects of material science for their 
manufacture. 

Metallic mirrors cause losses of 2-10% when reflecting visible wavelengths. That 
is more than many laser systems can tolerate just to overcome the threshold. With 
a wealth of transparent materials, dielectric film systems with a structured refrac-
tive index can be manufactured making predictable reflectivities between 0 and 100% 
possible. For the highest reflectivity, both transmission and absorption are specified, 
which in the best case are only a few ppm! 

5.7.1 Single-layer films 

We consider the single film from Fig. 5.25 and determine the reflected wave that is 
the result of the superposition of reflections from the first and second interfaces, i.e. 
Er  =- r i Ei + t1r2Ei. It is straightforward to check using the known formulae for the 
reflection coefficient from Section 3.1.1 that, for perpendicular incidence, the amplitude 
of the reflected wave obeys 

(1  ni 	4n 1  	ni — n2  ,i2kn1d i(13 E1  1 + 	(1 no 2  + n2 

(

1 — ni  fi  —  1 2  ,i2kn, 1 d e i(P) Ei. 
 1 ± + n2 

(5.28) 

Fig. 5.25: Reflection at a single thin film. Left: film system. Right: factor 47211(1 + ni) 2  

and the effect of a single film on glass with n = 1.5 and optimal film thickness d = 

For reflection from the denser medium at the second interface, with n i  < n2, we 
have (I) = 7E, and for ni  > n2 (less dense medium), 4) = 0. The simplification in the 



5.7 Thin optical films 	 157 

second line of Eq. 5.28 is made possible by the negligible deviation of the transmission 
factor 4n1/(1 + n1) 2  from unity in the technically important range between n = 1.3 
and n = 2 (see Fig. 5.25). Even with a single-layer thin dielectric film, good results 
in terms of the coating of optical glasses can be obtained. For technically advanced 
applications, though, systems consisting of many layers are necessary. 

Minimal reflection: AR coating, AR layer, A/4 film 

The thin film is designed as a single-layer A/4 film with d = A/4. In addition, we 
choose n 1  < n2, so that we have exp(4)=0) = 1 because of the reflection at the denser 
medium, and exp(2ikd) = —1 causing destructive interference of the partial waves. In 
comparison with the substrate, the film shows low refraction and hence is called an 
L-film. For perfect suppression of optical reflection, the condition 

1 — n 1  ni  — n2  

1 + n 1  ni  + n2  
has to be met, which is equivalent to 

ni = Vn2. 	 (5.29) 

The simple anti-reflection (AR) films used for 'coating' of spectacles and windows 
reduce the reflection of the glass from 4% to typically 0.1-0.5%. A commonly used 
material is MgF2, which quite closely fulfils condition (5.29) when used on glass (n = 
1.45) 

Reflection: highly reflective fi lms 

In this case we first choose a highly refractive film or H-film on a substrate with a 
lower refractive index, i.e. n 1  > n2. The 180 0  or TE phase jump during the reflection at 
the less dense medium now causes constructive interference of the two partial waves, 
and the total reflectivity is enhanced. A single TiO2 A/4 film on glass, for example 
(see refractive indices in Tab. 5.3), increases the reflectivity from 4% to more than 
30% (see Fig. 5.27). 

Tab. 5.3: Refractive index of materials for thin dielectric films. 

MgF2 SiO Ta02  TiO2 

1.38 	1.47 	2.05 	2.30 

5.7.2 Multiple-layer films 

As a model example of a multiple-layer film, we are going to study a periodic film 
stack consisting of N identical elements [59]. We have to consider the splitting of the 
waves at each interface (Fig. 5.26): 

Er3J-  = tii 	+ rii  

= 



Fig. 5.26: Interface within 

0.2 	0.4 	0;6 	0.8 
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To be specific, we take a wave incident from 
the left. However, we elaborate the transfor-
mation in the opposite direction, since there 
is no wave travelling to the left behind the 
last interface in the direction of propagation 
(EN—  0). 

The set of equations call be solved and 
conveniently represented in a matrix if we 
also use rii  = and Itii tii  + JrrJ = 1. 

a multiple- Thus 
layer  optical fi lm. 

E  = G3 ,E3  
1 ( 1 r 

tii r 	1 

Before getting to the next interface, the wave undergoes a phase shift cp = ±n3 kd 
for the wave running to the right and to the left, respectively. In this case the total 
transformation from one interface to the other is 

Ed  -- 433 iGjlEt  SEz  

and in particular for N interfaces 

e —i `P 	0 
40i , =- with 

0 	e i `P 

E1  = S1,2S2,3 " SN-2,N-1SN-1,N 
( R11 R12 

R21 R22 

Thus the relation between incident, reflected and transmitted waves is uniquely de-
termined. In particular, the reflectivity can be calculated from Rn12/1R2112  if R is 
known. While an analytical solution remains laborious, numerical solution by com-
puter is straightforward. In Fig. 5.27 the evolution of reflectivity from a single-layer 
pair film to a highly reflective multiple-layer film is shown. 

Fig. 5.27: Wavelength-dependent reflectivity of multiple films with two, four and 10 layer 
pairs of films. In this example a stack of TiO2 and glass layers each with a thickness of 
0.15 km is assumed. The dashed line marks the reflectivity of a single film. The 10-stack has 

a reflectivity R>  99% between 0.55 and 0.65 pm. 
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Fig. 5.28: Holography uses the linear 
part of the blackening of the film. 

5.8 Holography 
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5.8 Holography 

One of the most remarkable and attractive capabilities of optics is image formation, 
to which we have already dedicated an entire chapter (Chapter 4). Among the various 
methods, usually holography (from the Greek holo, meaning 'complete' or 'intact') 
arouses the greatest astonishment. The attraction is mostly caused by the completely 
three-dimensional reconstruction of a recorded object! Here, we shall restrict ourselves 
to the interferometric principles of holography, and refer the reader to the specialist 
literature for more intensive studies [411. 

5.8.1 Holographic recording 

For a conventional record of a picture, whether 
by using an old-fashioned film or a modern 
charge-coupled device (CCD) camera, always 
the spatial distribution of the light intensity is 
saved on the film or in digital memory. For a 
hologram, both the amplitude and the phase 
of the light field are recorded instead by su-
perimposing the light field scattered off the 
object, the signal wave of amplitude distri-
bution 

Es  (x , y) = [Es (x, y) e -iw t  + c.c.], 

with a coherent reference wave 

ER (x , y) = -21 [ER(x y) e-iwt + c.c.]. 

One thus produces an interferometric record of an object - information about the image 
is truly contained in the interference pattern! The intensity distribution recording this 
information is generated by the superposition of signal and reference waves: 

21(x, Y)/c 2 Eo 	Es + ER1 2  = lEs1 2  + IER1 2  + 	+ e;ER. 	 (5.30) 

For this we have already assumed that the signal and reference waves have a sufficiently 
well defined phase relation, since they originate from the same coherent light source. 
Otherwise the mixed terms would suffer from prohibitive temporal fluctuations. 

The illumination intensity on the film material - which usually has non-linear prop-
erties, see Fig, 5.28 - is adjusted such that a linear relation between the transmission 
and the intensity distribution is obtained, i.e. 

T (x, y) = To  + r I (x, y). 	 (5.31) 

Today, since lasers with a large coherence length are readily available, the holo-
graphic record is typically taken according to the off-axis method of Leith-Upatnieks 
shown in Fig. 5.29. 

Historical experiments in the 1940s by D. GAbor (1900-1979, Nobel prize-winner 
in 1971), though, were obtained as in-line holograms, since there the requirements for 
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Fig. 5.29: Record of a hologram according to the Leith—Upatnieks method. 

the coherence of the light source are not so stringent. The monochromatic signal wave 
propagates in the z direction in the arrangement of Fig. 5.29, and the transverse phase 
distribution is caused by the illuminated object, 

Es  _ Es  e —iwt e ikz e ick(x,y) .  

The (almost) plane reference wave has identical frequency u..7 and travels at an angle 0 
towards the z axis. The wavevector k has components k z  ---= k cos O and ky  = k sin 0, 
and thus 

ER  = ER  e —iwt e ikz z e iky y .  

Following Eq. (5.30) at plane P with 00  = kz zo , we obtain the intensity distribution 

(x ,  y) = js + /Ft  es  6"it e icko e -i[kyy+0(x, y
)1 + c.c. 	 (5.32) 

All contributions cause a blackening of the film material. The reference wave 
usually corresponds in good approximation to a plane wave, and so generates homoge-
neous blackening. The blackening caused by the signal wave, which for simplification 
has been assumed to have a constant amplitude, usually generates an inhomogeneous 
intensity distribution since there are no plane wavefronts emanating from an irregular 
object. hi a different situation, this phenomenon is also known as laser speckle and is 
discussed in more detail in section 5.9. 

5.8.2 Holographic reconstruction 

The major fascination of holography is manifest in the actual image reconstruction 
process, since the holographic film itself - the hologram - does not contain any infor-
mation for the human eye. For reconstruction, the object is removed and the hologram 
is illuminated once again with the reference wave. By diffraction, the secondary waves 
shown in Fig. 5.30 are generated. 
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Fig. 5.30: Image reconstruction from a hologram with secondary waves (see also Fig. 5.29). 

Formally we can derive the secondary wave by considering the field distribution 
immediately after passing through the hologram. We can recognize four different 
diffracted waves, Uo , UP, U+ 1 and U-1, 

Erecon  — T(X, y) ER 

= T0 ER + T ER iR TERis ± TIER 1 2 Es TEI?A 
= 	U0(X, y) 	+ UP(x,y) + U±i(x,y) + U-i (x, 

which we are going to consider in detail. Actually, it is quite complicated to deter-
mine the diffraction field of a complex hologram. Fortunately, we can identify every 
term with a known waveform naturally continued from the local field distribution. 

Zeroth order 

e —iwt 
Uo(X, y) = (To + r/R)ER 	ei(kyy+lczz) 

 

This term propagates in zeroth order because its wavevector is identical to that of the 
incident reference wave, which is continued and plainly multiplied by a constant factor 
(To  + r/R) < 1 due to attenuation. 

Halo 

(x, y) = r/sER(x, y ) e —iwt e i(k yy +kzz) 

As mentioned above, the signal wave usually causes inhomogeneous blackening. The 
secondary wave also propagates in zeroth order, but the diffraction of the speckle pat-
tern leads to broadening compared to the transmitted reference wave and is sometimes 
called a 'halo'. 

Reconstructed signal wave 

U±i(X, ) , 7.es eio(x, y ) eReR* e- iwt e ikz y 
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Obviously, with this contribution, the signal wave is exactly reconstructed except for a 
constant factor! The reconstructed signal wave propagates in the z direction, which we 
are going to call the first order in analogy to diffraction by a grating. The virtual image 
contains all information of the reconstructed object and can therefore be observed - 
within the light cone - from all sides. 

Conjugated wave 

U_ i  (x, y) = TE4es e - iwt cio(x,y) ei[2ky y -F(21z - k)z] 

In a vector diagram we can determine the propagation direction of the so-called 
conjugated wave. For small angles 0 = ky lk z  we have 2k k k, and kc2oni  = 

4k2  + (2k, - k) 2  k 2  . That is why the axis of the conjugated ray runs at angle 20 to 
the z axis and disappears at 0 = 7E/4 at the latest. Writing it as 

U_ i  (x, y) = Te4(es e i40(x,y)). e —ifwt—k[sin(20)y±cos(26)z]} ,  

the 'phase-conjugated' form of this ray in comparison to the object wave becomes 
transparent. From a physical point of view, the curvature of the wavefronts is inverted, 
so the wave seems to run backwards in time. Again, following the analogy to diffraction 
by a grating, this wave is also called the minus-one order of diffraction. 

Compared to an in-line hologram, the three secondary waves of interest can be 
easily separated geometrically and observed in off-axis holography (Fig. 5.30). 

5.8.3 Properties 

Holograms have many fascinating properties out of which we have selected only a few 
here. 

Three-dimensional reconstruction 

Since the signal wave coming from the object is reconstructed, the virtual image looked 
at by the observer through the holographic plate appears three-dimensional as well. 
It is even possible to look behind edges and corners if there exists a line of sight 
connection with the illuminated areas. 

Partial reconstruction 

The complete object can be reconstructed from each fragment of a hologram. This 
seems to be inconsistent at first, but becomes clear in direct analogy to diffraction 
by a grating. There, the diffraction pattern observed from more and more reduced 
fragments always stay the same as well. However, the width of each diffraction in-
creases, i.e. the resolution of the grating is reduced due to the decreasing number of 
illuminated slits. In a similar way the resolution declines in reconstructing from a 
holographic fragment. The finer structures of the image disappear, while the gross 
shape of the signal wave and hence the object is preserved. 
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Magnification 

If, in reconstructing an object, light of a different wavelength is used, the scale of the 
image is correspondingly changed. 

5.9 Laser speckle (laser granulation) 

When a dim wall or a rough object is illuminated with laser light, the observer dis-
tinguishes a granular, speckled structure, which does not appear in illumination with 
a conventional light source and is obviously caused by the coherence properties of the 
laser light. In fact, coherent phenomena, i.e. diffraction and interference, can also be 
observed using incandescent light sources, but the invention of the laser has really 
granted us a completely new sensory experience. Newton had already recognized that 
the 'twinkling' of the stars, having been poetically raised by our ancestors, is a coher-
ence phenomenon caused by the inhomogeneities of the atmosphere, and thus directly 
related with speckle patterns. 

The granular irregular structure is called 'laser granulation' or speckle pattern. 
Reflected off the rough, randomly shaped surface of a large object, a coherent wave 
acquires a complex wavefront like after passing through a ground glass screen. For 
simplification, we can imagine that the light beams from a large number of accidentally 
arranged slits or holes interfere with each other. In each plane there is thus a different 
statistical interference pattern. Indeed, every observer sees a different but spatially 
stable pattern as well. 

Formal treatment of the speckle pattern requires some expense using the mathe-
matical methods of statistics. We briefly discuss this phenomenon, since it is nearly 
ubiquitous wherever laser light is used. Although laser granulation at first appears 
an undesirable consequence of interference, it contains substantial information about 
the scattering surfaces, and it is even suitable for interferometric application in the 
measurement techniques for the determination of tiny surface changes [461. 

5.9.1 Real and virtual speckle patterns 

Speckle patterns can be observed, for example, when we expand a laser beam and 
project it from a diffuse reflector onto a screen. On the wall there is a fixed granular 
pattern that only changes with a different reflector. This pattern is only determined 
by the microstructure of the reflector and is called a real or objective speckle pattern 
[62]. It can be recorded by direct exposure of a film. 

When it is imaged, however, it is transformed by the imaging process itself. A 
subjective or virtual speckle pattern is generated, with properties determined by the 
aperture of the imaging optics, e.g. the size of the pupil of our eye. This property can 
be easily understood just with a laser pointer illuminating a white wall. If we form a 
small hole, some kind of artificial pupil, with our hand, the granulation speckles grow 
rougher the smaller the diameter of the hole. 

Detailed consideration of the coherent wave field is not usually of interest. Here 
we shall limit ourselves to sensible physical questions, concerning the intensity distri- 
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bution in the statistical wave fields leading to laser granulation and the characteristic 
dimensions of the speckle grains. 

5.9.2 Speckle grain sizes 

The sizes of speckle grains can be estimated by a simple consideration [62]. The lens 
of an imaging objective is illuminated by a wave field of a granulation pattern with a 
time-invariable but spatially random phase distribution. The characteristic scale d of 
the interference pattern is determined by the resolution of the image and reaches the 
Rayleigh criterion as in Eq. (2.48). If wavefronts from a large distance are incident 
on the lens, the beams coming from a certain direction are superimposed in the focal 
plane at a distance f. For a circular lens with aperture D, the diameter of the focal 
spots cannot become smaller than 

d = 1.22Af/D. 

With a decrease in the aperture size, a roughening of the speckle pattern is to be 
expected. This phenomenon is shown in Fig. 5.31, where an effective aperture is 
formed by focusing of the laser beam onto a ground glass substrate. 

Fig. 5.31: Speckle pattern of a focused helium—neon laser beam after passing through a ground 
glass substrate, showing the statistical pattern. From left to right, the focus was shifted more 
and more into the substrate. Stronger focusing leads to coarser interference structures. 



6 Light and matter 

An electromagnetic wave accelerates electrically charged particles in gases, liquids and 
solids, and in so doing generates polarizations and currents. The accelerated charges 
for their part again generate a radiation field superimposed onto the incident field. To 
understand macroscopic optical properties, it is necessary to describe the polarization 
properties of matter microscopically, which can only be done by means of quantum 
theory. Despite that, classical theoretical physics has been able to explain numerous 
optical phenomena by phenomenological approaches. 

Fig. 6.1: An electromagnetic field E generates a polarization P in matter consisting of 

positive and negative charges. The accelerated charges generate a radiation field and so react 
upon the fields. 

The quantum theoretical description of matter has led to the development of 'quan-
tum electronics' (see Tab. 6.1), in which the electromagnetic radiation fields are still 
taken into account classically, i.e. with a well-defined phase and amplitude. This kind 
of treatment of the radiative interaction is also called 'semiclassical'. 

Tab. 6.1: Treatment of light and matter by theoretical physics*. 

Matter Light Atomic motion 

Classical optics C C C 
Quantum electronics Q C C 
Quantum optics Q Q C 
Matter waves Q Q Q 

*c = classical physics; Q -= quantum theory. 

Ultimately also electromagnetic fields have to be dealt with in a quantum theoreti-
cal way when phenomena such as the famous 'Lamb shift' are to be understood. Today 
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'quantum electrodynamics' (QED) is considered a model case of a modern physical 
field theory. In 'quantum optics' in a narrower sense, 1  in particular the quantum prop-
erties of optical radiation fields are dealt with [66, 84], e.g. the spectrum of resonance 
fluorescence or so-called photon correlations. However, these topics go beyond the 
scope chosen here. 

Since the beginning of the 1980s it has been possible to influence the motion of 
atoms by radiation pressure of light, or laser cooling. The kinetic energy in a gas 
cooled in such a way can be decreased so much that atomic motion can no longer be 
comprehended like that of classical, or point-like, particles. Instead, their centre-of-
mass motion has to be dealt with according to quantum theory and can be interpreted 
in terms of matter waves. In the excursion on p. 135 we have already used this 
explanation for the diffraction of atomic beams. The hierarchy of theoretical concepts 
for light-matter interaction is summarized in Tab. 6.1. 

When the effect of a light field on dielectric samples is to be described, generally the 
electric dipole interaction is sufficient since it is stronger than all other couplings, such 
as magnetic effects and higher-order terms, which can be neglected. The concepts of 
optics can also be extended without any problems if such phenomena are to be treated 
theoretically. 

6.1 Classical radiation interaction 

6.1.1 Lorentz oscillators 

A simple yet very successful model for the interaction of electromagnetic radiation 
with polarizable matter goes back to H. Lorentz (1853-1928). In this model, electrons 
are considered that are harmonically bound to an ionic core like little planets with 
a spring and oscillating at optical frequencies w o . The classical dynamics of such a 
system is well known. The influence of a light field shows up as driving electrical or 
magnetic forces adding to the binding force FB = -M4X. 

Additionally, we assume that damping of the oscillator is caused by release of radia-
tion energy. Although this concept cannot be fully explained by classical electrodynam-
ics without some contradictions, in an approximation it leads to the Abraham-Lorentz 
equation, in which, besides the binding force, a damping force FR = -m-y(dx1 dt) 
occurs causing weak damping (-y «w o ). At this stage the limits of classical electrody-
namics become evident [83], because a consistent and correct calculation of -y can only 
be obtained by means of quantum electrodynamics [108]. For our purposes, however, 
it is sufficient to consider -y as the phenomenological damping rate. 

For simplification we use complex quantities to write the orbit radius, x 	r = 
+ iy. We consider the equation of motion of the driven oscillator, 

= —q e -iwt 	 (6.1) 

1 The term 'quantum optics' is in general not very precisely defined. 
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P0— 	2 
(wo w 2 ) 

can be found from the secular equation p( — w 2  — iw-y + 	qe 
For the near-resonant approximation, we can replace (4 — w2 ) 

2w0 (wo  — w) = —2w08 with detuning 6, introduce the maximum radius pmax 
— qe Imw o -y and obtain 

Po — Pmax + iw2  • 

For the x and y coordinates of the driven oscillator, we have 

r(t) =  X  + iy 
— Pmax 	 ( 6 . 2 ) 2 62 + (,-)12)2  e. 

We will see that, in terms of the propagation of light in polarizable matter, x and 
y give exactly the 'dispersive' (x) and the 'absorptive' (y) components of the radiation 
interaction. The shape of the dispersion curve and the Lorentz profile of absorption are 
presented in Fig. 6.2. Here the term 'normal dispersion' refers to the dominant positive 
slopes of the dispersion curve. This situation is typically found for transparent optical 
materials, which have electronic resonance frequencies beyond the visible domain in 
the UV. Negative slopes of dispersion are called 'anomalous dispersion'. 

Fig. 6.2: `Quadrature' components of the Lorentz oscillator, which are oscillating in phase 
(x, absorptive) and 90 0  out of phase (y, dispersive) with the driving field, respectively. The 
swing is normalized to the maximum value in the case of resonance at 8  = 0. 

It is known that an accelerated charge radiates, and so a charged harmonic oscil-
lator has to lose energy. The damping thus caused is called 'radiation reaction' and 
has already been accounted for phenomenologically in Eq. (6.1). From a shortened 
version of the derivation leading to the well-known Abraham—Lorentz equation [83], 
we can infer a damping rate depending on elementary atomic quantities only, which 

under the influence of a driving light field E e — iwt, which is circularly polarized. With 
the trial function r(t) = p(t) e —iwt , the equilibrium solution p(t) = po = const. and 

qe Im 
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provides further insight into radiative properties. We have to keep in mind, however, 
that a suitable theory of damping must invoke the full quantum theory of light. 

By multiplication with we can introduce the rate of energy change into eq. (6.1), 

d  fmi 2  rnur2 )  
+ Trryi' 2  = 0 = Prad nrYi' 2 - dt 	2 	2 

If damping is weak (wo  >> -y), we can assume that, during one revolution period 2n/wo , 
the amplitude change (r) is negligible, and so we can replace i  = we,r and i  wo r. 
Then we may identify the radiation power with the power dissipated through friction 
(m-yi- 2 ), which was introduced phenomenologically before. We obtain 

22  
q  

= 67rc 0 c3  m 
3c0A 3  

and 	Pmax — 	 
47E2  q 

 E. (6.3) 

This result is frequently used to introduce the so-called classical electron radius [31, 83], 

rel 
e2 /4/cco  
	 = 1.41 x 10 -15 m 

2mc2  
with 

4 roc 
'Y = 	 3A2  

As far as we know from scattering experiments in high-energy physics, the electron is 
point-like down to 10-18  m, and thus this quantity does not have physical significance. 

In this way we can obtain the complex dipole moment of a single particle from 
d = qpo  according to Eqs. (6.2) and (6.3), 

d(t) = qpo  = 	
3 	 E 	 (6.4) 

47E2  1 + (261-y) 2  ° 

Often the polarizability a is used as well. It is defined by 

d(t) = 

and the coefficient a is easily extracted from comparison with Eq. (6.4). 
In the  z as well as in the y component, there is a phase delay .75 between the electric 

field and the dipole moment, which is only dependent on the damping rate -y and the 
detuning 6 =  w  — coo  (Fig. 6.3), 

= arctan( -y/28). 	 (6.5) 

The so-called phase lag shows the known behaviour of a driven harmonic oscillator, 
i.e. in-phase excitation at low ('red') frequencies, out of phase or 90° following in the 
case of resonance, and opposite phase at high ('blue') frequencies. 

From Eq. (6.1) we can furthermore infer the time-dependent equation for p(t). We 
assume that the oscillation amplitude p(t) changes only slowly in comparison with the 
oscillation itself, i.e.  i  < wi), etc. We then approximately obtain 

+ (iS + ) p = i 
2mw
qe 	 (6.6) 

2  

by furthermore applying iw + -y/2 	iw as well. This complex equation provides 
an interesting analogy with the result of quantum mechanics discussed on p. 181. 
There we will find Bloch vector components exhibiting strong formal similarity with 
dipole quadrature components (u, y), which we introduce here by letting p = u + iv. 
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Fig. 6.3: Phase lag of the Lorentz oscillator in steady state. At low frequencies, the driving 
field and the dipole oscillate in phase; in the case of resonance, the dipole follows the field out 
of phase at 900;  and at high frequencies, it oscillates with opposite phase. 

Decomposition of the complex equation of motion (6.6) into a system of real equations 
yields 

— Sv — 3u, 

qe  _ 
— Su — 3-/) 2mw • 

We can furthermore complement this equation by 

d 
— (u + v21 2 ) = —7(u2  +v 2 ) — —qe v

mw 

(6.7) 

(6.8) 

and thus obtain a relation describing the excitation energy of the system. This is 
analogous to the third optical Bloch equation for the w component of the difference 
of the occupation numbers (see Eq. (6.28)). 

Excursion: Lorentz oscillator in a magnetic field 
If a magnetic field influences the motion of a charge, a Lorentz force is added to the equation of 
motion (6.1), which is FL, = q5c x B and results in an extra term iqi)B when the replacement 
x r = x +iy —> pe't  is carried out. If its influence on the dynamics is low, 1031/m < wo, 
then the components of the magnetic field in the xy plane cause a rotation of the orbital 
plane, while the z component modifies the eigenfrequency of the oscillator. The complete 
equation of motion is now 

fi 	+ coew = (e + 	z ) e't 	 (6.9) 

We seek solutions using the same procedures as before, and, with the Larmor frequency 

coL = qBz  I2m, 

we obtain the equilibrium solution 

Pmax -y/ 2 
Po = 

(WO  — WL — w) — •  
(6.10) 
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In Eqs. (6.2)-(6.8) and (6.13), the eigenfrequency wo has only to be replaced by the modified 
value wo -coL. Otherwise, the results can be taken over. With this theory, H. Lorentz was able 
to interpret the Zeeman effect, the shift and splitting of atomic resonance lines by external 
magnetic fields. 

We finish by studying the effect of a transverse magnetic field on the motion of an electron. 
For this purpose we take the vector product of Eq. (6.9) by xx (replacing p x) and obtain 
a new equation for the electronic angular momentum L = mx x X. Strictly speaking, this 

should be mxx (X x B) = L x13 + mX x (x x B), but in static fields the second term vanishes, 
and in alternating fields it is equivalent to a relativistic correction of first order, (v/c)dxE, 
and can be neglected. So: 

—
d

L +'yL = dxE + —LxB. 
dt 

It can be recognized from this equation that a circularly polarized electric light field as well 

as a transverse static field (B 1 L) can cause rotation of the electronic angular momentum. 

The former case is usually called 'optical pumping' in spectroscopy [40], and the latter case 

occurs in the Hanle effect [21]. 

6.1.2 Macroscopic polarization 

The macroscopic polarization P(r, t) has already been introduced in section 2.1.2 in or-
der to describe the propagation of electromagnetic waves in a dielectric medium. From 
the microscopic point of view, a sample consists of the microscopic dipole moments of 
atoms, molecules or lattice elements. The 'near field' of the microscopic particle does 
not play a role in the propagation of the radiation field, which is always a 'far field'. 
If there are Nat atomic or other microscopic dipoles in a volume, the macroscopic 
polarization is obtained by averaging, P = Nat p/V. Here the volume V is chosen 
much larger than molecular length scales, e.g. dmoi < 5 A, and the average volume of 
a single particle as well. If the microscopic polarization density p(r) is known, there 
is the more exact form: 

P(r, t) = Nat  f p(r - r', t) d3 r/ . 	 (6.11) 
V v  

In our classic model the Fourier amplitudes of the polarization p = ,F{P} and of the 
driving field E are linearly connected, 

P(w) = coX(w)e(w), 	 (6.12) 

and the susceptibility x(w) = V(w)-Fix"(w) can be given using the results of Eq. (6.4), 

	

xr(6) _ Nat  3)0 	26/  
ii772-E 1 + (26N 2  

" ( 6 ) 	1-rat  3A3 	
1  

X V 47E2  1 + (26[7) 2  

Since the temporal behaviour of the polarization is also characterized by transient 
processes, it usually depends on the field intensity also at earlier times. This becomes 
more apparent in the time-domain expression 

(6.13) 

P(r, t) = co  f x(t - t')E(r, t') de , 	 (6.14) 
-00 
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which requires x(t — t') = 0 for (t — t') G 0 in order not to violate causality. Here as 
well the literal meaning of 'susceptibility' or 'after-effect' shows up. But for our pur-
poses we assume that we are allowed to neglect relaxation processes occurring in solid 
materials within picoseconds or less, and therefore we can restrict our treatment to 
an instantaneous interaction. 2  According to the convolution theorem of Fourier trans-
formation, the relation is, however, much simpler in the frequency domain following 
Eq. (6.12). 

To be more exact, the 'dielectric function' (Eq. (2.4)) co K(c.o) = co [1±x(w)] and the 
susceptibility are second-rank tensors, e.g. x, 3  = api lasi , and reflect the anisotropy 
of real materials. The magnetic polarization can mostly be neglected for optical phe-
nomena (si r  1), since the magnetic field B and the H field are identical except for a 
factor, H = Bhio . 

Only in an isotropic (V • P = 0) and, according to Eq. (2.4), linear medium does 
the wave equation take on a simple form. This is, however, an important and often 
realized special case where the polarization obviously drives the electric field: 

(6.15) 

Linear polarization and macroscopic refractive index 

If the polarization depends linearly on the field intensity according to Eq. (6.12), then 
the modification of the wave velocity within the dielectric, c2  c2 /k(w), can be taken 
into account using the macroscopic refractive index n(w) (see eq. (2.12)): 

V2 E n2(w) a2 
 2
E 0. 	 (6.16) 

C2  at 
According to Eq. (6.12) we have E ±Plco  = [1+ x(w)je = n 2 (w)E with 

n2 (w) = (w) = 1+  X(w)* 

Here the relation between the complex index of refraction n = n' + in" and the 
susceptibility x becomes simpler in a significant way, if, for example in optically thin 
(dilute) matter like a gas, the polarization is very low, rx(c4.))1 < 1: 

n'  o 1 + x'/2 	and 	n" x11 /2, 

or 

N A 3  i+ 2Sh  
n 	1 + 	 (6.17) 

— 	V 870 1 + (26/-0 2 ' 

Thus, by measuring the macroscopic refractive index, the microscopic properties 
of the dielectric requiring theoretical treatment by quantum mechanics can be deter-
mined. Using (N/V)A3 /(87E2 ) > 0.1, we can also estimate the density of particles 

2 The methods of femtosecond spectroscopy developed in the 1990s now also allow us to study such 
fast relaxation phenomena with excellent time resolution. 
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where we ultimately leave the limiting case of optically thin media. For optical wave-
lengths (A 0.5 Jim), this transition occurs already at the relatively low density of 
N IV = 2 x 10 14  cm-3 , which at room temperature for an ideal gas corresponds to a 
vacuum pressure of only 10-2  mbar. 

The solution for a planar wave according to Eq. (6.16) is then 

E(r,t) = E 0 e-1(w 1- n/k. r) e - nuk •r. 

Propagation not only takes place with a modified phase velocity vo, = c I n' but also 
is exponentially damped according to Beer's law in the z direction with absorption 
coefficient a = 2n"kz, 

/(z) =  1 (0) e- 2nn  k z  z 	- (0) e-az. 	 (6.18) 

We have chosen n", x" > 0 for normal dielectrics according to Eq. (6.17); as we will 
see, in a 'laser medium' one can create n", x" < 0 as well, realizing amplification of 
an optical wave. 

Let us briefly study the question of whether a single microscopic dipole can generate 
a refractive index, i.e. whether it could cause noticeable absorption or dispersion of an 
optical wave. For this consideration we again rewrite the absorption coefficient as 

a = 2nll  k = 	 (6 19) 

	

N 3A2 	1 	N 	aQ  
. 

	

V 2n 1 + (26/7) 2 	V 1 + (26/7) 2  

Therefore, the effect of a single atom is determined by a resonant cross-section of 

cfQ  = 3A2 /27t at 6 = 0, (6.20) 

which is much larger than the atom itself. If we succeed in limiting a single atom to 
a volume with this wavelength as diameter (V A3 ), then a laser beam focused on 
this volume will experience strong absorption. Such an experiment has in fact been 
carried out with a stored ion [110]. Dispersion is observed for nonzero detuning only, 
but for small values 6 = +7/2 a single atom is predicted to cause a measurable phase 
shift 64) = +1/(8n) as well. 

Absorption and dispersion in optically thin media 

Sometimes it is useful to consider directly the effect of polarization on the amplitude 
of an electromagnetic wave propagating in a dielectric medium. For this, we take the 
one-dimensional form of the wave equation (6.15), 

	 E(z) e—i(ciit—kz) 	1  	82  P(z) 	k z) 

) 	 Co C2  8t 2  

we fix the frequency w = ck for 1E(z, t)1 = e(z) e - i(wt - kz) and additionally we as- 
sume that the amplitude changes only slowly (on the scale of a wavelength) during 

(  02 	102 

 Z2 	C2  8t2 

propagation. Thus: 

	 «k 	 
z 2 	0z 
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Then with 02/0z2 re ( z ) e zkz} ,_.,_, eikz [2ikalaZ - k 2 je (z), the wave equation is approxi-
mately 

[2ik
a 	 2 

—
aZ 

— k2 + —2
w:1 
	

w 
e(z) = — 

EpC
2 P(z), 

which with k = 4.4 )Ic further simplifies to 

a 	ik  

e (z)  = 2c0P (z).  
(6.21) 

Now we consider the electromagnetic wave with a real amplitude and phase, E(z) = 
A(z) e i 'D( z )  , and calculate 

dr (z)dA  . A2 A) E(z) dz 	
=

A  + ï  dz 	dz = 4k  

de (z) 	dA . A2 dil. 	ik 	* 
2E0 P(z)e (z).  e* (z)  dz 	= A  dz i  dz = 

From this we can determine the change of the intensity 1(z)  = -12-ccoA 2  of an electro-
magnetic wave while propagating within a polarized medium according to 

co 
-I(z) = —

2 
3m{e(z)P* (z)} 

dz 

and the phase shift according to 

d 	w 

cTz 	:= 2I(z) Nele  

The absorption coefficient a and the real part of the refractive index n' can be calcu-
lated in an obvious way from 

1  dI (z)  
1(z)  dz 

1 d(z)  
k dz 

We naturally reproduce the results from the section on the linear refractive index, 
if we assume the linear relation according to Eq. (6.12). The form developed here 
also allows us to investigate nonlinear relations, and will be useful in the chapter on 
nonlinear optics (Section 12). 

Dense dielectric media and near fields 

Certainly, in a dilute, optically thin medium, we do not make a big mistake by ne-
glecting the field additionally generated in the sample by polarization. But this is no 
longer the case in the liquid or solid states. In order to determine the 'local field' of 
the sample, we cut out a fictitious sphere with a diameter datom < dsph < A with 
'frozen' polarization from the material (Fig. 6.4). 

To determine the microscopic local field Eh), at the position of a particle, we de-
compose it into various contributions, El., --= Eext +Esurf +ELor +Enear , which depend 

a 

1 	, n — i 

= w  
2I(z) 

= 	c 21(z)  Neg.  (z)P *  ( z)} . 

(6.22) 



Fig. 6.4: Contributions to the lo-
cal electric field in an optically dense 
medium. For a transverse wave the con-
tribution of the surface vanishes in the 
case of normal incidence. 
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on the different geometries and structures of the sample and are in total called the 
'depolarizing field' since they usually weaken the external field Eext : 

Esurf 

The field of the surface charges generated by 
the surface charge density psurf — n P(rsurf)• 
It vanishes for a wave at normal incidence. 

ELor 

The field of the surface of a fictitious hollow 
sphere cut out from the volume (also known 
as the 'Lorentz field'). For homogeneous po-
larization, one finds EL, = P/3co . 

Enear 
The field of the electric charges within the sphere 
In the case of isotropic media, this contribution 
vanishes, Enear  = O. 

From P = foXEloc = c o x(E + Pk) ), we then obtain by insertion of  Ei0 = ELor = 
P/3 the macroscopic volume susceptibility xv  of an isotropic and linear but dense 
material, 

1 Pi 	X  v 
Xii 4.4)) = co Ei 	1 — x/3 

From this by rearrangement can be obtained the Clausius-Mossotti equation, which 
describes the influence of the depolarizing field on the refractive index (density Ar = 
NIV), 

n2  — 1 	JV-q2 	1 
3 	  

n2 + 2 	fen (w(i — w2 ) — iw-y •  

For small polarizations, x/3 < 1, Eq. (6.23) again turns into eq. (6.17). 
Realistic polarizable substances, though, do not have just one degree of freedom 

like the Lorentz oscillator described here but lots of them. We can extend the Lorentz 
model for a not too strong field by linearly superimposing many oscillators with dif-
ferent resonance frequencies wk and damping rates 7k and weighting them with their 
relative contribution, their 'oscillator strength' fk : 

3
n fk  
n2 	_ w2) _ iuryk  2

2 — 1 Af 

± 2 €0m 
2 E, 

Even if the field intensity becomes quite large, we can still use the concepts described 
here if we introduce a nonlinear susceptibility. This case is dealt with in Section 12 
on nonlinear optics. 

The dimensionless oscillator strength allows a simple transition to the quantum 
mechanically correct description of the microscopic polarization [97]. For this, only 
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the matrix element of the dipole transition between the ground state f Og) and excited 
states 10k) of the system, qrkg  = q(çbk  MOO has to be used: 

2771Wk g  I rkg 1 2  
fkg = h 	• 

We do not need to require anything specific about the nature of these states. They can 
be atomic or molecular excitations but also, for example, optical phonons or polaritons 
within solid states. Strictly speaking, the success of the classical Lorentz model for 
single atoms is justified by this relation. In atoms the oscillator strengths follow the 
Thomas-Reiche-Kuhn sum rule Ek  fk g  =- 1; already for low atomic resonance lines 
such as, for example, the well-known doublets of the alkali spectra, we have f 1; 
therefore the other resonance lines have to be significantly weaker. 

6.2 Two-level atoms 

6.2.1 Are there any atoms with only two levels? 

In quantum mechanics we describe atoms by their states. In the simplest case a light 
field couples a ground state 1g) to an excited state le). This model system can be 
theoretically dealt with well, and is particularly useful for understanding the interac-
tion of light and matter. However, even simple atoms such as the alkali and alkali 
earth atoms, which are technically easy to master and widely used for experimental 
investigations, present a complex structure with a large number of states even in the 
ground leve1. 3  

Occasionally, though, it is possible to prepare atoms in such a way that no more 
than two states are effectively coupled to the light field. The calcium atom, for in-
stance, has a non-degenerate singlet ground state ( 1 50 ,  L  = 0,  in  = 0). By using a light 
field with a wavelength of 423 nm and proper choice of the polarization (a±, n), three 
different two-level systems can be prepared by coupling to the ( 1 P 1 , f = 1,  in  =  0,+1)  
states. 

The famous yellow doublet of the sodium atom (A =-- 589 nm) is another example 
that has played a central role in experimental investigations, though it has large total 
angular momenta F = 1,2 even in the 2 S 1 / 2  ground state doublet due to its nuclear 
spin of I = 3/2 and presents a wealth of magnetic substructure. By so-called 'optical 
pumping' [40] with cy+ -polarized  light, all the atoms in a gas can be prepared in, for 
example, the state with quantum numbers F = 2, mF = 2. This state is then coupled 
only to the F' = 3, mF,  = 3 sub-state of the excited 2 P3 1 2  state by the light field. 4  

These effective 'two-level atoms', the list of which can easily be extended, play 
an enormously important role in physical experiments since they provide the simplest 

3 The wealth of structure is generated by the coupling of the magnetic orbital and spin momenta 
of electrons and core. For low states the splittings are about  100-1000 MHz. Details can be found in 
textbooks about quantum mechanics [20] or atomic physics [111]. 

4 1n reality, the circular polarization is never perfect. Small admixtures of a light to the a+ light 
cause, for example, occasional excitations with AmF = —1 and therefore limit the 'quality' of the 
two-level atom. 
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Fig. 6.5: Abstract and realistic two-level atoms. Left: Calcium atom. A od-  polarized light 

field couples only states with angular momentum quantum numbers 1g) = 1F,mF) = 10,0) 
and le) =  1 , 1) . Right: Sodium atom. A circularly polarized light field (o-±  ) is 'pumping' the 
sodium atoms to the outer 1F,mF) = 12, ±2) states, which with a±  light are coupling only to 
the  3,+3)  states. 

models of a polarizable physical system and radiative interaction is reduced to its most 
fundamental case. 

6.2.2 Dipole interaction 

The 'free' two-level atom with total mass M is now reduced to a Hamiltonian Hat  
having only a ground state 1g) and an excited state le). 5  To complete the picture, we 
allow for an arbitrary centre-of-mass energy E0 = P2 /2M. Thus 

p2 hwo  
Hat 	(1e)(el 	1g)(g1). 	 (6.24) 

2M 2 
The energy of the atom is Ee  = (eIllatie) = E0 ru.o0 / 2 in the excited state and 
Eg  = E0  — hwo/ 2 in the ground state. The resonance frequency presents the energy 
separation of the two states, Wo = (E, — Eg )/h. 

The dipole operator 1-/di p  is obtained by an analogy with classical electrodynamics, 
i.e. by converting the classical energy of a dipole subject to an electric field into an 
operator. For the electron position operator f, we obtain6  

f7dip = 

In a realistic experiment, we always have to take the exact geometric orientation of 
atom and electric field into account. For the consideration of the two-level atom, 

5 We assume that the reader is familiar with the basic principles of quantum mechanics. Quantum 
states are given in Dirac notation, where state vectors 1i) are associated with complex wavefunc-
tions Or). The expectation values of an operator 6 are thus calculated from (6) =  (f Oh)  = 

ch- f. (r)60, (r). 
6 Rigorous analysis according to quantum mechanics results in the product of electron momentum 

and electromagnetic vector potential PA, but it can be shown that in the vicinity of resonance 
frequencies  rE  leads to the same result [90]. 
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however, we neglect this geometric influence and restrict the problem to one dipole 
coordinate ci = qf  only, 

f/clip = — Cieo COS wt. 

Using the completeness theorem of quantum mechanics, we can project the position 
operator onto the states involved ((ildli) = 0): 

le) (elci19)(91+19)(91cile)(el. 

We use the matrix element deg  = (e Ag) of the dipole operator. Using the definition 
of atomic raising and lowering operators, at = e)(g1 and a = g) (e , we write 

d =- deg a- t d*eg a. 

With those operators we can already express the atomic Hamiltonian and the dipole 
operator very compactly: 

p2 

Hat  = T-
m 

 2 

	

—(d eg at 	g a- )eo  cos wt. 

From linear combinations of the atomic field operators, Pauli operators can be 
generated, which are known to describe a spin-1/2 system with only two states: 

Qv = al' + a, 

ay  = _i(at _ (7), 

	

az = at  a — 0-04 
	

[at, a , a]. 

Therefore, the two-level atom can be described like a pseudo-spin system. We will 
see that we can interpret the expectation values of ax  and ay  as components of the 
atomic polarization and az  as the difference of occupation numbers or 'inversion'. The 
concept of this theoretical description is completely analogous to the dynamics of the 
corresponding spin-1/2 system and is borrowed from there. 

The Pauli operators have the form 

o  i 
 ax 	
= (o. 	

=(  

1 	0 

	

= 	 az 1 0  

in the matrix representation and follow the generally useful relation [ai , a i ] 
cyclic permutation of the coordinates xyz. In addition we have 

a t 

a  =1(crx — jay ). 

The operators' equation of motion is obtained from the Heisenberg equation 

a 

	

= 	ad. at 	h 

For this, the Hamiltonian is usefully written in the form 

H = hwo a — (deg  + de* 0E0  cos(wt)ax  — P (deg  — de* g )S0 cos(wt)a. 

Vdip 

= 2i 0-  k on 



Rabi  period  2n/QR  

0,0 

-1,0-  	ime 

Fig. 6.6: Rabi frequency and occupation number 
oscillation for different detunings. 
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Often real values can be chosen for deg . Then the third (ay ) term is omitted and 
it can simply be written as 

H = FlWü Uz  — cl eg Eo cos(wt)a. 

If the operators are not explicitly time-dependent, the result is an equation system 
known as  Mathieu 's differential equations, 

—wo ay , 

2d, Eo 

	

= 	 cos(wt)a, 

aleg£'0 
cos(wt)o- 

	

dz = 	 Y • 

(6.25) 

It can easily be shown that only the orientation, but not the magnitude of the angular 
momentum, is changed under the effect of the light field; we have ax2  + + a? = 1 as 
for the Pauli matrices. 

6.2.3 Optical Bloch equations 

Until now we have considered the development of atomic operators under the influence 
of a light field. For the semiclassical consideration we can replace them by expectation 
values 7  S.  = (ai ) and again obtain the equation system (6.25) only now for classical 
variables [2]. To produce transparent solutions it is advantageous to consider the 
evolution of variables in a new coordinate system rotating with the light frequency co 
around the z axis, i.e. with the polarization, 

Sx  = u cos wt — v sin c.ot, 
Sy  = u sin wt + v cos cot, 
Sz  = w. 

This often used approximation is 
called the 'rotating wave approxima-
tion' (RWA). The variables (u, v) de-
scribe the sine and cosine compo-
nents of the induced electric dipole 
moment, and w is the difference in 
occupation numbers. The close rela-
tion of these variables with the clas-
sical Lorentz model in Section 6.1.1 
and their physical interpretation will 
be explained in more detail in Sec-
tion 6.2.5. 

With detuning 6 = w — wo we ob-
tain after some algebra 

7 There are no operator products that could cause typically quantum mechanical signatures due to 
non-commutativity. 
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d E0 
= Sv 	sin(lot)w, 

= -Su deghe°  [1+ cos(loqw, 

,..eo 	 degeo  tb = 	sin(lot)u + h  [1 + cos(2(4)t)]v. 

For typical optical processes the contributions oscillating very rapidly with 2wt 
play only a small role (they cause the so-called Bloch-Siegert shift) and are therefore 
neglected. We introduce the Rabi frequency 

degEO/h1 

and get the undamped optical Bloch equations, 

= (5v, 

= -Su + 52Rw, 
ti) = - S2R7), 

(6.26) 

(6.27) 

originally found for magnetic resonance by F. Bloch (1905-1983, nobel prize 1952) in 
order to describe there the interaction between of a magnetic moment with spin 1/2 
in a strong homogeneous magnetic field exposed to a high-frequency field. 

Since optical two-level systems obey an identical set of equations, almost all the 
concepts of coherent optics are borrowed from electron and nuclear spin resonance. 
The system of equations (6.26) can also be written in a shorter way by using the 
vectors u = (u, v, w) and SI (- QR , 0, -6): x u. 

Fig. 6.7: Dynamics of the Bloch vector: (a) SI =  ( — R 0,0);  (b) ft 	(0, 0, —(5); and 
(c)  1  = (-12R , 0, —(5). 

6.2.4 Precession and Rabi nutation 

Let us now consider special solutions and extensions of the optical Bloch equations 
(6.26) to analyse the physical dynamics of the two-level system. 



î Bz  
Precession 

Fig. 6.8: Precession and nutation of a 
magnetic dipole moment associated with 
a gyro. The pseudo-spin of the two-level 
atom performs an analogous motion in 
which the longitudinal z direction is associ-
ated with the difference in occupation num-
bers w, while the transverse directions are 
identified with the polarization components 
u and v. 
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Undamped dynamics 

At thermal ambient energies, an atom with an optical excitation frequency usually 
resides in its ground state, and therefore we normally have w(t=0) = —1. The reso-
nance case is particularly easy to determine: here the detuning vanishes, 6 = 0. The 
occupation number w and the v component of the polarization perform an oscillation 
with the Rabi frequency according to eq. (6.26), 

v(t) = — sin (52Rt), 
w(t) = — cos (S2Rt). 

The system of equations (6.26) describes the behaviour of a magnetic dipole transition, 
e.g. between the hyperfine states of an atom, in an excellent approximation. Even if 
the detuning 6 does not vanish, there is a generalized Rabi oscillation with frequency 

_ 

though the amplitude of the occupation number oscillations decreases with increasing 
detuning, as shown in Fig. 6.6. 

ordinate of the Bloch vector, respectively 

The dynamical Bloch vector evolution for 
resonant excitation is shown in Fig. 6.7(a). 
For the so-called rc-pulse S2Rt = TE, the atomic 
system rotates into the completely 'inverted' 
state with w = 1! This pseudo-spin rota-
tion should properly be called `Rabi nuta-
tion' in analogy with conventional gyromag-
nets (Fig. 6.8). 

We have learned that the motion is un-
damped according to (6.26) while an opti-
cal atomic excitation is damped by multiple 
processes. Among them there is the radia-
tive decay but also collisions and other phe-
nomena. We thus introduce the 'longitudi-
nal relaxation rate' -y = 1/T1  phenomeno-
logically. It describes the energy loss of the 
two-level system characterized by the differ-
ence in occupation numbers, and the z co-

. In equilibrium without a driving light field, 
the stationary thermal value of the inversion wo  = —1 must be reproduced. 

Damping 

The transverse relaxation rate 	= 11T2  describes the damping of polarization, i.e. 
of the x and y components of the Bloch vector. In an ensemble the macroscopic 
polarization can also get lost because each particle precesses with a different speed 
and so the particles lose their original phase relation (in the precession angle). For 



wst = 
WO 

n2 
1 + a 'RI  

'Y'Y 1  + (6M2  

WO = 	 (6.30) 
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pure radiation damping we have T2 = 2T1 . The polarization vanishes as well, when 
the light field is switched off. 

The complete optical Bloch equations are 

it = Sv — -y'u, 
75 = — Su — 'y'v + QRw, 	 (6.28) 
W = — Ç2Rv — 'Aw — wo)- 

Their similarity to the classical equations (6.7) and (6.8), a result of the Lorentz model, 
cannot be overlooked any more. Apparently the ratio of the Rabi frequency 11R  R to 
the damping rates -y, Y determines the dynamics of the system: we expect oscillating 
properties as in the undamped system only then, when they are sufficiently large, i.e. 
the system is driven sufficiently strongly. 

Often the optical Bloch equations are written in the more compact complex no-
tation using the language of the density matrix theory from quantum mechanics (see 
Appendix B.2). With peg  =-- u + iv and w = pee  — pgg  we find 

i)eg = —(')/ + i6)Peg + iç21w, 
W = — gM{Pe g }QR — 'Y(w — wo)- 

(6.29) 

6.2.5 Inversion and polarization 

We consider the situation when transients have settled, i.e. a time t >> T1,712 has 
passed since switching on the light field. Then (6.28) has the following stationary 
solutions, which are related to the inversion To)  without a driving light field: 

In a light field with intensity /, the 'saturation parameter' 

///0  
s =  	 (6.31) 

1 + (SPy9 2  

determines the significance of coherent processes with dynamics determined by the 
Rabi frequency and 

/ 	SI2R  
s(6 = 0) = so = --1; = Ty , , 	 (6.32) 

in comparison with incoherent damping processes determined by the relaxation rates 
-y, '7'. Owing to SPR  = j—d eg Eo /h1 2  = j—deg /h1 2 (21/cE0 ), the saturation intensity -fo 
can be calculated: 

io = 2  d g  • 

From Fig. 6.9 it is clear that the saturation intensity sets the typical scale for the onset 
of coherent processes. 

CEO h2 y'  
(6.33) 
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Fig. 6.9: Effect of a light field on the equilibrium values of the difference in occupation 
numbers ('inversion') w st  and the polarization components ust  and vst  as functions of the 
saturation parameter s(6=0) = 1/10 according to Eqs. (6.30) and (6.36). With the light field 
vanishing, the values wo = —1, —0.6, —0.3, +0.3 and +0.6 have been used. 

Using the known result for spontaneous emission -y = cle2  g c.v 3  13nhcoc3  (6.41), the 
saturation intensity can be determined just by knowing the resonance wavelength A 
and the transverse relaxation rate -y'. We get a useful correlation with the resonant 
cross-section of the absorption aQ from Eq. (6.20), 

27rhc7' 	ruo7' 
Io = 	

3A3 	
(6.34) 

o-Q 

which can be interpreted in the following way. Apparently, at the saturation intensity, 
the energy of just one photon flows through the resonant absorption cross-section o-Q 
during the transverse coherence time T' =  1/'y'.  

If only radiative decay is possible, as e.g. in dilute gases or atomic beams, then the 
saturation intensity with = -y/2 depends only on the properties of the free atom 
and is given by 

nhc7 
io = 	• A 3  

As an example, we present the saturation intensity for several important atoms. 
They can be realized technically using continuous wave laser light sources without 
special effort except for the case of the hydrogen atom. The 'strength' of the transition 
is characterized by the decay rate -y/2n = A i / 2 , given in the table in units of the natural 
linewidth. It is perhaps strange at first glance that the saturation intensity becomes 
smaller with decreasing linewidth and therefore weaker lines, but it has to be taken 
into account that coherent coupling needs more and more time to reach excitation. 

According to Eq. (6.30) the inversion can also be expressed by its dependence on 
the saturation intensity 

62 + ,y12 

Wst 	00 2 	+ ,y/2 (1  + I/1-0)  • 
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Tab. 6.2: Saturation intensity of some important atomic resonance lines. 

Atom H Na Rb Cs Ag Ca Yb 

Transition 1S—>2P 3S—>3P 5S—>5P 6S—)6P 5S—>5P 4S—>4P 6S—>6P 

-y/21t  (106 s') 99.5 9.9 5.9 5.0 20.7 35.7 0.18 
A (nm) 121.6 589.0 780.2 852.3 328.0 422.6 555.8 

/0 (mW cm -2 ) 7242 6.34 1.63 1.06 76.8 61.9 0.14 

Here it is worth introducing another new parameter, 

Nat =  7'\/l  + /110 1 	 (6.35) 

to describe the y polarization component of a single particle in equilibrium, 

vst = 1 + s  62 + ,y/2 = 
w0 	

2 	/2 • 

wo 	7/ QR 	)11 ç2 .1i 

	

(5 4-  Nat 
	 (6.36) 

Sometimes it is technically more convenient to express the Rabi frequency according 
to (6.32) again by the saturation intensity. For ut and yst  we then get 

= /2 	wo -V///o  
Vst 
	

V -/ 1 + ///0  + ((5/-y') 2  ' 	 (6.37) 
_-7 yst•6  = 
7 

The intensity dependence of the polarization is presented in Fig. 6.9 as a function 
of the normalized intensity 1110  in the special case of perfect resonance at S = O. 
It increases very rapidly and decreases at high intensities as 1/0//0 , i.e. with the 
amplitude of the driving field. For low intensities we find again the limiting classical 
case. Then (ust , vst) correspond with the (a, v) coordinates of the Lorentz oscillator 
from Eq. (6.7) and of course present as well the frequency characteristic from Fig. 
(6.2). 

To determine the macroscopic polarization density P of a sample, we have now to 
introduce the particle density N/V and obtain for an ensemble of identical particles, 
exactly as in the classical case, 

P = —
N 

d
eg 

(u + iv). 	 (6.38) 
V  

In contrast to the classical case (see Section 6.1.2) now (u, y) depend nonlinearly on 
the electric amplitude of the light field. In a physical system in thermal equilibrium 
the average occupation number of states decreases with increasing energy according 
to the Maxwell—Boltzmann formula nth r•-,  e—E / IcT  . Therefore the equilibrium value 
for the difference in occupation numbers of the upper (Ne ) and lower (Ng ) states is 
always negative, wo = (Ne  — Ng )IN < O. Since optical transitions with energies of 
several eV have much more energy than thermal excitations with only 1/40 eV, we can 
usually assume wo  = —1. The treatment according to quantum mechanics yields the 
same result because according to (6.37) yst  < 0 for arbitrary field intensities. Thus 
the polarization follows the field and always causes absorption. 

Ust 
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6.3 Stimulated and spontaneous radiation 
processes 

eg 

In the previous section we investigated the cou-
pling of an atom to a monochromatic light wave. Three 
different radiation processes were identified: 

1. By coupling to the driving field, an atom can 
be promoted from the ground state to the excited 
state. This process is called 'stimulated absorption' 
and can only take place if there is an applied external 
field. 

2. An analogous process takes place as well from the 
excited to the ground state, and is called 'stimulated 
emission'. The stimulated processes describe the co- 

herent evolution of the atom—field system, i.e. phase relations play an important role. 

3. If an atom is in the excited state, it can decay to the ground state by 'spontaneous 
emission'. This process is incoherent, always takes place (apart from the exceptions 
in the excursion on p. 187) and has been taken into account phenomenologically in 
Eq. (6.28) by introducing the damping constants. 

Excursion: The spectrum of black bodies 
Just before the end of the 19th century, the spectrum of black bodies was very carefully studied 
at the Physikalisch-Technische Reichsanstalt, Berlin (the historic German National Labora-
tory for Standards and Technology). At that time, light bulbs for public lighting had been 
only very recently introduced, and the intention was to control their output and increase their 
efficiency. This blackbody spectrum has since played an outstanding role for modern physics 
in general and our understanding of light sources in particular. During these investigations, 

it turned out that the formula given by Wien for low frequencies, S E (W) CX (2 eXp (— h(4) I kT ) , 

no longer matched the experimental results. At the same time, in England, Lord Rayleigh 

gave a different, more appropriate, radiation formula for low frequencies,  S(w) oc co 2T. 
Max Planck arrived at his famous radiation formula by a clever interpolation, here in the 

modern notation 
87c 	ricv 3  

S E (W) = 	 (6.39) 
c3  exp(hw I kT) —1' 

Today we know that this formula is derived from the product of the density of states of 

the radiation field at frequency co and the occupation probability according to Bose—Einstein 
statistics. This formula, published for the first time by Planck in Berlin on 14 December 1900, 
was the beginning of a sequence of ideas leading to modern physics. Thermal light sources, 

the concepts of optics and a problem of truly applied research — the efficiency of light bulbs 

— all played an important role in the birth of quantum physics! 
The unbroken fascination of radiation physics has recently also been confirmed by radio-

astronomical measurements. It must be noted that the most exact measurement of a black 

body is now obtained from the spectrum of the cosmic background radiation. The difference 

Fig. 6.10: 	Two-level quan- 
tum system with Einstein coef-
ficients, stimulated and sponta-
neous radiation processes. 
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Spectrum oi 
background radiation from CORE 

Fig. 6.11: Left: Spectrum of the  2.7K cosmic background radiation. Right: Celestial maps 
of the intensity fluctuations. Top: Dipole asymmetry. Bottom: Residual fluctuations with 
maximum AT IT 10 -5  . After [78]. 

between the measured values and the theoretical curve in Fig. 6.11 is in fact not visible! The 
average temperature of this radiation, often interpreted as the 'afterglow' of the now very 
much cooled down Big Bang, can be determined as T = 2.726 ± 0.005K. 

The measurements by the Cosmic Background Explorer (COBE) satellite [78, 12] are so 

exact that the temperature fluctuations of radiation related to the average detected from a 

certain direction can be mapped on a celestial map. The spectacular result shows a dipole-

like asymmetry of the order AT/T 10-3 , which can be explained by the proper motion 

of our Galaxy relative to a homogeneous radiation background. Beyond that, the microwave 

radiation is isotropic except for smaller spatial fluctuations of about AT/T 10-3 . It is 

assumed [12] that those small fluctuations reflect the density fluctuations of the early Universe 

and have acted as seeds for the observable matter, which is not homogeneously distributed 

across the Universe. 

The terms 'stimulated emission' and 'spontaneous emission' were developed by Ein-
stein in relation to thermal broadband light sources, since both types were necessary 
for thermodynamic reasons. Coherent coupling of light fields and atoms was neither 
conceptually nor experimentally conceivable at that time. 

6.3.1 Stimulated emission and absorption 

Let us now investigate how we can obtain the limiting case of a broadband incoherent 
light field from the Bloch equations. For this purpose we use the complex form in 
Eq. (6.29) and assume I Peg I  < w 	—1. With the equilibrium value Peg 

without difficulty 

71 Ç22R  
'Lb = 

7/2  +2 
 W — -y(w — w0 ). 

we obtain 
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We are interested in the first term, containing the stimulated processes (emission and 
absorption) because of Q 2R  = de29ed/h2  a I, and we take the broadband spectrum into 
account by integrating over all detunings 6 and defining E0  to be the mean quadratic 
field amplitude, 

tb = n(ceg 13)g1h2  - -y(w + 1). 

The coupling of unpolarized field and atomic dipole generates a factor 1/3 by averaging 
over the space directions, and with p„ ---,-- (w + 1)/2 we find the form 

itc/,2  
/ice = 	g  ?Lk* — 'y(w + 1)/2 = Beg u(v0 )(pgg  - p„) - -yp„. 

360 h2  

Here we call u(vo) = €002 the energy density at the resonance frequency vo . The 
coefficient Beg  is called the Einstein B coefficient and determines the rate of stimulated 
emission and absorption, respectively. 

6.3.2 Spontaneous emission 

Rigorous calculation of the spontaneous emission rate requires a treatment according to 
the rules of quantum electrodynamics, i.e. with the help of a quantized electromagnetic 
field. In fact the calculation of the spontaneous emission rate by V. Weisskopf and E. 
Wigner [1081 in 1930 was the first major success of this, then very new, theory. 

We here choose a much shorter way by using the result of the Larmor formula known 
from classical electrodynamics. It says that the radiation power of an accelerated 
electric charge is proportional to its squared acceleration, 

2  e 2  
P = -yhvo  = 

3c3  47E€0
.  

We assume that, during the characteristic decay time 1,-1 , just the excitation energy 
Iwo  is emitted. From quantum mechanics we adopt the result ï = x4, and by ad 
hoc multiplication with the factor 2 delivered only by quantum electrodynamics, we 
obtain the result 

P 	d 2  n3  
--y = A e9  = 2 x — -  egw- 

3nheoc3 	
(6.41) 

hvo   

for the Einstein A coefficient. 

By comparison with Eq. (6.40), we confirm the result that Einstein obtained from 
purely thermodynamic reasoning, 

A, 	ruv3 _ 	0  _  	L'-' 2  
B n2 c3  (6.42) 

With  p(w) = co2 /n2 c3 , the latter form contains just the state density of the radiation 
field for the frequency w (see Appendix B.3). If the driving field contains photons in a 
certain mode iiph , then the ratio of spontaneous and stimulated emission rate in this 
mode has to be 

A : B =1 : Tiph . 

(6.40) 
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Excursion: Suppression of 'natural' decay 

The natural decay of an excited atomic or molecular state appears to be inevitable and 
fundamental, though, in an environment with conductive surfaces, the decay rate can be 
modified or even switched off. As an example we consider an atom, which we imagine in a 
simplified way as a microscopic dipole antenna between two metallic reflecting walls distance 
d apart. The atomic radiation is reflected by the walls and re-affects the atom. Depending 
on its position, which determines the phase lag due to the round trip, the reflected radiation 
is either reabsorbed and hinders decay or causes an even faster decay of the excited atom by 
amplifying the dipole oscillation, or equivalently by constructive interference. 

Fig. 6.12: Suppression of spontaneous emission between plane mirrors. Left: Image charge 
model. For small distances, the interference field of the image dipoles leads to extinction in a 
position, and to intensification in 7r position. Right: Density of states for a- and ir-polarized 
radiation fields. 

The reflected radiation field can be analysed following the intuitive method of image 
charges (Fig. 6.12). Then the modification of the atomic free space decay rate can be calcu-
lated equivalently to the radiation field of a chain of atomic image dipoles [71]. Alternatively, 
we may consider waves allowed to propagate between the two mirrors. They form a primitive 
waveguide with cut-off frequency at 

wc = ncld, 

at least for electric fields polarized perpendicular to the surface normal (a polarization). Thus, 

if the separation of the mirrors falls below half of the resonance wavelength, d < nclwat = 
Aat /2, then the atomic radiation field is no longer able to propagate at this wavelength or 

frequency, and the spontaneous decay of the excited state is completely suppressed! This fact 

is theoretically reflected in the density of states of the radiation field as shown in Fig. 6.12. 

Though atomic resonance wavelengths are very small (they only have gm dimensions), ex-

actly this type of experiment has been carried out to demonstrate the dependence of the 

spontaneous decay on the environment of the microscopic radiator [71]. This example im-

pressively shows that the radiative properties of a microscopic particle are influenced by its 

environment. In highly reflective cavities, the modification is particularly radical. This topic 

has been extensively investigated under the name of 'cavity QED' for many years [9]. 
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Fig. 6.13: Four-level system with in-

version between the upper (le)) and 
lower (1g)) levels. The circles indicate 
the population of the levels in dynamic 
equilibrium. 
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6.4 Inversion and optical gain 

by electron impact in a discharge, 

It is impossible to obtain inversion by optically 
exciting a two-level system, as outlined in Sec-
tion 6.2.5. In a system with four states, how-
ever, we can build a dynamic equilibrium that 
generates a stationary inversion between two of 
the four levels by supplying energy, and so fulfil 
the requirement for running a laser. An inver-
sion (and thus the requirement for laser opera-
tion) can be obtained with three levels as well. 
However, the four-level system causes a strict 
separation of the states directly contributing 
to the pumping process and the laser process. 
That is why it is preferred for a transparent 
treatment. 

The idealized system is presented in 
Fig. 6.13. The pumping process promoting 
particles from the ground state 10) to the pump 
level p) at a total rate R = VR, can be driven 

by absorption from the light of an incandescent 
lamp or a laser, or by other mechanisms. We will get to know some of them in the 
chapter about lasers. Our focus is on the two levels le) and 1g), which from now on 
are to be referred to as 'laser levels'. 

6.4.1 Inversion 

We consider the rate equations for the occupation numbers no , np , ne  and ng . We 
focus on weak pumping processes, where most of the atoms remain in the ground 
state, and we may keep no  1 to a good approximation. By a short consideration 
or calculation, it can be found that for these conditions the rate equation system can 
effectively be limited to the laser states le) and 1g). The dynamics is determined by 
the population rate R of the upper state, by its decay rate -y, by the partial transition 
rate -yeg  < -y falling to the lower laser level, and finally by the depopulation rate of the 
lower laser level Nep: 

fig = 'Y eg ne  — Ni epng  • 

	

Tie  = R -yne , 	
(6.43) 

The stationary solutions n t  = R/-y and nsgt  = NgRheydep are found, and the dif-
ference in the occupation numbers can be calculated in equilibrium but in the absence 
of any light field that could cause stimulated emission: 

st 	st 	R 

	

no  = ne  — 72g  = — 	
7eg 
	

(6.44) 
7dep 

If the depopulation rate -ydep  of the lower state is larger than the decay rate of the 
upper state, then apparently an inversion, no  > 0, is maintained in this system because 
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'Yeg hdep G 1. The inversion is a non-equilibrium situation from the thermodynamic 
point of view and requires an energy flow through the system. 

Since the imaginary part of the polarization is now also positive (eq. (6.36)), we 
expect the polarization not to be absorbed by the field causing it but in contrast to 
be intensified! A field growing stronger, though, reduces this inversion according to 
Eq. (6.37), but maintains the amplifying character (Fig. 6.9). With this system, the 
requirements for an optical amplifier are met. It is known that an amplifier excites 
itself by feedback and works as an oscillator. We call these devices 'lasers'. 

6.4.2 Optical gain 

If inversion occurs (wo  > 0), then, because of the positive vst  > 0, a negative absorption 
coefficient is caused (Eq. (6.18)), also known as the optical gain coefficient. Its unit is 
cm-1  as well. According to Fig. (6.9), it is clear that the inversion - and so the gain 
- is reduced under the influence of a light field. For laser operation, we will call this 
saturated gain. In the case of very low intensities ///o  < 1, the gain is constant and 
it is called small signal gain. This value is usually given for a laser material. 





7 The laser 

The laser has become an important instrument, not only in physical research but 
for almost all fields of everyday life. In this chapter we are going to introduce some 
particularly important laser systems with technical details. A theoretical description 
of their most important dynamic physical properties is given in Chapter 8.1. 

The word laser has become a well-recognized word in everyday language, and is 
derived from its predecessor, the maser, the acronym 'maser' meaning 'microwave 
amplification by stimulated emission of radiation'. The laser is based on identical 
physical principles and is an optical maser, the abbreviation 'laser' meaning 'light 
amplification by stimulated emission of radiation'. We basically regard a laser as a 
source of an intensive coherent light field. Laser light appears absolutely artificial to 
us, and our ancestors certainly never happened to experience the effect of a coherent 
light beam, 1  though in the cosmos there are several natural sources of maser radiation. 
The example with the shortest wavelength is probably the hydrogen gas surrounding a 
star named MWC349 in the Cygnus constellation, which is excited to luminescence by 
the ultraviolet radiation of this hot star. The hydrogen gas arranged in a disc amplifies 
the far-infrared radiation of the star at the wavelength of 1691AM several million times, 
such that it can be detected on Earth. 

The laser has historical roots in high-frequency and gas discharge physics. It was 
known from the maser that it was possible to construct an amplifier and oscillator for 
electromagnetic radiation with an inverted molecular or atomic system. In a famous 
publication A. Schawlow (1921-1999, nobel prize 1981) and C. Townes [91] (1915-, 
nobel prize 1964) had theoretically predicted the properties of an 'optical maser', later 
called a laser. 

The optical properties of atomic gases had already been studied in discharges for 
a long time. The question was raised whether an inversion and thus amplification of 
light could be achieved by a suitable arrangement. So it becomes understandable that 
the first continuous-wave laser realized by the American physicist Ali Javan (1928-) in 
1960 [50] with an infrared wavelength of 1.1521Am was a surprisingly complex system 
consisting of a gaseous mixture of helium and neon atoms. 

The laser bears a close analogy to an electronic amplifier that is excited to oscilla-
tions by a positive feedback. Its oscillation frequency is determined by the frequency 
characteristic of gain and feedback (Fig. 7.1). It is known that an amplifier oscillates 

1 Though  interference and coherence phenomena can be observed even in our everyday environment 
— for example, take a piece of thin, fine fabric and watch some distant, preferably coloured lights 
through it, e.g. the rear lights of a car. 
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electronic oscillator laser oscillator 

Fig. 7.1: Analogy between a laser and an electronic amplifier, which becomes an oscillator by 

feedback coupling. The oscillator frequency can be selected, e.g. by a filter (F) in the feedback 

path. For the laser, the feedback is achieved using resonator mirrors. For clarification, a 

ring resonator with three mirrors has been chosen. The spectral properties of the amplifying 

medium as well as the wavelength-dependent reflectivity of the resonator mirrors determine 
the frequency of the laser. 

with positive feedback if the gain becomes greater than the losses, 

oscillation condition: 	gain > losses. 

The amplitude grows more and more until the losses by outcoupling or within the 
oscillator circuit just compensate the gain. The effective gain then decreases. This is 
called a 'saturated gain' (see Section 8.1.2). 

As we already know from the chapter about light and matter, an inversion of the 
laser medium is necessary to achieve an intensification of a light wave. Using the 
simplest picture there always have to be many more atoms in the upper excited state 
than in the lower one. If this condition is not fulfilled, the laser oscillations die or 
do not even start. An ideal laser is supposed to deliver a gain as large as possible 
and independent of the frequency. Since such a system has not yet been found, a 
multitude of laser systems is used. The most important variants roughly divided into 
classes (Tab. 7.1) will now be introduced with their technical concepts, strengths and 
weaknesses. 

Tab. 7.1: Laser types. 

 

Gaseous 	Liquid 	Solid state 

neutral atoms 	 rare-earth ions 

ions 	 3d ions 

Fixed frequency 

Multiple frequency 	molecules 

Tunable 	 dyes 	3d ions 
colour centres 



2p 

Fig. 7.3: Energy levels of He and Ne atoms with the 
most prominent optical transition at 632.8 nm. For 
nomenclature, the spectroscopic terms are used. For 
the energy levels, the lifetimes are given as well. 

. The Ne atom has nearly resonant energy levels 
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Fig. 7.2: Helium—neon laser in an open experimental set-up. The current is supplied to the 
discharge tube by the two cables. The  resonator mirrors and the laser tube are mounted on 
finely tunable bearings. 

7.1 The classic system: the He—Ne laser 

The helium—neon laser (He—Ne laser) has played an unsurpassed role in scientific re-
search on the physical properties of laser light sources, e.g. experimental investigations 
of coherence properties. Just for this alone it is the 'classic' of all laser systems. We 
shall introduce several important laser features using this system as an example. 

The helium—neon laser obtains 
its gain from an inversion in the 
metastable atomic excitations of the 
Ne atom (the luminescence of Ne 
atoms is also known due to the pro-
verbial neon tubes). 

In Fig. 7.3 the relevant atomic lev-
els with some important features 
and some selected laser wavelengths 
(`lines') are presented. Since the 
gas mixture is quite dilute, we can 
easily understand the He—Ne laser 
using the picture of independent a-
toms. The Ne atoms are excited 
not directly by the discharge but 
by energy transfer from He atoms, 
which are excited to the metastable 
'So  and 3 S 1  levels by electron impact 

1.1.1 Construction 

The amplifier 
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so that an efficient energy transfer is enabled by resonant impacts. In the He—Ne laser, 
the excitation and the laser transition are split up into two different atomic systems, 
which is helpful for the realization of the desirable four-level system, though there is 
a problem at the lower laser level of the Ne atoms (Fig. 7.3), which is metastable as 
well and cannot be emptied by radiative decay. In a narrow discharge tube, collisions 
with the wall lead to efficient depopulation of the lower laser level. 

Operating conditions 

The inversion can only be maintained in a rather dilute gas mixture compared to the 
atmospheric environment. The He pressure p is some 10 mbar, and the  He:  Ne mixing 
ratio is about  10: 1. The He discharge is operated at a current of several milliamps 
and a voltage of 1-2 kV, and it burns in a capillary tube with a diameter of d < 1 mm 
(Fig. 7.2). At its walls the metastable Ne atoms (Fig. 7.3) fall back to the ground 
state again due to collisional relaxation and are available for another excitation cycle. 
The discharge is ignited by a voltage pulse of 7-8 kV. 

Fig. 7.4: Schematic representation of a helium—neon laser. The big cathode cup prevents fast 
erosion caused by the discharge. The Brewster windows at the ends of the laser tube reduce 
reflection losses at the windows and uniquely determine the laser polarization. 

All He—Ne lasers have this construction principle in common, only the construction 
length and the gas filling pressure being slightly different depending on the application. 
Optimum conditions for the product of pressure p and diameter d are empirically found 
at 

p d 5 mbar mm. 

The output power of commercial He—Ne lasers varies between 0.5 mW, which will 
just not damage the eyes, and 50 mW. The power depends on the discharge current and 
the length of the tube. Both can only be extended to a certain amount. The gain is 
proportional to the density of inverted Ne atoms, but this already reaches a maximum 
at a few tens of milliamps since increasing electron collisions de-excite the atoms. The 
length of the tube cannot be significantly expanded over = 1 m, for the following 
reasons. On the one hand, the diameter of the Gaussian modes grows with increasing 
mirror distance and does not fit into the capillary tube any more. Furthermore, with 
a larger construction length, the 3.3411m line starts oscillating as a superradiator even 
without mirrors, and thus withdraws energy from laser lines competing for the same 
reservoir of excited atoms. 
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The laser resonator 

The resonator mirrors can be integrated into the discharge tube and may be once 
and forever adjusted during manufacturing. Especially for experimental purposes, an 
external resonator with manually adjustable mirrors is used. The tube has windows 
at its ends. In the simplest case the resonator only consists of two (dielectric) mirrors 
and the discharge tube. To avoid losses, the windows are either anti-reflection coated 
or inserted at the Brewster angle. 

Example: Radiation field in the He—Ne laser resonator 

The laser mirrors determine the geometry of the laser radiation field according to 
the rules of Gaussian optics (see Section 2.3). They have to be chosen such that 
the inverted Ne gas in the capillary tube is used as optimally as possible. For a 
symmetric laser resonator with mirror radii R = 100 cm (reflectivity 95% and 100%), 
and separated by t = 30 cm, one obtains for the red 633  urn line a TEMoo  mode with 
the parameters: 

confocal parameter 
	b = 2z0  - 71 cm, 

beam waist 
	

2wo 	0.55 mm, 
divergence 
	

ediv - 0.8 mrad, 
power inside/outside Pi/Po - 20 mW/1 mW. 

There are no problems of fitting the laser beam over the complete length to the typical 
cross-section of the plasma tube of about 1 mm. Even in a distance of 10 m it has just 
a cross-section of about 4 mm. 

7.2 Mode selection in the He—Ne laser 

We devote the next two sections to the physical properties of the He—Ne laser (mode 
selection and spectral properties) because it is a good model to present the most 
important general laser properties and since for the He—Ne laser the physical properties 
have been investigated particularly thoroughly. 

The aim of mode selection in every continuous wave (ccw') laser is the preparation 
of a light field oscillating both in a single spatial, or transverse mode, and in a single 
longitudinal mode, i. e. at just a single optical frequency w. The methods used 
with the He—Ne laser can be applied to all other laser types with slight modifications. 
The desirable transverse mode is mostly a TEMoo  or closely related mode. It has 
fewer losses due to its comparatively small cross-section and thus is often intrinsically 
preferred anyway. In case of doubt the relevant spatial mode can be selected by using 
a suitable adjustment of the resonator or insertion of an additional aperture. 
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7.2.1 Laser line selection 

If several laser lines of the neon atom have a common upper laser level (e.g. 2s, Fig. 7.3), 
only that one with the highest gain can be observed. If the laser line couples completely 
different levels (e.g. 2s-2p and 3s-3p), then the lines can be activated simultaneously. 

ionisation limit neon+ 

Fig. 7.5: Wavelength selection in the He-Ne laser. Left: Part of the energy level scheme of 
the neon atom showing the important laser transitions. The common notation does not follow 
the customary singlet/triplet convention according to the LS coupling scheme. The notation 
used here goes back to Paschen, who simply numbered the levels consecutively. An s level splits 
into 4, and a p level into 10 angular momentum states. Right: Littrow prism as a dispersive 
end mirror for wavelength selection. 

Owing to the helium discharge in the neon gas, the 2s state as well as the 3s are 
populated with the occupation of the uppermost 3s2  substate dominating in the 3s 
group. The largest gain factors are obtained at the wavelengths of 0.633, 1.152 and 
3.392 pm. Transitions with a low gain can be excited if the feedback coupling by 
the resonator selectively favours or suppresses certain frequencies by means of some 
suitable optical components. In general, all dispersive optical components - such as 
optical gratings, prisms and Fabry-Perot etalons - are appropriate. One of the simplest 
methods is the installation of a Littrow prism as shown in Fig. 7.5. The Littrow prism 
is a Brewster prism divided in half so that the losses for p-polarized light beams are 
minimized. The backside of the Littrow prism is coated with dielectric layers to make 
a highly reflective mirror. Since the refraction angle depends on the wavelength, the 
laser line can be selected by tilting the Littrow prism. 

Another specialty is the extremely high gain coefficient of the infrared 3.341.1m 
transition (typically 103  cm-1 ), causing the line to start oscillating almost every time. 
It can be suppressed by using infrared-absorbing glass and limiting the length of the 
plasma tube. The latter fact is unfortunate since it imposes a technical limit to the 
output power, which otherwise increases with length. 
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Fig. 7.6: Gain profile of a He-Ne laser in operation. 
Without the laser field, the small signal gain corre-

sponds to the neon Doppler profile (dashed line); the 
laser operation modifies the gain profile by so-called 
spectral or Bennett holes (see text). Two holes sym-
metric to v = 0 m occur because in a standing wave 
the Doppler shift acts in two directions. 
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7.2.2 Gain profile and laser frequency 

For the example of the He—Ne laser, we are now going to ask how the oscillation 
frequency of a laser line depends on the combined properties of the gas and the res-
onator. The spectral width of the fluorescence spectrum (the width of the optical 
resonance line) is determined by the Doppler effect caused by the neon atoms moving 
at thermal speed of several 100m s -1  in a gas at room temperature. This broaden-
ing is called inhomogeneous (see Section 11.3.2), since atoms with different velocities 
have different spectra. With regard to the laser process this especially means that 
the coupling of the neon atoms to the laser light field depends very strongly on their 
velocity. For the red laser line at 633 nm, the Doppler linewidth at room temperature 
is about AvDopp  = 1.5 GHz according to Eq. (11.8) and can just be resolved with a 
high-resolution spectrometer (e.g. Fabry—Perot). 

In Fig. 7.6 the gain pro-
file and its significance for the 
laser frequency is presented. It 
makes the laser begin oscillat-
ing if the gain is higher than 
the losses. Within the gain pro-
file the laser frequency is de-
termined by the resonance fre-
quencies of the laser resonator 
(here indicated by the transmis-
sion curve showing maxima at 
frequencies separated by the free 
spectral range A FsR). At these 
`eigenfrequencies' the laser may 
start oscillating, as we shall in-
vestigate more deeply in Sec-
tion 8.1. True lasers are slightly 
shifted off the resonances of the 
empty resonator, an effect that 
is called mode pulling. 

7.2.3 Spectral holes 

At the eigenfrequencies of the He—Ne laser one can observe spectral holes (the so-called 
Bennett holes). The atoms make up the difference between their rest-frame frequency 
yo  and the laser frequency 14, by their velocity v z  in the direction of the resonator axis, 
and the atoms of a gas laser contribute to the gain only within their homogeneous, 
i.e. their natural, linewidth. This situation is called saturated gain. In equilibrium the 
effective gain is reduced at these frequencies to that value just corresponding to the 
losses (including the decoupling at the resonator mirrors). 

The small signal gain from Fig. 7.6 can be measured by sending a very weak tunable 
probe beam through the He—Ne laser and measuring the gain directly. Since in a 
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resonator with standing waves atoms can couple to the light field in both directions, 
two spectral holes can be observed at 

= vo kv z . 

This observation also indicates that two different velocity groups of atom contribute to 
the gain of the backward and forward running intra cavity wave, respectively. Thus a 
very interesting case occurs when both holes are made to coincide by e.g. changing the 
resonator frequency by length variations with the help of a piezo-mirror. At vz  = 0 a 
lower gain than outside the overlap region of the holes is available and the output power 
of the laser decreases. This collapse is called Lamb dip after Willis E. Lamb (born 
1913) , 2 , and it initiated the development of Doppler-free saturation spectroscopy. 

7.2.4 The single-frequency laser 

In Fig. 7.6 only one resonator frequency lies within the gain profile such that the laser 
threshold is exceeded. Since the free spectral range AFSR = Of of the He—Ne laser 
exceeds the width of the Doppler profile at A = 633 nm below 10 cm, for typical, i.e. 
larger, construction lengths, generally 2-4 frequencies start to oscillate because in the 
inhomogeneous gain profile there is no competition between the modes about the avail-
able inversion. But we can still insert additional (and low-loss) dispersive elements 
into the resonator which modulate the spectral properties of the gain profile in a suit-
able way to filter the desired laser frequency from the available ones. To discriminate 
between adjacent resonator modes, highly dispersive elements such as Fabry—Perot 
etalons are required. 

Example: Gain modulation with intra-cavity etalons 
Etalons cause a modulation of the effective laser gain which is periodic with AFPE, 
the free spectral range (Eq. 5.18) separating adjacent transmission maxima. The 
periodicity can be chosen by the etalon thickness or length L. Tilting the etalon 
causes the transmission maxima to shift, and from geometrical considerations following 
section 5.5 one obtains 

N 	ri  _ 1 (ay 
limax NAFPE (a) = N 	 

Zen I_ 	2 n ) 2L\/n2 — sin2  a 

Small tilts change the free spectral range only slightly but are enough due to the high 
order N to tune the centre frequency efficiently. The monolithic thin etalon presented 
in Fig. 7.7 is simple and intrinsically stable, but when tilted it leads to a walk-off and 
thus increased losses. The air-spaced etalon (the variable air gap is cut at the Brewster 
angle to keep the resonator losses as small as possible) has a more complex mechanical 
construction but avoids the walk-off losses of the tilted device. 

2 W. E. Lamb has become immortal in physics mainly by the discovery of the Lamb shift also 
named after him, for which he received the Nobel prize in 1955. Be also contributed significantly to 
the pioneering days of laser spectroscopy. 



Fig. 7.8: Output power of a laser as a 
function of the transmission T of the out-
coupling mirror, and the gain V normal-
ized to the resonator losses A. 
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frequency 

Fig. 7.7: Frequency selection by intra-cavity etalons. Left: 'Thin' etalon and 'thick' etalon. 
For rough tuning the thin etalon is tilted where the walk-off caused by the tilt is tolerable. The 
thick etalon is constructed with an air gap at the Brewster angle, which can be varied in length 
by a piezo-translator. Right: Combined effect of an etalon (LOEPE) and the laser resonator 

(ARes) on the transmission (and thus on the gain). For this example the length of the etalon 
is about one-fifth of that of the resonator. 

The intra-cavity etalons do often not need any additional coating. Even using only 
the glass—air reflectivity of 4% a modulation depth of the total gain of about 15% is 
obtained according to Eq. (5.16). With regard to the small gain, in many laser types 
this is completely sufficient. 

7.2.5 Laser power 

We shall now investigate how to optimize 
the laser output power, i.e. for practical rea-
sons generally to maximize it. The proper-
ties of the amplifier medium are physically 
determined and thus can be influenced only 
by a suitable choice, length, density, etc. 
The losses can be kept as small as possi-
ble by design and choice of the components 
of the resonator. Finally there is only the 
choice of the mirror reflectivity as the re-
maining free parameter, which also acts as a 
loss channel. We consider a Fabry—Perot in-
terferometer with gain as a model. For this 
we make use of the considerations about dis-
sipative resonators from Section 5.5. The laser is always operated in the resonance 
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case. We here anticipate the correlation between gain V, losses A and transmission T 
of the only decoupling mirror more accurately dealt with in Section 8.1, eq. (8.17), 

T  T(V - A - T) 
Lut - -10 	  

A + T ' 

and investigate it graphically as a function of the variable transmission T in Fig. 7.8. 

7.3 Spectral properties of the He—Ne laser 

7.3.1 Laser linewidth 

Until now we have taken monochromatic optical light fields for granted, i.e. we have 
assumed that the optical wave can be described by a single exactly defined frequency 
co. In the chapter about the laser theory we will see that laser light comes closer 
to this deeply classical idea of a perfect harmonic oscillation than almost any other 
physical phenomenon. The physical limit for the spectral width of a laser line measured 
according to the so-called Schawlow-Townes limit (Section 8.4.4) amounts to several 
hertz or even less! This physical limit is imposed due to the quantum nature of the 
light field. It has been mentioned already by the authors in that paper proposing the 
laser in 1958. According to this the linewidth of the laser is (see Eq. (8.32)) 

N2 	27(1-tvL'Yc2 
A vL = 

N2 - N1 PL ' 

with vi, is the laser frequency, 7c  = Avc  is the damping rate or linewidth of the laser 
resonator, PL is the laser power and N1 , 2 are the occupation numbers of the upper 
and lower laser level, respectively. 

Example: Schawlow-Townes linewidth of the He-Ne laser 
We consider the He-Ne laser from the previous example. The laser frequency is vi, = 
477 THz, the linewidth of the resonator is Av c  = 8MHz (according to the data from 
the example on p. 195), while all internal resonator losses are neglected according to 
Eq. (5.19). The He-Ne laser is a four-level laser so that we have N1  L--2. 0. For an 
output power of 1 mW we calculate a laser linewidth of just 

2nh x 477 THz  (8  MHz) 2  
AvL  -, 	  = 0.13Hz. 

1 mW 

The extremely small Schawlow-Townes linewidth of the red He-Ne line corresponds 
to a Q value v/Av '-' 10 15 ! Even today laser physicists think of this limit as a thrilling 
challenge because it promises to make the laser the ultimate precision instrument 
wherever a physical quantity can be measured by means of optical spectroscopy. 

From the beginning the He-Ne laser has played an extraordinary role for precision 
experiments, and it is indeed a challenge even just to measure this linewidth! It is 
thus useful to illustrate the methods used to measure the linewidth of a laser. 
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7.3.2 Optical spectral analysis 

The spectrum of a laser oscillator, like that of any other oscillator, can be investi-
gated using several methods. A Fabry-Perot interferometer is used as a narrow-band 
filter. Its mid-frequency is tuned over the area of interest. A photodiode measures the 
total power transmitted within the filter passband. 

Alternatively the laser beam 
can be superimposed with a 	 çç  
second coherent light field (local 
oscillator) onto a photodiode. 
The photodiode generates the 
difference frequency or 'het-
erodyne' beat signal. The 
superposition signal in turn can 
be analysed by radio-frequency 
methods or Fourier analy-
sis. 3  

Fig. 7.9: Scanning Fabry-Perot interferometer for 
the spectral analysis of laser radiation. 

The Fabry-Perot spectrum analyser 

In the simplest, and therefore very often used, method a tunable optical filter is used, 
also called in brief a 'scanning Fabry-Perot', usually a confocal optical resonator. One 
of its mirrors can be displaced (`scanned') by several A/4 corresponding to several free 
spectral ranges with the help of a piezo-translator. The resolution of the optical filter 
usually reaches some megahertz and therefore be used only for rough analysis or as a 
laser with a large linewidth (like e.g. diode lasers, see Section 9). 

If the linewidth of the laser is smaller 
than the width of the transmission curve of 
the Fabry-Perot interferometer, some infor-
mation about the frequency fluctuations can 
still be obtained by setting its frequency to 
the wing of the filter curve and using this 
as a frequency discriminator (Fig. 7.10). So 
any frequency variations are converted to 
amplitude fluctuations, which in turn can be 
analysed by means of radio-frequency tech-
niques or by Fourier transformations. 

Fig. 7.10: Transmission curve used as a 
frequency-to-amplitude converter. 

The heterodyne method 

When applying the heterodyne method it is important to closely match the wavefronts 
of both light fields and enter the photodiode with excellent flatness so that the detec-
tor is exposed to the same phase everywhere. Otherwise the beating signal is strongly 
reduced. 



laser ) 	 NMI 	 
PI;$4  

v(t+T) 
AOM (vs) 	BS 

0  laser 2 

laser 1 

RF spectrum 
analyzer 

	( 1 	 
PD 

N 

BS 

RF spectrum 
analyzer 

vs+v(t)—v(t+T) 

202 	 7 The laser 

Fig. 7.11: Heterodyne method for the determination of the linewidth. Top: Superposition 
with a laser used as a local oscillator. Bottom: Superposition according to the autocorrelation 
method. PD = photodiode; BS = beam splitter; AOM = acousto-optical modulator. 

In Fig. 7.11 the scheme is presented according to which a heterodyne signal can 
be achieved at radio frequencies. A second laser can be used as a local oscillator. Its 
frequency should be much more 'stable' than the laser to be tested. Furthermore, 
it must not deviate too far from the test frequency, since above 1-2 GHz high-speed 
photodiodes become more and more unwieldy (the active area shrinks more and more 
to avoid parasitic capacitances and to gain bandwidth) and expensive. 

The autocorrelation method is an alternative in which the laser in a way 'pulls itself 
out of the mud'. One part of the laser light is split off by an AOM (acousto-optical 
modulator) and at the same is time shifted by the frequency vs, which is typically 
some 10 MHz. One of the two light beams is now delayed over a long optical fibre so 
that there is no longer any phase correlation ('coherence') between the light waves. 
Both light waves are superposed onto a photodiode as before and the mixed signal is 
investigated using a radio-frequency spectrum analyser. 

The method is completely analogous to a Michelson interferometer. It is operated 
at a path difference larger than the coherence length. There is no visibility (i.e. the 
average of the interference signal vanishes) but a fluctuating beat signal that delivers 
a good measure of the spectral properties of the laser. 

3 Superposition of two electromagnetic waves with different frequencies is usually called 'hetero-
dyning', while superposition of identical frequencies is called `homodyning'. Heterodyning is generally 
preferred since the noise properties of both detectors and receivers are favourable at higher frequencies. 



7.4 Applications of the He—Ne laser 	 203 

7.4 Applications of the He—Ne laser 

For the production of He-Ne laser tubes, the manufacturing technology of radio tubes 
was very suitable. Radio tubes were being replaced by transistors in the 1960s, so a 
high production capacity was available when the He-Ne laser was developed. Histori-
cally, its rapid distribution was significantly supported by this fact. 

The best-known wavelength of the He-Ne laser is the red laser line at 632 nm, 
which is used in countless adjusting, interferometric and reading devices. Though the 
use of the red He-Ne laser is declining rapidly since mass produced and hence cheap 
red diode lasers (Chapter 9) have become available, that can he operated with normal 
batteries, are very compact and meanwhile offer very acceptable TEM00  beam profiles, 
too. The He-Ne laser still plays an important role in metrology (the science of precision 
measurements). The red line is used, for example, to realize length standards. The 
infrared line at 3.34 pm constitutes a secondary frequency standard if it is stabilized 
on a certain resonance of the methane molecule. 

7.5 Other gas lasers 

Stimulated by the success of the helium-neon laser, many other gas systems have been 
investigated for their suitability as a laser medium. Gas lasers have a small gain band-
width and are fixed -frequency lasers when their small tunability within the Doppler 
bandwidth is neglected. Like the He-Ne laser, they play a role as instrumentation 
lasers provided they have reasonable physical and technical properties, such as e.g. 
good beam quality, high frequency stability and a low energy consumption. Some gas 
lasers are in demand because they deliver large output power, not in pulsed, but in 
continuous-wave (cw) operation. In Tab. 7.2 are listed those gas lasers which nowa-
days have practical significance. It is technically desirable to have a substance already 
gaseous at room temperature. That is why the rare gases are particularly attractive. 
Among them argon- and, even more so, krypton-ion lasers have achieved technical 
significance. 

7.5.1 The argon laser 

The argon-ion laser plays an important role since it is among the most powerful sources 
of laser radiation and is commercially available with output powers of several 10 watts. 
However, the technical conversion efficiency, i.e. the ratio of electric power consumption 
and effective optical output power, is typically 10  kW:  10 W. For many applications 
this is absolutely unacceptable. In addition, it is also burdened with the necessity 
to annihilate most of the energy spent by a costly water cooling system. Therefore 
it can be observed that the frequency-doubled solid-state lasers (e.g. Nd:YAG, see 
Section 7.8.2) have become more and more favourable replacements of the argon laser. 
In the ultraviolet range there is no competitor to the Ar-ion laser in sight yet. 
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Tab. 7.2: Overview: gas lasers. 
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Laser Short form CW/P* Laser lines Power 

Neutral- atom gas lasers 

633 rim 50 mW 
Helium—neon He—Ne CW 1.152 nm 50 mw 

3.391 rim 50 mW 

Helium—cadmium He—Cd CW 
442 nm. 200 mW 
325 nm 50 mW 

Copper vapour Cu 
511 nm  60W 
578 nm  60W 

Gold vapour Au  P 628 nm  9W 

Noble -gas ion lasers 

514 nm.  10W 
Argon-ion laser Ar+ CW 488 nrn  5W 

334-364 nm  7W 

Krypton-ion laser Kr+ CW 
647 nm.  5W 
407 nm.  2W 

Molecular gas lasers 

Nitrogen N2 P 337 mn  100W 

Carbon monoxide CO CW 4-6 gm 100W 

Carbon dioxide CO2 CW 9.2-10.9 gm 10 kW 

Excimers 
F2, ArF, KrF, 

XeCl, XeF 
0.16-0.35 gm 250W 

*CW = continuous wave; P = pulsed. 

The amplifier 

Excitation of the high-lying  Ar  + states is obtained by stepwise electron impact. That 
is why there is a very much higher current density necessary than in a He—Ne laser. 
The upper laser level can be populated from the Ar+ ground state as well as from 
other levels above or below it. The krypton laser follows a quite similar concept, but 
it has achieved less technical importance. 

Operating conditions 

In the 0.5-1.5 m long tubes a discharge is operated maintaining an argon plasma. The 
cross-section through the plasma tube in Fig. 7.12 indicates the elaborate technology 
that is necessary due to the high plasma temperatures. The inner bores of the plasma 
tube are protected by robust tungsten discs, which are inserted into copper discs in 
order to rapidly remove the heat. A magnetic field additionally focuses the plasma 
current onto the axis to protect the walls against erosion. Since, as a result of diffusion, 
the argon ions move to the cathode, the copper discs have holes for the compensating 
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laser transition 

Fig. 7.12: Lasing process of the argon-ion laser and a cross-section of the plasma tube. A 
magnetic field supports concentration of the plasma current near the axis. The copper discs 

have additional bores to allow reflux of the argon ions. 

current. An argon laser consumes gas since the ions are implanted into the walls. 
Therefore, commercial ion lasers are equipped with an automatic reservoir. The gas 
pressure is 0.01-0.1 mbar. 

Features and applications 

Ar ions have several optical transitions up to the ultraviolet spectral range which 
can be operated with a high output power. For this reason they have dominated 
the market for fixed-frequency lasers with high pump power until recently, but are 
now being severely challenged by frequency-doubled solid state lasers. Most laser 
laboratories cannot be imagined without high power visible laser sources because they 
are used to excite or, more loosely, to 'pump' other, tunable lasers like e.g. dye lasers 
and Ti—sapphire lasers. 

7.5.2 Metal-vapour lasers 

The copper- and gold-vapour lasers are commercially successful because they offer 
attractive specifications for lots of purposes: they are pulsed lasers but with very 
high repetition rates of about 10 kHz — to our eyes they are perfectly continuous. 
The pulse length is some 10 ns and the average output power can be 100 W. The 
most important wavelengths are the yellow 578 nm line and the green 510nm line 

( 2P112,3 1 2 2D3/2 , 5 /2 ) of the copper atom. 
The physical reason for this success, which cannot necessarily be expected given 

the high operating temperature of the metal vapour of about 1500°C, are the large 
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excitation probability by electron impact (the discharge is supported e.g. by a neon 
buffer gas) and the high coupling strength of the dipole-allowed transitions. 

7.6 Molecular gas lasers 

In contrast to atoms, molecules have vibrational and rotational degrees of freedom and 
thus a much richer spectrum of transition frequencies, which in principle also results in 
a varied spectrum of laser lines. The electronic excitations of many gaseous molecules 
are at very short wavelength, where the technology is complex, and in the interesting 
visible spectral range not very many systems are available. Exceptions include the 
sodium-dimer laser (Na2 ), which however has not achieved any practical significance 
since sodium vapour contains a reasonable density of dimers only at very high temper-
atures, and the nitrogen laser, which is today used only for demonstration purposes. 
However, it is quite simple to construct! 

Fig. 7.13: Simple home-made 'air laser'. Good parallel alignment of the knife edges is 

essential for successful operation. 

Excursion: Can a laser be operated just with air? 
The short answer is: Yes! The 78% nitrogen fraction of the air can be used as a laser 
amplifier. And even better, a primitive 'air laser' is so simple to construct that with some 
skill (and caution because of the high voltage!) it can be copied in school or in scientific 
practical training. The original idea of a simple nitrogen laser was already presented with 
an instruction in Scientific American in 1974 [100]. It is still costly in so far as a vacuum 
apparatus is necessary for the control of the nitrogen flow. In a practical project carried out 
by high-school students [113], the laser — with slightly reduced output power — was operated 
directly with the nitrogen from the air. 

In the simplest version a spark discharge along the knife edges in Fig. 7.13 is employed. 
The spark is generated according to the circuit diagram in Fig. 7.14. First, the knife edges 

are charged to the same high voltage potential. The breakdown of the air then takes place at 
the sharp tip of the spark gap so that between the two knife edges the full voltage is abruptly 
switched on. The discharge runs along the knife edges and also turns off rapidly again due 
to the high-voltage sources used with large source impedance. Suitable high-voltage sources 
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are available in many institutions, but a small voltage multiplier can also be built by oneself 
without any great expense. The central experimental challenge is a reproducible and stable 

discharge as experience shows. 

C3nu  

N-N-separati on 

Fig. 7.14: Left: Molecular potentials in the nitrogen molecule (schematic). Right: Circuit 
diagram of the air laser. 

Between the knife edges a line-shaped occupation inversion of nitrogen molecules is gen-

erated, which leads to laser emission on the 337.1 nm UV line. In Fig. 7.14 relevant molecular 
levels are shown along with their designations. The lower laser level is emptied only very 
slowly since the two involved states belong to the triplet system of the molecule (parallel 
electronic spins of paired electrons), which has no dipole transitions to the singlet ground 
state. Therefore, the inversion of energy levels cannot be maintained by a continuous dis-
charge either, and laser operation breaks off after few nanoseconds. 

Strictly speaking, the 'mirror-less air laser' is not a laser but a so-called csuperradiator'. In 

a superradiator spontaneous emission is amplified along the line-shaped inversion distribution 

(amplified spontaneous emission, ASE) and emitted as a coherent and well-directed flash of 

light. 

7.6.1 The CO2  laser 

The most important examples of the molecular gas laser are the carbon monoxide 
and dioxide (CO and CO 2 ) lasers, which are based on infrared transitions between 
vibration—rotation energy levels. The CO2  laser is one of the most powerful lasers in 
general and thus plays an important role for material processing with lasers [47]. 

Gain 

The molecular states involved in the laser process of the CO 2  laser can be found in 
Fig. 7.15: a symmetric (v i )  and an antisymmetric (y 3 ) stretching vibration as well as a 
bending vibration (y2 ). Vibrational quantum states of the CO 2  molecule are identified 
by quantum numbers (y 1 , y2 , y3 ). 

The (001) level decays by dipole transitions, which are very slow due to the c.o 3 
 factor of the Einstein A coefficient, however, allowing convenient build-up of inversion 
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Fig. 7.15: Transitions relevant for the CO2 laser. 

in this level. The most important laser transition takes place between the (001) and 
the (100) level. 

The CO2 lasers are excited by a discharge. The occupation of the upper laser 
level is possible directly, but is much more favourable with the addition of nitrogen. 
Metastable N2 levels not only can be excited very efficiently in a discharge but also 
can transfer the energy to the CO2  molecules very profitably as well. 

The (100) level is emptied very rapidly by collisional processes. In addition, it 
is energetically adjacent to the (020) level, which itself ensures quick relaxation to 
thermal equilibrium also with the (000) and (010) levels. For this, the so-called vv-
relaxation plays an important role, which is based on processes of the (020) + (000) —* 
(010) + (010) type. The heating of the CO2  gas associated with these processes is 
not desirable because it increases the occupation of the lower laser level. It can be 
significantly reduced by adding He as a medium for thermal conductivity. 

In Fig. 7.15 we have completely neglected the rotational levels of the molecule, 
though they cause a fine structure of the vibrational transitions leading to many closely 
adjacent laser wavelengths (Fig. 7.16). A typical CO2  laser makes available about 40 
transitions from the P and S branches of the rotation—vibration spectrum. The gain 
bandwidth of each line (50-100 MHz) is very small since the Doppler effect no longer 
plays a significant role at low infrared frequencies. The laser lines of a CO2  laser can 
be selected by a grating used as one of the laser mirrors. 

Operating conditions 

The CO2  laser is among the most powerful and robust of all laser types. It makes 
available a high and focusable energy density that is highly favourable for contactless 
material processing and laser machining. Owing to the strong application potential, 
multiple technically different CO2  laser types have been developed. The operation of 
the CO2  laser is disturbed by induced chemical reactions. Thus the laser gas needs to 
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Fig. 7.16: Emission lines of the CO2 laser on the 9.6 [cm and the 10.6 pm lines. If one 
resonator mirror is replaced by a grating (with mirror-like reflection in —1st order), tuning can 
be quite easily achieved by rotating the grating. The terms 'IV and 'P' branch are taken from 
molecular spectroscopy. At the R branches of the spectrum the rotational quantum number J 
of the molecule is decreased by 1, and it is increased by I at the P branches, J J+1. 

be regenerated, either by maintaining a continuous flow through the laser tube or by 
adding some suitable catalysts to the gas, e.g. a small amount of water, which oxidizes 
the undesired CO molecules back to CO2. Output powers of some 10 kW are routinely 
achieved in larger laser systems. 

Fig. 7.17: Important configurations of CO2 lasers. The conventional laser (a) is operated 
with a sealed tube and longitudinal discharge. To increase the output power, a longitudinal 
gas flow (b) or a radio-frequency waveguide laser (c) can be used. The highest power can be 
achieved if the gas flow as well as the discharge are operated transversely to the laser beam 
(transversely excited, TE-laser) (d). 
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Fig. 7.18: Laser process within the excimer laser. 
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7.6.2 The excimer laser 

Excimer lasers play an important role for applications since they offer very high energy 
and furthermore the shortest UV laser wavelengths, although in the pulsed mode only. 
The term excimer is a short form of 'excited dimer', and means unusual diatomic 
molecules (dimers) that exist in an excited state only. Today the term has been 
transferred to all molecules that exist only excitedly, e.g. ArF or XeC1 to mention 
just two examples important for laser physics. The level scheme and the principle 
of the excimer laser are presented in Fig. 7.18. Since the lower state is intrinsically 
unstable, the inversion condition is always fulfilled once the excimer molecules have 
come into existence. In order to generate them, the gas is pre-ionized with UV light 
to increase the conductivity and thus to increase the efficiency of excitation in the 
following discharge. The lifetime of the excimer molecules is typically about 10 ns, 

laser type. 

Generation and handling of a 
gas of excimer molecules are quite 
costly. The gas is corrosive and 
the laser medium ages after some 
thousands or millions of pulses 
(with typical repetition rates of 
10-1000 pulses per second). That 
is why selected materials and so-
phisticated gas exchange systems 
are used. The strong demand for 
excimer lasers for medical appli-
cations and their increasing use as 
a light source for optical lithogra-
phy in the semiconductor industry 
(see 'excursion' in Section 4.3.2) 
have already made the KrF laser 
at 248 nm a mature product. In 

the near future, the ArF (193 nm) laser as well as even the laser with the shortest 
commercially available wavelength, the F2 laser, will probably follow. 

7.7 The workhorses: solid-state lasers 

The world's first laser, constructed by T. Maiman (1927-) [69], was a pulsed ruby laser. 
Its red light (A = 694.3 nm) was emitted by the chromium dopant ions of the Cr:Al 2 03  
crystal, and therefore it was a solid-state laser. Though today the ruby laser plays 
a role for historical reasons only, solid-state lasers have received increasing attention 
since many types can be excited by the more and more competitive diode lasers. 
Furthermore, electrical power inserted into the system can be converted into light 
power with an efficiency up to 20%. Solid-state lasers are thus among the preferred 
laser light sources because of their robust construction and economical operation. 
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7.7.1 Optical properties of laser crystals 

Optically active ions can be dissolved in numerous host lattices, and such systems can 
be considered as a frozen gas if the concentration of the former is not higher than a few 
per cent at most. Nevertheless the density of these impurity ions within the crystal 
is much higher than the particle density within a gas laser and thus allows a higher 
gain density if there are suitable optical transitions. Of course, the host lattices have 
to have a high optical quality since losses by absorption and scattering impair laser 
oscillation. Impurity ions can be inserted into a host crystal particularly easily if they 
can replace a chemically similar element. Therefore many materials contain yttrium, 
which can be replaced very easily by rare-earth metals. 

Tab. 7.3: Selected host materials [7]. 

Host Formula Thermal conductivity 

(W cm-1  K-1 ) 
an/OT * 

(10 - 6  K -1 ) 

Ions 

Garnet YAG Y3A15012 0.13 7.3 Nd, Er, Cr 

Vanadate YVO YVO4 Nd, Er, Cr 

Fluoride YLF LiYF4 0.06 
-0.67(o) 

Nd 
-2.30(e) 

Sapphire Sa Al203 0.42 
13.6(o) 

Ti, Cr 
14.7(e) 

Glass Si02 typ. 0.01 3-6 Nd 
* (o),(e): Ordinary (extraordinary) index of refraction in birefringent materials. 

Another important property of the host crystals is their thermal conductivity, 
since a large amount of the excitation energy is always converted into heat within 
the crystal. Inhomogeneous temperature distributions within the laser crystal cause 
e.g. lensing effects due to the temperature sensitivity of the index of refraction, which 
may alter the properties of the Gaussian resonator mode significantly. Since few laser 
media fulfil all requirements simultaneously, the growth of new and improved laser 
crystals is still an important field of research in laser physics. 

In the simplest case the properties of the free ions are modified only slightly when 
the dopant ions are dissolved in the host material. The energy levels of the erbium 
ion in different systems may be taken as an example (Fig. 7.19). This laser can be 
described very well using the concept of a 'frozen' glass laser. 

A most important group of dopant elements are the rare-earth ions. Their unusual 
electron configuration makes them very suitable for laser operation. Another group is 
formed by the ions of simple transition metals, which allow one to build laser systems 
tunable over large wavelength ranges. These are the so-called vibronic lasers including 
colour centre and Ti—sapphire lasers. 
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Fig. 7.19: Absorption spectrum of the erbium ion Er3 + in the host materials YAG (top) and 
YA10 3  (bottom) according to [3]. 

7.7.2 Rare-earth ions 

The 13 elements following lanthanum (La, atomic number 57) with N = 58 (cerium, 
Ce) to 70 (ytterbium, Yb) are called the lanthanides or rare-earth metals. 4  

Being impurity ions, the lanthanides are usually triply ionized, with electron con-
figuration [Xe]4f  with 1 < n < 13 for the nth element after lanthanum. The optical 
properties of an initially transparent host crystal are determined by the 4f electrons, 
which are localized within the core of these ions and thus couple only relatively weakly 
to the lattice of the host crystal. 

To a good approximation the electronic states arc described by LS coupling and 
Hund's rules [111]. Because of the large number of electrons that each contribute 
orbital angular momentum = 3, there are in general a multitude of fine-structure 
states, which lead to the wealth of levels in Fig. 7.20. 

Example: Energy levels of the neodymium Nd3 + ion 

The Nd3+ ion has three electrons in the 4f shell. According to Hund's rules, they 
couple in the ground state to the maximum total spin S = 3/2 and total orbital 
angular momentum L = 3 + 2 + 1 = 6. From the 4 1 multiplet the ground state is 
expected to be at J = 9/2 due to the less than half-occupied shell. Unlike the free 
atom or ion, the magnetic degeneracy in the m quantum number is lifted by anisotropic 
crystal fields in the local vicinity. The coupling to the lattice oscillations  ('phonons')  
leads eventually to the homogeneously broadened multiplets in Fig. 7.21. 

4 The rare-earth metals are not rare at all within the Earth's crust. Since their chemical properties 
are very similar, it was difficult for quite a long time to produce them with high purity. The element 
promethium (Pm) cannot be used because of its strong radioactivity. 
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Fig. 7.20: Energy levels of the rare-earth metals with selected designations. The range 
accessible by diode laser radiation for optical excitation is marked (according to /43». 

The rigorous dipole selection rules of the free atom (At = ±1) are lifted by the 
(weak) coupling of the electronic states to the vicinity of the electrical crystal field 
that causes a mixture of 4fn and 4fn -1 5d states. The energy shift by this interaction 
is quite small, but for the radiative decay the dipole coupling is now predominant and 
reduces the lifetimes of the states dramatically to the range of some microseconds. 
Therefore, intensive absorption and fluorescence of the rare-earth ions can be observed 
on transitions between the fine-structure levels. 

On the other hand, fluorescence cannot be observed from every level since there 
are competing relaxation processes caused by the coupling of the ionic states to the 
lattice oscillations, or phonons, of the host lattice, which can lead to fully radiation- 
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Fig. '7.21: Energy levels of neodymium Nd3+  ions within the solid state. The details of the 
splitting depend on the host lattice. 

free transitions. Those processes are the more probable, the more the fine-structure 
levels are lying next to each other. In Fig. 7.19 the fluorescence lines are quite narrow, 
showing that the atomic character of the ions is largely maintained. 

7.8 Selected solid-state lasers 

From Fig. 7.20 it can easily be imagined that there are countless laser media containing 
rare-earth ions [54]. We have selected special solid-state lasers that play an important 
role as efficient, powerful or low-noise fixed-frequency lasers. Those lasers are used, 
for example, as pump lasers for the excitation of tunable laser systems or for mate-
rials processing that demands intensive laser radiation with good spatial coherence 
properties. Tunable lasers, which increasingly employ solid-state systems, will also be 
discussed in a subsequent section about vibronic lasers (Section 7.9). 

Fig. 7.22: Laser transitions of neodymium lasers and absorption spectrum. 



(b) 

Fig. 7.23: Configurations of neodymium lasers. 
(a) Pump lamp and laser bar located at the two 
foci of an elliptical resonator. (b) Neodymium 
laser longitudinally pumped with a diode laser. 
(c) In the slab laser, the pump energy is supplied 
transversely. The laser beam is guided by total in-
ternal reflection within the crystal. 

just as quickly, the neodymium laser makes an 
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7.8.1 The neodymium laser 

The neodymium laser is among the systems already developed in the very early days 
of the laser. It was originally excited with high-pressure noble-gas lamps. Only a 
small amount of their light energy was absorbed, while the larger part was removed 
as heat and dissipated. Although the idea to excite neodymium lasers by laser diodes 
arose quite early, it could not be realized until the advent of reliable high-power laser 
diodes by the end of the 1980s. Nowadays, neodymium lasers are primarily excited by 
efficient, and indispensable, laser diodes, and no end to this successful development is 
in sight even after more than ten years. In Tab. 7.3 we have already presented hosts 
that have great significance for practical applications. 

The neodymium amplifier 

The energetic structure of 
neodymium ions has already been 
described above (section 7.7.2). We 
have already mentioned as well that 
with ions within the solid state a 
much higher density of excited atoms 
can be achieved than within the gas 
laser. In most of the host crystals 
this is valid for concentrations up 
to a few per cent. Above this level 
the ions interact with each other 
causing detrimental non-radiative re-
laxations. But there are also special 
materials, e.g. Nd:LSB (Nd:LaScB), 
which stoichiometrically contain 25% 
neodymium. Owing to the extremely 
high gain density of these materials, 
remarkably compact, intense laser 
light sources can be built. 

The 4 19/2 	4F5/2 transition 
of the Nd3+ ion can be excited very 
advantageously by diode lasers at 
the wavelength of 808nm where the 
upper 4 F3/2 laser level is populated 
very rapidly by phonon relaxation. 
Since the lower 4-11/2 level is emptied 
excellent four-level laser system. 

Configurations and operating conditions 

Because of its widespread application potential, there are numerous technical variants 
of the neodymium laser. Before diode laser pumps were available with sufficient quality, 
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the crystal within a continuous-wave laser was generally excited by a high-pressure Xe 
lamp placed at the second focus of an elliptical cavity in order to achieve a high 
coupling efficiency (Fig. 7.23(a)). 

Using diode lasers, life has become much more easy in this respect. In Fig. 7.23(b) 
such a linear laser rod pumped from the end (`end-pumped laser') is presented. One 
of its end mirrors is integrated into the laser rod. With this arrangement the pump 
power is inhomogeneously absorbed so that the gain also varies strongly along the 
laser beam. That is why a Z-shaped resonator is often used, which allows symmetrical 
pumping from both sides. 

Further enhanced output power can be achieved by using so-called 'slab' geometries 
in which the pump energy is supplied transversely. With this layout the light of several 
pumping diode lasers can be used at the same time. It is technically advantageous to 
operate the heat-producing laser diodes spatially separated from the laser head. The 
pump light is then transported to the laser amplifier by fibre bundles in a literally 
flexible way, and optimal geometric pump arrangements can be used. Even with 
considerable output power of several watts, the laser head itself measures no more 
than 50x15x15 cm3 . The end of technological developments in this field is still not in 
sight. 

7.8.2 Applications of neodymium lasers 

Neodymium lasers have been used in countless applications for a long time, and the 
more recent advent of efficient diode laser pumps at the wavelength of 808 nm has 
lent additional stimulus. Here we present two recent examples that symbolize the 
large range of possible applications: one is the powerful frequency-doubled neodymium 
laser, which has replaced the expensive argon-ion laser technology more and more, and 
the other is the extremely frequency-stable monolithic miser. 

Frequency-doubled neodymium lasers 

In Fig. 7.24 we have presented a neodymium laser concept that allows the generation 
of very intense visible laser radiation at 1064/2 = 532 nm. The pump energy is applied 
to the Nd:YVO4 material through fibre bundles, and the Z-shaped resonator offers a 
convenient geometry to combine the power of several diode lasers and generate very 
high power at the fundamental wavelength at 1061 nm. In one arm of the laser the 
light is focused into a nonlinear crystal (here LBO, see Section 12.4), which causes 
efficient frequency doubling. 

In principle, it has been clear for a long time that intense visible laser radiation can 
be generated with the concept presented here. Before it could be used for producing 
commercial devices, however, not only technological problems caused by the large 
power circulating in the resonator had to be solved, but also physical issues such as 
e.g. the so-called 'greening problem'. This is caused by mode competition [6] leading 
to very strong intensity fluctuations. It can be solved by operating the laser either at 
a single frequency or at a large number of simultaneously oscillating frequencies. 
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Fig. 7.24: Powerful frequency-doubled neodymium laser. The light of the laser diodes is 
supplied through fibre bundles over dichroic mirrors (DM). Within the resonator, 1064 nm 
light circulates at high intensity. The nonlinear crystal is used for the frequency doubling. 
HR = high reflector 1861. 

The monolithic miniature laser (miser) 

The passive frequency stability of any common laser (i.e. in the absence of active 
control elements) is predominantly determined by the mechanical stability of the res-
onator, which undergoes length variations due to acoustic disturbances such as envi-
ronmental vibrations, sound, etc. 

1 cm  • 

Fig. 7.25: Monolithic neodymium ring laser. The beam is led out of the plane between B and 
D. In connection with a magnetic field (see text), this 'out-of-plane' configuration realizes an 
optical diode and makes unidirectional operation possible. 

It is therefore advantageous to build laser resonators as compact and also as light as 
possible, since devices with a small mass have higher mechanical resonance frequencies, 
which can be excited less easily by environmental acoustic noise. In the extreme case, 
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Fig. 7.26: Part of the energy level 
scheme of the erbium laser showing the 
two important laser transitions. The ex-
act transition wavelength depends on the 
host crystal. 
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the components of a ring laser (see Section 7.9.2) — laser medium, mirrors, optical diode 
— can even be integrated into one single crystal. T. Kane and R. Byer [55, 32] realized 
this concept in 1985 and called it miser, a short form of the term 'monolithically 
integrated laser'. 

The miser is pumped by diode laser light. The ring resonator is closed by using 
total internal reflection at suitably ground and polished crystal planes. An interesting 
and intrinsic optical diode is also integrated into the device. The so-called 'out-of-
plane' configuration of the resonator mode (in Fig. 7.25 the trajectory BCD) causes 
a rotation of the polarization of the laser field due to the 'slant' reflection angles in 
analogy to a A/2 device. In addition, a magnetic field in the direction of the long 
axis of the miser causes non-reciprocal Faraday rotation. In one of the directions the 
rotations compensate each other, whereas in the other direction they add. Since the 
reflectivity of the exit facet depends on the polarization, one of the two directions is 
strongly favoured in laser operation. 

7.8.3 Erbium lasers 

Erbium (Er) ions can be dissolved in the same 
host crystals as neodymium ions and are es-
pecially interesting for applications at infrared 
wavelengths near 1.55 lam. They can be ex-
cited by strained quantum well (SQW) laser 
diodes (see Section 9.3.4) at 980 nm very effi-
ciently. Another long-wavelength laser transi-
tion is used mostly for medical applications. A 
favourable feature is the eye-safe operation at 
these long wavelengths. 

Erbium-doped fibre amplifiers 

A significant technological breakthrough was 
achieved by D. Payne and E. Desurvire [25] in 
1989 when they were able to demonstrate am- 
plification at the wavelength of 1550 nm by us- 
ing Er-doped optical fibres. Erbium-doped fibre 
amplifiers (EDFAs) have very soon become an 

important amplifier device (gain typically 30-40 dB) for the long-distance transmission 
of data. It is due to them that today the residual losses of optical fibres in this third 
telecommunications window (see Fig. 3.10 on p. 81) do not impose any constraints on 
the achievement of even the highest possible transmission rates over large distances. 
This breakthrough again was not conceivable without the availability of inexpensive 
and robust diode lasers for excitation, as we will discuss in more detail in the following 
subsection about fibre lasers. 
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7.8.4 Fibre lasers 

The total gain of an optical wave in a laser medium is determined by the inversion den-
sity (which determines the gain coefficient) and the length of the amplifying medium. 
E. Snitzer already mentioned in 1961 [96] that optical waveguides or fibres with suit-
able doping of the core should offer the best qualifications to achieve high total gains. 

Although the attractive concept of fibre lasers had already been recognized quite 
early, the advent of robust and convenient diode lasers was instrumental in making 
fibre lasers attractive devices. Even the mediocre transverse coherence properties of 
an array of laser diodes (see Section 9.6) are far superior to conventional lamps as 
used in the conventional neodymium laser configuration in Fig. 7.23 with regard to 
focusability and can be used for efficient excitation of the small active fibre volumes. 

Fibre lasers are a field of active technological development that is ongoing, and an 
excellent account of the state of art is given in [26]. We will limit ourselves to the 
presentation of a few specific concepts since the layout of a fibre laser does not differ 
basically from other laser types — one might say that it just has a very long and thin 
amplifying medium [117]. 

Tab. 7.4: Elements and wavelengths of selected fibre lasers. 

Wavelength (r.1m) Element Wavelength (j.1m) Element 

3.40 Er 0.85 Er 
2.30 Tm 0.72 Pr 
1.55 Er 0.65 Sm 

1.38 Ho 0.55 Ho 

1.06 Nd 0.48 Tm 
1.03-1.12 Yb 0.38 Nd 

0.98 Er 

Cladding pumping 

Fig. 7.27: Cladding pumping in the fibre laser. 

An interesting trick to make the application of the pump energy more efficient 
has been developed with the so-called 'cladding pumping'. It is quite obvious that 
monomode fibres with a narrow core should be used as the active medium for the 
sake of obtaining good-quality transverse laser modes. But then efficient coupling of 
the pump laser radiation from high-power laser diodes becomes difficult, since direct 
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concentration or focusing of their power to the small active fibre core volume is difficult. 
This problem can be overcome by using a double fibre cladding that generates a 
multimode waveguide around the active fibre core. The pump power is coupled into 
this multimode fibre, and again and again it scatters into the core and is absorbed 
there. To optimize the scattering, the core is given for instance a slightly star-shaped 
structure instead of a purely cylindrical one. 

Tab. 7.4 contains a number of available wavelengths for fibre lasers widely spread 
across the infrared and visible spectrum. 

With fibre laser media not only very low threshold values for lasing are achieved but 
also a remarkable output power of several tens of watts. Fibre lasers have not reached 
the end of their development by any means. Continued interest is also being shown in 
the development of light sources for blue wavelengths. There are several concepts, e.g. 
the so-called 'up-conversion' lasers, which can emit blue or even shorter-wave radiation 
from higher energy levels excited by stepwise absorption of several pump photons. 

Fibre Bragg gratings 

UV light 	 To make fibre lasers practicable, many 
relevant components for the control of a 
light beam, e.g. mirrors, output couplers 
and modulators, have been directly inte-
grated into the fibre. For their detailed 
discussion, we refer the reader to the spe-
cialist literature [116] and restrict our-
selves to the example of fibre Bragg grat-
ings (FBGs) [61] used as efficient mirrors 
and spectral filters. 

The Bragg grating is realized by a pe-
riodic modulation of the refraction coeffi- 
c Fig. 7.28: Production of a Bragg reflector ient along the direction of propagation.  
For this, the Ge-doped fibre core is ex-
posed to two intense UV beams crossing 

each other at an adjustable angle  O.  The UV light induces changes that can be of 
chemical or photo-refractive nature 5  and are proportional to the local intensity of the 
standing-wave field. The period A of the Bragg mirror can be determined by the choice 
of the crossing angle and the UV wavelength A, A = A/(2 sin 0). 

7.8.5 Ytterbium lasers: Towards higher power 
with thin disc and fibre lasers 

In a recent development the dominance of the Nd lasers is challenged by Yb lasers, 
which can be dissolved within the host materials of Tab.7.3 as well as rare earth ions. 
Many physical and technical details about Yb can be found in [26]. 

(qualitatively). 

5 For the photo-refractive effect, charges are released by illumination and transported within the 
crystal lattice, which causes a spatial modification of the refractive index up 10-3. 
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Fig. 7.29: Part of the energy level scheme of 
the ytterbium laser showing the pump and the 
laser transition. The exact transition wave-
length depends on the host crystal. 

thin disc 
d= 0. 1 -0.3 mm 

heat sink 

diodelaser pump min reflector 

Fig. 7.30: Cavity and pump geometry for a 
thin disc laser. The pump is sent through the 
crystal in multi pass configuration for efficient 
absorption. 

7.9 Tunable lasers with vibronic states 	 221 

This relatively new laser material of-
fers putative advantages in the strive for 
ever more output power: Yb ion dop-
ing can reach 25% and thus strongly ex-
ceeds the 1-2% limit for Nd ions, offering 
higher gain density. Also, the Yb ions are 
excited at 940 nm (Nd: 808 nm) while 
lasing takes place typically between 1030 
and 1120 nm, therefore less heat is gen-
erated which generally impairs the laser 
process. Finally, Yb suffers less from ex-
citation into non lasing state and reab-
sorption of fluorescent light than Nd. 

Technological breakthroughs have fur-
thermore supported the advancement of 
Yb lasers: The thin disc technology and 
improved performance of fibre lasers which 
reduce the problems of heat dissipation 
associated with laser rods in high power applications. Commercially available output 
power exceeds 4 kW while excellent coherence properties are preserved. 

The most important advantage of the 
thin disc concept (Fig. 7.30) compared 
to conventional laser rods is the much 
improved removal of heat generated in 
the excitation process. The thin disc is 
mounted on a heat sink and has a favor-
able surface to volume ratio. Heat gradi-
ents occur in the longitudinal rather than 
in the transverse direction, and hence the 
Gaussian resonator is much less disturbed 
by heat gradients, resulting in laser beams 
with excellent mode purity. As a con-
sequence of the thin disc arrangement 
single pass absorption of the diode laser 
pump light is relatively small. However, 
the multi pass configuration (several 10 
times in applications) allows to deliver 
the pump energy with up to 90% efficiency to the small laser volume. 

7.9 Tunable lasers with vibronic states 

Even around 1990, the market for tunable laser light sources was dominated by dye 
lasers due to their convenience and — using multiple chemicals — tunability across the 
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visible spectrum. Since then technical development has favoured solid-state systems, 
which are particularly interesting if they can be excited by diode lasers. 

The tunability of so-called vibronic laser materials comes from the strong coupling 
of electronic excited states of certain ions (especially 3d elements) to the lattice os-
cillations. In principle, also semiconductor or diode lasers are among them, and we 
shall devote the next subsection to them due to their special significance. Even the 
dye laser can be conceptually assigned to this class since their band-like energy scheme 
is generated by the oscillations of large molecules. Fig. 7.31 offers an overview about 
important tunable laser materials. 

Dyes 

MIN Alexandrite 
1111111•111111111 Cr:LiSAF 
	

NaCL:OH- 
Cr:LiCAF 

Cr:Forsterite Th:YAG 

Ti -Sapphire 
Yb:YAG, Yb:Glass 

EJ Ce:YLF 

(x1/2) 

300 500 700 900  1100 1300 1500 1700 1900 
(nm) 

Fig. 7.31: Tuning ranges of selected laser systems (pulsed and continuous-wave). The 
frequency-doubled range of the Ti-sapphire laser is hatched. 

7.9.1 Vibronic laser materials 

Vibronic laser materials are tunable over large wavelength ranges. Here we present 
some important systems with their physical properties, and we explain the technical 
concepts of widely tunable ring lasers in which these laser materials are normally used. 

Transition-metal ions 

The 3d transition metals lose their outer 4s electron in ionic solid states and addition-
ally some 3d electrons, their configuration being [Ar]3d. Often the third as well as the 
fourth ionization state of these ions can be found. Crystal fields have much more effect 
on the 3d electrons than on the 4f electrons of the rare-earth metals, since those form 
the outermost shell of electrons. The coupling to the lattice oscillations (which are 
described by a configuration coordinate Q) leads to a band-like distribution of states. 
The transitions are called `vibronic'. On the one hand, these transitions have a large 
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Fig. 7.33: Models of some colour centres. 
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Fig. 7.32: (a) Vibronic states of solid-state ions. The shaded curves indicate the (quasi-

)thermal distributions in the configuration coordinate Q. If the equilibrium positions at the 
ground and the excited state do not coincide, absorption and emission wavelengths are well 
separated and offer optimum conditions for a four-level laser system. Relaxation to a thermal 
or quasi-thermal distribution takes a few picoseconds only. (b) Absorption and fluorescence 
spectra of a Ti-sapphire crystal. The fluorescence spectrum was excited at a pump wavelength 

of 454nm. 

bandwidth, which accounts for broadband absorption as well as for fluorescence. No 
less important is the very short relaxation time, which leads to the thermal equilibrium 
position of the vibronic states within picoseconds. The chromium ions and especially 
the titanium ions have belonged to this important class of laser ions since the first 
demonstration in the 1980s [75]. The extraordinary position of the Ti—sapphire laser 
can clearly be recognized in Fig. 7.31, too. 

Colour centres 

In contrast to the optical impurities of 
rare-earth and transition metals, colour 
centres are generated not by impurity 
atoms but by vacancy lattice sites. They 
have been investigated for a long time. 
In an ionic crystal such vacancies have an 
effective charge relative to the crystal to 
which electrons or holes can be bound. 
Different types are collected in Fig. 7.33. 
Like the transition-metal ions, the elec-
tronic excitations have a broadband vi-
bronic structure and are well suitable for 
the generation of laser radiation. 
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The operation of a colour centre laser is technologically quite costly. They have to 
be held at the temperature of liquid nitrogen (77K) and some of them even require an 
auxiliary light source. By this means colour centres are brought back from parasitic 
states in which they can drop through spontaneous transitions and which do not take 
part in the laser cycle. 

However, owing to a lack of better tunable alternatives, the colour centre lasers 
still have continued relevance for near-infrared wavelengths between 1 and 3 gm. They 
may soon experience replacement because of the improvement of optical parametric 
oscillators and the application of so-called 'periodically poled' nonlinear crystals (see 
Section 12). 

Dyes 

Especially for wavelengths of 550-630 nm 
the dye laser is still a tunable light source 
without competition. In this range of the 
visible spectrum, our color sensual per-
ception changes quickly from green to yel-
low to red. For this reason the light of dye 
lasers is superior to all solid-state lasers 

aser  transitions 	so far developed with regard to aesthetic 

SO 	
and emotional quality. 

Dyes are organic molecules with a 
carbon—carbon double bond, i.e. with a 
pair of electrons. In Fig. 7.34 the typical 
energy level scheme of a dye is presented. 

Fig. 7.34: Laser process in the dye laser 
The paired ground state (SO) consists of a 
1  So  state, i.e. orbital angular momentum 
and total spin vanish. The dye molecules 

are dissolved (in alcohol or, if they are ejected from a nozzle into free space, in liquids 
with a higher viscosity such as glycol). The electronic states have a vibration—rotation 
fine structure that is broadened to continuous bands because of the interaction with 
the solvent, similar to the vibronic ions. After absorption, the molecules relax rapidly 
to the upper band edge where the laser emission takes place. Some classes of dye 
molecules are also shown in Fig. 7.31. 

In complete analogy to two-electron atoms like helium, there are a singlet and a 
triplet system in dye molecules [111], only the transitions between them (intercom-
bination lines) are not as strongly suppressed. The lifetime of the triplet states is 
very long, however, so that the molecules accumulate there after several absorption—
emission cycles and no longer take part in the laser process. Pulsed dye lasers can be 
operated in an optical cell, which is stirred, but with continuous-wave laser operation, 
glass cells rapidly alter. Instead, creation of a jet stream expanding freely into air has 
been successful. The liquid is ejected into a jet stream from a flat 'nozzle' into the 
focus of a pump laser and laser resonator. The surface of the jet stream has optical 

(schematically). 
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quality. One  of the most robust dye molecules is rhodamine 6G, which delivers an 
output power of up to several watts. Furthermore, it can be used for a long time, in 
contrast to many other dyes, which age rapidly. 

7.9.2 Tunable ring lasers 

The success of vibronic laser materials is closely related to the success of the ring laser, 
which allows user-friendly setting of a wavelength or frequency. It is quite remarkable 
that with this device the fluorescence spectrum of these materials, which has a spectral 
width of some 10-100nm or 100 THz, can be narrowed to some megahertz, i.e. up to 
eight orders just by a few optical components! 

In contrast to the linear standing-wave laser, a travelling wave propagates in the 
ring laser. In the linear laser the so-called 'hole burning' occurs since the amplification 
has no effect in the nodes of the standing-wave field. For this reason the gain profile is 
periodically modulated and makes the oscillation of another spectrally adjacent mode 
possible, which fits to the periodic gain pattern and the resonator. In the ring laser 
the entire gain volume contributes to a single laser line. Therefore it is the preferred 
device for spectroscopic applications with high spectral resolution. 

Fig. 7.35: Ring laser system with optical components for frequency control. SA = servo-
amplifier. 

In Fig. 7.35 we show one of numerous proven concepts of a ring laser. This layout 
is usually called a bowtie resonator. The foci of pump laser beam and laser mode are 
tightly overlapped between two spherical mirrors, which in the rest of the laser generate 
a Gaussian mode propagating with low divergence, which is also coupled out by one of 
the partially transparent resonator mirrors. To avoid losses the amplifier (Ti—sapphire 
rod, colour centre crystal, or dye laser jet) as well as other optical components are 
inserted into the resonator at the Brewster angle. An optical diode (see Section 3.6.6) 
allows unidirectional operation. 
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For wavelength control in general, several optical components with hierarchical 
spectral resolution (free spectral range) are used, which we list here: a Lyot or hire-
fringent filter (p. 95) ensures rough spectral narrowing, one or two etalons (thin and 
thick etalon, see Section 5.5) with different free spectral ranges select a single res-
onator mode. For tuning from the MHz to GHz scale, the resonator length can be 
varied with different elements: a pair of so-called `galvo plates' varies the light path 
by a small synchronous rotation of the glass plates mounted at the Brewster angle, 
albeit at relatively low scanning speed. More rapid tuning is required for frequency 
stabilization. For this purpose the resonator length is adjusted by means of a' light 
mirror mounted on a piezo-translator which allows implementation of 100 kHz band-
width servo-loops; even higher actuation speed may be achieved by phase modulators 
(E0Ms, see Section 3.6.1) inserted into the resonator. 

In experiments a voltage-controlled variation of the laser wavelength is desirable. 
For this purpose so-called feed-forward values are applied to the optical components 
of the ring laser. Simultaneously, the laser frequency is compared to the also voltage-
controlled reference frequency of a passive optical resonator (e.g. according to p. 201) 
and is servoed to this value by suitable electronic feedback circuitry. With this method, 
typical continuous tuning ranges of 30 GHz or 1 cm-1  are achieved, which offer excel-
lent conditions for experiments in high-resolution spectroscopy. 

Usually the commercially available ring lasers are quite voluminous devices. But 
it is also possible to build very compact and therefore inherently more stable devices, 
as C. Zimmermann et al. [119] have demonstrated very successfully with tiny Ti—
sapphire lasers not exceeding several centimetres in diameter (though in standing-wave 
configuration). 
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In this chapter we shall take a closer look at the dynamical properties of laser light 
sources, e.g. the response of a laser system to changes in the operating parameters or 
to fluctuations of amplitude and phase of its electromagnetic field. For this we first 
have to investigate theoretically the correlation between the microscopic properties of 
the laser system and macroscopically measurable quantities like intensity and phase. 

8.1 Basic laser theory 

In Section 6.2 we studied the response of a simplified polarizable system with only two 
states to an external driving field. There we found that this polarization can amplify 
a light field and thus itself become a source of electromagnetic fields. 

We know the relation between polarization and electric field already from the wave 
equation, 

(\72 n2  a2 
 2 

E = 
E0 C2 

1 02  
	P. 	 (8.1) 

c2  Ot 	 at2 

Here we have already taken into account that laser radiation is often generated by 
particles diluted in a host material with refraction coefficient n. The electric field 
E contains the dynamics of the laser field, while the polarization P contains the 
dynamics of the atoms or other excited particles, which is determined in the simplest 
approximation according to the Bloch equations (6.28). 

8.1.1 The resonator field 

In general, multiple eigenfrequencies can be excited in a laser resonator so that we 
expect a complicated time evolution of field and polarization. This situation though 
is mostly undesirable for applications. Therefore we concentrate on the special case of 
only one single mbde of the resonator being excited. In many cases this situation is in 
fact routinely achieved for practical laser operation. 

Formally speaking, we decompose the field into its eigenmodes labelled by index k 

E(r, t) = E [E, (t) e 1c t  + c.cduk  (r). 
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The amplitudes Ek(t) correspond to an average of the amplitude in the resonator 
volume V. The spatial distributions uk obey an orthogonality relation, 

1 
— f uk uk  dV = 	 (8.2) 
V v  

and Qk is the passive eigenfrequency of the resonator (without a polarizable medium), 
so that the Helmholtz equation (Eq. (2.11)) is valid: 

n2Q2 
v2 uk (r) = 	

k 
2 	

(r). 
c 

The polarization can be expanded within the same set of functions uk  (r), 

[Pk (t) 	± c.c.] uk (r). 

Owing to (8.2) equation (8.1) decomposes into a set of separate equations, of which 
we use only one but for the very important special case of the single-mode or single-
frequency laser: 

d2 d2 
 (1-22 —

dt2 
E(t)e -iw t  = 	

1 
 

n2 €0 dt2 
P(t) Ciwt . 

From this equation, among other things we have to determine the 'true' oscillation 
frequency of the light field. 

Damping of the resonator field 

A rigorous theory of the damping of the resonator field cannot be presented here but 
can be found in e. g. [107] or [35]. As for the Bloch equations, we limit ourselves to 
a phenomenological approach and assume the energy of the stored field relaxes with 
rate fiy, . The field amplitude then has to decay with -y, , 

d 
—
dt

E(t) =  

Another frequently used measure of resonator damping is the Q-factor (derived from 
quality). For a resonator with eigenfrequency SZ it is given by 

Q = Qhc. 

Damping of the field is caused not only by the outcoupling of a usable light field Eout , 

E01 (t) = -12--youtEn(t), 

but also by scattering or absorption losses within the resonator, 

'Tout ± PYloss • 
	 (8.3) 

We now insert this term into the wave equation (8.1) as well and eliminate the local 
variation, 
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Now we are interested first in the change of the amplitude, which is slow compared to 
the oscillation with the light frequencies co or Q. In the slowly varying envelope approx-
imation (SVEA), which has already been used several times, we neglect contributions 
of the form 

[

—d  E(t) cE(t)] < wE(t) 
dt 	' 

and obtain 

(—Q2  ± W 2 )E(t) + 2i,w—ddt E(t) + i-y,wE = 
w2

P(t). 
n2 co 

In the customary approximation (-Q2 + w2) -^_-' 2w (w — Q), we get the simplified 
amplitude Maxwell equations, 

— E(t) = i (co - Q +  i)  E(t) + 	P(t). 
dt 	 2 	2n2c0 	

(8.4) 

In the absence of polarizable matter, i.e. P(t) = 0, we recover a field oscillating with 
the frequency co = Q which is dampened with rate -y,/2 exactly as we expected it. The 
macroscopic polarization is already known from (6.11), and its dynamics is described 
through the optical Bloch equations (6.28). There the occupation number difference 
w(t) occurs, which we replace by the inversion density .N-  and the total inversion n, 
respectively, with the definition 

, 	n(t) 	NAt  
Af(t) = — = 	W(t). 

V V 
The entire system of atoms and light field is then described by the Maxwell-Bloch 

equations: 

a d  E(t) =  
2 	2n co  

d2  
(- i6 - -y I) P (t) - i - E (OM (t), 

INV) = -4-  3m{P(t)* E(t)} - y[/(t) - 

Lasing can only start if the inversion is maintained by an appropriate pumping process 
generating the unsaturated inversion density Mo  = no /V (Eq. (6.44)). All in all there 
are five equations since field strength E and polarization P are complex quantities. 

Using this system of equations, several important properties of laser dynamics 
can be understood. Let us introduce another transparent form of the equations that 
can be obtained when we normalize the intensive quantities field amplitude E(t), 
polarization density P(t) and inversion density Ar(t) to the extensive quantities field 
strength per photon a(t), number of dipoles 740 and total inversion n(t). For this 
we use the average 'field strength of a photon' (already introduced in Section 2.1.8) 

(Eph) = Vh4E€017mod, 

d nIPP(# \ 	_ 
dt i  "') 

(8.5) 

a(t) := E(t)IE"OV  od  ,\ 	, 

740 := N(u + iv) = V P(t)ldeg . 
(8.6) 
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Furthermore, for the Rabi frequency QR and the detuning 6 (between electric field 
frequency and the eigenfrequency of the polarized medium) it is advantageous to use 
normalized quantities, 

deg  
h 

(w —coo) 	6  and  
e€0  V 	 , 	71 	11' 

hw 

The coupling factor g describes the rate (or Rabi frequency) with which the internal 
excitation state of the polarizable medium is changed at a field strength corresponding 
to just one photon. The alpha parameter a is the detuning normalized to the transverse 
relaxation rate -y'. It will again be of interest in the section about semiconductor lasers, 
where it has considerable influence on the linewidth. 

With the normalized quantities, Eqs. (8.5) have a new transparent structure 

(i) 6,(t) = i(S2 — co + P-y,)a(t) + Pg7r(t), 

(ii) ir(t) = --A1 + ia)7(t) — iga(t)n(t), 	 (8.8) 

(iii) n(t) = —gJm{r(t)* a(t)} — -y[n(t) — no]. 

The field amplitude a(t), the polarization 7r(t) and the inversion n(t) are coupled by 
the single-photon Rabi frequency g. At the same time, there is damping with the 
relaxation time constants 'yc , -y' and 7, respectively. The dynamical properties of the 
laser system are determined by the ratio of these four parameters, which we have 
compiled for important laser types in Tab. 8.1. 

Tab. 8.1: Typical time constants of important laser types. 

Laser Wavelength 

A (Inn) 
7c  (s -1) 

Rates 
,), ( s -i) 	y (s -1) g ( s -i.) 

Helium-neon 0.63 107  5 x 107  109  104-106  
Neodymium 1.06 108  103-104  10" 108-10 19  
Diode 0.85 10 16-1011  3-4 x 108  10 12  108-109  

Eqs. (8.8) already have great similarity to a quantum theory of the laser field. 
By analogy, for instance, normalized amplitudes may be simply promoted to field 
operators, a(t) -4 â(t), to obtain the correct quantum equations. 

8.1.2 Steady-state laser operation 

We are now interested in stationary values ast, 7rst  and nst , and begin first by using 
Eq. (8.8(ii)), 

naStnSt 	nnSt 

7t
st 
 = i 	  = i 	

(1 _ icoast. 	 (8.9) 
g 

Here we have already introduced the quantity 

:= g
2 

n 	 (8.10) /(1 ± a2) ,  

which plays the role of the Einstein B coefficient, as we will see more clearly in the 
relation with Eq. (8.19). Also, Kns t  may be interpreted as the rate of stimulated 
emission. 

(8.7) 
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Saturated gain 

We insert the result into (8.8(i)), sort into real and imaginary parts and achieve a very 
transparent equation with 

et(t) = Mu) — — . --Kn(t)a] — 	 — nn(t)]}a(t). 	 (8.11) 

This describes dynamical properties of the amplitude of the resonator field in a good 
approximation if the damping rate of the polarization dominating in eq. (8.8) is much 
larger than all the other time constants. In that case 7r(t) can always be replaced by 
its quasi-stationary value. 

For the moment we are only interested in the stationary values for the inversion 
nSt  and the amplitude ast : 

0 = [i(2 — w  _st ) 	1 2 n  a  _ 	knst )]ast .  (8.12) 

If a laser field already exists (ast 	0), the real and imaginary parts of eq. (8.12) 
have to be satisfied separately. Especially the real part clearly illustrates that the 
rate of stimulated emission Kns t  corresponds exactly to the gain rate Gs, for it has to 
compensate exactly the loss rate ,ye , 

st n = 7c/K 	or G  = yc  = nnst .  (8.13) 

Once the laser oscillation has started, 
the gain no longer depends on the 
pumping rate but only on the loss 
properties of the system. This case is 
called 'saturated gain' G = Gs =-- -yc• 
When the laser has not started yet, 
the (small signal) gain increases lin-
early with the inversion according to 
Eq. (6.44), G = Kno . This relation is 
presented in Fig. 8.1. 

Mode pulling 
Fig. 8.1: Saturated gain and laser power. 

The imaginary part of Eq. (8.11) delivers the 'true' laser frequency co with which the 
combined system of resonator and polarized medium oscillates. We replace knst  = Pyc , 
use a = (co — w0 )/'y' according to Eq. (8.7) and get the result 

+ '02  • 

According to this, the eigenfrequencies of either component are weighted with the 
damping rates for the polarization of the respective other part. The true oscillation 
frequency always lies between the frequencies of the amplifying medium (coo ) and the 
resonator (12). 

w = y'Il +'ywo/2 
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a 

Field strength and number of photons in the resonator 

According to Eq. (8.6) the photon number and the normalized field strength are con-
nected by nph(t) = la(t)1 2 . Therefore from the third equation of (8.8) it can be derived 
that 

Ttph  = 1 ast 12 = __7 (no  _ nst). 	 (8.14) 
N 

Only when the unsaturated inversion no  meets the saturated value nSt  does laser 
oscillation start because the photon number must be positive. Below that threshold 
we here get the result Tiph  = 0. In a refined theoretical description we will see in 
section 8.3 that even below the threshold stimulated emission leads to an increased 
photon number in the resonator. 

Laser threshold 

Above threshold, the unsaturated inversion no  must be larger than the inversion at 
steady-state operation, nst, and thus delivers a value for the pumping power or rate 
Rth at the laser threshold according to n o  > nst  and eq. (6.44). A transparent form is 
obtained by using the coupling parameter g according to Eqs. (8.7) and (8.13), 

N'T 	1  
Rth = 	 = 	st -yne  . 	 (8.15) 

N 1  — 'Yhdep 

In this model at threshold apparently the entire pumping energy is still lost due to 
spontaneous processes since the laser field has not started lasing yet. Above threshold 
we can now describe the number of photons within the laser resonator (8.14) by means 
of the pumping rate, 

'Y hdeP —4) 1  f 
Ttph = 

1  — '-Y hdep  (R — Rth) 	—+ 	ql — Rai), 	 (8.16) 
7c 	 7c 

which has a simple form especially for the 'good' four-level laser (117dep 
For the interpretation of Eq. (8.15), it can also be taken into account that most 

-- 0). 

lasers are operated in an open geometry. Then the coupling constant according 
to (8.7) is connected to the natural decay constant according to (6.41) by g 2  = 
-y(37cc3 /w2 f17„,„ d ) with V„,od  for the mode volume of the resonator field. Using (8.10) 
one can obtain 

, 1 + a2  W2 EVmod  
Rth = 7c 7 

1  — PYhdep 3TEC3  • 

It is intuitively clear that a smaller outcoupling (low ,ye , see eq. (8.3)) reduces the laser 
threshold. According to this relation there are also advantages for small transition 
strengths (low -y, -Y), fast depopulation rates for the lower laser level (large -ydep ) 
and good correspondence of laser frequency and resonance frequency of the amplifying 
medium (a = 0). The attractive construction of UV lasers suffers among other things 
from the influence of the transition frequency co visible here. On the other hand, the 
concentration of the resonator field onto a small volume Vinod is favourable. We are 
going to follow this path further under the topic micro-lasers and threshold-less lasers 
in section 8.3. 
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Laser power and outcoupling 

The outcoupled laser power is directly connected to the number of photons in the 
resonator according to 

Pout = hP70ut 	
_  pst ). 

 h = hi)7out 1  (nsot 	 (8.17) 

It is worth while to consider the influence of outcoupling on resonator damping, 

Pout = h i/ '-y 
(  R  

out  ± -Yloss 
(8.18) 

For very small outcoupling (Tout < 'Yloss), the output power increases with 'Tout,  Passes 
through a maximum, and at RA-yout H—Yloss) = 7 I K laser oscillation dies out. In order to 
achieve an output power as high as possible, -yout has to be controlled by the reflectivity 
of the resonator mirrors. With the example of the helium—neon laser in Fig. 7.8 on 
p. 199, we have already investigated this question in slightly different terms. 

8.2 Laser rate equations 

The Maxwell—Bloch equations (8.5) and (8.8) describe the dynamical behaviour of 
each of the two components of the electric field E(t) and a(t), respectively, and the 
polarization density P(t) and the dipole number «t),  respectively. Furthermore,  the 
inversion has to be taken into account through its density Ar(t) or the total inversion 
n(t). The equations raise the expectation of, in principle, a complicated dynamical 
behaviour that finds its special expression in the isomorphy of the laser equations with 
the Lorentz equations of non-linear dynamics that literally lead to 'chaos'. 

However, most conventional lasers behave dynamically in a very well-natured way 
— or in good approximation according to the stationary description that we just have 
dealt with intensively. They owe their stability to a fact that also simplifies the math-
ematical treatment of the Maxwell—Bloch equations enormously. The relaxation rate 
of the macroscopic phase between laser field and polarization, -y', is typically very 
much larger than the relaxation rates of inversion  (fly)  and resonator field (-yc ). Under 
these circumstances the polarization density follows the amplitude of the electric field 
nearly instantaneously and therefore according to Eq. (8.8) can always be replaced by 
its instantaneous ratio to field strength  a(t) and inversion density n(t), 

7r(t) 
–iga(t)n(t) 

:•_-' 

—
d 

la(t)I 2  = a(t)—
d

a* (t) ± a* (t)—
d

a(t). 
dt 	dt 	dt 

-y'(1 + ia) • 

Once the polarization density has been 'eliminated adiabatically', it is not worth fur-
ther investigating the phase dependence of the electric field because it is only inter-
esting in relation to the polarization. Instead of this we investigate the time-varying 
dynamics of the photon number according to 



d  nph(t) = --yc nph (t) + Knph(t)n(t), dt 

—Kn ph (t)n(t) — flyn(t) + R. d 
Ttn(t) = 

(8.19) 
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We obtain the simplified laser rate equations where we use the pumping rate R no /'y 
instead of the unsaturated inversion no , 

Unlike common linear differential equations, these equations are connected nonlinearly 
by the coupling term Kn ph(t)n(t), which is the rate of stimulated emission: 

Xtim  = Knph (t)n(t); 	 (8.20) 

the rate of change of the photon number depends on the number of photons already 
present. 

At first we again study the equilibrium values ff, ph  and Est . Equation (8.19(i)) 
yields two solutions, the first of which, rtph  = 0, describes the situation below the 
laser threshold. There the inversion grows linearly with the pumping rate according 
to (8.19(ii)) and (6.44) (we again assume the case of a 'good' four-level laser with 

"Yhdep < 1): 

Tiph = 0 	and 	nst  = no  RI-y. 

When laser oscillation starts (ph > 0), then according to (8.19(i)) the inversion in 
equilibrium always has to be clamped at the saturation value n' t , and eq. (8.13) can 
again be found. 

As expected we recover the behaviour of Fig. 8.1. The gain only grows until 
laser threshold is reached and then becomes saturated, i.e. a constant value due to 
gain clamping. At the same time the number of photons increases due to (8.19(ii)) 
according to 

Tlph 	(-tt 
"TC 

(8.21) 

with the value Rth = 1,7,/K just corresponding to the pumping power at the threshold. 
A linear dependence of laser power (a n ph ) and pumping rate R is predicted, which 
most frequently occurs with common lasers, as shown for diode lasers, for example, in 
Fig. 9.12. 

8.2.1 Laser spiking and relaxation oscillations 

The laser rate equations (8.19) are nonlinear and can in principle only be investigated 
by numerical analysis. In Fig. 8.2 we present two examples where the laser is switched 
on suddenly. For t < 0 we have R = 0 and the switching is instantaneous, at least 
compared to one of the two relaxation rates -y (inversion density) or -ye  (resonator 
field). The numerical simulation can easily be done with many programs of computer 
algebra and shows very well the phenomenon of 'laser spiking', being observed, for 
example, at fast turn-on (nanoseconds or faster) of neodymium or diode lasers. 

Relaxation oscillations in a narrower sense occur when the gain (or the loss rate) 
changes suddenly. Fluctuations of gain are induced by the fluctuations of the pumping 



	 p 
out 
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Fig. 8.2: Numerical evaluation of relaxation oscillations. Left: inversion n( ) and gain, 
respectively, and output power  Po (t). Right: phase-space representation. The system pa-

rameters in Eq. (8.19) are chosen to be: n = 1, = 2, -y = 0.02, R = 0.1. 

processes, e.g. by switching on or off an optical pump laser. For many purposes, 
e.g. for the stability analysis of frequency and amplitude of a laser oscillator, it is 
sufficient to consider small deviations of the photon numbers and the inversion from 
their equilibrium values: 

nph (t) = Tiph  Snph(t) 	and 	n(t)= nS t  +60). 

We insert into Eq. (8.19), neglect products of the type 6n6nph  and obtain the linearized 
equations 

(i)
d A 
dtu nPh 

(ii) d n—u 
dt 

Kriph 6n (-,Tc-kR  — -y) 6n, 

+ WiT,ph )6n — 7, 6nph . 

(8.22) 

For simplicity we introduce the normalized pumping rate p RIRth = 
which has the value 1 at threshold, and for both x = {6nph ,än} we obtain the usual 
equation of the damped harmonic oscillator, 

+ -yp± + y-y,(p — 1)x =-- 0. 	 (8.23) 

From this we infer without further difficulties that the system can oscillate for 

(7ch) [i N/ 1- – (7/7c)] <p/ 2  < (7e/7) [1+ 1  — (7/7c )] 

with normalized frequency 

Wrelh = V(7c/7)(p — 1) — (p/2) 2 , 	 (8.24) 

and is damped with the rate 

'Trel — -yp/2 = 7R/2Rth. 	 (8.25) 
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Fig. 8.3: Relaxation 
of 	and p. 

Especially solid-state lasers typically 
have long lifetimes in the excited laser 
level and thus large 7,1-y ratios, e.g. iO3- 
iO4  for semiconductor lasers and 104- 
10 5  for Nd lasers. In Fig. 8.3 it can be 
seen that in this case relaxation oscil- 
lations are triggered immediately above 
the laser threshold at p = 1. They can 
also be driven by external forces, e.g. by 
modulating the pumping rate appropri- 
ately, and they play an important role 
for the amplitude and frequency stabil- 
ity of laser sources (see Section 8.4), since 

oscillations as a function they are induced by noise sources of all 
kinds. 
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Example: Relaxation oscillations in the Nd:YAG laser 
We consider the 1064 nm line of the Nd:YAG laser with the following characteristic 
quantities: 

Natural lifetime 	'T = 240 las 	-y = 4.2 x 103 s -1 , 
Resonator storage time 7-, = 20 ns = 5.0 x 10 7  s -1  
Normalized pump rate R/Rth = 1.0-1.5.  

Fig. 8.4: Spiking and relaxation oscillations in the Nd:YAG laser. The power of the pumping 

laser diode is modulated by a square signal. Complete modulation (left) causes spiking; partial 
modulation (right, 6%) causes relaxation oscillations. Compare Fig. 8.2. 

The properties of the relaxation oscillations observed in experiment correspond to the 
theoretical estimates. For the Nd:YAG parameters the second term in Eq. (8.24) can 
be neglected in calculating the oscillation frequency due to -y < -ye , 

wrei V77c, p - 1 72 kHz p — 1, 
and according to (8.25) the damping rate is Pyre'  2 2 x 103  s-1  R/Rth. 



Fig. 8.5: Relaxation and pumping rates of the 
laser. The /3 coefficient of spontaneous emission 
is a coarse measure for the fraction of spontaneous 
emission coupled to the laser mode 3, shaded 
area) and to the other solid angle (1 — 
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8.3 Threshold-less lasers and microlasers 

We have already seen in the section about spontaneous emission that a reflecting 
environment changes the rate of spontaneous emission. In principle, this effect occurs 
in every laser resonator, though it is mostly so small that it can be neglected without 
any problems. The influence is so small because in open resonator geometry (Fig. 8.5) 
the more or less isotropic spontaneous radiation of an excited medium, e.g. of an atomic 
gas, is emitted only with a small fraction into that solid angle which is occupied by 
the electric field modes of the laser resonator. 

These changes though can no 
longer be neglected if the resonator 
becomes very small, or if, as a result 
of large steps of the refraction coeffi-
cient of the laser medium, the emitted 
power is more and more confined to 
the resonator. For this case, the mod-
ified effect of the spontaneous emis-
sion is often taken into account by 
the so-called 'spontaneous emission 
coefficient' 0. The 0 factor indicates 
which geometrical part of the radia-
tion field couples to the laser mode 
(rate 0,y), and which part is emitted into the remaining volume (rate (1 — 0)')/). 

Spontaneous emission can be considered as stimulated emission by a single photon, 
and therefore we set the coupling coefficient  fry  = K(nph =1). With this trick we can 
account for spontaneous emission in the laser rate equation (8.19(i)), and by replacing 
nph nph + 1 we obtain 

n ph (t) = --Nnph(t) ± /3 -y n ph  (t)n(t) 07n(t), 

d 
-df n(t) = --0-ynph (t)n(t) — /3n(t) — (1— /3)n(t) + R. 

For the steady-state situation the equations can immediately be simplified to 

(i) = 	jiph 07nst, (Tiph  ± 1) ,  

(ii) R  _ 0,..ywphn st, _ ,ynst ,  

where spontaneous emission is especially prominent through the factor Ti ph + 1 in (i). 
In order to solve this system of equations, it is convenient to express the pumping 
rate as a function of the photon number in the resonator. We substitute nS t  in (ii) by 
means of (i) and obtain 

R (1 _ 	h  
— — + 	

np 

1 
nph) 	 (8.26) 

"Ye   

Far above the laser threshold, i.e. for Tiph >> 1/0 > 1, the relation between pumping 
rate and photon number obviously turns again into the result Eq. (8.16), as expected. 
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Fig. 8.6: Threshold behaviour of laser oscillators. Photon number in the resonator as a 
function of the pumping rate. 

According to the condition (8.26) the laser threshold is reached when the photon num-
ber in the resonator meets or exceeds the value 1/0. So in a common laser (0 < 1) 
at threshold there are already very many photons present in the laser mode. To be 
more exact, there are so many that the rate of stimulated emission into the laser mode 
precisely equals the total spontaneous decay rate. Above this threshold, additional 
pumping power is used predominantly to increase the photon number and thus to 
build up the coherent radiation field. 

Excursion: Micro-maser, micro-laser and single-atom laser 
Experiments first with the so-called micro-maser, and later on with the micro- laser, have had 
a strong stimulating effect on the concept of the 'threshold-less' laser. The term 'micro-'  
does not refer so much to the miniaturized layout but rather to the microscopic character of 
interaction. The coupling between the field of a micro-laser or micro-maser is so strong that 
an excited atom does not forego its energy once and forever to the electromagnetic field like 
in a common laser. For this so-called strong coupling regime the rate g of Eq. (8.7) has to be 
larger than every other time constant (see Tab. 8.1): 

g»  

Then the resonator field stores the emitted energy and the atom (the polarized matter) can 
re-absorb the radiation energy. So the energy oscillates between atom and resonator (Fig. 
8.7). This situation can be realized already — or even particularly well — with a single atom, 
and thus the term 'single-atom maser', which was very often used at first. 

In order to realize the situation of a micro-maser experimentally, resonators with ex-

tremely long radiation storage times have to be used. Since superconducting resonators 

for microwaves have been available for a longer time, the micro-maser was realized before 

the micro-laser. The description of the micro-maser requires a joint treatment of atom and 
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Fig. 8.7: In a single-atom laser  ('micro-laser')  the coupling between atom and field is so 
strong that the oscillation energy oscillates. like for two coupled pendula. 

Av Rabi 

Fig. 8.8: Transmission spectrum of an empty resonator (left) and a resonator with an excited 
atoms (right). A single photon is sufficient to cause the so-called 'vacuum Rabi splitting'. 

field according to quantum theory within the framework of the so-called Jaynes—Cummings 

model, which goes far beyond the scope of this excursion. However, it is intuitively clear that 

the transmission of the combined system of resonator and atom exhibits a different spectral 

behaviour from the empty resonator following the ordinary Lorentz curve. 

Threshold-less lasers are extraordinarily interesting for applications in integrated 
optics. For example, semiconductor components may be designed where single electron—
hole pairs are directly converted into single photons. Current research follows different 
routes to construct radiation fields confined to a small mode volumes, with long stor-
age times, and intense coupling to the excited medium. At optical wavelengths a small 
mode volume also means using miniaturized resonators. For the traditional layouts 
following the linear resonator, the integration of highly reflective mirrors to achieve 
large storage densities though is difficult. A solution is offered by the appropriate use 
of total reflection. Tiny electrical resonators from a monolithic substrate with very 
high quality have already been realized. At the rim of mushroom- or mesa-shaped 
semiconductor lasers and dielectric spheres made from silica, circulating field modes, 
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so-called 'whispering-gallery modes', have been prepared and shown to be long-lived. 
Recently also micro-resonators with an oval geometry have been discussed for micro-
laser applications because they allow a particularly strong coupling of laser medium 
and radiation field (see Section 5.6.4) [80]. 

8.4 Laser noise 

All physical quantities are subject to fluctuations, and the laser light field is no ex-
ception: the perfect harmonic wave with fixed amplitude and phase remains a fiction! 
But the laser light field approaches this ideal of a harmonic oscillator more closely 
than any other physical phenomenon. According to an old estimate by Schawlow and 
Townes, the coherent laser light field shows extremely small fluctuations of ampli-
tude and phase. Not the least for this reason it has continued to inspire wide areas 
of experimental physics to this day. The 'narrow linewidth' (sub-Hertz) has already 
been introduced in Section 7.3.1 with the example of the He—Ne laser. It promises 
extremely long coherence times (>1 s) or enormous lengths (>108  m), which can be 
used for high-precision measurements for a wide variety of phenomena. 

Usually the so-called `Schawlow—Townes limit' of the linewidth is hidden by tech-
nical and generally much bigger fluctuations. If this fundamental limit is realized, 
however, it offers information about the physical properties of the laser system. In 
this section we investigate what physical processes impair ideal oscillator performance. 

8.4.1 Amplitude and phase noise 

The stationary values of the laser light field (Section 8.1.2) have been determined 
through the photon number 77,ph and the true laser frequency co on p. 231. There we 
assumed that the phase evolution of the field behaves like a perfect oscillator according 
to classical electrodynamics: 

E(t) = 914E0  exp[—i(wt + 0 0 )]}. 

The coupled system of polarized laser medium and resonator field though is also cou-
pled to its environment, e.g. by the spontaneous emission causing stochastic fluctua-
tions of the field strength and the other system quantities.' More realistically we thus 
introduce noise terms, 

E(t) 	9efiE0  + eN (t)] exp[—i(wt + 	+ 60(t))] 1, 

where we assume that we can distinguish contributions to amplitude noise (eN(t)) and 
to phase noise (60(t)), although this separation is not unambiguous. Furthermore we 
assume that the fluctuations are not too fast — i.e. (deN Idt)I eN, (141 dt <  co. 

In Fig. 8.9 the effect of white, i.e. frequency-independent, noise of the amplitude 
and phase, respectively, on the power spectrum of the electromagnetic field (for the 

1 1n the micro-maser (see p. 238) though the aim is to eliminate exactly this coupling to the 
environment. 
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Fig. 8.9: Field spectrum for (a) white amplitude noise and (b) white phase noise, respectively. 
The spectral width of the carrier frequency in (a) is limited only by the resolution of the 
spectrum analyser. 

definition see Appendix A.1) is presented. The exact calculation requires information 
about the spectral properties of the noise quantities. 

We begin with the amplitude fluctuations and first assume perfect phase evolution 
(4(0 = 0). If the fluctuations of the noise amplitude are entirely random, i.e. very 
'fast' even during the integration time T of the analyser, they are only correlated at all 
at delay time 'T = 0 (`delta-correlated') and we can describe the correlation function 
of the noise amplitude using the mean square value cr2ms  =  

	

(eN(t)) =  0 	and 	(eN(t)4r (t + 7)) = eF rris T 6  (T) 

With this information we can calculate the correlation function of an electromagnetic 
field with amplitude fluctuations where we take advantage of the Poynting theorem 
(see Appendix A.2), 

CE (T) 	(9ie{E(t)} 9le{E(t + 7)}) 

	

= 	(9iefE(t)E*(t + 7)1) 
fT12 

The finite integration interval causes errors of magnitude O(1/wT), which can be 
neglected since at optical frequencies c.oT is always very large. Using the Wiener-
Khintchin theorem (Eq. (A.9)) the spectrum 

SE(f) = 	 eLs/Af 

can be obtained. The 'Fourier frequencies' f give the distance to the much larger 
optical carrier frequency c.4.) = 27w. The second contribution causes a 'white noise 
floor', and we have already replaced T = 1/A f to indicate that in an experiment the 
filter bandwidth always has to be inserted here. The first contribution represents the 
carrier frequency like for a perfect harmonic oscillation. The delta function indicates 
that the entire power in this component can always be found in one channel of the 
spectrum analyser and so its width is always limited by the filter bandwidth. 

— T/2  
+ eN(t)][E, + 	+ 	dt 

2T 

= 	1E01 2  eL sT6(7). 
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In order to study the influence of a fluctuating phase, we follow the presentations 
of Yariv [115] and Loudon [66] and calculate the correlation function of an electromag-
netic field E(t) = 914E0  e - i[wt+6 (t)]} with a slowly fluctuating phase 0(t) again using 
the Poynting theorem (see Appendix A.2), 

CE(T) 
	E,012(9:telei[wr-FAe(t,T)]}) 

= 	
-1E0129:teleiCilT(e2A0(t,T))}. 

The average extends only over the fluctuating part with AO(t, T) = 0(t 	T) 

- 0(t). Though we do not know the exact variation in time (that is just the na-
ture of noise), we assume it to exhibit stationary behaviour so that properties such as 
the frequency spectrum do not depend on time itself. If the statistical distribution of 
the average phase deviations AO(r) is known, we can use the ensemble average over the 
probability distribution p(A0(T)) instead of the time average to calculate the average 
in (8.27). For symmetric distributions we have to take only the real part into account, 

00 
(ei°9( T) ) = (cos AO(r)) = f cos AO p(A0(r)) dA0. 	 (8.28) 

00 

The wanted probability distribution is completely characterized when p(AO(T)) is 
explicitly given or, for a known type such as the normal distribution, one of its so-called 
statistical moments, e.g. the mean square deviation A0r2„,s , is given. 

How do we obtain the required statistical information? From the point of view 
of experimental physics, one would simply measure the phase fluctuations, for exam- 
ple by heterodyning the laser field under investigation with a stable reference wave 
to determine the macroscopic phase. Theoretical models are, however, necessary to 
establish a connection with the microscopic physical properties of the laser system. 

Let us first concentrate on the 
{E(t)} widely known phase-diffusion model. 

For this we study the phasor model 
of the amplitude of the laser field 
in Fig. 8.10. By the Maxwell—Bloch 
equations, only the amplitude of the 

ReiE(t)} laser field is fixed, but not the phase, 
since there is no restoring force bind- 
ing the phase to a certain value. 
Thus the phase diffuses unobstruct- 

edly away from its initial value. We 
Fig. 8.10: Phasor model of the laser field. with will see that for this — if technical 

disturbances can be excluded — espe- 
cially spontaneous emission processes 

are responsible. 
The phase can change in one dimension only and therefore our model is one-

dimensional too. We assume that the phase is subject to small leaps occurring at a 
rate R still to be determined. The leaps are completely independent of each other, i.e. 
in every single case the direction of the next step is entirely random. This results in 
stochastic motion known from the Brownian motion of molecules. Therefore it is also 

(8.27) 

phase diffusion. 
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100 steps 

Fig. 8.11: One-dimensional random walk. Every single step is randomly set in either the -I-
or — direction. The thick line marks the mean square deviation. 

called a random walk and is often compared to the walk of a drunk who is not aware 
of his next step. 

Using the random-number generator of the computer, such motions can easily 
be simulated. In Fig. 8.11 several trajectories are presented and additionally the 
time-dependent expectation value of the square fluctuation is shown. The root mean 
square deviation of the  Gaussian normal distribution after N steps is (AVms ) 1 / 2  
((N2) 	(N)2)1/2 	'VN, as is well known. Since the number of steps increases in 
proportion with time T, the r.m.s. deviation has to be proportional to \FT. Therefore 
we can construct the normal distribution 

exp(—A02/2,6,0s) 	 ro 
p(AB(T)) =  	with 	p(A0) &AO =1, 

-V27r Aerms 	
—co 

 

with mean square value (A0,-„, $ ) 2  = OP) RT and 00  for the length of a single step. Now 
we can evaluate the integral of Eq. (8.28), obtaining the simple result 

(cos  LO(T)) = exp(—AO 1s /2) = exp(-0P:17/2). 

The complete correlation function (w = 27tu) reads 

CE (T ) = -12-(E(0)E*(T)) = 11 E0 12 ei2nug--qR712 .  

The correlation function can also be interpreted as the average projection of the 
field vector onto its initial value at the time 7 = O. Its form is identical with the 
time dependence of a damped harmonic oscillator. We calculate the spectrum again 
according to the Wiener—Khintchin theorem (Eq. (A.9)) and find that white phase 
noise (Fig. 8.9) leads to a Lorentz-shaped line with width Aw = 27cAv1 /2  = 001 
centred at the carrier frequency v: 

\ 	1E01 2 	OR/2 
SE(v +  f )  = T (27cf)2 (OdR/2) 2  

(8.29) 
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8.4.2 The microscopic origin of laser noise 

The considerations of the previous section are generally valid for oscillators of every 
kind. We now have to correlate the macroscopically observed properties to the specific 
microscopic properties of the laser. A rigorous theory (i.e. a consequent theoretical 
calculation of correlation functions as in Eq. (8.27)) requires a treatment according to 
quantum electrodynamics, for which we have to refer to the relevant literature. The 
theories by Haken [39] and by Lax and Louise11 [67] respectively are among the im-
portant successes in the quantum theory of 'open systems' and were presented shortly 
after the invention of the laser. We have to limit ourselves here to simplified models, 
but we can put forward some reflections about the nature of the noise forces. 

The fluctuations of laser light field reflect several noise sources. The best-known 
process is caused by the spontaneous emission out of the amplifying medium into 
the environment. These radiation processes do not contribute to the laser field but 
cause stochastic fluctuations of the inversion and the (dielectric) polarization. Since 
the amplitudes of resonator field and polarization relax back to their steady state, 
amplitude and phase fluctuations result. 2  Other noise processes are caused because 
the resonator field also suffers from random losses, or because the pumping process 
transfers its noise properties to the stimulated emission. It is normally 'incoherent', 
i.e. the excitation states are produced with a certain rate but with a random, typically 
Poisson distribution. In a semiconductor laser, electron—hole pairs are injected into 
the amplification zone. For large current density the charge carriers repel each other, 
and successive arrival times are more evenly spaced out. It has been shown that this 
'regularization' of the pumping process also gives rise to a decrease of the intensity 
fluctuations [114]! 

Many processes can be heuristically interpreted through the 'grainy' structure of 
the quantized light field. Let us therefore study changes of amplitude and phase of 
the laser field when 'photons' are added to or taken away from it. 

8.4.3 Laser intensity noise 

The time evolution of the laser amplitude was investigated in Section 8.2.1 for the 
system reacting to sudden changes of the pumping rate, for example through deter-
ministic switching events. In our simple model such changes are now caused by small 
random changes of the photon number nph(t) = Ttph 6nph (t) fluctuating around the 
mean value nph. 

Quantum limit of the laser amplitude 

Let us estimate the mean square deviation (Sn2ph ) of the photon number, and hence 
the field amplitude, without ascertaining the distribution more exactly. For this we 

2 1n another formulation it is often said that spontaneous emission radiates 'into the laser mode'. 
In this interpretation, polarization and laser field both separately have to relax back again to their 
equilibrium relation. Since in the theoretical description used here the coupling of resonator field and 
polarization is already completely included, the interpretation chosen here appears to be physically 
more conclusive. 
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rewrite the linearized equation (8.23) for the photon number by inserting the stationary 
photon number npi, from Eq. (8.21): 

dt2
6n

P
h ± (KT/Th ± 'y) —

dt

6nph + -ye nff,ph6nph = 0. 
d2 , d 

We multiply this equation by 6n ph and arrive at 

1d2 	2 	1 ( 	d x 2 	1 	 2 	

2 

d x  
2 dt2Snh  — 2 "ph  ± 'Y)  dt unPh  2 dt unPh) ± 'Ye  KriPh  6nPh  = II 	

(8.30) 

When we search for the steady-state solution of the mean value (6n 2p1 ), we can elim-
mate  the average of the derivatives ((d I dt)6n ph ) but not that of the square of the 
fluctuation rate [(di dt)671 ph ] 2 : 

Phi 2  / + 'YCKfiph (6n 2ph ) = 0. --- (Rd' dt)6n, 1 \ 
	

(8.31) 

We cannot give a rigorous theoretical de- 
scription here, but for an intuitive treatment 
we can use Eq. (8.22(i)), Rd I dt)6nphr = 
(tvnph6n) 2  . It is reasonable to assume an in- 
version undergoing random fluctuations and 
hence obeying Poisson statistics induced by 
both spontaneous emission and the stochastic 
pumping process, and yielding mean square 
value 6n2 =__ nst. We can now evaluate 

Knst  from (8.13) Eq. (8.30) and find with -y, = 

(6n 2  p h ) = ((di dt)6 2  np h ) I -yom ph =  —ph  • 

Most importantly, we find that the number 
of photons in the resonator fluctuates by an 
amount proportional to Oiph . A more ex-  Fig. 8.12: Distribution of the photon 
act analysis shows that the distribution in-  number of the laser field. The fluctua-
deed again has the shape of a Poisson distri-  tions of the photon number are stabilized 

bution (which for large numbers is essentially by an effective potential (see Eq. (8.31)). 
a Gaussian distribution). 

The investigation of the photon number distribution offers an intuitive picture, 
which we study in a bit more detail in Fig. 8.13. The total number of photons is 
proportional to the field energy (E 2  a hviiph ). Removal or addition of one 'photon' 
changes the field energy by the amount hv. 

Relative intensity noise (RIN) 

The fluctuations of the external laser power P(t) = Po  + 613 (0 are measured in an ex- 
periment. Using Eq. (8.21) the fluctuations of the photon number can be converted into  
the r.m.s. deviation of the laser power 6 Prins  = (6 p2)1 /2 . Thus: 6 Prms  = Vhv'Yout, VP. 

Intensity fluctuations of the idealized laser are caused by quantum fluctuations 
only, the fundamental physical limit. According to the results of the previous section, 



Fig. 8.13: Effect of a 'photon' on the 
time evolution of the laser field. See also 
Fig. 8.10. 
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their relative significance decreases with increasing laser power because N/8n2ph /Ttph = 

1/ \/Tri,ph . Moreover, many laser types show noise contributions that are not always 
exactly identified but increasing proportionally to the output power. 

For the quantitative characterization of the 
amplitude noise, the relative intensity noise 
has been introduced: 

6p2 

RIN := 	rms  p2 

which is a phenomenological quantity and 
can be straightforwardly measured. For a 
more exact analysis of the intensity noise, 
again its spectral distribution has to be de-
termined. In the simplest case of completely 
random fluctuations, it shows a flat spec-
trum, i.e. white noise of Fig. 8.9. 3  In the 
section about semiconductor lasers we will 
find that in the intensity spectrum, for ex-
ample, the relaxation oscillations play a role 
as well. 

8.4.4 Schawlow—Townes linewidth 

In order to determine the laser linewidth Av from Eq. (8.29), we have to know the 
length of the single step ( ( 94) = 1/2Tiph ) and to determine the rate of spontaneous 
emission R • spont • 

(og) Rspont Avi/2 

Rspont / 2 'Ttph - 

Spontaneous processes occur at a ratio 1 : Ttph to the stimulated processes with regard 
to the evolution of the resonator field. The rate is proportional to the number of 
excited particles  nt  so that drawing on Eqs. (8.13) and (8.20) we can write 

Rspont = Rstim /7/,ph =  ,nt  = 7criset inst 
. 

On the other hand, according to Eq. (8.17), we can connect the photon number with 
the output power, nph = P/hv- y01t, P hv-yc . So finally we arrive at the linewidth 

nest  Tchv 2  
A/4, =  - 	7c • 	 (8.32) nst p 

In a 'good' four-level laser the first factor is  n t 	1. This surprising formula was 
presented by Schawlow and Townes as long ago as 1958, and is called the Schawlow-
Townes linewidth. As we already calculated in the section about He-Ne lasers, an 
extremely small linewidth of a few Hertz or less is expected even for conventional lasers. 

3We should be aware of the fact that even 'white noise' has an upper limit frequency — otherwise 
the r.m.s. value of the fluctuation would be unbounded according to Eq. (A.6)! 
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Larger linewidths are only observed for small resonators with low mirror reflectance, 
like e.g. in semiconductor lasers. They are also subject to an additional broadening 
mechanism caused by amplitude—phase coupling (see Section 9.4.2). 

8.5 Pulsed lasers 

In Section 8.2.1 on relaxation oscillations, we found (see Fig. 8.2) that switching pro-
cesses can induce short laser pulses with intensities much higher than average. With 
pulsed lasers, a large amount of radiation energy, in common systems up to several 
joules, can be delivered within a short period of time. Its peak power depends on the 
pulse length. 

One important method for generating short and very intense laser pulses is realized 
by the so-called 'Q-switch' concept. Another method creates a coherent superposition 
of very many partial waves ('mode locking') resulting in a periodic sequence of ex-
tremely short laser pulses. 

8.5.1  'Q-switch'  

Pulsed neodymium lasers are among the most common systems offering very high peak 
powers. In such pulsed lasers, the pump energy is supplied through an excitation pulse, 
e.g. from a flash lamp. The pump pulse (Fig. 8.14) builds up the inversion until the 
laser threshold is passed. Then stimulated emission starts and the system relaxes to 
the equilibrium value. In the neodymium laser the amplitude damping occurs so fast 
that the output power follows the excitation pulse with small relaxation oscillations. 

Fig. 8.14: Time chart of pulsed laser oscillation with and without (dashed lines) Q-switch. 

Alternatively, lasing can initially be suppressed by increasing the resonator losses 
with a Q-switch. If the accumulation time is short compared to the decay period of the 
upper laser level (for the neodymium laser, e.g. 0.4 ms), the laser medium acts as an 
energy storage device and the inversion continues to increase. If the Q-switch triggered 
by an external impulse is again set to high Q-factor or low loss mode, stimulated 
emission begins and now, by fast exhaustion of the accumulated energy, a laser pulse 



248 
	

8 Laser dynamics 

is generated that is short compared to the non-switched operation with much higher 
peak power. The repetition rate of such a laser system usually lies between 10 Hz  and 
1 kHz. 

Technical Q-switches 

Q-switches have to fulfil two conditions: in the open state the resonator Q-factor has 
to be reduced efficiently, whereas in the closed state its insertion loss has to be small 
compared to other losses. Typical systems for a Q-switch are presented in Fig. 8.15 
and described below. 

(a) 
	

(b) 
	

(c) 

Fig. 8.15: Q-switch and cavity dumping: (a) electro-optical (Pockels cell); (b) acousto-optical 
(Bragg cell) and (c) mechanical (rotating prism). See text. 

(a) Pockels cell The Pockels effect already described in Section 3.6.1 makes a 
voltage-driven retarder plate available. In combination with a polarizer (Fig. 8.15), 
the resonator transmission can be modulated very efficiently. The switching time of a 
Pockels cell is in the nanosecond domain. It is primarily limited by the capacitance of 
the crystal electrodes and the resistance of the electrical leads. 

(13) Acousto-optical modulator (AOM) In the acousto-optical modulator (see 
also section 3.6.4), a radio-frequency generator induces an acoustic wave causing a pe-
riodic variation of the refraction coefficient. Laser radiation is deflected by diffraction 
off this grating out of the resonator, and frequency-shifted at the same time. The 
radio-frequency power can be switched by suitable semiconductor components with 
nanosecond rise times. 

(c) Rotating prism The Q-switch can also be realized by a mechanical rotating 
prism, which allows the laser to start only in a narrow acceptance angle range. 

Cavity dumping 

The Pockels cell and the acousto-optical modulator (AOM) of Fig. 8.15 provide a 
second output port. This may be used for the so-called cavity dumping method. For 
this, in the closed laser oscillator, a strong oscillation builds up within the resonator 
first. Through an external pulse triggering the AOM or Pockels cell, this energy is 
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then dumped out of the resonator. The method can also be combined with the mode 
locking concept of the following section in order to achieve particularly high peak 
powers. 

8.5.2 Mode locking 

Even the simplest superposition of two laser beams with different frequencies u.) and co+ 
S2 causes periodic swelling up and down, as is well known from amplitude modulation. 
For equal partial amplitudes with /0  = cco  1E0  j 2  we have 

E(t) == E0  e —iwt  E0  e —iw t  e —içu  

/(t) = 	eco lE(t) 2  = [1 ± cos(Qt ± 0)]. 

When we neglect the dispersive influence of the optical elements, laser resonators of 
length ne (n is refraction coefficient) provide an equidistant frequency spectrum with 

= 27cc12nf (Eq. (5.18)) that virtually offers itself for synthesis of time-periodic 
intensity patterns. Mode locking establishes a technical procedure to physically realize 
Fourier time series consisting of many optical waves. 

Fig. 8.16: Intensity variation in time for the superposition of up to eight harmonic waves. 
The vertical bars indicate the relative strength and phase position of the partial waves. Upper 

left: Amplitude modulation with two waves for comparison. 

While for two waves the phase 0 causes only an overall phase shift of the sinusoidal 
modulation pattern, the pattern originating from superposition of multiple waves also 
depends on individual phase positions, as we show in Fig. 8.16 with the example of 
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eight superimposed waves. We can calculate the field amplitude in general according 
to 

N 

EN(t) = 
Eo  e -iwt eiUI2 NS  an e

—inSlt 
e

-iOn 
7 

VN 

where important characteristic quantities include 

pulse sequence frequency f = f2/27c, 
and 	pulse period 	T = 2n/Q. 

The mid-frequency is called the 'carrier frequency' co o  = co - N2/2, and different 
waves with frequency differences Af = nf = nt2/27( contribute to the total wave 
with phases On . The partial amplitudes have been chosen in such a way that the 
intensity 10  = (cE 0 /2)E4 Er, an2 is distributed among partial amplitudes with an,E0  
and En  cy,n2 = 1. Thus the intensity maxima in Fig. 8.16 are comparable to each other 
at equal mean power. 

In Fig. 8.16 three characteristic situations are presented: 

1. In the upper right part all partial waves have identical amplitudes an  = 
and are in phase with on  = 0 for all n. For this situation, very sharp periodic 
maxima with a small peak width At -,--,- 27(/(N12) = T /N occur. The secondary 
maxima are characteristic for an amplitude distribution with a sharp boundary. 

2. In the lower right part the partial waves are in phase as well, though the ampli-
tudes have been chosen following a Gaussian distribution, which is symmetrical to 
the carrier frequency coo  (an, cx exp{-[(2n - N - 1)/2 ] 2 /21). By this distribution, 
the 'ears' that occur between the maxima in the previous example are suppressed 
very efficiently and the laser power is concentrated to the maxima. The achievable 
peak power though is slightly lower. This situation resembles closely the condi-
tions of a real laser resonator. In Fig. 8.17 a frequency spectrum of a periodic 
train of 27 ps Ti-sapphire laser pulses measured in a Fabry-Perot resonator is 
shown. 

3. In the lower left part of Fig. 8.16 for comparison the situation for random phases 
On  of the partial waves is presented, which makes a noisy but periodic pattern. 

Let us now study the relation between pulse length and bandwidth (see section 
3.4) and therefore consider a periodic series of Gaussian-shaped pulses with E(t) = 
En  E0  exp{ -Rt - nT)/At1 2 /21. According to the theory of Fourier series, we can 
obtain the nth Fourier amplitude for nf2 from 

T / 2 en _ E0 f 	e —(t/At) 2 / 
e

— 	t 2 	inft dt R.2, E0 e -(ns-tAt) 2  /2 . 
-772 

For this, to a good approximation for very sharp pulses, only that single pulse centred 
at t = 0 is taken into account, and the integration limits are extended to ±7/2 -4 +oo. 
We define a bandwidth by 27cfB  = th3  = 2N1t with 2N now indicating the effective 
number of the participating laser modes. The contribution of the modes to the total 

n=1 
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Fig. 8.17: Frequency spectrum of the 27 ps pulses of a mode-locked Ti—sapphire laser recorded 
with a Fabry—Perot resonator with 7.5mm distance between the mirrors or AFSR = 20 GHz. 
The smaller pictures show an enlarged detail and the absorption of a caesium vapour cell in 

the ray trajectory [101, respectively. 

power drops down to 1/e of the central mode at n =  N.  The bandwidth fB and the 
pulse length 2At (measured at relative amplitude value 1/e) are connected to each 
other and to the peak width AtFwHm according to 

= 	=  	
1 	AtFWHM AtFWHM  

At 
NS-2 	,/81n(2) 	2.35 

8.5.3 Methods of mode locking 

In order to achieve pulses as short as possible, it is first important to use a laser 
amplifier with a very large bandwidth. For a sufficiently long lifetime of the upper 
laser level, the excitation can conveniently be generated by a continuous-wave laser. 
The stored energy is withdrawn from the laser medium by pulses separated typically 
by 12.5 ns, a time that is short compared to, for example, the lifetime of 4 j.ts of 
the upper Ti—sapphire laser level. For other systems like the dye laser, also the so-
called 'synchronous pumping' excitation scheme is used. In that case and owing to 
the short lifetime of the upper laser level, the pumping laser delivers a periodic and 
exactly synchronized sequence of short pulses. As a certain special case, which we 
skip here, we just mention the diode laser. By suitable modulation of the injection 
current (Section 9.4.1) it directly delivers very short pulses down to 10 ps. It has been 
intensively studied because of its significance for optical communication. 



laser threshold I mode coupler 
(active/passive) 

= c/le 

252 	 8 Laser dynamics 

Tab. 8.2 contains important examples of lasers used for the generation of extremely 
short pulses, and for comparison the limited potential of the helium—neon classic. The 
typical repetition rate of mode-locked lasers is 80 MHz and 12.5 ns pulse distance, 
respectively, which is determined by the characteristic construction lengths setting 
the repetition rate at T =2nflc. 

Tab. 8.2: Mode locking and bandwidth. 

Laser Wavelength Bandwidth Pulse duration Pulse length 

A fs 2A t .ep = 2cAt 

Helium—neon 633 nm 1 GHz 150p5 
Nd:YLF laser 1047 nm 0.4 THz 2  Ps 0.6 mm 
Nd:glass laser 1054 nm 8 THz 60 fs 181.tm 

GaAs diode laser 850 nm 2 THz 20 ps 6 mm 
Ti—sapphire laser 900 nm 100 THz 6-8 fs 2ium 

NaC1-0H —  laser 1600 nm 400 nrn 4 fs 1.5 j.tm 

Mode locking within the laser resonator is achieved by modulation of the resonator 
losses synchronized to the pulse circulation. In Fig. 8.18 the mode coupler is set to 
transmission only when the pulse passes and to opaque otherwise. This modulation 
can be controlled either actively by the Q-switch components of Fig. 8.15, or by passive 
nonlinear elements. Among them is the so-called 'saturable absorber', which is mainly 
used for dye lasers. A saturable absorber (optical saturation of an electric dipole 
transition is treated in Section 11.2.1) has an absorption coefficient that dies away at 
intensities above the so-called saturation intensity /sat  

ao  a(I(t))= 
1+ I(t)lIsat  

carrier frequency 

Fig. 8.18: Laser with mode locking. In the resonator, a spatially well localized light pulse is 
circulating. Mode locking is achieved actively, e.g. by modulation of the cavity Q-factor, or 
passively by saturable absorbers or Kerr lens mode locking. 

By means of an intense laser pulse circulating in the resonator (Fig. 8.18), the 
absorber is easily saturated and hence resonator losses are rapidly reduced during 
pulse passage. This passive modulation leads to self-locking of the laser modes. A 
variant of the passive mode locking not studied intensively any more (colliding pulse 
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mode locking, CPM laser) uses two pulses circulating in the resonator that hit each 
other exactly in the saturable absorber. 

The most successful method in technical applications at this time is the so-called 
Kerr lens mode locking (KLM), which causes a time-dependent variation of the res-
onator geometry due to the intensity dependence of the refraction coefficient 

n = no  + n2 I(t). 

Kerr lens mode locking is an example of the application of self-focusing and will be 
discussed in more detail in the section on nonlinear optics (13.2.1). The dispersive 
nonlinearity reacts extremely fast, essentially instantaneously, to variations of the 
intensity, and therefore is advantageous for very short pulses. At the centre of a 
Gaussian-shaped beam profile (for positive n2 ) the refractive index is increased more 
strongly than in the wings, and hence causes selHocusing, which changes the beam 
geometry as presented in Fig. 8.19. Since the resonator losses depend on the beam 
geometry (the alignment of the resonator!), this phenomenon has the same effect as a 
saturable absorber and can be used for mode locking. 

beam propagation: 
esonator losses 

  

    

Time 
...- 

laser intensity at the mode coupler 

Fig. 8.19: Time dependence of resonator losses and the influence of a Kerr lens on the beam 
geometry. The mode locking effect can be supported by the use of an additional aperture. 

Kerr lens mode locking was discovered by W. Sibbett et al. in the Ti—sapphire 
laser in 1991 [98]. It has led to revolutionary simplifications for the generation of 
ultrafast pulses due to its particularly simple application, since the nonlinear passive 
mode locker, the Kerr lens, is intrinsic to the Ti—sapphire amplifier crystal. 

The KLM method alone though is not sufficient to generate shorter pulses than 
about 1 ps. In Section 3.4.1 we investigated the influence of dispersion and group ve-
locity dispersion (GVD) on the shape of propagating light pulses, which naturally play 
an important role when the shortest light pulses are to be generated in a laser res-
onator containing several dispersive elements. The GVD can be compensated through 
the arrangement of prisms of Fig. 13.5 on p. 381. The prism combination is traversed 
twice per round trip in the resonator. In a ring resonator two pairs of prisms have to 
be supplied to recombine the beams again. Another technique for dispersion control is 
offered by dielectric mirrors with specially designed coatings (chirped mirrors). Very 
compact femtosecond oscillators can be built with them. 

Here we have considered the mode-locked lasers only in their simplest situation, 
that is for steady-state conditions. The operation of mode-locked lasers though raises 



Fig. 8.20: Amplified spontaneous emission. 
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many interesting questions about laser dynamics, for which we refer the reader to the 
specialized literature. Such questions include, for example, the starting behaviour — 
How does the passively locked laser get to this state at all? From a naive point of 
view, we can make, for example, intensity fluctuations responsible for this, which may 
always be triggered by slight mechanical vibrations. 

Another phenomenon is the amplified spontaneous emission (ASE), which some-
times causes annoying side effects in experiments. It occurs because, during the pump-
ing phase between the pulses, the amplifier already emits radiation energy, which is 
intensified in the direction of the desired laser beams due to geometry. 

The ASE can be suppressed 
by, for example, saturable ab-
sorbers that transmit light only 
above a certain threshold in-
tensity or separate it from the 
laser beam by external spa-
tial filtering since the ASE in 
principle has much larger diver-
gence. 

8.5.4 Measurement of short pulses 

The measurement of the temporal properties (especially pulse duration) of short pulses 
is limited to about 100 ps by common photodiodes and oscilloscopes due to their limited 
bandwidth (several GHz). On the electronic side, the so-called streak camera can be 
used, a channel plate generating an electron beam that is deflected rapidly similar to 
an oscilloscope. It leaves a trace on the camera and so converts the time dependence 
into a local variation. With recent models a time resolution down to 100 fs can be 
achieved. 

Fig. 8.21: Autocorrelator for the measurement of the time dependence of very short laser 
pulses. In the direction of the photodiode (PD), a signal only occurs when the laser pulses are 
correctly superimposed in both time and space in the nonlinear crystal (NLC). 



8.5 Pulsed lasers 	 255 

A purely optical standard method is offered by the autocorrelator, e.g. according 
to the layout of Fig. 8.21: a pulsed laser beam is split into two partial beams and 
superimposed in a nonlinear crystal in such a way that a frequency-doubled signal 
(details about frequency doubling will be presented in Section 12.4) occurs. On the 
photodiode a signal is only registered if the partial pulses are superimposed correctly. 
The voltage signal as a function of the displacement Ax = cAt of one arm relative to 
the other one, 

/pp (At) a E(t)E(t ± At), 

also has pulse shape, but is the result of a convolution of the pulse with itself (therefore 
autocorrelation), from which the pulse shape has to be deduced by some suitable 
transformations or models. 

8.5.5 Tera- and petawatt lasers 

The new possibilities of generating extremely short laser pulses have also opened a 
window to the generation of extremely intense laser 'flashes', at least for a very short 
period in time. The field intensities are so large that matter is transferred to completely 
new states, which at best can be anticipated in special stars. 

Even with a 'common' femtosecond oscillator (Ti-sapphire laser, 850 nm, f = 
80 MHz, (P) = 1 W, medium power), using appropriate components for the compen-
sation of group velocity dispersion [102], pulses can be generated with a duration of 
only 2At = 10 fs. Even though such pulses only contain small amounts of energy Epui„, 
they already make available considerable peak power Pm ax  and peak field intensities 

Emax 

Epulse = 1 W/80 MHz 	= 12.5 nJ, 

Pmax 
	Epulse /(2At) 
	

— 1 MW, 

Emax 
	2Prnax  @Mg CEO ) = 7 x 107  V cm-1 . 

For the calculation of the field intensity, we have assumed the laser power to be concen-
trated onto a focal spot with a diameter of 10 gm. Besides, there, even a 1 mW He-Ne 
laser reaches field intensities of about 1 kV cm-1 ! According to this an increase of the 
pulse energy to 1 J, which can be achieved today using table-top equipment, promises 
a power of about 100 TW and even the petawatt range is in sight. For this, field inten-
sities of up to 10 12  V cm-1  are achieved, about 1000 times the 'atomic field intensity' 
Eat = e/47cco a6= 109 V cm-1  experienced by an electron in the lowest hydrogen orbit! 
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oscillator  stretcher amplifie  compressor 0.01■•••■■111111101.,. 

Fig. 8.22: Chirped pulse amplification. By stretching, the peak power is decreased far enough 
that amplification without damage becomes possible. 

However, the generation and use of such intense laser pulses are hindered by this 
highly interesting strong interaction with matter. In common materials (initiated by 
multiphoton ionization) dielectric optical breakdown occurs and destroys the amplifier. 
An elegant solution for this situation is offered by the method of chirped pulse ampli-
fication (CPA, see Fig. 8.22), for which the short pulse is first stretched (in space and 
time) to decrease the peak power. The stretched pulse is amplified and the stretching 
is reversed immediately before the application to recover the original pulse shape. 

Fig. 8.23: Grating stretcher and compressor for femtosecond pulses. 

Optical gratings have proven to be very suitable components for achieving stretch-
ing as well as compression [99]. The concept of a grating stretcher and compressor is 
presented in Fig. 8.23. The grating deflects red and blue parts of an incident pulse 
in different directions. In the stretcher two gratings are combined with 1: 1 imaging 
properties. In a completely symmetric layout (dashed upper grating on the left in 
Fig. 8.23) the upper grating would not change the shape of the impulses at all, only 
at the drawn position. 

8.5.6 White light lasers 

Very recently so called white light lasers and super continua have become an ex-
citing object of research. It seems contradictory at first to speak of white light in 
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this context since the bias from classical optics suggests an absolutely incoherent light 
source with this term. White light covering the full spectral range of visible colors 
can, however, be generated from ultrashort pulse lasers. The photograph from the 
cover of this book shows white laser light dispersed by a two dimensional grating and 
exhibiting the full range of colors. Furthermore, as shown in Fig. 8.24, this light field 
shows well modulated interferences, it is thus coherent and truly laser light! 

Ultrashort, intense laser pulses 
are the basis for nonlinear processes 
transforming their original, relatively 
narrow spectrum (typically less than 
10% of the visible spectrum) into an 
extremely broadband spectrum which 
may cover the entire visible spectrum 
and beyond. The generation of co- Fig. 8.24: Interference pattern observed when a 

herent white light is a field of active white light laser is superposed with itself. The 

research and not yet fully understood, light beam was dispersed by a prism to demon- 
strate simultaneous interference of all contribut- 

but it seems clear that it is essential 
ing colors. With permission of Harald Telle and 

to provide efficient nonlinear conver- Jam Stenger. 
sion processes with fibres driven in 
the strong guiding limit. Remember that most optical fibres (See Section 1.7) are 
operated in the weak guiding limit where small steps in the index of refraction of order 
1% provide guiding but also cause the optical wave to be spread out over a relatively 
large cross section. In so called photonic fibres [87] or tapered fibres [106] the strong 
guiding limit is realized and the optical wave is confined by large index of refraction 
steps corresponding to the glass-air interface to a cross section with diameter 1-2 p,m. 

Fig. 8.25 gives an example of the 
schematic setup for a tapered fibre. It 
is drawn out to very narrow cross sec- 

	

tions from a conventional fibre pro- Ti-sapphire 	 hitelight tap 

	

laser input 	 laser output viding efficient coupling into the ta- 
pered section. Several processes of 
the nature described in chaps. 12 and 

Fig. 8.25: White light generation with a tapered 
optical fibre. 

13 on nonlinear optics are responsi- 
ble for the spectral broadening occuring during propagation of the short light pulse 
through the tapered section. 

+...._ 

ered fibre 

blue 	green 	red 

d — 1- 





9 Semiconductor lasers 

Immediately after the demonstration of the ruby laser (1960) and the helium—neon 
laser (1962), the lasing of diodes, or 'semiconductor lasers', was also predicted and 
a little bit later was realized experimentally.' However, it took more than 20 years 
for those components to become commercially successful products, since numerous 
technological problems had to be overcome. The first laser diodes, for example, could 
operate only at cryogenic temperatures, while applications in general require operating 
temperatures close to room temperature. Moreover, GaAs was the first relevant mate-
rial for the manufacture of laser diodes, and not silicon, which, then as now, otherwise 
dominates semiconductor technologies. 

Today, laser diodes belong to the most important 'opto-electronic' devices because 
they allow the direct transformation of electrical current into (coherent!) light. There-
fore there are countless physical, technical and economic reasons to dedicate a chapter 
of its own to these components and related laser devices. 

9.1 Semiconductors 

For a detailed description of the physical properties of semiconducting materials, we 
refer the reader to the known literature [45, 57]. Here we summarize properties of 
importance for the interaction with optical radiation. 

9.1.1 Electrons and holes 

In Fig. 9.1 the valence and conduction bands of a semiconducting material are pre-
sented. Electrons carry the current in the conduction band (CB), whereas holes' do 
so in the valence band. The distribution of the electrons into the existing states is 
described by the Fermi function f (E) 

fei(E, EF) = [1 ± e (E — ecB)/kTri 
	

(9.1) 

which is determined by the Fermi energy for electrons of the conduction band E F  =--- ECB 
and temperature T.  Especially at T =  0 all energy states below the Fermi energy are 

1 John v. Neumann (1903-1957) carried out the first documented theoretical consideration of a 
semiconductor laser in 1953. This unpublished manuscript was reproduced in [105] 

2 1t should not be forgotten that the term hole is only an — albeit very successful — abbreviation for 
a basically very complex physical many-particle system. Most of the physical properties (conductivity, 
Hall effect, etc.) of the electrons of the valence band can be very well described as if there were free 
particles with a positive charge and a well-defined effective mass. 
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CB 

VB 

intrinsic 	n-doped 
	

p-doped 

Fig. 9.1: The band model for semiconductors. Electrons and holes can move freely and 
independently from each other. CB = conduction band; VB = valence band; Eg  = bandgap 
energy; EA = excitation energy of the dopant impurities. 

completely filled, and above it completely empty. The distribution is described in 
analogy by 

fh = 1 - fei = [1 ± e (EvB-E)/kTi-i . 	 (9.2) 

In equilibrium the occupation numbers of electrons and holes are characterized by a 
common Fermi energy ECB = Evg. In forward-biased operation at a pn junction a non-
equilibrium situation relevant for laser operation arises with different Fermi energies 
for electrons and holes, ECB EVB• 

Some important situations of the Fermi distribution in semiconductors are pre-
sented in Fig. 9.2. At T = 0 the Fermi energy gives exactly the energy up to which 
the energy levels are occupied. 

Fig. 9.2: Fermi distribution in intrinsic, p- and n-doped semiconductors, respectively. 

9.1.2 Doped semiconductors 

An intrinsic semiconductor consists of a pure crystal, e.g. the technologically most 
important material Si from main group IV in the periodic table or the III-V com- 
pound GaAs. In such a material the Fermi energy is found close to the middle of 
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the bandgap. The occupation probability of the states can then approximately be 
described according to Boltzmann's formula 

fei(T) = e—
EgIkT. 

The bandgap energy Eg  depends on the material and is of the order of a few eV; 
therefore at room temperature (kT 1/40 eV) there are only very few electrons in the 
conduction band. The revolutionary significance of semiconductors arises in principle 
from the possibility to increase the conductivity dramatically via doping (e.g. in Si, 
with impurity ions from main groups III or V) and even via different concentrations for 
holes and electrons (Fig. 9.1). The deficit or excess of electrons of the impurity atoms 
generate energy states near the band edges which are easy to excite at thermal energies. 
Electron charge carriers are generated in this way in an n-doped semiconductor, and 
holes in a p-doped system, respectively. The Fermi energy lies in this case near the 
acceptor (p doping) or the donor (n doping) level. Already at room temperature such 
a doped semiconductor exhibits a large conductivity caused by electrons in n-type and 
holes in p-type material. 

9.1.3 pn junctions 

If electrons and holes collide with each other, they can 'recombine', emitting dipole 
radiation. Such processes are facilitated by having an interface between p- and n-doped 
semiconducting material (a pn junction), which is the heart of every semiconductor 
diode. Fig. 9.3 presents the essential properties of a pn junction. 

0 V 0- 

Fig. 9.3: Free charge carriers at a pn junction. Left: Zero-bias equilibrium. At the interface, 
electrons diffuse into the p-doped area and holes into the n-doped one, where they can recom-
bine. At the barrier, a layer is depleted of charge carriers and an electrical field is generated, 
counteracting any further diffusion. Middle: At reverse bias, the depletion zone is enlarged. 
Right: At forward bias, a current flows through the junction, electrons and holes flood the 
barrier layer and cause recombination radiation. Within the conduction and valence bands, 
there is thermal equilibrium characterized by two different Fermi energies for electrons and 
holes. 
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262 	 9 Semiconductor lasers 

9.2 Optical properties of semiconductors 

9.2.1 Semiconductors for opto-electronics 

From the opto-electronic point of view, the energy gap at the band edge is the most 
important physical quantity, since it determines the wavelength of the recombination 
radiation. It is presented in Fig. 9.4 for some important opto-electronic semiconduc-
tors as a function of the lattice constants, which have technological meaning for the 
formation of compound crystals. A particular gift of Nature for this is the extremely 
small difference of the lattice constants of GaAs and AlAs. Because of the excellent 
lattice match, the bandgap can be controlled over a wide range by the mixing ratio x 
in (Alx Gai_ x )As compound crystals (Fig. 9.5). 

3 	3.5 	5 	5.5 	6 

lattice constant (A) 

Fig. 9.4: Bandgap energy of some important semiconducting materials. Materials for which 
lasing has been realized already are marked with a cross. At the right-hand side, some techni-
cally relevant laser wavelengths are given. 

Other compound crystals have been in use as well for quite a long time. Especially, 
the wavelength of 1.55  1m that is most important for optical telecommunications can 
be obtained from a quaternary InGaAsP crystal. Silicon, the economically most signif-
icant semiconducting material, does not play any role, since it does not have a direct 
bandgap but only an indirect one (see Section 9.2.4). 
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Fig. 9.5: Bandgap energy in AlGaAs and InGaAsP as a function of the mixing ratio. 

Excursion: Blue luminescent gallium nitride, a scientific fairytale 
The development of laser diodes experienced rapid progress in the 1980s and 1990s, but 
1996 will go down in history as a very special year. In that year, Shuji Nakamura, with 
the Japanese company Nichia Chemical Industries Ltd, was able to present the world's first 
blue laser diodes to an astonished audience. He had made the devices based on GaN, which 
had been considered completely unsuitable for opto-electronics! This research was supported 
neither commercially nor academically, and success would not have been possible without the 
confidence of his boss, Nobuo Ogawa. With no experience at all on this topic in his company 
and not very much in touch with semiconductor lasers, since 1989 he had allowed the then 36- 
year-old engineer to pursue a research programme that went against all established opinions 
about the potential of gallium nitride [77]. 

In fact, there had been commercial interest in blue luminescence long before the interest 
in blue laser radiation, since only with blue light sources was there the hope to produce 
fully coloured screens based on semiconductors. Worldwide large sums had been invested in 
research on ZriSe, which was supposed to have the biggest chance of success. In textbooks, 
it could be read that GaN was unsuitable in spite of its well-known and attractive physical 
properties (direct bandgap of 1.95-6.2 eV for (A1,Ga,In)N), since it could not be p-doped. 
This assertion though could not be maintained any more after 1988, when Akasashi et al. 
were successful with the preparation of such crystals, though at first with a costly electron-
beam technique. S. Nakamura succeeded crucially in the thermal treatment of GaN samples 
by replacing the NH3 atmosphere by N2. He found that the ammonia atmosphere dissociated 
and the released hydrogen atoms passivated the acceptors in GaN. 

With this, though by far not all the problems were solved, the gate to the blue laser diode 

had been widely opened. Less than 10 years after this discovery, blue laser diodes could be 

bought in spite of all predictions — an event from the scientific book of fairytales. 

9.2.2 Absorption and emission of light 

In a semiconductor, electrons are excited from the valence band to the conduction 
band on absorption of light with a wavelength 

A < Eglhc, 

so that electron—hole pairs are generated. Under certain conditions, e.g. at very low 
temperatures, absorption of light can be observed already below the band edge. During 
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this process no freely mobile charge carriers are generated, rather pairs bound in 
'excitonic' states with a total energy slightly below the edge of the conduction band. 
Excitons, which resemble atoms made from pairs of electrons and holes, will however 
not play any role in our considerations. 

If free electrons and holes are available, they can recombine under emission of 
light that again has a wavelength corresponding roughly to the band edge due to 
energy conservation. The 'recombination radiation' though has furthermore to fulfil 
momentum conservation 3  for the electron—hole pair (hkei , hkh) as well as for the 
emitted photon (hkph): 

energy: 
momentum: 

Eel (kel) = Eh (kh)+h(4), 
hkei = hkh hkph 

(9.3) 

The k-vectors of the charge carriers are of magnitude /c/a°  with ao  indicating the lattice 
constant and therefore very much larger than 27E/A. That is why optical transitions 
only take place if the lowest-lying electronic states in the E—k diagram (the 'dispersion 
relation') are directly above the highest-lying hole states. 

In Fig. 9.6 the situation for two particularly important semiconductors is schemat-
ically presented. In the so-called 'direct' semiconductor GaAs, at k = 0, a conduction 
band edge with 'light' electrons meets a valence band edge with 'heavy' holes (the 
effective mass of the charge carriers is inversely proportional to the curvature of the 
bands); there direct optical transitions are possible. Silicon, on the other hand, is an 
indirect semiconductor. The band edge of the electrons occurs at large kei values, that 
of the holes at k = 0; thus silicon cannot radiate! There are however weaker and more 
complex processes, e.g. with the participation of a phonon which supplements a large 
k contribution and thus ensures momentum conservation in Eq. (9.3) at negligible 
energy expense. 

The recombination radiation is caused by an optical dipole transition with a spon-
taneous lifetime 7 rec of typically 

recombination time T rec 	4 x 10-9  s. 

The recombination rate is also called the 'inter-band' decay rate and is very slow 
compared to the collision time T' of the charge carriers with defects and phonons 
within the conduction and valence bands. This 'intra-band' scattering takes place on 
the picosecond time scale 

relaxation time T' 10-12  s, 

and ensures that, owing to relaxation within each of the bands, there is an equilibrium 
state determined by the crystal temperature. 

9.2.3 Inversion in the laser diode 

In a semiconductor, coherent light is generated by stimulated recombination radia- 
tion. In the beginning the pn junctions had to be very deeply cooled down to the 

3 In a crystal it is more exact to speak about quasi-momentum conservation. 
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Fig. 9.6: Left: Electronic density of states and simplified dispersion relation for direct semi-
conductors (GaAs). The different curvatures of the bands are the origin of the different 
effective masses (see Eq. (9.4)). In equilibrium there are charge carriers only at the band 
edges (shadowed areas indicate states filled with electrons). Optical transitions start and end 
with hardly any change of the k-vector since the momentum of the photons is not visible on 
this scale. They can only take place if electrons of the conduction band meet an unoccupied 
state, a hole in the valence band. Right: For indirect semiconductors (Si), direct optical 
transitions are suppressed. 

temperature of liquid helium in order to suppress loss processes competing with lumi-
nescence and to generate an adequate inversion density for lasing. The development 
of the heterostructure laser, which we are going to discuss a little later, has overcome 
this problem and contributed decisively to the still growing success of semiconductor 
lasers. 

The amplification is determined among other things by the number of charge car-
riers that can emit recombination radiation at a certain energy difference. For this, 
their density of states has to be calculated according to the methods of Appendix B.3. 
Close to the band edges the E—k dispersion relation is quadratic like for free particles. 
Its curvature is proportional to the inverse effective mass m* (Fig. 9.6), which e.g. in 
GaAs yields light electrons with me*i  = 0.067me i and heavy holes with mi*, 0.55mh: 

h2 kx2 	h2 k2 	h2 k,2  
Eel,h = ECB,VB     -F  	 (9.4) 

2m* 

	

el,h 	2m* 

	

el,h 	me  1h 

By ECB,VB  the lower edge of the conduction and valence band respectively is meant. 
In the three-dimensional volume g ky2  k z2  = k2  and using Pel,h (k) dk = k2  dk/27c 2  
the density of states for electrons and holes are separately calculated according to 

p1,1-(E)  dE = 	 

	

27r2 	h2  
1 (2m* ) 3/2  el,h  

(E ECB,VB )112 dE, 

with E for electrons and holes counted from each band edge Ecg ,VB. With this we 
can also determine the density of charge carriers for electrons and holes. We introduce 



Estimates can be obtained easily by inserting the characteristic effective masses for 
GaAs. We obtain after a short calculation for T = 300 K: 

27E 2 	 /0  exp(x) exp(—ael,h) 

1 ( 

	h2 

2M,:i,hkT) Dc) 	e xp( — ael,h) 	dx  

{ 	{ 4.7 x 10 17  cm-3  

nh 1.1 x 10 19  cm-3  
e —ael,h 

00 	dx fo ex + Ceel,h (9.5) 

Fig. 9.7: Density of charge carriers and 
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the two quantities aei = (EcB  — EcB) I kT and ah = (EVB — EvB ) I kT and replace the 
integration variable by x = (E — Ec B ) I kT and x( F = \ --vB — E)IkT, respectively, 

ro 
nel,h — 	 Pel,hfel,h(E, ECB,VB) dE JECBV13 ,  

In a laser diode the density of charge carriers is maintained by the injection current 
(see p. 268). With the help of the implicit equation (9.5) the Fermi energies for the 
conduction and valence bands can be determined numerically. We usually expect the 
same concentration for electrons and holes. 

Example: Charge carrier densities in GaAs 

A case of special interest occurs at ael , h  = 

0 since there the Fermi energy just reaches 
the edges of the valence and conduction 
bands. This case can even be resolved 
analytically: 

nel  = 4.7 x 10 17 cm-3 
 

fo  ex + 1 

00 	dx 

Fermi energies. 

Owing to the smaller effective masses, the electron concentration makes the Fermi 
energy Ecg increase faster than the hole concentration Evg, and it reaches the band 
edge first. Through strong p-doping, though, the Fermi energy in the currentless state 
(i.e. free of charge carriers) is shifted closer to the valence band, so that Evg gets to 
the valence band edge at a lower density of charge carriers. 

As we will see later (Eq. (9.9)) it is already sufficient for inversion if the difference 
of the Fermi energies ecB  — evB  is larger than the bandgap energy Eg . There the 
so-called 'transparency limit' is reached since the radiation field is no longer absorbed 
but amplified. 

= 3.2 x 10 17 cm-3 . 

In general, Eq. (9.5) has to be evalu-
ated by numerical methods. The result 
of such an evaluation is presented in Fig. 9.7 
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In terms of lasing we are more interested in which states can contribute to a tran-
sition with energy E = r1,44) > Eg  = EcB — EvB or where we can expect inversion. We 
obtain the rate of stimulated emission from the Einstein B-coefficient. If the occupa-
tion probabilities lei  at the energy difference of the direct transition hw in valence and 
conduction band, respectively, are taken into account, the rates of stimulated emission 
(Rcv(k)) and absorption (Rcv(k)) can be determined for a given electron k-vector 
and at the energy density of the radiation field U(w(k)) with the Einstein coefficient 

Bcv,vc 

emission: 	Rcv(k) = BcvU(w(k))4 B ( 1  g13 )1, 
absorption: 	Rvc (k) = BvcU(w(k))[fr(1 

The number of possible transitions at frequency w has to be determined from the sum 
of the dispersion relations for electrons and holes. For this we use the so-called reduced 
densities of states. With ,u, -1  = m:1-1  ± m*h-l-  and p(w) = h,p(E), we have 

1  (2p,) 3/2  (u) 	g/h)  1 /2 .  
Pred GO) — 2712 	

E 	 (9.6) 

Then the difference of emission and absorption rates can be calculated with Bcv  = 

Bvc from 

Rcv - Rvc = BcvU( cA.) ) 1f B ( 1 — 

fey )3) fer (1 f. B ) i pred  

= Bcvu(w)[fcB _ fvBbored. 	 (9.7) 

The role of inversion, which in conventional lasers is given by the occupation number 
difference of the excited (Ne ) and lower state (N9 ) of the laser transition, is now taken 
over by the product 

(Ne  - N9) -4 (f cB 
fVB)pred [(ECB EVB)/h1) 

with the first factor controlled by the injection current. 

9.2.4 Small signal gain 

Consider a pulse of light propagating in the z direction with group velocity vg  and 
spectral intensity 1(w) = vg U(w). The change of the intensity by absorption and 
emission respectively is described according to Eq. (9.7). After a short travel length 
Az = vgAt we can thus write A/ = (Rcv Rvc)hwAz. Then the absorption and 
emission coefficients respectively are determined according to Eq. (6.22) 

A/  (-Rvc Rcv)hw  
a(w) = 	= 

/Az 	vg U(w) 

We use the identity Bcv  = Acv/A,)(w2/7r2c3 \ 1  )1 = ACV/ {h 4.0Pph (W)] according to 
Eq. (6.42) to relate the Einstein coefficient to the microscopic properties of the semi-
conductor. Then we can write 

1  Pred(w)  CB 	VB 	(fCB fVB 	 (9.8) 
VgT Pph 

ce(w) = 
(-1-) ! 

(f 	f ) = ao 	 ) 
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Fig. 9.8: Absorption and (small signal) gain at a pn junction for a given density of charge 
carriers at T = 0 K and at elevated temperature. 

where we have introduced the maximum absorption coefficient ceo(w), which is pro-
portional to the reduced density of states. 

For an estimate we use specifications characteristic for GaAs lasers: wavelength 
AL  = 850 nm; reduced effective mass p, = 0.06mei ; recombination time T rec = 4 x 
10-9  s -1 ; group velocity vg  c/3.5. For typical separations of the laser frequency from 
the band edge of 1 THz = 10 12  Hz, corresponding to 2 nm in terms of wavelengths, one 
can calculate 

ao  = 6.8 x 103  cm-1  V(vL  - Eg /h)/THz. 

The very large gain factors cto are somewhat reduced in a room-temperature laser by 
the Fermi factor from Eq. (9.8). 

Like in the gas laser, amplification in the laser diode is achieved when stimulated 
emission overcomes the losses caused by outcoupling, scattering and absorption. In 
Fig. 9.8 we have calculated the gain and loss profile for an example. At T = 0 the 
Fermi distributions are step-like and therefore the value of the absorption coefficient 
is exactly at ao (w). Moreover, it becomes immediately clear that an inversion of the 
charge carriers can occur only if there are different Fermi energies in the conduction 
and the valence band, 

EL - Ev > hv > Eg . 	 (9.9) 

The charge carrier distribution corresponds to a dynamic equilibrium that can only 
be sustained for forward biassed operation of the diode. The more exact calculation 
of the semiconductor gain is an elaborate matter since it depends on the details of the 
technical layout which is much more complex as we are going to see later on. 

Example: Threshold current of the semiconductor laser 
The threshold current density required can easily be determined when the critical 
density of charge carriers no > 10 18  is known. The density of charge carriers is trans- 
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ported by the injection current to the pn junction and recombines there spontaneously 
with rate T-1rec = 2.5 x 108 5 -1 : 

dnei  = nei 	3 	 — 

dt 	Tree 	ed 

Without difficulties we derive the stationary current density for a width of the space 
charge zone d = 1 gm of the pn junction 

nel ed 
	 > 4 kA cm-2 . 
Tree 

For an active zone with a typical area of 0.3 x 0.001 mm2 , this current density already 
corresponds to 12 mA, which has to be concentrated exactly onto this small volume. 
It is obvious that it is worth while to technically reduce the natural width of the 
diffusion zone of the charge carriers in order to lower the threshold current density. 
This concept is precisely pursued by heterostructure and quantum-film lasers. 

9.2.5 Homo- and heterostructures 

Although the basic concept for the operation of a semiconductor laser originates from 
the early days of the laser, it was initially mandatory to cool the pn junction to 
cryogenic temperatures to obtain lasing at all. The light mobile electrons have a 
large diffusion length (>0.5 gm), so that large threshold currents were required, and 
at room temperature the gain could not overcome the losses caused especially by non-
radiative recombination and reabsorption. In the 1970s, however, this problem was 
solved by the concept of `heterostructures', and ever since laser diodes have continued 

homostructure 	hetero  structure 	quantum well 

     

 

e. r  

 

Fig. 9.9: Band structure for electrons and holes: homostructure, heterostructure and quan-
tum films. The quantum film limit is usually entered at thickness below 200 A. 

their triumphant route as sources for coherent light. In a heterostructure two different 
materials (e.g. with different composition and different bandgaps) are adjacent to 
each other. The interface creates potential steps which inhibit the diffusion of charge 
carriers across the barrier. For laser materials the bandgap is chosen in such a way 
that electrons and holes can be locked between two layers with a larger bandgap in a 
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zone with a smaller bandgap (`double heterostructure'). Otherwise the light generated 
at the centre would be absorbed again in the outer areas of the amplification zone. 

This advantage of heterostructures compared to simple homostructures is schemat-
ically presented in Fig. 9.9. The strongly simplified potential scheme indicates that 
the motion of the charge carriers is now limited to a narrow layer ('-'0.11,,tm) in order 
to realize an accordingly high gain density by their strong confinement. Further-
more, when the refractive index in this area is higher than in the adjacent layers, a 
favourable waveguide effect is obtained, which in this case is called 'index guiding'. 
Also, the spatial variation of the charge carriers causes changes of the refractive index 
and waveguiding again, which is called 'gain guiding' in this case. With further minia-
turization of the active layer we get to the realm of quantum film systems, which are 
not just simply smaller but also show qualitatively novel properties (see Section 9.3.4). 

9.3 The heterostructure laser 

The most important material for the manufacture of opto-electronic semiconductors 
until now has been GaAs. As a direct semiconductor, not only does it offer the 
necessary microscopic properties, but also, by variation of the Gax Al i _,As compound 
crystal composition, it offers widespread technical potential to adjust the bandgap and 
the refractive index to the requirements for applications. The characteristic wavelength 
at 850 nm has technological significance as well, because it lies in one of three spectral 
windows (850, 1310, 1550 nm) suitable for the construction of optical networks. Today, 
the concepts of the AlGaAs laser have been transferred to other systems as well, like, 
for example, InAlP. 

Fig. 9.10: Layer systems for laser diodes. Left: Plain homostructure. Middle: The current 
flux is narrowed by insulating oxide layers and causes a concentration of the inversion den-
sity. The inhomogeneous amplification, or charge carrier density, furthermore generates a 
waveguide, which leads the light field along the gain zone  ('gain guiding). Right: Double het-
erostructures generate a precisely controlled amplification zone as well as an optical waveguide 
for the light field. 
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9.3.1 Construction 

Laser crystal 

Laser crystals are produced through epitaxial growth. 4  The composition of these layers 
can be controlled along the growth direction by regulating the precursor flux. The ver-
tical double heterostructure (DH) is controlled by such growth. The lateral structuring 
on the micrometre scale is engineered through methods known from microelectronics, 
e.g. optical lithography processes. 

Owing to the construction, the laser field propagates along the surface of the crys-
tals, and outcoupling takes place at the edge of a cleavage face. Therefore this type 
is called an 'edge emitter', in contrast to an alternative layout where light is emitted 
perpendicularly to the surface. This type will be introduced shortly in Section 9.5.2. 

Laser crystals with a length of about 0.2-1 mm are produced by simply cleaving 
them from a larger epitaxially grown wafer. They can basically be inserted into a suit-
able package (Fig. 9.11) without any further treatment and be contacted with standard 
techniques to facilitate handling. The transverse geometric properties of the laser field 
are determined by the shape of the amplification zone. In the far field an elliptical 
beam profile is generally observed caused by the diffraction off the heterostructure 
and the transverse waveguiding. The light of edge-emitting laser diodes thus has to 
be collimated, which is quite costly for the purposes of application, and is one reason 
for the development of surface emitters, which offer a circular beam profile from the 
beginning. 

glass window 

laser diode 

monitor-
photodiode 

Fig. 9.11: Standard package for laser diodes. The semiconductor device itself is hardly visible 

and has typical dimensions of 0.3 mm edge length. This type is called an edge emitter. 

9.3.2 Laser operation 

In the most frequent and simplest case, the cleavage faces of the crystal already form 
a laser resonator. At a refractive index n 	3.5 the intrinsic reflectivity of a GaAs 

4 During epitaxial growth, thin monolayers of the (semiconducting) material are homogeneously 
deposited on a monocrystalline substrate from molecular beams. 
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crystal is 30% and is often sufficient to support lasing due to the large gain coefficients 
of semiconductors. In other cases the reflectivity of the cleavage faces can be modified 
by suitable coatings. In Fig. 9.12 the output power of a semiconductor laser as a 
function of the injection current is presented. 

For many applications, e.g. spectrosco-
PL "roll over" py or optical communications, the use 

of single-mode lasers (both transverse 
and longitudinal) is important. The 
homogeneous gain profile of the laser 
diode offers excellent preconditions to 
implement single-mode operation even 
though the free spectral range of semi-
conductor lasers at ftyp  = 0.3 mm is, 

injection current in spite of the substantial IX/IFsR  = 

150 GHz, still very small compared to 
the gain bandwidth of 10 THz and more. Fig. 9.12: Current-power diagram of a laser 

` diode. At large currents a 'roll-over' can occur In fact parasitic laser  oscillations  ( side- 

due to heating of the pn junction. 	 bands') are very efficiently suppressed 
in many components. 

The threshold currents of a laser diode vary depending on the layout, but the aim 
is always a laser threshold as small as possible. It has to be kept in mind that large 
current densities of 100 kA cm-2  and more occur, causing strong local heating and thus 
leading to damage of the heterostructures. For the same reason the threshold current 
grows with temperature. In high-power lasers the so-called 'roll-over' occurs, for which 
increase of the injection current no longer leads to increase of the output power but 
on the contrary reduces it due to the heating of the pn junction! The relation between 
threshold current _ith and temperature follows an empirical law with a characteristic 
temperature To  and current 10 , 

1-th = /0 exp 
(T - To  

To  ) 	
(9.10) 

In conventional heterostructure lasers the characteristic temperature has values of 
about To  = 60 K but in other layouts such as VCSEL or quantum-film lasers (see 
section 9.3.4) these values are increased in a favourable direction up to 200-400 K 
so that the temperature sensitivity of the components is significantly reduced. A 
qualitative semiconductor laser output power vs. pump curve is presented in Fig. 9.12 
and reflects features of the idealized laser of Fig. 8.1. From the slope of the power, the 
differential quantum efficiency can be obtained, which is typically 30% or more: 

e dP 
differential quantum efficiency = iT

v  dl 
 . 

Sometimes there are so-called 'kinks' in the power-current diagram. They are an 
indication of a modification of the laser mode, e.g. caused by a charge carrier profile 
switching geometrically from one spatial mode to another at this particular current. 
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9.3.3 Spectral properties 

Emission wavelength and mode profile 

The emission wavelength of a semiconductor laser is determined by the combined effect 
of gain profile and laser resonator as it is for other laser types. We first consider the 
wavelength selection of the 'freely operating' laser diode without any additional optical 
elements. 

Single-mode operation occurs in 
many types of laser diodes. It is favoured 
by a gain profile that is homogeneously 
broadened as a result of a large intra-
band relaxation rate. So at the gain 
maximum the mode starts lasing by it-
self. However, the detailed geometry of 
the often complex multilayer laser crys-
tal can also allow multimode laser oper-
ation, and even in components explicitly 
called 'single-mode laser' usually further 
parasitic modes may only be suppressed 
by a certain finite factor (typically x100, 
or 20 dB). 

Although the construction length of Fig. 9.13: Mode jumps of diode lasers caused 
the resonator is generally very short by temperature variations. 
(0.3-0.5 mm, n 	3.5) and already for 
conventional components delivers a free spectral range of 80-160 GHz (which can be 
much larger for VCSEL lasers), there are still many resonator modes in the gain profile 
at a typical spectral width of some 10 nm or some THz. 

The refractive index determining the resonator frequency depends sensitively on 
the temperature as well as on the charge carrier density and the injection current 
respectively, so that the exact laser frequency Vj ,  can be tuned over considerable ranges 
by controlling these parameters: 

1. By increasing the temperature of an external heat sink (e.g. a Peltier cooler), 
we typically find a rate of frequency change at clur, I dT = -30 GHz K -1 , i.e. a 
redshift. 

2. Variation of the injection current causes a shift &Aid/ = Thh nn . The shift is 
due to temperature changes within the heterostructure (nth -3 GHz mA-1 ) and 
also modifications of the charge carrier density On  0.1 GHz mA -1 ). For slow 
current variations, the frequency change is dominated by the thermal redshift, but 
for modulation frequencies exceeding fmod > 30 kHz, the influence of the charge 
carrier density dominates (see Section 9.4.1). 

Unfortunately tuning by temperature and current at the pn junction only does not 
usually allow generation of every frequency within the gain profile. It is impaired by 
'dark' zones (Fig. 9.13) since the gain profile and the mode structure of the resonator 
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do not vary synchronously with each other. External optical elements can, however, 
also be used to access those forbidden domains (see Section 9.5.1). 

Electronic wavelength control 

When the exact frequency or wavelength of the laser radiation is important like, for 
example, in spectroscopic applications, then the temperature at the laser diode junc-
tion and the injection current have to be controlled very precisely. The high sensitivity 
to temperature and current fluctuations sets high technical demands on the electronic 
control devices. If technically caused frequency fluctuations are to be kept lower than 
the typical 5 MHz caused by intrinsic physical processes (see Section 9.4.2), then ac-
cording to the variation rates given in the preceding section obviously a temperature 
stability nirms  < 1 mK and a current stability 6/rms  < 1 [a has to be achieved with 
appropriate servo-controllers. 

Considering it more exactly, the spectral properties of the servo-controllers have 
to be investigated, but this would by far exceed the scope of this book. However, it is 
quite easy to see that the temperature control cannot have a large servo bandwidth due 
to its large thermal masses. The bandwidth of the current control is basically limited 
only by the capacitance of the laser diode itself, but it is advisable in terms of servo-
control methods to limit the constant-current source to a small internal bandwidth in 
order to reduce the current noise and instead of this to provide some additional fast 
high-impedance modulation inputs like, for example, in Fig. 9.14. 

fast  modulation  

Fig. 9.14: Left: Temperature control for laser diodes may use thermistors as temperature 
sensors. Right: Current control will typically inject a well-stabilized current that resists rapid 

variations. Fast modulation may then be realized by directly injecting additional small cur-
rents. 

For wavelength stabilization the devices described here have a merely passive ef-
fect — they warrant tight control of operational parameters of the laser diode but do 
not interrogate the wavelength itself. For many applications, e.g. optical wavelength 
standards, still better absolute stabilities are required and deviations from a desirable 
wavelength must be directly sensed, for instance through a spectroscopic signal, and 
corrected through suitable servo-controls. 



heterostructure- 
laser 

9.3 The heterostructure laser 	 275 

9.3.4 Quantum films, quantum wires, quantum dots 

Conventional heterostructures serve to hinder the diffusion of electrons and holes and 
to concentrate the gain into a small zone. The charge carriers though move in a 
well with dimensions of about 100 nm like more or less classical point-like particles. 
By further miniaturization (see Fig. 9.15) we reach the realm of quantized electronic 
motion in which the dynamics of the charge carriers in the vertical direction orthogonal 
to the layer system is characterized by discrete energy levels according to quantum 
mechanics. 

lateral micro-/nano structuring 
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Fig. 9.15: Semiconductor miniaturization and semiconductor laser types with reduced di-
mensionality. 

Once miniaturization reaches the quantum border in one dimension, a `two-dimensional 
electron gas' is created, which we shall call a 'quantum film' here. In the literature 
there are also other terms used, e.g. quantum well (QW) lasers. Structures with re-
duced dimensionality offer lower threshold currents, larger gain and lower temperature 
sensitivity than conventional DH lasers, advantages already essentially acknowledged 
since the early 1980s. 

Inversion in the quantum film 

The two-dimensional character of the charge carrier gas causes a change in the density 
of states (DOS, see Appendix B.3), the fundamental origin of improved operation char-
acteristics like, for example, low threshold current and lower temperature sensitivity. 
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P(E) k1  X 

Fig. 9.16: Band structure (middle) and density of states (left) in a quantum film. On the 
left the dashed curves show the corresponding density of states for the bulk material. The 
hatched curves on the right indicate the wavefunction of the stored electrons and holes in the 
1D transverse potential. 

In addition to the kinetic energy of the transverse quantum state EQi , there are 
two continuous degrees of freedom with momentum components kii . For the electrons 
and holes in the ith sub-band of the quantum film we find (kii  = klix  + k): 

h2 k2 
Ei  = Ev ,L Ecv ± 	. 

2M:1,h 

Among the interesting properties of quantum film lasers is the possibility to control 
the transition wavelength by choosing the film thickness which determines the energy 
separation of the quantum states in the electronic and hole-like state. According to 
quantum mechanics we have EQ1 h2 /2m 2 . 

The density of states in the k-plane is pei ,h(k) dk = k dk/270 and can be converted 
into an energy density with dE = 

quantum state (energy EQe1P, quantum number i) contributes with the density nte, 

pel , h (E) dE 	e(E  _ Er). 
 h2f 

The theta function has the values e(x) = 1 for  z  > 0 and e(x) = 0 for  z  < O. Also 
the effective masses me*it h  may depend on the quantum number. The density of state 
grows step-like (see Fig.' 9.16) in a quantum film every time the energy reaches a new 
transverse quantum state. There it has exactly the value corresponding to the volume 
material (dashed line in Fig. 9.16). 

The advantage of the QW laser becomes evident when we determine the dependence 
of the Fermi energy on the charge carrier concentration as we did on p. 266. With 

h,2 klm e*, ,h dk. In the transverse direction each 
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terms similar to the 3D case, e.g. aei i  = EL  + 	- EL, we obtain 

m*i  kT el h 
nei,h = 2 	n',2 	

00 	
dx 

e- oezl,h 
0 ex + 

This integral can be analytically evaluated. Using the parameters of GaAs at T = 
300 K and for a quantum film with a thickness of = 100 A, we find the relation 

nel = 33 x 10 15 cm-3  ln (1 + 

from which the Fermi energy can be obtained. The value of the first factor is two orders 
of magnitude smaller than for the volume material (Eq. (9.5))! This indicates that in 
the QW laser inversion can be expected already at considerably smaller charge carrier 
concentrations and thus smaller threshold current densities than in conventional DH 
lasers. 

Multiple quantum well (MQW) lasers 

For a fair comparison with conventional DH lasers it has to be taken into account 
that the total gain of a quantum film is smaller than that of a DH laser simply due 
to the smaller volume. This disadvantage can be largely compensated by introducing 
multiple identical quantum films in the volume of the laser light field. 

In Fig. 9.17 a multiple quantum 
well (MQW) structure is schemati-
cally presented. The charge carri-
ers are to be 'caught' in the poten-
tial wells but the relaxation rate, e.g. 
through collision with a phonon, is 
quite small due to the small film 
thickness. To increase the concen-
tration of the charge carriers in the 
vicinity of the quantum films, an ad-
ditional heterostructure is provided - 
the separate confinement heterostruc- Fig. 9.17: Concept of a multiple quantum well 
ture (SCH) in Fig. 9.17. This struc- (MQW) structure consisting of three quantum 
ture also acts as a waveguide for the films. SCH: separate confinement heterostructure. 
resonator field and focuses the light 
intensity onto this zone, which is usually much smaller than an optical wavelength. 
Today MQW lasers have become a standard product of the opto-electronics industry. 

Another interesting innovation has been introduced with the 'strained quantum 
well'. They offer additional technical advantages since the effective masses are in-
creased as a result of mechanical strain in the crystal lattices by a factor 2. Thereby 
the density of states as well as the threshold current density decrease again. 

Let us once again summarize the advantages of quantum film lasers compared with 
conventional double-heterostructure lasers: 
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1. The modified density of states causes lower threshold currents since fewer states 
per charge carrier are available, which can consequently be filled with lower cur-
rents. Typically threshold current densities of 50-100 A cm-2  are achieved. The 
lower threshold indirectly improves again the temperature sensitivity since there 
is less excess heat generated in the heterostructures. 

2. The differential gain is larger than for the DH lasers since the electrically dissi-
pated power growing with the current causes a lower reduction of the gain. 

3. The threshold condition depends less strongly on the temperature. For conven-
tional DH lasers the transparency threshold grows with T 312 , in quantum film 
lasers only in proportion to T. The characteristic temperatures according to 
Eq. (9.10) are about 200 K. 

Quantum wires and quantum dots 

The reduced dimensionality of semiconductor structures can be extended through 
construction: two-dimensional quantum films become quasi-one-dimensional quantum 
wires and even zero-dimensional quantum dots when suitable methods of lateral mi-
crostructuring are chosen. In Fig. 9.18 this evolution with its effect on the density of 
states is presented. 

Fig. 9.18: Evolution from the double-heterostructure laser over quantum films and wires to 
quantum dots. 

The properties of the density of states continue the tendency of the quantum film 
laser to realize overall gain already at small current densities. While the layer stack of 
the quantum film laser can simply be manufactured by controlling the growth processes 
(in Fig. 9.18 in the vertical direction), the lateral properties have to be manufactured 
in general by a completely different process. On the one hand, there is no longer a big 
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difference between manufacturing quantum wires and quantum dots from the techno-
logical point of view; on the other hand, the necessary lateral structural dimensions 
of 0.1-0.2 nm are not easily achievable with standard methods of optical lithography. 
Also, the strictly periodic formation of quantum dots shown in Fig. 9.18 has been 
difficult to realize up to now, but on the other hand it is not necessary for the laser 
process either. Multiple quantum dots have been produced using self-organization of 
a heterogeneous growth process[109, 38]. 

9.4 Dynamic properties of semiconductor 
lasers 

Among the technically more attractive properties of the laser diode is the possibility 
to modulate it directly by varying the injection current. For instance, the speed of 
switching the laser on and off determines the rate for generating digital signals and thus 
transmitting information. A rate equation approach makes an excellent approximation 
since the transverse relaxation is dominated by the fast rate of intra-band scattering 

= T2  1 ps and hence the polarization effects remain in equilibrium with the 
field amplitude (Section 8.2). To understand the dynamics of laser diodes, we use the 
amplitude equation (8.11) and the rate equation (8.19(ii)), 

È(t) =  fi[St —  w  — -Içan(t)] + -[Kn(t) —  

ñ(t) = —Kn(t)n ph (t) — -yn(t) + R. 

Note that here we use n(t) for the charge carrier density. The current density j 'feeds' 
the dynamics with R = jled, we replace IE(t) 2  --÷ nph (t), and furthermore we now 
use the photon lifetime --+ 1/7-ph and the recombination time -y 1/7r„ instead of 
the damping rates. At steady state (n = nph  = 0) we find 

1 	 1  
— 1) St  = 	and 	liph  = 	( 

KTrec ith 	
7 

KTph 

where it h = ed I kTrec  Tph . Most ly we are interested in small deviations from the sta-
tionary state. Then we can linearize, 

n(t) = nst  + Sn(t) 	and 	nph  = Tiph + 6T/ ph , 

and find the equations of motion, in which we set jobth = bfith, 

6.nph (t) = 

dn(t) = 

1  (  /0 

 Trec It h 

imod 	1 
ed 	Trec 

1) Sn(t), 

T  6n(t) — 	Sri ph • 
th 	 rph 

(9.12) 

9.4.1 Modulation properties 

We consider the effect of small harmonic modulations of the injection current jrnod 

jo jm, e — iwt on the amplitude and the phase of the laser light field. 

(9.11) 



Fig. 9.19: Amplitude modulation of a diode 
laser as a function of the modulation fre-
quency. 
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Amplitude modulation 

The modulation of the number of photons is equivalent to the variation of the output 
power. Therefore we use 6nph (t) = 6nph0 e i w t  and 6n(t) = Sno  e-iw t  and we can 
replace 6npho  = -(/0/1-th 1)6 - rec • 

	

no 	After a short calculation we get Wr 

Too m 	 Io I Ith - 1  
6riph0 

	

ed (.4) 2 Trecrph 	(-10/ 1-th — 1) ± i(1-0//th)Wrph 

We are interested in the value of the resulting amplitude modulation according to eq. 
(9.13) 

16npho I = 
rphim  

ed 

 

Io/It h - 1 
(9.14) 

  

I \/[4)2 Trecrph 	(1-0/Ith 	
1)]2 	

"7
72 

 ph (-1 0/
T  th ) 2  

(9.13) 

quantity!). Today 

In Fig. 9.19 we present the response 
of a typical laser diode to a current mod-
ulation with frequency fmod = w/21cc a=1- 
culated from Eq. (9.14). We have used 
a spontaneous recombination time 
2 x 10 -9  s and a photon lifetime of rph 

10-12  s. The frequency of the relaxation 
resonance grows with injection current as 
expected according to Eq. (8.24). Exper-
imental data are well represented by this 
function. 

For applications, e.g. in optical com- 
munications, a large modulation band- 
width is important. In addition to this, 
the frequency response is to stay flat up 
to frequencies as high as possible, and 
furthermore there should not be any ma- 
jor phase rotations (6npho  is a complex 

in compact VCSEL components modulation bandwidths of 40 GHz 
and more are achieved, and an end of this development is not yet in sight. 

Phase modulation 

Next we investigate the evolution of the phase 43.(t) separating off the steady state in 
Eq. (9.11) with 

E(t) 	E exp[i(12 - w - ory,/2)] exp[i(I)(t)] 

and find the coupling 

(i)(t) = atç 6n(t) 

of charge carrier dynamics and phase evolution. We again expect a harmonic depen- 
dence (I)(t) = (Do e - t ,  which after a short calculation we can also express by the 
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modulation amplitude of the photon number n h and so obtain the very transparent 
result where a = (w - wo )/-y, Eq. (8.7): 

n 
(I(t) = 	

a 6 pho 
 (Do  e 	e 	. 

2 Tiph  

The result shows that the factor a de-
scribes the coupling of the phase change 
to the amplitude change. In laser diodes 
it has typical values of 1.5-6. [It usually 
vanishes in gas lasers since those oscil-
late very close to the atomic or molecu-
lar resonance lines (a 0)1 It also plays 
a significant role for the linewidth of the 
laser diode, as we will see in the next 
subsection. 

Up to now we understood the am-
plitude as well as the phase modulation 
only as a consequence of the dynamic 
charge carrier density. The modulation 
current moreover causes a periodic heat-
ing of the heterostructure, which modi-
fies the optical length of the laser diode 
resonator as well and even dominates the 

I 	
(7 

charge  carriers  

1GHz fmod 

Fig. 9.20: Phase modulation of semiconduc-
tor lasers. The modulation index consists of 
thermal and charge carrier density contribu-
tions. 
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modulation depth up to typical critical frequencies of some 10 kHz. Both the tempera-
ture and charge carrier density modulation, which we have already identified on p. 273 
as the origin for the detuning of laser wavelength with injection current, contribute to 
the low-frequency limit of the phase modulation amplitude. 

9.4.2 Linewidth of the semiconductor laser 

When the linewidth of a laser diode is calculated according to the Schawlow-Townes 
formula (Eq. (8.32)), a higher value than e.g. for the He-Ne laser is already expected 
from the beginning due to the large linewidth of the empty resonator -y, 10 12 . In 
experiments, still larger linewidths of 10-100 MHz are observed for a typical 1 mW laser 
diode and set in relation to the 'pure' Schawlow-Townes limit AvsT . This broadening 
is described by the so-called a parameter which was already introduced in our simple 
laser theory describing the amplitude-phase coupling (eq. (8.7)), 

647 = ( 1  + a2 )AvsT. 
With semiconductor lasers this is often called Henry's a parameter because C. Henry 
discovered that, albeit known from the early days of laser physics, it plays a much 
more significant role for diode lasers than for gas lasers [44]. 

The a factor was initially introduced as an 'abbreviation' for the normalized de-
tuning in Eq. (8.7). A more detailed analysis shows that it gives the differential ratio 
of real and imaginary parts of the susceptibility or the refraction coefficient as well, 

= Ani/An". 
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It can only be calculated with elaborate methods and detailed knowledge of the diode 
laser construction and is thus preferably obtained from experiment. 

Example: 'Pure' Schawlow—Townes linewidth of a GaAs laser 
We determine the linewidth according to Eq. (8.32) of a GaAs laser for 1 mW output 
power and at a laser frequency of vt = 350 THz at 857nm. The small Fabry—Perot 
resonator with a length of 0.3 mm and a refraction coefficient 3.5 leads, for mirror 
reflectivities of R =  0.3, to a 1inewidth and to decay rates of Av = -y,/27c = 3 x 10 1 0  
which are much larger than for a typical GaAs laser and cause a very much larger 
Schawlow—Townes linewidth: 

nh x 350 THz (2n x 50 GHz) 2  
AusT 	  = 1.5 MHz. 

1 mW 

In practice  VST  =--  (1+  a2 )AvsT with a ranging from 1.5 and 6 is found for enhanced 
lin  ewidths. 

9.4.3 Injection locking 

Fig. 9.21: Injection locking. The coherent light field 
of the 'master laser' is injected into a 'slave laser' 
and leaves its coherence properties on it. The isolator 
serves to decouple the master laser from any radiation 
emitted by the slave laser. 

put power in functionally separated components (in 
ment) can be achieved. 

In Fig. 9.21 we have schematically presented a situation typical for laser diodes. 
In the 'master laser' a laser light field with well-controlled coherence properties is 
prepared. Its light is injected into a 'slave laser' and determines the dynamical prop-
erties of the latter under conditions we are going to investigate here. The slave laser 
itself may generally have less advantageous coherence properties as long as it makes 
high output power available, e.g. in Fig. 9.21 from a broad stripe laser or a tapered 
amplifier. 

Let us insert the coupling to the laser light field to an external field in eq. (9.11) in 
a heuristic way. The coupling term must have the same structure like the outcoupling 
term (i.e. É (7,t /2)E,t, where -y,t  is the damping rate due to the outcoupling 

In a conventional laser the os-
cillation of the light field starts by 
itself from the noise. We are going 
to study now how a laser oscillator 
reacts if it is already irradiated by 
an external monochromatic light 
field. The considerations are in 
principle valid for almost all types 
of lasers but they are particularly 
important for the applications of 
laser diodes since in this way the 
preparation of a light field with 
good coherence length and high out-
a so-called 'master—slave' arrange- 
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mirror) but the external field oscillates with its own frequency wext . We replace Kn —> 
G and write 

E(t) = [i(w —  ci  — -aG)+ 	— -OJE(t) +1-v 2  ext Eext 
e i(wext—w)t+iço 

Then we find equations for the equilibrium which we separate into real and imaginary 
parts, 

(i)
(c  _ ) 	

'Text Eext E   cos y = 0, 

(ii) (wext — — OG) + 
x t Eext 2   E   sin = 0, 

(9.15) 

which describe the amplitude (i) and the phase (ii), respectively. If we limit ourselves 
to the case of small coupling, the modifications of the field amplitude can be neglected. 
Then we can use the modified saturated gain, 

G = Yc — 2Am cos y, 

from Eq. (9.15( 1 )) by introducing the frequency 

7ext Eext 	'Text  \//ext  
Am := 

2 E 	2 	/ 

From Eq. (9.15(ii)) we obtain the relation 

Wext (1-2 ay/2) aAm cos y = Am  sin (p. 

The result can be presented even more conveniently with tan yo  = a and wfree  := 
S2+ a-y/2, which is the laser oscillation frequency in the absence of an injected field. 
For a = 0 it is known as the Adler equation: 

Wext Wfree = AM V1  a2  sin(y — yo ). 	 (9.16) 

Then we can derive immediately the limiting conditions for the so-called capture or 
'locking range': 

t Wf Wexree —1 <    < 1. 
— Am  -V1 a2  — 

We find that the slave oscillator locks to the frequency of the external field. The locking 
range 2Am  is larger when more power is injected and when the coupling is stronger, 
i.e. when the reflectivity of the resonator is lower. According to our analysis for a laser 
diode, which has typically a low reflectivity, the locking  is furthermore supported by 
the phase—amplitude coupling described by the factor V1 a2 . 

The phase condition shows that the locking is made possible through a suitable 
adjustment of the phase angle y between master and slave oscillator. A more detailed 
analysis of the stability, which we skip here, shows that only one of the two adjustment 
solutions is stable according to Eq. (9.16). 

Outside the capture range the locking condition cannot be fulfilled but the external 
field there causes a phase modulation as well which already leads to a frequency shift 
of the slave oscillator. The theoretical analysis is a bit more costly but it shows among 
other things that close to the locking range additional sidebands are generated from 
the master and the slave light field due to nonlinear mixing processes. 



Fig. 9.22: Frequency characteristic and 
phase position of a slave laser on injection 
locking. 
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9.4.4 Optical feedback and self-injection locking 

The coherence properties of laser 
diodes are extraordinarily sensitive to 
backscattering from outside. Every 
randomly caused reflection can trig-
ger considerable and uncontrollable fre-
quency fluctuations. For critical ap-
plications, e.g. in spectroscopy, there-
fore, optical isolators with a high ex-
tinction ratio have to ensure that the 

Fig. 9.23: Optical feedback from a folded res- backscattering occurring at every op-
onator. Feedback can only take place in the case tical element is suppressed. 
of resonance of laser frequency and resonator. The feedback from external com- 
ponents can be described as a form of 'self-injection locking' in immediate analogy to 
the injection locking described in section 9.4.3, 

.k(t) , [i(w — 1-2 — - aG) + -- (G - -y,)]E(t) + r(w)E(t) e- z" , 

with T := 2f I c giving the delay time needed by the light to travel from the laser source 
to the scattering position at a distance f and back again. The reflection coefficient r(w) 
of the optical element may also depend on the frequency, like e.g. for the resonator in 
Fig. 9.22 according to Eq. (5.13). 

In direct analogy to the case of normal injection locking, the analysis leads again to 
a characteristic equation for the frequency which now depends critically on the return 
phase WT: 

W — Wfree  = r(w) = V1 + a 2  sinp(r - To)]. 

An overview can be most simply obtained graphically. In Fig. 9.24 we present the 
situation for a simple mirror (left) and a Fabry-Perot resonator (right). It is evident 
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Fig. 9.24: The effect of feedback on the oscillator frequency of a laser diode. Left: A simple 
mirror with two different reflected waves. Right: Folded resonator according to Fig. 9.23). 
The shadowed curve shows the expected transmission of the resonator at tuning of the laser 
frequency in the positive direction. 

from Fig. 9.24 that back-reflections from acoustically vibrating setups changing the 
return phase will always cause frequency fluctuations. A stable resonator, however, 
forces the laser frequency to oscillate at its eigenfrequency if the right conditions are 
chosen. Thus coupling to the external resonator results in improved coherence proper-
ties — the resonator works like a passive flywheel counteracting the phase fluctuations 
of the active oscillator. 

9.5 Laser diodes, diode lasers, laser systems 

A laser diode emits coherent light as soon as the injection current exceeds the threshold 
current through the semiconductor diode. Specific applications, however, set different 
demands for the wavelength and the coherence properties of the laser radiation. In 
order to control these properties, the laser diode is used in different optical layouts 
and is integrated into 'systems' that we are going to call 'diode laser' to distinguish it 
from the opto-electronic 'laser diode' component. 

Owing to the microscopic dimensions of the laser crystal, additional devices like 
filters may be immediately integrated during manufacture. Such concepts are realized 
with the so-called DFB, DBR and VCSEL lasers. Another possibility is to achieve 
frequency control by coupling the laser light back into the resonator as described in 
the previous section. 

9.5.1 Tunable diode lasers (grating tuned lasers) 

Among the most unwanted properties of laser diodes are the mode hops that prevent 
continuous tuning along the entire gain profile as shown in Fig. 9.13. This problem can 
be solved by using an anti-reflection coating on the laser diode facets and installing it as 
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piezo tube  
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Fig. 9.25: Construction of a diode laser system according to the Littrow principle. The 
—1st order of the grating is retro-reflected into the laser diode. The zeroth order makes light 
available for applications. 

an amplifying medium in an outer resonator with suitable mirrors and filter elements. 
This 'extended cavity' concept, though, gives up many advantages of the semiconduc-
tor laser, such as e.g. the compact layout. Therefore the 'external cavity' method is 
preferred. The external grating is mounted in the so-called Littrow arrangement for 
feedback (Fig. 9.25). There the grating reflects about 5-15% of the power exactly back 
in —1st order into the light source while the rest is reflected away for applications. It 
thus causes frequency-selective feedback and a' corresponding modulation of the gain 
profile. So by turning the grating most laser diodes can now be tuned to almost every 
wavelength within their gain profile without any further modifications of their facet 
reflectivities. 

9.5.2 DFB, DBR, VCSEL lasers 

The integration of periodic elements for frequency selection has not only been studied 
with semiconductor lasers but for them it is an attractive choice because the meth-
ods of microlithography are required for manufacturing anyway. The concepts of the 
DFB laser (distributed feedback) and DBR laser (distributed Bragg reflector) are im-
plemented with lateral structures on a suitable substrate (edge emitters), while the 
VCSEL laser (vertical cavity surface-emitting laser) is realized by a vertical layer stack. 

We already know the function of the integrated Bragg end mirrors from the fibre 
laser (section 7.8.4), and both edge-emitting types differ only in the layout of the Bragg 
reflector. For the DBR laser it is set aside from the active zone as a selective mirror 
(and some parameters, such as the centre wavelength, can possibly be controlled, e.g. 
by injecting a current for refractive index control). For the DFB laser the active zone 
and the Bragg grating (which is a phase grating in general) are integrated in one 
element. 
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active zone 

DB R laser 	 DFB laser 

Fig. 9.26: Principal elements of DBR and DFB lasers. 

Fig. 9.27: Grating with uniform period and with A/4 shift in the DFB laser. The effective 
spectral gain profile is qualitatively drawn on the right-hand side. 

Because of simpler and more reliable manufacturing methods, today the DFB laser 
is in more widespread use than the DBR variant among the edge emitters. Studying 
the spectral properties of the periodic DFB structure in more detail, one finds that 
light wave propagation is strongly suppressed in a region centred at the wavelength 
corresponding to the periodicity of the grating [115, 101]. The cause of this can be 
seen qualitatively in Fig. 9.27. We can define two stationary waves, which experience 
a lower average refraction coefficient n_ = n — 6n, at one position and a higher one 
n+  = n + 6n at another position, so that for the same wavelength two frequencies 
v± = n±c/A  at the same separation from the centre wavelength vo  = nc/A are allowed. 
A gain maximum is, however, generated exactly at this position if the so-called A/4 
shift of the period is inserted at the centre of the DFB structure. 

A conceptual example of a VCSEL [19, 52] is presented in Fig. 9.28. The layer 
structures are epitaxially grown. The active zone has a length of just one wavelength 
within the material, i.e. A/n ± 250 nm at an emission wavelength of 850 nm. It is host 
to several closely adjacent quantum films with a typical thickness of 8 nm. Since the 
gain length is extremely short, the Bragg mirrors have to have a very high reflectivity 
of 99.5%. For this, typically 20-40 Al,GaiAs/Aly Gai _ y As layer stacks are required 
with a refraction coefficient contrast as high as possible. 
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Fig. 9.28: Concept of VCSEL lasers. (The electron microscope photograph was provided by 
Dr. Michalzik, University of Ulm 152.1.) 

For the VCSELs the concentration of the injection current onto the desired cross-
sectional area of the laser field is a huge technical challenge. In today's solutions, for 
example, the resistance of certain layers is strongly increased by proton bombardment, 
though this causes disadvantageous crystal damage in adjacent material. Using an-
other method the upper Bragg stack is structured into round mesa-like mirrors and 
finally a thin A10 .97Ga0 . 03As layer is chemically transformed into an insulating oxide, 
thus creating current apertures with an inner diameter of only a few micrometres. 

9.6 High-power laser diodes 

The direct conversion of electrical energy into coherent light with an excellent efficiency 
promises a wealth of applications. Coherent light provides this energy for e.g. cutting 
and welding in materials processing with a very high 'quality', so to speak, because its 
application can be controlled with a very good spatial and time resolution. So interest 
in increasing the output power of laser diodes up to range of 1 kW and more was quite 
natural from the beginning. 

The 'quality' of a laser beam for machining applications depends on the total 
power available but at the same time depends crucially on its spatial properties, i.e. 
the transverse coherence. For practical evaluation, it is customary to use the beam 
parameter product of beam waist wo  and divergence angle Odiv  (see p. 40). When this 
is normalized to the corresponding product for a perfect TEM00  Gaussian beam, it is 
called the M2  factor [101]: 

M2  _ iv  wo Od. (measured) 
(9.17) 

WO °div (perfect) • 

It is a measure of the performance of beam cross-section and divergence, and gives an 
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estimate of the fraction of laser light propagating within the dominant Gaussian mode, 
for only this can be focused to the optimum, i.e. limited by diffraction, or transmitted 
through a spatial filter (see Fig. 2.11 on p. 47). The M2  factor grows with decreasing 
beam quality and should differ as little as possible from unity. 

As already indicated in Fig. 9.12, the power increase just by increasing the injection 
current is seriously limited. On the one hand, owing to the excess heat, the 'roll-over' 
effect occurs; on the other hand, the light intensity becomes so high that the emitting 
facets suffer spontaneous damage, often leading to the total loss of the device. These 
problems are particularly severe for layers containing Al. For this reason in high-power 
lasers mostly Al-free quantum films are used at least for the gain zone. It is generally 
observed that the output power for a conventional single laser diode stripe with a facet 
of about 1 x 3 Rm2  is limited to not more than some 100 mW. Therefore the output 
power of semiconductor devices can in principle only be increased by spreading the 
gain over facets as large as possible or over many facets and the volumes connected 
to them. Today the output power is increased by using laser arrays, broad-area and 
tapered amplifier lasers as schematically presented in Fig. 9.29. 

master laser 

Fig. 9.29: Concepts for high-power laser diodes: laser diode arrays, broad-area laser and 
tapered amplifier. 

1. Several laser diode stripes can be placed on a single substrate without any prob-
lem. If the separations of the single stripes are not too big, the fields of adjacent 
modes overlap slightly and are coupled through their phase evolution, i.e. the 
output power of all individual stripes is coherently coupled, or 'capable of inter-
fering'. The far field of a laser array depends on the relative phase positions of the 
single stripes. In Fig. 9.30 we show calculations of the idealized field distribution 
of two and four identical Gaussian emitters, considering all possible combinations 
of relative phase positions. A realistic laser array often shows a far field with two 
'ears'. Their origin becomes evident from this consideration. 

2. In a broad-area laser diode a wide diode volume is used for amplification, as the 
name indicates. However, the control of the transverse field distribution becomes 
more and more difficult with increasing power, so that broad-area lasers are lim-
ited to quite low powers (sub-watts). 

3. Tapered amplifiers of trapezoidal shape are used to boost laser light from lower 
power to high power while transferring high spatial and longitudinal coherence. 
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Fig. 9.30: Beam shapes of laser arrays: (left) the symmetric phase positions of the individual 
stripes; (right) the  antis ymmetric phase positions. 

For this concept, the term MOPA (master oscillator power amplifier) has become 
established. The trapezoidal form has been chosen here to realize maximum gain, 
but to keep the power density low at the same time to avoid damage. With this 
concept A/2  factors of 1.05 at output powers of some watts are achieved. 



10 Sensors for light 

The application of optical instruments depends essentially on how sensitively light can 
be detected by means of suitable devices. Here we are rather blessed by the human eye, 
which is — despite all the weaknesses of its imaging optics — an enormously sensitive 
and versatile receiver. 

From the historical point of view, above all, we find light-sensitive plates at the 
beginning of the development of optical sensors. Photographic emulsions in which 
light causes a permanent chemical change have been developed to high sensitivity, 
high resolution and countless applications in more than a century of intensive work. 

However, in a physical experiment or in a technical application, when the intensity 
of a light beam has to be detected and evaluated, then solid-state detectors (and 
among them especially semiconductor detectors) have out-performed film for quite a 
long time. They deliver an electrical signal that not only can be saved and recorded 
without a slow sequence of chemical processes but also are advantageous with regard 
to linearity. 

Until recently, films used to be unbeatable for taking high-contrast pictures with 
high resolution. With the culture-driving development of semiconductor technology, 
and the opportunity of processing larger and larger (electronic) data streams faster and 
faster, that field of application runs into danger of being replaced by opto-electronic 
components, too. We report about this in the section about image sensors. 

Optical sensors generally consist of physical materials that can be coarsely divided 
up into two classes according to the effect of the incident light beam: 

1. Thermal detectors. Ideal thermal detectors are blackbodies. This means that 
they absorb all incident light. The energy current of the incident light leads 
to a temperature increase compared to the environment, which is measured and 
converted into an electrical signal. 

Among the thermal detectors are thermopiles, bolometers and pyroelectric detec-
tors. The strengths of thermal detectors are their broad spectral sensitivity and 
their robust layout. Their most significant disadvantage is a slow rise time. 

2. Quantum sensors. In a quantum detector, a light beam is converted into free 
charge carriers using the internal or external photo-effect. The current or the 
charges are directly measured. The often used picture, according to which in a 
photodiode photons are simply converted into electrons and counted, has to be 
taken with a pinch of salt. However, a more strict theoretical description of the 
photon counter is beyond the scope of this text [84, 70]. 
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Among the quantum detectors are photomultipliers, on the one hand, and pho-
toconductors and photodiodes, on the other. The historical development from 
electron tube to semiconductor technology can also be observed with these com-
ponents. As suggested by the name, by means of quantum detectors single elec-
trons can be recorded. Their rise time is rarely more than 1 i.ts, but often they 
have to be cooled and are subject to stronger spectral limitations than thermal 
detectors. In principle, also the emulsions of photographic films belong to the 
class of quantum sensors, since an individual photon is necessary to reduce each 
AgBr molecule and thus to cause blackening. 

When an optical sensor has to be chosen for a certain application, from the physical 
point of view it is of interest, for example, whether the detector has a sufficient sen-
sitivity and a fairly short rise time to dynamically record the desired quantity. These 
properties can be found from the manufacturers' data sheets. For more insight we first 
have to strike out a bit further and talk about the noise properties of detector signals. 

10.1 Characteristics of optical detectors 

10.1.1 Sensitivity 

In an optical sensor, light pulses are ultimately converted into electric signal voltages 
U(t) or signal currents I(t). Since all electronic quantities are subject to similar 
procedures when measured, we use subscripts Vu and VI for their identification. The 
responsivity R. describes the general response of the detector to the incident light power 

PL without taking details like wavelength, absorption probability, circuit wiring, etc., 
into account: 

(Vu,Vi)  
sensitivity = 	 (10.1) 

PL 

The physical unit of responsivity is usually V W-1  (especially for thermal detectors) 
or A W-1 . 

10.1.2 Quantum efficiency 

In a quantum detector photons are converted into electrons. Even single electrons 
may be amplified in such a way that their pulses can be registered and counted. Not 
every incident photon triggers an electron since the absorption probability is lower 
than unity, or because other processes compete with the photo-effect. The probability 
for registering an event for each incident photon is called the quantum efficiency 71. 
The rate of arrival of photons rph  at a detector with area A can easily be determined 
according to 

r h = -
1 

f dx dy I (x, y). 	 (10.2) 
P 	hv A 

If the entire radiation power is absorbed, Eq. (10.2) simplifies to rph  = PL/hv. In an 
ideal quantum detector, this should become the photo-current / = er ph , but in physical 
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reality there are competing processes reducing the quantum efficiency. According to 
Eq. (10.1) the responsivity can be expressed in terms of these elementary quantities: 

rel  e 
(10.3) 

rph hv 	hv 

A practical rule of thumb can be obtained by using the wavelength = c/v in AM 
instead of the frequency: 

Anim  
[A W-1 ] 

1.24 
from which the quantum efficiency can be determined for a known responsivity. 

10.1.3 Signal-to-noise ratio 

A quantity can only be recognized if it emerges 'from the noise', i.e. if it is larger than 
the intrinsic noise of the detector. Formally the quantitative concept of 'signal-to-noise 
ratio' (SNR) has been introduced, 

SNR = 
signal power 

noise power 

In this case we use a generalized concept of power Pv(f) for an arbitrary physical 
quantity V(t) = V(f)cos(2nf t). The average power is 

Pv(f)= V 2 (f). 	 (10.4) 

The physical unit of these powers are A 2 , V2 , ..., depending on the basic value. 
A fluctuating quantity like noise current or voltage is determined not only by one 
amplitude at one frequency but also by contributions at many frequencies within the 
bandwidth Af of the detector. The average power in a frequency interval 6f can be 
measured with a filter of this bandwidth and with mid-frequency f. Therefore we 
define the power spectral density 

v.2  (f) = 8V26 f(f)  

so e.g.  i(f) in A2  Hz-1  for current noise, and  e(f) in V2  Hz-1  for voltage noise. 
Since the contributions are not correlated, the square sum of the power contributions 
in small frequency intervals can be summed to give the average of the noise power (see 
Appendix A.1): 

Pv = fv(f)d.f- 	 (10.5) 
f 

If the noise in the bandwidth Af is constant, the value of the noise power simplifies 
to Pv = vn2 Af. For example, the r.m.s. value of the noise current irms  = 'VT/ of a 

2nn  photodiode-amplifier combination reads inns  = ( i Af)1/2 , with i2 the constant value 
of the current noise spectral density. 
Often the unphysical noise amplitude is given instead of the noise power, 

noise amplitude = (noise power spectral density) 1 / 2 , 

given in e.g. A Hz-1 / 2  or V Hz-1 / 2 . Very generally the noise contribution can be 
reduced by limiting the bandwidth of the detector. This advantage has to be traded 
in for reduced dynamic properties - faster signal variations can no longer be registered. 
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10.1.4 Noise equivalent power (NEP) 

The noise equivalent power (NEP) is the radiation power that is necessary to exactly 
compensate the noise power at the detector or to obtain a signal-to-noise ratio of 
exactly unity. The lower the designed bandwidth of the detector, the lower is the 
minimum detectable power, but again at the expense of the bandwidth. The minimum 
detectable radiation power is therefore referred to 1 Hz bandwidth and is given by the 
unphysical noise amplitude density, 

NEP
(noise power spectral density) 1 / 2 

 = 
responsivity 

Its physical unit is W  Hz 1/2•  The manufacturer of a detector prefers to quote the 
spectral maximum of the responsivity; though it has to be taken into account that 
the value depends on the optical wavelength A as well as on the electrical signal 
frequency f.  

10.1.5 Detectivity 'D-star' 

For the sake of completeness, we mention the concept of `detectivity' D and D* in-
troduced to make different detector types comparable with each other. First, just the 
complement of the noise equivalent power D = NEP -1-  was introduced as the detectiv-
ity. The variant of the 'specific detectivity' called `D-star' (D*) has found widespread 
use since the responsivity of many detectors is proportional to the square root of the 
detector area A 112 : 

VA  

NEP . 

The reason for this is the limitation of the detection sensitivity by the thermal back-
ground radiation, especially for infrared detectors: the larger the detector area, the 
more blackbody radiation is absorbed. The physical unit of D* is cm/(W/Hz 1 / 2 ) = 
1 Jones, where the name of the inventor of the detectivity is used for abbreviation. D* 
is a measure for the signal-to-noise ratio in a bandwidth of 1 Hz when a detector with 
an area of diameter 1 cm is illuminated with a radiation power of 1 W . 

10.1.6 Rise time 

Often very fast events are to be recorded by means of optical detectors, which means 
that the detector has to react very rapidly to variations of the incident radiant flux. 
The 'rise time' T is the time during which the current or voltage changes of the detector 
reaches (1-1/e) or 63% of the final value when the light source is switched on suddenly. 
In analogy to that, the 'fall time' is also defined. They depend on the layout of the 
detector and can be influenced within the physical limits. Thermal detectors are inert 
and react with delay times of many milliseconds. The 'rise time' of semiconductor 
detectors is generally limited by the capacitance of the pn junction and is only a few 
picoseconds in special cases. The finite response time of a detector can be taken into 

D (10.6) 
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account by, for example, adding the time or frequency dependence to the responsivity 
of Eq. 

( 
10.3 

), 

R.(0)  
RV) = 1 + (2nfr) 2.  

The charge impulse of a photomultiplier can as well be shorter than 1 ns, though here 
the longer time of travel through the dynodes layout has to be taken into account. The 
times of travel in cable connections also have to be taken into account in servo-control 
applications, since they limit their bandwidth. 

10.1.7 Linearity and dynamic range 

A linear relation of detector input power and output voltage or current provides opti-
mal conditions for a critical analysis of the quantity to be measured. However, there 
is always an upper limit - ultimately due to the strong temperature load at high light 
power - at which deviations from linearity can be observed. The lower limit is mostly 
given by the noise equivalent power. A quantitative measure for the dynamic range 
can be given according to 

saturation power 
dynamic range = 	  

NEP 

The dynamic range between these limits can be, for example for photodiodes, an 
impressive six magnitudes or more. 

10.2 Fluctuating opto-electronic quantities 

In this section we collect physically different contributions of electrical noise gener-
ated in opto-electronic detectors. Besides the intrinsic contributions of the receiver-
amplifier combination, like dark current noise and amplifier noise, above all there is 
the photon noise of the light source. 

10.2.1 Dark current noise 

A detector generates a fluctuating signal 14,(t) even when there is no incident light 
signal at all. In fact, the detector sensitivity is decreased not by the average of the back-
ground - this can be straightforwardly subtracted - but by its fluctuations. In a ther-
mal detector, spontaneous temperature fluctuations cause the dark noise. In a quan-
tum detector, generally charge carriers spontaneously generated, e.g. by thermionic 
emission, are responsible for this. In the simplest case, the noise power density of the 
dark current /D  is ii2)  = 2eID  according to the Schottky formula (eq. (A.13) in the 
Appendix). A proven but sometimes costly method for reducing the dark noise is to 
apply cryogenic cooling of the detector. 
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10.2.2 Intrinsic amplifier noise 

Photomultipliers and avalanche photodiodes (APDs) have an internal amplification 
mechanism that multiplies the charge of a photo-electron by several orders of mag-
nitude. The amplification factor G though is subject to fluctuations contributing to 
noise as well. The excess noise factor F, is calculated according to 

F'2 	(G2)  — 1+ '76  
(G) 2 	(G) 2 ' 

(10.7) 

and can also be expressed through the variance of the amplification, a6 = (G2 ) — (G) 2 . 
It affects dark and photo-currents in indistinguishable ways. 

10.2.3 Measuring amplifier noise 

Depending on the application, a de-
tector may operate as a voltage or 
a current source characterized by its 
internal resistance R. At the input 
of an idealized test amplifier, we find 
the voltage noise amplitude ei, which 
consists of the uncorrelated contribu-
tions of the detector, q, with source 
resistance Rs , and the contributions 
of current and voltage noise of the 
amplifier (i2n  and en2 , respectively): 

Fig. 10.1: Noise sources of an idealized ampli-
fier. Voltage sources (ei) have negligible, current 
sources (in ) infinite inner resistance. Rs is the 

resistance of the detector, Av the amplification. 

e? 	en2  + i„2 14 

The noise voltage at the exit of the amplifier is then e = Ave.  The noise amplitude 
of the detector consists of the contributions of the dark current, the parallel resistance 
of detector and amplifier input, and the photon current 

4kT 
es — 	ph 	

) p 2 (2 _L ) ,;2 _L  
i' 	(1 	 • Rs 

The last contribution takes the thermal or Johnson noise of the detector resistance 
into account. For optical detection, the most desirable situation is obtained when the 
noise of the photoelectrons generated by the signal source (i 2 h  ) dominates all intrinsic p 

amplifier contributions, 

.2 	 i ? 	2 • 2 	4kT 	e, 
'"  

iph  > Z121 ± Rs 	14 	n 

In practical applications it has to be taken into account that all the quantities men-
tioned previously depend on frequency. If possible the frequency of the signal can be 
selected to minimize background noise. Advantageous conditions are generally found 
at high frequencies since all devices at frequencies below a certain corner frequency 
fc  show the so-called 1/f or flicker noise, which approximately increases with 1/f 

(10.8) 
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towards low frequencies. The typical spectral behaviour of the amplifier noise is pre-
sented in Fig. 10.2. 

1 10 100 1 10 100 1 10 100 
Hz 	MHz 	f GHz 

Fig. 10.2: Spectral properties of typical amplifier noise, schematically. 

10.3 Photon noise and detectivity limits 

By conversion of light into photo-electrons in an opto-electronic circuit, something like 
a copy of the photon current emerges. It is obvious that the fluctuations of the photon 
current are mapped onto the electron current, too. Now, for the rigorous description 
of the processes occurring during conversion of light into photo-electrons, a quantum 
theory of the electromagnetic field is required, but quantum electrodynamics does not 
offer an intuitive approach and is hence omitted here. 

Instead, we assume that the probability of observing an event in a short time 
interval is proportional to At by taking into account the arrival rate of the photons 
(eq. (10.2)) and the quantum efficiency 77, 

p(1, At) = nrph (t)At. 	 (10.9) 

Furthermore we assume that, for sufficiently small At, no double events occur and 
that the probabilities in sequential time intervals are statistically independent. The 
last assumption means that the photo-emission process does not have any after-effects 
in the detector; this is not necessarily the case any more at high charge carrier density 
because they repel each other due to Coulomb forces. 

These conditions lead to Poisson statistics of the counting events. The probability 
of finding K events in an arbitrary time interval T is 

pr(K) p(K,t,t+T) = K1 	e . 
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The average  AT  is according to Eq. (10.3) 

ET = nrph T. 	 (10.10) 

Random conversion of photons into photo-electrons leads to fluctuations of the photo-
electron current. In addition, also the light intensity PL (t)/A can vary. If it happens 
in a deterministic way, i.e. predictably, we can define the power WT integrated in the 
interval 7- , 

WT (t) = f PL (e) , 

and with the abbreviation a = 77/hi' we obtain the probability distribution 

(aWr   pr (K) = 	)1( 
 e 	 (10.11) 

K! 
The properties of the light source are reflected in the statistics of the photo-electrons, 
and therefore we consider the light field of a laser and a thermal light source as im-
portant examples. 

10.3.1 Photon statistics of coherent light fields 

The average power of a laser is constant; therefore the arrival rate of photons rph  is 
constant as well, and we can directly take over the average from Eq. (10.10). The 
statistical distribution is characterized by the variance 

2-2 
= (K2  — Kr)/ 

which has the known value for Poisson statistics 

(10.12) 

From this relation it is also clear that relative fluctuations decrease with increasing 
number of events, 

K, 	1 

K T -VET  

and become very small for large Kr . The noise caused by the grainy particle structure 
of the current is called shot noise. It also sounds very loud like the audible drubbing 
caused by raindrops falling on a tin roof. 

We expect a random sequence of charge pulses for the photo-electron current. The 
spectrum of the current noise depends on the frequency and can be obtained directly 
from the Schottky formula (Eq. (A.13) in the Appendix), 

coh 
 = 2eIph. 
	 (10.14) 

This noise current also accounts for the contribution caused by the random conversion 
of photons into photo-electrons when the quantum efficiency is lower than 100%. We 
can furthermore interpret the Schottky formula by identifying the r.m.s. value of the 
counting statistics 4 r  in the time interval 7-  with the variance of the number of charge 

(10.13) 
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carriers, at = _/-r.2111s /e 2 , which again leads to the result of Eq. (10.14) (the factor 
occurs because the power spectral density is defined for positive Fourier frequencies 
only; see Appendix A.1). 

A coherent light field generates the photo-current with the lowest possible noise, 
and therefore it comes very close to our idea of a classical wave with constant amplitude 
and frequency. We may interpret the noise as a consequence of the 'granularity' of the 
photo-current, and of its Poisson statistics. Though it has to be pointed out that we 
did not derive this result here but rather have put it in from the beginning. 

10.3.2 Photon statistics in thermal light fields 

A thermal light field generates an average photo-current as well, though the intensity 
is not constant like in a coherent laser beam but subject to strong random fluctuations. 
Therefore, for the integrated power W,_ we can also give only probabilities P-,-,w  (W 7-)  
with f dI47 7  - pw,(W T ) = 1 here. The additional fluctuation of the amplitude results 
in  Mandel 's formula, which is formally similar to a Poisson transformation of the 
probability density pw, (see Eq. (10.11)): 

fo K! 

This contribution has double Poisson character, so to speak. It can be shown that the 
average of the counting events is 

KT - CEWT 

as before, and the variance is 

ak., = Tc, + a 2  4, . 	 (10.16) 

Thus the variance of a fluctuating field, like, for example, blackbody radiation (see 
the excursion on p.184), is in principle larger than for a coherent field. We will see, 
however, that detection of these strong fluctuations is possible at very short time scales 
only and hence beyond the dynamic properties of most photodetectors. 

We can interpret the relation (10.16). The first term is caused by the random 
conversion of photons into photo-electrons and is a microscopic property of the light—
matter interaction which cannot be removed. The second term represents the fluc-
tuations of the recorded light field and also occurs without the randomness of the 
photo-electron generation process. 

The calculation of qv  in (10.16) is not a trivial problem at all. We consider the 
cases of extremely short and very long integration intervals T. A thermal light field is 
characterized by random amplitude fluctuations. For very short time intervals, even 
shorter than the very short remaining coherence time 7, of the light source of about 
1 ps, we can assume a constant intensity so that W,- = PLT. The intensity itself is 
randomly distributed and thus follows a negative exponential distribution, 

PT,w = e w/wF / wr.  

p(K) = 
00 a WT w  

e a YPT,W ( WT ) dIVT ' 	 ( 10.15) 
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By insertion into Eq. (10.15) and integration, the Bose-Einstein distribution of quan-
tum statistics is obtained, 

1 + K T  (1 + TK T ) 

1 
'MK) = 	 (10.17) 

The variance of this field is 

and can be interpreted like (10.16) before. Its relative value always remains close to 
unity: 

UK  
= 

K,- 

The  distribution from Eq. (10.17) is well known for a light field when K is replaced 
by n and KT by the mean thermal number of photons, 

71-ph  = e hv 	1 	
(10.18)

. 

The coherence time of a thermal light source though is so short that there exist hardly 
any detectors with appropriately short response and integration times. The more 
important limiting case for the thermal light field thus occurs for integration times 
T >> Te . For this case it can be shown [70] that the variance  UK  is well approximated 
by 

0- 2K  = KT  (1 + 
K

7-
re ) 
	 (10.19) 

	

Thus for most cases 0- 	2,„ 	K as for the thermal light field (cf. Eq. (10.12)). Inci- 
dentally, these noise properties cannot tell us about the properties of the light field, 
coherent or thermal! The second term in Eq. (10.19) can be interpreted as the number 
of photons reaching the detector during a coherence interval. Only when this number 
becomes larger than unity can a significant increase of the fluctuations be expected. 

Ambient radiation of a light source mostly corresponds to the spectrum of the 
blackbody radiation at 300 K. Its maximum lies at a wavelength of 10 pm and decreases 
rapidly towards the visible spectral range. Unavoidably at least part of this radiation 
also enters the detector. Especially for infrared detectors the sensitivity is in general 
limited by the background radiation. For thermal radiation it is still valid that the 
coherence time is very short, so that the variance of the photo-electron noise of the 
thermal radiation can be calculated according to (10.19). 

In order to determine the emission rate of photo-electrons rei , we have to multiply 
the average photon number Tiph  of Eq. (10.18) with the density of oscillator modes 
p(v) = 87w2 /c3  at frequency v, to integrate over the detector area A. Accounting for 
the quantum efficiency q(v) and in addition the radiative flux from half the solid angle 
27E, we arrive at 

rei = A 
00 	,27tv 2 	1 

dv ?Ay) 3 hu /kT 1 •  C e 

1 
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The spectrum of the charge carrier fluctuations is proportional to the variance of the 
arrival rate, which we can now calculate according to Eq. (10.19); as for the coherent 
light field, we obtain a white shot noise spectrum. Since the photo-emission vanishes 
below a certain critical frequency vg  or a critical wavelength Ag = C/ Vg , the noise 
spectrum for a detector with the bandgap Eg  =  hu g  can be calculated according to 

oo 	
2TEV2 i2 	2c2 rei  = 2e2 A 	C/VT)()) 	2 	  c  ehv / kT 1 •  

vg  

Am) 

Fig. 10.3: Specific detectivity for some important semiconductor detectors. 

When we additionally assume the quantum efficiency has maximum value 77(v) = 1 
everywhere, then according to Eq. (10.6) we obtain the maximum specific detectivity 
D* (Ag , T) of an ideal background-limited photodetector (BLIP detector), which depends 
on the environmental temperature T and the critical wavelength Ag , 

—1/2 
1 

D*(Ag ,T) = —
Ag 2 

cc 
du 2rui2 

hc 	c/Ag 	
c2 e hv /kT 1 

This reaches a minimum at A = 14 Km, Fig. 10.3. For large wavelengths D* has to 
increase linearly since the thermal radiation power does not change any more. 

10.3.3 Shot noise limit and 'square-law' detectors 

According to Eq. (10.14) the photo-electron noise generated by detection of a coherent 
laser beam is proportional to PL . This most favourable case is mainly realized with 
photodiodes. If the power is chosen large enough according to 

— 	—7; 
hul l' — 	4kT e 2 	hv n 	,; 

PL 	(i D  	
6 

 ze 	 = — rth 	 (10.20) 
Rs 11 ') 71 
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then the photon noise of the light beam dominates all other contributions in eq. (10.8), 
which do not depend on the light power. This case is called the 'shot-noise-limited' 
detection. Incidentally, the term within the large brackets in Eq. (10.20) can be inter-
preted as the rate rth at which the detector—amplifier combination randomly generates 
charge carriers. Defining the minimum light power by the value where the same num-
ber of charge carriers is generated (SNR 1), we find 

hv 	 
Prrnn 	v rthAf 

7/ 
in a bandwidth Af. For sufficiently long integration times (or correspondingly small 
bandwidth), in principle, arbitrarily small power may be registered. In practice, this 
potential though is impaired by the dynamics of the signal and slow drifts of the 
detector—amplifier properties. 

Quantum detectors are also called 'square-law' detectors since the trigger prob-
ability of a photo-electron is proportional to the square value of the field strength 
1E(t)1 2  = 2PL(t)/CE0A of the radiation field illuminating the detector area A. This is 
especially important for applying so-called heterodyne detection. For this method the 
field of a local oscillator ELID e (see Section 7.3.2) is superimposed with a signal field 
es  e(s)t  on the receiver. In general one chooses PLO >>  P.  The photo-current 
will thus experience a variation in time 

e7/ 
'ph r="' — (1-LO 2-VPs  PLo COS Ws t) . 

hv 
If LO and signal fields oscillate with the same frequency co, it is called a lomodyne' 
detection; otherwise (ws  0) it is a 'heterodyne' detection. Superposition of optical 
fields on a square-law detector generates products of local oscillator and signal fields 
oscillating at difference frequencies, and thus it acts as an optical mixer. 

The detection of a signal at a higher frequency is usually an advantage since it 
occurs at a lower noise power spectral density (Fig. 10.2). When the LO power is 
increased until its shot noise density i 0  = 2e2 7)PLo/hv dominates all other contribu-
tions, the minimum detectable signal power no longer depends on the thermal noise 
properties of the detector. One has Is  = 2eTTIP111inPLo/hu and the minimum power 

has to be larger than the noise power i?,c,Af in the bandwidth of measurement, 
Af , 

Pmin  = hvAfin. 

In other words, within the time resolution Af 1  of the detector, the signal light has 
to release at least one photo-electron to make detection possible. 

10.4 Thermal detectors 
Thermal detectors consist of a temperature sensor coated with an absorber material, 
e.g. special metal oxides known from illumination technologies. Over wide wavelength 
ranges they have very 'flat' spectral dependences and are therefore very sought-after 
for calibration purposes. 
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In order to achieve a high sensitivity, 
i.e. a large temperature increase AT, 
the sensor should have a low heat ca-
pacity K as well as a low heat loss 
rate V to the environment caused by 
heat conduction due to the construc-
tion, convection and radiation. The 
temperature change of the probe fol-
lows the differential equation 

Pi, V d
AT — — AT 

dt 	K K 
from which it can be seen immedi-
ately that a thermal detector integrates 
the incident light power for short times. 
In equilibrium the obtained tempera-
ture increase is AT = PL/V, from 
which the responsivity Rth is deter-
mined with the voltage—temperature 
coefficient of the thermal probe, CTv, 

Rth CTV/V. 

thermo pile 

bolo meter 	(10.21) 

Fig. 10.4: Thermal detectors. 

However, compromises are necessary since the rise time is determined by the coef-
ficient 'T = K IV according to Eq. (10.21). In the ideal case the minimum detectable 
power of a thermal detector is caused by unavoidable spontaneous temperature fluctu-
ations, the spectral power density t2  = 4kB T2 V/[1/2  + (27cKf) 2 1 of which determines 
the theoretical responsivity limit (kB = Boltzmann constant). For signal frequencies 
f far above the detector bandwidth Af = 1/2nT, the idealized noise equivalent power 
can be given: 

NEPth  = TN/2kB V. 

Obviously it is profitable to lower the environmental temperature — a method that is 
used in particular for bolometer receivers. 

10.4.1 Thermopiles 

In these, the light energy is absorbed by a thin blackened absorber plate in close 
thermal contact with a thin-layer pile of thermocouples made, for example, of copper-
constantan. Since the voltage difference of a single element is very small, some 10-100 
of them are connected in series with the 'hot' ends receiving the radiation field to 
be detected and the 'cold' ends kept at ambient temperature. The voltage of the 
thermopile is proportional to the temperature increase and thus to the power uptake 
of the absorber. 
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Thermopiles are mainly used in optics to determine the intensity of high-power 
light sources, especially laser beams. Owing to their integrating character, they are 
also capable of determining the average power of pulsed light sources. 

10.4.2 Bolometers 

The temperature increase by illumination can also be measured by means of a resistor 
with a large temperature coefficient. This is called a `bolometer'. For this application, 
especially semiconductor resistors called thermistors are of interest. 

Bolometers are mainly used in a bridge circuit. Only one of two identical ther-
mistors in the same environment is exposed to radiation so that fluctuations of the 
environmental temperature are already compensated. Very high sensitivities are ob-
tained with bolometers operated at cryogenic temperatures when the heat capacity of 
the thermistor is very low. 

10.4.3 Pyroelectric detectors 

In pyroelectric sensors a crystal is used with an electrical polarity that depends on 
temperature, e.g. LiTa0 3 . The crystal is inserted into a capacitor. When the tem-
perature changes, a charge is induced on the metallized faces, generating a transient 
current. The sensitivity for a crystal with pyroelectric coefficient p, heat capacity K 
and distance d between the capacitor electrodes is 

R. = plKd. 	 (10.22) 

A pyroelectric detector registers only changes of the incident light power. According to 
eq. (10.22) its sensitivity is significantly enhanced by thin-layer technology. Therefore 
the thickness of the crystal is only some 10 lam, which allows fast rise times. Wide 
spectral applicability of these detectors is achieved by using an appropriate broadband 
absorber. 

Pyroelectric detectors are cheap and robust, and are often used, for example, in 
the manufacture of motion sensors. 

10.4.4 The Golay cell 

An unusual thermal detector is the radiation sensor called a Golay cell after its inven-
tor. It is often used as a result of of its high responsivity. The temperature increase 
by light absorption causes a pressure increase in a small container filled with xenon. 
On one side the container is closed by a membrane that bulges due to the pressure 
increase. The small mechanical motion of the surface can be read out very sensitively 
by means of a 'cat's eye technique'. 

10.5 Quantum sensors I: photomultiplier tubes 

It may be somewhat surprising that Albert Einstein got his Nobel Prize for physics 
in 1921 for his 1905 light quanta hypothesis of the photo-electric effect and not for 
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Fig. 10.5: Layout of a photomultiplier tube (PMT) with transparent dynode. The circuitry 

operates the PMT in the counting mode. 

any other of his scientific triumphs. He not only used Planck's hypothesis that light 
energy could be absorbed only in light quanta with fixed value Ephoton  =----  hit'  but 
also expanded it by attributing quantum nature to the light field itself. According 
to Einstein's simple concept the maximum kinetic energy Emax  of an electron that is 
emitted from the surface of a material with work function W is 

Erna), --= hv — W. 	 (10.23) 

In general, though, only a few emitted electrons reach the maximum energy Emax . 
More importantly, the photo-electric effect vanishes completely for frequencies y < 
Wlh, the cut-off frequency or wavelength, which depends on the work function W of 
the used material. 

Photo-cathodes 

Common metals mostly have very high values for the work function between 4 and 
5 eV, corresponding to cut-off wavelengths between about 310 and 250 nm according to 
Einstein's equation (10.23). In vacuum it is also possible to use caesium, which imme-
diately corrodes under atmosphere conditions but has the lowest work function of all 
metals with Wcs -7= 1.92 eV. By coating a dynode with caesium, a photo-cathode be-
comes sensitized for light frequencies extending nearly across the entire visible spectral 
range (A < 647nm). 

The probability of triggering a photo-electron by the absorption of a photon, the 
quantum efficiency (QE), is generally lower than unity. Owing to its high QE, ap-
proaching 30%, the semiconductor CsSb3  is very often used for photo-cathode coating. 
It is inserted into vacuum tubes made from different glasses with differing transparen-
cies. Such combinations have led to the classification of the spectral responsivity using 
the term S-X cathode (X --= 1, 2, ...). The tri-alkali cathode S-20 (Na2 KCsSb) has been 
used for a long time now, and 1% QE is achieved even at 850 nm. 

Cs-activated GaAs offers 1% QE even further into the infrared at 910 nm wave-
length. Still farther in the infrared spectral range, the InGaAs photo-cathode does not 
exceed 1% QE at any wavelength, but still has 0.1% QE at 1000 nm. In this spectral 
range, though, the internal photo-effect in semiconductors has a very high quantum ef-
ficiency; therefore here the photomultiplier tubes compete with the avalanche photodi- 
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Fig. 10.6: Spectral responsivity of several important photo-cathodes. 

ode discussed below, which can be considered as semiconductor-based photomultiplier 
tubes. 

Conversely there are situations in which a light detector ought to be sensitive only 
to UV wavelengths since then visible light such as daylight no longer contributes to 
the signal background and its noise. For this purpose so-called solar-blind cathodes 
are used made of, for example, Cs2 Te or CsI. 

Amplification 

The success of photomultiplier tubes (PMT) is not conceivable at all without the 
enormous amplification obtained with a secondary electron multiplier  (S EM), which 
is connected to the photo-cathode. In a SEM, electrons are accelerated and cause 
multiple secondary electrons to be ejected from the anode. The multiplication factor 
for a layout with n dynodes at applied voltage UpmT  is  6 = c[UpmT I (n qa . The 
up to 15 steps cause an avalanche-like amplification of the photo-current  'ph = 

G  =  constant x  U, (10.24) 

with geometry and dynode material causing a slight attenuation of the theoretical 
amplification factor of a single step by a factor a = 0.7 0.8. At the end of a cascade 
subjected to a total voltage of about 1-3 kV, a charge pulse with 105  to 108  electrons is 
available. The high intrinsic gain G leads to extreme sensitivity, which reaches values 
of RpmTf_`-2 104- 107  A W-1  according to 

7/Ge 
RpmT = hv ' 

100 

0 , 
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depending on layout and circuit wiring. Since the gain depends sensitively on the 
applied voltage due to (10.24), the voltage supply has to be stable and low-noise. 

Counting mode and current mode 

The input channels of any electronic measuring amplifier usually expect a voltage at 
the input. Thus the current of the photomultiplier tube has to be converted into a 
voltage by a load resistance RL . Especially for low currents the PMT works like an 
ideal current source, and thus RL  can be chosen arbitrarily large. In practice, however, 
the rise time is limited by the load resistance and the stray capacitance of the anode 
to the layout 

'7-  = RLCS.  

In addition, large load resistances cause the anode to discharge slowly. Thus the 
voltage of the last dynode stage is decreased and therefore also the efficiency of the 
anode for collecting secondary electrons: the characteristic curve becomes nonlinear 
and the photomultiplier tube saturates for a certain light power. 

For the circuitry wiring, the counting mode and the current mode are distinguished. 
The counting mode is suitable for very low light powers. The gain G is chosen very 
high and RL so low that for a standard 50 S2 impedance typical voltage pulses of some 
10 mV and some nanoseconds width are observed. These pulses can be processed 
directly using commercial counting electronics. They cause the 'clicks' of the photon 
counter. Because of the similarity to a Geiger-Willer tube for a-rays, this is also called 
the Geiger mode. Of course, a statistical distribution of impulses with different heights 
and widths is generated, from which signal photon pulses are selected by electronic 
discriminators. 

The current mode is used for larger light intensities, with lower gain G and a load 
resistance adjusted to the desired bandwidth. The resistance should be chosen high 
enough to approach as close as possible an ideal current source. 

Noise properties of PMTs 

A small current flows through a photomultiplier tube even when the tube is operated 
in total darkness. It is called the 'dark current' ID and is mainly caused by thermionic 
emission of electrons from the photo-cathode, which are amplified indistinguishably 
from photo-electrons. 

In the counting mode of the photomultiplier tube, we can directly use the Schottky 
formula (Eq. (A.13) in the Appendix) if we insert the effective average charge (Ge) of 
a single photo-electron to determine the power density of the shot noise of the dark 
counting rate  RD.  In this case the noise equivalent power is calculated as: 

V2RD 
NEPcount = 	hv, 	 (10.25) 

where we have used the average gain (G). 
If a photomultiplier tube is used in the current mode, the fluctuations of the gain 

also cause noise: the noise power density of the current is then in2  = (2Ge/D) = 
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2e(G2 )(/D)/(G), since the instantaneous gain is strictly related to the instantaneous 
current ID. In current mode the result of (10.25) is increased by the excess noise factor 
F, = (G 2 )/(G) 2  of eq. (10.7): 

NEPcurrent=  Fe 
V2ID I (eG)  

ri(G) 

Their enormous sensitivity has led to numerous applications for photomultiplier tubes, 
and in addition has caused the development of many specialized types. The most 
common models are the so-called side-on PMTs, in which the photo-electron is ejected 
from an opaque photo-cathode and first counterpropagates the light beam. The head-
on models are equipped with a transparent photo-cathode. From their rear the photo-
electrons are sent into the secondary emission multiplier. They are advantageous when 
photo-cathodes with a large area are required, for example in scintillation detectors. 
For applications in servo-control devices, though, photomultiplier tubes have certain 
disadvantages when not only the rise time but also the delay time (caused by the travel 
time within the detector) play a role. 

Microchannel plates and channeltrons 

Microchannel plates (MCPs) are actually 
a variant of the secondary electron mul-
tiplier. A single microchannel consists of 

6-20tt m 
a glass capillary tube with a diameter of 
6-20 gm. The wall is coated with a semi-
conducting material (e.g. NiCr) with rel-
atively low conductivity. The ends of the 
tube are coated with a metal and oper-
ate as photo-cathode and anode, respec-
tively; a high voltage drops along the 
walls and generates a 'continuous dyn- 
ode'. This type of secondary emission 

	

Fig. 10.7: 	Microchannel plate (MCP), 
multiplier  with th a single channel is also 
known as a channeltron. Using an ap-

propriate coating of the input facet, they can be converted into very compact pho-
tomultiplier devices. Their disadvantage is the saturation behaviour, which generally 
begins at lower currents than in photomultiplier tubes because of the high wall resis-
tance. 

A microchannel plate consists of several thousand densely packed capillary tubes 
subjected in parallel to a high-voltage source and working like an array of SEM tubes. 
As MCP-PMTs they have advantages due to their excellent time resolution and their 
low sensitivity to magnetic fields (which influence the amplification behaviour of every 
SEM. Moreover, they allow the detection of very low light intensities with spatial reso-
lution and are therefore used to build the image intensifiers discussed in Section 10.7.3. 
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10.6 Quantum sensors II: semiconductor sensors 

In semiconductors, the photo-electrons do not have to be knocked out of the material 
but can internally generate free charge carriers. The internal photo-effect is used in 
two different types of photodetectors: photoconductors and photodiodes. In photocon-
ductors the photoelectric change of the conductivity is measured, while photodiodes 
are sources of photo-current. 

10.6.1 Photoconductors 

For the excitation of intrinsic photo-electrons, often a much lower energy is neces-
sary than for the ejection of an electron out of a material. Photoconductors mostly 
manufactured using thin-layer technology therefore display their strength as infrared 
receivers. 

In an intrinsic semiconductor, charge carriers can be generated by thermal motion 
or absorption of a photon. In this case the cut-off wavelength Ag is determined by 
the energy of the bandgap according to Eq. (10.23). In Ge, for instance, it is 0.67 eV, 
corresponding to a cut-off wavelength of 1.85 tun. 

Tab. 10.1: Bandgap energy of selected semiconductors 

Material Eg  (eV) at 300K Ag (Pinl) 

CdTe 1.60 0.78 

GaAs 1.42 0.88 
Si 1.12 1.11 

Ge 0.67 1.85 

InSb 0.16 7.77 

Tab. 10.2: Activation energy in some doped semiconductors 

Material EA (eV) at 300K AA (I-tm)  
Ge:Hg 	 0.088 	 14 

Si:B 	 0.044 	 28 

Ge:Cu 	 0.041 	 30 

Ge:Zn 	 0.033 	 38 

The spectral sensitivity can be extended to even larger wavelengths by using extrin-
sic (doped) semiconductors. The cut-off wavelength then increases with the activation 
energy EA of the donor atoms. Ge is used particularly often since its cut-off wavelength 
is extended for example by Hg dopants up to the 32 gm limit. 

Sensitivity 

In a photoconductor the optically induced change of the conductivity is measured. 
Thus roles are played not only by the rate of charge carrier generation 71 — which 
behaves like the response of all quantum sensors — but also by the relaxation rate Tr—eci  

— which ensures that the semiconductor returns to thermal equilibrium. For simplicity 
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we assume the entire light power to be absorbed in the detector volume. Then the 
charge carrier density at constant light intensity is nel,ph = 77PLTrec/hvVD• 

However, the measured quantity is the conductivity a and the current I = AaUlf, 
respectively, flowing through a photoconductor of length f with effective diameter A 
when there is a voltage U across over it. It depends not only on the charge carrier 
densities no and ph  but also on the mobilities  fiel  and ,u,h  of the electrons and holes, 
respectively. Owing to their low mobility, the holes contribute only negligibly to the 
conductivity, and hence 

(10.26) 

By means of the photo-effect, conductivity is generated within the photoconductor. 
It lasts until the electron-hole pair has recombined either still in the photoconductor 
itself, or at the interfaces to the metallic connections. On the other hand, during the 
recombination time, a current flows that is determined by the mobility of the electrons. 
In the semiclassical Drude model the drift velocity of the electrons can be connected 
with the applied voltage vo = Lto Ufe, and also with the time Td = f/Vel that it takes an 
electron to drift out of the photoconductor via the metallic leads. From I = Amoy, '  
the sensitivity can be calculated as 

ne Tree  
1?, = , 	• 

"iv rd 

Thus a photoconductor has an intrinsic gain G = Trec /Td, which can sometimes be 
smaller than unity. Moreover, the gain is obtained at the expense of a reduced detector 
bandwidth since the recombination rate T rec determines the temporal behaviour of the 
photo-cell as well. 

Noise properties 

The conductivity that is generated by thermal motion can be suppressed by routine 
cooling of the detector. So strictly speaking Eq. (10.26) has photoelectric and thermal 
parts, 

a = e(nph + nth )/to. 

The steady state of the conductivity in a photoconductor is determined by charge 
carrier generation and balanced by the recombination rate, which itself is a random 
mechanism. The shot noise of a photoconductor is called generation-recombination 
noise and is larger by a factor of 2 compared to the photomultiplier tube or the 
photodiode, 

Trec 
iG2  R = 4eI 	 

At wavelengths of 10 ium and beyond, the detectivity is generally limited by the thermal 
radiation background. Real detectors to a large extent operate at this limit. 
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10.6.2 Photodiodes or photovoltaic detectors 

Semiconductor photodiodes are among the most common optical detectors altogether 
because they are compact components and have many desirable physical properties, 
e.g. high sensitivity, a fast rise time and a large dynamical range. In addition, they 
come in numerous layouts and are straightforwardly interfaced with electronic semi-
conductor technology. 

Fig. 10.8: Layouts of Si photodiodes. Left: conventional design. Right: in the pin layout, 
the separation of the charge carriers is reached particularly fast. 

Their effect is based on the pn junction layer, which forms the so-called depletion 
layer where free charges are eliminated (see below). New electron—hole pairs are gen-
erated by absorption of light and accelerated by the internal electric field and thus 
cause a current flow in the test circuit. The depletion region acts as a nearly perfect 
current source, i.e. with high internal impedance. 

pn and pin diodes 

A depletion layer is formed close to the pli  junction (Fig. 10.8). Holes in the p-doped 
material and electrons in the n-doped material, respectively, diffuse to the opposite 
side and recombine there. The holes cause a positive space-charge zone at the n 
side; since the electrons are in general more mobile than the holes, the corresponding 
negative zone is more extended on the p side. This process is finished when the 
electric field caused by the space charge prevents further diffusion of electrons and 
holes, respectively. A Si diode generates a known voltage drop of  0.7V across the 
depletion layer. 

The construction of an efficient photodiode has the goal to absorb as much light 
as possible in the barrier layer so that the electric field, which can be increased still 
further by an external bias voltage, rapidly separates the electron—hole pairs. In 
contrast to a photoconductor, then recombination can no longer occur. This process 
can constructively be supported by inserting an insulating layer between the n and 
p layers, making the detector a pin photodiode. With this, the absorbing volume is 
increased and additionally the capacitance of the barrier layer limiting the rise time 
is decreased. 
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Operating modes 

In Fig. 10.9 a family of electrical characteris-
tic curves of a photodiode is presented. The 
diagram results by adding the negative photo-
current —'ph  to the characteristic curve with 

is(cev/kT 1) for a common diode. There 
are three operating modes: 

• Photovoltaic mode. When the photodiode 
is connected to an open circuit, then it is oper-
ated in the photovoltaic mode. Current flow is 

Photo 

	

	 negligible (/ = 0), and the responsivity is given 
in V W-1 . This operating mode is also used in 

0 	U 	solar cells. 

• Short-circuit mode. In the short-circuit 
Fig. 10.9: Family of characteristics of mode, the current generated by the photo-elec-
a photodiode. 	 trons is measured and given in A W-1 . 

• Voltage bias operating mode. In this most 
common operation mode, the barrier layer is further extended by a bias voltage so that 
a higher quantum efficiency and shorter rise times are achieved. 

10.6.3 Avalanche photodiodes 

The principle of the avalanche photodiode (APD) has been known for a long time. 
However it was not possible to manufacture technically stable products until recently. 
In a way the APD realizes a photomultiplier based on semiconductor devices. If a 
very large bias voltage of several 100 V (in the reverse direction) is applied across the 
depletion region, then photo-electrons can be accelerated so strongly that they generate 
another electron—hole pair. Exactly as in the photomultiplier a large amplification of 
the photo-electron can be achieved by a cascade of such ionization events. Therefore 
also the term 'solid-state photomultiplier' is used occasionally. 

The gain of APDs reaches 250 or more. Like in the usual pin Si photodiode, 
the photo-electrons are released in the depletion region with a correspondingly high 
quantum efficiency. Therefore the responsivity of APDs can exceed 100 A W -1 . 

For high light intensities, avalanche photodiodes are operated like photomultiplier 
tubes in current mode. The gain, however, is sufficient to operate them in the Geiger 
mode for photon counting, also. With the ionization not only electrons but also holes 
are generated. If both charge carriers are generated with the same efficiency, then the 
detector is 'ignited' by a first charge carrier pair and does not lose its conductivity 
since new electron—hole pairs are generated continuously. 

In silicon the ionization coefficient for electrons is very much larger than that for 
holes. The current flow, however, cannot be stopped until all holes have left the 
depletion layer and only then can a new charge pulse be generated. In order to keep 
the resulting dead time as short as possible, the discharge can be passively quenched 
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by a current-limiting resistor. Better conditions can be provided by interrupting the 
discharge current actively through suitable servo-loops. 

10.7 Position and image sensors 

The application of the highly integrated concepts of 
semiconductor technology to photodetectors, not only 
to Si, but also to other materials, is quite obvious. 
Typically four photodiodes are combined on a Si sub-
strate with relatively large area, forming a 'quadrant 
detector'. This serves, for example, to determine the 
position of a light beam. By means of difference am-
plifiers, the detection of slight motions is possible with 
remarkable sensitivity. In another layout, photodiodes 
are used line-wise or column-wise with 'diode arrays' 
in order, for example, to measure simultaneously the 
spectrum of a monochromator (see Fig. 5.7) without Fig. 10.10: Quadrant detectors 
mechanically actuating a grating. In a line camera a for the localization of a laser 
movable mirror provides the line feed and thus allows beam. 
recording of a full two-dimensional picture. 

A two-dimensional array of photo-capacitors without movable parts can be applied 
for image formation. In such an array, the intensity distribution of a real image 
is stored as a two-dimensional charge distribution. The technical challenge is to 
'read out' the information saved in the capacitor charges on demand using electronic 
devices and at the same time to convert it into a time sequence of electrical impulses 
that are compatible with conventional video standards. For this purpose the concept 
of CCD (charge-coupled device) sensors developed in the 1970s based on MOS 
(metal—oxide—semiconductor) capacitors has gained wide acceptance, since such a 
sensor exhibits particularly low noise. Only in the infrared spectral range, when the 
sensors have to be cooled and the MOS capacitance decreases, do conventional pn 
capacitances equipped with MOS switches have advantages. 

10.7.1 Photo-capacitors 

Fig. 10.11: MOS photo-capacitor. Elec-
trons optically generated are stored in the 
depletion region. 

The charge generated by illumination in a common pn photodiode in the photovoltaic 
operating mode and with an open circuit does not drain but is stored in the capacitance 
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of the space charge region. It operates as a potential well for the electrons released 
nearby, and we can call it a 'photo-capacitor'. Such devices are of particular interest for 
image sensors since the image information can be first saved in the photo-capacitances 
and then be read out serially. Of course the charge will drain eventually by thermal 
motion, but the storage time is from several seconds up to minutes or hours depending 
on the system and temperature. 

The MOS capacitors have proven themselves as photo-capacitors. At the metal-
oxide-semiconductor interface, which is also known as a Schottky contact, a potential 
is generated that serves to store photo-electrons. With MOS capacitors, large capaci-
tance values are achieved. They prevent the stored charges from reducing the potential 
well, and thus the capacitor does not saturate with just a few photo-electrons or holes. 
A model of a MOS capacitor consisting of a metallic or polycrystalline Si gate, an 
Si02 oxide layer and p-Si is presented in Fig. 10.11. For positive gate voltage UG a 
potential well for electrons is formed. Electrons ejected in the space charge region and 
stored in the potential well can later be released by decreasing the gate voltage. The 
storage time of photo-capacitors is limited by thermal relaxation and varies at room 
temperature from seconds up to several minutes. 

10.7.2 CCD sensors 

The heart of modern digital cameras is the CCD chip, which in its detector array 
generates a charge proportional to the intensity of the incident radiation and stores it 
in photo-capacitors until it gets read out by control electronics [15]. In comparison to 
the photographic plate, the CCD camera has the advantages of a large linear range, 
high quantum efficiency of 50-80% and direct generation of a voltage signal that can 
be digitized and processed by computer. 
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Fig. 10.12: Three-phase operation of a CCD cell. 

The key to the success of CCD sensors is the read-out method, presented in 
Fig. 10.12 using the example of a three-phase system. It is organized such that, by 
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voltage control sequences of the gate electrodes, the charge stored in a sensor or pixel 
is transferred to the adjacent capacitor. The clock frequency of this periodic sequence 
can be more than 20 MHz. The average of the charge loss during the transmission is 
below 10-6 . Therefore, even for many hundreds of transmission steps generally more 
than 99.99% of the charge content of a pixel arrives at the read-out amplifier. 

An image sensor has to be read out line-wise. In order to prevent a long dead 
time being caused by this, and in addition to be able to accumulate more charges, 
the CCD sensors consist of an illuminated 'image region' and a dark 'storage region'. 
The formation of an image is finished by transferring all columns from the illuminated 
part in parallel and within 1 ms to the adjacent storage zone. While being transferred 
line-wise through a read-out register step by step to the read-out amplifier, already 
the next picture can be taken in the illuminated part. 

The sensitivity of a CCD sensor is determined by the noise properties of each pixel, 
which on the one hand depend on the fluctuation of the thermally generated electrons, 
and on the other hand are mostly dominated by the so-called 'read-out noise'. This 
is added to the charge content of a pixel by the read-out amplifier. Since this noise 
contribution occurs only once per read-out process, it is often favourable to accumulate 
charges generated photo-electronically on the sensor for as long as possible. For this, 
though, only slow image sequences can be achieved. The noise properties of a CCD 
sensor are often given in the unit 'electrons/pixel' indicating the r.m.s. width of the 
dark current amplitude distribution. 

The spatial resolution of a CCD sensor is determined by the size of the pixels, 
whose edge length today is typically 1-25 tim. The resolution of course cannot be 
better than the optical image system, i.e. the camera lens. The determination of the 
positions of small objects is, however, sometimes possible with subpixel resolution. If 
the point spread function of the optical imaging system is known, it can be fitted to 
the distribution extending over several pixels. The centre value can then be evaluated 
with subpixel resolution. 

10.7.3 Image intensifiers 

For image amplifiers, the extremely sensitive properties of a photomultiplier based 
on the conversion of light into electrons are used in detectors with spatial resolution. 
The potential for applications of image amplifier tubes and their variants is quite high 
since they allow more than just the taking of pictures of extremely faint objects. The 
concept can be transferred to many kinds of radiation, e.g. infrared radiation or X-
rays, which are not visible to the human eye and common cameras at all, but can 
cause localized ejection of electrons. Such devices are also called image converters. 

In Fig. 10.13 we present two widely used concepts for optical image intensifiers. On 
the left is the first-generation concept, in which a picture is guided through fibre optics 
to a photo-cathode. The electrons emitted there are accelerated by electro-optics and 
projected onto a luminescent screen. Its luminescence can be observed by eye or by 
camera. There can be up to 1501m  1m-1  of image intensification. 1  

'Here the SI unit lumen (1m) is used, which measures the light current emitted by a point source 
with one candela (cd) light intensity into a solid angle of one steradian (sr): 1 lm = 1 cd sr -1 . 
Light intensity is measured in the SI unit candela (cd). At 555 nm wavelength its value is 1 cd = 
(1/683) W sr -1 ; at other wavelengths, it is referred to the spectrum of a blackbody radiator operated 
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Fig. 10.13: Concepts for image amplifiers of first and second generation. 

On the right, a model of the so-called second generation is shown. Here by means 
of a channel plate (MCP, see p. 308) a gain of 104  and more can be achieved. The 
spatial resolution of the incident optical image is slightly decreased by the spread of 
the electron bunches emitted from the MCP. 

Image intensifiers not only allow the observation of very faint signals. The high 
voltage necessary at the channel plate for amplification can be switched on and off on 
a nanosecond scale and this makes it possible to realize cameras with extremely high 
shutter speed. 

at the melting point of platinum. 



11 Laser spectroscopy 

In Chapter 6 on light and matter, we theoretically investigated the occupation number 
and the polarizability of an ensemble of atomic or other microscopic particles. In 
experiments, these quantities though are not observed directly but through their effect 
on certain physical properties of a sample. Here, we restrict ourselves to all optical 
methods, such as the fluorescence of an excited sample or the absorption and dispersion 
of a probe beam. There are also numerous alternative methods of detection, e.g. the 
effect on acoustic or electrical properties of the sample. For a wider overview over the 
extended field of laser spectroscopy, we refer the reader to [24], for example. 

Fig. 11.1: Laser spectroscopy. The spectral properties of a sample can be detected by laser-
induced fluorescence (LIF) or by absorption. For the detection of dispersive properties, inter-

ferometric experiments are necessary. 

11.1 Laser-induced fluorescence (LIF) 

Fluorescence is caused by spontaneous emission. We observe it, for example, when a 
laser beam passes through a gas cell. It corresponds to radiation damping and can 
only occur when an atom is in an excited state. In the Bloch equations (6.28) we have 
taken the fluorescence into account phenomenologically with the decay rates -y, 
A single particle in the excited state emits energy ru..o during its lifetime -y, and an 
intense resonant laser beam keeps half of all particles excited on average. We can also 
express the saturated fluorescence power Psat  by the saturation intensity /0  according 
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to Eq. (6.34): 

r  
Psa 	

1
0-Q /0. 

-Y 

More generally, the intensity of the fluorescence to be observed is proportional to the 
excitation probability (w + 1)/2, where w is the z-component of the Bloch vector 
(see Section 6.2.3), and to the particle density NIV. In addition, we have to take the 
experimental setup (losses, solid angle of observation, ...) into account with a geometry 
factor G. The observed fluorescence intensity may then be defined by /fl = GPsato 

, 	 /fl = G ru.4)71- (1+ w) = G17- 13,a  

	

V 	2 	 V 	1 + s .  

The saturation parameter s is proportional to the intensity of the exciting laser 
field / according to Eq. (6.31). For large excitation field intensity (s >> 1) it can be 
found immediately that 

Ifi 	
r._,N 

r  Sat • V 

In the limiting case of low excitation (s «  1) laser-induced fluorescence (LIF) allows 
linear mapping of selected properties of a sample such as particle density, damping 
rates 7, -y', and so on. The spectral dependence of the low intensity resonance line at 
wo  is Lorentz-shaped in the stationary case, 

N 	
N "Y7' 	  /fl (w) G—Psats — 

V 	V 2 (w — wo ) 2  + 

and a fluorescence profile like in Fig. 6.2 is obtained. With laser-induced fluorescence, 
for example, spatially resolved density measurements of known atomic or molecular 
gases can be carried out. 

11.2 Absorption and dispersion 

Like fluorescence, linear absorption and dispersion of the driving laser field occurs at 
low saturation intensities only. Therefore we determine the more general absorption 
coefficient and the real part of the refractive index according to Eq. (6.22), 

Ch!  3M { E  ( Z ) P* (z)}  = 11\; 27 

	

C4W) 	 (Z) d egE°V  St  = 	2I (Z) 

n! (w) — 1 = 	 z) 91  ceV(z)P*(z)}  = 11\1 2/c  (z) deg4ustust  

When we insert the dipole components (d = deg (ust ivst)) from eqs. (6.37), we again 
obtain the relations 

oz(w) = 

n! (co) — 1 = 

woaQ 
V  277  1+ I I 1-0 ± Rw — wo)171 2  

N 	À 	worIQP wo)/7 1  
(11.2) 



1.0 - 100 

- 

- 

11.2 Absorption and dispersion 	 319 

by also accounting for Eqs. (6.37). From these relations the limiting case of small inten-
sities can be reduced again to the classical case (6.19) without any further difficulties 
(///0  < 1 and wo = —1). There, the absorption coefficient and refraction coefficient 
depend only on atomic properties (decay rates 7, -y', detuning (5 = co — wo , particle 
density N/V) and not on the incident intensity. Conversely, these physical quanti-
ties can be determined using absorption spectroscopy. Since the determination of the 
refractive index generally requires an interferometric method, and thus considerable 
instrumental effort, the absorption measurement is the preferred method. 

11.2.1 Saturated absorption 

For increasing intensity (///0  '--' 1) the 'saturation' of a resonance plays a more and 
more important role since the absorption coefficient becomes nonlinear: it itself de-
pends on the intensity. For the sake of clarity we introduce the resonant unsaturated 
absorption coefficient ao  = —o - Q w0 (N/V) • (-y/2-y') (= o -Q (N/V) • (-y/2-y') for optical 
frequencies), and with the new linewidth Aw = 27sat  according to Eq. (6.35) we write 

7/2 	 7,2 

a(w) = ao 
(w — wo) 2  + 

,2(1 
 + ///0 ) = O( 	 (11.3) 

(ch) — wo) 2  + 7s2at . 

Fig. 11.2: Saturation of resonance lines. Normalized fluorescence intensity as a function of 

normalized detuning (5 I oe-y' . The parameter gives the incident laser power normalized to the 
saturation intensity, I I Io. The maximum fluorescence intensity occurs at even occupation of 

the atomic levels. 

So, in spite of the saturation at large intensity I > /0 , the Lorentz shape of the 
resonance line is preserved, though it becomes wider. It is also straightforward to show 
that on resonance (w = wo ) the intensity no longer decreases exponentially following 
Beer's law but decreases linearly for large I 1 Io  according to 

—
dI 

= —a(I)I '-' —a0/o . 
dz 
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11.3 The width of spectral lines 

The observation of fluorescence and absorption spectra are among the simplest and 
thus most common methods of spectroscopy. Physical information is contained in the 
centre frequency value of a line as well as in its shape and width. As a measure for 
the width (Fig. 11.3), usually the full width at half-maximum is used, i.e. the full 
frequency width between the values for which the resonance line reaches the half-
maximum value.' For intensities below the saturation value, ///o  < 1, the transverse 
relaxation rate -y' can be inferred from Eqs. (6.31) and (11.2), 

FWHM 	Lw  = 2rcAv = 2-y'. 

Fig. 11.3: Important spectral line shapes: (a) Lorentz line, (b) Gaussian profile, and (c) pro-
file of time-of-flight broadening are presented for identical half-widths. 

For a free atom, which can release its energy only by radiative decay, we have 
= -y/2 and thus 

Aco = 2rc,Av = 	 (11.4) 

In dilute atomic or molecular samples, the Q-value of the resonance, i.e. the ratio 
between resonance frequency and FWHM, can easily assume very large values of 106  
and more for optical frequencies of 10 14-10 15  Hz, 

Q = vlAv. 

It is obvious that, for decreasing linewidth Ay of a spectral line, the Q-value and thus 
the 'definition' of the centre wavelength or frequency of a resonance line increases. 
The precise experimental preparation and measurement of such 'sharp' resonances is 
a goal for spectroscopists. This goal requires a deep understanding of the physical 
mechanisms determining the position of a line, its width and shape. Usually the 
natural linewidth caused by the spontaneous decay of excited states is considered 
to be the lower limit. It has been known, though, for a long time that this decay 
rate can be modified by properties of the environment. For instance, the results of 

1 0ften the short forms FWHM and HWHM for full width and half-width at half-maximum, 
respectively, are used. 
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measurements are systematically influenced in the vicinity of conductive or reflecting 
walls (see excursion on p. 187, [71]). 

Let us now present the most important limiting cases only; an extensive micro-
scopic theory would go far beyond the scope of this chapter. Also the interaction of 
different broadening mechanisms is often complex, has to be described by mathemat-
ically elaborate convolutions and so is neglected here. 

11.3.1 Natural width, homogeneous linewidth 

The dream of the precision spectroscopist is a motionless particle in free space [23] 
whose resonance linewidth is limited only by the finite lifetime 'T of an excited state 
according to Eq. (11.4). It is called the 'natural linewidth' Av = Aw/27c = -yriat /27c 
and is identical with the Einstein A coefficient of the spontaneous decay rate, 

1 
'Nat = AEinstein 	• 

For an estimate of the natural width of typical atomic resonance lines, a characteristic 
dipole can be estimated with the Bohr radius, deg  = ereg = eao. For a red atomic 
resonance line (A = 600 nm) we find from Eq. (6.41): 

A-Einstein = 1 08  s -1 • 

The resonance frequency of a free undisturbed particle is still shifted by the Doppler 
effect  (Lw  = kv == 2rcv/A; see below), which we discuss in the next section. However, 
for a long time it has been possible to prepare almost motionless atoms and ions 
routinely in atom and ion traps using the method of laser cooling, see section 11.6. 
Since the motion-induced frequency shift is caused only by the component of motion 
in the direction of the exciting or emitting light, the natural linewidth of an atomic or 
molecular resonance can be observed also with atomic beams. 

The natural linewidth is identical for all particles of an ensemble. Such line broad-
ening is called 'homogeneous'. 

11.3.2 Doppler broadening, inhomogeneous linewidth 

During the emission of a photon, not only the energy difference between the internal 
excitation states of the atom is carried away but additionally the momentum hk. For 
low velocities (v/c < 1) we can take the difference between the resonance frequency in 
the laboratory frame (wiab) and in the rest frame (Wrest  = (E-E')/h) from momentum 
and energy conservation, 

my' hk =  my, 

	

+ . 7771/2  + rwilab 
	

E 

In nearly all cases the atomic momentum is much larger than the recoil experienced 
by the emission process, mv/hk >> 1. Thus we can neglect the term h2 k2 /mc2  in 

rn  h2 k2 '2 	Tr/ 771 /2 
— =2) — + 	 hkv —

2
v  i2  hkv, 

2 	2 	2m 
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and arrive at the linear Doppler shift: 

Wlab = Wrest kv. 	 (11.5) 

The direction within the laboratory frame (k) is determined either by the observer (in 
emission) or by the exciting laser beam (in absorption). The radiation frequency of a 
source appears to be blue-shifted towards shorter wavelengths if it travels towards the 
observer, and red-shifted towards longer wavelengths if it moves away. 

In a gas the molecular velocities are distributed according to the Maxwell-Boltzmann 
law. The probability  f(v) of finding a particle at temperature T with velocity com-
ponent v in an interval dv, is 

fp (vz )dvz = 	
1 	

( vz/v -P )2  dv , 	 (11.6) 
vnip  

where fdvz  fp(vz) = 1. The most probable velocity is (kB  is Boltzmann constant, -co 
T is absolute temperature) 

vnip  = -V2kBT/m. 

For common temperatures the velocities of the molecular parts of a gas generally are 
between 100 and 1000m s -1  so that typical shifts of kv/w = v/c 10-6-10-5 , or 
some 100 to 1000 MHz are expected. The natural linewidth of atomic or molecular 
resonance transitions is in general much smaller and therefore masked by the Doppler 
shift. For this reason the methods of Doppler-free spectroscopy (Section 11.4) have 
been an important topic of research for many years. 

If the emission of the particles is otherwise undisturbed, the spectral line shape 
and width of the absorption line of the gas can be obtained from the superposition of 
all contributing undisturbed absorption profiles according to Eq. (11.3), 

D (W) = f dvz fp(v z )ce(co + kv z ). 

If a(w) has Lorentz shape, the line profile al)  described by this mathematical con-
volution is called a Gauss-Voigt profile. At room temperature in many gases the 
decay rate 7 of an optical transition is much smaller than the typical Doppler shift 
kvmp . Then the distribution function fp(vz ) virtually does not change in that range 
where a(co + kvz ) differs significantly from zero. It can be replaced by its value at 

= (w - w0)/k and pulled out of the integral. The integration over the remaining 
Lorentz profile results in a constant factor, 

a D (CV) = aofp (w 	
k w0 ) 	71 1/ 	 

and with \/-TE ln 2 = 2.18 we arrive eventually at the Gaussian profile 

2.18a0 	 (co - wo  
cep (w) =  	exp [ -1n2 	 (11.7) 

	

.V1 ///0 Awl) 	 AwD/2 )1 

Here we have already introduced the Doppler FWHM or Doppler width 

8kBT ln 2 
AwD = wo 	 

mc 2 • 

C0 

-00 
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The absorption coefficient is reduced by approximately the factor *Auk )  since 
the line intensity is now spread over a very much bigger spectral range. It is useful to 
express the Doppler width in units of the dimensionless atomic mass number M and 
the absolute temperature T in Kelvin, 

AvD  = AWD/27t = 7.16 x 10 -7  N/T/M vrest, 
	 (11.8) 

where //rest  is the resonance frequency of the particle at rest. 
The Doppler broadening is an example of an `inhomogencous' linewidth. In con-

trast to the homogeneous line, each particle contributes to the absorption of fluores-
cence line with a different spectrum depending on its velocity. 

11.3.3 Pressure broadening 

In a gas mixture atoms and molecules continuously experience collisions with neigh-
bouring particles that disturb the motion of the orbital electrons for a short time. 
During the collision the frequency of the emission is slightly changed compared to the 
undisturbed case. For neutral atoms or molecules the interaction can be described, for 
example, by a van der Waals interaction causing a mutual polarization of the collision 
partners. In a plasma the interaction of the charged particles is much stronger. 
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Fig. 11.4: Disturbance of radiative processes by collisions in a neutral gas. The duration 
of the collisions is very short compared to the collision rate / and to the lifetime of the 
excited state. The influence of collisions can be modelled through random phase jumps of an 
otherwise undisturbed wave. 

It is useful to consider first the relevant time scales that determine collisional 
processes and are compiled in Tab. 11.1. 

The interaction between neutral particles is generally short-range, i.e. it is signifi-
cant only over a short distance of the order of the diameter of the atom or the molecule. 
The duration of the interaction time Ti a  can therefore be estimated from the typical 
transit time across an atomic diameter. For thermal velocities according to this some 
10-1000 oscillation cycles occur during the collision. The mean time interval between 
collisions (or the inverse collision rate) rcon can be determined from the collision cross-
section 0A  and the mean velocity y following the known formula Tea = no-A y. It is 
much larger than the interaction time Ti a  even under atmospheric conditions, and thus 
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Tab. 11.1: Relevant times for collisional broadening. 

Process 	 Formula 	 Conditions 	Duration 

Optical cycle 	Topt = 1 /Popt 

Interaction time Tia = datorn/Vtherm 

Time between 
collisions 

Natural lifetime 

10-14-10-15  s 

10-12 -10 -13  s 

10 -7-10-9  s 

10 8 s  

T = 300 K 

T =  300K,  
n = 10 19  cm-3  Tcoll = nCIAV therm 

T = A-1  Einstein 
datom = 2A, aA = 1da2torii /4. 

electronic motion is rarely disturbed by the collisions. In a simple model all details 
of the molecular interaction are therefore negligible and the effect of the collision can 
be reduced to an effective random phase shift of the otherwise undisturbed optical 
oscillation. 

Let us first consider the intensity spectrum 6 I (w) of a damped harmonic wavetrain 
that starts at to and is simply aborted after a randomly chosen time T: 
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The dependence on the start time t o  can be eliminated immediately by integration, 
I(w) = 27' f 6I(w,t0) dto. The phase jumps (and thus the periods of the undisturbed 
radiation times) are distributed randomly and occur with a mean rate Non = Te-0111. 
Then we can calculate the shape of the collision-broadened spectral line with the 
probability distribution p(T) = e- / T Tcoll / Tcon  , 
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The result is 

      

/0 	71  + 7coli  /(w) = 
n (wo — CO) 2  + (7f  + No11) 2  . 

The Lorentzian line shape is maintained; the effective collisional broadening rate -yeon  
though has to be added to the transverse relaxation rate 7'. Since all particles of 
an ensemble are subject to the same distribution of collisions, this line broadening is 
homogeneous like the natural line shape. 

Spectral lines are affected not only by pressure broadening but also by a pressure 
shift of the centre of mass of a line. With increasing pressure, the number of collisions 
between the particles of a gas increases. Naively we can imagine that the volume 
available for the binding orbital electrons is reduced, and in quantum mechanical 
systems volume reduction is always associated with an increase of the binding energy. 
The pressure shift therefore generally causes a shift to blue frequencies. 
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11.3.4 Time-of-flight (TOF) broadening 

Light-matter interaction of atoms and molecules in a gas or in an atomic beam is 
mostly restricted to a finite period. For example, for y = 500 ms', an atom needs 
Ttr  = 2 RS to pass a beam of diameter d = 1 mm. However, the relaxation of many 
optical transitions occurs on the nanosecond scale, during which time an atom travels a 
few micrometres at most. The stationary solutions for (6.28) are a good approximation 
in these cases. However, in focused laser beams or for slowly decaying transitions 
equilibrium is never reached, and the line shape is dominated by transient interaction 
corresponding to the finite time of flight Ttr  . Slow or long-lived transitions are of 
particular interest since the corresponding very sharp resonance lines are excellent 
objects for precision measurements at low intensities. The two-photon spectroscopy of 
the hydrogen atom (see the example on p. 331) is an exceptionally beautiful example 
of this. 

Slow transitions which are only 2 
briefly subjected to a weak light field 
have  12R <  'y',  rjr 1 , and we can 
assume that the population of the 
ground state is virtually unchanged 
(w(t) w(t =  0) = -1). Let us 
consider atoms or molecules crossing a 
laser beam which is assumed to have 
Gaussian envelope with 1/e 2  radius Fig. 11.5: Atomic trajectories crossing a laser 
100. The Rabi frequency 12R(z) 	beam with Gaussian profile. 
(deggo  I h) exp[-(z/v 0) 2 1 / \Fir is now a 
function of position, and we have to solve the first optical Bloch equation of (6.29), 

d 	d 
—dt Peg = V

dz
Peg  = -(7' + i6) peg  + R (Z). 

We calculate the 'mean  absorption coefficient of a single dipole with velocity y from 
eq. (6.22), 

oo 

Before the particle enters the light field there is no dipole moment, thus peg (z= - Do) = 
0, and the general solution can be given by 

peg (z, y) = i  e
d gheo e  (,y,/vz 	 e''/t)e—(z7w0)2. 

-00 

If the typical time of flight is small compared to the typical decay time -y' 	Tt7r 1  , we 
can neglect 'y'. By inserting p eg (z, y) then the integral in Eq. (11.9) can be evaluated 
analytically, 

(a( v, 6)) = w  Idege°12  WO e_0/22 
21 	h 	y - 

atomic 
trajectories 

(a(v)) dz 	deg E (z) p, g (z , y)}. 	 (11.9) 
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Fig. 11.6: Fluorescence spectrum of an an indium 
atomic beam obtained with a blue diode laser. 
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11 Laser spectroscopy 

In order to determine the absorption coefficient of a gaseous sample with a cylindrical 
laser beam, we would still have to average over all possible trajectories, but this results 
only in a modified or effective beam cross-section whose details we skip over here. 

The summation of the velocity distribution in a two-dimensional gas (f (v) dv 
xp[—(v/76) 2 ] dv, as the velocity component along the direction of the laser beam 

ot play any role here) results in 

00 
a(8) = f dv f (v) (°1 (v)) = ao e -16"/TI = ao e- 1 6-rtrl ,  

whose form has already been presented in Fig. 11.3(c). The effective width of this line 
is determined by Ttr  = Wo/f). 

11.4 Doppler-free spectroscopy 

The linewidth of atomic and molecular resonances at room temperature is usually 
dominated by the Doppler effect. The intrinsic and physically attractive properties of 
an isolated particle are revealed only at velocity v = O. Laser spectroscopy offers sev-
eral nonlinear methods where light—matter interaction is effective for selected velocity 
classes only. The result is called 'Doppler-free' spectroscopy. 

11.4.1 Spectroscopy with molecular beams 

As soon as tunable lasers be-
came available in the 1970s, high-
resolution optical spectra were ob-
tained with molecular or atomic 
beams. In such an apparatus, 
where the transverse velocities of 
molecules are reduced to near zero 
by geometric collimation, resolu-
tions of Av/v 108  and better are 
routinely achieved. 

The example in Fig. 11.6 was 
recorded with an indium atomic 
beam. The transverse velocities 
were limited to 7) < 5 m s -1  by 
appropriate apertures so that the 
residual Doppler effect kv < 10 MHz 
was significantly smaller than the 
natural linewidth of 25 MHz. Blue 

diode lasers (see excursion on p. 263) have been used for this purpose for a short 
time only — before the year 2000 they were still hardly imaginable equipment for such 
experiments. 
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11.4.2 Saturation spectroscopy 

By a resonant laser light field, atoms are promoted to the excited state, and as a 
result the occupation number difference is modified. In an inhomogeneously broadened 
spectral line profile such as the Doppler profile, then for not too large intensities a 
spectral hole is 'burnt' into the velocity distribution, which is qualitatively presented 
in Fig. 11.7. 

Generally the distribution modified by a laser beam can now be 'queried' spectro-
scopically by means of another light field. It is even simpler to excite the sample with 
two opposite laser beams. 

Fig. 11.7: Principle of saturation spectroscopy. Inset: A laser beam with frequency w is 
used to 'burn' a spectral hole into the ground-state velocity distribution at kv = wo  — w; 
simultaneously, an excited state population with a narrow velocity distribution is generated. 

Fig. 11.7 presents one of the simplest possible arrangements for the so-called 'sat-
uration spectroscopy'. In order to simplify the theoretical description, we assume that 
the intensities of saturation (isat ) and probe beam (4) are small in comparison with 
the saturation intensity (Eq. (6.34)), isat,p//0 < 1, and do not directly influence each 
other. Let us calculate the absorption coefficient according to Eq. (11.2) by again 
using the Maxwell-Gauss velocity distribution fD(v) from Eq. (11.6) and carrying out 
the Doppler integration: 

00 
ap  (6) = —

w 
f dv fp(v)d eg Ev;ft  (6, v). 

21 _ 00  

We now distinguish the forward (`+') and the backward (` -') travelling laser beams 
and from Eq. (6.36) we use 

v) = — 

but following (6.30) we insert ws-t  = -1/(1 + )2-2 (1 - ) in order to account for 
the modification of the occupation number by the second counter-propagating laser 
beam which has the saturation parameter 

s-  (isat //0)/{1 + [(6 + kv)/-01. 

Since the Doppler profile varies only slowly compared to the narrow Lorentzian con- 
tributions of each velocity class, at the detuning 6 = wo  - kv we can again pull ID (v) 

degEw; t  / {1 + [(6 — kv) /71 2 1, 
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Fig. 11.8: Doppler profile with Lorentz-shaped saturation resonance. The Doppler-free line 
leads to an increased transparency. 

out of the integral: 

h -7'2  + 62  ) . 
The saturation resonance occurs exactly at the velocity class with y = O. A more 
complete calculation shows the width corresponding to the width saturated by both 
laser fields according to Eq. (6.35) [63], 

Nat — 711 ± (1-sat ± /p)//13]. 

The concept of saturation spectroscopy explains the occurrence of spectral holes in 
the Doppler profile (or in other inhomogeneously broadened spectral lines). In realistic 
experiments, though, it is influenced by further phenomena such as, for example, 
optical pumping or magneto-optical effects, all of which are collected a bit less precisely 
under the term 'saturation spectroscopy'. 

A simple experiment, though complex in its interpretation, can be carried out with 
diode lasers and a caesium- or rubidium-vapour cell.. Their vapour pressure at room 
temperature already leads to absorption lengths of only a few centimetres. In Fig. 11.9 
characteristic absorption lines are presented together with an energy diagram of the 
caesium D2 line at 852.1 nm. 

From the 2 S1/2 , F=3 hyperfine state three transitions with different frequencies 
to 2 P3 1 2 , F'=2,3,4 are available. From our simple analysis we thus expect three line-
shaped incursions in the absorption, but we observe six instead! And not only this, if 
the magnetic field is manipulated — in the upper spectra the geomagnetic field of 0.5 G 
is reduced to below 0.01 G by means of compensating coils — then even a reversal of 
selected lines can be observed. The reasons for this complex behaviour are explained 
in detail in [93] and can only be indicated here: 

1 /sat f œ dv 	Y 
2 	 7/2 

ap  (6) = aofD (Slk) (1— - 
TE /0 _ 00 	-y12  + (kv _ 6)2 7/2 	± (k v  ± 8)2) • 

The evaluation of the integral [63] again results in a Lorentzian curve which, due 
to our assumption of a very low saturation (s± < 1), has the natural linewidth 2-y': 

sat 	2/12  
ap  (6) = a0 fD(81k) (1 / 

1. Number of lines. For velocities y 0 two different excited states can be coupled 
at the same time if the frequency differences are compensated by the Doppler 
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caesium D2 line 
(852,1 nm) 

F'=5 

Fig. 11.9: Saturation spectrum of a caesium-vapour cell at the 852.1 nm D2 line. Here the 
F = 3 —4 F = 2, 3, 4 lines of the D2 line are presented. The second hyperfine transition from 
the ground state (F = 3 —4 F = 3, 4, 5) is at a distance of 9.2 GHz and cannot be seen here. 
The transition F = 3 —> F = 5 is forbidden according to dipole selection rules (AF 0, ±1). 

The separations of the hyperfine structure levels in the excited state are given in mega-Hertz. 

effect. They also cause velocity-dependent population redistribution and lead to 
additional resonances called cross-over lines. In Fig. 11.9 three of those cases 
are presented for example at co = (W F=3- F=4 ± c0E-3—,F=3)/2. Here they are 
particularly prominent since one of the laser fields can empty one of the two 
lower hyperfine levels (F =  3) in favour of the other one (F = 4) by optical 
'depopulation pumping', which effectively removes these absorbers from the other 
light beam. 

2. Line reversal. In simple laboratory setups there is no care taken about compen-
sating the geomagnetic field of 0.5 G. Then the lower form of the spectrum in Fig. 
11.9 is observed. The geomagnetic field, which does not have any well-defined di-
rection relative to the laser polarization, is too small to split the lines visibly. But 
atoms are microscopic gyromagnets, and they can rapidly change their orientation 
by precession, and therefore all of them without exception can be excited by the 
light field. The in quantum number is in fact not a 'good' quantum number in 
the geomagnetic field. 

If this precession is suppressed, atoms can be trapped in 'dark states' due to opti-
cal pumping, and thus no longer participate in the absorption process and increase 
the transparency. But also the opposite effect occurs if they are pumped back 
to absorbing sub-states with the right choice of frequencies or polarizations (in 
Fig. 11.9: orthogonal linear polarizations of pump and probe beam induce repop-
ulation pumping) and by this increase the absorption. A detailed understanding 
here requires detailed knowledge of the level structure. 
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11.4.3 Two-photon spectroscopy 

In the interaction of light and matter usually electric dipole transitions are of interest 
because their relative strength dominates all other types. We understand these pro-
cesses as absorption or emission of a photon, without actually having defined the term 
'photon' [841 2  more precisely at all. 

Besides the dipole interaction, also higher multipole transitions or multiphoton 
processes occur. The latter are nonlinear in the intensities of the participating light 
fields. A simple and illustrative example is two-photon spectroscopy. For this in an 
atom or a molecule a polarization P2ph  a Ei  (w i )E2 (w2 ) is induced causing absorption 
of radiation. Two-photon transitions follow different selection rules regarding the 
participating initial and final states — for example Af = 0, ±2 has to be fulfilled 
for the angular-momentum quantum number. Furthermore the calculation of the 
transition probabilities may raise problems where we expect ad hoc from second-order 
perturbation theory of quantum physics that matrix elements have to have the form 
[94] 

mif  E  cildEilcsidE21f) 	(ildE21,9)(sidEilf)  
Es  — rtwi — 	— h,w2 ) • 

Transition rates are proportional to 

1M1112, and the square value will also be 
proportional to the product 11 12  of both 
participating fields. A more detailed cal- 

	

A co=21cv 	 culation shows that, as in the one-photon 
process, a Lorentz line with width 2-y' = 
2/T2  is obtained which in the case of 
free atoms is identical with the natural 
linewidth. A simplified model for an-
harmonic oscillators as well conveys an 
impression about the origin of the two- 

	

Fig. 11.10: 	Two -photon spectroscopy: 
photon absorption (Section 12.1). 

Doppler background and Doppler-free reso- 
nance line. Like in saturation spectroscopy, two- 

photon spectroscopy allows the nonlinear 
generation of signals at velocity y = 0. Here the absorption has to occur from two 
exactly counter-propagating laser beams with identical frequency since that way the 
linear Doppler shift is just compensated: 

(El  — E2 )/h, = co l  kv w2  — kv 

= 	+ - 

As a result Doppler-free spectra are obtained whose linewidths are limited by the nat- 
ural lifetime or the time of flight for very long-lived states (see Section 11.3.4). In 
contrast to saturation spectroscopy, though, not only one selected velocity class at 

= 0 contributes to the signal with width Ay = -ylk but all velocity classes! The 

2 The term 'photon' was introduced by Gilbert N. Lewis, 1926, Nature, 118, 874: `... I therefore 
take the liberty of proposing for this hypothetical new atom, which is not light, but plays an essential 
part in every process of radiation, the name photon.' 



-4 	0 	4 	8 
detuning (kHz at 243 nm) 

Fig. 11.11: Two-photon resonance of the 18-2s 
transition of atomic hydrogen. See text. By per-
mission of T. W. Hiinsch [49]. 
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total strength of the Doppler-free resonance therefore is as large as that of the Doppler-
broadened one and can be very easily separated from it (Fig. 11.8). 

Example: The mother of all atoms — two-photon spectroscopy of the hy-
drogen atom 

The hydrogen atom is an atom of out-
standing interest for spectroscopists. 
In contrast to all other systems, it is 
a two-body system and allows direct 
comparison with theoretical predic-
tions, especially of quantum electro-
dynamics. 3  Its energy levels are prin-
cipally determined just by the Ryd-
berg constant, which as a result of the 
two-photon spectroscopy is today the 
most exactly measured physical con-
stant of all. 

The most interesting transition 
wavelength for precision measure-
ments is the ls-2s transition driven 
by x 243 nm. This wavelength can 
be generated experimentally in a 
much more convenient way than the 
121.7nm of the directly adjacent 1s-2p Lyman a line. Furthermore, and in contrast 
to the adjacent 2p state (lifetime 0.1 ns), the decay rate of this metastable level is 
only about 7s-1  and promises a very unusually narrow linewidth of just 1 Hz! 

For many years T. W. Hdnsch and his coworkers have studied more and more 
exactly the 1s-2s transition of atomic hydrogen and are steadily approaching this ulti-
mate goal of spectroscopy. At present their best published value is about ,A v r.- 1 kHz 
at 243 nm [49], i.e. for a transition frequency of v1 ,2, --=-- 2466 THz already a Q-value of 
more than 10 12 ! By a phase coherent comparison of the optical transition frequency 
with the time standard of the caesium atomic clock, the ls-2s transition frequency 
has meanwhile become the best-known optical frequency of all (and thus wavelength 
as well, see p. 32, [73]): 

fis2, ---, 2 466 061 413 187.103(46) kHz. 

During detection of the ls-2s spectrum, another interesting spectroscopic effect occurs: 
the observed lines are asymmetric and slightly shifted to red frequencies with increasing 
velocity of the atoms. The reason for this is the Doppler effect of second order, which 
is not suppressed in two-photon spectroscopy. For the hydrogen atom it plays an 

3 This assertion though is challenged since at present the physical significance of the extremely 
precise measurement is limited by the relatively insufficient knowledge of the structure of the proton, 
which consists of several particles and is in fact not point-like as assumed by Dirac theory. 
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important role due to its low mass and therefore high velocity. Only for very low 
velocities the relatively symmetric signal of Fig. 11.11 is observed. 

The line shift caused by the second-order Doppler effect is proportional to A1)20 = 
W(V/C) 2 /2 and can be explained by the time dilation known from the special theory of 
relativity. In a moving atomic inertial reference frame time seems to run more slowly 
than for an observer at rest in the laboratory frame. 

In the experiment the 
observation has been made 
that the different line shapes 
of Fig. 11.12 are a function of 
the temperature of the nozzle 
from which the hydrogen 
atoms are ejected into the 
evacuated spectrometer. 
They have a velocity distri-
bution corresponding to the 
nozzle temperature, and they 
travel through the exciting 
UV laser beam for a length of 
about 30 cm. The linewidth 
is determined by the time of 
flight. 

Fig. 11.12: Second-order Doppler effect of the two-photon 
spectrum of atomic hydrogen. 

11.5 Transient phenomena 

So far we have considered the interaction between a light field and matter particles 
by means of the optical Bloch equations (Eqs. (6.28)) and mostly concentrating on 
stationary solutions. In the last section, though, we had to investigate the dynamic 
behaviour in order to describe time-of-flight broadening of long-lived states. It is in 
general always necessary to take the dynamic properties into account whenever the 
interaction time scale is short compared to the relevant damping times T1 , 2. 

Let us study important special cases as examples of dynamic light—matter inter-
action: TC pulses, rapid turn-on processes, and the effect of a sequence of short light 
pulses. 

11.5.1 n pulses 

First, we consider once again the undamped case of the optical Bloch equations of 
Eq. (6.27). For the frequent case of an atom initially in the ground state (w(t=0) = 
—1), for 6 = 0 the resonant solution, 

(u, v, w)(t) = (0, sin  (t), cos OM), 
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can be easily found. The light field simply causes rotation of the Bloch vector in the 
vw plane. The rotation angle 0(t) is determined by the pulse area, 

t de 	t 
0(t) = f  S2R(e) de 

= -- f0, 
e0  (t') de , 	 (11.10) 

h - 

where S2 R (t) a OM. If the pulse area assumes the value 0 =  it,  then the atom is 
promoted exactly from the ground state to the excited state. If the value is 2n, then 
the atom finishes the interaction again in the ground state. 

Let us estimate what kind of light pulse is required to drive a TC pulse for an atomic 
resonance line that has dipole moment deg  --z eao  = 0.85 x 10-29  C m. For a light 
pulse with constant intensity and period T,  the necessary intensity and pulse duration 
can be determined according to (6.26),  it = (eao  I h)E0T . The numerical value for the 
corresponding intensity seems to be enormously high at first, 

10  -_-:' 120 kW mm-2  (T/ps) -2 . 

But it has to be taken into consideration that the pulses are very short, so that the 
average power of a picosecond laser does not need to be very high. Standard pulsed 
lasers of the mode-locked type (see Section 8.5.2) operate at a pulse rate of 80 MHz, 
and for an area of 1 mm2  an average total power of (P) = 80 MHz x T x P0  --'_ 
10W  x (T/ps) -1  is necessary. Commercial laser systems offer average output powers 
exceeding 1 W, which is quite sufficient if the pulse lengths are slightly increased to 
10  Ps. Even then the excitation time is only about 1/1000 of the lifetime of an excited 
atomic state. 

11.5.2 Free induction decay 

At both the beginning and the end of an interaction period in light-matter coupling, 
transient oscillations can occur like for the classical damped oscillator of section 6.1.1. 
While stationary behaviour is characterized by an oscillation at the driving frequency 
co, immediately after turn-on (or turn-off) we also expect dynamic evolution at the 
eigenfrequency coo  of the system, which though is damped out very rapidly (with time 
constant -y-1 ). General time-dependent solutions of the (optical) Bloch equations have 
already been given by Torrey [2] in 1950. However, they are transparent and easily 
understood only for special cases, such as for example at exact resonance (6 = 0). The 
dynamic phenomena are also known as 'optical nutation'. 

An interesting case occurs for the so-called free induction decay (FID). It describes 
especially the decay of the macroscopic polarization of a sample in the absence of 
laser light, for example after the application of a very short laser pulse with large 
intensity. The polarization of an individual particle may live for a much longer time 
than the macroscopic polarization of an ensemble, which is affected by `dephasing' of 
the individual particles. 

The evolution of the Bloch vector components depends of course on the detuning, 
u = u(t, 6). We conveniently use Eq. (6.29) for analysis. For very large intensity 
(S2 R  >> 6) and very short time, we can neglect the detuning at first, since, during the 
coupling period, the Bloch vector does not have any time to precess by a significant 
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angle. Thus a short and strong initial pulse rotates the dipole peg  to the angle given 
by Eq. (11.10) and we arrive at 

peg (0, .8) =- u(0 , 6) + iv (0 , 6) = i sin 0, 	 (11.11) 

where we fully neglect the time elapsed. Once the light pulse is turned off, free pre-
cession occurs according to 

Peg (t, 6) = i sinO e_ey,±i6)t 

In a large sample, there often exists an inhomogeneous distribution f (wo) of eigen-
frequencies of the individual particles and thus of the detunings. In a gas cell this 
distribution is determined, for example, by the Doppler shift, with 8D  = AwD /2-fln 2, 

1 
f( 6) = 	e

—(6/5D)2 
• ffE 

Following an excitation with a  it/2 pulse with sin 0 = 1, the free evolution of the 
macroscopic polarization is calculated from 

NAt 	
cc  

P(t) = 	d 	f 
17 eg  

f(ä)  e - '5'3)2  e_ '+t d6. 	 (11.13) 

If -y' « SD we can neglect the slow decay, and the integral straightforwardly yields 

NAt P(t) = -d
eg 

e —iwot e —(6Dt/2) 2  
V  

The macroscopic polarization thus decays with the lifetime T1 , 

41n 2 
T2  = 	= T2, 

AwD 

much faster than the microscopic polarization whose relaxation determines the fastest 
time scale for individual particles. This rapid decay is a consequence of the dephasing 
of the precession angles of the microscopic dipoles. Experimental observation for 
typical atomic resonance transitions in a gas cell must have resolution better than 
1 ns and requires considerable effort; thus slower and weaker transitions are more 
appropriate to observe this phenomenon. 

In the middle row in Fig. 11.13 the time evolution of the radiation field is presented, 
which is caused by the macroscopic polarization and contains the cooperative radiation 
field of all excited microscopic dipoles of the sample. At the beginning, constructive 
interference of the microscopic dipole fields generates a radiation field propagating 
exactly in the direction of the exciting laser beam. For a perfectly synchronized phase 
evolution, a well-directed, accelerated and exhaustive emission of the excitation energy 
would be observed due to the so-called `super-radiance'. In an inhomogeneous sample, 
however, this emission ceases very rapidly as a result of the destruction of the phase 
synchronization (`dephasing'); the stored excitation energy is then released only by 
common spontaneous emission with a lower rate and isotropically. 
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T÷  2T-' 2T 

Fig. 11.13: Free induction decay (FID) and photon echo. In this example a sample is excited 
by an/2 pulse and after a time T < -y -1  is subject to another it  pulse that causes inversion of 
precession (top row). After the excitation light pulse, free induction decay is observed at first, 
which emerges from the initially cooperative emission of all excited atoms and is emitted into 
the direction of the excitation laser (middle row). Afterwards the polarization of microscopic 
particles continues to decay by spontaneous emission. After time 2T an echo pulse is observed 
in the direction of the excitation pulses. The precession of the Bloch vector components in 
the u-v plane is marked in the bottom row. 

11.5.3 Photon echo 

The method of 'photon echoes' for inhomogeneously broadened lines — like many other 
optical phenomena — has been stimulated by the 'spin echo' method at radio frequen-
cies, which was discovered by I. Hahn for nuclear magnetic resonance. If a sample 
is excited by two or more short light pulses (T < 7' 1 ), under certain conditions it 
emits an 'echo pulse' that follows the excitation pulses in their direction and seems to 
appear from nowhere. This contradiction is again due to the different evolutions of 
the microscopic and macroscopic polarizations in a large sample of atoms, molecules, 
or other microscopic objects, which we have already just met in free induction decay. 

The photon echoes can of course be observed only within the natural lifetime of the 
microscopic polarization. Let us consider the evolution of an individual single dipole 
with detuning (5 under the effect of two resonant light pulses. After time T the dipole 
has reached the value 

peg  (t, (5) = i sin 0 e —  (7' +i(5)T 

according to Eqs. (11.11) and (11.12). The application of a n pulse now generates 
an inversion of the (y, w) components ('phase  reversal'). Formally this situation is 
identical with an inversion of the detuning, i.e. after the  it  pulse we have 

peg  (t, 6) =-- i sin 0 	(7 ' (5)7' e-(7/+i6)(t-T). 
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The development of the macroscopic polarization can now be given again by eq. (11.13), 

P(t) 
\ 

= 
NAt 

a 
 _, 
eg 

e -iw°t 	 e 	t e —[8 0 (t-2T)/2i 2  --y ' 
- 	 . 

V  

After time t = 2T the precession phase angle of each of the microscopic dipoles coin-
cides again; macroscopic polarization is thus restored and once more causes cooperative 
emission of a macroscopic and coherent radiation field in the direction of the exciting 
light beam. This pulse is called a 'photon echo'. 

11.5.4 Quantum beats 

Simultaneous excitation of two or more electronic states by a short light pulse causes 
observation of a damped oscillation in the fluorescence. These oscillations are usually 
called quantum beats. 

In order to realize coherent superposition of several adjacent quantum states, the 
inverse period of the light pulse T-1  (or in other words its 'bandwidth' Av = 1/T) 
has to be larger than the frequency separation of the states from each other. Thus the 
spectral structure of the system is in fact not resolved by the exciting light pulse! 

A simple quantum mechanical description assumes that the coherent superposition 
of two excited states decays freely and spontaneously after the excitation. For a single 
decaying channel it can be shown that one can describe the time evolution of the 

iw i,. excited state with the wavefunction l'I'(t)) = e —

't e —t e 2  r 	i 	Furthermore the observed 
fluorescence intensity is proportional to the square of the induced dipole moment 
l(gicieg le(t))1 2  and the following can be easily calculated: 4  

Ifl  , r(o) e -2'Y't. 

If two states lei,2) with excitation frequencies w 1 , 2  are prepared in a coherent 
superposition lkli(t=0)) = le i ) ± Ie 2 ), then one has 

OM) = le i ) e — i(wi --YDt ± l e2 ) e —i(w2 --rDt ,  

and the emitted field contains also the beat frequency Ack) = w 1  — w2 . For the special 
case -yli  = '-)/ one can calculate 

I  =  1(0) e —r' t  (A ± B cos Acot). 

The quantum-beat method has proven to be very useful, e.g. to investigate the fine 
structures of excited atomic or molecular states with broadband pulsed laser light, 
which themselves do not provide the necessary spectral resolution. For a systematic 
experiment it is, though, necessary to use laser pulses of good quality, i.e. precisely 
known shape (so-called 'transform-limited pulses') to guarantee coherence conditions. 

4 For a rigorous theoretical treatment, one has to consider quantum states le)10), the product states 
for the excited atom and the electromagnetic vacuum field, and all states 1g) Ilk) for the ground state 
and field modes with wavevector k. Here we restrict ourselves to an ad hoc treatment of the time 
evolution of the excited state only. 
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11.5.5 Wavepackets 

A natural extension of quantum beats is offered by wavepackets in microscopic sys-
tems which are generated by coherent superposition of many quantum states. With 
extremely short laser pulses (10 fs corresponds to a bandwidth of 17 THz!), for exam-
ple, in a molecule, numerous vibrational states can be superimposed coherently [8]. A 
large density of electronic states is also offered from Rydberg states in atomic systems. 
Rydberg atomic states have very large principal quantum numbers n> 10 [34]. Nei-
ther the atomic Rydberg states nor the molecular vibrational states are usually very 
strongly radiating states, and therefore it is quite difficult to detect them with com-
mon fluorescence detectors. In vacuum, though, the weakly bound Rydberg states can 
be detected by field ionization, and the molecular states by multiphoton ionization. 
These charged products can be detected with such high sensitivity and selectivity that 
only a few excited particles are required for such experiments. 

Fig. 11.14: Two-photon stepwise ionization of Na2 molecules as a function of the delay time 
between the two pulses. The ion current is plotted as a function of the delay of the ionization 
or 'probe' pulse from the excitation or 'pump' pulse. The duration of the laser pulses was 

70 ps. The oscillation shows a beat signal which originates from the superposition of two 
contributions with periods 306 and 363 fs 18.1. 

With this evolution of the old quantum-beat method, it is conceivable that a 
wavepacket is prepared from excited quantum states by a light pulse and subsequently 
propagates freely, i.e. undisturbed by further light interaction. As long as we use 
a perfect harmonic oscillator the wavepacket will even propagate dispersion-free and 
return periodically to the origin. 

Real molecules though have a strong anharmonicity, which leads to the loss of 
phase coherence of the atomic wavefunction like for the free induction decay. The 
total wavefunction is then more or less spread over the energetically allowed space. 
For many systems however — in this case without application of an external pulse — 
the wavepacket re-occurs. The phenomenon of collapse and revival of an oscillation 
was already predicted by Poincaré for classical oscillators. It occurs always when a 
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finite number of oscillations are superimposed; the larger the number, the more time 
this return takes. 

The dynamic evolution of a wavepacket in molecules or Rydberg atoms can be 
investigated experimentally by so-called 'pump—probe' experiments. With the first 
pulse a physical excitation is generated; with the second one the dynamic evolution is 
probed after a variable time delay. We introduce a transparent example, multiphoton 
ionization of the model system of Na2  molecules, in a qualitative way. 

A molecular beam with Na2  molecules is excited by a sequence of laser pulses (pulse 
period 70 fs, A = 627 nm). The first laser pulse transfers molecules from the ground 
state (y = 0) to an excited state in which several oscillation states (y 10-14) are 
superimposed. A further laser pulse generated by the same laser in this experiment 
generates Nar2+-  molecules by two-photon ionization. These ions can be detected by a 
secondary electron multiplier, e.g. a channeltron with a probability approaching 100%. 
In the experiment more filters such as mass spectrometers are used to separate the 
Na signal from the background. If the ionization pulse is delayed, an oscillation of the 
ion current can be observed as a function of the delay time. Since a beat is observed, 
the spectrum has to consist of two oscillation frequencies. The first one at 306 fs is 
caused by the oscillation of the wavepacket in the molecular potential, the second 
one at 363 fs by the interaction of the detection laser with yet another, higher-lying 
molecular potential. 

Using laser pulses of an extremely short period, it has become possible to resolve 
the dynamics of molecular wavepackets directly on the femtosecond time scale. These 
and other methods are used more and more in the so-called lemto-chemistry'. 

11.6 Light forces 

When light—matter interaction is analysed, usually the influence on the internal dy-
namics, e.g. of atoms and molecules, is in the foreground. Absorption and emission of 
light, though, also changes the external mechanical state of motion of a particle. Pho-
tons have momentum hk and during absorption and emission this momentum has to be 
transferred to the absorber as a result of momentum conservation. For these processes 
we expect recoil effects, and the corresponding forces are called light forces. Though 
the photon picture derived from quantum mechanics is very useful, light forces are 
known from classical light—matter interaction in an analogous way — for example, the 
Poynting vector describes the momentum density of the propagating electromagnetic 
field. So let us begin with a study of the mechanical effect of a planar electromagnetic 
wave on a classical Lorentz oscillator. 

An inhomogeneous electric field exerts a force on a particle carrying a dipole, 
whether induced or permanent, which we may describe component-wise, d = (dx ,dy ,dc ). 
For an oscillating dipole, we furthermore have to average over an oscillation period 

T =2711w of the field, (F) = 	foT  F(t) dt: 

a  
di  (t) ax3 E,(t)) 	or 	Fel  = ((d(t) • V)E(t)) . 	(11.14) F'= 
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r  jAtomic  Be 
Detector 

Fig. 11.15: First observation of the deflection of an atomic beam by light forces. The data 
are taken from the original publication: R. Frisch, 1933, Z. Phys., 86, 42. The solid line 
shows the atomic beam profile without the light beam, and the dashed line that with the light 
beam. The difference is given in the lower part. 

While this analysis seems straightforward, there is a problem. In a planar wave 
travelling in free space, the electromagnetic field is transverse, and thus in the linear 
Lorentz model the induced dipole has to be transverse. The electric field of a planar 
wave, on the other hand, can change only in the propagation direction k; hence d I V 
and one should not expect any electrical force at all from Eq. (11.14). In a realistic light 
beam, though, with, for example, a Gaussian-shaped envelope, of course transverse 
electric dipole forces do occur, which we illustrate for the case of a standing-wave field 
in Section 11.6.4. 

We must not forget, however, that there are also magnetic forces in general acting 
on neutral polarizable atoms. They are caused by the Lorentz force on the electric 
current in the atom, which is given by the time derivative of the dipole moment, 

Fmag = (ClxB) = --el  (x(ek xE)), 	 (11.15) 

and these magnetic forces exert a net force on the entire atom. 

11.6.1 Radiation pressure in a propagating wave 

Let us calculate this latter force for a linear electronic Lorentz oscillator with eigen-
frequency wo subject to a planar, transverse wave E I k. By using the complex 
polarizability a = a' + kV' (see Section 6.1), we find 

2/  
a(t) = -iwa(6)E(t) 	with 	a(J) 	q 

 277/Wo 
 

and the average over an electromagnetic cycle is evaluated by means of the Poynting 
theorem (Appendix A.2), which picks out the imaginary or absorptive part of the 
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polarizability. We finally arrive at 

Frnag = ka"(6)IE1 2  = ka"(6)I Ice° . 	 (11.16) 

The force derived here predicts a light force that is parallel to the wavevector k of 
propagation and the intensity I of the light field. It is called 'radiation pressure' or 
'spontaneous force' since it depends on the absorption and spontaneous re-emission of 
photons. 

Fig. 11.16: Absorption—emission cycle and momentum transfer of the spontaneous force. 
During absorption, momentum is always transferred in the direction of the laser beam. The 
recoil of spontaneous emission is exerted in random directions. Thus on average for many 
cycles there is no momentum transferred on emission. 

We expect that the classical treatment is a good approximation for low intensities 
(///0  < 1, where /0  is the saturation intensity from Eq. (6.33)). For larger intensities, 
we have to treat the internal atomic dynamics according to the Bloch equations. We 
may use a shortened transition to the results of the semi-classical treatment by replac-
ing the classical Lorentz oscillator in an ad hoc way by the Bloch oscillator through 
d • E = aE • E —> (u + iv)h1-2R. Using the normalized intensity s o  from Eq. (6.33), we 
now obtain 

So 
Fm ag  = Ma = hk  	with 	so  = II° . 	(11.17) 

2 1 + so  + (28/-y) 2  

This result lends intuitive support for the interpretation of radiation pressure as a 
spontaneous force. The force grows linearly with 'photon momentum' k and (for small 
so ) with the intensity I of the light field. It is proportional to the absorptive component 
with the characteristic Lorentz line shape. The force is also proportional to the rate 
of spontaneous emission -y, and for large intensities (s >> 1) it saturates at the value 
FsP —> h-yk/2 while exerting maximum acceleration 

amax = hky 12M. 	 (11.18) 

Tab. 11.2: Overview of mechanical parameters for important atoms subject to light forces 
(see text for details). 

Atom A 
(mm) 

7 
(106  s -1 )  

Vth 

(ms')  
alg 'T 

(ms) 
E 

(cm) 

N 

1 H 121 600 3000 1.0 x 108  0.003 4.5 1 800 
7Li 671 37 1800 1.6x105  1.2 112 22 000 

23Na 589 60 900 0.9 x 10 5  0.97 42 30 000 
133 Cs 852 31 320  0.6x104  5.9 94 91 000 
40 Ca 423 220 800 2.6x  105  0.31 13 34 000 
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On average, a strongly driven atom is excited with a probability of 50% and can 
take on the momentum hk with each emission cycle. 

In Tab. 11.2 we have collected together the essential parameters for the mechanical 
effect of light on some important atoms. For their 'cooling transitions' with wavelength 
A and decay rate of spontaneous emission -y, we list the following: vth  =  initial thermal 
velocity of the atomic beam; al g = maximum acceleration a caused by radiation 
pressure (light force), normalized to the gravitational acceleration g = 9.81 m s -2 ; 'T = 
stopping or deceleration time for thermal atoms; = stopping or deceleration distance 
for thermal atoms; and N = number of photons scattered during this stopping time. 

Excursion: Zeeman slowing 

The spontaneous force is perfectly suited to slow down atoms from large thermal velocities 
(several 100 m s -1 ) to extremely low ones (some mm s -1  or cm s -1 ), provided we can exploit 
the maximum acceleration. In the laboratory system, however, the atomic resonance fre-
quency COO is shifted by the Doppler effect, omab = wo kv, and an atom would lose resonance 
with the slowing laser - which is effective only within a natural linewidth - after only a few 
cycles. 

Zeeman magnet 

slowing laser 

-44 	 

Fig. 11.17: A Zeeman slower for the deceleration of atomic beams. The magnetic field 
compensates the variation of the Doppler shift caused by deceleration. 

This problem can be overcome by either tuning the laser synchronously with the slowing-
down process ('chirp  slowing'), or by compensating the Doppler shift by means of a spatially 
variable magnetic field in which the Zeeman effect 5  (he, = pt131h, with = effective magnetic 
moment, and typically plh = 2n x 14 MHz mT-1 ) compensates the change by the Doppler 
shift ('Zeeman  slowing'): 

6 = - (wo + kv - 

For Zeeman slowing along the atomic trajectory, a constant acceleration y =  -at  as large 
as possible is desirable. The compensation field is formed according to 

B(z) = B01/1 - z/zo. 

The construction length zo is generally given and after a short calculation it is found that 
only velocities with y < Yo = (2aspz0) 1 / 2  can be slowed down. Moreover, also the magnetic 
field strength is limited, B0  < hkvo/P. 

5 More precisely the Zeeman shift depends on the magnetic quantum number in  and the Landé g-
factors of the excited and ground states: IL = (me ge — mggg ) (here AB = Bohr magneton). Optical 
pumping with circularly polarized light leaves only the highest m value with mg _e_L,  1 of significance. 
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thermal distribution  

atomic velocity (mis)  

Fig. 11.18: Left: Evolution of the velocity in the Zeeman slower. Velocity and magnetic field 
are given in terms of their corresponding Doppler- and Zeeman-shifts. Right: Experimental 

velocity profiles of an atomic beam at the exit of the Zeeman slower. 

In Fig. 11.18 the effect of laser slowing on the initial thermal distribution is shown. At the 

end of the Zeeman slower a narrow distribution is generated whose mean velocity is tunable 

by the laser frequency and the magnetic field. Its width is limited by the so-called Doppler 

temperature (see Eq. (11.21)). The Zeeman slower is well suited to prepare 'cold' atomic 

beams with large intensities [65]. A 'cold' atomic beam not only exhibits a low mean velocity 

but also has much smaller velocity spread than the initial thermal beam. 

11.6.2 Damping forces 

Let us consider the effect of the spontaneous light force exerted by two counter-
propagating laser beams with identical frequency. For this effectively one-dimensional 
situation, we assume that the forces according to Eq. (11.17) simply add up, i.e. we 
neglect interference effects: 

hk ,),  
F = F±  F_ = 

2 
So  

(1 + so  + (2647) 2  
So  

1 + so + (28—N 2 ) • 
(11.19) 

0 

velocity 

Fig. 11.19: Light forces for counter-propagating laser fields depending on the velocity or 

detuning. 

The Doppler detuning (5± = 80  ± kv now depends on the direction of the light wave 
(Fig. 11.19). The atomic resonance frequency Doppler-shifted towards red frequencies 
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always lies closer to the laser frequency of the counter-propagating beam. Therefore 
the atom is always slowed down — its motion is damped like by a damping force. Very 
low velocities with ky/6 0  << 1 are of special interest in order to estimate ultimate 
velocities. We use an expansion of the force equation (Eq. (11.19)) in terms of the 
velocity y and find 

dp F 	8hk 2  So 	o 
	  = --amv. 	 (11.20) 

Tt 	-y 	[1+ so  + (260 /-y) 2]2 

For 60  <0 we find a damping force with the coefficient a. While the radiation pressure 
causes only retardation or acceleration, true laser cooling relies on such damping forces. 

The one-dimensional concept of laser cooling can be extended to three dimensions 
by exposing an atom to counter-propagating laser beams in all directions of space. For 
this at least four tetrahedrally arranged laser beams have to be used. This situation 
corresponds to the strongly damped motion in a highly viscous liquid and is called 
'optical honey' or 'optical molasses'. 

11.6.3 Heating forces, Doppler limit 

The spontaneous light force not only causes an acceleration in the direction of the beam 
(which can be combined with cooling) but also a fluctuating force leading to heating 
of an atomic ensemble. 6  In a simple model we can consider the heating effect by the 
stochastic effect of the photon recoil hk caused by spontaneous emission in analogy 
with the Brownian motion or diffusion of molecules. If N photons are randomly 
scattered, then for the average PN and the variance (A 2p) N  =p2N  - pN 2  of the atomic 
momentum change by the isotropic emission, we have 

pN  = 0 	and 	(A 2p) N  = p2N  = Nh2 k 2 . 

The heating force or power can now be estimated from the scattering rate for 
photons, dNIdt = (7/2)s 0 /[1 + so  ± (26/7) 2 ], so 

(d 
N—  P 	= dt 	heat 

h2 k27  so 
	  = 2D, 

2 1 + so + (25/ -0' 
where the relation with the diffusion constant D is taken from the theory of Brownian 
motion. In equilibrium, we expect the heating and the cooling or damping power to 
exactly compensate each other, 

(d p2  I dt) heat  + (d p2  dt),,,,, i  = 0. 

For the cooling power we use relation (11.20), 

d 
dt

P = — aP 	and 	--d  p2) 	= —2ap 2  , 
dt 	cool 

and for the stationary state we thus obtain 

p2  = D/a = MkBT. 

6 This fact reflects the very fundamental law that dissipative processes (here, damping forces) are 
always associated with fluctuations and thus heating processes. 
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It is associated with a characteristic temperature that is obtained by explicit insertion 
of D and a, 

kB TDopp 
	ky 1 + (26h) 2 

2 	46 1-y 
	

. 

When this temperature reaches its lowest value at 26/7 = —1 with kB TDopp  = h7/2, 
it is called the Doppler temperature. 

The Doppler limit has played an important role for many years since it was con-
sidered the fundamental limit of laser cooling. It was therefore a big surprise when in 
experiments considerably lower, so-called sub-Doppler, temperatures were observed. 
Optical pumping processes are the origin of sub-Doppler laser cooling, and thus they 
occur only in atoms with a complex magnetic fine structure. 

Excursion: Magneto-optical trap (MOT) 
In optical molasses, atomic gases are cooled down to the millikelvin (mK) range and lower by 
very efficient laser cooling. However, atoms cannot be stored in the intersection region of four 

or more laser beams only by radiation pressure, because they diffuse out of the overlap volume 
— the dissipative forces do not define a binding centre. This problem has been solved by the 
invention of the magneto-optical trap (MOT), in which the radiation pressure is spatially 
modified by a quadrupole field. 

(11.21) 

b) 
energy 

	

-1 	 1 
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1 	f 	DL - i  
u0L<€00 €01_,<wo 

cl+am 	I 	I ".ma  
= 0, m = 0 

Fig. 11.20: Magneto-optical trap. (a) Schematic setup with 3 pairs of counterpropagating 
laser beams. A set of two coils carries opposing currents which generate a quadrupolar mag-
netic field with a zero at the center. (b) Spatial dependence of energy levels for a model J=0 
to J=1 atomic transition. In given direction, the magnetic field increases linearly from the 
center. 

In one dimension, the MOT can be explained using the simplified example of an atom with 
a J.  = J = 1 transition (Fig. 11.20(b)) which is exposed to a pair of counter-propagating 
light beams with circular polarization of opposite handedness in a linearly increasing mag-
netic field (.53-±c.--  configuration). Away from the centre and for red detuning (caa, < WO), a 
sufficiently slow atom is always much more in resonance with the laser beam whose radiation 
pressure is directed to the centre of the quadrupole field. Thus the atom will experience a 
force directed towards this centre. 

In three dimensions, a spherical quadrupole field has to be used. It is generated by two 

coils with currents flowing in opposite directions  ('anti-Helmholtz  coils'). The handedness 
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of the circular polarizations has to be chosen in accordance with the magnetic field (Fig. 

11.20(a)). The simple one-dimensional concept has led to success in three dimensions as 

well. The realization of the MOT with simple vapour cells has significantly contributed to 

its widespread use. The MOT is used in numerous laboratories in experiments for laser 

cooling. In the MOT, an equilibrium between loading rate (by capture of atoms from the 

slow part of the thermal distribution) and loss rate (by collisions with 'hot' atoms) is built up, 

which typically contains some 108  atoms and has a volume of 0.1 mm diameter. The residual 

pressure of the cell must not be too high, because the loading of atoms into the magneto-

optical trap must not be interrupted by collisions with fast atoms during the capture process 

(which takes some milliseconds). 

11.6.4 Dipole forces in a standing wave 

Let us now evaluate the magnetic force, Eq. (11.15), for the case of a standing wave 
field generated from counter-propagating plane waves. In this standing wave the B 
field is shifted by 900  with respect to the electric field, 

E(z) = 2E(t) cos(kz) 	and 	B(z) = (2i/c)e k  xE(t) sin(kz), 

and the time average picks out the real part in this case (compare Eq. (11.16)): 

Fmag = kc1(8)sin(2kz)1E1 2 . 

This force is called the dipole force and can be derived from a potential 

Udip  =  11 '(8)/(z)/2c€ 0 . 

The interpretation is obvious as well: the force shows a dispersive frequency character-
istic, i.e. it changes sign with detuning from the resonance frequency. An interesting 
application of dipole forces in a standing wave is realized with 'atom lithography' and 
is described on p. 346. 

In order to proceed to the semi-classical description, we may again use the trick 
from the previous section (see Eq. (11.17)), which yields 

Udip  = h,.(51.11(1 	s). 

Dipole forces derive from a conservative potential and thus should be disturbed by 
spontaneous events as little as possible. Therefore, in applications a large detuning 

>> -y' is chosen and correspondingly small saturation parameters s (I I I0 )1(61-Y) 2  
(6.31) are obtained, so that to a good approximation the dipole potential results in 

I ky 12  
Udip (r)  

Dipole forces, though, only exist if the intensity of the electromagnetic field de-
pends on position, for example in the standing wave mentioned above. Also a Gaussian 
beam profile makes an inhomogeneous light field and indeed provides an optical dipole 
trap for atoms and molecules [37], closely resembling the macroscopic optical tweezers 
of section 11.6.6. Dipole forces always occur when coherent fields are superimposed. 
The details can be complicated because of the three-dimensional vector nature of the 
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fields, and can cause the appearance of 'optical lattices' [51]. These are standing-wave 
fields with periodicity in one to three dimensions in which laser-cooled atoms move 
like in a crystal lattice. 

Excursion: Atom lithography 
By means of standing-wave fields, apparently strong forces can be exerted on the motion 
of atoms. Direct experimental proof is not very simple since the motion occurs even on 
a microscopically small scale. A transparent example for the application, though, is the 
so-called 'atom lithography', which is an example of atom nanofabrication [72]. With this 
method the dipole forces of a standing wave serve to modulate the intensity of an atomic 
beam when it is deposited onto a surface. The surface is physically or chemically modified 
only where the atoms hit. The experimental concept is presented in Fig. 11.21 and is as 
outlined below: 

nm 

(c) 
Fig. 11.21: Atomic lithography - see text for details. 

(a) A substrate is exposed to an atomic beam that has just passed a standing wave 
generated by a mirror arranged behind the substrate. 

(b) The simulation of atomic trajectories in a half-wave shows that the atoms are focused 
onto the surface in close analogy to an optical lens. Even spherical aberrations are visible. 
The periodic field of micro-lenses generates changes on the substrate by either growing layers 
(direct deposition') or causing chemical reactions (neutral atom lithography') with dimen- 



11.6 Light forces 	 347 

sions considerably below optical wavelengths. Therefore atom lithography is included in the 
class of methods allowing structuring at nanometre scales. 

(c) An example of nanoscale grooves manufactured with a Cs atomic beam and a standing-

wave light field at À  = 852 nm. 

11.6.5 Generalization 

Let us briefly discuss the relation of electric and magnetic forces again that we started 
at the beginning of this section. We can also express the magnetic force (Eq. (11.15)) 
according to 

d 
Fmag = (—dt (dxB)) — (c1x1). 

The first term vanishes when averaged over a period. If the particle velocity is small, 
< c, furthermore dB I dt as/at = v xE can be replaced, yielding 

Fm ag  = (-dxVxE), 

or component-wise 

[  a 	a 
Fimag = 	

, 
(Eui Laxi  2-13 	 Eil). 

Comparison with Eq. (11.14) shows that the total force can generally be determined 
from 

F = F 	(e1 +Fmag , E di  vEi  . 
i 

11.6.6 Optical tweezers 

In the last section we investigated the mechanical effect of light beams on microscopic 
particles such as atoms. Especially for dipole forces we can give a macroscopic analogue 
that is used more and more widely, the so-called 'optical tweezers' [82]. 

The dispersive properties of an atom are in fact similar in many ways to those of a 
transparent dielectric glass sphere for which we can describe the effect of macroscopic 
light forces qualitatively and in terms of ray optics. 

In Fig. 11.22 the position of a glass sphere is either transversely shifted away from 
the axis of a Gaussian laser beam (left) or longitudinally shifted away from the focus of 
a focused beam. Taking into account that the refraction of light beams causes transfer 
of momentum just as for atoms, we can infer from the directional changes of the beams 
that there is a mechanical force exerted on the glass sphere. 

Optical tweezers are useful as non-material micro-manipulators in microscopy, for 
instance bacteria in liquids can be caught, trapped and moved. 
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Fig. 11.22: The effect of optical tweezers in terms of ray optics. White arrows: forces on 

the glass sphere. Dotted arrows: momentum change of the light rays. The transversal profile 
of a laser beam is indicated above the spheres. 



12 Nonlinear optics I: Optical mixing processes 

Fig. 12.1: A nonlinear polarization PNL is generated in a dielectric material at large inten-
sities, in addition to linear interactions. It acts as the source of a new electromagnetic field 

ENL, which acts back onto the polarization. 

Up to now we have mostly considered polarizations connected linearly with the driving 
field. The theory of the linear response was completely sufficient as long as only 
classical light sources were available. Since the invention of the laser, we have been 
able to drive matter so strongly that, besides linear contributions to the polarization 
(like in eq. (6.12)), nonlinear ones also become noticeable. 

12.1 Charged anharmonic oscillators 

We can modify the classical model of Section 6.1.1 to obtain a simplified microscopic 
model of the properties of nonlinear interactions of light and matter. For this purpose, 
we add a weak anharmonic force max2  to the equation of motion of the linear oscillator. 
This model reflects, for example, the situation of the potential of a charge in a crystal 
with a lack of inversion symmetry. At the same time we neglect the linear damping 
by absorption and scattering, which are undesired for the application and the study of 
nonlinear processes and, as we will see, make the formal treatment even more complex. 
So we consider the undamped equation 

wgx ax2  = 	cos(cot). 
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x=0 

Fig. 12.2: Charged oscillator in an anharmonic potential. By the anharmonic motion, the 

harmonics of the driving frequency w are excited. In a real crystal, x(t) has to be replaced by 
an appropriate normal coordinate. 

We now seek a solution x(t) = x( 1 )(t) ± x( 2)(t) with x (1 ) as the already known 
linear part, x (1) (t) = xi, cos(wt). 1  The amplitude is xi, = qe I m(wg — co 2 ) and the 
small nonlinear perturbation 0(2)1 < i x (1)  1) approximately fulfils the equation 

(2) ± wo2 x (2) = _a  [(x (1) N 2 ) + 2X(1) X (2)  ± • • .] ^1  —c4 cos2 (wt). 
We now split the nonlinear polarization into a constant and a term oscillating at 

twice the frequency of the driving field le, 

(2)  X = xg ± xV2 . 
We find the solution 

2 
(2) cal, x = 

1-7  
DC

0 ' 
2 

(2) 	 axi, x 2w =-
2(4 — 4w2) 

COS (2wt) . 

The first term describes the shift of the mean position of the charge caused by 
the asymmetry of the potential. So the optical wave causes a constant, macroscopic 
polarization of the sample, which we can as well interpret as 'optical rectification' or 
as 'inverse Kerr effect' (see Section 3.6.1). 

The second term describes the first harmonic of the charge at frequency 2w. For 
suitable conditions, which will be discussed in more detail in Section 12.4 on frequency 
doubling, the sample emits a coherent electric field at this frequency! 

In analogy with the linear case, we can introduce a nonlinear susceptibility describ-
ing nonlinear light—matter interaction. It causes a harmonic wave at frequency 2co and 
is connected with a new polarization at this frequency, 

a(q/m) 2  
P2b) (t ) = 2(4)  _ w2 )2 (4 _ 4w2) e2cos(2wo. 

1 In transparent materials the electronic resonances are far away and we can neglect the absorptive 
contribution (cx sin wt) to a good approximation. 
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We thus obtain a nonlinear susceptibility 

1 (1 (qin1) 2  

X( 2w) = eo  2(43  _ w2)2(u)(1 _ 4w2) .  (12.1) 

It is interesting to note that it shows a resonance at wo  = 2c.0 which may be interpreted 
through two-photon absorption. 

12.2 Second-order nonlinear susceptibility 

We can generally describe the response of a sample to one or more optical waves by 
means of nonlinear susceptibilities. In the following we only consider monochromatic 
electric fields, which we split into positive and negative frequency parts using the 
complex notation, 

E(r, t) 	= 
E(+)(r, t) = 
E( — )(r, t) = 

(E(±) +  
E e -i(wt-kr) 

, 

(E ( ±)(r, 0)* , 

and correspondingly for the dielectric polarization P( 1). If the field is linearly polar-
ized, the amplitude is calculated from 

- 
\I  I  

lel 	nc€0 , 

because, in this definition, 1E1 2  = E(+)E( — ). The linear relation of field strength 
and polarization is already known from Eq. (6.14). In order to avoid the elaborate 
presentation using the convolution integral, we symbolize it here by the ® sign, 

P(r, t) == COX(1) ® E(r, t). 

Furthermore we use an additional superscript index `(1)' to identify the linear or first-
order contribution. In the most important case of monochromatic fields, a simple 
product is recovered from the temporal convolution (Eq. (6.14)). 

At high field intensities the nonlinear contributions of the polarization also lead to 
perceptible effects, 

= plin(r, t ) ± pNL( r, t ) 

= co [X (1)  ® E(r, t) ± X( 2 ) ® E(r, t) ® E(r, t) + • • .1. 

Terms of second order and higher are the topics of nonlinear optics; they are also 

called 'nonlinear products'. In general, the interaction is anisotropic (x( 1 ) = 
(2) 	(2) 

X = X 	etc.) and depends on the individual vector components; thus nonlinear 
products for all the relevant field components can occur ((E ® E)i1 = Ei  0 Ei , etc.). 

P(r, t) 
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12.2.1 Mixing optical fields 

For each order of x(n), a series of new frequencies is generated through the 'mixing' 
products, the e - iwz t  e - iw3 t  ... e - iwnt terms, . It is thus much simpler for nonlinear 
optics to sort the contributions to the polarization by their frequency components 
w = CA.)1 ± CA.)1 ± . . . ± co,. A general term for the polarization of second order can, for 
instance, be given componentwise by 

(2) 	 . Pi (w) --= E 	X(  C.'-) , WmWri)Ej(C 4-)m)Ek PO • 	 (12.2) 
jk mn 

For a simplified one-dimensional and isotropic case (j =- k), we can extract all the 
frequency components of nonlinear polarization from 

E(r,t) 2  = 

2 

(E,Ç,;,F ) ) 2  + E1 7-,F ) E n,-)  +2  E (EL-F)E i+) + EL-F)E,—)) + c.c. 
i  L 	 n±rn 

Already by irradiation with just two optical waves (m = 1, 2) of different frequency 
(w1 ,2 in Eq. (12.2)) nonlinear polarizations at five different sum and difference frequen-
cies are produced, which act as the driving force for generation of a new wave at the 
mixing frequency: 

P(2co1) 	second harmonic frequency (1) (SHG), 

P(2w2) 	second harmonic frequency (2) (SHG), 
P(wi  +co2) sum frequency 	 (SUM), 	 (12.3) 

P Pi  —w2 )  difference frequency 	 (DIF), 

P (w=-0) 	optical rectification 	 (OR). 

Two field components each with frequencies co l , co2  generate a polarization at 
frequency co. The corresponding susceptibility is characterized by the notation 

(2) 
Xijk V - 4-1 1 Wl, W2) 7 	W = W1 + W2 . 

The indices `ijic' can represent every Cartesian coordinate (z, y, z) and take the ten-
sorial character of the susceptibility into account. Therefore for each frequency com-
bination in principle there are 27 tensor elements in second order. 

Neglecting the Cartesian dependence for now, the following relations can be found 

by splitting the polarization into Fourier components Pi (r,t) = (P 	_/3, ) )/2 and 
by comparison with Eq. (12.3): 

P(+) (c0=1,01) 	= foX (2) (w, col,  

P (+) (w=-2w2) 	= fox (2) (w,w2,c02)(E +) ) 2 , 

P (+) (w=cui +W2) = 2f0X(2)(W,  w1,  

P(+) (W =C-i-) 1 — W2) =  2€o 2  (w, w1,  —W2)W ) E —) , 

P(+)  (W=0) 	= 2f0 [X(2)(0;  w1,  

+ X (2) ( 0 ; W2, — W2) E2+)E2 ) 1* 



11) 11) 

1g) 	 1g) 
SHG 	DIF OR 

11) 

Ig) 

SUM 
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12)  	12) 12)  	12) 

Fig. 12.3: Passive X (2)  processes. SUM = sum frequency generation; SHG = second har-
monic generation; DIF =  difference frequency generation; OR = optical rectification. 

12.2.2 Symmetry properties of susceptibility 

The search for crystals with large nonlinear coefficients is a matter of continued sci-
entific research. The symmetry properties of real crystals play an important role [14] 
and will be here subject to a short consideration with regard to nonlinear optics. For 
the sake of simplicity, we restrict this discussion to the second-order effects. 

Intrinsic permutation symmetry 

Using two fundamental waves and one polarization wave, six different mixing products 
can be generated if we additionally require w = w1 CO2, 

(2)/ 	 \ 	(2) 	 \ 	(2) / 
Xijk lW; W1 , W2); 	 k kWl; 	W); Xkw2; W, —W1); 

(2) / 	 \ 	(2) 	 \ 	(2) / 
Xijk l L4) ; W2 ,  W1); Xij kL 4-)1; ) —w2 ) ;  Xijk lW2; 	w). 

The upper row is identical to the lower one when coordinates (i, j) are permuted along 
with the corresponding frequencies, 

(2)/ 	 (2) / 
Xijk ch) ; W1 W2) -= Xikj ‘.0 ; W2, W1)• 

Real electromagnetic fields 

Since the harmonic time dependence of P( - ) is connected with P(+) by replacement 
of wi 	—wi , the following has to be valid: 

(2)/ 	 (2) / 
Xijk 	0-)k) 	 — Wk — wir .  

Loss-free media 

In loss-free media the susceptibility is real. Then we have 

	

(2) 	 (2) / 

	

Xiik 	; Wj wk) 	Xijk 	— Wk, 	)• (12.4) 
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In addition, 'complete permutation symmetry' holds, i.e. all frequencies can be per-
muted if the corresponding Cartesian indices are permuted at the same time. For 
this it has to be taken into account that the sign of the commuted frequencies has to 
change in order to meet the condition co = col + W2, 

(2) 	 (2) 	 (2) 
Xi3 0.4-1 , W1 W2) = X3ik 	—W, W2) = Xji0,01, W, — W2). 

In the last step we used Eq. (12.4). A proof of this symmetry can be based on the 
quantum mechanical calculation of x or the energy density in a nonlinear medium. 

12.2.3 Two-wave polarization 

In the previous section we have seen that one or more new polarization waves result 
as a mixing product of two input fields, 

p(+)  = E0X (2) (W; W1 , W2)WW ) , 

€0X (2)  (W1 ; —W2,W ) E-)E(±), 
	 (12.5) 

€0X (2)  (W2; W, — W 1 ) E(+)E1 -) ' 

At the same time a new field at the frequency of the polarization wave has to emerge, 
which by nonlinear interaction now itself contributes to the polarization at the al-
ready existing frequencies. This nonlinear coupling describes the back-action of the 
nonlinear polarization onto the fundamental waves, e.g. the exchange of energy. With 
the symmetry rules of section 12.2.2, we can confirm that for the approximation of 
loss-free media the X (2)  coefficients in Eq. (12.5) are identical! In Section 12.3.1 we 
shall go further to investigate the coupling of three waves. 

Contracted notation 

In nonlinear optics the 'contracted notation' is used very often, which at first is defined 
by the tensor 

(2) 
dijk = V(ijk• 

The notation is now simplified and the number of possible elements is reduced from 

27 for x, 32.?, to 18 by contracting the last two indices (j, k) to a single index 1, i.e. 
dij k di1. So because of the intrinsic permutation symmetry we have 

j k : 11 22 33 23,32 31,13 12,21 

1 : 1 2 3 	4 	5 	6. 

For example, the matrix equation describing frequency doubling reads with the dii 
tensor 

( Px ( 2w) 	du_ d12 d13 d14 d15 d16 
Py (2w) = 2 d21 d22 d23 d24 d25 d26 
13, (2w) 	d3 1  d3 2 d33 d34 d35 d36 

f Ex  (w) 2  

Ey  (w) 2  

E(w) 2  

2E y  (w) E (w) 

2E x  (w)E (w) 

\ 2E x  (w)Ey (w) 

(12.6) 
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Kleinman symmetry 

Often the resonance frequencies of a nonlinear material are much higher than those of 
the driving fields. Then the susceptibilities — which typically have forms similar to our 
classical model of Eq. (12.1) — depend only weakly on the frequency and are subject to 
the approximate Kleinman symmetry. If furthermore the susceptibility does not even 
depend on the frequency, the Cartesian indices can be permuted without permuting 
the corresponding frequencies at the same time. The Kleinman symmetry reduces the 
maximum number of independent matrix elements from 18 to 10. 

biaxial uniaxial uniax'al/isotropic 

32 622 
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X 	
1  
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- 	
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222  6 42m 
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23 

Fig. 12.4: Non-vanishing second-order coefficients deff (according to Zernike and Midwinter 
1973, /118], see also 1-1,4». Identical coefficients are connected by lines (dashed: only for 

Kleinm,an symmetry). Full and open symbols indicate opposite signs; square symbols vanish 
at Kleinman symmetry. 

12.2.4 Crystal symmetry 

A crystal with inversion symmetry cannot show any susceptibility of second order at 
all. With the inversion of all coordinates, the sign of the field amplitude changes as 
well as that of the polarization, 

Pi (1) --= diikEi (r)Ek  (r) 	—Pi (r) ----= dii kEi (—r)Ek(—r). 

Thus the inversion symmetry leads to du k = 	= 0, and from 32 crystal classes 
those 11 exhibiting inversion symmetry are eliminated. The symmetry properties of 
the remaining crystal classes significantly reduce the number of non-vanishing non-
linear (1 coefficients that are independent of each other. In Fig. 12.4 the non-zero 
coefficients for the different crystal classes are given in the standard notation. 



E(r,t) = 
e2  at2 

1 a2 
pNL(r, t ) .  n2  a2 

E0C2  at2 
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12.2.5 Effective value of the nonlinear d coefficient 

In general nonlinear crystals are anisotropic and birefringent; indeed we are going 
to detail that the asymmetry of birefringence really makes their efficient application 
possible. Frequently one finds quotations of effective values deff depending on the 
so-called phase matching angles 0 and q5 given for the di1  coefficients, which are also 
tabulated [27]. 

12.3 Wave propagation in nonlinear media 

In order to understand the propagation of waves in a nonlinear medium [17], we first 
consider again the general form of the wave equation in matter, 

182 	 1 a2 	
, VxVx E(r,t) + —

c2  at2
E(r

'
t) =  	P(r t). 

€oC2  at2 

The first term of the vector identity VxVxE= V(V • E) - V2 E cannot be removed 
in nonlinear optics as easily as for linear isotropic media because V • E = 0 can no 
longer be inferred from V • D = O. Fortunately the first contribution can be neglected 
in many cases of interest, especially for the limiting case of planar waves: 

(\72 _ 1 82  
-at2 ) E(r,t) =  1   82  P(r,t). 

€0 2  at2  

The polarization contains linear and nonlinear parts, P = P( 1 ) + PNL . The linear 
contribution has an effect only on one or more fundamental waves EF driving the 
process and is taken into account through the refraction coefficient n2  = 1 + x(1) , i.e. 
P( 1 ) = eo (n2  - 1)EF . Then a new wave equation is obtained driven by the nonlinear 

, polarization, pNL  

If this vanishes, the already known equation for the propagation of a wave in a dielec-
tric medium is found. In a dispersive medium, the refraction coefficient depends on 
the frequency, n = n(w). We now consider again each frequency component wi sep-
arately and also split the oscillating part from the positive and negative polarization 
components, 

pNL (r,t) 	e-iwt t 	eiwt tu2.  

With this notation the wave equation separates into single-frequency Helmholtz equa-
tions and can be written as 

( 	
2 	 2 

\72 n(w)2 ei (r ) eikr = W — 

e2 
"C

i 2
P,„(r). 

 
(12.7) 
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12.3.1 Coupled amplitude equations 

To simplify equations (12.7) we first consider only planar waves propagating in the z 
direction. Additionally, it is generally realistic to assume again that the amplitudes of 
the waves change only slowly compared with the wavelength or that the curvature of 
the amplitude is much smaller than the curvature of the wave: 

a2e( z) 

az2  

Then with 

 

k 
ag(z)  

az 

   

a2 	 a 
az2  [e (z) e k  z] ekz  [2ik—

az 
— k 2] (z) 

the wave equation is reduced to an approximate form 

w 2 
[2ik 	- k2 + n2 (w)w2 	(z) = 	2P(w) e—ikz. 

aZ 	 c2 	 €0C 

With k2  = n2 (w)w 2 /c2  we can furthermore identify the wavevector of propagation in 
a dielectric medium and arrive at 

2 	- 
=  w 

Eoc2 	(
o) e —ikz .  

dz 	2k 
(12.8) 

Incidentally, a more exact consideration shows that not only a forward-running but 
also a backward-running wave is generated, but only the forward-running wave couples 
significantly to the fundamental wave ([94 chapter 33). 

For each of the complicated wave equations from (12.7), we can therefore draw up 
a simpler equation according to (12.8) replacing the polarization by its explicit form, 
e.g. according to (12.5). The most important problems of nonlinear optics can be 
solved with this standard method. 

12.3.2 Coupled amplitudes for three-wave mixing 

The nonlinear polarization describes the coupling between the fundamental waves 
Ei  (wi ) and E2 (w2 ) and their mixing product E3 (w). For symmetry reasons according 
to Eq. (12.5) we use the same x(2 ) coefficients for the nonlinear susceptibility in all 
three cases. 

For this purpose we write down the three amplitude equations according to Eq. (12.8) 
by inserting the polarizations from Eq. (12.5). Introducing the abbreviation 

Lk  = k —  k 1  — k2, 

we get 

753 (z ) e —ikz 	 e ik 1 Z e2  e ik2z e —ikz = 4 Eo deff ei e2 e —iAkz .  = --tEoctd  effc.-1  
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The factor 4 occurs here because we have to sum over all contributions to the polar-
ization according to Eq. (12.2). We insert in Eq. (12.8), and for the sake of improved 
transparency we use the complex conjugate of the equations for e1,2: 

d 
—
dz

e3(w) = 

d 

dz 67(wi) = 

d 

ilZ e;k(w2)  = 

2iwdeff 6,2  e —iAkz 

cn(w) 

—2iw1d eff  e . 6.2  e —iAkz 

cn(wi) 3  

— 2iW2deff  e  s . e —iAkz .  
en (W2)  1 3  

(12.9) 

In principle with these equations all important x (2)  processes can be addressed. For 
passive processes, including frequency doubling, sum and difference frequency mixing, 
and optical rectification, initial conditions  C, 6.2 0 and E3  = 0 have to be considered. 
It is also possible to understand the parametric oscillator using this set of equations. It 
resembles an active medium in a way similar to the laser, where the initial conditions 
now have the form C1, C2 = 0 and C3 O. 

12.3.3 Energy conservation 

The intensity I of a linearly polarized wave in a dielectric medium with refraction 
coefficient n(w) is 

I = n(co)c€01E 2 . 

By multiplying equations (12.9) with the respective conjugate amplitude n(w i )cfoei* 12, 
the Manley-Rowe relation is obtained, 

1 d 
—
1d 	 1 d 

I3 (w) = 	—= 	12(w2). w dz 	w 1 dz 	W2 az 

This describes the conservation of energy, since the expression is equivalent to 

13(w) + (col ) + /2 (CO2) = 

because co = co l  ± co2 . This fact is also called 'photon conservation', for in this inter-
pretation two photons with frequencies co l  and w2 are combined to make one photon 
with frequency w. This term, though, is just another expression for energy conserva-
tion. Nonlinear optics does not at all have to invoke quantum physics for theoretical 
explanations. 

Nevertheless the fact of the conservation of photon number is convenient and we 
can transform equations (12.9) to normalized amplitudes 

A, = 
n(w i )  

The amplitude of the electromagnetic wave is now 

/ = c€0w1A(r, tr, 



12.4 Frequency doubling 	 359 

and we find 

d A ( 	iK..111 A2 CrZ '13 (2))  = 

—ddz ..41(Wi) = —ik.A./42 ez 

d ,4* (co
2 
) = -iK14.1,4* 3 ' aZ 2   

with the material dependent coupling coefficient 

2deff 	LowiW2  = 
C 	n(w)n(w 1 )n(w2 ) .  

(12.10) 

12.4 Frequency doubling 

The first important special case of the coupled amplitude equations (12.9) is frequency 
doubling. It has a particularly great significance because with this method coherent 
harmonics of a fundamental wave can be generated. By this means, for example, 
coherent ultraviolet radiation becomes available at wavelength where no tunable laser 
system exists. The equations (12.9) are in this case reduced to two equations due 
to the degeneracy of w 1  and wi. We once again recapitulate the form for the field 
intensity of the fundamental wave eFuN and for the second harmonic EsHG , 

d Tz- esHG(2w)
de_p2 	) 

cn(2w) -  

d  ç 	 iw 
(w) E,FuN(w) = 	2deffesHG ( 2W) eFUN (W) eiAkz. cn 

Because of the degeneracy, the term for frequency doubling appears only once in eq. 
(12.2), and therefore the first equation is smaller by a factor of 2 than in eq. (12.9). 
The so-called phase mismatch, 

Lk  -= k2, - 2Ic„, = —
2w

(n2w  — nw), 
	 (12.12) 

apparently depends on the difference of the refraction coefficients of the fundamental 
and harmonic waves. Owing to the fact that dispersion of common materials is always 
present, we have n2u, n, . For simplification we again use normalized equations 
(12.10) with AFuN(w) = (n/w) 172 eFuN(w) and AsHG(w) = (n2w/w) 1 / 2 EsHa, 

d A  crz  SHG = iKAFUN e-
iAkz , 

(12.13) 
d 
—  dz  FUN — iKASHGA;uN 

eiAkz A . 

2 The coupling coefficient, K = (2def F I C) I (C.J3 /n2w n,) 1 / 2 7  here is also slightly modified 
compared to (12.11), 



2  F2 =  

2 COL) C
3 CO nw  nav 

4de2ff  (kJ 2  
=-- 
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12.4.1 Weak conversion 

Usually only the fundamental wave enters a crystal of length f, i.e. we have ASHG (Z=0) = 
0. In the weak conversion approximation, we assume that the fundamental wave is only 
slightly weakened, i.e. AFuN const. Then we need to solve only the first equation 
of the system (12.13) and finally achieve the harmonic amplitude at z = f, 

ASHG — kt.4uN ( o) 
etAkE/2sin(Ake/2) 

Ake/2 • 

The quantities that depend on the material are combined into the conversion coefficient 
F,  

(12.14) 

Further, the intensity of the harmonic wave depends only on the crystal length L , the 
incident intensity and the phase mismatch Ak: 

sin2 (Ake/2) 
(Ake/2) 2  • 

Depending on the magnitude of the phase mismatch Ak, it obviously oscillates between 
the fundamental radiation field and the harmonic wave when propagating through the 
crystal. 

-5 	 0 	Akt 5 

Fig. 12.5: Evolution of the intensity Isfic, of the second harmonic for the limiting case of 
weak conversion. Only for perfect phase matching can continuous growth of the nonlinear 
product be achieved. Otherwise the radiation power oscillates between the fundamental and 
the harmonic like the wave in the middle picture. 

The phase mismatch according to Eq. (12.12) is 1n, — n2,1 	10-2  in typical 
crystals with normal dispersion. That is why the intensity of the harmonic oscillates 
with a period of a few 10 Jim, which is called the 'coherence length', 

it 	 A 
fcoh = 

Ak 4(n2, — n,) • 
(12.15) 

/SHG =  r2f2guN 

Only in the case of perfect 'phase matching' at (n„ — n2„) = 0 does the intensity 
grow continuously with crystal length, 

-ISHG (12.16) r2a,uNe. 
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This relation suggests that for frequency doubling it is worth while to increase the 
intensity by focusing and to make the crystal longer. Though by focusing, as we 
know from the description of Gaussian beams (Section 2.3), a constant intensity, a 
quasi-planar wave, is generated only in a narrow range around the focus, so that a 
compromise between the demand for strong focusing and long crystals has to be found. 

300 
	

400 
	

500 
	

400 
	

500 

Fig. 12.6: Refractive index for BBO and KNb0 3  as a function of the wavelength. In the 
uniaxial BBO crystal the ordinary refraction coefficient (no) of a fundamental wave is found 
in between the ordinary and the extraordinary coefficient (Ti e) of half the wavelength, which 
corresponds to the frequency-doubled wave and makes the angle phase matching possible. In the 
tri  axial  KNb03 (refractive indices na ,  rib , no) phase matching can be achieved by temperature 
tuning. 

12.4.2 Strong conversion 

In the extreme case of strong conversion, the decrease of the intensity of the pumping 
wave cannot be neglected any more. We consider the case of perfect phase matching 
Ak = 0. In order to get real equations, let us introduce the quantities Astic ==- 
AsHG ei O 2 w and AFuN = AFuN ew with real amplitudes A. Then we have 

d 
—dz 	 FUN ASHG =  

 e 

and we are now free to choose the relative phase of the amplitudes, e.g. e-i ( 20w 	) 
-i. As a result of energy conservation we have 

d 
—
dz

(iAsHG1 2  lAFuNi 2 ) = 0. 
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Then for the case of a harmonic vanishing at the input facet at AsHG(z=0) = 0 and 
AFuN (z=0) = Ao (we immediately remove the — marks) the real equations are: 

d A 
crzv-ISHG = NAFUN = KIAFUN 1 2  = Nog - A2 SHG , 

d A 
crz ,,FuN — — kAsHcAFuN - 

The first equation can be solved by standard techniques and results in 

AsHG (Z) = A10 tanh(NAo)• 

Thus in principle 100% conversion efficiency can be achieved for frequency doubling 
since at the end of a long crystal the harmonic intensity 

/SHG (Z) =  10 tanh2 (1t1 1/' 2) z) 

should be found. This result is important particularly for frequency doubling with 
powerful pulsed lasers since it promises very efficient second harmonic generation. 

12.4.3 Phase matching in non-linear crystals 

We have already seen in Eq. (12.15) that frequency conversion takes place only over a 
certain length depending on the dispersion n(w). Birefringent crystals already intro-
duced in Section 3.5.1 make it possible to realize fcc,h  —> co by choosing a direction of 
propagation in which the refraction coefficients of fundamental and harmonic wave are 
identical. Also, in Section 12.4.6 we shall discuss the method of 'quasi-phase matching', 
which has arisen more recently as a successful method of outwitting dispersion. 

Fig. 12.7: Polarization directions of fundamental and harmonic wave for phase matching. 
In a crystal with negative (positive) birefringence, the shortest wavelength has to propagate 
on the extraordinary (ordinary) beam. For type I matching all polarization directions are 
orthogonal. For type II matching one polarization direction is used to achieve equally strong 
projections onto the optical principal axes. 

The simplest situation occurs in uniaxial crystals. For the ordinary beam, polar-
ization and propagation direction are perpendicular to the optical axis, and the phase 
velocity is characterized by the linear ordinary refraction coefficient no (w). Since 
frequency conversion usually takes place in crystals with normal dispersion for the 
harmonic wave, the smaller refractive index must always be chosen, i.e. in a negatively 
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uniaxial crystal (ne  < no ) the harmonic has to be chosen as the extraordinary beam, 
in a positively uniaxial crystal (no  < ne ) as the ordinary one. Then phase matching 
can be achieved by choosing the polarization of the fundamental wave orthogonal to 
the harmonic (` -type I phase matching'). Alternatively, according to Eq. (12.6) the 
polarization of the fundamental wave can as well be spread over ordinary and extraor-
dinary beams (i.e. incidence under 45° to the crystal axes) using the 'type II phase 
matching', so that the four alternatives of Fig. 12.7 are available. 

Angle or critical phase matching 

As we have already investigated in Section 3.5.1, the refraction coefficient ne (0) of 
the extraordinary beams depends on the angle between the optical axis and the beam 
direction according to the `indicatrix' since the polarization has components parallel 
as well as perpendicular to the optical axis (Eq. (3.36)), 

1 	cos2  0 	sin2  0 
	= 	+ 	 
ne (0) 	• 

Phase matching can now be achieved by choosing appropriately the angle between the 
fundamental wave and the optical axis. For a negatively (positively) uniaxial crystal, 
the angles of phase matching for type I/II are determined from the conditions 

type I 	neg 	ne (0 , 2w) = no (w), 

	

pos 	ne (0 , co) = n0 (2w), 

type II 	neg 	ne (0, 2w) = ---[no (c.o) + ne (0 , co)), 

	

pos 	n0 (2w) =  

From Eq. (3.36) we have for the case of negative type I phase matching 

cos2  Om  sin2  Om 	1 
no (2w) 

+
ne (2w) 	no(w)' 

from which we can deduce the phase matching angle 
71.;  2(w) _ nc:7 2 (2w ) 

sin 20 — 	  m ne  -2( 2w)  _ no-2 (2w)  • 

Similar relations are deduced for the other cases. 
For applications nonlinear crystals are cut with respect to the input facet (see Fig. 

12.8) in such a way that for normal incidence propagation occurs near to the ideal 
phase matching angle from the beginning. In order to minimize losses these facets are 
frequently atireflection coated, too, sometimes even for both the fundamental and the 
harmonic wave. 

Once angle phase matching is achieved, the walk-off problem occurs, since the 
ordinary and extraordinary beams propagate with the same phase velocity but not in 
the same direction. The walk-off angle p has already been discussed with Eq. (3.37) 
for uniaxial crystals, 

n2 ( 0 ) ( I-  _ 1) tan p = 
2 	

sin20. 
no2  ne2/ 
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Fig. 12.8: Phase matching by angle tuning (' critical phase matching). On the left, the 
`indicatrix' for a uniaxial crystal is presented. In order realize angle phase matching, there 
has to be an intercept between the ellipsoids of the refractive indices for the ordinary (n.) and 
extraordinary (ne ) beams. The fundamental must propagate at the phase matching angle with 
respect to the optical axis. On the right a typical set-up is shown, in which the crystal angle can 
be adjusted. Fundamental and harmonic wave deviate from each other since they correspond 

to the ordinary and extraordinary beams, respectively. The angle between fundamental and 
harmonic wave is called the walk-off angle. 

The harmonic wave therefore leaves the nonlinear crystal with an elliptical beam pro-
file. Additionally, the intensity does not grow quadratically with the crystal length 
but just linearly according to Eq. (12.16), since the harmonic already generated does 
not overlap any more with the fundamental wave after a certain propagation length. 

Non-critical or 900  phase matching 

The disadvantages of angle phase matching can be avoided if one succeeds in matching 
the ordinary and extraordinary refraction coefficients at the condition  O  = 90°. This 
situation is realized in special crystals where one of the two refractive indices can be 
tuned over a quite large range by controlling the temperature. Because of the long 
interaction length this method provides particularly large conversion efficiency. For 
this reason KNb03  is a very important nonlinear material: it has a large nonlinear 
coefficient and it allows 90° phase matching in the important near-infrared range. In 
Fig. 12.6 the refractive indices for the three axes (a, b, e) were presented. It shows 
that for the a cut phase matching can be achieved for frequency doubling from 840 to 
960 nm, and in the b cut from 950 to 1060 nm. Of course, the methods of angle phase 
matching can also be employed with these crystals. 

Besides '90° phase matching', also the terms temperature and non- critical phase 
matching are used for this type of phase matching. 
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Fig. 12.9: Focusing of a fundamental wave into a nonlinear crystal. If the Rayleigh zone of 
the Gaussian beam is larger than the crystal length, an almost planar wave propagates in the 
crystal volume. If the focusing is too tight, phase matching is again violated in the strongly 
divergent sections of the beam. 

12.4.4 Frequency doubling with Gaussian beams 

Having looked at the principle of phase matching from the point of view of plane 
waves, we now have to study the influence of realistic laser beams. The conversion 
efficiency increases with the intensity of the fundamental wave, and so focusing is an 
obvious choice. On the other hand, too strong focusing leads to large divergence, and 
reduces the effect again (Fig. 12.9). So intuitively an optimum effect is anticipated if 
the Rayleigh length roughly corresponds to the crystal length. 

A Gaussian beam (details about wave optics can be found in Section 2.3) in the 
TEM00 mode has radial intensity distribution and total power given by 

S(r) 	eo e-(r/w.)2, 

P = TccEo  27r f: dr r E ()1 2  = /0 1E4  2 	 2 

near the beam waist, where the characteristic parameters are 

(  bÀ  ) 1/2  

WO 4nn,„ 

b = 2zo 
A  

Odiv = itwonw 

radius of the beam waist, 

confocal parameter, 

divergence angle of the Gaussian mode. 

Boyd and Kleinman [13] gave a detailed discussion of this problem in the 1960s, 
and worked out suitable mathematical tools for its treatment. In the limiting case 
of weak conversion and weak focusing (i.e. b < .0, it can be dealt with by simple 
radial integration. At the end of a crystal of length f and with perfect phase matching 
Llk = 0, the following field strength can be found (K according to eq. (12.11)) 

esHG(r) = 	FUN 
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With wLIG  = wi,uN /2, the beam waists of fundamental and harmonic wave, the total 
output power depends on the fundamental input power and parameters such as the 
material constant F from Eq. (12.14) and the crystal length t: 

IrwFuN 
This corresponds to the already known result of Eq. (12.16). Besides, it can be calcu-
lated easily that the fundamental and harmonic wave have the same confocal parameter 
bstic = bFuN (see p. 40) under these circumstances. 

Boyd et al. have extended this analysis, initially derived for the case of 900  phase 
matching, to the angle phase matching situation. For this, normalized coordinates 
for the propagation direction (z t) and the walk-off direction (walk-off angle p and 
x 	u) are introduced, 

z t =  	with fa  = AFTEwFuN/107 
La  

— pe) 
WFUN 

and two new functions are defined by 
t 

.F(u,t) = f e- (u+r)2  dr, 
t 0  

œ)  J. F2(u,t) du. 

2 

PSHG 	 1  

	

r2 p2 T2 	 1 

	

0 	2 
1111)SHG 	r2 p2 p

FUN 	2 
2  	 (12.17) 

• " 

U = 

Fig. 12.10: Graphical representation of the functions g(t) and h(B,e) (according to Boyd 
and Kleinman /13D. 

The length La  is called the 'aperture length' and indicates when the harmonic beam 
has left the volume of the fundamental wave by walk-off. As a result, Eq. (12.17) is 
modified by the function g(t) < 1, 

r2 f 2p2 
2  FUN  

PSHG = 
nWFUN 
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This describes the reduction of the output power caused by the walk-off compared to 
beams that propagate with perfect overlap. In order also to describe the influence of 
focusing, it is common to introduce the parameters 

h(B, e) 	Boyd—Kleinman reduction factor, 

B = to(kl) 112 	birefringence parameter, 	 (12.18) 

C  = flb 	normalized crystal length. 

The result is 

	

r 2 f2 p2 	1 
PSHG — 	

i FUN  

nqHG e 

For 900  phase matching, we have B = 0, and for e = tlb  < 0.4 we can approximate 
h(0, e) = ho(e) '-' e, so that the previous result of Eq. (12.17) can be reproduced. One 
generally finds 

for 1 < e < 6, 

and the maximum value 

ho(e) = 1.068 at e = 2.84 

is realized for a crystal length corresponding to nearly three times the Rayleigh length. 
Another useful approximation for h(B,e) can be obtained by drawing on the bire-

fringence parameter B (Eq. (12.18)). For 1 < e < 6 where h(B,e) '-' h m (B) and 
1 holds, the approximation 

	

hm (0) 	1  
1 ± (4/3 2 /7E)hm (0) 	1 + Ofeff 

is found. Here the effective crystal length Leff has been introduced, 

TE 	 TE 
teff =  	

'. 

	

kp 2 hm (0) 	kp 2•  

12.4.5 Resonant frequency doubling 

The low conversion efficiency of nonlinear crystals can be used in a better way if the 
light is recycled after passing through the crystal. This can be achieved in passive res-
onators, some of the essential features of which we shall now describe. Alternatively, 
some nonlinear components can be inserted into active resonators. An important ex-
ample for intracavity frequency doubling is the powerful frequency-doubled neodymium 
laser from Section 7.8.2. 

hm  (B) r-' at fteeff >> 1 

Passive resonators 

To the losses of the resonator by transmission (T) and absorption (A), we now also 
have to add the conversion of the radiation power of the fundamental into the harmonic 



368 	 12 Nonlinear optics I: Optical mixing processes 

wave. Ashkin et al. [5] have elaborated that the maximum power of the harmonic wave 
can be determined from the implicit equation 

16T2 nspP,, 

[2—  -V1 —T (2  —A — 

Here the single-pass conversion efficiency (i.e. by single passage of the fundamental 
wave) for the crystal is indicated by is  = PL/Pw2 . 

In Fig. 12.11 a ring resonator to enhance the fundamental wave intensity is pre-
sented. The nonlinear crystal (NLC) is positioned at the focus of the resonator. For 
optimum results, the fundamental wave has to be precisely matched to the Gaussian 
mode of the resonator by external optical elements. Furthermore, one of the resonator 
mirrors can be adjusted by a piezo-translator (PT). It is controlled by a servo-amplifier 
(SA) and ensures that the resonator length is resonantly matched to the fundamental 
wave (FUN). The error signal may, for instance, be obtained from the properties of 
the light reflected off the input mirror. 

Fig. 12.11: Frequency doubling in a `bowtie' ring resonator. FUN = fundamental wave; 
SHG = second harmonic wave; SA = servo-amplifier; NLC = nonlinear crystal; PT = piezo-
translator. 

In the best case P2,, in Eq. (12.19) can be maximized by adjusting the transmis-
sion T. This is not possible when mirrors with a fixed reflectivity are used, but the 
frustrated total reflection can be used to achieve variable coupling of a resonator with 
a driving field (see Fig. 12.12). 

A compact layout for frequency conversion is offered by external resonators, which 
are directly made from the nonlinear crystal, i.e. 'monolithically' manufactured (Fig. 
12.12). They are well suited for temperature-controlled phase matching (p. 364). 
The mirrors are integrated through thin layers deposited onto the end facets of the 
nonlinear crystal or by means of total internal reflection. The coupling into the ring 
can advantageously be achieved by frustrated total internal reflection (FTIR) since 
the transmission is set by varying the separation, and therefore optimum conversion 
conditions according to Eq. (12.19) can be obtained. 

Pao = (12.19) 
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Fig. 12.12: Frequency doubling in monolithic resonators. In the lower ring resonator the fun-
damental wave (FUN) is coupled by frustrated total internal reflection (FTIR). The coupling 
strength is controlled by varying the separation of the monolithic resonator and the coupling 
prism. 

12.4.6 Quasi-phase matching 

For frequency conversion, the proper materials always have to be used under special 
conditions, such as for example angle phase matching, since the generally small electro-
optical coefficients do not allow any large tolerances. The low conversion efficiency of 
a laser beam at a single pass through a nonlinear material has driven the search for 
better materials (i.e. especially with higher electro-optical coefficients) or improved 
methods, like the resonator enhanced frequency doubling from the previous chapter. 
The search for new materials, though, is laborious, and the effort for servo-controls is 
quite high with resonant methods. 

An alternative route has been opened through successful generation of so-called 
'periodically poled' materials where existing and reliable nonlinear materials are tai-
lored in such a way that they allow efficient frequency conversion. The principle of 
quasi-phase matching is presented in Fig. 12.13. It was already suggested shortly after 
the invention of the laser [4], but has led to reproducible and robust results only with 
the manufacturing methods of microelectronics [68]. 

For production, a periodic pattern of alternating electrodes is deposited onto the 
crystal. A high-voltage pulse then generates alternating orientation or 'periodic poling' 
of the ferroelectric domains of certain nonlinear crystals 2  and so leads to a periodic 
phase jump in the coupling of fundamental and harmonic wave. Successfully used 

20f the 18 crystal groups allowing phase matching by using birefringence, only 10 are suitable for 
this method due to symmetry reasons. 



370 	 12 Nonlinear optics I: Optical mixing processes 

crystals include LiNb03  and KTi0PO4  (KTP). For the periodically manipulated form, 
also new abbreviations like e.g. PPLN for periodically poled LiNb03 are used. 

In Section 12.4.1 we have already 
investigated the coherence length 
Eq. (12.15) for a material where the 
phase evolution of fundamental and 
harmonic wave is not matched with 
the help of birefringence. The coher-
ence length f c  sets the scale for the 
period of choice for the artificially in- 

FUN 	 duced domain change. At the do- 
main walls phase reversal of the cou-
pling between fundamental and har-
monic wave takes place because of 
the change of the sign of the d coef- 

Fig. 12.13: Quasi-phase matching in nonlinear 
ficient. Thus the retroactive conver- 

crystals. The orientation of the ferroelectric do - 

sion found in a homogeneous material mains is inverted after each coherence length f c  
('periodic poling', PP). The wave in the lower part is suppressed by the periodic poling 

shows the effect of the crystal without periodic pol- structure and the harmonic wave in-

ing. According to [30.1. stead continues to grow. 
The theoretical description of fre-

quency doubling in homogeneous materials can straightforwardly be extended to the 
situation of periodic poling, where the modulation of the sign of the d coefficient is 
taken into account by a Fourier series, 

d(z) = deff 

00 

Cm e -ikmz 	and 	Gm  = —2-- sin(mnf/A). 	(12.20) 
7117T 

M=  -00  

Especially km  = 2nm/A indicates the reciprocal vector of the domain lattice, where 
A indicates the geometrical length of the period. In the end, only one of the Fourier 
components plays a significant role, all the others contributing only weak conversion 
similar to the mismatched situation without periodic poling lattice. The important 
coefficient fulfils the 'quasi-phase matching condition' Ak = km , and it is used in 
the orders m = 1, 3, .... Furthermore one finds [30] that the effective d coefficient is 
reduced by the Fourier coefficient (1G,1 < 1), 

dQ  = deffG m . 

We can now adapt the coupled amplitude equations (12.13) to the new situation by 
the replacements Ak .AkQ  =  Lk  — km  and deff dQ and iç ---+ KC) respectively in 
Eq. (12.11). The largest coefficient occurs in first order m = 1, thus dQ /deff = 2/n 
from Eq. (12.20); higher orders though allow longer periods and therefore reduce the 
tolerance requirements in manufacturing. 

The quasi-phase matching concept causes a reduction of the nonlinear coefficients 
but, more importantly, it offers efficient conversion largely independent of the special 
crystal properties of birefringence. Successful operation of the continuous paramet- 



simplified: 

(i) 	—ddz Asum 

(ii) 	A 
dz 1  

d 
dz 2  (iii) 

(12.21) 
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ric oscillators, the topic of the following chapter, has been stimulated very much by 
structured materials with periodic poling { 94 

12.5 Sum and difference frequency 

12.5.1 Sum frequency 

For this case we have to consider the full set of equations (12.10). In the case of sum 
frequency generation there are already two fields with intensities // , 2 (z--=-0) = 110,20 
present at the entrance of a crystal. For the special case of a very strong pumping 
field /10  /20 and perfect phase matching (Ak = 0), equations (12.10) are greatly 

The solutions can be easily found by inserting (12.20(iii)) into (12.20(i)), 

d2  
./SUM  = -- K 2 1A11 2 ASUM7 

dz2  
and by applying initial conditions A1,2 (Z=0) = A10,20. With the inverse scaling length, 

K =  

the normalized amplitudes and intensity evolve along z according to 

	

A2(z) = A20 COS(KZ), 	12(z) = 120 sin2 (Kz), 

	

ASUM(Z) = A20 sin(Kz), 	isum(z) = (wsum/w2)120 sin 2 (Kz). 

The intensity of the sum frequency wave has naturally to be larger by the factor 

cosum/c02 than 12 because energy is drawn from both pump waves. When the weaker 
input component is entirely converted, difference frequency generation (at the initial 
frequency co2) occurs, until all radiation power is used up again. Thus the intensity 
oscillates between the sum frequency and the weaker of the two components 11 , 2 . 

12.5.2 Difference frequency and parametric gain 

Let us again consider the case in which a third wave is generated from a strong pumping 
wave (normalized amplitude dA i ldz 0) by difference frequency mixing with a second 
weaker wave. Then in analogy to Eq. (12.21) and in the case of perfect phase matching 
(Ak = 0), the coupled amplitude equations are approximately 

(i) 	
d 
 D A IF dz 	

-= 

(iii) d A 
C-TZ`fl-2  

(12.22) 

iKA'111FAi. 
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Fig. 12.14: Weak conversion limit of sum frequency generation as a function of the crystal 
length. Radiative power oscillates between 'sum and the weaker of the two input components, 
here 12. 

The corresponding solutions are 

A2(z) = Am cosh(Kz), 

ADIF (Z) = — iA20 sinh(Kz), 

/AZ) = hp COSh 2  (KZ), 

/Du,  (Z) = Pi /C4)2)/20 sinh2 (Kz). 

For K z » 1 the intensity dependence shows an interesting behaviour, 

,..,, 120 e2Kz 
	

( w2  /woho e2Kz , ii (Z) 	 and 	/2(z) 

where both waves are amplified in this 'parametric process' at the expense of the 
pumping wave! A more general solution for Eq. (12.22) with coefficients a, )3 to match 
initial conditions is given by 

Ai (z) = a sinh(Kz) ± )3 cosh(Kz). 

Fig. 12.15: Parametric gain for difference frequency generation. 
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12.5.3 Optical parametric oscillators 

Nonlinear generation of coherent radiation is not only interesting for short wavelength 
production. In principle it promises generation of coherent and fully tunable radiation 
over very wide wavelength ranges. For this purpose the optical parametric oscillator 
(OPO) has been suggested and investigated for a long time. This nonlinear process, 
more than all others, is affected by loss processes that we have completely neglected 
up to now but will investigated more deeply here. 

First we phenomenologically add the losses ,y suffered by the waves passing through 
the crystal to the coupled amplitude equations from Eq. (12.9), and introduce the 
specific terms signal wave and idler wave of the parametric oscillator: 

pumping wave, 

-Y  

( 	

s) 

d 
sA (ws) 	 eiAkz 	signal wave, 

(
+ 	Ai(wi) = i 

d 
	ez 	idler wave. tçA.Ap 

dz 

Additionally, we again assume the intensity of the pumping wave to be constant 
(dApIdz 0). From the ansatz As(z) = As e (F-kAk/2)z Ai(z)  = A1 e (r±iLlk/2)z ,  

with constant amplitudes As,/, the condition 

[ (F—A2k  (F + 	i A2k 	 (12.23) 

can be obtained. For constant As 	0 this is exactly fulfilled if the term in square 
brackets vanishes. This is the case for 

'Yi= 	 V 
+ 'Ts 	1 h 	,-ys  _ ipk)2 ± 401 Api2 .  
2 	h"  

To simplify the interpretation, we consider the special case 7 
relation for F± becomes particularly simple, 

= 	g = 	+4K2lAP12. 	 (12.24) 

The general solution for the coupled waves is 

As = (As+ ge z ± 	e — gz) e --yz e –iAkz/2 ,  

= (A egz 	e —gz) e --yz e –iAkz/2 ,  

and obviously for g > 7 gain is expected. If at the entrance of the crystal there are 
the amplitudes As,i(z=0) Aso,io, then for the limiting case of weak conversion, i.e. 
dApIdz 0, we find the following field strengths at the end at z = f: 

As(f) = [Aso cosh(ge) — (il g)(AkAso + iKApAi'1 3 ) sinh(gni e —g1 eiAke/2 ,  
(12.25) 

= [Am cosh(ge) — (il g)(AkAm + iKApA'W sinh(0)] e — g l eiAke/2 .  

For perfect phase matching (Ak = 0) and for As o  = 0, we reproduce the old result 
from the difference frequency generation. How the incident fields are really ampli-
fied obviously depends on their phase position at the entrance. If there is only one 

( —ddz  '')/) APP) 

= 	= yj  where the 
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incident field then the second wave 'searches' the right phase position for optimum 
gain. The solutions of (12.25) depend on the condition that there is at least one field 
already present at the crystal entrance. In close analogy to the laser, the fulfilment of 
condition (12.23) can also be understood as a threshold condition. If the parametric 
gain is generated in a resonator, then the parametric amplifier becomes a parametric 
oscillator. 

Tab. 12.1: Comparison of laser and optical parametric oscillator (GPO). 

Laser 
	 OPO 

gain 	 signal power 
idler power 

Fig. 12.16: Gain 
cally generated fields 
Fig. 8.1). 

and power of the parametri- 
in a parametric oscillator (see 

Process 

Mechanism 

Pump process 

( 1 ) X , 
resonant 

occupation number 

inversion 

incoherent, 

energy storable 

.v (3) 
/3, 	 3 A, 	" • " 

non-resonant 

nonlinear 

polarization 

coherent, 
not storable 

Like the laser the OPO starts 
spontaneously if the gain g over-
comes the losses V-yrys . Paramet- 

olsy01 /2 ric oscillators can be operated sim- 
ply, doubly or even triply resonant, 
to keep the threshold as low as 

s possible, though again at the ex-
pense of large efforts for servo-con-
trolling the optical resonator. It 
is of course not surprising that ac-
cording to Eq. (12.24) the gain is 
proportional to the pumping in-
tensity. 

In the operation of tunable la- 
sers (e.g. Ti-sapphire laser, dye laser) 

inversion is commonly provided by powerful pump lasers. In contrast to the OPO a 
coherent pumping field is, however, not essential for the laser process. In fact incoher-
ent processes, e.g. decay from the pump level, typically take part in the occupation of 
the upper laser level. 

Since the gain depends on the phase mismatch Lk  according to Eq. (12.24), the 
wavelengths of signal and idler wave, As  and AI , which have to fulfil the equation 

Ap-1  = 	± As-1  

due to energy conservation, can be tuned by varying the angle or the temperature 
of the birefringent and nonlinear crystal. If the pump wavelength in the degenerate 
optical parametric oscillator (DOPO) is decomposed exactly into two photons at cos = 

= cop/2, the reverse process of frequency doubling, then the corresponding phase 
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Fig. 12.17:  GPO with linear resonator. The matching of signal and idler wave is achieved 
by turning the crystal axis if the phase matching is achieved by angular matching. A multiply 
resonant set-up is in principle difficult to get. 

matching condition has to be valid again, n2(cop) = n„(wp/2). If ordinary dispersion, 

nw (cos,i) nw (wp/2) n (1) (cos — cop /2) + • • • , 

is assumed, then a quadratic form for the phase matching condition of the signal and 
idler frequency is expected near to the degeneracy point: 

cAk = 0 = n2 (cop)cop — [n,(wp/2)cop + n(1) (cos — (.00 2  + • ..1. 

On the other hand, the difference of the refraction coefficient depends approximately 
linearly on the angle or the temperature, so that the quadratic behaviour can also be 
found in the experimental dependence (Fig. 12.18). 
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Fig. 12.18: Tunability of a parametric oscillator driven with a BBO crystal: wavelength of 
signal and idler waves. The  GPO is pumped by the second (532nm), third (355 nm), fourth 
(266nm) or even fifth (213nm) harmonic of a Nd laser at 1064nm. 
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13 Nonlinear optics II: Four-wave mixing 

Fig. 13.1: Selected X (3)  processes for which the state of the nonlinear material is preserved: 
third harmonic generation (THG), an example of four-wave mixing (FWM) and degenerate 
four-wave mixing (DFWM). 

In analogy to the three-wave mixing processes of Section 12.3.2, it is not difficult to 
compile a typology for four-wave phenomena. Three of the four waves generate a 
polarization 

(3) Pi(w) = coX(w; W11 W27 W3)Ej (C4)1)Ek (W2)Et((.03), 	 (13.1) 

which is now characterized by the third-order susceptibility. This fourth-rank tensor 
describing four-wave mixing (FWM) has up to 81 independent components, and there-
fore is not to be subjected even to general symmetry considerations, which could be 
described with limited effort for the second-order susceptibility. Instead it is important 
from the beginning to consider special cases. For the formal consideration, there are 
basically no new aspects compared to the third harmonic generation (THG) - only 
the number of coupled amplitude equations is increased by one. 

13.1 Frequency tripling in gases 

It is obvious in analogy to frequency doubling to ask for frequency tripling by means 
of the x(3)  nonlinearity. In Fig. 13.1 it can be seen that third harmonic generation 
(THG) is one of numerous special cases of four-wave mixing. 
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For practical reasons, this X (3)  process is really only used when frequencies lying 
very deep in the ultraviolet spectral range are to be reached. While nonlinear crystals 
are transparent (i.e. at wavelengths À>  200 nm), it is an advantage to use frequency 
doubling and consecutive summation in a two-step X (2)  process (Fig. 13.2). For exam-
ple, the 1064 nm line of the Nd laser is transformed, preferably with KTP and LBO 
materials, to the wavelengths 532 and 355 nm. For this a conversion efficiency of 30% 
using pulsed light is a matter of routine. The UV radiation generated at 355 nm in 
this way is very suitable to pump dye lasers in the blue spectral range. 

     

(0.,1
xo) 1.4  
THG  1 3w 2o),3co 

X(2) 
SHG 

X(2) 
SUM 

 

     

     

Fig. 13.2: Frequency tripling with two-step x (2)  and one-step X (3)  processes. 

If we neglect geometry effects, the polarization of third order is 

'P3' = co x(3)  (3w, 	w)E3 . 

The condition for phase matching, which is 

Ak = k3, - 3kw , 

in this case has to be obtained by adjusting the refraction coefficients of the fundamen-
tal wave and harmonic as for the generation of the second harmonic (Section 12.4). As 
already mentioned above, crystals are of limited use for frequency tripling due to their 
very small x(3)  coefficients, poor transparency and the danger of optically induced 
damage caused by extreme input power and strong absorption of the UV harmonic. 
Gases, however, have a high threshold of destruction and good transparency below the 

threshold of photo-ionization, which is at A 50nm for several noble gases. 
The disadvantage of low density in a gas can be compensated by enhancing the 

nonlinear process using a suitable molecular or atomic resonance in the vicinity of 
the fundamental wave. Therefore, for the generation of UV light at very short wave-
lengths, often alkali vapours are used, which allow near-resonant amplification due to 
their transition frequencies at wavelengths in the visible and near-UV range. They 
also exhibit a relatively rapidly varying refractive index with normal or anomalous 
dispersion depending on the position of the fundamental frequency. The resonance 
lines of the noble gases are in the deep UV (<100nm) and mostly in the range of 
normal dispersion. By adding the 100-10000-fold amount of noble gas atoms to an 
alkali vapour, the phase velocity of the harmonic can be adjusted. Fig. 13.3 shows a 
qualitative example of phase matching for frequency tripling of the 1064 nm line of a 
Nd laser: xenon gas is added to rubidium vapour. 

Even if the generation of extreme ultraviolet (XUV) radiation in a gas container 
were successful, the transport to the planned application still raises special problems 
since the atmosphere and even the best-known window material, cooled LiF, lose their 
transparency slightly below 100nm. That is why very short-wave coherent radiation 
has in general to be generated very close to the experiment. 
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1064 780 
	

532 
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Fig. 13.3: Matching refractive indices for frequency tripling of the 1064 run radiation in 
rubidium vapour (D2 resonance line at 780nm) by adding xenon gas. 

13.2 Nonlinear refraction coefficient 
(optical Kerr effect) 

In the third order a nonlinear contribution to the polarization at the fundamental wave 
itself also arises. This is a special case of the degenerate four-wave mixing (DFWM), 
which obviously occurs with well-matched phase propagation because Ak = k+k — k = 
k from the beginning. In analogy to the traditional electro-optical Kerr effect, where 
the refraction coefficient depends on an external electrical field (see Section 3.6.1), 
nonlinear materials showing this effect are often called Kerr media. 

The contribution to the polarization of the fundamental wave at the driving fre-
quency w is 1 

pKE (
w)= EoXel ( o; w,w, —w)ie(w)1 2 e(w), 

so that the total polarization is 

- P(w) = €0[X (1)  + X (e le(w)1 2 ]e(w) = EoXeffe(w). 

The total polarization clearly depends on the intensity, and it is convenient to de-
scribe this phenomenon transparently anyway by an intensity-dependent refraction 
coefficient, 

n --:--- no ± n21, 

with no  the common linear refractive index and n2  a new material constant describing 
this nonlinearity. By comparing to n2  = 1 + xe ff and with / = 7/0 c-041 2 /2, 

	

1 	( 3 ) 

	

n2  :_-_  2 	Xe‘d • 

no cco  

'There are several definitions of the susceptibility used, which differ from each other mainly by 
geometry and factors accounting for degeneracy. Here we use an effective susceptibility neglecting 
such details. 



Fig. 13.4: Self-focusing of a planar wave in 
a Kerr medium (KM). The intensity profile 
of a Gaussian beam causes a parabolic trans-
verse variation of the refraction coefficient and 
therefore works like a lens. 
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The nonlinear coefficient n2 naturally depends on the material. Its value varies 
over a large range and is, for example, just 10-16-10-14 cm2 for common glasses. 
However, it can be larger by several orders of magnitude in special materials, e.g. in 
doped glasses. The propagation of the light field will then strongly depend on the 
intensity distribution in both space and time. Due to this nonlinearity transverse 
intensity variations of a light beam cause distortions of optical wavefronts, leading for 
instance to self-focusing. In section 3.4.2 we have already seen that the self-modulation 
of the phase caused by longitudinal variations of the intensity, for example in a laser 
pulse, can lead to the generation of solitons under certain conditions. 

13.2.1 Self-focusing 

The transverse Gaussian profile of the 
TEM00  mode is certainly the best 
known and most important intensity 
distribution of all light beams. If the 
intensity is sufficiently large, e.g. in a 
short intense laser pulse, then in a Kerr 
medium it causes an approximately 
quadratic variation of the refraction 
coefficient and thus a lens effect, which 
acts like a converging lens for n2 > 0 
and like a diverging lens for n2 < 0 
(Fig. 13.4). The focal length depends 
on the maximum intensity. This effect 
is actually related to the thermal lens. 

The change of the refraction coefficient is caused by local temperature variation 
there, by a nonlinearity here. Temperature modifications can also be generated by 
a laser beam (e.g. through absorption) but thermal changes are usually very slow 
(milliseconds) compared to the very fast optical Kerr effect (femto- to nanoseconds) 
and thus generally not desirable from the practical point of view. 

Kerr lens mode-locking 

One of the most important applications of self-focusing at present is the so-called 
Kerr lens mode-locking (KLM), which has made the construction of laser sources for 
extremely short pulses nearly straightforward (see Section 8.5). The self-mode-locking 
concept was discovered in 1991 [98] with a Ti-sapphire, laser which could be switched 
from CW to stable pulsed operation by small mechanical disturbances. The laser 
(Fig. 13.5) consists of just the laser crystal, the mirrors and a pair of prisms for the 
compensation of the crystal dispersion in the laser crystal and the laser components. 
Stable pulsed and mode-locked operation can be achieved, for example, by a mode 
limiter aperture, which increases losses for the CW configuration and thus puts it at 
a disadvantage against the pulsed mode (see also sect. 8.5.3 and Fig. 8.16). 
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Fig. 13.5: Ti-sapphire laser with intrinsic Kerr lens mode-locking (KLM) in the laser crystal. 
The pair of prisms compensates the dispersion. This simple layout generates typical pulse 
lengths of 50-100 fs. With the mode aperture CW operation is put at an energetic disadvantage 
against the pulsed operation. 

The trick of self-mode-locking is to align the laser resonator in such a way that 
during pulsed operation — at which only the induced Kerr lens is active — the resonator 
field suffers from less losses than during CW operation. There the resonator has to be 
slightly misaligned. With, for example, an additional aperture at a suitable position 
in the resonator, these losses can be controlled. 

Spatial solitons 

Another consequence of self-
focusing ought to be mentioned 
too. As we have investigated in 
the section about quadratic index  fr  
media, optical waves are guided 
in axial media such as a gradient 
fibre. In a nonlinear medium it is 
possible that an intense light beam Fig. 13.6: Propagation of a spatial soliton in a 
causes 'self-waveguiding' through Kerr medium. Note that confinement in the sec-
the nonlinearity of the optical Kerr ond transverse direction must be achieved by other 

effect. A propagating beam tends means. 
to diverge, as described by Gaussian 
beam optics, and as a result of diffraction. In a Kerr medium, however, the intensity 
distribution may at the same time cause a quadratic transverse index variation 
prompting a lensing effect. If it exactly compensates diffraction, it allows stable and 
self-guided beam propagation [58, 103]. 

We introduce the intensity-dependent transverse variation of the refraction coeffi-
cient in the x-direction, 

2n21.4(x)I 2  
n(x) = no  + n2I(x) = no  + 	 (13.2) 

cno co  

similar to the paraxial Helmholtz equation (2.30). For the sake of clarity, we introduce 
ic = 2k2 n2/cn8€0 , obtaining the nonlinear Schrödinger equation (see Section 3.4.2), 

/82 
	  

2 
+ 2ik---8  + K2 1Al 2) = 0, Ox 	OZ 
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which of course has only its mathematical structure in common with quantum me-
chanics. It is known that this equation has self-consistent solutions of the form 

A(x , z) = A o  sech (—
x 

exp (—
iz 

wo 	4z0  

The properties of this wave are similar to the Gaussian modes with a 'beam waist' 
w  = (nA0 ) 2 /2 and a 'Rayleigh length' zo  =-- k4/2. The wave propagates along the 
z direction and is called a spatial soliton. 2  In contrast to the Gaussian beam (see 
Section 2.3) in a homogeneous medium, the beam parameters (wo , zo ) now depend on 
the amplitude Ao ! The self-stabilizing mode does not propagate divergently either, 
but keeps its form undamped over large distances. 

Note that from the beginning with Eq. 13.2 we have considered a one-dimen-
sional variation (in x) of the index of refraction only. It turns out that the two-
dimensional analogue with variations in both x and y does not yield stable solutions. 
Two-dimensionally stable modes of propagation can, of course, be obtained if an addi-
tional waveguiding effect in the second direction is applied, introduced by, for example, 
saturation phenomena or other additional nonlinearities. 

nonlinear 
optical switch 

nonlinear optical 
directional coupler 

   

  

Fig. 13.7: Applications of the nonlinear optical Kerr effect. Upper part: A Kerr medium 
(KM) can be used in order to direct a signal beam into one of two exits of a Mach-Zehnder 
interferometer. In this 'all-optical' switch the refraction coefficient of the Kerr cell causes a 
phase delay depending on the status of the control beam. Lower part: In a directional coupler 
(e.g. realized through surface waveguides in LiNb0 3 ) an incoming signal is distributed into two 
output channels (Chi  and Ch2). The coupling efficiency can depend on the input intensity 

and thus separate pulses of different intensity. 

Nonlinear optical devices 

The nonlinear optical Kerr effect is quite interesting for certain applications, e.g. in 
optical communications. Two examples are presented in Fig. 13.7. A nonlinear switch 

2 The 'optical' solitons varying in time discussed in Section 3.4.2 are more widely known though. 
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is realized by changing the optical length in one branch of a Mach—Zehnder interfer-
ometer through a control beam using the Kerr effect. In this way the signal beam can 
be switched between the two exits. In a nonlinear directional coupler, the coupling 
efficiency depends on the intensity of the input signal so that pulse sequences with two 
different intensities can be multiplexed into two channels. 

13.2.2 Phase conjugation 

Il) 
 

 

 

Fig. 13.8: Left: Phase conjugation as a special case of degenerate four-wave mixing. Middle: 
Simple set-up for phase conjugation (PCM =  phase conjugating medium, e.g. BaTiO3, CS2). 
Right: The phase matching condition is always fulfilled in a trivial way. 

Phase conjugation (or `wavefront reversal') occurs as a special case of degenerate four-
wave mixing (DFWM; Figs. 13.1 and 13.8). The phase adjustment is fulfilled intrinsi-
cally and ideally since only one optical frequency is involved. The polarization is again 
calculated according to Eq. (13.1), 

PPC  (WS) = €()X (e (WS; WP) WP, — WS)4f) eiT)  eg 

Because Ei  ki  = 0 the phase matching condition is always fulfilled in a trivial way if 

two waves (in Fig. 13.8 the forward- (e (f) ) and backward-running ( (b) ) pump waves) 
counterpropagate each other. The phase conjugating process can be strongly enhanced 
by choosing a wavelength in the vicinity of a one-photon resonance. 

We now study a simplified theoretical description of phase conjugation, the result of 
which differs only slightly from the more exact method. In this the nonlinear change 
of the refraction coefficient for the pumping waves is also taken into account. We 
especially assume that the intensity of the pump waves does not change, dep dz O. 
Then only two waves instead of four need to be considered, 

( 3 )E2 c* Pc = e()Xeff PL'S 

( 3 ) c2 c* Ps = eoX 	
.

eff 

We set = cox,(3ff) /2nceT, and consider the signal and conjugate waves propagating in 
the positive and the negative z directions, 

AC = ACO eikz 	and 	As = Aso e —ikz 



They have to fulfil the differential equations 

criz  Aso = iKA*60 , 	Aso (z=0) = A(0), 

d  
dz AC°  = —iKA*sw 	Aco(z=f) = o' 

Fig. 13.9: Signal and conjugated wave within a phase 
conjugating medium (PCM). Both waves are amplified. 

384 
	

13 Nonlinear optics II: Four- wave mixing 

The boundary conditions at 
the end of the crystal assume that 
a signal wave exists at the front 
end (at z = 0) of the crystal but 
no conjugated wave yet at the 
rear (z =  L).  Here the origin of 
the phase conjugation is clearly 
identified as the newly generated 
conjugated wave Aco , which is 
driven by the conjugate anipli-
tude A s* o • 

The solutions are found 
straightforwardly. For the signal 
wave as well as for the conjugated 

one there is amplification: 

A(0) 
ASO = 	 

	

COS (IKI,e) 	and 	Aco = —1k1  tan(K1f)A*(0). 

The phase conjugation has a fascinating application for wavefront reconstruction 
or wavefront reversal. Before we study this phenomenon in more detail, we introduce 
an alternative interpretation derived from conventional holography, which we have 
discussed already in Section 5.8. In holography a conjugated wave is known to occur 
too! 

The interference of a pump wave with the signal wave causes a periodic modulation 
of the intensity and thus of the refraction coefficient in the phase conjugating medium 
(PCM in Fig. 13.10) with reciprocal lattice vector K, 

K = kp — ks 	and 	A = sin(0/2). 

The counterpropagating pump wave exactly fulfils the Bragg condition, 

sin(0/2) = —
2A' 

and is diffracted by this phase grating into the direction precisely opposing the signal 
wave. 

Wavefront reversal is shown in Fig. 13.11 by comparison to a conventional mirror. 
While a conventional mirror turns a wavefront around on reflection, a phase conjugat-
ing mirror (PCM) reverses the wavevector of propagation while maintaining the shape 
of the wavefront. Any distortion caused by inhomogeneous but linear media will be 
reversed and hence a laser beam with initially smooth wavefronts will emerge from a 
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Fig. 13.10: Real-time holography and phase conjugation. Left: Geometry of relevant waves. 
Upper right: The forward-propagating pump wave forms a grating by superposition with the 
signal wave. The backward-running pump wave fulfils the Bragg condition for this grating and 
is scattered in the direction of the signal wave. Lower right: A similar argument can be used 
for interference of the backward-propagating pump wave and the signal wave. 

PM  

Fig. 13.11: Wavefront reversal or reconstruction using a phase conjugating mirror (PCM) 
and a conventional one (M). 

PCM with identical shape. A possible application is efficient focusing of intense laser 
radiation onto an object with a surface inappropriately matched to conventional, i.e. 
Gaussian-shaped, laser beams. 
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tttt ilkyrinalion 

Fig. 13.12: Application of a phase conjugating mirror for focusing of intense laser radiation 
onto an optically inappropriately adjusted object. 

13.3 Self-phase-modulation 

The nonlinear modification of the refraction coefficient takes effect not only on the 
spatial wavefronts of laser light but also on the time-variant structure. These nonlinear 
phenomena are not only important for short-pulse lasers because of their extreme peak 
intensities but also used for relevant applications. Consider a light pulse with Gaussian 
amplitude distribution and characteristic pulse length T, 

E(t) = E0  e-(t /T )2 / 2  e -iwt 	and 	/(t) =  _ro  e —( t/T) 2 , 

during passage through a nonlinear medium. The phase of the light pulse at the end 
of a sample of length t develops according to 

43(t) = nkzl t  = n(t)k? 
= (no  + n2 10  e - (tIT) 2 )ckt. 

The instantaneous frequency is then 

d 
w(t) = —

dt
43 (t) = [no - n2io 2(t/T) e -(t /T )2 jck. 

During the pulse this represents a shift from blue to red frequencies or vice versa, 
depending of the sign of n2 . This phenomenon is generally called a frequency chirp. 
In the centre at exp[-(t/T) 2] 1 a linear variation can be found 

W(t) 	2 	 n21-o/3t 	with 	= wo 
no 7-  

Frequency chirp is not unusual; in fact, the laser pulses emitted by the simplest ver-
sions of Kerr lens mode-locked lasers (Section 13.2.1) always tend to exhibit such 
frequency variations. In previous chapters we have furthermore encountered other 
situations where self-phase-modulation is important. It is the origin of soliton propa-
gation in optical fibres described in Section 3.4.2. And the stretchers and compressors 
introduced in Section 8.5.5 can be used to control, remove or enhance the chirp. 



A Mathematics for optics 

A.1 Spectral analysis of fluctuating measurable 
quantities 

The Fourier transformation is the 'natural' method to describe the evolution of an 
optical wave since in the end all optical phenomena can be considered the summation 
of the action of elementary waves according to Huygens' principle. Exactly this action 
is calculated with the help of the Fourier transformation. 

By fluctuations of a physical quantity we understand its irregular variations in 
time. Deterministic physical predictions can be made not about the actual behaviour 
of a time-variant quantity but about the probability distribution of its possible values, 
e.g. the amplitude distribution of a signal voltage. From the theory of probability, it 
is known that the distribution of a stochastic quantity V(t) is completely determined 
when all of its moments are known. By this, the averages (V), (V2 ), (V3 ), ... are 
understood. Often a certain distribution is known - or assumed - e.g. a Gaussian nor-
mal distribution for random events. Then it is sufficient to give the leading moments 
of the distribution, e.g. the average value (V) and the variance ((V - (V)) 2 ). The 
square root of the variance is called the root-mean-square deviation or in short r.m.s. 
value Vrms , 

1 T  
Vr2ms  = -T  fo  [V(t) - (V (t))1 2  dt --.-- (V 2  (t)) - (V (t)) 2  . (A.1) 

hi experiments, nearly all measurable quantities are ultimately converted into elec-
trical signals reflecting their properties. For processing dynamic electrical signals, fil-
ters play a very special role since their use allows desired and undesired parts of a 
signal to be separated from each other. The action of a filter or a combination of fil-
ters can be understood most simply by the effect on a sinusoidal or harmonic quantity 
with a varying frequency f = w/27. Thus it is important for both theoretical and 
practical reasons to characterize the fluctuations of a measurable quantity not only in 
the time domain but also in the frequency domain, i.e. by a spectral analysis. 

In physics and in the engineering sciences, the description of a time-dependent 
quantity by its frequency or Fourier components has proven to be invaluable for a 
long time. The complex voltage V(t), for example, can be decomposed into partial 
waves and described in frequency space, 

	

1 00 	 œ 
V(t) = —27( f V ( A)) e't  dw 

=t 
 V(f) e -21ti1 t  df. 	 (A.2) 
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We can interpret V(f)df as the amplitude of a partial wave at the frequency f and 
with frequency bandwidth df.  . The amplitude spectrum has the unit V Hz -1  and as 
a complex quantity it also contains information about the phase angle of the Fourier 
components. The functions V(t) and V(w) constitute a Fourier transform pair with 
the inverse transformation 

00 
V (w) = f V (t) eiw t  dt. 	 (A.3) 

-00 

The effect of a simple system of filters, e.g. low- or high-passes, on a harmonic excita-
tion can often be given by a transfer function T(w). The advantages of the frequency 
or Fourier decomposition according to Eq. (A.2) show up in the simple linear relation 
between the input and output of such a network, 

1 j" 
1/' (t) = -y7-I co T(w)V(w) e' t  dw. 

V 

This method delivers satisfactory results for numerous technical applications. This 
is especially valid in the case when the signal is periodic and the relation between 
time and frequency domain is exactly known. A noisy signal varies sometimes rapidly, 
sometimes slowly, and consequently it has contributions from both low and high fre-
quencies. Thus the mathematical relation according to Eq. (A.2) cannot be given 
since an infinitely expanded measurement interval would be necessary. From a rigor-
ous mathematical point of view, even a very large time interval cannot be considered 
a sufficiently good approximation since there is not even some information about the 
boundedness of the function and thus about the convergence properties of the integral 
transformation. 

On the other hand, the Fourier component of an arbitrary signal can indeed be 
measured with an appropriate narrow-band filter by measuring its average transmitted 
power. In every spectrum analyser the signal strength V 2  transmitted through a 
filter with tunable centre frequency f and bandwidth Af is measured. The square is 
generated by electronic hardware, e.g. by rectification and analogue quadrature.Let us 
take Pv (t) = V2 (t) as the generalized power of an arbitrary signal V(t). filter. 

For the formal treatment, we introduce the Fourier integral transform of the func-
tion V(t) on a finite measurement interval of length T, 

T/2 
VT(f) = f 	V(t)  e 2"ft  dt. 

-T/2 

The average total power in this interval is 

1 fT/2 
(V2 » = y, —T/2  V 2 (t)dt. 

(A.4) 

We can introduce the Fourier integral transform according to Eq. (A.4) and exchange 
the order of integration (we leave out the index ( )T  in the following since there 
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cannot be any confusion), 

f 772  V (t) f 
—oc  

1 	T12  [ 

— 

f oc  

VT(f) C 2nif t  df dt 

= 1 f"ej 
VT(f) f

T/2 
V(t)e -27cift  dt]df. 

— 

T/2 

The variable (V2 ) is very useful because with its help we can calculate the variance 
Av2 = (172) 

(

7)2 and thus the second moment of the distribution of the quantity 
V(t), at least within the restricted interval [—T/2, T/2]. Since V(t) is a real quantity, 
we have VT( — f) =V(f) according to (A.2) and we can write 

(V 2 ) = 1  rT (f
T

)V (— f df = 	IVT)] 	 (f)j 2  df.  
-7;   

Owing to the symmetry of  VT (f),  it is sufficient to carry out the single-sided integration 
0 oc.  We define the power spectral density Sv(f 

2 1VT(f)1 2  Sv(f) = 
T 

obtaining a relation that may be interpreted as 

(A.5) 

(V2) = fo œ  Sv(f)df. 	 (A.6) 

According to this, Sv (f)df is exactly the contribution of the average power of a 
signal V(t) transmitted by a linear filter with centre frequency f and bandwidth Af. 
Towards higher frequencies the power spectrum Sv (f) usually drops off with 1/f 2  or 
faster so that the total noise power remains finite. 

Often the formal and unphysical notation VSv(f) with units V Hz -1 / 2  is used, 
which again gives a noise amplitude. This always refers to a noise power, however. For 
optical detectors the noise amplitudes of voltage and current in units of (V2  Hz -1 ) 1 / 2  
and (A2 Hz-1)1/2  respectively are most important and are thus given separately once 
again: 

in(f) = VSI(f), 	en(f) = V-Su(f). 	 (A.7) 

Then, the r.m.s. values of noise current and voltage in a detector bandwidth B are 
inns —  j  and Urrns  = enffi, respectively. In a rather sloppy way they are often 
simply called 'current noise' and 'voltage noise', but one has to be aware of the fact 
that in calculations always only the squared values iB and e2.13 are used, respectively. 
Also, for applications of this simple relation, one assumes that the noise properties are 
more or less constant within the frequency interval of width B. 

(V2 ) = 
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A.1.1 Correlations 

The fluctuations of measurable quantities can alternatively be described by means of 
correlation functions. With correlation functions, one investigates how the value of a 
quantity V(t) evolves away from an initial value, 

1 	T/2 
O C, 7) = (V(t)V(t 7))g- = — 	V(t)V(t T) dt. 

T f 772 

In this case we have already assumed a realistic finite time interval T for the measure-
ment. In general, we will investigate stationary fluctuations, which do not themselves 
depend on time, so that the correlation function does not explicitly depend on time 
either. Often useful physical information is given by the normalized correlation func-
tion, 

(V(0)V (7)) 	AV(r) 2  
.qv (T) = = 1 + 

(V) 2 	 (V) 2  • 

For 7 —+ 0 the term AV(r) 2  = [V(r) - (V)] 2  exactly results in the variance. This 
directly allows one to assess the fluctuations. 

We can build a valuable relation with the spectral power density by using the 
bounded Fourier transforms according to Eq. (A.4) and exchanging again the order of 
time and frequency integrations, 

1 [ 00 f oo f 

 L

T/2 

cv (T) = 	
L 

VT(f f )VT (f) e -- z 27tf't e —i2nf(t-FT) df df dt. 
oo 	T/2 

For very long times T -÷ oo we may replace the time integration by the Fourier 
transform of the delta function, S(f) = f-00  ei271f t  dt, yielding 

Cv (T) = 	roo VT (f I)VT(f)6(f 	e —i27cf r  df 
—oc 

oc 
 2 1VT(f )12  e-i27Cfr df. 

With the help of Eq. (A.5) we can immediately justify the Wiener-Khintchin theorem, 
which establishes a relation between the correlation function and the power spectral 
density of a fluctuating quantity: 

civ eo= 

 

' oc 

 sv(f)e - j2nfT df 
	

(A.8) 

and 

00 

Sv(f)= 
	

Cv (7) ei2nfr  d7. 	 (A.9) 
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A.1.2 Schottky formula 

One of the most important and fundamental forms of noise is the so-called shot noise. 
It arises if a measurable quantity consists of a flow of particles being registered by the 
detector at random times, e.g. the photon flow of a laser beam or the photo-electrons 
in a photomultiplier or a photodiode. 

Let us consider a flow of particles that are registered by a detector as needle-like 
sharp electrical impulses at random times. We are interested in the power spectrum 
of this current of random events. If NT particles are registered during a measurement 
interval of length T, the current amplitude can be given as a sequence of discrete pulses 
registered at individual instants t k : 

NT 

I(t) = 	g(t — tk). 	 (A.10) 
k=1 

The function g(t) accounts for the finite rise time T of a real detector, which would 
give a finite length even to an infinitely sharp input pulse. At first we determine the 
Fourier transform 

NT 

gf) = E gk or), 
k=1 

with the Fourier transform of the kth individual event gk(f) = ei2n ftk g(  f) :  
00 

g(f) --= f g(t) e 2t dt. 	 (A.11) 
—00 

Any single event has to be normalized according to f g(t) dt = 1. If the events are 
shaped like pulses of typical length 7-  = fG /27c, then the spectrum has to be continuous 
at frequencies far below the cut-off frequency fG , g(f<fG ) 1. 

By definition of the power spectrum (A.5) we have Sj(f) = 2(11T(f)1 2 )1T. Thus 
one calculates 

NT NT 

1 1-T f )1 2  = 	f )1 2  E 
k=1 k' =l 

i27cf (t k —to ) 

NT NT 

= Ç(f) 2  NT + 	
E 	(tk—t k i) 

k=1 k'=14k 

Averaging over an ensemble makes the second term in the lower row vanish, and NT 

is replaced by the average value N. Thus the power density of the noise is 

SAP = 
2N1g(f)i2 	

(A.12) 

which depends only on the spectrum g(f)j2 of an individual pulse. 
For 'needle-like' pulses with a realistic length T we anticipate an essentially flat 

spectrum, i.e. a white spectrum in the frequency range f < 'r/27t. For random uncor-
related pulses we expect not the amplitudes but the intensities to add. If it is also 
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taken into account that Si(f) is obtained by single-sided integration (eq. (A.5)), we 
can interpret all factors in Eq. (A.12). 

In the special case of an electric current the relation with the noise power spectral 
density is called the Schottky formula, which is valid for Fourier frequencies below the 
cut-off frequency of the detector fG , 

Si (f)= 2e7, 	 (A.13) 

where we have used / = eN IT. 
If the amplitude of the individual event fluctuates as well, e.g. if we have f g(t-

tk)dt = ilk , then Eq. (A.12) is replaced by 

Mt) = 2-
1\7(2)1g(f)12  

• 	 (A.14) 

Now the average current is / = NeVT, with an average charge e In the Schottky 
formula (A.13) an additional excess noise factor Fe  = (ii 2 )/ (71) 2  is introduced: 

I n2\ 
S1(f)=---2(eq)(I)" 	. 	 (A.15) 

0) 2  

This variant is important for photomultipliers and avalanche photodiodes subject to 
intrinsically fluctuating amplification. 

Let us finally consider the special case of an amplitude distribution that has only 
the random values n  = o and n  = 1. In this case we have F, = 1, so that events not 
being registered do not contribute to the noise. 

A.2 Poynting theorem 

The planar wave is the most important and most simple limiting case that is treated 
for the propagation of optical waves. There the field vector at a defined position is 
described by a harmonic function of time, 

F = F0  

Often averages of products of harmonically varying functions are required. For this, 
the Poynting theorem is very useful if physical quantities are described by the real part 
of a complex harmonic function. If F and G are two complex harmonic functions, then 
for arbitrary vector products 0 we have for the average taken over a period 

(Ne{F} gte{G}) = (NO 0 G*1). 



B Supplements in quantum mechanics 

B.1 Temporal evolution of a two-state system 

B.1.1 Two-level atom 

A hypothetical two-level atom has only one ground state I g) and one excited state le) 
to which the raising and lowering operators 

at  = le) (.4 I 	and 	a = 1.0(el 
belong. They are known as linear combinations of the Pauli operators, 

= 	+ icry ), 	a = (a x  - icry ). 

The Hamiltonian of the dipole interaction can be described by 

H = hwo o- t o-  hg e't  + hg*  e t , 	 (B.1) 

with coo = (Ee  E9 )/h and using the semi-classical approximation as well as the 
rotating-wave approximation (RWA). The dipole coupling rate g is derived from 

Vdip  = (d(+) + d( - )) (E(+) ±  

where the operator of the dipole matrix element is qr --- d = d(+)+d( - ) and the electric 
field E(r, t) = E(+) e- iwt + EH) e t,  and in general geometric factors accounting for 
the vectorial nature have to be taken into account [97] . For instance, the rotating-wave 
approximation is of no relevance for a Am = ±1 transition: because d(+) = (d) (ex  ± 
iey ) e - iwc)t and E(±) = (ex +ie,) e- ot, we have exactly d(+ )  •E(+ )  = cl(-)  •E( - ) = 0 
in this case. 

B.1.2 Temporal development of pure states 

In the interaction picture of quantum mechanics, the temporal development of a state 
is described according to the equation 

lifi(t)) = e -iH1t/h ikifi(0)), 	 (B.2) 

with the interaction Hamiltonian 
hgo- t + h,g* o- 
higl(cos a x  + sin cry ). 

With the Rabi frequency St R = 21.q1, then 

ITI(t» = e -j(9Rt/2)(cc's 4)  as 	çb 	WI (0)). 	 (B.4) 
The state development can be taken from the matrix equation 

exp(-iacr • n) = 1 cos a — io- • n sin a. 	 (B.5) 
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B.2 Density-matrix formalism 

For the expert reader, for convenience we here collect some results of quantum me-
chanics for the density operator leading to the optical Bloch equations. The density 
matrix formalism allows one to treat an ensemble of two-level atoms. 

In a basis of quantum states the density operator has the spectral representation 

E Pii 1'001 

The equations of motion of the discrete elements can then be obtained from the Heisen-
berg equation with the Hamiltonian '1-1  under study, 

d 
ih—

dt 

= 

For evaluation it is convenient to use the spectral representation of the Hamiltonian 
with elements Hii  = 

d 	i x-N r  
- 	

(B.6) 

According to this the density matrix of a two-level atom consists of the expectation 
values 

Rat a) (at) 

(a) ((Ta t )) 

The Hamiltonian for the states 1g) and le) contains the undisturbed operator of the 
free atom and in semi-classical approximation the dipole term 

Vdip  = — (deg at + dge ot)(E ( +)  e- iwt E ( - ) e iwt ),  

so that 

1-i = 	— ao-t) + 	e-iw t 	ei')(deg at dge o- ). 

We will see that the expectation values (at) and (a) oscillate with e iwci t  and e-iw° t  , 
respectively. In the vicinity of a resonance we use the 'rotating-wave approximation', 
for which the terms oscillating with cod-coo are neglected. We abbreviate g = -deg e0 /2h 
and find 

7-1 = hwoo- t o-  ± hg e-iw t at + hg* eiw t o- . 

From this the equations of motions are obtained as 

i)ee 	ig * e —iwt peg  _ ig e iwt oge 	= —iègg  

Iieg = iWOPeg ig 	t  (Pee — Pgg) = lÔg* e• 

In the RWA it is moreover convenient to introduce 'rotating' elements of the density 
matrix peg  = o  and pge  = pge  eiw t  . Dropping the overbars for the sake of 
simplicity we obtain (detuning  6  = w - w o ) 

Pee  — i)gg - 	ig *  Peg, 

f3eg = 	WO)Peg ig(Pee — P99) = —i6 peg  + g(Pee Ng). 



61=2n/L 
o kx  
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From this system of equations the optical Bloch equations (6.28) can again be obtained 
by suitable replacements. After introducing phenomenological damping rates and 

Peg = U + iv, for example, one obtains 

it = — 	2 3m{g}w, 

= --671 — 	 291e{g}w, 	 (B.7) 

7:11 = 2 3m{g}u — 2 91eIglv — -yw. 

B.3 Density of states 

The calculation of the density of states (DOS) p(E) p(hco) as a function of energy 
is a standard problem of the physics of many-particle systems. It depends on the 
dispersion relation, 

E = E(k), 

and on the dimension of the problem. In the general case it can be anisotropic as well, 
though we here limit ourselves to the isotropic case. Two important examples are the 
dispersion relations of the electron gas and of the photon gas: 

h2k2 
electrons: 	E(k) = 	, 

27 photons: 	E (k) = ry.,= hck. 

Fig. B.1: Densities of states in 1D and 2D k-spaces. 

The density of states p(E) dE describes the number of states within an interval of 
width dE in energy space. It is calculated in n dimensions according to 

p(E) = 2 f cink pk (k)S(E E (k)) 
Vk 

2 
 (2n

1

) n  k k 8(E — E(k)). 
k 

(B.8) 
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Tab. B.1: Densities of states in one, two and three dimensions. 

1D 
	

2D 	 3D 
Electromagnetic radiation field: ci.) = ck, p(w) 

w2 
1 	 W

2 d — dw 	 w  
TE 

2
C 

 3 dw 
7tC 	 7tC  

Free electron gas: E = h2 k 2 12m, p(E) 

m 
 In– (2mE) -1 / 2  dE 	
m 

dE 	(2mE) 1  / 2  dE 
rch 	 rch2 	 11 2 h3 

In k-space we assume a constant density, pk(k) -= (1/27t), within unit volumel  and 
furthermore take into account the two-fold degeneracy due to the polarization of elec-
tromagnetic waves and the electron spin, respectively. Then we obtain the densities 
of states from Tab. B.1. 

1 For the calculation of physically measurable quantities, it has to be summed over the volume of 
the many-particle system. Thus here we set L = 1 for Eq. (B.8). 
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coma 126 
concave mirror, astigmatic aberration 
concave mirror, astigmatism 17 
Concave mirrors 16 
confocal parameter 40 
continuity equation 31 
contracted notation 354 
corner cube reflector 8 
corner frequency 296 
Cornu spiral 61 
correlation function 131 
cosmic background radiation 184 
Coulomb gauge 34 
coupled amplitude equations 357 
crystal field splitting 212 
current noise 389 
curved mirrors 15 

dark current noise 295 
DBR laser 286 
density of states 395 
density-matrix formalism 394 
dephasing 334 
depolarizing field 174 
depopulation pumping 329 
depth of focus 114 
detectors, photovoltaic 311 
detectors, quantum 291 
detectors, thermal 291 
DFB laser 286 
dielectric function 171 
dielectric interfaces 65 
dielectric media 28 
dielectric media, optically dense 173 
dielectric media, optically thin 171, 172 
dielectric susceptibility 28, 171 
difference frequency 371 
diffraction 50, 65 
diffraction grating 136 
diffraction, Bragg region 102 
diffraction, Raman—Nath region 102 
digital light processing 102 
digital mirror device 101 
diode laser, amplitude modulation 280 
diode laser, arrays 289 
diode laser, dynamics 279  

135 
135 

EDFA 218 
Einstein coefficients 186 
electric polarizability 168 
electro-optical modulators 97 
electro-optical modulators, half-wave 

voltage 98 
electromagnetic field, energy density 34 
electromagnetic field, momentum current 

density 34 
E0Ms 97 
erbium laser 218 
erbium-doped fibre amplifier 218 
etalon 145 
evanescent wave field 70 
excimer laser 210 
eye 108 
eyepiece 110 

Fabry Perot interferometer 145 

273 
289 
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Fabry—Perot interferometer, 
150 

Fabry—Perot spectrum analyse r 201 
Faraday effect 104 
Faraday isolator 106 
Faraday rotators 104 
fata morgana 6 
FBGs 220 
femto chemistry 101 
Fermat's principle 4 
fibre absorption 80 
fibre Bragg grating 220 
fibre laser 219 
FID 333 
finesse 149 
finesse coefficient 147 
flicker noise 296 
focal point 15 
focus 15 
four-level system 188 
four-wave mixing, FWM 377 
Fourier components 30 
Fourier optics 58 
Fraunhofer diffraction 54, 55 
Fraunhofer diffraction, circular aperture 

57 
Fraunhofer diffraction, Gaussian trans-

mitter 56 
Fraunhofer diffraction, single slit 55 
free induction decay 333 
free spectral range 148 
frequency chirp 87, 386 
frequency doubling 359 
frequency doubling, Gaussian beams 365 
frequency doubling, resonant 367 
frequency doubling, strong conversion 

361 
frequency doubling, weak conversion 360 
frequency modulation 98 
frequency tripling 377 
Fresnel diffraction 54, 59 
Fresnel diffraction, circular aperture 61 
Fresnel diffraction, straight edge 60 
Fresnel formulae 68 
Fresnel lenses 63 
Fresnel zones 63 
FTIR 70 
full width at half-maximum 320 
FWHM 320 

gain, saturated 197 
GaN laser 263 
gas lasers 203 
Gauss—Voigt profile 322 
Gaussian beams 37 
Gaussian beams, ABCD rules 42 
Gaussian beams, beam radius 40 
Gaussian beams, beam waist 40 
Gaussian beams, confocal parameter 40 
Gaussian beams, divergence 40 
Gaussian beams, Gouy phase 41 
Gaussian beams, higher modes 44 
Gaussian principal mode 38 
Gaussian rays, Gaussian principal mode 

38 
Glan polarizers 97 
graded-index fibre 79 
grating laser 285 
grating, blazed 136 
grating, holographic 136 
grating, resolution 138 
gravity wave interferometer 142 
GRIN fibre 79 
GRIN lenses 24 
group index of refraction 85 
group velocity 85 
group velocity dispersion 86 

Hagen—Rubens relation 73 
Hanle effect 170 
HE/EH modes 78 
Helmholtz equation 33 
Helmholtz equation, paraxial 44 
Hermitian polynomials 45 
Hermitian—Gaussian modes 44 
Hertzian dipole 36 
heterodyne detection 302 
heterostructures 269 
hole burning 225, 327 
holes, spectral 197 
hologram, in-line 159 
hologram, reconstruction 160 
holographic recording 159 
holography 159 
homodyne detection 302 
homostructures 269 
host crystals 211 
hot spot 63 

resolution 
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Hubble Space Telescope 119 
Huygens eyepiece 110 
Huygens' principle 50 
HWHM 320 
hydrogen atom, spectroscopy 331 

image amplifiers 315 
image converter 315 
image sensors 313 
image, stigmatic 15 
index ellipsoid 92 
index of refraction 3 
index of refraction, extraordinary 91 
index of refraction, inhomogeneous 6 
index of refraction, intensity-dependent 

88 
index of refraction, ordinary 91 
indicatrix 92 
injection locking 282 
interferometry 129 
intra-cavity etalon 198 
intrinsic permutation symmetry 353 
inversion 177, 181, 188 

Jaynes—Cummings model 239 
Jones vectors 48 

Kerr effect 97 
Kerr lens mode locking (KLM) 253 
Kerr lens mode-locking 380 
Kirchhoff's integral theorem 52 
Kleinman symmetry 355 
KNb03 364 

Lamb dip 198 
lambda half/quarter plates 94 
lambda meter 141 
lanthanides 212 
Larmor formula 186 
Larmor frequency 169 
laser 191 
laser cooling 343 
laser diode, inversion 264 
laser granulation 163 
laser gyro 144 
laser noise 240 
laser outcoupling 233 
laser rate equations 233 
laser resonator, bowtie 225 

laser resonator, Z-shaped 216 
laser speckle 163 
laser spectroscopy 317 
laser spiking 234 
laser theory 227 
laser threshold 232 
laser, amplitude noise 244 
laser, decoupling mirror 200 
laser, disc 220 
laser, end-pumped 216 
laser, fluctuations 244 
laser, gain profile 197 
laser, helium—neon 193 
laser, high-power 255 
laser, line selection 196 
laser, linewidth 200 
laser, mode selection 195 
laser, neodymium 215 
laser, pulsed 247 
laser, RIN 245 
laser, single-atom 238 
laser, single-frequency 198 
laser, single-mode 198 
laser, threshold-less 237 
laser, transition-metal ions 222 
laser, types 192 
laser, vibronic 222 
laser, white light 256 
laser-induced fluorescence 317 
laterally attenuated wave 70 
law of refraction 3 
LC modulators 100 
least distance of distinct vision 108 
lens aberrations 121 
lens equation 107 
lens matrix 20 
Lens systems 22 
lens systems, afocal 22 
lens systems, periodic 22 
lens, achromatic 128 
lens, biconvex 122 
lens, diffraction limit 43 
lens, magnetic 25 
lens, planar convex 122 
lens, thick 20 
lens, thin 20 
Lenses 15 
lenses 15 
lenses, designs 122 
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lenses, GRIN 24 
lenses, meniscus 122 
lenses, types 122 
LIF 317 
light forces 338 
light propagation in matter 65 
light pulse, distortion 86 
light pulse, spectrum 82 
light pulses 81 
light rays, extraordinary 92 
light rays, ordinary 92 
light sensors 291 
line shapes 320 
linewidth 320 
linewidth, Doppler 321 
linewidth, heterodyne method 
linewidth, homogeneous 321 
linewidth, inhomogeneous 323 
linewidth, natural 321 
linewidth, phasor model 242 
linewidth, pressure broadening 323 
linewidth, time-of-flight 325 
liquid crystal modulators 100 
longitudinal relaxation 180 
Lorentz field 174 
Lorentz oscillator, in a magnetic field 
Lorentz profile 167 
LP modes 78 
lumen 315 
Lyot filter 226 
Lyot filters 95 

Mach—Zehnder interferometer 143 
magnifying glass 108 
Manley—Rowe relation 358 
maser 191 
maser, natural 191 
material dispersion parameter 
matrix optics 17 
matrix optics, conventions 19 
matrix, lens 20 
matter waves 135 
Maxwell's equations 30, 31 
Maxwell—Bloch equations 229 
Maxwell—Lorentz equations 30 
metal-vapour lasers 205 
metre, definition 33 
Michelson interferometer 139 
microchannel plate 308 

microlaser 237 
microscope, Abbe theory 113 
microscope, resolving power 112 
microscopes 110 
microscopy, confocal 115 
microscopy, scanning near-field optical 

116 
miser 217 
mode dispersion 79, 80 
mode locking 249 
mode locking, KLM 253 
mode matching 151 
mode pulling 197, 231 
molecular gas lasers 206 
monochromator 138 

201 	 monolithic miniature laser 217 
MOPA 289 
MOS capacitors 313 
multiple beam interference 145 

neodymium amplifier 215 
neodymium laser 215 
neodymium laser, frequency-doubled 216 
neodymium, quantum states 212 
nitrogen laser 206 

169 	noise amplitude 389 
noise properties of measurable quantities 

387 
nonlinear optical switch 382 
nonlinear optics, crystal symmetries 353 
nonlinear polarization 351 
nonlinear products 352 
nonlinear Schrödinger equation 89 
normal dispersion 167 
numerical aperture 112 
numerical aperture, optical fibre 13 

86 	 obliquity factor 53 
optical axis 90 
optical Bloch equations 178, 181 
optical cavities 150 
optical cavities, concentric 155 
optical cavities, confocal 154 
optical cavities, damping 150 
optical cavities, micro- 155 
optical cavities, modes 151 
optical cavities, plane parallel 153 
optical cavities, resonance frequencies 

152 
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plasma frequency, metallic 71 
pn junction 261 
Pockels cell 248 
Pockels effect 97 
point-spread function 119 
polarization 47 
polarization, dielectric 28 
polarization, macroscopic 28, 183 
polarization, microscopic 181 
polarizers 97 
Porro prism 8 
position sensors 313 
power spectral density 389 
Poynting vector 34 

373 	precision measurements 331 
principle of superposition 129 
prism, minimum deflection angle 10 
propagation constant 75 
pseudo-spin system 177 
pulse compressor 256 
pulse distortion 84 
pulse length—bandwidth product 83 
pulse propagation 81 
pulse shape 81 
pulse shaping 101 
pulse stretcher 256 

optical cavities, symmetric 153 
optical contact 95 
optical diode 217 
optical diodes 105 
optical fibres 74 
optical Fourier transformation 58 
optical gain 189 
optical grating 136 
optical images 107 
optical isolators 105 
optical Kerr effect 379 
optical lithography 114 
optical mixer 302 
optical modulators 97 
optical parametric oscillator, OPO 
optical prisms 8 
optical pumping 170, 175 
optical resonator, coupling 148 
optical spectral analysis 201 
optical tweezers 347 
oscillator strength 174 
OWG 74 

parabolic mirrors 16 
parametric gain 371 
Paraxial approximation 18 
Particle optics 24 
periodically poled materials 369 
phase conjugation 383 
phase diffusion 242 
phase matching 359, 362 
phase matching, 90°  364 
phase matching, non-critical 364 
phase matching, temperature 364 
phase matching, types I, II 363 
phase modulation 98 
phase noise 240 
phase velocity 32, 33, 85 
phasor model 242 
photo-capacitors 313 
photo-refraction 220 
photodiodes 311 
photodiodes, biased 312 
photodiodes, operation modes 312 
photodiodes, photovoltaic 312 
Photon 330 
photon echo 335 
photon recoil 338 
pin diodes 311 

Q-switch 247 
QED 166 
quadrant detectors 313 
quadratic index medium 79 
quantities, opto-electronic 295 
quantum beats 336 
quantum dots 278 
quantum efficiency 292 
quantum electrodynamics 166 
quantum electronics 165 
quantum films 275 
quantum optics 165 
quantum sensors 291 
quantum well 277 
quantum wires 278 
quasi-phase matching 369 

Rabi frequency 179 
Rabi frequency, single-photon 230 
Rabi nutation 179 
radiation formula 184 
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radiative interaction, semiclassical theory 
165 

rare-earth ions 212 
Rayleigh zone 40 
reference star 120 
reflection coefficient 67 
reflection, dielectric 65 
reflection, metallic 73 
reflectivity 68 
refraction coefficient, nonlinear 379 
refractive index 3 
refractive index, complex 71 
refractive index, in conducting materials 

71 
refractive index, macroscopic 171 
refractive indices, table 9 
refractive power 20 
relative intensity noise (RIN) 245 
relaxation oscillations 234 
relaxation, longitudinal 180 
relaxation, transverse 180 
repopulation pumping 329 
resonator field, damping 228 
Retarder plates 94 
retarder plates of zero order 95 
retroreflector 8 
ring laser 225 
ruby laser 210 
Rydberg constant 331 

Sagnac interferometer 143 
saturable absorber 252 
saturated gain 231 
saturation intensity 181, 182 
saturation parameter 181 
saturation spectroscopy 327 
saturation spectroscopy, with Cs/Rb 

vapour 328 
scanning near-field optical microscopy 

116 
Schawlow—Townes linewidth 200, 246, 

281 
Schmidt mirror 125 
Schottky formula 391 
second harmonic generation, SHG 359 
Seidel aberrations 122 
self-focusing 380 
self-phase-modulation 386 
Sellmeier equation 9 

semiconductors 259 
semiconductors, absorption of light 263 
semiconductors, doped 260 
semiconductors, emission of light 263 
semiconductors, optical properties 262 
sensors, optical 291 
sensors, quantum efficiency 292 
sensors, sensitivity 292 
shot noise 391 
shot-noise-limited detection 302 
signal-to-noise ratio 293 
single lens 25 
single-mode fibres 79 
skin effect, anomalous 72 
skin effect, normal 72 
slab laser 216 
SLMs 100 
slowly varying envelope approximation 

88 
small signal gain 189 
Snell's law 3 
SNOM 116 
solid-state lasers 210 
solitons, optical 88 
spatial filter 46, 47 
spatial light modulators 100 
spatial soliton 381 
speckle pattern 163 
spectroscopy, Doppler-free 326 
spherical aberration 124 
spontaneous emission 184, 186, 244 
spontaneous emission rate 186 
spontaneous emission, suppression 187 
spot diagram 122 
stability criterion 24 
stability diagram 23, 24 
step-index fibre, HE/EH modes 78 
step-index fibre, LP modes 78 
step-index fibre, TE/TM modes 78 
step-index fibres 75 
stimulated absorption 184, 185 
stimulated emission 184, 185, 234 
Stokes matrices 49 
Stokes parameter 49 
Stokes' factor 53 
strained quantum well 277 
strong coupling 238 
subpixel resolution 315 
sum frequency 371 
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super continuum 256 
superposition principle 31 
SVEA 88 

TE/TM modes 78 
telescope, Galilean 117 
telescope, HST 119 
telescope, magnification 118 
telescope, resolving power 117 
telescopes 117 
telescopes, reflector 118 
theory of relativity 32 
thermal detectors 291, 302 
thermal lens 380 
third harmonic generation 377 
three-wave mixing 357 
Ti—sapphire laser 222 
total internal reflection 69 
total internal reflection, frustrated 
transient phenomena 332 
transmission 68 
transmission coefficient 67 
transverse relaxation 180 
triple mirror 8 
two-level atoms 175 
two-photon spectroscopy 330 
two-wave polarization 354 
Tyndall effect 37 

vacuum Rabi splitting 239 

VCSEL laser 286 
velocity of light 32 
velocity of light, universal constant 33 
visibility 132 
vision distance, standardized 108 
voltage noise 389 

walk-off 93 
wave equation 31, 32 
wave equation, for step-index fibres 75 
wave equation, with conductivity 71 
wave, evanescent 70 
wave, laterally attenuated 70 
wavefront reversal 384 
waveguides 74 
waveguides, V parameter 77 
waveguides, absorption 80 
waveguides, planar 74 

70 	waveguides, polarization conserving 79 
waveguides, single-mode 79 
waveguides, weakly guiding 76 
wavemeter 141 
wavepackets 337 
waves, dipole 36 
waves, planar 35 
waves, spherical 35 
Wiener—Khintchin theorem 241, 390 

Yb laser 220 
Young's double-slit 129, 133 
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