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Preface to the fourth edition

We use optics overwhelmingly in our everyday life: in art and sciences, in
modern communications and medical technology, to name just a few fields.
This is because 90% of the information we receive is visual. The main purpose
of this book is to communicate our enthusiasm for optics, as a subject both
practical and aesthetic, and standing on a solid theoretical basis.

We were very pleased to be invited by the publishers to update Optical
Physics for a fourth edition. The first edition appeared in 1969, a decade after
the construction of the first lasers, which created a renaissance in optics that
is still continuing. That edition was strongly influenced by the work of Henry
Lipson (1910–1991), based on the analogy between X-ray crystallography and
optical Fraunhofer diffraction in the Fourier transform relationship realized by
Max von Laue in the 1930s. The text was illustrated with many photographs
taken with the optical diffractometers that Henry and his colleagues built as
‘analogue computers’ for solving crystallographic problems. Henry wrote much
of the first and second editions, and was involved in planning the third edition,
but did not live to see its publication. In the later editions, we have continued
the tradition of illustrating the principles of physical optics with photographs
taken in the laboratory, both by ourselves and by our students, and hope that
readers will be encouraged to carry out and further develop these experiments
themselves.

We have made every effort to bring this edition up to date, both in terms of
its layout and its scientific content. We have introduced several new features.
First, starting with Chapter 2, each chapter has a short introduction defining the
material that will be covered, with maybe a pictorial example of a significant
application, as well as a summary of the main points at the end. In addition there
are boxes that describe topics and examples related to the text. Furthermore, we
have taken advantage of the margins to include some peripheral notes related
to the text, and short remarks to direct the reader to related topics.

For several decades we have used this text for two courses. The first one
is a basic second-year course on geometrical and physical optics, given to
students who already have an elementary knowledge of electromagnetic the-
ory and an introduction to calculus and linear algebra, which are generally
taught in the first year of an undergraduate degree. This first course includes
much of Chapters 3 (Geometrical optics), 4 (Fourier theory), 7 (Scalar-wave
and Fresnel diffraction), 8 (Fraunhofer diffraction), 11 (Coherence) and 12
(Imaging), with parts of 9 (Interferometry) and 14 (Quantum optics and lasers).
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A second advanced course has been built out of Chapters 6 (Crystal optics),
9 (Interferometry), 10 (Optical fibres and multilayers), 13 (Dispersion) and
14 (Quantum optics and lasers), with the more advanced parts of Chapters 8,
11 and 12 and research references. We have included in all the chapters short
and not too technical descriptions of many recent developments in the field,
either in the boxes or the more extended ‘Advanced topic’ sections, and hope
that lecturers will use these to enliven their presentations and show that optics
is a very broad and living subject. The remaining chapters, 1 (History), 2 (Wave
propagation), 4 (Fourier theory) and 5 (Electromagnetic waves) contain intro-
ductory material, which may or may not have been covered in the prerequisite
courses, together with examples of up-to-date applications such as gravita-
tional lensing, spiral waves and negative refractive index materials. To assist
lecturers, we shall make many of the figures in the book available on-line in an
associated website (www.cambridge.org/Lipson).

We are not mathematicians, and have not indulged in elegant or rigorous
mathematics unless they are necessary to underpin physical understanding. On
the other hand, we have tried to avoid purely qualitative approaches. The main
mathematical tools used are Fourier analysis and linear algebra. It is often
claimed that Fraunhofer diffraction and wave propagation are the best ways to
learn Fourier methods, and for this reason we devote a full chapter (4) to Fourier
methods, including the important concepts of convolution and correlation.

In our efforts to bring the book up to date we have necessarily had to remove
some older topics from the previous editions, so as to keep the length similar
to the previous edition. Some of these topics will be transferred to the website
together with other topics that there was no room to include. The website will
also include solutions to the 190 problems at the ends of the chapters, and
details of some of the computer programs used in topics such as diffraction,
wave propagation and phase retrieval.

We are indebted to our colleagues, students and families for considerable help
they have given us in many ways. In particular, David Tannhauser, who was
co-author of the third edition, left an indelible mark on the book. Among those
who have helped us with discussions of various topics during the preparation
of this and the previous editions are: John Baldwin, Eberhart Bodenshatz, Sam
Braunstein, Netta Cohen, Arnon Dar, Gary Eden, Michael Elbaum, Yoel Fink,
Ofer Firstenberg, Baruch Fischer, Stephen Harris, Rainer Heintzmann, Shahar
Hirschfeld, Antoine Labeyrie, Peter Nisenson, Meir Orenstein, Kopel Rabi-
novitch, Erez Ribak, Amiram Ron, Vassilios Sarafis, David Sayre, Mordechai
Segev, Israel Senitzky, John Shakeshaft, Joshua Smith, Michael Woolfson and
Eric Yeatman. All these people have our sincere thanks. We are also grateful
to Carni Lipson for preparing many of the figures, and to the students who
carried out the experiments illustrating many of the topics and are mentioned
individually in the figure captions.

We must also thank the many researchers who have given us permission to
use some of their most up-to-date research results as illustrations of advanced

www.cambridge.org/Lipson


xv Preface to the fourth edition

topics, and are mentioned in the text. In addition we thank the following
publishers and organizations for permission to use copyrighted material:

American Association for the Advancement of Science: Figs. 13.16, 13.17;
American Chemical Society: Fig. 12.39;
American Society for Cell Biology: Fig. 7.17;
Elsevier B.V.: Fig. 10.1;
NASA: Figs. 2.1, 8.35, 8.38;
Nature Publishing Group: Figs. 10.22, 12.1;
U.S. National Academy of Sciences: Figs. 8.39, 12.44;

We are also grateful to John Fowler and Sophie Bulbrook of Cambridge
University Press for assistance and advice about the structure and planning of
the book.

S.G.L. is indebted to the Materials Science and Engineering Department of
the Massachusetts Institute of Technology for hospitality during 2008–9, where
much of the work of revision of the book was carried out.

We hope that you will enjoy reading the text as much as we have enjoyed
writing it!

Ariel Lipson, Tel Aviv
Stephen G. Lipson, Haifa



Preface from the original edition

There are two sorts of textbooks. On the one hand, there are works of reference
to which students can turn for the clarification of some obscure point or for
the intimate details of some important experiment. On the other hand, there
are explanatory books which deal mainly with principles and which help in the
understanding of the first type.

We have tried to produce a textbook of the second sort. It deals essentially
with the principles of optics, but wherever possible we have emphasized the
relevance of these principles to other branches of physics – hence the rather
unusual title. We have omitted descriptions of many of the classical experiments
in optics – such as Foucault’s determination of the velocity of light – because
they are now dealt with excellently in most school textbooks. In addition, we
have tried not to duplicate approaches, and since we think that the graphi-
cal approach to Fraunhofer interference and diffraction problems is entirely
covered by the complex-wave approach, we have not introduced the former.

For these reasons, it will be seen that the book will not serve as an intro-
ductory textbook, but we hope that it will be useful to university students
at all levels. The earlier chapters are reasonably elementary, and it is hoped
that by the time those chapters which involve a knowledge of vector calculus
and complex-number theory are reached, the student will have acquired the
necessary mathematics.

The use of Fourier series is emphasized; in particular, the Fourier transform –
which plays such an important part in so many branches of physics – is treated
in considerable detail. In addition, we have given some prominence – both
theoretical and experimental – to the operation of convolution, with which we
think that every physicist should be conversant.

We would like to thank the considerable number of people who have helped
to put this book into shape. Professor C. A. Taylor and Professor A. B. Pippard
had considerable influence upon its final shape – perhaps more than they real-
ize. Dr I. G. Edmunds and Mr T. Ashworth have read through the complete
text, and it is thanks to them that the inconsistencies are not more numer-
ous than they are. (We cannot believe that they are zero!) Dr G. L. Squires
and Mr T. Blaney have given us some helpful advice about particular parts
of the book. Mr F. Kirkman and his assistants – Mr A. Pennington and
Mr R. McQuade – have shown exemplary patience in producing some of our
more exacting photographic illustrations, and in providing beautifully finished
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prints for the press. Mr L. Spero gave us considerable help in putting the
finishing touches to our manuscript.

And finally we should like to thank the three ladies who produced the final
manuscript for the press – Miss M. Allen, Mrs E. Midgley and Mrs K. Beanland.
They have shown extreme forbearance in tolerating our last-minute changes,
and their ready help has done much to lighten our work.

S. G. L.
H. L.





1 History of ideas

Why should a textbook on physics begin with history? Why not start with what

is known now and refrain from all the distractions of out-of-date material? These

questions would be justifiable if physics were a complete and finished subject;

only the final state would then matter and the process of arrival at this state

would be irrelevant. But physics is not such a subject, and optics in particular

is very much alive and constantly changing. It is important for the student to

study the past as a guide to the future. Much insight into the great minds of

the era of classical physics can be found in books by Magie (1935) and Segré

(1984).

By studying the past we can sometimes gain some insight – however slight –

into the minds and methods of the great physicists. No textbook can, of course,

reconstruct completely the workings of these minds, but even to glimpse some of

the difficulties that they overcame is worthwhile. What seemed great problems

to them may seem trivial to us merely because we now have generations of

experience to guide us; or, more likely, we have hidden them by cloaking them

with words. For example, to the end of his life Newton found the idea of ‘action at

a distance’ repugnant in spite of the great use that he made of it; we now accept

it as natural, but have we come any nearer than Newton to understanding it? It

is interesting that the question of ‘action at a distance’ resurfaced in a different

way in 1935 with the concept of ‘entangled photons’, which will be mentioned

in §1.7.2 and discussed further in §14.3.3.

The history of optics is summarized in Fig. 1.1, which shows many of the

important discoveries and their interactions, most of which are discussed in the

chapters that follow. First, there was the problem of understanding the nature

of light; originally the question was whether light consisted of massive corpus-

cles obeying Newtonian mechanics, or was it a wave motion, and if so in what

medium? As the wave nature became clearer, the question of the medium became

more urgent, finally to be resolved by Maxwell’s electromagnetic theory and

Einstein’s theory of relativity. But the quantum nature of physics re-aroused the

wave–particle controversy in a new form, and today many basic questions are still

being asked about the interplay between particle and wave representations of

light.

We shall touch on some
of these questions, which
have been addressed by
some very thought-
provoking experiments,
in Chapter 14.
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Figure 1.1 The development of optics, showing many of the interactions. Notice that there was
little development in the eighteenth century, mainly because of Newton’s erroneous
idea of light particles. The numbers in square brackets indicate the chapters where
the topics are discussed.

A complementary trail follows the applications of optics. Starting with sim-

ple refractive imaging devices, well explained by corpuscular considerations, the

wave theory became more and more relevant as the design of these instruments

improved, and it became clear that bounds to their performance existed. But even

the wave theory is not quite adequate to deal with the sensitivity of optical instru-

ments, which is eventually limited by quantum theory. A fuller understanding of

this is leading us today towards more sensitive and more accurate measurement

and imaging techniques.



3 1.1 The nature of light

1.1 The nature of light

1.1.1 The basic facts

Let us go back to the time of Galileo (1564–1642). What was known about light
in the seventeenth century? First of all, it travelled in straight lines and Galileo,
who originated the idea of testing theories by experiment, tried unsuccessfully
to measure its speed. Second, it was reflected off smooth surfaces and the
laws of reflection were known. Third, it changed direction when it passed
from one medium to another (refraction, §2.6.2); the laws for this phenomenon
were not so obvious, but they were established by Snell (1591–1626) and
were later confirmed by Descartes (1596–1650). Fourth, what we now call
Fresnel diffraction (§7.2) had been discovered by Grimaldi (1618–63) and by
Hooke (1635–1703). Finally, double refraction (§6.5) had been discovered by
Bartholinus (1625–98). It was on the basis of these phenomena that a theory of
light had to be constructed.

The last two facts were particularly puzzling. Why did shadows reach a
limiting sharpness as the size of the source became small, and why did fringes
appear on the light side of the shadow of a sharp edge? And why did light
passing through a crystal of calcite (see Fig. 1.4) produce two images while
light passing through most other transparent materials produced only one?

1.1.2 The wave–corpuscle controversy

Two explanations were put forward: corpuscules and waves, and an acrimo-
nious controversy resulted. Newton (1642–1727) threw his authority behind
the theory that light is corpuscular, mainly because his first law of motion said
that if no force acts on a particle it will travel in a straight line; he assumed
that the velocity of the corpuscles was large enough that gravitational bending
would be negligible. Double refraction he explained by some asymmetry in the
corpuscles, so that their directions depended upon whether they passed through
the crystal forwards or sideways. He envisaged the corpuscles as resembling
magnets and the word ‘polarization’ is still used even though this explanation

Newton did consider
gravitational bending of
light. He obtained a value
a factor of two smaller
than later predicted by
relativity, but this was
not discovered till 1919
(§2.8)!

has long been discarded.
Diffraction, however, was difficult. Newton realized its importance and was

aware of what are now known as Newton’s rings (§9.1.2), and he saw that
the fringes formed in red light were separated more than those formed in blue
light. He was also puzzled by the fact that light was partly transmitted and partly
reflected by a glass surface; how could his corpuscles sometimes go through
and sometimes be reflected? He answered this question by propounding the
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Figure 1.2

Young’s interference
experiment. In a narrow
beam of sunlight he placed
a narrow strip of card,
about 1 mm in width, to
create two separate beams,
and then observed on a
screen that there were
fringes in the region where
the two beams overlapped.

Screen
Strip of card
about 1mm
wide

Small hole
in shutter

Sunbeam

idea that they had internal vibrations that caused ‘fits of reflexion’ and ‘fits of
transmission’; in a train of corpuscles some would go one way and some the
other. He even worked out the lengths of these ‘fits’ (which came close to what
we now know as half the wavelength). But the idea was very cumbersome and
was not really satisfying.

His contemporary Huygens (1629–95) was a supporter of the wave theory.
With it he could account for diffraction and for the behaviour of two sets of
waves in a crystal, without explaining how the two sets arose. Both he and
Newton thought that light waves, if they existed, must be like sound waves,
which are longitudinal. It is surprising that two of the greatest minds in science
should have had this blind spot; if they had thought of transverse waves, the
difficulties of explaining double refraction would have disappeared.

1.1.3 Triumph of the wave theory

Newton’s authority kept the corpuscular theory going until the end of the
eighteenth century, but by then ideas were coming forward that could not be
suppressed. In 1801 Young (1773–1829) demonstrated interference fringes
between waves from two sources (Fig. 1.2) – an experiment so simple to
carry out and interpret that the results were incontrovertible. In 1815 Fresnel
(1788–1827) worked out the theory of the Grimaldi–Hooke fringes (§7.1) and
in 1821 Fraunhofer (1787–1826) invented the diffraction grating and produced
diffraction patterns in parallel light for which the theory was much simpler
(§9.2). These three men laid the foundation of the wave theory that is still the
basis of what is now called physical optics.
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Figure 1.3

Fresnel and Arago’s
experiment: the bright spot
at the centre of the shadow
of a disc. The experimental
arrangement was similar to
that of Young, shown in
Fig. 1.2.

The defeat of the corpuscular theory, at least until the days of quantum ideas,
came in 1818. In that year, Fresnel wrote a prize essay on the diffraction of light
for the French Académie des Sciences on the basis of which Poisson (1781–
1840), one of the judges, produced an argument that seemed to invalidate the
wave theory by reductio ad absurdum. Suppose that a shadow of a perfectly
round object is cast by a point source; at the periphery all the waves will be
in phase, and therefore the waves should also be in phase at the centre of the
shadow, and there should therefore be a bright spot at this point. Absurd! Then
Fresnel and Arago (1786–1853) carried out the experiment and found that there
really was a bright spot at the centre (Fig. 1.3). The triumph of the wave theory
seemed complete.

The Fresnel–Arago
experiment is discussed
in detail in §7.2.4.

1.2 Speed of light

The methods that Galileo employed to measure the speed of light were far too
crude to be successful. In 1678 Römer (1644–1710) realized that an anomaly in
the times of successive eclipses of the moons of Jupiter could be accounted for
by a finite speed of light, and deduced that it must be about 3× 108 m s−1. In
1726 Bradley (1693–1762) made the same deduction from observations of the
small ellipses that the stars describe in the heavens; since these ellipses have a
period of one year they must be associated with the movement of the Earth.

It was not, however, until 1850 that direct measurements were made, by
Fizeau (1819–96) and Foucault (1819–68), confirming the estimates obtained
by Römer and Bradley. Knowledge of the exact value was an important con-
firmation of Maxwell’s (1831–79) theory of electromagnetic waves (§5.1),
which allowed the wave velocity to be calculated from the results of labora-
tory experiments on static and current electricity. In the hands of Michelson
(1852–1931) their methods achieved a high degree of accuracy – about 0.03
per cent. Subsequently much more accurate determinations have been made,
and the velocity of light in vacuum has now become one of the fundamental
constants of physics, replacing the standard metre.
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1.2.1 Refractive index

The idea that refraction occurs because the velocity of light is dependent on
the medium dates back to Huygens and Newton. According to the corpuscular
theory, the speed of light should be greater in a denser medium than in air
because the corpuscles must be attracted towards the denser medium to account
for the changed direction of the refracted light. According to the wave theory,
the waves must travel more slowly in the medium and ‘slew’ round to give
the new direction (Fig. 2.9). Foucault’s method of measurement only required
a relatively short path, and the speed of light could therefore be measured
directly in media other than air – water, for example. Although the wave theory
was by then completely accepted, Foucault provided welcome confirmation
that the velocity was indeed smaller in water. A variation on the experiment
performed by Fizeau provided a method of investigating the effects of motion
of the medium on the velocity of light, because it was possible to carry out
the measurements when the water was flowing through the apparatus (§9.4.1).
The results could not be explained on the basis of nineteenth century physics
of course, but preempted the theory of relativity.

1.3 The nature of light waves: Transverse
or longitudinal?

The distinction between transverse and longitudinal waves had been appreci-
ated early in the history of physics; sound waves were found to be longitudinal
and water waves were obviously transverse. In the case of light waves, the
phenomenon that enabled a decision to be made was that of double refraction
in calcite. As we mentioned before, Huygens had pointed out that this prop-
erty, which is illustrated in Fig. 1.4, means that the orientation of the crystal
must somehow be related to some direction in the wave, but he had failed to
appreciate the connection with transversality of the waves.

The greatest step towards understanding the waves came from a completely
different direction – the theoretical study of magnetism and electricity.

In the first half of the nineteenth century the relationship between magnetism
and electricity had been worked out fairly thoroughly, by men such as Oersted
(1777–1851), Ampère (1775–1836) and Faraday (1791–1867). In order to
visualize his experimental results, Faraday invented around 1851 the concept
of ‘lines of force’, which described the ‘action at a distance’ that had so worried
his predecessors in magnetism, electricity and gravitation. In 1865, Maxwell
was inspired to combine his predecessors’ observations in mathematical form
by describing the region of influence around electric charges and magnets as an

The concept of a ‘field’,
which is widely used
today in all areas of
physics, was originated
by Faraday in this work.
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Figure 1.4

Double refraction in a
calcite crystal.

‘electromagnetic field’ and expressing the observations in terms of differential
equations. In manipulating these equations he found that they could assume
the form of a transverse wave equation (§2.1.1), a result that had already been
guessed by Faraday in 1846. The velocity of the wave could be derived from
the known magnetic and electric constants, and was found to be equal to the
measured velocity of light; thus light was established as an electromagnetic
disturbance. A key to Maxwell’s success was his invention of the concept of
a ‘field’, which is a continuous function of space and time representing the
mutual influence of one body on another, a prolific idea that has dominated the
progress of physics ever since then. This began one of the most brilliant episodes
in physics, during which different fields and ideas were brought together and
related to one another.

1.4 Quantum theory

With the marriage of geometrical optics and wave theory (physical optics) it
seemed, up to the end of the nineteenth century, that no further rules about
the behaviour of light were necessary. Nevertheless there remained some basic
problems, as the study of the light emitted by hot bodies indicated. Why
do such bodies become red-hot at about 600 ◦C and become whiter as the
temperature increases? The great physicists such as Kelvin (1824–1907) were
well aware of this problem, but it was not until 1900 that Planck (1858–1947)
put forward, very tentatively, an ad hoc solution, now known as the quantum
theory.

Planck’s idea (§14.1.1) was that wave energy is divided into packets (quanta),
now called photons, whose energy content is proportional to the frequency. The
lower frequencies, such as those of red light, are then more easily produced

Planck had a hard time
defending his doctoral
dissertation, in which the
idea of quantization was
proposed!

than higher frequencies. The idea was not liked – even Planck himself was
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hesitant in proposing it – but gradually scepticism was overcome as more and
more experimental evidence in its favour was produced. By about 1920 it was
generally accepted, largely on the basis of Einstein’s (1879–1955) study of the
photo-electric effect (1905) and of Compton’s (1892–1962) understanding of
energy and momentum conservation in the scattering of X-rays by electrons
(1923); even though, in retrospect, neither of these experiments conclusively
shows that an electromagnetic wave itself is quantized, but only that it inter-
acts with a material in a quantized way, which might be a property of the
material itself. The real proof had to wait for the advent of non-linear optics
(§1.7.2).

1.4.1 Wave–particle duality

So it seems that light has both corpuscular properties and wave-like features
at the same time. This duality is still difficult to appreciate to those of us who
like intuitive physical pictures. The energy of a wave is distributed through
space; the energy of a particle would seem to be concentrated in space. A
way of understanding duality questions in linear optics is to appreciate that the
wave intensity tells us the probability of finding a photon at any given point.
The corpuscular features only arise when the wave interacts with a medium,
such as a detector, and gives up its energy to it. Thus, any given problem
should be solved in terms of wave theory right until the bitter end, where the
outcome is detected. However, this interpretation is not sufficient when non-
linear phenomena are involved; curious correlations between different photons
then arise, defying attempts to make simple interpretations (§14.3).

1.4.2 Corpuscular waves

As usual in physics one idea leads to another, and in 1924 a new idea occurred
to de Broglie (1892–1987), based upon the principle of symmetry. Faraday had
used this principle in his discovery of electromagnetism; if electricity produces
magnetism, does magnetism produce electricity? De Broglie asked, ‘If waves
are corpuscles, are corpuscles waves?’ Within three years his question had
been answered. Davisson (1881–1958) and Germer (1896–1971) by ionization
methods and G. P. Thomson (1892–1975) by photographic methods, showed
that fast-moving electrons could be diffracted by matter similarly to X-rays.
Since then other particles such as neutrons, protons and atoms have also been
diffracted. Based on these experiments, Schrödinger (1887–1961) in 1928
produced a general wave theory of matter, which has stood the test of time
down to atomic dimensions at least.
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1.5 Optical instruments

1.5.1 The telescope

Although single lenses had been known from time immemorial, it was not until
the beginning of the seventeenth century that optical instruments as we know
them came into being. Lippershey (d. 1619) discovered in 1608, probably
accidentally, that two separated lenses, an objective and an eye lens, could
produce a clear enlarged image of a distant object (§3.3.2). Galileo seized
upon the discovery, made his own telescope, and began to make a series of
discoveries – such as Jupiter’s moons and Saturn’s rings – that completely

Newton apparently did
not realize that different
types of glass had
different degrees of
dispersion, so he did not
think that an achromatic
doublet could be made.

altered the subject of astronomy. Newton, dissatisfied with the colour defects
in the image, invented the reflecting telescope (Fig. 1.5).

Modern telescopes have retained the basic elements of these original designs,
but many additional features have made them much more powerful and accu-
rate. In about 1900, Lord Rayleigh (1842–1919) showed that the angular
resolution of a telescope is limited by diffraction at its aperture (§12.2.1), so
that bigger and bigger telescopes were built in order to produce brighter images
and, hopefully, to improve the resolution too. But it appeared that resolu-
tion was limited by atmospheric turbulence effects once the aperture diameter
exceeded about 15 cm. Both Rayleigh’s resolution limit and the atmospheric
limitation were first circumvented by Michelson in 1921, who used interfer-
ence between a pair of small telescope apertures (15 cm diameter) separated
by several metres, to achieve resolution equivalent to the separation, and
not the telescope aperture (§11.8.1). Later, in 1972, Labeyrie showed how
to overcome the atmospheric limitations of a single large-aperture telescope,
and for the first time achieved diffraction-limited resolution from the Palomar
2.5 m ground-based telescope by using an image-combination technique called
‘speckle interferometry’ (§12.7).

Since 1994, superb astronomical images with almost diffraction-limited
resolution are being routinely obtained with the Hubble Space Telescope, which
has an aperture of 2.4 m and is of course not limited by atmospheric turbulence
or transmission. But more recently, ground-based telescopes with apertures up
to 10 m diameter use real-time atmospheric correction at infra-red and visible
wavelengths, called ‘adaptive optics’, to produce stellar images that rival those
from the space telescope in brightness and resolution.

The story of how the
Hubble telescope was
launched with a serious
aberration in the primary
mirror, and how this was
analyzed and corrected
in situ, is told in §8.9.

1.5.2 The microscope

The story of the microscope is different. Its origin is uncertain; many people
contributed to its early development. The microscope originated from the
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Figure 1.5

Newton’s reflecting
telescope.

Figure 1.6

Hooke’s microscope, from
his Micrographia.

magnifying glass. In the sixteenth and seventeenth centuries considerable inge-
nuity was exercised in making high-powered lenses; a drop of water or honey
could produce wonderful results in the hands of an enthusiast. Hooke (1635–
1703) played perhaps the greatest part in developing the compound microscope
which consisted, like the telescope, of an objective and an eye lens (§3.4). Some
of his instruments (Fig. 1.6) already showed signs of future trends in design.
One can imagine the delight of such an able experimenter in having the priv-
ilege of developing a new instrument and of using it to examine for the first

We suggest you try
making your own ‘Hooke
microscope’ using a drop
of honey or better, corn
syrup, and relive some of
Hooke’s discoveries.

time the world of the very small, depicted in his Micrographia (1665). Micro-
scope technology improved continuously throughout the years, producing ever
clearer images of absorbing objects, but an invention by Zernike (1888–1966)
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changed the direction of development. Zernike’s invention, the phase-contrast
microscope (§12.4.2), for which he received the Nobel prize in 1953, made
refractive index variations visible and this allowed in vivo biological observa-
tion by eliminating the need for staining. Zernike’s invention was the first of
a multitude of methods now known as ‘spatial filtering’ (§12.4) which have
made the modern optical microscope a most versatile instrument.

1.5.3 Resolution limit

In order to put the design of optical instruments on a sound basis, the discipline
of geometrical optics was founded, based entirely on the concept of rays of
light, which trace straight lines in uniform media and are refracted according
to Snell’s law at boundaries. Based on these concepts, rules were formulated to
improve the performance of lenses and mirrors, in particular by skilful figuring
of surfaces and by finding ways in which inevitable aberrations would cancel
one another.

But the view that progress in optical instruments depended only upon the
skill of their makers was suddenly brought to an end by Abbe (1840–1905) in
1873. He showed that the geometrical optical theory – useful though it was in
developing optical instruments – was incomplete in that it took no account of
the wave properties of light. Geometrically, the main condition that is necessary
to produce a perfect image is that the rays from any point in the object should
be so refracted that they meet together at a point on the image. Abbe showed
that this condition is necessarily only approximate; waves spread because of
diffraction and so cannot intersect in a point.

He put forward another interpretation of image formation – that an image is
formed by two processes of diffraction (§12.2). As a result, one cannot resolve
detail less than about half a wavelength, even with a perfectly corrected instru-
ment. This simple result was greeted by microscopists with disbelief; many
of them had already observed detail less than this with good rigidly mounted
instruments. Abbe’s theory, however, proves that such detail is erroneous; it is
a function of the instrument rather than of the object. Improving lenses further
is not the only thing needed to improve microscopes.

But in recent decades,
Abbe’s limit has been
significantly superceded,
and it appears that the
resolution is only limited
by the amount of light
available (§12.6).

1.5.4 Resolving-power challenge: ultra-violet, soft X-ray
and electron microscopy

Any fundamental limitation of this sort should be regarded as a challenge.
Until difficulties are clearly exposed no real progress is possible. Now that
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Figure 1.7

Electron microscope image
of a virus crystal, magnified
3 × 104, showing
resolution of individual
molecules. (Courtesy of
R. W. G. Wyckoff)

1μm

it was known where the limitations of optical instruments lay, it was possi-
ble to concentrate upon them rather than upon lens design. One obvious way
of approaching the problem is to consider new radiations with shorter wave-
lengths. Ultra-violet light is an obvious choice, and is now widely used in
photolithography. Other radiations that have been effective are electron waves
and X-rays; these have wavelengths about 10−4 of those of visible light and
have produced revolutionary results.

The realization that moving particles also have wave properties (§1.4.2)
heralded new imaging possibilities. If such particles are charged they can be
deflected electrostatically or magnetically, and so refraction can be simulated.
It was found that suitably shaped fields could act as lenses so that image
formation was possible. Electrons have been used with great success for this
work, and electron microscopes with magnetic (or more rarely electrostatic)
‘lenses’ are available for producing images with very high magnifications. By
using accelerating voltages of the order of 106 V, wavelengths of less than 0.1 Å
can be produced, and thus a comparable limit of resolution should be obtainable.
In practice, however, electron lenses are rather crude by optical standards and
thus only small apertures are possible, which degrade the resolution. But today,
with improvements in electron lenses, images showing atomic and molecular
resolution are available, and these have revolutionized fields such as solid-state
physics and biology (Fig. 1.7).

Even today, the largest
numerical aperture
(§12.2) of electron lenses
is about 0.04.

1.5.5 X-ray microscopy and diffraction

X-rays were discovered in 1895, but for 17 years no one knew whether they
were particles or waves. Then, in 1912, a brilliant idea of von Laue (1879–
1960) solved the problem; he envisaged the possibility of using a crystal as
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Figure 1.8

X-ray diffraction patterns
produced by a crystal. (a)
Original results obtained
by Friedrich and Knipping;
(b) a clearer picture taken
with modern equipment,
showing the symmetry of
the diffraction pattern.
(Ewald (1962))

(a) (b)

a (three-dimensional) diffraction grating and the experiment of passing a fine
beam of X-rays onto a crystal of copper sulphate (Fig. 1.8) showed definite
indications of diffraction, indicating wave-like properties.

The problem in constructing an X-ray microscope is that lenses are not
available; the refractive index of all materials in this region of the spectrum
is less than unity, but only by an amount of the order of 10−5. However, the
wave properties can be used directly, by diffraction, to produce images using
a Fresnel zone plate, and this type of microscope has recently been devel-
oped (§7.5). But long before such zone-plate ‘lenses’ became available, a new
subject – X-ray crystallography – was born (§8.6). This relies on Abbe’s
observation that imaging is essentially a double diffraction process. The exper-
iments on crystals showed that the results of the first diffraction process could
be recorded on film; the question was, could the second diffraction process be
carried out mathematically in order to create the image? The problem that arose
was that the film used to record the diffraction pattern only recorded part of
the information in the diffracted waves – the intensity. The phase of the waves
was lacking. Nothing daunted, generations of physicists and chemists sought
ways of solving this problem, and today methods of ‘phase retrieval’ (§8.8),
for which Hauptman and Karle received the Nobel prize in 1985, have made
X-ray imaging, at least of crystals, a relatively straightforward process.

1.5.6 Super-resolution

Another approach to the resolution problem was to ask whether there exist
ways of getting around the Abbe limit. The first positive answer to this ques-
tion was given by G. Toraldo di Francia in 1952, who showed that masking
the aperture of a microscope lens in a particular manner could, theoretically,
result in resolution as high as one could want – at a price: the intensity of the
image (§12.6). Although the method he suggested has not been significantly
used, it inspired attempts to find other ways around the Abbe limit. Today,
several techniques achieve resolutions considerably better than half a wave-
length; for example, the near-field optical microscope (NSOM – §12.6.3) and
stochastic optical reconstruction microscopy (STORM – §12.6.5) can resolve
detail smaller than one-tenth of a wavelength.
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1.6 Coherence, holography and
aperture synthesis

In 1938 Zernike developed and quantified the idea of coherence, an important
concept that related light waves from real sources to the ideal sinusoidal waves
of theory (§11.3). The concept of coherence had widespread implications. It
could be applied not only to light waves, but also to other types of wave propa-
gation, such as electron waves in metals and superconductors. One of the results
was an attempt to improve the resolution of electron microscopy by Gabor, who
in 1948 invented an interference technique that he called ‘holography’, which
employed wave coherence to record images without the use of lenses (§12.5.1).
The technique could not at the time be implemented in electron microscopy
for technical reasons, but implanted an idea that blossomed with the invention
of the laser in the 1960s. Gabor was awarded the Nobel prize for holography
in 1971. It took till 1980 for holography eventually to be applied to electron

Electron holography
is used today for
investigating magnetic
structures, which are
invisible to electro-
magnetic waves.

microscopy by Tonamura, when sufficiently coherent electron sources became
available, albeit not for the original purpose for which Gabor invented it, since
in the meantime electron lenses had been sufficiently improved to make it
unnecessary for improving resolution.

The way in which the idea of coherence inspired further developments illus-
trates the influence that an elegant theoretical concept can have. It can make a
subject so clear that its implications become almost obvious. Michelson’s 1921
experiments to measure the diameters of stars by using interference were rein-
terpreted in terms of Zernike’s coherence function and inspired Ryle and Hewish
in 1958 to develop ‘aperture synthesis’ in radio astronomy, where groups of
radio telescopes could be connected coherently to give images with angular res-
olution equivalent to that of a single telescope the size of the greatest distance
between them (§11.8). In recent years, aperture synthesis has been extended to
the infra-red and visible regions of the spectrum, and several observatories now
use groups of separated telescopes, with variable separations up to hundreds of
metres, to create images with very high angular resolution (§11.8.4).

1.7 Lasers

In 1960 the laser was invented, and this brought optics back into the limelight
after quarter of a century of relative obscurity. Stimulated emission, the basic
physical concept that led to the laser, was originally discussed by Einstein as
early as 1917, but the idea lay dormant until Purcell and Pound created popu-
lation inversion in an atomic system in 1950. This achievement independently
inspired Townes in the USA and Basov and Prokhorov in the USSR (who
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jointly received the Nobel prize in 1964) to suggest a microwave amplifier
based on stimulated emission, and led to the first maser, using ammonia (NH3)
gas, which was constructed by Townes in 1954. The extension to light waves
took several years, the first ruby laser being constructed by Maiman in 1960.
The laser, a non-equilibrium source of radiation, could produce highly coherent
radiation with power densities greatly exceeding the limitations that Planck’s
quantum thermodynamics placed on the brightness of a light source (§14.5).

Non-linear frequency
doubling is today used
in some commonly
available items such as
green laser-pointers.

Within an incredibly short period, many brilliant experiments were performed
with the new light sources, which allowed things to be done in the laboratory
that could previously only be imagined. Prominent amongst these is non-linear
optics, pioneered by Bloembergen (§13.6). This is the result of being able to
focus high light power into a very small volume of a material, thus creating
an electric field comparable with that inside an atom. In the non-linear regime,
where the refractive index is a function of light intensity, new types of wave
propagation appear; waves can be mixed, new frequencies created and one
wave used to control another.

1.7.1 Optical communications

The invention of the laser has had enormous technical implications, many of
which affect our everyday life and may be the reason that you are reading this
book. Married to optical fibres (§10.2), lasers have spawned the field of optical
communications, and today modulated light waves carry data streams across
the world with very high fidelity at rates in excess of giga-bits per second. At
similar rates, tiny semiconductor lasers can write and read data on temporary

For realizing that optical
fibres could be used for
long-distance data
transmission, C. Kao
received the Nobel prize
in 2009.

and permanent storage materials such as hard-discs and CDs.

1.7.2 Non-linear optics and photons

Non-linear processes allow photons to be handled almost individually. This is
a field where there are still many open questions, which are still being actively
investigated (§14.3). Noteworthy is the concept of ‘entangled’ photons, which
had its origin in a paper by Einstein, Podolsky and Rosen (1935). In single
photon processes, measuring the properties of a photon (e.g. its energy or its
polarization) is possible only by destroying it. But if two photons are emitted
simultaneously by a non-linear process, their properties are correlated; for
example the sum of their energies is known, but not their individual values, and
the photons must have the same polarization, but its orientation is unknown.
Measuring the properties of one photon therefore allows those of the other
one to be deduced, while destroying only one of them. Clearly, here we have
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an intriguing non-local situation in which two photons are represented by one
wave, and the photons may be a long way apart at the time of the measurement
of one of them; does this bring us back to Newton’s concern about ‘action at
a distance’? Such thinking is playing a great part in present-day research, and
has led to many challenging situations that bode well for the future of optics.
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2 Waves

Optics is the study of wave propagation and its quantum implications, the latter

now being generally called ‘photonics’. Traditionally, optics has centred around

visible light waves, but the concepts that have developed over the years have

been found increasingly useful when applied to many other types of wave, both

inside and outside the electromagnetic spectrum. This chapter will first introduce

the general concepts of classical wave propagation, and describe how waves are

treated mathematically.

However, since there are many examples of wave propagation that are difficult

to analyze exactly, several concepts have evolved that allow wave propagation

problems to be solved at a more intuitive level. The latter half of the chapter will

be devoted to describing these methods, due to Huygens and Fermat, and will

be illustrated by examples of their application to wave propagation in scenarios

where analytical solutions are very hard to come by. One example, the propa-

gation of light waves passing near a heavy massive body, called ‘gravitational

lensing’ is shown in Fig. 2.1; the figure shows two images of distant sources

distorted by such gravitational lenses, taken by the Hubble Space Telescope, com-

pared with experimental laboratory simulations. Although analytical methods

do exist for these situations, Huygens’ construction makes their solution much

easier (§2.8).

A wave is essentially a temporary disturbance in a medium in stable equi-

librium. Following the disturbance, the medium returns to equilibrium, and the

energy of the disturbance is dissipated in a dynamic manner. The behaviour can

be described mathematically in terms of a wave equation, which is a differential

equation relating the dynamics and statics of small displacements of the medium,

and whose solution is a propagating disturbance. The first half of the chapter will

be concerned with such equations and their solutions. The term ‘displacements

of the medium’ is not, of course, restricted to mechanical displacement but can

be taken to include any field quantity (continuous function of r and t) that can

be used to measure a departure from equilibrium, and the equilibrium state

itself may be nothing more than the vacuum – in electromagnetic waves, for

The energy of a
disturbance may not
always be dissipated
in what looks like a
‘wave-like’ manner, but
such behaviour can still
be derived as the
solution of a wave
equation.

example.
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(a) (b)

(c) (d )

Figure 2.1 Images formed after light from a point source passes through a gravitational lens:
(a) imaged in the laboratory through the lens of Fig. 2.14(d) on axis, showing the
Einstein ring; (b) as (a), but off-axis (a fifth point, near the centre, is too weak to be
seen in the photograph); (c) image of the source B1938+666 showing an Einstein
ring, diameter 0.95 arcsec, taken with the near infra-red NICMOS camera on the
Hubble Space Telescope (King et al. (1998)); (d) image of the source Q2237+0305,
obtained in the near infra-red by the JPL wide-field telescope, showing five distinct
images with the same red-shift, 1.695 (Huchra et al. (1985); Paczyński and
Wambsganss (1993)). The scale bars under (c) and (d) indicate 1 arcsec. (Telescope
photographs courtesy of NASA)

In this chapter we shall learn:

• what a wave equation is, and how to find its solutions;

• about non-dispersive waves, like electromagnetic waves in vacuum;

• about wave equations leading to dispersive wave solutions;

• what is meant by complex wavenumber, frequency and velocity;

• the difference between phase and group velocities;

• about wave propagation in two and three dimensions;

• some methods for dealing with wave propagation in inhomogeneous

media, due to Huygens and Fermat;

• how waves propagate in a dispersive medium, leading to distortion and

chirping;

• about gravitational lensing in the cosmos, as an example of Huygens’

principle.

2.1 The non-dispersive wave equation
in one dimension

Once an equation describing the dynamics of a system has been set up, to call
it a wave equation we require it to have propagating solutions. This means
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that if we supply initial conditions in the form of a disturbance that is centred
around some given position at time zero, then we shall find a disturbance of
similar type centred around a new position at a later time. The term we used:
‘centred around’ is sufficiently loose that it does not require the disturbance to
be unchanged, but only refers to the position of its centre of gravity. We simply
ask for some definition of a centre that can be applied similarly to the initial
and later stages, and that shows propagation. This way we can include many
interesting phenomena in our definition, and benefit from the generality. But
first we shall consider the simplest case, in which the propagating disturbance
is indeed unchanged with time.

2.1.1 Differential equation for a non-dispersive wave

The most important elementary wave equation in one dimension can be derived
from the requirement that any solution:

1. propagates in either direction (±x) at a constant velocity v,
2. does not change with time, when referred to a centre which is moving at

this velocity. This invariance of the solution with time is what is meant by
‘non-dispersive’.

These are restrictive conditions, but, just the same, they apply to a very large
and diverse group of physical phenomena. The resulting wave equation is called
the non-dispersive wave equation.

We start with the requirement that a solution f (x, t) of the equation must be
unchanged if we move the origin a distance x = ±vt in time t (Fig. 2.2). This
gives two equations:

The term ‘non-dispersive’
also means that the wave
velocity is independent
of its frequency, as we
shall see later.

f (x, t) = f (x− vt, 0), (2.1)

f (x, t) = f (x+ vt, 0), (2.2)

where f can be any continuous function which can be differentiated twice. The
argument

(x± vt) ≡ φ± (2.3)

is called the phase of the wave.

f

x

f

x

vt

Figure 2.2

An arbitrary disturbance
moves at a constant
velocity.

Differentiating (2.1) by x and t respectively, we have

∂f
∂x
= df

dφ−
,

∂f
∂t
= −v

df
dφ−

(2.4)

and for (2.2)

∂f
∂x
= df

dφ+
,

∂f
∂t
= v

df
dφ+

. (2.5)
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Equations (2.4) and (2.5) can be reconciled to a single equation by a second
similar differentiation followed by eliminating d2f /dφ2 between the pairs;
either equation gives

∂2f
∂x2 =

d2f
dφ2 ,

∂2f
∂t2

= v2 d2f
dφ2 ,

whence

∂2f
∂x2 =

1
v2

∂2f
∂t2 , (2.6)

of which (2.1) and (2.2) are the most general solutions. Equation (2.6) is known
as the non-dispersive wave equation.

The displacement or wave field f has been assumed above to be a scalar
function, but in a three-dimensional world it can also be the component of
a vector, and therefore have a direction in space. The direction is called the
polarization of the wave. Important cases are longitudinal waves where f
represents a field parallel to the direction of propagation x (e.g. the velocity
field in a sound wave) and transverse waves where f represents a field nor-
mal to the direction of propagation, y or z (e.g. electric and magnetic fields
in electromagnetic waves). Often, the displacement includes more than one
component, such as surface waves on water or seismic waves (see Box 2.2).

Although (2.6) has general solutions (2.1) and (2.2), there is a particular
solution to it that is more important because it satisfies a larger class of equations
known generally as wave equations. This solution is a simple-harmonic wave
of amplitude a, which we write in its complex exponential form:

f (x, t) = a exp
[
2π i

( x
λ
− νt

)]
,

where ν is the frequency in cycles per unit time and λ is the wavelength. A
tidier expression can be written in terms of

the spatial frequency or wavenumber k = 2π/λ,

the angular frequency ω = 2πν.

The latter is just the frequency expressed in units of radians per second, and
we shall generally refer to it simply as ‘frequency’. These give

f (x, t) = a exp[i(kx− ωt)]. (2.7)

It is easy to verify that this function satisfies (2.6), and that the velocity is
given by

v = ω/k; (2.8)

this is known as the phase velocity or wave velocity.
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2.1.2 Harmonic waves and their superposition

One particular value of using simple-harmonic waves is that, as we shall see
in Chapter 4, any other wave-form can be built up out of these by superposi-
tion. Now if the wave equation is linear in f, the propagation of a number of
simple-harmonic waves superposed can easily be studied by considering the
propagation of each of the components separately, and then recombining. In
the case of the non-dispersive wave equation this is easy.

In Chapter 4, we shall
see how Fourier analysis
allows us to calculate the
values of aj for a
particular wave.

Consider an elementary wave with wavenumber k, for which ω = kv:

f (x, t) = a exp[i(kx− ωt)] = a exp(iφ). (2.9)

Take an initial (t = 0) superposition of such waves:

g(x, 0) =
∑

j
fj(x, 0) =

∑
j

aj exp(ikjx). (2.10)

At time t, each of the elementary waves has evolved as in (2.9) so:

g(x, t) =
∑

j
aj exp[i(kjx− ωjt)] (2.11)

=
∑

j
aj exp[ikj(x− vt)] (2.12)

= g(x− vt, 0). (2.13)

In words, the initial function g(x, 0) has propagated with no change at velocity
v; (2.13) is equivalent to (2.1). It is important to realize that this simple result
arose because of the substitution of kv for ω in (2.11). If different frequen-
cies travel at different velocities (a dispersive wave) our conclusions will be
modified (§2.7).

2.1.3 Example of a non-dispersive wave

To illustrate the non-dispersive one-dimensional wave equation we shall con-
sider a compressional wave in a continuous medium, a fluid. If the fluid has
compressibility K and density ρ, the equilibrium-state equation is Hooke’s
law:

P = K
∂η

∂x
, (2.14)

Sound waves in air are
compressional waves, for
which the value of K is
proportional to the air
pressure.

where P is the local pressure, i.e. the stress, and η the local displacement from
equilibrium. The differential ∂η/∂x is thus the strain. A dynamic equation
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relates the deviation from the equilibrium state (uniform and constant P) to the
local acceleration:

ρ
∂2η

∂t2
= ∂P

∂x
. (2.15)

Equations (2.14) and (2.15) lead to a wave equation

∂2η

∂x2 =
ρ

K
∂2η

∂t2
. (2.16)

Thus the waves are non-dispersive, with wave velocity

v =
(

K
ρ

) 1
2

. (2.17)

The wave equation (2.16) is valid provided that the stress–strain relationship
(2.14) remains linear, i.e. for small stress. It would not describe shock waves,
for example, for which the stress exceeds the elastic limit. Another example of
a non-dispersive wave equation is that derived by Maxwell for electromagnetic
waves, which will be discussed in depth in Chapter 5.

2.1.4 Energy density in a wave

Since a wave represents a deviation from the equilibrium state, it must add
an additional energy to the system. This can usually be best represented as an
energy density, which is energy per unit length, area or volume, depending on
the dimensionality of the system. In the compressional wave discussed above,
the energy is partly kinetic and partly potential, and at any particular point oscil-
lates between the two. The kinetic energy per unit volume is 1

2ρ(∂η/∂t)2 and
the potential energy per unit volume is stress times strain which is 1

2 K(∂η/∂x)2.
For the sinusoidal wave η = a exp[iω(t− x/v)] it immediately follows that the
average kinetic and potential energy densities are equal, and their sum is a2ω2ρ.
This illustrates a general principle that the energy density is proportional to
the squares of the amplitude and frequency. The energy density multiplied
by the wave velocity is then the rate at which the wave transfers energy, or
loosely, its intensity.

2.2 Dispersive waves in a linear medium:
The dispersion equation

In general, wave equations are not restricted to second derivatives in x and t.
Provided that the equation remains linear in f , derivatives of other orders can
occur; in all such cases, a solution of the form f = a exp[i(kx− ωt)] is found.
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Box 2.1 Waves on a guitar string: example of a
non-dispersive wave

Like the compression wave of §2.1.3, transverse waves on a guitar string also
obey a non-dispersive wave equation. The transverse string displacement
f (x, t) has to satisfy boundary conditions f (0, t) = f (L, t) = 0 at the two
ends, x = 0 and x = L. The waves that satisfy these conditions are the
harmonics, fm(x, t) = am sin(mπx/L) exp(imω1t), which are all solutions
of the non-dispersive wave equation (2.6). These waves are called standing
waves, and each one is the sum of two identical travelling waves with the
same frequency, going in opposite directions (2.2). But when a guitar string
is plucked, in the centre, for example, the wave-form is not sinusoidal, but
rather a triangular wave (Fig. 2.3). This can be expressed, as in §4.1.2, as
the sum of harmonics; the amplitudes of the various harmonics, which are
necessary to express this shape, are what gives the guitar its characteristic
tone.

Naively, one might expect that the triangular wave would retain its shape
and oscillate to and fro, but in fact the result is quite different; it goes
through a series of trapezoidal shapes, which are shown in the figure and
are confirmed by flash photography. This happens because, since the wave
equation for the guitar string is non-dispersive, not only do sinusoidal
waves propagate unchanged but so does any wave-form – in particular, the
triangular wave itself. Then we can express the initial triangular deformation
at t = 0 as the sum of two triangular waves propagating at the phase
velocity, each having half the amplitude, one in the +x direction and one
in the −x direction. Their sum at x = 0 and x = L is zero at all times, and
it is easy to see that at non-zero time they together form a trapezoidal
wave just like that observed in the experiments (Fig. 2.3). Of course,
the same result can be obtained by harmonic analysis; this is left as a
problem (2.9).

For such a wave one can replace ∂f /∂t by −iωf and ∂f /∂x by i kf , so that
if the wave equation can be written

p
(

∂

∂x
,
∂

∂t

)
f = 0, (2.18)

where p is a polynomial function of ∂/∂x and ∂/∂t, which operates on f , the
result will be an equation

p(ik,−iω) = 0, (2.19)

which is called the dispersion equation.
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Figure 2.3

Profile of an oscillating
guitar string, plucked in the
centre. Above, the initial
wave-form is represented
as the sum of two
triangular waves (a),
travelling in opposite
directions (b, c). After time
T, their sum is shown as
the unbroken line. Note
that the sum is always
zero at P and Q. (d–g)
Flash photographs in an
experiment confirming the
trapezoidal evolution of the
wave-form. (Courtesy of
E. Raz, Israel Physics
Olympiad)

vTvT
b a c

Initial wave-form
(twice a)

Wave-form after T
(sum of b and c)

P Q

For example, we shall first return to the non-dispersive equation (2.6) and
see it in this light. We had

∂2f
∂x2 =

1
v2

∂2f
∂t2 , (2.20)

which can be written [(
∂

∂x

)2
− 1

v2

(
∂

∂t

)2
]

f = 0. (2.21)

Thus, from (2.18) and (2.19):

(ik)2 − 1
v2 (−iω)2 = 0 = ω2

v2 − k2, (2.22)

implying

ω/k = ±v. (2.23)
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Box 2.2 Seismic waves as examples of transverse
and longitudinal waves

Seismic waves are a nice example of several types of waves travelling
through the same medium with different wave and group velocities. There
are two types of body waves, which travel in the bulk of the Earth with
different polarizations, and another two surface waves, which travel on
the interface between the Earth and the atmosphere. The bulk waves are
longitudinal (P) or transverse (S), the former travelling at about 5 km/s
depending on the constitution of the Earth’s crust and the latter at about half
this speed.

The two surface waves are called Rayleigh and Love waves. They are
transverse and dispersive; Rayleigh waves being normal to the surface and
Love waves parallel to it. They are much lower in frequency than the bulk
waves and have less damping, and Rayleigh waves in particular have large
amplitudes and create substantial damage. Modern seismographs use the
fact that the waves have different velocities. The P wave can be used as a
warning that the destructive Rayleigh wave is on its way, and comparison
of the arrival times determines the epicentre of the earthquake. Since the
Earth’s constitution is not uniform, propagation of the P and S waves has to
be solved using Huygens’ principle. This has provided much information
about the Earth’s inner structure, such as the fact that it has liquid and solid
cores. Seismic waves caused by man-made explosions are used to map the
Earth accurately, mainly for mineral and oil exploration.

2.2.1 Example of a dispersive wave equation:
Schrödinger’s equation

A dispersive wave equation that rivals Maxwell’s electromagnetic wave equa-
tion in its importance is Schrödinger’s wave equation for a non-relativistic
particle of mass m, moving in a potential field V , which we quote here in its
one-dimensional form:

i�
∂ψ

∂t
= −�2

2m
· ∂

2ψ

∂x2 + V (x)ψ . (2.24)

Here |ψ |2δx is the probability of finding the particle in the region between x and
x + δx, and ψ is called the probability amplitude or simply wave-function.

Schrödinger originally
suggested that this
equation would
represent particle motion
because its dispersion
relation corresponds to
Newtonian mechanics
when the experimentally
demonstrated
wave–particle
equivalence is assumed.

Using (2.18) and (2.19) we can immediately write down the dispersion
equation as

i�(−iω) = −�2

2m
· (ik)2 + V (x), (2.25)
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�ω = (�k)2

2m
+ V (x). (2.26)

We identify �ω as the total energy E of the particle (Planck: �ω = hν) and �k
as its momentum, p = mv (de Broglie: �k = h/λ). Thus, (2.26) becomes

E = p2

2m
+ V (x) = 1

2
mv2 + V (x) (2.27)

or total energy= kinetic energy+ potential energy. In this case the dispersion
equation expresses the Newtonian mechanics, while the wave equation is the
quantum-mechanical equivalent.

2.3 Complex wavenumber, frequency
and velocity

Solution of a dispersion equation such as (2.26) may give rise to complex
values for k or ω, and it is important to give a physical interpretation to such
cases. The velocity ω/k may also be complex as a result.

2.3.1 Complex wavenumber: attenuated waves

Suppose that the frequency ω is real, but the dispersion relation then leads us
to a complex value of k ≡ k1 + ik2. We then have

Complex wavenumbers
are important in optics
when discussing
propagation in absorbing
media, such as metals.

f = a exp[i(k1 + ik2)x− iωt]
= a exp(−k2x) exp[i(k1x− ωt)]. (2.28)

This describes a propagating wave, with velocity v=ω/k1, attenuated
progressively by the factor exp(−k2x). Thus its amplitude decays by a factor
e−1 in every characteristic decay distance of length k−1

2 (Fig. 2.4).

2.3.2 Imaginary velocity: evanescent waves

Sometimes the wavenumber turns out to be purely imaginary (k1 = 0). Now,
in (2.28) the wave clearly has no harmonic space dependence at all; it is a
purely exponential function of x, but still oscillates in time with frequency ω

(Fig. 2.5). It is then called an evanescent wave. We shall meet evanescent
electromagnetic waves in §5.5.
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Figure 2.4

(a) An attenuated
harmonic wave exhibited
as a function of x and t;
(b) shows the projection on
the x, t plane. The broken
line emphasizes a wave
crest; it travels at the phase
velocity, which is the
gradient of this line, x/t.

f
x

tPropagation distance, x
Time, t

(a) (b)

Figure 2.5

(a) An evanescent wave
exhibited as a function of x
and t; (b) shows the
projection on the x, t plane.
Comparing this with Fig. 2.4
shows the phase velocity to
be infinite! This topic will
be expanded in §13.5.2.

f x

t

(a) (b)

Propagation distance, x

Time, t

Wavefront

2.3.3 Example: attenuated and evanescent wave
solutions of the diffusion equation

The diffusion equation can be considered as a wave equation, although it has
many commonly known solutions that are not wave-like. This wave equation
in one dimension arises from the heat conduction equation along, for example,
a bar with negligible heat losses from its surfaces,

q = −κ ∂θ/∂x, (2.29)

which relates heat flux q per unit area to temperature θ in a medium with
thermal conductivity κ and specific heat s per unit volume. Conservation of
heat then requires

It was solving this
equation for arbitrary
boundary conditions that
led to the invention of
what are now known
as ‘Fourier series’
(Chapter 4). Fourier
methods are the
foundation of much of
the optics discussed in
this book.

s ∂θ/∂t = −∂q/∂x, (2.30)

whence we have the diffusion equation

∂θ

∂t
= D

∂2θ

∂x2 , (2.31)

where the diffusion constant D = κ/s. The dispersion relation (2.19) is thus

iω = −Dk2, (2.32)
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giving, for real ω,

k =
( ω

2D

) 1
2
(1+ i). (2.33)

If one end of the bar is subjected to alternating heating and cooling so that its
temperature rise above ambient θ can be written as

θ(0, t) = θ0 exp(−iωt), (2.34)

the wave is propagated along the bar in the form

θ(x, t) = θ0 exp
{

i
[( ω

2D

) 1
2
(1+ i)x− ωt

]}

= θ0 exp
[
−
( ω

2D

) 1
2 x
]

exp
{

i
[( ω

2D

) 1
2 x− ωt

]}
. (2.35)

This wave is attenuated along the bar with characteristic decay distance
(2D/ω)

1
2 . The propagated disturbance is still a wave, however; the phase

of oscillation progresses regularly with x.
Now suppose that the same bar has an initial temperature distribution

θ = θ0 exp(ikx) (k real) (2.36)

impressed upon it at time t = 0, and the temperature distribution is left to its
own devices. From (2.35), we write the subsequent temperature distribution

θ(x, t) = θ0 exp[i(kx− ωt)]
= θ0 exp[−(Dk2t)] exp(ikx). (2.37)

There is no oscillatory time dependence; the spatial dependence exp(ikx)
remains unchanged, but its amplitude decays to zero with time-constant
(Dk2)−1. This is a wave evanescent in time. Thus the heat-diffusion equa-
tion illustrates both types of behaviour; it supports a wave attenuated in
distance for a real frequency, or evanescent in time for a real wavelength.

2.4 Group velocity

The non-dispersive wave equation (2.6) has the property that disturbances of
all frequencies travel with the same velocity. The result, according to §2.1.2,
is that a wave of any form propagates undistorted. On the other hand, in many
dispersive media we find that:

• Waves of different frequencies propagate with different velocities.
• The form of the wave becomes distorted as it progresses.

Details of the analysis
of a wave-group into
sinusoidal components
are given in §4.7, but are
not needed to follow the
argument here.
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Figure 2.6

A wave-group. The wave
amplitude can be described
as a sinusoidal wave with
its amplitude modulated by
an envelope function. To
illustrate wave and group
velocity, the group is
shown above at time t = 0
and below at time t. During
the time t, the sinusoidal
wave peak has travelled
distance vt and the
envelope has travelled vgt.

x

y

x

vt

Group velocity vgvgt

Wave amplitude

(a)

(b)

Envelope at time t

Wave velocity v

Envelope at time 0

Let us suppose that we have a wave-group, which is a wave of given ω0 and
k0 whose amplitude is modulated so that it is limited to a restricted region of
space at time t = 0 (Fig. 2.6(a)).

It is clear that all the energy associated with the wave is concentrated in
the region where its amplitude is non-zero. Such a wave can be built up by
superposition of many component waves whose frequencies are approximately
ω0 and spatial frequencies approximately k0. Methods for calculating their
amplitudes will be discussed in Chapter 4; we do not need them explicitly here.
At a given time, the maximum value of the wave-group envelope occurs at the
point where all the component waves have approximately the same phase, and
thus reinforce one another. We shall now show that this point travels at the
group velocity, a well-defined but different velocity from that of the individual
waves themselves; this is also the velocity at which energy is transported by
the wave.

The maximum of the envelope must correspond to the point at which the
phases of the largest components are equal; then

dφ
dk
= d

dk
(kx− ωt) = x− t

dω
dk
= 0 (2.38)

at that point. The velocity at which the maximum moves is then given by

vg = x
t
= dω

dk
, (2.39)

which is the basic expression for the group velocity. It can be reformulated in
several ways in terms of λ = 2π/k, ω/k = v and ν = ω/2π , such as

vg = v− λ dv/dλ. (2.40)

In general, of course, dω/dk is not a constant. Since the wave-group consists
of components around k0, the value of dω/dk or dv/dλ evaluated at k0 is
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implied. To a first approximation the envelope of the wave-group propagates at
this velocity with little change if the wave-group is not too short. But when the
phase velocity v is not equal to vg, the individual waves can be seen to move
relative to the envelope in either a forward or backward direction (Fig. 2.6(b)).
Such a behaviour can easily be observed in water waves (Problem 2.4), since
these waves have quite strong dispersion.

The wave-form is usually distorted with propagation. In §2.7 we shall analyze

There has recently been
a lot of interest in slow
light (§13.5), which is an
example where the
group and wave velocity
differ by many orders of
magnitude.

an illustrative example of this. Very strong dispersion makes the subject quite
complicated and can lead to apparently paradoxical situations in which vg is
greater than the velocity of light (§13.5; Brillouin (1960)).

2.5 Waves in three dimensions

The reader might consider it a trivial exercise to repeat in three dimensions the
analysis in §2.1.1 in which we derived the non-dispersive wave equation in one
dimension; but it is not! The reason is that, even in a non-dispersive medium, a
three-dimensional wave in general changes its profile as it propagates. Consider,
for example, the spherical acoustic waves emanating from a source in air (which
is a good non-dispersive acoustic medium at audible frequencies). As we go
further from the source the sound intensity weakens as r−2, so the amplitude
of the disturbance is obviously changing with distance.

There is, however, one important type of wave that can propagate in three
dimensions without change. This is the plane wave.

2.5.1 Plane waves

A plane wave that propagates at velocity v in a direction described by the unit
vector n̂ has the general form equivalent to (2.1):

f (r, t) = f (r·n̂− vt, 0). (2.41)

As in (2.3), the phase φ is then

Plane waves are the
basic building-blocks for
almost all types of wave
propagation, such as
diffraction (Chapter 8).

φ = r·n̂− vt = xnx + yny + znz − vt. (2.42)

This is a constant on any plane satisfying r·n̂ − vt = const. Such a plane is
called a wavefront and is a plane of constant phase normal to the direction of
propagation n̂ (Fig. 2.7).

2.5.2 Wave equation in three dimensions

On this basis we can derive the wave equation. We have (2.41)

f (r, t) = f (r·n̂− vt, 0) = f (φ). (2.43)
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For this function, the time and spatial derivatives are

∂/∂t = −v d/dφ, (2.44)

∇ ≡
(

∂

∂x
,
∂

∂y
,
∂

∂z

)
=
(
∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z

)
d

dφ
= n̂

d
dφ

, (2.45)

where (2.42) has been used to calculate ∂φ/∂x etc. Thus, from (2.43)

∂2f
∂t2 = v2 d2f

dφ2 (2.46)

and from (2.45)

∇ · (∇f ) = (n̂ · n̂) d2f
dφ2 =

d2f
dφ2 , (2.47)

whence

∇ · ∇f ≡ ∇2f = ∂2f
∂x2 +

∂2f
∂y2 +

∂2f
∂z2 =

1
v2

∂2f
∂t2

. (2.48)
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Wavelength, l

Wavefronts

Wave-vector, k

Figure 2.7

A plane wave with
wave-vector k normal to
the wavefronts.

So far, f has been considered as a scalar, but the same analysis can be
repeated for each component of a vector field, giving

∇2f = 1
v2

∂2f
∂t2

. (2.49)

This is the three-dimensional non-dispersive wave equation.
Following (2.7), a harmonic plane wave can be constructed by replacing f

by a exp[i(k · r− ωt)]. The phase is

φ = k · r− ωt = k
(

k
k
· r− ω

k
t
)
= k

(
k
k
· r− vt

)
, (2.50)

from which it follows, using (2.42), that n̂= k/k, which is the unit vector in the
direction k. The wavefront is therefore normal to the direction of propagation
k. The magnitude of k is k = 2π/λ, as in (2.7). Because of this relationship,
λ is not a vector, even though it has both magnitude and direction, because its
components do not combine in the prescribed manner.

Dispersion equations in three dimensions are derived in a similar manner to
those in one dimension, by using the substitutions ∇ = ik, ∂/∂t = −iω. This
will give, in general, a vector equation of the form p(ik,−iω) = 0 (compare
to (2.19)).

2.5.3 Spherical and cylindrical waves

Other possible waves in three dimensions are the spherical wave, for which
the wavefronts are spheres, and the cylindrical wave, for which the wavefronts
are cylinders. These are very intuitive wave-forms, because they are typical of
surface waves on water. A converging spherical wave also represents a wave
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being focused to a point. Unfortunately, purely spherical and cylindrical waves
are exact solutions of a wave equation only in the limit r →∞.

For the spherical wave radiated by a source at r = 0, we postulate a scalar
amplitude:

f (r, t) = A(r) exp[i(kr − ωt)]. (2.51)

Here we will assume that A ≡ A(r) is a function of the radius r alone; problems
where A is also a function of the angle will be discussed in §5.3, radiation, and
§7.3, Gaussian beams. The total power transmitted by the wave is the energy
density multiplied by the velocity, and integrated over the whole wavefront.
The latter is a sphere with radius r and area 4πr2, and so from §2.1.4, the power
is 4πr2A2(r)ω2ρv. For energy to be conserved, this must be a constant, and so

A(r) = a0/r, (2.52)

where a0 indicates the amplitude of the source. The radial dependence of the
intensity A2 ∼ r−2 is known as the inverse square law. This is true only
at large distances r 
 λ, since there is obviously a singularity at r = 0. In
this book, the scalar spherical wave will be an important starting point in our
discussion of diffraction, §7.1.

Note that if A(r) = a0/r,
the wave phase should
jump by π on going
through the origin (a
focus). This is the ‘Gouy
effect’; see §7.3.

The treatment of a cylindrical wave, emanating isotropically from a line
source, is similar. Then

f (r, t) = A(r) exp
{

i
[
k(x2 + y2)

1
2 − ωt

]}
. (2.53)

Energy conservation then requires A(r) = a0/
√

r and A2 ∼ r−1.

2.6 Waves in inhomogeneous media

Propagation of a simple-harmonic wave in a homogeneous medium is a
relatively straightforward matter, but when the medium is inhomogeneous,
problems arise that often defy analytical treatment. Two important principles,
developed by Huygens and Fermat, go a long way to simplifying the physics
of such situations. Although we shall illustrate these principles using optical
examples, they are equally applicable to any type of wave propagation.

2.6.1 Huygens’ construction

As we have seen, Huygens was a staunch advocate of the wave theory and
introduced several ideas that have stood the test of time. One of these was
the wavefront, which we have already described as a surface of constant phase
(§2.5.1). Huygens considered the wave more as a transient phenomenon, which
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Figure 2.8

Huygens’ construction: (a)
in an isotropic medium, (b)
in an anisotropic medium.
At the top we see the
individual wavelet
emanating from a point
source, and below, the way
in which an arbitrary
wavefront develops. The
wave-vector k is normal to
the local wavefront, and
the ray vector S is the
direction of energy flow
(§5.1). In (b), the two are
not necessarily parallel.

k, S

S 
k

Huygens
wavelets

(a) (b)

was emitted from a point at a certain instant. Then the wavefront is defined as
the surface that the wave disturbance has reached at a given time. In principle,
a wavefront can have almost any shape, but only plane, cylindrical, spherical
or occasionally ellipsoidal wavefronts have any analytical importance.

Huygens pointed out that if one knows the wavefront at a certain moment,
the wavefront at a later time can be deduced by considering each point on
the first one as the source of a new disturbance. The new disturbance is a
spherical wave, propagating in the forward direction. At the later time, the
spherical waves will have grown to a certain radius, and the new wavefront is
the envelope of all the new disturbances (Fig. 2.8(a)).

In an anisotropic
medium, the spherical
wavelets become
ellipsoids (§6.3.1).

The idea was later justified mathematically by Kirchhoff, and his analysis
will be detailed in an appendix to Chapter 7. The new disturbances are known
as Huygens’ wavelets. On the basis of this principle, one can easily see that
spherical, plane and cylindrical waves will retain their shapes, but other shapes
can become distorted. Huygens’ construction is most useful in getting a physical
picture of wave propagation under conditions where an exact calculation defeats
us; an illustration follows in §2.8.

The construction can be applied to anisotropic materials (§6.3.1) by realizing
that, if the wave velocity is a function of direction, the wavelets are ellipsoids
and not spheres. An important corollary then follows when we consider the
progress of a wavefront of limited spatial extent. The direction of energy flow
(S, the ray direction), is given by joining the origin of each wavelet to the point
at which it touches the envelope, and this direction does not always coincide
with that of the wave-vector k (Fig. 2.8(b)).

2.6.2 Huygens’ principle used to derive
Snell’s law of refraction

The fact that wavefronts are separated by equal intervals of time allows us
to derive Snell’s law of refraction, when a wave goes from one medium to

Another way of deriving
Snell’s law from
Huygens’ principle is to
minimize the distance
between two fixed points
on opposite sides of a
boundary; see
Problem 2.5.
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Figure 2.9

Snell’s law derived from
Huygens’ principle.
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wave velocity v2
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another. This is one of many ways to prove Snell’s law (see also §5.4). We
consider a plane wave incident on an interface at angle ı̂ and refracted at angle
r̂ (Fig. 2.9). The velocity of the wave in the first medium is v1, where a typical
wavefront is AC, normal to the direction of propagation; in the second the
velocity is v2, and a typical wavefront is DB. Then, since B and D are generated
by wavelets emitted simultaneously from C and A, the time from A to D must
be equal to that from C to B:

CB/v1 = AD/v2,

AB sin ı̂/v1 = AB sin r̂/v2, (2.54)

(c/v1) sin ı̂ = (c/v2) sin r̂.

This would be true for any type of wave, where c is a constant. In the case of
light waves, when c is the velocity in free space and n = c/v is the refractive
index, (2.54) gives us Snell’s law of refraction:

n1 sin ı̂ = n2 sin r̂. (2.55)

2.6.3 Fermat’s principle

Suppose that a light wave is emitted from a point source in an inhomogeneous
medium, and can ‘choose’ between several possible routes to an observer.
Which one will it take? Fermat originally stated that it will choose that which
takes the minimum time, thus illustrating Nature’s concern with economy! The
law of rectilinear propagation in a homogeneous medium is an obvious result,
and the laws of reflection and refraction can also be deduced. The time taken
from A to B is

t =
∫ B

A

1
v(s)

ds, (2.56)

where v(s) is the velocity at the point a distance s along the route. In optics,
the refractive index n is the ratio c/v (§2.6.2), so that ct then defines the
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Figure 2.10

The mirage: (a) Huygens’
principle applied to the
mirage; a point object O in
the sky appears reflected
at I. (b) A typical driver’s
mirage on a desert road.
(Photograph by Shahar
Hirshfeld)
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Box 2.3 The mirage, as explained by
Huygens’ construction

The velocity of light depends on the refractive index of the medium, v= c/n
(§5.1.2). In air, as in most materials, the refractive index falls as the tem-
perature rises, roughly: n(T)= 1.000291− 1.0 × 10−6T , where T is the
temperature in degrees Celsius. The mirage, which we often see when
motoring along an asphalt road in the heat of a summer’s day, is an apparent
reflection of sky light by a distant layer of overheated air in contact with the
road, which might have reached 70 ◦C or more. It looks as if the road is wet,
and there are many stories about mirages masquerading as oases before the
eyes of thirsty desert-travellers.

The important point here is to consider the light that is propagating
almost parallel to the road (Fig. 2.10). Then the upper part of the wave
is in a region cooler than the lower part, and therefore has larger n and a
shorter wavelength. Using Huygens’ construction, the wavefronts, being
separated by one wavelength, are therefore not quite parallel; this results in
an upward curvature in the wave-vector, the normal to the wavefronts. The
effect is negligible except where the wave is travelling close to the ground
and parallel to it, so the mirage is always seen a long way off! Now this is
a continuous form of reflection, not an abrupt one like from a mirror, so it
is interesting to see if the geometrical aspects are different. For example, is
the image upright or inverted? Can you estimate how far away the mirage
is seen, given the temperature difference between the air in contact with the
road and far from it?
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optical path AB:

AB =
∫ B

A
n(s)ds. (2.57)

Fermat’s principle can only be understood properly in terms of interference,
but the concepts needed are elementary. Supposing that light waves propa-
gate from A to B by all possible routes ABj, unrestricted initially by rules of
geometrical or physical optics (those rules will emerge). The various optical
paths ABj will vary by amounts greatly in excess of one wavelength, and so the
waves arriving at B will have a large range of phases and will tend to interfere
destructively. But if there is a shortest route AB0, and the optical path varies
smoothly through it, then a considerable number of neighbouring routes close
to AB0 will have optical paths differing from AB0 by second-order amounts
only, < λ, and will therefore interfere constructively. Waves along and close
to this shortest route will thus dominate (Fig. 2.11) and AB0 will be the route
along which the light is seen to travel. The same argument also shows that a
possible route is that when ABj is maximum. Sometimes profligate Nature takes
the longest path! A good example of this behaviour is the graded-index optical
fibre described in §10.2.2, where the light propagates along the axis where the
refractive index is maximum; this has the longest optical path.

BA

Figure 2.11

Illustrating Fermat’s
principle. The circles along
the rays indicate units of
one wavelength. The
waves arrive in phase only
when they are close to the
shortest route, the straight
line from A to B.

2.6.4 Fermat’s principle applied to imaging by a lens

Fermat’s principle can be used to explain simply why lenses have spherical or
parabolic surfaces. If the routes from A to B all have the same optical path, the
waves travelling by them will interfere constructively at B. Then no particular
route for the light is chosen. A and B are then conjugate points, the term used
for object and image. Let us see how Fermat’s principle, stated this way, leads
us directly to a lens with parabolic or spherical surfaces.

Fermat’s principle
corresponds
mathematically to
Huygens’ propagation
evaluated by using
stationary phase
integration.

We can describe the imaging action of a lens by looking at the way that the
varying thickness of the lens compensates the optical length of rays leaving the
object O in different directions, so that all the optical path lengths from object
to image I are equalized. The total optical path length OI from O to I via P,
which is required to be constant, is to a good approximation (Fig. 2.12(a))

OI = constant =
√

u2 + r2 +
√

v2 + r2 + (n− 1)t(r)+ t(0) (2.58)

≈ u+ v+ 1
2

r2
[

1
u
+ 1

v

]
+ (n− 1)t(r)+ t(0), (2.59)

when expanded by the binomial theorem to first order. It follows that, for this
to be true, t(r) has the parabolic form



37 2.7 Advanced topic: Propagation in a dispersive medium

Figure 2.12

Using Fermat’s principle to
illustrate imaging by a lens.
(a) Conjugate points; (b)
lateral and axial deviations
from the image points.

t(r) = t(0)− 1
2(n− 1)

r2
[

1
u
+ 1

v

]
. (2.60)

This explains simply why lens surfaces are parabolic or spherical, and why
higher refractive index n leads to thinner and lighter lenses. We shall discuss
lenses and lens systems more thoroughly (though, in fact, no more accurately)
in Chapter 3. Box 2.4 shows how the argument above leads to a basic under-
standing of imaging resolution and depth of focus. The same ideas will be
applied to understanding gradient index lenses in the next chapter.

2.7 Advanced topic: Propagation and distortion
of a wave-group in a dispersive medium

In §2.1.2 we considered the propagation of the superposition of a number of
elementary waves of the form

F(x, t) ≡
∑

j
fkj(x, t) =

∑
j

akj exp[i(kjx− ωjt)]. (2.61)

Let us replace the summation by an integral

F(x, t) =
∫ ∞

−∞
f (k, x, t)dk =

∫ ∞

−∞
a(k) exp[i(kx− ωt)]dk, (2.62)

where ω(k) is defined. Now we take the particular case of a Gaussian wave-
group (§4.4.3 and Box 4.3) in which a(k) is the Gaussian function

a(k) =
(

2π
σ

)− 1
2

exp

(
−(k − k0)

2σ 2

2

)
, (2.63)

centred on k = k0 and having variance σ−1.
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Box 2.4 Resolution and depth of focus,
by Fermat’s principle

In §2.6.4 we showed how Fermat’s principle describes imaging by a sim-
ple lens. Now we can ask a subsidiary question: if we move to a new
point in the image space, how much error do we introduce into the
equality of the path lengths? If the total inequality is less than half a
wavelength, the different rays will still interfere constructively; this way
the size of the image, both in the lateral and axial directions, can be
deduced. Let’s do this just for the extreme rays, to get the general picture
(Fig. 2.12(b)).

To estimate the spatial resolution we consider an off-axis image point I1,
in the same plane as I . The marginal ray, when P is situated at the edge
of the lens, has been shortened by about II1 sinα, where α is the angular
aperture of the lens at the image. The marginal ray from the diametrically
opposite point P′ has been lengthened by the same amount. If these two
adjustments in the optical lengths are less than λ/2, they will still not cause
destructive interference and so the image of the point source O is extended
this far. The resulting image radius II1 is equal to about λ/2 sinα. This
is also the resolution limit, because two images separated by less than
this will not be observed as separated. We shall get the same result in
Chapter 12.

The depth of focus refers to the axial extent of the image of a point object.
At a point I2 on the axis, the marginal rays are lengthened by II2 cosα, and
the axial ray by II2. The difference is thus II2(cosα − 1) ≈ II2(α

2/2).
Putting this difference between path lengths again equal to λ/2, we find that
the axial extent of the image is about II2 = λ/α2. This is a useful result
(again, it agrees with more exact methods) for estimating the depth of focus
of a camera in terms of the aperture of the lens.

To translate these results into object space, just perform the same calcu-
lations with a fixed image point and variable object points; then the (now
small) angle α is the lens semi-aperture divided by the object distance. So
for a lens with aperture radius 20 mm, at a distance of 10 m and wavelength
0.5μm, the depth of field is 0.5/(2× 10−3)2 = 105 μm = 0.1 m.

The integral (2.62) can be performed for t= 0 (§4.4.3) and the result
(Fig. 2.13(a)) is

F(x, 0) = exp(−x2/2σ 2) exp(ik0x). (2.64)

The envelope exp(−x2/2σ 2) of this wave-group peaks at x= 0 and has half-
peak-width (§4.4.6) w = 2.36σ .
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Figure 2.13

(a) A Gaussian wave-group
at t = 0 and its evolution at
two later times computed
using the quadratic
dispersion relationship
shown in (b).
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Now let us consider the propagation of this wave-group in three media:

• a non-dispersive medium, for which ω = vk;
• a linearly dispersive medium, for which ω = vgk + α (the phase velocity is

not constant in this example);
• a quadratic dispersive medium, for which ω = vgk + α + β(k − k0)

2.

In the first case, as we saw in §2.1.2, we write x′ = x− vt and immediately
find F(x, t) = F(x′, 0) = F(x − vt, 0): the wave-group propagates unchanged
at velocity v.

In the second case, substitution for ω in (2.62) gives us

F(x, t) =
∫ ∞

−∞
a(k) exp{i[kx− t(vgk + α)]}dk. (2.65)

Substituting x′ for x− vgt gives, as above,

F(x, t) = e−iαtF(x′, 0) = e−iαtF(x− vgt, 0). (2.66)

Thus the wave-group propagates with unchanged envelope at velocity vg (=
dω/dk, the group velocity), but the phase of the wave changes with propagation;
this is the process of ‘individual waves moving through the envelope’ remarked
in §2.4.

Neither of the above examples invoked explicitly the form of a(k), and the
results would be true for any form of wave-group. This is because dω/dk is not
a function of k. But in the third example, the way in which the wave envelope
behaves depends on its initial form. Equation (2.61) becomes

F(x, t) = (2π/σ)−
1
2

∫ ∞

−∞
exp

[
−(k0 − k)2σ 2

2

]

× exp{i[kx− (vgk + α + β(k + k0)
2)t]}dk

= (2π/σ)−
1
2 e−iαt

∫ ∞

−∞
exp

[
−(k − k0)

2

(
σ 2

2
+ iβt

)]
exp(ikx′)dk.

(2.67)
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Formidable as it may look, the integral can be evaluated just like any other
Gaussian integral (§4.4.3) and gives

F(x′, t) = (1+ 4β2σ−4t2)−
1
4 exp

(
−x′2

2(σ 2 + 4β2t2σ−2)

)
eiψ(t). (2.68)

The form is not complicated. The envelope is centred on the point x′ = (x −
vgt) = 0, so that once again we see the peak propagating at the group velocity.
But the half-width and amplitude of the envelope have changed. The half-peak-
width is now 2.36(σ 2 + 4β4t2σ−2)

1
2 , which is always greater than the initial

w = 2.36σ , and continues to grow with time. In concert with this, the amplitude
falls so that total energy is conserved. Notice that the narrower the original pulse
(smaller σ ) the faster the pulse broadens; for a given time of travel, there is
a particular initial pulse-width that gives the narrowest final pulse. The phase
factor ψ(t) is complicated and is best calculated numerically. It contains the
factor αt, which occurred in the linear dispersive media, and also extra factors;
it shows chirping, a variation of local k with distance. A numerically calculated
example is shown in Fig. 2.13. Study of the propagation of pulses in dispersive

The phenomenon of
chirping is really rather
intuitive. If the medium
is dispersive the wave
velocity depends on
frequency, and the low
frequencies will arrive
before the higher ones or
vice versa, depending on
the sign of the
dispersion.

media is very important in designing optical communication systems (§10.2.4)
and this calculation is only a modest beginning.

2.8 Advanced topic: Gravitational lenses

Some recent astronomical observations show multiple images that all have
the same spectra and whose intensity fluctuations (e.g. bursts) are identical,
although there may be time delays between them. They must therefore have
originated from the same stellar object. These images are considered to have
arisen as the result of gravitational lensing, which means that the light from the
star has been deviated by the gravitational field of a massive dark object that
lies close to the line of sight. Understanding the way in which such multiple
images arise is a nice exercise in the use of Fermat’s and Huygens’ principles,
which shows that the gravitational field around a compact body can act like a
rather strange converging lens.

The idea that a massive body can deflect a light wave is not new; Newton
thought of it as a result of the mass of his assumed light corpuscles (Problem
2.10), but today it is considered as arising from the distortion of space-time
near a massive body as described by general relativity. Einstein’s prediction
of the size of the effect, which was twice that of classical theory, was first
confirmed in 1919 by Eddington’s observations of the apparent deflection of
star positions near to the direction of the Sun at the time of a complete eclipse.
This was an important proof of general relativity, and the story of how the
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Figure 2.14 Gravitational lensing. (a) Light from the source Q to the observer O passes close to a
lensing mass M; the distance of closest approach, or impact parameter, is b. (b) A
normal lens deviates an incident ray by an angle proportional to b. (c) The lens that
simulates gravitational lensing by a point mass has profile ∼ log b and deviates the
incident ray by an angle proportional to 1/b. (d) Profile of a plastic lens used to
simulate gravitational lensing in the laboratory (Fig. 2.1(a,b)); the singularity at
b = 0 is rounded off and simulates a finite-sized lensing mass.

observations were made and interpreted is told in the book The Big Bang by
Singh (2004).

Bending of a light ray by a gravitational field can be understood in the
following way. Suppose an observer is situated in a lift, together with a laser
that shines a beam horizontally from one side to the other. The observer marks
the point at which the beam strikes the far wall. If the lift moves at constant
linear velocity, this will not make any difference since both the laser and the far
wall are moving at the same velocity. But if the lift falls freely with acceleration
g, its velocity changes by gt during the beam’s time of flight t and the point of
arrival will move by an amount 1

2 gt2, which is the additional amount by which
the lift has fallen since the light beam was emitted. Let the beam’s route in
the inertial frame be y = 0, x = ct; then in the freely falling frame it will be
y′ = 1

2 gt′2, x′ = ct′.
Now we can apply this idea to the astronomical situation. According to

the principle of equivalence in relativity, the effect of a gravitational field
is indistinguishable from that of the equivalent acceleration field. To a very
good approximation the optical path from a quasar Q to the observer O is a
straight line whose closest approach to the lensing mass M is a distance b.
This distance is usually called, in deference to nuclear physics, the impact
parameter (Fig. 2.14(a)). In a uniform gravitational field g normal to the
optical path, the small angular deviation from the straight line of the inertial
frame is then

α = dy′

dx′
= gx′/c2. (2.69)
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Now we consider the non-uniform gravitational field around the lensing mass.
The change in the direction of propagation α in a distance ds along the x′ axis is

dα = g(s)ds/c2. (2.70)

From the figure, when x′ = s the gravitational acceleration is directed at angle
θ to the y′-axis and has value GM/(s2 + b2) = GM cos2 θ/b2. Thus the
y′-component, g′y(s) = GM cos3 θ/b2. It follows that

dα = [GM/c2b2] cos3 θ ds (2.71)

and since s = b tan θ , ds = b sec2 θ dθ from which

dα = GM
bc2 cos θ dθ , (2.72)

α = GM
bc2

∫ π/2

−π/2
cos θ dθ = 2GM

bc2 . (2.73)

This is the classical result which can also be obtained from Newtonian mechan-
ics. General relativity predicts that the result should be twice this value, i.e.
α = 4GM/bc2. This basically results from the fact that in space-time x, y and
ct behave in exactly the same way, so that taking into account the difference
between t and t′, which we assumed to be equal in the above argument, results
in a doubling of the value of α:

α = 4GM
bc2 . (2.74)

The unusual fact about this gravitational lens is that the deviation α is
proportional to 1/b and not to b like a normal lens (Fig. 2.14(b)). While a
normal lens has a spherical profile, the gravitational deviation would result from
a lens with logarithmic profile, its thickness d being equal to −(n − 1) log b.
(Remember that log b is negative for small b.) Then the deviation of a ray at
radius b, from Fermat’s principle, is (n−1)dd/db = −(n−1)/b (Fig. 2.14(c)).
This lens profile diverges at b = 0, but this can be excused since the source
was assumed to be a point mass, and if it is replaced by a finite massive body,
the singularity is rounded out as shown in the lens of Fig. 2.14(d).

Now let us get a qualitative picture of the lensing that occurs when the Earth,
a distant quasar and a massive dark lensing galaxy at intermediate distance lie
very close to a straight line, so that b is very small. Astronomers assure us that
there is a reasonable chance for such an occurrence. We consider a plane wave
incident from Q on the lensing mass and use Huygens’ construction to continue
the propagation of the wavefront W (Fig. 2.15). Because of the increased optical
thickness in the region of the lensing mass, the wavefront W1 leaving it acquires
a dimple in that region. Continuing the evolution of the wavefront, we find that
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Figure 2.15 Huygens’ construction used to show the development of wavefronts in the
gravitationally modified region. An incident plane wavefront W develops a dimple in
the region of the lensing mass M due to the gravitational field in its locality. Light
rays, which travel normal to the wavefronts, are also shown. Development of W into
W1, W2 etc. shows the formation of three distinct images, I1, I2 and I3.

the wavefront at W2 has quite a complicated structure. The propagation we
see in this figure is just the Huygens picture of the free-space development
of the wavefront that emerged from the lensing-mass region, in the complete
absence of any further distortion. One sees that at sufficient distance from the
mass a region occurs in which the wavefront is multi-valued. The margins of
this region are a caustic, which is a pair of lines of cusps. Clearly an observer
within the caustic observes three different wavefronts simultaneously, each with
a different shape, and therefore sees three separate images. Notice also that the
three wavefronts passing through A may not be at the same optical distance from
the source – hence the relative time delays observed. The above argument has
been developed in two dimensions. Had the observer, the lensing galaxy and
the source been in a straight line, it is clear from the resultant axial symmetry
that the image observed would be a central point surrounded by a ring of light.
This is called an ‘Einstein ring’. If the lens is not spherically symmetrical,
or the system not coaxial, a three-dimensional argument, similar to the one
above, gives five point images. Several gravitationally lensed images have
been observed with the aid of the Hubble Space Telescope since its launching.
Figure 2.1 (at the beginning of the chapter) shows two observed images that
appear to be gravitationally distorted by a galaxy close to the line of sight,
compared with laboratory photographs of a point source as seen through a
plastic lens constructed with the profile of Fig. 2.14(c).

2.8.1 Gravitational micro-lensing

Since the lensing mass is, by astronomical standards, fairly close to us, we can
sometimes observe its apparent motion relative to the source; this is known as
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Figure 2.16 Representative sketch of gravitational micro-lensing data. This graph shows intensity
of a distant source as a function of time, as measured by six independent telescopes
around the world. It shows two peaks which are explained as resulting from an
invisible lensing star and an associated planet passing close to the line of sight.
(After Beaulieu et al. (2006))

‘parallax’. Then, as one of the cusps crosses the line of sight, there is a peak
in the observed intensity, which can be looked at as a merging of two of the
sub-images, which then suddenly disappear into another one. Alternatively,
this can be understood as an intensity propagation anomaly (Problem 2.8).
This type of intensity fluctuation can be seen even by a telescope that is too
small to resolve the angular structure of the image, and is called gravita-
tional micro-lensing. Many small astronomical telescopes are today being
used on a long-term basis to monitor likely sources for such events. In partic-
ular, when the lensing mass is a star with a planetary system, there might be
subsidiary peaks in intensity due to a planet. An example of data is shown in
Fig. 2.16.

Chapter summary

This chapter was devoted to a discussion of how waves – not necessarily light

waves – propagate in linear media. We studied:

• The concept of a wave equation, and how it can be solved using

harmonic waves;

• Some examples of non-dispersive waves, whose velocity is

independent of frequency, a topic which will be expanded in Chapter 5

for the case of electromagnetic waves;

• Dispersive waves, whose velocity is frequency dependent, and how the

dispersion equation for a medium is derived;

• Plane waves and other solutions of a homogeneous wave equation;

• Ways to solve wave propagation problems in heterogeneous media,

using Huygens’ wavelets and Fermat’s principle of least time;
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• Propagation of a wave-group in a dispersive medium;

• Gravitational lensing as an example of Huygens’ wavelets applied to a

cosmological scenario.

Problems

2.1. A chain of masses m are situated on the x-axis at equally spaced points
x = na. They are connected by springs having spring constant K and are
restrained to move only along the x-axis. Show that longitudinal waves
can propagate along the chain, and that their dispersion relation is

ω = 2(K/m)
1
2

∣∣∣sin 1
2 ka
∣∣∣ . (2.75)

Explain in physical terms why this dispersion relation is periodic.
Calculate the phase and group velocities when ω → 0 and ω =
2(K/m)

1
2 .

2.2. Flexural waves on a bar have a wave equation of the form

∂2y
∂t2 = −B2 ∂

4y
∂x4 , (2.76)

where B is a constant. Find the dispersion relation. Under what
conditions are the waves evanescent?

2.3. X-rays in a medium have refractive index n = (1−�2/ω2)
1
2 (§13.3.4)

Show that the product of group and phase velocities is c2.

2.4. Waves on the surface of water, with depth h and surface tension σ , have
a dispersion relation

ω2 = (gk + σk3/ρ) tanh(kh), (2.77)

where g is the gravitational acceleration and ρ is the density. Find the
group velocity as a function of k and show that it has a turning point
at a certain point related to the depth h. What is a typical value for this
group velocity?

2.5. Two media, with wave velocities v1 and v2, are separated by a plane
boundary. A source point A and an observer B are on opposite sides
of the boundary, and not on the same normal. Derive Snell’s law from
Fermat’s principle by finding the minimum time for a wave to propagate
from A to B.
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2.6. Use Fermat’s principle and the properties of conic sections to prove
that a point source at one focus of an ellipsoidal or hyperbolic mir-
ror is imaged at the other focus (the most common example is the
paraboloid, which has one focus at infinity). The Cassegrain and
Gregorian reflecting telescopes use both concave and convex mirrors
to obtain high magnification (like a telephoto lens). What profiles of
mirror should ideally be used?

2.7. Show that the multiple images caused by a gravitational lensing
mass of finite size a correspond to both maximum and minimum
optical paths. Use a simplified model consisting of a region of thick-
ness a normal to the propagation direction having refractive index
n(r) = 1 + 2MG/c2√(a2 + r2), where r is measured from the obser-
vation axis in the plane normal to it. Show that the optical path from
source to observer has both maximum and minimum values, which
correspond to the images observed. (The different optical paths result
in light variations appearing with different delays, which are indeed
observed.)

2.8. A non-planar wavefront propagates in the z-direction according to
Huygens’ principle. The wavefront has radii of curvature Rx in the
(x, z) plane and Ry in the (y, z) plane. The intensity in plane z = const is
Iz(x, y). By using conservation of energy for a rectangular region of the
wavefront, relate the change in intensity after a further short distance
δz  |R1|, |R2| to the radii of curvature. Show that this can be expressed
as a radiative transport equation

dIz
dz
= Iκ = I∇2w, (2.78)

where w(x, y) is an algebraic form for the wavefront, and κ ≡ R−1
1 +R−1

2
is its Gaussian curvature.

2.9. Confirm the demonstration in Box 2.1 using Fourier analysis from
Chapter 4. Analyze the triangular wave into Fourier components ana-
lytically, and then let each one evolve, as described in §2.1.2. You
should get the same result as in the box!

2.10. According to Newton, light particles of mass m passed near to a
heavy body of mass M and were deflected due to its gravitational
attraction GMm/r2. Show (for small angles) that the result (2.73) is
obtained, independent of m, which can then be taken as zero for a
photon!
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3 Geometrical optics

If this book were to follow historical order, the present chapter should have pre-

ceded the previous one, since lenses and mirrors were known and studied long

before wave theory was understood. However, once we have grasped the ele-

ments of wave theory, it is much easier to appreciate the strengths and limitations

of geometrical optics, so logically it is quite appropriate to put this chapter here.

Essentially, geometrical optics, which considers light waves as rays that propagate

along straight lines in uniform media and are related by Snell’s law (§2.6.2 and

§5.4) at interfaces, has a relationship to wave optics similar to that of classical

mechanics to quantum mechanics. For geometrical optics to be strictly true, it

is important that the sizes of the elements we are dealing with be large com-

pared with the wavelength λ. Under these conditions we can neglect diffraction,

which otherwise prevents the exact simultaneous specification of the positions

and directions of rays on which geometrical optics is based.

Analytical solutions of problems in geometrical optics are rare, but fortunately

there are approximations, in particular the Gaussian or paraxial approximation,

which work quite well under most conditions and will be the basis of the discussion

in this chapter. Exact solutions can be found using specialized computer programs,

which will not be discussed here. However, from the practical point of view,

geometrical optics answers most questions about optical instruments extremely

well and in a much simpler way than wave theory could do. For example, we

show in Fig. 3.1 the basic idea of a zoom lens (§3.6.4), which today is part of every

camera, and is a topic that can be addressed clearly by the methods developed in

§3.5. Geometrical optics fails only in that it cannot define the limits of performance

such as resolving power, and it does not work well for very small devices such as

optical fibres. These will be dealt with by wave theory in Chapters 10 and 12.

In this chapter we shall learn:

• about the classical theory of thin lenses according to the paraxial or Gaussian

approximation, which assumes that all ray angles are small;

• how to trace rays geometrically through paraxial optical systems;

• about telescopes and microscopes, as examples of simple optical instru-

ments;

• how the paraxial optical theory can be elegantly reformulated by the use

of matrices;
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Figure 3.1

A simple zoom lens
combination is constructed
from three coaxial lenses,
two converging and one
diverging. The combination
behaves like a single lens
with focal length feff,
placed in the principal
plane H2. By moving the
two lenses on the left,
different focal lengths are
obtained, while the image
remains focused on the
image sensor, resulting in
different magnifications.

Image
detector
or film
plane

feff

feff

feff

H2

H2

H2

• that an optical system can be represented by its focal, principal and nodal

points, which are called cardinal points;

• about telephoto and zoom lenses, as examples of the importance of

principal points;

• a little about lens aberrations;

• about aplanatic microscope objectives, which allow the use of large-angle

rays without introducing aberrations;

• about the stability of optical resonators, which are used in lasers and

advanced interferometers.

This chapter really only skims the surface of geometrical optics, and is limited

to image-forming lenses and lens combinations. We shall only mention here

that there is also an important field of non-imaging optics, which provides

solutions for problems in which power efficiency rather than imaging quality is

the prime concern, such as illumination design and solar energy collection. See

Box 3.5 (Welford and Winston (1989)). Readers interested in a deeper study of

geometrical optics and optical system design are referred to the texts by Kingslake

(1983) and Smith (2008).

3.1 The basic structure of optical
imaging systems

The main elements from which optical systems are built are:

• thin lenses, for example spectacles or magnifying glasses, that converge or
diverge bundles of light rays;

• compound lenses that, in addition to the above, are designed to correct
various aberrations; examples are achromatic doublets and microscope
objectives;
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• plane mirrors or prisms that change the direction of the optical path and may
be used to invert an image as in binocular field glasses;

• spherical or parabolic mirrors that replace lenses in large telescopes or
in instruments working with wavelengths absorbed by common optical
materials.

We shall always assume here that an optical system has axial symmetry. The
elements are therefore coaxial, which means that an optical axis z can be
defined such that all plane interfaces between optical materials are normal to it
and the centres of curvature of all spherical lens and mirror surfaces lie on it.

We shall limit the treatment in this chapter to lens systems only, although
curved mirrors may be preferable when chromatic effects are important or
wavelengths are used that can be absorbed by common optical materials. The
reason is that curved mirrors behave quite similarly to lenses but introduce
minus signs into the equations, which add little to the physics but help to confuse
the reader. The way in which mirrors can be treated using lens equivalents is
illustrated in §3.9.

Most lenses have spherical surfaces for the purely practical reason that such
surfaces are easy to grind and polish. Spherical surfaces have no special optical
significance that distinguishes them from paraboloidal, ellipsoidal or other
analytical surfaces. All give rise to aberrations, and all are perfect solutions for
some special cases that are too rare to be worth mentioning here. An exception
is the aplanatic system (§3.8) in which a spherical surface turns out to be a
perfect solution that can be applied to many important problems such as the
design of microscope objectives.

3.1.1 The philosophy of optical design

Before discussing details and calculations, we shall briefly describe the steps
taken when designing a lens-based imaging system. This in fact includes almost
all applications of geometrical optics.

1. Decide in general how to solve your problem. Take into account require-
ments such as overall size, field of view, magnification and resolution,
although the latter often includes wavelength-dependent factors which are
not discussed in this chapter.

2. Draw a ray diagram for object and image on the axis, using paraxial optics
ray-tracing (§3.1.2).

3. Draw a similar paraxial diagram for an off-axis object. This will clarify the
magnification of the system and emphasize any problem caused by light
rays missing the finite apertures of the optical elements. Such a problem is
called vignetting (see §3.3.2).
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Figure 3.2

Spherical aberration of
simple lenses: (a) biconvex;
(b) plano-convex. The two
lenses have the same
paraxial focal length, but
the distance between the
paraxial and marginal foci
is greater in (b).

(b)(a)

We emphasize the importance of stages 2 and 3, which will usually fulfil the
requirements of all but professional optical designers.

4. Solve the problem in detail using matrix optics (§3.4) or a computer-based
optical design program to find the best location of the lenses.

5. Consider the effects of large-angle rays and aberrations.
6. Consider the possible use of aspherical lenses etc.

Stages 5 and 6 involve technical aspects that are outside the scope of this
book.

3.1.2 Classical optics in the Gaussian approximation

The small angle or paraxial approximation is often known as Gaussian optics.
In real life, rays propagating through lenses do not usually make small
angles with the optical axis; two typical situations are shown in Fig. 3.2
where we have traced the rays through each lens by using Snell’s law. We
see that a bundle of rays entering parallel to z does not meet at a point
on the axis. This is an example of spherical aberration, which will be
further discussed in §3.7.3. However, in most of this chapter we shall try
to avoid the problems created by large angles, and we shall therefore
assume that the angle θ of all rays with respect to z is small enough
that θ ≈ sin θ ≈ tan θ . This defines the scope of Gaussian optics, which
in practice does an excellent job even under conditions where the approximation
is invalid! We also need to linearize Snell’s law of refraction, n1 sin ı̂ = n2 sin r̂,
to the form n1ı̂ = n2r̂. This requires ı̂ and r̂ to be small too, so that all refracting
surfaces must be almost normal to z. It follows that their radii must be large
compared to the distance of rays from the optical axis.

3.1.3 Sign conventions

It is helpful to have a consistent convention for the use of positive and negative
quantities in optics. In this book, we use a simple Cartesian convention, as

The sign convention is
that distances to the left
of a vertex are negative,
and those to the right are
positive. It is very
important to adhere
strictly to this.



52 Geometrical optics

Figure 3.3

Deviation of a ray by a
single refracting surface.
In the Gaussian
approximation, y1 � R1 so
that VC � R1 and is taken
as zero in the theory.
According to the sign
convention, in this diagram
u and v are both negative,
R1 and angles ı̂ and r̂ are
positive.

shown in Fig. 3.3, together with the rules that surfaces concave to the right
have a positive radius and that angles of rays ascending to the right are taken
as positive. It is also assumed that light rays go from left to right as long as we
limit ourselves to lens systems. Other conventions – based upon whether real
or virtual images or objects are involved – lead to difficulties.

When drawing ray diagrams the y-axis has to be scaled by a large factor,
otherwise small angles are invisible. Therefore, spherical surfaces will appear
in the diagrams to be planar, whatever their radii of curvature.

3.2 Imaging by a single thin lens in air

A thin lens is the simplest lens we can imagine, and consists of a piece of glass1

having refractive index n bounded by two spherical surfaces; the line joining
their centres of curvature defines the optical axis of the lens. The thickness of
the lens on its axis is assumed to be much smaller than either of the radii. This
lens is the basic building block of paraxial geometrical optics. We treat it first
by considering the ray optics; later we shall see how much more easily the
same calculation can be made by the matrix method (§3.5.1).

We treat first a single refracting spherical surface of radius R1 located at
z = 0 as in Fig. 3.3 with n = 1 on the left, and consider a ray originating
from a point object O located on the axis at z = u. In accordance with the
sign convention, distances to the left of the vertex V are taken as negative.
A ray from O passes through the surface at y = y1. It is refracted from angle
ı̂ to angle r̂ and consequently seems to have originated from a virtual image I
located at z = v. We then have

ı̂ − φ = −y1/u, r̂ − φ = −y1/v, φ = y1/R1, (3.1)

1 Of course, any other homogeneous transparent material can be used instead of glass.
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Figure 3.4

Image formation by a thin
lens in air. The object at
u < 0 forms a virtual image
at v′ < 0.
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) , (3.2)

which simplifies to

−n
v
+ 1

u
= 1

R1
(1− n). (3.3)

The n in the first term of (3.3) indicates that v refers to a region of refractive
index n.

The position z = v ′ of the image generated by a thin lens in air can now
be derived by using (3.3) for a second surface with radius R2 and replacing
the object position by the v just calculated (Fig. 3.4). This replacement implies
that vertices of the two surfaces coincide geometrically, i.e. that the lens is
indeed thin compared with v and u. The roles of n and 1 are interchanged and
we get

− 1
v ′
+ n

v
= 1

R2
(n− 1). (3.4)

We now find by substitution of n/v from (3.3) that

− 1
v ′
+ 1

u
+ 1

R1
(n− 1) = 1

R2
(n− 1). (3.5)

Therefore we obtain the well-known formula:

Make sure you use the
Cartesian sign convention
when substituting in
these equations.

−1
u
+ 1

v ′ =
1
f

, (3.6)

where

1
f
= (n− 1)

(
1

R1
− 1

R2

)
. (3.7)

This equation is known as the lens-maker’s equation.
The object and image distances u and v ′ are called conjugates. When

u→∞, v ′ → f . This means that all rays entering the lens parallel to the
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Figure 3.5

Focal planes and focal
length of thin lenses in air:
(a) converging;
(b) diverging. The paths of
various rays are shown.

Figure 3.6

All rays at a given angle to
the axis converge to a
single point in the focal
plane.
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axis cut the axis at the focus F (Fig. 3.5). The quantity f is called the focal
length and its reciprocal 1/f the power of the lens. When f is measured in
metres, the unit of power is the dioptre. A lens with f > 0 is called a converg-
ing lens and one with f < 0 is diverging. Only the former can produce a real
image of a physical object.

The focal plane, F , is defined as the plane through F perpendicular to
the optical axis. All rays entering the lens at a given small angle α to the
axis will converge on the same point in F . One can see this by reference to
Fig. 3.6, which shows a general ray a entering at angle α after intersecting the
x-axis at some u. It cuts F at P, with height d, and v is the conjugate to u.
We have

y = −uα, d = β(f − v) = y
v
(v− f ) (3.8)

and, using (3.6), it follows that d = f α independent of u. The easiest way to
find P is to use the undeviated ray b at α through the centre of the lens.
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Figure 3.7

Principle and use of a
Fresnel lens: (a)
plano-convex lens with
parallel-sided rings
marked; (b) after removal
of the rings and
rearrangement; (c) use of
Fresnel lens as a condenser
in an overhead projector.

(a) (b) (c)

Mirror to Screen

Transparency

Condenser
lens
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Imaging
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Box 3.1 Fresnel lenses

Augustin Fresnel, whose brilliant work on diffraction will be described
in Chapter 7, was employed as inspector of lighthouses for the French
government during a period around 1800. A coastal lighthouse uses a bright
incandescent source and one or more large collimating lenses to produce
parallel beams of light which can be seen at distances of 30 km or more from
the coast. The whole system rotates so as to sweep the horizon, and a boat
approaching the shore then sees a periodically modulated light source. The
period and form of the modulation give the pilot information on his locality.
A major problem in the building of lighthouses was the sheer weight of the
lenses, several of which had to be kept rotating around the lamp the whole
night long. Assuming a focal length of 1.5 m and a diameter of 1 m (needed
to collect a good fraction of the emitted light) it is easy to estimate the mass
of a lens as about 200 kg, which would need a considerable mechanism
to keep it in rotation. The lens did not need to be of very high quality,
since the large source inevitably results in a diverging beam, and Fresnel
realized that removing parallel-sided rings of glass would not affect the
optical properties. So he devised a much lighter type of lens which could
be constructed from cast glass prisms and would have the same optical
properties. Mathematically, it would be flat on one side and piecewise
spherical on the other side, as shown in Fig. 3.7, and the first one was
installed in 1823. Such lenses are now cast from plastics and are widely
used for many non-critical imaging tasks, such as car headlights and solar
energy collectors, because they can be made to have very large apertures
without being bulky. They suffer, of course, from light scattering by the
discontinuities, and for this reason are unsuitable for high-resolution tasks.
One sees them in overhead projectors, for example, where the light from
the lamp has to illuminate all the slide uniformly, and also be focused onto
the imaging lens, but scattered light is eliminated by the finite lens aperture
(Fig. 3.7(c)).
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Figure 3.8

Ray-tracing through a pair
of lenses.
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3.3 Ray-tracing through simple systems

Paraxial ray-tracing is an important tool in optical design, and involves follow-
ing through the optical system the routes of several paraxial rays leaving an
off-axis point object. There are three types of rays that can be traced simply
through a thin lens (see Figs. 3.5 and 3.6):

1. all rays through a focal point on one side continue parallel to the axis on the
other side and vice versa;

2. any ray passing through the centre of the lens continues in a straight
line;

3. all rays of a parallel bundle on one side of a lens go through a single point
in the focal plane on the other side, and vice versa; the point can be found
by drawing the one ray of the bundle which passes through the centre of the
lens, and is therefore undeviated.

Box 3.2 An exercise in ray-tracing in a non-trivial system

This example shows how to deal with ray-tracing when several lenses are
involved. We have two converging lenses separated by a distance larger than
the sum of their focal lengths, and an object at a finite distance to the left of
the first lens (Fig. 3.8). From the object O we follow the usual two rays, one
a passing through F1 of the first lens and one b parallel to the axis. These
continue as shown, a parallel to the axis and b through F2. On reaching the
second lens, a continues through F2 of that lens. How do we find the route
of b after the second lens? We have to construct an assistant ray h which
is parallel to b before the second lens, but goes through the centre of that
lens. This ray continues without deviation, but because it starts parallel to
b, it must intersect b in the plane F3. This gives the direction of b after the
second lens. Finally, the intersection between a and b in the image space
gives the position and size of the (virtual) image I . Now try to follow a third
ray c from the object going through the centre of the first lens, which will
need a different assistant ray at the second lens, and show that it leads to
the same image.
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Figure 3.9

Ray diagram for a
magnifying glass. The
object height is y and that
of the image y′. In practice,
D � f and the object
distance would be nearly
equal to f .
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Using these rays, we can generally get a good picture of the optical properties
of a complete system. We shall treat three examples, the magnifying glass, the
astronomical telescope and the compound microscope; the last is essentially a
combination of the first two. In the second example we shall also introduce the
concepts of vignetting and stops.

3.3.1 The magnifying glass

The magnifying glass is the simplest optical instrument and its function should
be clearly understood. Its main purpose is to create linear magnification of the

A magnifying glass
produces the largest
magnification when it is
closest to your eye.

retinal image of an object, and it does this by allowing us to bring it to a position
well within the near point (the closest distance at which the eye can produce
a sharply focused image, about 25 cm for young people with normal eyesight),
while creating a virtual image at or beyond the near point, often at infinity. This
is illustrated in Fig. 3.9.

For a magnifying glass, or any optical instrument that forms a virtual image,
the magnifying power is a more useful quantity than the linear magnification
(the ratio of image to object size). It can be defined in two equivalent ways:

1. the ratio between the angle subtended at the eye by the image and the angle
that would be subtended at the eye by the object if it were situated at the
near point, which is at a distance D from the eye;

2. the ratio between the linear dimensions of the retinal image produced with
the instrument and those of the largest clear retinal image that can be
produced without it, i.e. when the object is at the near point.

Normally the magnifying lens is close to the eye. The magnifying power is
then (Fig. 3.9)

M = y′

y
= D

d
. (3.9)

Since 1/d − 1/D = 1/f , we find that

M = 1+ D
f

; (3.10)

usually D 
 f so that the approximation M = D/f can be used.
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Figure 3.10

Ray-tracing through a
telescope with angular
magnification 3. (a) Simple
astronomical telescope;
(b) with the addition of a
field lens. The exit pupil is
at E in both drawings.
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The single lens is used only for informal purposes. When incorporated in an
instrument such as a microscope or telescope it becomes part of a compound
eyepiece, as described in §3.3.2.

3.3.2 The astronomical refractor telescope,
and the concept of stops

A telescope converts a bundle of parallel rays making an angleα with the optical
axis to a second parallel bundle with angleβ. The ratioβ/α is called the angular
magnification; it equals the ratio between the retinal image sizes obtained with
and without the telescope. Figure 3.10(a) shows a simple telescope based on

Refractor telescopes are
rarely used in astronomy,
because big lenses sag
under their own weight.
For terrestrial use, an
additional erector lens
has to be added to create
an upright image.

two lenses, L1 (objective) and L2 (eyepiece) with focal lengths f1 and f2; the
distance between the lenses is f1 + f2, so that an object at infinity produces a
real image in the common focal plane.

One’s first instinct is to place the eye at E0 immediately behind L2, but
we shall see that this may unnecessarily limit the field of view. Let us try to
analyze the light throughput by means of the paraxial ray diagram. A bundle of
parallel rays (aaa) from a distant point on the optical axis enters the objective
L1 parallel to the axis and leaves through the eyepiece L2, entering the iris of
the observer’s eye. Now consider a bundle of parallel rays (bbb) from a second
distant point, not on the axis. We assume, for the moment, that the aperture of
L2 is very large. The rays enter L1 at an angle to the axis, and may miss the iris
E0 because of its limited size. This is called vignetting (§3.1.1). However, it
should be clear from the diagram that if we move the eye further back from L2,
so that the iris is now at E, rays from the oblique bundle (bbb) will also enter it.
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From the figure, one can see that E is in the plane of the image of L1 formed by
L2; this image is called the exit pupil, which will be defined formally below.
Positioning the eye in the plane of the exit pupil allows it to receive light from
off-axis points and thus maximizes the field of view.

Now we have assumed so far that the aperture of L2 was very large, and did
not limit the light throughput. If L2 is finite in size, vignetting of the oblique
bundle might occur there. To avoid that problem, we need to add another lens
L3, called a field lens (Fig. 3.10(b)). This is placed in the common focal plane,
where it has no effect on the intermediate image, and is designed to create an
image of L1 on L2. Then, it is easy to see that an oblique bundle of rays entering
L1 must leave through the centre of L2. The exit pupil has now been moved to
coincide with L2 and so in this case the best place for the eye is indeed close
behind L2. Vignetting can now occur at the field lens, but since this is in the
intermediate image plane its aperture simply forms a sharp edge to the image,
which limits the angular field of view. This is called a field stop, and an actual
ring aperture is usually placed there for aesthetic reasons.

In the end, certain practical considerations win, and it is usual to put the exit
pupil somewhat behind L2, for the observer’s comfort, and to place the field
lens not quite in the intermediate image plane, so that dust on it will not spoil
the image and also to allow cross-hairs or a reticle scale to be placed in the field
stop itself. Both of these compromises require that the lenses be slightly larger
than the absolute minimum requirement.

3.3.3 Stops and pupils

It is useful, in discussing optical instruments, to have some additional def-
initions at our disposal, some of which have already been introduced. The
aperture that limits the amount of light passing through an optical instrument
from a point on its axis is called the aperture stop; in this case it is L1 (if L2
is slightly larger than needed), but can in principle be any aperture or lens in
the instrument. A complex optical system is usually designed so that the most
expensive item, or the one most problematic to design, is the aperture stop, so

The aperture stop,
entrance pupil and exit
pupil are in conjugate
planes.

that it can be fully used.2 The image of the aperture stop in the optical elements
following it is then the exit pupil. Clearly, the eye or a camera lens should be
placed at this position. If the aperture stop is not the first element in the sys-
tem, then the image of the aperture stop in the lenses preceding it is called the
entrance pupil. The theory of stops has many other applications; for example,
a camera lens always includes an adjustable aperture stop, which controls the

2 Two examples: a large-aperture telescope mirror or lens will always be made the aperture stop
because of its cost. In optical systems involving mechanical scanners, the scanner is usually the
aperture stop so as to minimize its size and hence its moment of inertia.
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light intensity in the film plane, and whose position within the compound lens
is calculated to give a uniformly bright image at off-axis points. The aperture
is often expressed in terms of a dimensionless number, the f-number or ‘f/#’
of the lens, defined as the ratio of focal length f to aperture-stop diameter D
(small f-number means large aperture). In addition, the brightness of the image,
which determines the exposure needed in photography, is proportional to the
area of the lens aperture divided by the square of the distance to the sensor, i.e.
to (f/#)−2.

We should also point out that ray-tracing allows the designer to calculate the
optimum sizes for the components. For example, in the case of the telescope,
since the size of the pupil of the observer’s eye is given anatomically, this
in turn determines the sizes of L1 and L2 that can be utilized for a given
magnification.

The field lens and the eyepiece are often combined in a single unit called a
compound eyepiece, or simply eyepiece for short. This has several advantages,
amongst them the possibility of using the two lenses to correct aberrations, and
the inclusion of a field stop which defines the field of view and can often be
useful in obstructing stray light reflected or scattered by the various components
of a system.

3.3.4 Depth of focus

Although the focal or image plane is an exact mathematical plane for an
ideal lens in geometrical optics, in reality this is of course not so because

The relationship between
f/# and depth of focus
is often used by
photographers for
aesthetic purposes.

of physical optics. The practical accuracy to which the position of this plane
can be determined depends on the aperture D of the lens. Then, rays converge
on the focus within a cone, whose angle is given by the aperture of the lens and
for small angles is D/f =(f/#)−1. At distance δz from the focus, the geometrical
diameter of the image spot is then δz D/f . If this diameter is smaller than the
diffraction-limited spot diameter 1.22f λ/D (§12.2), there will be no significant
deterioration of the image compared to the focal plane. Twice the distance at
which the geometrical and diffraction-limited diameters are equal (because δz
can be either positive or negative) is called the depth of focus. From the above,
this has the value:

depth of focus ≈ 2.4λf 2

D2 = 2.4λ(f/#)2. (3.11)

A different approach, giving a similar result, was given in Chapter 2 as an
example of Fermat’s principle. Of course the size of the image in the focal
plane may also be affected by residual aberrations, in which case the depth of
focus becomes larger.
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Figure 3.11

(a) Ray diagram for a
microscope showing
position of the exit pupil.
(b) Basic structure of a
microscope for visual
observations, showing
image-processing optics
and a compound eyepiece.
When a camera is used, its
sensor surface (film or
electronic device) is often
placed in the field stop
position.
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3.3.5 The microscope

The essential principle of the microscope is that an objective lens with very
short focal length (often a few mm) is used to form a highly magnified real
image of the object. Here, the quantity of interest is linear magnification, and
this number is generally inscribed on the objective lens casing. In practice,
today, this magnification is carried out by means of two lenses: the objective
lens which creates an image at infinity, and a second weak tube lens which then
forms a real image in its focal plane. The distance between the two lenses is not
important, and the linear magnification is easily seen to be the ratio between the
focal lengths of the two lenses. The object is then exactly in the focal plane of
the objective. In more primitive microscopes, the pair of lenses was replaced by
a single lens, but the two-lens system used today has the advantage that further
components such as beamsplitters, polarizers etc. can be placed between the
objective and the tube lens; these are used for illumination of the object and
various spatial-filtering operations which will be discussed in Chapter 12. Such
components do not affect the geometrical principle of the microscope, but their
design is simpler if they operate in parallel light. In the focal plane of the tube
lens, a photographic film or electronic image sensor can be situated. For visual
observation, an eyepiece is used to magnify the image further, and the ray
diagram for this case is shown in Fig. 3.11. Clearly, the tube lens and eyepiece
together have the structure of a telescope, observing the virtual image of the
sample at infinity provided by the objective lens.

A microscope objective is usually labelled with the magnification obtained
with a standard tube lens of 160 or 200 mm focal length; this magnification,
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Figure 3.12

Principle of a telecentric
metrology imaging system.
(a) Optical ray diagram,
showing imaging of points
P, P1 in the focal plane and
Q out of the focal plane; (b)
a pair of nails and (c) how
they are seen by a
non-telecentric system;
(d) the same object as seen
by a telecentric system.
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which is generally a number up to 100, can then be multiplied by the eyepiece
magnification. After the tube lens, the ray diagram is identical to that of a
telescope, and the same considerations about field lens and exit pupil apply.
Because of its intricate design and the need to use large angles of refraction, the
design centres around the objective, which contains the aperture stop within it.
It will be seen that the final image is virtual and inverted.

Box 3.3 A telecentric microscope for metrology applications

Metrological optical systems are geared towards measuring the dimensions
of three-dimensional objects. This requires both absence of distortion across
the field of view and a magnification that is independent of the depth
dimension. These can be achieved if we limit the rays forming the image to
an identical cone from every point on the object, which we do by putting a
small aperture in the back focal plane of the objective lens. Figure 3.12(a)
shows a ray diagram for such a system, called a telecentric system. Since
the axes of the cones of light from all the object points such as P and P1 are
parallel, clearly the magnification does not depend on the depth, eliminating
perspective effects, which are undesirable in metrology. However, the depth
of focus is still given by (3.11) where the aperture stop diameter is that of
the aperture in the focal plane. This means the object can be out of focus but
retains the correct shape. Then the blurring introduced by the defocus (inset
on the right of (a)) is symmetrical and field independent, which makes it
easier to correct by image processing.

What is the price we pay for having such a system? The light throughput
and resolution are poor because of the small aperture, despite the fact that
the objective lens has to be as large as the field of view, which, for large
objects, is a great disadvantage. Moreover, we have not addressed the issue
of distortion, and in practice the design of a good telecentric lens system
without distortion and other aberrations is quite complex.
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The objects typically observed through a microscope contain detail as small
as, or smaller than, the wavelength of light, and so geometrical optics only
gives us a very general description of the imaging process. A full picture of the
capabilities and limitations of microscope imaging only emerges with the use
of wave optics. This will be described in Chapter 12.

3.4 The matrix formalism of the Gaussian optics
of axially symmetric refractive systems

It is very cumbersome to extend the algebraic type of analysis we saw in §3.2
to more complicated systems. A much more convenient method, which utilizes
the fact that equations (3.2)–(3.10) are linear as a result of the approximation
(3.1), uses matrices to make the calculation of the optical properties of even
the most complicated systems quite straightforward, and is also particularly
convenient for numerical computations (Problem 3.14).

The propagation of a ray through an axially symmetric system of lenses
consists of successive refractions and translations. As mentioned earlier, the
direction of propagation of a ray through the system will be taken from left to
right. We shall treat only rays that lie in a plane containing the optical axis z;
we shall ignore what are called skew rays, which are defined as rays that are
incident in a plane that does not include the optical axis, and that add no new
information in the paraxial approximation.3 Since the system has rotational
symmetry around z, a ray at z = z0 is specified if we know its algebraic
distance y from the axis and its inclination dy/dz = θ ; it is therefore sufficient
to follow the rays in one (y, z) plane.

3.4.1 The translation and refraction matrices

Let us consider first a ray that propagates in a straight line in a uniform medium
of index n (Fig. 3.13(a)). It has height y1 and inclination θ1 at z = z1, and y2
and θ2 = θ1 at z2 = z1 + t. Then

We encourage the reader
to write a short computer
code to study paraxial
optics. It helps a lot in
following the ideas and
solving problems.

y2 = y1 + tθ1, (3.12)

θ2 = θ1. (3.13)

3 The projection of a skew ray on any plane containing the optical axis is itself a valid ray in the
paraxial approximation. This is not true at large angles.
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Figure 3.13

(a) Paraxial diagram for the
translation matrix. (b)
Paraxial diagram for the
refraction matrix; in the
spirit of Gaussian optics,
where R � h, points V and
C coincide.
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These equations can be described by the matrix equation between vectors
(y, nθ):4 (

y2
nθ2

)
=
(

1 t/n
0 1

)(
y1
nθ1

)
= T

(
y1

nθ1

)
(3.14)

which defines T, the translation matrix from z1 to z2.
A second matrix describing the refraction as a ray passes through a surface

with radius R from a medium with index n1 to a medium with index n2 is
derived as follows (see Fig. 3.13(b)). Snell’s law n1 sin ı̂ = n2 sin r̂ gives

n1 sin(φ + θ1) = n2 sin(φ + θ2), (3.15)

which becomes, for small angles,

n1φ + n1θ1 = n2φ + n2θ2. (3.16)

With φ = y1/R we get

n2θ2 = n1θ1 − (n2 − n1)y1/R. (3.17)

Note that φ > 0. Since z1 and z2 coincide we have y1 = y2 and so we can
define a refraction matrix R by the following equation:

(
y2

n2θ2

)
=
(

1 0
n1 − n2

R
1

)(
y1

n1θ1

)
= R

(
y1

n1θ1

)
. (3.18)

A general matrix M21 which connects a ray at z1 with its continuation at z2
performs the operation (

y2
n2θ2

)
= M21

(
y1

n1θ1

)
, (3.19)

where M21 is a product of T and R matrices. Since det{R}= det{T}= 1,
det{M21} = 1. We used the combination nθ , and not θ alone, to make
these determinants unity.

4 We use the product nθ rather than θ alone for later convenience, since then the determinants of
all our matrices will be unity. This convention is not universally used in textbooks.
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Figure 3.14

Ray diagram for image
formation by a thin lens
in air with all quantities
positive. In the spirit of the
Gaussian approximation,
V1 and C1 coincide, as do V2

and C2.
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3.4.2 Matrix representation of a simple lens

As we saw in §3.2 a simple lens consists of an optically transparent medium,
with refractive index n, bounded by two spherical surfaces (Fig. 3.14). The line
joining the centres of the two spheres defines the optical axis z, and the system
is symmetric about it. Initially we shall assume that the medium outside the
lens has unit refractive index. The vertices of the lens (the points at which the
surfaces cut the axis) are z1 and z2 where t = z2− z1. The matrix M21 between
z = z1 and z = z2 is derived as follows:

(
y2
θ2

)
=
⎛
⎝ 1 0

n− 1
R2

1

⎞
⎠(1 t/n

0 1

)⎛⎝ 1 0
1− n

R1
1

⎞
⎠(y1

θ1

)

= M21

(
y1
θ1

)
, (3.20)

where

M21 =

⎛
⎜⎜⎝

1+ t(1− n)
nR1

t/n

(n− 1)
(

1
R2
− 1

R1

)
− t(1− n)2

R1R2n
1+ (n− 1)t

R2n

⎞
⎟⎟⎠ . (3.21)

For a thin lens we assume that t is small enough for the second term in the
lower left element to be negligible; since n− 1 is of the order of 1, this means
that t  |R1 − R2|. Then, putting t = 0, we have

M21 =
⎛
⎝ 1 0

(n− 1)
(

1
R2
− 1

R1

)
1

⎞
⎠ =

⎛
⎝ 1 0

−1
f

1

⎞
⎠ , (3.22)

where the focal length is the same as that defined in (3.7). We emphasize that
the matrix M21 summarizes what we already expect from a thin lens in air:
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1. An incident ray parallel to the axis at height y1, i.e. ( y1, 0), leaves the lens
at the same height, but is tilted downwards, if f is positive, to cut the axis at
distance f , and is represented by ( y1,−y1/f ) on exiting the lens.

2. If R1 = R2, we have a spherical shell. We might expect this to have infinite
focal length, but t cannot be neglected (since R1 − R2 = 0) and the full
expression for f from (3.21) must be used (Problem 3.12).

3. If R−1
1 > R−1

2 , as in Fig. 3.14, and n > 1, the lens is converging. This
relationship means that the lens is thickest in the centre.

If the lens is surrounded by media of refractive indices n1 on the left and n2
on the right, it is easy to repeat the calculation and show that, in the case where
t is negligible, (

y2
n2θ2

)
= M21

(
y1

n1θ1

)
, (3.23)

where M21 =
⎛
⎝ 1 0

n− n2

R2
+ n1 − n

R1
1

⎞
⎠ . (3.24)

We shall return to this situation in §3.6.2.

3.4.3 Object and image space

A system of lenses is limited by its left and right vertices, V1 and V2. It is
useful to define the object space as a space with origin at V1 and the image
space with origin at V2. To the left of V1 we can put a real object, and we can
project a real image onto a screen if it is to the right of V2. Both spaces also
have ‘virtual’ parts. For instance, a virtual image can be formed to the left of
V2 by a magnifying glass, but one cannot put a screen at the location of this
image; similarly, a virtual object can be produced to the right of V1 by some
preceding optics.

3.5 Image formation

The formation of images is the most common task of an optical system, and we
shall now see how it is described by the matrices. Consider a general system,

extending from zO to zI and described by the matrix M21 =
(A B

C D

)
. This

matrix performs the operation

The matrix [AB, CD]
defined here relates
conjugate planes.

(
y2

n2θ2

)
=
(

A B
C D

)(
y1

n1θ1

)
. (3.25)
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If this system forms at zI an image of an object at zO, then the (x, y) planes
at zO and at zI are called conjugate planes. Imaging means that y2 must be
independent of n1θ1; in other words, all rays leaving a point ( y1, zO) in any
direction θ must arrive at the same point ( y2, zI) (Fig. 3.15).

y1

q1

y2

q2
A B
C D

zzO zI

Figure 3.15

Matrix for imaging
between conjugate planes
zO and zI. All rays leaving
the object point arrive at
the same image point
independent of the
angle θ1.

Since the point of arrival is independent of the angle θ1, B must be 0. It
then follows, since the determinant of M21 is unity, that AD = 1. The linear
magnification produced by the system is

m = y2

y1
= A. (3.26)

A ray originating at (0, zO) with angle θ1 will pass through (0, zI) with angle
θ2. The ratio between the ray angles is the angular magnification:

θ2

θ1
= D

n1

n2
= 1

m
n1

n2
. (3.27)

Notice that when n1 = n2, the angular magnification is the reciprocal of the
linear magnification.

3.5.1 Imaging by a thin lens in air

Now let us return to the thin lens (§3.4.2). We put an object at zO = u (where
u is negative), a thin lens at z = 0 and find an image at zI = v. Using (3.22),
we write the matrix of the complete system of Fig. 3.14:(

A B
C D

)
=
(

1 v
0 1

)(
1 0

−1/f 1

)(
1 −u
0 1

)

=
(

1− v/f −u+ v+ vu/f
−1/f 1+ u/f

)
. (3.28)

Since the system is image-forming,

B = −u+ v+ vu/f = 0, (3.29)

or − 1
u
+ 1

v
= 1

f
. (3.30)

We have therefore recovered (3.6). The linear magnification is m = 1− v/f =
v/u while for a ray with y1 = 0 the angular magnification is 1 + u/f =
1/m= u/v.

Another way of expressing the imaging comes from the fact that if B = 0,
then AD = 1. Therefore we have

(1− v/f )(1+ u/f ) = 1, (3.31)

or ( f − v)(u+ f ) = f 2, (3.32)

which is called Newton’s equation. Remember that u is negative. This equation
is very useful; we shall see that it applies to any lens, not just a thin lens, and
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its usefulness derives from the fact that it does not refer to the vertices of the
lens, but only involves the image point, object point and foci. We emphasize
that (3.30) and (3.32) are not independent, but each can be derived from the
other.

3.5.2 Telescopic or afocal systems

If C = 0, θ2 does not depend on y1 and a bundle of parallel rays entering the
system will emerge as a bundle of parallel rays, but at a different angle. A system
with this property is called telescopic or afocal. From an object at infinity it

Telescopic mirror systems
(Cassegrain, Gregorian)
are often used because
they are achromatic, and
also can be applied to UV
and IR radiations that are
not transmitted by glass.

creates an image at infinity. Two common telescopic systems are the simple
astronomical telescope (§3.3.2) and the Galilean telescope (Problem 3.4).

3.6 The cardinal points and planes

Let us consider an imaging lens system in air that is represented, between its

vertices V1 at z1 and V2 at z2, by the general matrix M21 =
(a b

c d

)
, which

replaces
( 1 0
−1/f 1

)
of the thin lens in air from §3.5.1 (Fig. 3.16(a)). Instead

of (3.28) we then have(
A B
C D

)
=
(

1 v
0 1

)(
a b
c d

)(
1 −u
0 1

)

=
(

a+ vc b− au+ v(d − cu)
c d − cu

)
, (3.33)

where we recall that u and v are measured from V1 and V2 respectively in the
positive z-direction.

Once again, the imaging condition is represented by B = 0, which leads to

b− au+ vd − vcu = 0. (3.34)

If B = 0, it follows again that AD = 1, which gives

(a+ vc)(d − cu) = 1. (3.35)

The clue to simplification is then given by comparing (3.35) with Newton’s
equation (3.32) for the thin lens. Clearly the two are similar when we write
(3.35)

( fa− v)( fd + u) = f 2, (3.36)
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Figure 3.16

(a) Matrix for the optical
system, between vertices
V1 and V2. (b) The focal (F)
and principal (H) points.
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where we define −1/c as the focal length (or the effective focal length) f , as
it was for the thin lens. By putting v = ∞ and u = −∞ respectively, the focal
points F1 and F2 are then found to be at z1 + d/c and z2 − a/c. Next we write
(3.36) in the form

{ f − [v− (a− 1)f ]}{ f + [u− (1− d)f ]} = f 2, (3.37)

and use the definitions

up = (d − 1)/c, (3.38)

vp = (1− a)/c, (3.39)

f = −1/c, (3.40)

to write this as

[f − (v− vp)][f + (u− up)] = f 2. (3.41)

This is the same as Newton’s equation provided we measure the object and
image distances from the principal points H1 at z = z1 + up and H2 at
z = z2 + vp respectively. Equation (3.37) can then be written (cf. (3.30))

− 1
u− up

+ 1
v− vp

= 1
f

. (3.42)

It is easy to show from the above equations that the linear magnification is now
m = A = (v− vp)/(u− up) and the angular magnification, as usual, is 1/m.

The principal planesH1 andH2, normal to z through H1 and H2, are defined
in many texts as conjugate planes with unit magnification. On substituting
u = up, v = vp into (3.33) we find immediately:

(
A B
C D

)
=
(

1 0
C 1

)
; (3.43)

and see that the principal planes are indeed conjugate (B= 0) with unit linear
and angular magnifications (A = 1). We remind the reader that positive unit
magnification means that an upright image of the same size as the object is
formed. There is a situation that might be confused with this where u − up =
−2f , v− vp = 2f , but this has magnification −1.
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The four points H1, H2, F1 and F2 are four of six cardinal points that
represent the lens system matrix for ray-tracing purposes (Fig. 3.16(b)). The
other two (nodal points N1 and N2, which coincide with H1 and H2 when the
object and image spaces have the same refractive index) will be discussed later
(§3.6.2). We summarize the positions of the principal and focal points in terms

The cardinal points of a
lens system describe it
completely for paraxial
optics, but not for
large-angle optics.

of the matrix elements of the system, emphasizing that it is immersed in a
medium of unit refractive index.

• Principal points: H1 at z = (d − 1)/c+ z1, H2 at z = (1− a)/c+ z2.
• Focal points: F1 at z = d/c+ z1, F2 at z = −a/c+ z2.

Clearly, F1H1 = H2F2 = −1/c = f , so that each focal point is a distance f
from the related principal point.

3.6.1 Geometrical meaning of the focal and principal points

If a bundle of rays parallel to z enters the lens system, we have u = −∞,
whence v − vp = f so that the bundle is focused to F2. An oblique incident
bundle at angle α focuses to y = αf in the focal plane, F2, which is normal to
z through F2. Similarly, any ray passing through F1 leaves the system parallel
to the axis and the focal plane F1 is normal to z through F1. These are just like
in a thin lens.

For a thin lens, H1 andH2 are both in the plane of the lens but in a general lens
system they may be somewhere else (see example in §3.6.4). They generally do
not coincide. Since F1 is at a distance f to the left of H1, H1 can be interpreted
as the position of the thin lens of focal length f which would focus light from
a point source at F1 to a parallel beam travelling to the right; similarly,
H2 is the plane of the same thin lens when it is required to focus a parallel
beam incident from the left to F2.

For the purposes of ray-tracing through a lens system in air we use the
cardinal points as follows (Fig. 3.17(a)). Any incident ray (1) passing through
F1 leaves the system parallel to the axis at the height it reaches H1, as if there
were a thin lens in that plane. Likewise, a ray (2) incident from the left and
parallel to the axis goes through F2 as if it had been refracted by a lens in H2.
Any incident ray (3) through the point H1 exits through H2 since H1 and H2
are conjugate; moreover, the incident and exiting rays are parallel because the
angular magnification between the principal planes of a system in air is unity.
Thus any ray through the system can be traced by finding its intersection with
H1, and continuing it from H2 at the same height (unit magnification), using
an auxiliary parallel ray through a focus to help find the exit direction.

A convenient way to visualize ray tracing through a complete system in air is
carried out by the following steps, shown schematically in Fig. 3.17(b). Given
the data on the system,
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Figure 3.17

(a) Tracing rays through a
general optical system in
air, using the principal and
focal points. (b) The
paper-folding method.
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1. find the cardinal points, F1, F2, H1 and H2, and mark them along the z-axis
on a piece of paper, together with V1 and V2;

2. fold the paper so that the planes H1 and H2 coincide, and the z-axis remains
continuous (this needs two parallel folds, one along H1 and the other along
the mid-plane between H1 and H2);

3. trace rays as if the (coincidental) principal planes were a thin lens (§3.3);
4. unfold the paper. The rays that are drawn on it represent their paths outside

V1V2. Within V1V2, further information is necessary to complete them (see
§3.6.4 for an example).

3.6.2 Lens systems immersed in media: nodal points

Although many optical systems have n = 1 in both object and image spaces,
this is not a requirement. Indeed, the eye has vitreous fluid (n = 1.336) in the
image region. The most general system will have n = n1 in its object space
and n = n2 in its image space. The thin lens of §3.4.2 then has a matrix (3.24):

M21 =
(

1 0
n−n2

R2
+ n1−n

R1
1

)
, (3.44)

where n is the refractive index of the lens material. Its focal length is f , where

−1
f
= n− n2

R2
+ n1 − n

R1
. (3.45)
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Replacing u by u/n1 and v by v/n2 in the matrices of (3.28) gives immediately

−n1

u
+ n2

v
= 1

f
. (3.46)

The focal lengths are then n1 f and n2 f on the left and right. For the general
system described by (3.33) we use the same replacement and the following
results can be derived straightforwardly. Newton’s equation (3.32) becomes(−an2

c
− v
)(−dn1

c
+ u

)
= n1n2

c2 = n2n1f 2. (3.47)

Once again, we have principal planes H1 and H2 in the positions of thin lenses
equivalent to the system we had in §3.6.1. NowH1 is at z = z1+n1(d−1)/c and
H2 is at z = z2+n2(1−a)/c. As before the planesH1 andH2 are conjugate with
unit linear magnification. But the angular magnification between the principal
planes is now, from (3.27),

Dn1/n2 = n1/n2, (3.48)

which is not unity. In order to complete the ray tracing by the method described
in §3.6.1, we need to locate a pair of conjugate axial points N1 and N2 at
z1 + uN and z2 + vN (the nodal points) related by unit angular magnification.
This requires D = 1/A = n2/n1, whence

A = n1

n2
= a+ vN c

n2
⇒ vN = n1 − n2a

c
, (3.49)

D = n2

n1
= d − uN c

n1
⇒ uN = n1d − n2

c
. (3.50)

Simple subtraction gives H1N1 = H2N2 = (n1 − n2)/c. We leave the reader
to devise a paper-folding method of ray-tracing (§3.6.1) when n1 �= n2. It
involves two separate folding procedures.

3.6.3 Example: A meniscus lens

A simple experiment will show that the principal planes of a meniscus lens,
an asymmetrical lens having the centres of curvature of both surfaces on the
same side of it, do not coincide with its plane. You can see this by determining
the two focal points of a strong, thick, positive spectacle lens (reading glasses)
by imaging a bright distant object. It is easy to see that they are not the same
distance from the lens. Since the object and image spaces are both in air, this
is an indication that the principal planes are not symmetrical.

A numerical example will show that the principal planes are both displaced
to one side of the meniscus lens. A lens with radii of curvature 50 and 100 mm
(both positive) made from glass with refractive index n = 1.5, 7.5 mm thick
on the axis, has matrix representation
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Figure 3.18

A positive meniscus lens.
(a) Parallel rays entering
from the left, showing
the principal plane H2;
(b) parallel rays exit from
the right, showing the
principal plane H1.
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(
1 0

0.5
100 1

)(
1 7.5

1.5
0 1

)(
1 0
−0.5

50 1

)

=
(

0.95 5
−0.00525 1.025

)
=
(

a b
c d

)
. (3.51)

From the values of a, b, c and d we find that the principal planes are at z1−5 mm
and at z2 − 10 mm, both of which are to the left of the lens and are separated
by 2.5 mm (Fig. 3.18). This displacement is large enough to be appreciated in
a qualitative manner.

3.6.4 Example: The telephoto and zoom lens systems,
and Cassegrain telescopes

A more dramatic demonstration of the function of the cardinal planes is pro-
vided by a telephoto system. This can be defined as a system where the
effective focal length −1/c is considerably larger than the physical distance
V1F2 between the front vertex and the back focal plane. For this reason, it is
widely used in cameras to achieve a relatively short lens system with a long
focal length, thus creating a highly magnified image on the film or sensor.
Usually the positions of the component lenses can be varied mechanically so as
to obtain a variable focal length, with the image plane remaining fixed on the
sensor, and is called a zoom lens (Fig. 3.1). An example of the basic telephoto
system is shown in Fig. 3.19. When the lenses are exchanged by curved mirrors,
the telephoto system is called a Cassegrain telescope (Fig. 3.20). This design
is almost invariably used for astronomical telescopes with apertures greater
than about 20 cm. Actually, the Cassegrain telescope has no aberrations for an
image on the optical axis if the primary mirror has the form of a paraboloid and
the secondary a hyperboloid, where the two foci of the hyperboloid are located
at the focus of the paraboloid and at the image respectively.5

5 A larger aberration-free field of view is obtained when both mirrors have a hyperboloidal shape,
and the configuration is then called a Ritchey–Chrétien telescope, but we do not know of an
intuitive way of seeing this. The Hubble Space Telecope has this design.



74 Geometrical optics

Figure 3.19

A telephoto system with
effective focal length
160 mm, made of two
lenses A and B having focal
lengths 20 mm and −8 mm
respectively, separated by
13 mm. Cardinal planes H2

and F2, and ray-trace for
an axial object at u = −∞.
The equivalent thin lens at
H2 would refract the rays
as shown by the broken
lines between H2 and B.
The dimensions correspond
roughly to the camera
pictured below.

Figure 3.20

Optics of a Cassegrain
telescope. The primary
mirror has an axial hole.
The effective focal length
is H2F2; to show
geometrically the position
of H2, we have had to
break the axes. The primary
mirror is a paraboloid with
focus at P and the
secondary is one sheet of a
hyperboloid-of-two-sheets
with foci at P and F2.

H2 F2
P

feff

Primary mirrorSecondary mirror

Image
sensor

The telephoto system consists of a pair of thin lenses A and B, the weaker
one being converging ( fA > 0) and the stronger one diverging ( fB < 0). They
are separated by a distance l which is somewhat greater than fA + fB, and the
combination acts as a weak converging lens. Calculation of the positions of H1
and H2 shows both of them to be on the same side of the lens, a considerable
distance from it. The system matrix in this case is the product of a thin lens
matrix, a translation matrix and a second thin lens matrix:(

a b
c d

)
=
(

1 0
−f −1

B 1

)(
1 l
0 1

)(
1 0

−f −1
A 1

)

=
(

1− lf −1
A l

−f −1
A − f −1

B + l( fAfB)−1 1− lfB−1

)
. (3.52)

From this we see that the effective focal length feff of the combination is
given by:

1
feff

= 1
fA
+ 1

fB
− l

fA fB
= fA + fB − l

fA fB
. (3.53)

Inserting the fact that l > fA + fB shows that the effective focal length is
positive when fA and fB have opposite signs. The figure shows the positions
of the principal planes for a numerical example, where fA = 20 mm and
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fB = −8 mm, the lenses being separated by 13 mm. Each point on a distant
object is imaged on F2 and the system behaves as a thin lens situated at H2
with a focal length H2F2 = 160 mm, while the physical length of the hardware
is V1F2 = 69 mm.

Essentially the same telephoto system but with a different distance AB = 12.1
cm can be used in the diffractometer for classroom demonstration of Fraunhofer
diffraction patterns described in Appendix B. Here each group of parallel rays
belongs to one order of diffraction from the mask. The telephoto system enables
one to project the diffraction pattern with a size determined by feff (which is
16 m in the example) on a screen at distance V2F2, only 6.4 m from the optics.
This gives a real image of the diffraction pattern 2.5 times larger than could be
obtained using a simple lens with the screen at the same distance.

3.6.5 Experimental determination of cardinal points
for a system in air

Determination of the cardinal points for a converging optical system in air
involves finding the two focal points F1 and F2 and the effective focal length
feff . Then the principal planes are defined. The focal points can be found
accurately by focusing light from a distant source onto a plane mirror normal
to the axis; when the light returns to the source as a parallel beam, the mirror
is situated in the focal plane. The same method can be used to determine one
or more pairs of conjugate object–image positions. Then, Newton’s equation
(3.32) can be used to determine the effective focal length, and then the principal
planes can be found. Alternatively, if a laser with known wavelength is used
for the experiment, one can measure in the focal plane the spacing between the
orders of the Fraunhofer diffraction pattern of a grating with measured period
and use this to calculate feff .

It is a more difficult problem, which will be left to the reader, to devise a
method of determining the principal planes of a diverging optical system. This
requires addition of an auxiliary lens. Determination of the properties of com-
plex lens systems are generally carried out with the aid of an autocollimator,
which essentially provides a source projected to z = −∞ on the optical axis
and the means to determine when the light returned from an optical system is
collimated and parallel to the axis.

3.7 Aberrations

The Gaussian approximation does not, of course, apply to real lenses and
mirrors. Unfortunately, the moment we abandon the approximation that
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sin ı̂ � tan ı̂ � ı̂ , the subject of geometrical optics loses its elegant simplicity
and becomes very technical. However, since these technicalities are often of
great practical importance, we shall skim very superficially over a few exam-
ples of lens aberrations and their correction. Much more complete discussions
are given by Kingslake (1983) and Welford (1986).

3.7.1 The monochromatic aberrations

No image-forming instrument can produce a perfect image of an extended
object, and the best that can be done in practice is to ensure that the aber-
rations that would be most disturbing in a particular experiment are made as
small as possible, sometimes at the expense of making others larger. Although
monochromatic aberrations can be discussed on a purely geometrical-optics
basis, they are much easier to understand if we look at them as distortions of
the wavefront exiting the system, which will be the basis of the discussion here.

The classification of aberrations now usually accepted, which makes their
practical importance rather clear, was first introduced by von Seidel in about
1860, and therefore predates the diffraction theory of imaging (Chapter 12).
Ideally, a perfect lens imaging a luminous point object would create an exactly
spherical wavefront converging on a point in the image plane. The position of
this point in the plane would be related linearly to that of the point object in
its plane by the magnification M . Some of the named aberrations – spherical
aberration, coma, astigmatism – describe the blurring of the image point.

The Seidel aberrations
correspond to an
expansion of the
wavefront error in terms
of Zernike polynomials,
which will not be
discussed here.

Others describe the deviation of the best image point from its expected position;
curvature of field tells us how far in front or behind the image plane we shall
find it and distortion tells us how big are the deviations from a uniform
magnification. All these aberrations are functions of the object point position
(x, y, z) and also depend on the lens parameters. In general, the severity of all
aberrations is a strong function of the aperture of the lens system.

From the point of view of wave theory, the exiting wavefront simply does
not coincide exactly with the sphere converging on the ‘right’ point, as defined
by Gaussian optics. If we calculate the deviation of the real wavefront from
the expected sphere in the exit pupil, we derive a function � that describes the
aberrations. The Seidel classification breaks this function down into a linear
superposition of radial and angular functions, each one of which corresponds
to one of the named aberrations mentioned above (and there are higher-order
ones that we did not mention, too). Any one of them that does not introduce
a deviation greater than about λ/2 at the edge of the aperture of the lens is
negligible, and will not significantly affect imaging. If there are no significant
aberrations, the system is called ‘diffraction-limited’ because the only reason
that the image is not an ideal point is diffractive broadening resulting from the
limited aperture (§12.2).

Some examples for axially symmetric lenses, where the coordinates in the
exit pupil are denoted by (ρ, θ), are as follows:
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Figure 3.21

Examples of the intensity
distribution in images
of a point source in the
paraxial focal plane:
(a) diffraction-limited;
(b) with spherical
aberration; (c) with coma;
(d) with astigmatism.

(a) (b) (c) (d)

Figure 3.22

Illustrating the principle of
an achromatic doublet.
After entering the lens, the
blue rays are shown as full
lines and the red rays
broken.

F2

C F

1. Axial defocus is a quadratic error of the form �(ρ, θ) = Aρ2.
2. If the object is on the axis, spherical aberration in the paraxial image plane

corresponds to the error function �(ρ, θ) = Bρ4.
3. If the image is at lateral distance x from the axis, there are additional terms

dependent on x called coma where �(ρ, θ) = Cxρ3 cos θ and astigmatism
where �(ρ, θ) = Ex2ρ2 cos 2θ .

Anticipating Chapter 8, this approach can be developed further by consider-
ing � as a phase error k0�, where k0 = 2π/λ, and then calculating the form of
the distorted image of a point as the Fraunhofer diffraction pattern (§8.2) of the
‘phase object’ f (ρ, θ) = exp[−ik0�(ρ, θ)]. The above examples are shown in
Fig. 3.21 (b), (c) and (d) as images of a distant point source, where they are
compared with the ideal diffraction-limited image in (a).

3.7.2 Chromatic aberration and its correction

In addition to the monochromatic aberrations, a simple lens system has cardinal
points whose positions depend on refractive indices, which are a function of
λ. Mirror systems are of course free of such defects. The refractive index n(λ)
of a transparent medium is always a decreasing function of λ, but varies from
material to material (§13.4).

For a simple thin lens, the power is given by (3.7): f −1 = (n−1)(R−1
1 −R−1

2 ).
A combination of two or more lenses made from different glasses can then be
designed, by a suitable choice of radii of curvature R for each component,
to have equal focal lengths at two or more specified wavelengths. The most
common implementation has two components with radii of curvature R1, R2 and
S1, S2 respectively; it is called an achromatic doublet or achromat (Fig. 3.22).

Achromatic triplets can
be designed, using three
different glasses, to
obtain better colour
correction than that of a
doublet.
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Figure 3.23

Fermat’s principle applied
to the GRIN lens. The
refractive index is a
function of radius r.

O I

−u v

d0

r

Box 3.4 Gradient index (GRIN) lenses

Many small lenses used for fibre-optics instrumentation are produced today
by using a medium having radial variation in the refractive index n(r)
and flat surfaces. They are called gradient index or GRIN lenses. In a
conventional lens with spherical surfaces, n is a constant and the thickness
d varies quadratically with r. In a GRIN lens d is a constant, d0, and the
optical thickness n(r)d0 is then arranged to have the required parabolic
profile by designing n(r). The easiest way to see the relationship between
the material parameters and the focal length is to use Fermat’s principle, as
we did in §2.6.3. Remembering that according to the sign convention the
real object O in Fig. 3.23 is at distance −u (left of the origin), we calculate
the optical path OI to image I as

OI =
√

u2 + r2 +
√

v2 + r2 + d0n(r)

≈ −u− r2

2u
+ v+ r2

2v
+ d0n(r), (3.54)

which must be a constant for imaging. It follows that

r2

2

(
1
v
− 1

u

)
+ d0n(r) = r2

2f
+ d0n(r) = const. (3.55)

The profile of n(r) must therefore be quadratic in order that (3.55) be
independent of r. It must have the form

n(r) = n0 − r2

2fd0
. (3.56)

The required profile is created by progressive deposition of glasses of vary-
ing densities on a cylindrical former, after which a prolonged annealing
process allows the layers to merge by diffusion and create a smooth profile.
The product can then be stretched to achieve a required diameter, after
which it is sliced into lenses and the faces polished flat.
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The refractive index variation n(λ) of each glass is specified by its dispersive
power, defined for visible optics systems by the Abbe number

V = ny − 1
nb − nr

, (3.57)

where nb, ny and nr are the indices for blue, yellow and red light respectively
(usuallyλ= 486.1 nm, 587.6 nm and 656.3 nm; for other spectral regions differ-
ent wavelengths would be appropriate). Refractive indices and Abbe numbers
for many materials are listed in glass tables. It is a simple calculation to show
that the focal lengths for blue and red light are equal if

(nbF − nrF)
(

R−1
1 − R−1

2

)
+ (nbC − nrC)

(
S−1

1 − S−1
2

)
= 0, (3.58)

where the two types of glass are indicated by the second suffices F and C.6 In
terms of the individual focal lengths of the two lenses for yellow light, fF and
fC, this can be expressed as

VFfF + VC fC = 0, (3.59)

and the combined power is of course

f −1 = f −1
F + f −1

C . (3.60)

A cemented doublet has a common interface, R2 = S1, and so the two equations
(3.59) and (3.60) determine three radii of curvature. One degree of freedom
therefore remains; we shall see in §3.7.3 how this can be used to correct another
aberration. An uncemented doublet, R2 �= S1, has two free parameters.

3.7.3 Correction of spherical aberration

Ray diagrams showing spherical aberration were shown in Fig. 3.2. Comparison
of (a) and (b) suggests that some form of compensation for the defect might
be achieved by bending the lens, which means adding a constant to each of
R−1

1 and R−1
2 ; this will not change the focal length, which is determined only

by their difference. However, it turns out that bending cannot eliminate the
spherical aberration of a single lens completely if the object is at infinity. It
can do so if the object is closer than the focal length, as will be seen in §3.8
for the aplanatic system (which is a particular form of meniscus lens). When
the object is at infinity it turns out, for n = 1.6 for example, that the best one
can do to reduce spherical aberration is to use a ratio R2/R1 = −12. The result
is close to a plano-convex lens, with the flatter side facing the image (not like
Fig. 3.2(b)!). This tends to divide the refraction more-or-less equally between

6 The letters F and C stand for flint and crown glass, which are the commonest glasses used for
chromatic correction, but of course could just as well represent other materials.
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Box 3.5 Solar concentrators

One branch of geometrical optics is not concerned with imaging quality,
but with efficient transportation of radiant energy. This is known as non-
imaging optics. A major application is to the concentration of solar energy.
This is important for two reasons. First, because it can be used to create very
high temperatures, theoretically up to the temperature of the Sun’s surface,
were there no atmosphere to intervene. Second, because it allows energy to
be concentrated on smaller solar cells, which can then generate electricity
more efficiently.

However, it is not obvious that the best way to concentrate energy is to
produce a good image of the Sun on the receiver. The important things to
ensure are that every ray entering the collector reaches the detector some-
where on its surface and that the detector has the smallest area theoretically
allowed. The fact that there exists a smallest area follows from the second
law of thermodynamics. When all the collected radiation is concentrated on
this smallest area, it reaches radiative equilibrium at the same temperature
as the source; if the area were smaller than this, it would be hotter than the
source and a heat engine could then be designed to provide perpetual motion.

Optically, this smallest area follows from the Abbe sine rule (§3.7.4). In
order not to lose collected energy we require:

1. points on the edge of the Sun’s disc are imaged perfectly onto points on
the edge of the detector or solar cell;

2. any ray from a point within the Sun’s disc that goes through the aperture
stop of the optical system reaches some point on the detector.

We denote the Sun’s angular radius as α = rs/Ds = 0.25◦, where rs and
Ds are its radius and distance respectively, the collector has aperture radius
rc and the detector is circular with radius rd. The Abbe sine rule, required
for perfect imaging, tells us that rd sin θd = rs sin θs, where the θs are the
angles of the rays with respect to the optical axis (Fig. 3.24(a)). Now the
ray with largest angle θs = rc/Ds must then correspond to the largest θd,
whose sine cannot be larger than 1. Therefore, we have for this ray

rd sin θd = rd = rs sin θs = rs rc/Ds = rc αs. (3.61)

This gives a maximum linear concentration ratio rc/rd = 1/αs = 230.
If the system has axial symmetry and circular aperture and detector, the
power concentration ratio is α−2 = 2302 = 53 000. The challenge is to
reach this figure, in a practical system, which also fulfils requirement 2.

An elegant method of achieving this requirement, almost ideally, is the
compound parabolic concentrator (CPC), which is designed to achieve an
aberration-free image of the edge of the Sun on the detector while ignoring
the quality of imaging nearer the axis. This is done using the fact that a
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Figure 3.24 An example of a non-imaging reflecting system, a compound parabolic concentrator
(CPC), designed to concentrate sunlight onto a solar cell. The principle is such that
any incident ray from within the Sun’s angular diameter is reflected to some point on
the solar cell, but no actual image is formed. The marginal rays are incident at 90◦
onto the cell, and so the detector receives at all available angles and is therefore
used with ideal efficiency. (a) Abbe’s sine rule for an imaging ray; (b) ideal imaging
of a parallel beam by a parabolic reflector; (c) the CPC images the edge of the Sun to
the edge of the detector, and rays closer to the axis hit the detector closer to
its centre; (d) sketch of a three-dimensional CPC.

parabolic mirror concentrates all rays parallel to its axis to a point focus with
no spherical aberration (Fig. 3.24(b)); then (c) shows how the edge of the
Sun is imaged onto the edge of the detector by an axially symmetric concave
mirror whose section is an arc of a parabola with its axis inclined to the
rotation axis by α. You can easily check from the figure that any ray from the
Sun in the plane of the diagram strikes the detector after a number (usually
zero or 1) of reflections off the mirror. In three dimensions (d) the only
rays that miss the detector are some skew rays near the extreme angle. The
important point is that the rays at the detector fill all angles of incidence θd
up to π/2, so that the concentration ratio is as high as theoretically possible.

Some less ideal methods of achieving the same goal, which are easier to
manufacture, include specially profiled Fresnel lenses and conical reflec-
tors. It is easy to show that a conical reflector can reach a concentration
ratio of one-quarter of the ideal value. Do there exist reflecting surfaces
that concentrate solar radiation almost ideally onto a square or rectangular
detector?
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the two surfaces, which is a good rule of thumb to follow if aplanatic conditions
are inappropriate.

When an achromatic doublet is used, the extra degree of freedom (§3.7.2)
can be employed to correct spherical aberration. In this case, good correction
can be achieved by bending the lens even for an object at infinity, and most
refractive telescope objectives are designed this way. It is also common to use
cemented achromats even for laboratory experiments using monochromatic
light so as to take advantage of their correction for spherical aberration.

3.7.4 Coma and other aberrations

The Abbe sine rule, which will be proved in §12.1.2 by diffraction methods,7

states that if a ray leaves a point object at angle θ1 and converges on the image
at angle θ2 such that

sin θ1

sin θ2
= constant, (3.62)

both spherical aberration and coma are absent. The constant is, of course,
the angular magnification, which can be seen by making θ very small, when
the paraxial equations will apply. The aplanatic system (§3.8) satisfies this
condition, but it is easy to see that a thin lens does not, since the ratio between
the tangents of the angles is constant.

Distortion, however, is smallest in lens systems that are symmetrical about
their central plane. If the magnification is−1, this can be seen (Problem 3.15) as
resulting from the reversibility of light rays, but it is found to be approximately
true at other magnifications too. The problems facing the lens designer now
become clear if one contemplates, for example, correcting distortion (indicating
a symmetrical system), spherical aberration and coma (requiring an asymmet-
rical bent lens) simultaneously. The solution has to be sought with a larger
number of component lenses.

3.8 Advanced topic: The aplanatic objective

A system that has no spherical aberration in spite of large-angle rays is the
aplanatic spherical lens. Despite its being a particular application of Snell’s law
with no fundamental significance, it is widely used in optical design, particu-
larly in microscope objectives when a limit of resolution near the theoretical
maximum is required.

7 It can be proved by geometrical optics also, but one proof seems enough!
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Figure 3.25

Aplanatic points of a sphere
of radius R, drawn for
n = 1.50. Triangles ACP and
PCA′ are similar.
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Consider a sphere of glass with radius R (Fig. 3.25). The object is placed
at A, at distance R/n from the centre C. We shall show that in this case an
image is formed at A′, distant Rn from C, and that this relation holds for all
angles.

We apply the geometrical sine law to the triangle ACP and see immediately
that sin ı̂/ sinα = 1/n. By Snell’s law, sin ı̂/ sin r̂ = 1/n and so r̂ = α. The
triangles ACP and PCA′ are therefore similar and it follows that

A′C/R = R/(R/n) = n; A′C = nR. (3.63)

Therefore rays diverging from a point distant R/n from the centre of a sphere
of radius R will, after refraction, appear to be diverging from a point distant nR
from the centre. Since no approximations are involved, the result is correct for
all angles. For example, if n = 1.50 a beam with a semi-angle of 64◦ (sin 64◦ =
0.90) will emerge as a beam with a semi-angle of 37◦ (sin 37◦ = 0.60).

Since the imaging is perfect for all angles, including small ones, the formal
optical properties of the aplanatic sphere can be handled by matrix optics.
The optical system consists of one refracting surface and is described by the
matrix (

1 0
1−n

R 1

)
(3.64)

(note that the radius of the surface is −R !). The principal planes pass through
the vertex. The focal lengths are f1 = Rn/(n − 1) and f2 = R/(n − 1). Since
u = −(R+R/n) (measured from V ) we confirm from (3.46) that v = −(R+Rn).
The virtual image formed is n2 larger than the object.

At first sight it might appear that the aplanatic properties are rather useless,
since the object is immersed in the sphere,8 but they are in fact widely used in
two ways.

8 The magnified virtual image of a small goldfish, swimming in a spherical globe of water at
distance R/n from the centre, would be perfect.
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Figure 3.26

Application of the aplanatic
points: (a) imaging a
point immersed in oil;
(b) imaging an external
point; (c) a microscope
objective using both of
the above applications. O is
the object and I1 and I2
images.

(c)

OI1I2

(a)

(b)

Immersion
oil, n = nglass

Object
surface

Image
surface

First, the sphere can be cut by a section passing through its internal apla-
natic point; the specimen is placed near this point and immersed in a liquid
(called ‘index-matching’ oil or gel) of the same refractive index as the glass
(Fig. 3.26(a)). This has the additional advantage that the wavelength in the
medium is smaller than in air, which improves the resolution (§12.2.5). The sys-
tem is known as oil-immersion and is used almost universally for microscopes
of the highest resolution.

The second way in which the principle can be used involves putting the
object at the centre of curvature of the first concave face of a lens and making
this same point the inner aplanatic point of the second surface. All the deviation
then occurs at the second surface and the image is formed at the outer aplanatic
point (Fig. 3.26(b)). It is easy to show that the magnification of such a lens
is n. In this case we have corrected spherical aberration by bending the lens
(§3.7.3).

The complete microscope objective illustrated in Fig. 3.26(c) uses both
applications of the aplanatic principle in two successive stages. The semi-angle
of the emergent beam that started at 64◦ is then reduced to 24◦. The virtual
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image is then re-imaged to infinity by an additional relatively weak converging
lens.

The freedom from coma of the aplanatic sphere can be seen from the fact
that all points at distance R/n from the centre of the sphere are aplanatic points.
Thus, if we ignore the curvature of the surface on which these points lie, we
deduce that all points on a plane object will form a plane image that is free
from spherical aberration and coma. Correction for curvature of field, which is
inherent in the aplanatic system, is more involved.

3.9 Advanced topic: Optical cavity resonators

Most gas laser resonators are constructed from two spherical mirrors, usually
concave towards one another, so that the light is ‘trapped’ between them. The
idea is that light travelling at a small angle to the axis will not diverge to
larger and larger angles after multiple reflections but will stay within the finite
volume of the lasing medium (Fig. 3.27(a)). These resonators are derivatives
of the Fabry–Perot interferometer, which consists of two parallel mirrors; the
physical optics of the Fabry–Perot is discussed in detail in §9.5.1.

Although we have intentionally avoided discussing spherical mirrors in this
chapter, this particular problem deserves mention because of its importance in
lasers (§14.6.1). We can convert it to an equivalent lens system, and investigate
that by using matrices (in fact, most mirror systems are best dealt with this
way). A spherical mirror of radius R has focal length f = R/2.9 So when the
light is reflected backwards and forwards between the two mirrors of radii R1
and R2, separated by L (positive values of R mean concave sides facing one
another), this is equivalent to a repeated pair of lenses, with focal lengths R1/2
and R2/2 as in Fig. 3.27(b). This is a periodic system, one period of which is
represented by the matrix MP, where

MP =
(

1 L
0 1

)(
1 0
− 2

R2
1

)(
1 L
0 1

)(
1 0
− 2

R1
1

)
. (3.65)

Multiplying the matrices gives

MP =
⎛
⎝ 1− 2L

R2
− 4L

R1
+ 4L2

R1R2
2L− 2L2

R2

−2
(

1
R1
+ 1

R2

)
+ 4L

R1R2
1− 2L

R2

⎞
⎠ . (3.66)

When light passes through N periods of the system, equivalent to being
reflected back and forth N times in the mirror system, we have the matrix M N

P .

9 This leads us to the conclusion, for example, that an object at u = −R = −2f is imaged at
v = 2f = R; taking into account reversal of the direction of the light, the object and image
coincide, and the linear magnification is v/u = −1.



86 Geometrical optics

Figure 3.27

(a) Tracing a ray through a
stable spherical Fabry–Perot
resonator; (b) the
equivalent infinite periodic
set of thin lenses.
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To see its convergence properties, it is easiest to diagonalize it. This means,
essentially, ‘rotating’ the vector (h, θ) to a new vector (ah + bθ ,−bh + aθ),
where a2 + b2 = 1, for which the matrix is diagonal. The technique for doing
this is described in any text on linear algebra, and consists of solving the secular
equation

det {MP − λI} = 0 (3.67)

for its two solutions, λ1 and λ2. The diagonal matrix is MD ≡
(
λ1 0
0 λ2

)
. Since

det {MP} = 1, (3.67) is easily shown to give

λ2 −
[

4
(

1− L
R1

)(
1− L

R2

)
− 2

]
λ+ 1 = 0, (3.68)

whence λ1 and λ2 can be found. Before writing down the solutions, we shall
look at their significance. The determinant of MD is unity, and so λ1λ2 = 1.
The possible solutions of the quadratic equation (3.68) can be divided into two
groups.

1. Real solutions, λ1 and λ−1
1 , for which we shall show that the rays pro-

gressively diverge. We define λ1 to be the larger solution, and exclude
λ1 = λ2 = 1.

2. Complex solutions, which are of the form λ1 = eiα , λ2 = e−iα , including
the solution α = 0 (λ1 = λ2 = 1). For these values the ray divergence is
bounded.

Consider case (1). The matrix M N
D is then

M N
D =

(
λN

1 0
0 λ−N

1

)
. (3.69)
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Figure 3.28

Stable and unstable
resonators. In the centre,
the region of stability
(3.73) is shown in the
(L/R1, L/R2) plane, and
around it there are
examples illustrating the
configurations typical of
various regions on the
diagram. It is interesting
that the most commonly
used configurations
(symmetrical confocal and
Fabry–Perot) are marginally
stable. The Fabry–Perot and
LIGO resonators will be
discussed in Chapter 9.

After a large enough number N of passes, λ−N
1 will be small enough to be

negligible, and we can write(
ahN + bθN
−bhN + aθN

)
�
(
λN

1 0
0 0

)(
ah1 + bθ1
−bh1 + aθ1

)
, (3.70)

where hN and θN are the height and angle after N passes. The solution to these
equations is clearly that hN and θN are proportional to λN

1 , and therefore diverge
as N increases. The rays therefore get farther and farther from the axis; such a
situation is unstable.

For case (2), (3.69) becomes

M N
D =

(
eN iα 0

0 e−N iα

)
(3.71)

and the solution to (3.70) is periodic, with period 2π/α. This means that h
and θ just oscillate periodically about the axis, with finite amplitude, and the
solution is stable.

The condition for stability is therefore for the solutions of (3.68) to be unity
or complex i.e.

−1 ≤ 2
(

1− L
R1

)(
1− L

R2

)
− 1 ≤ 1, (3.72)

or, equivalently, 0 ≤
(

1− L
R1

)(
1− L

R2

)
≤ 1. (3.73)

The stability region defined by this equation and examples of stable and unstable
resonators are shown in Fig. 3.28. The most commonly used stable resonator for
gas lasers is called the confocal resonator, in which the two mirrors have equal
radii and a common focus. It is marginally stable (|λ| = 1), since it lies on the
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border between stability and instability, with R1 = R2 = L. The plane Fabry–
Perot interferometer (§9.5.1), consisting of a pair of parallel plane mirrors
(R1 = R2 = ∞), is also marginally stable and is used in solid-state lasers.

We should point out that although from the point of view of geometrical
optics it is possible to choose the apertures of the two mirrors of a stable
resonator such that no rays ever leak out of it, when diffraction is taken into
account there will always be some losses, and in the design of a laser these
diffraction losses, as well as those arising from imperfect reflection by the
mirrors, have to be offset by the amplification of the active medium (§14.5)
before the laser oscillates. On the other hand, if the medium amplifies strongly
enough, even mildly unstable resonators can be tolerated.

Chapter summary

In this chapter we studied basic geometrical optics. We learnt:

• What are the basic optical elements and how they are used to build

more complex optical systems;

• About Gaussian or paraxial optics, which assumes the angles between

all rays and the optical axis to be very small, and their deviations from

the axis to be much smaller than typical axial distances between

elements;

• How to use ray-tracing to get a general idea of the behaviour of an

optical system;

• About the optical principles of the astronomical telescope and the

microscope;

• A matrix formulation of paraxial geometrical optics, where axial

systems of any degree of complexity can be described by a 2× 2

matrix, composed by multiplying the translation and refraction matrices

representing each interface;

• How to describe any coaxial system in terms of six cardinal points: two

focal points, two principal points and two nodal points, whose positions

can be derived from the system matrix;

• About the application of these principles to telescopes and zoom lens

combinations;

• The basic principles of lens aberrations, and what they look like;

• About the aplanatic system, which is not limited to paraxial conditions,

and its application to microscope objectives;

• How to quantify the stability of optical resonators, which are used in

the construction of lasers and advanced interferometers.
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Problems

3.1. The foci of a mirror in the form of an ellipsoid of revolution are
conjugate points (Problem 2.6). What is the magnification produced,
in terms of the eccentricity of the ellipsoid? (Tricky.)

3.2. In order to use a microscope to observe an inaccessible specimen, one
can introduce a relay lens between the specimen and the objective, so
that the microscope looks at a real image of the specimen. Draw a ray
diagram of the system, and find the influence of the relay lens on the
exit pupil and the field of view.

3.3. Design a periscope having a length of 2 m and a tube diameter of
0.1 m. The field of view must be a cone of semi-angle 30◦. The periscope
needs several relay and field lenses. Use paraxial optics only.

3.4. A Galilean telescope has an objective lens with a long positive focal
length and an eyepiece with a short negative focal length.
(a) What is the distance between the two lenses when the telescope is

focused on infinity and the image appears at infinity?
(b) Is the image upright or inverted?
(c) Where is the exit pupil?
(d) What determines the field of view in this type of telescope?
(e) Why are Galilean telescopes rarely used except as toys?

3.5. Two converging lenses are separated by a distance a little greater than
the sum of their focal lengths. Show that this combination produces a
real image of a distant source, but that the focal length is negative! How
can you explain this surprising fact physically?

3.6. A compound lens consists of two positive thin lenses L1 and L2,
with focal lengths 90 mm and 30 mm and apertures 60 mm and 20 mm
respectively. L1L2 = 50 mm. Between the lenses, in the plane 30 mm
from L1 there is an axial aperture with diameter 10 mm. Where is the
aperture stop, for a given axial object 120 mm in front of L1? Find also
the positions of the entrance and exit pupils.

3.7. The following is a useful method of finding the refractive index of a
transparent material in the form of a parallel-sided plate with thickness d.
A microscope is focused on an object. The plate is inserted between the
object and the microscope objective, and the microscope is refocused.
The distance that the microscope moves in refocusing is measured.
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Find the relationship between this distance, the refractive index and d.
Estimate the accuracy of the method (Problem 2.6 may help you).

3.8. A planar object is imaged by a thin lens. The object lies in a plane
which is not normal to the optical axis of the lens. Show that the image
lies in a plane that is also inclined to the optical axis, and that the
object and image planes intersect in the plane of the lens. This is called
the Scheimpflug construction, and is important in the design of cam-
eras for architectural and aerial photography. Show that the image of a
rectangular object is distorted into a trapezoidal shape.

3.9. Within the limitations of Gaussian optics, show that it is possible to
replace a glass sphere of any refractive index by a single thin lens. If
the thin lens is symmetrical and made of glass with the same refractive
index as the sphere, what are its radii of curvature?

3.10. Why do eyes reflect incident light back in the direction of the source
(the ‘red eye’ phenomenon in flash photography)? How are ‘cat’s eye’
reflectors on roads and road signs constructed?

3.11. A zoom lens consists of two thin lenses, one with focal length 100 mm
and aperture diameter 50 mm, and the second with focal length−20 mm
and diameter 10 mm. Plot a graph showing the effective focal length and
f-number of the combination, as a function of the distance between the
two lenses.

3.12. A glass shell with refractive index 1.5 has equal radii of curvature on
both sides (one is convex, the other concave). The radii are both 100 mm
and the thickness is 1.5 mm.
(a) Without carrying out any calculation, decide whether the shell acts

as a lens with positive or negative optical power.
(b) Find its focal length and principal planes.

3.13. The glass shell of the previous problem now has two concentric sur-
faces, the outer one having radius 100 mm. Answer the same questions
about the new shell.

3.14. Write a computer program based on the Gaussian matrices to find
the cardinal points of any paraxial optical system defined by coaxial
spherical interfaces between regions of given refractive indices, and/or
thin lenses. Use it to check the results of Problems 3.11–3.13.
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3.15. Show that in a symmetrical imaging system with unit paraxial
magnification the distortion must be zero.

3.16. Design a lens of the type shown in Fig. 3.26(b) with n = 2 and f = ∞.
What is m when O is at the aplanatic point? Explain physically why the
lens magnifies, even though its effective focal length is infinite.

3.17. An observer sees an object through a thick glass window. Design a
paraxial optical system that can be placed before the window so that the
observer sees the object in its actual position, as if the window were not
there. (This problem was posed as a challenge to optical designers by
the journal Applied Optics some decades ago, but is quite easily solved
using matrix optics when you decide exactly what you require of the
principal points.)

3.18. Can you find a thin lens combination that has positive effective focal
length but has the principal point H1 to the right of H2?

3.19. A slide projector has a powerful lamp, a condenser lens, a slide-holder
and an imaging lens. Draw a ray diagram for rays forming an image
of a point on the slide on a distant screen, and determine where are the
entrance and exit pupils of this system.

3.20. Discuss the ray optics involved in the formation of a rainbow (both first
and second orders) by refraction and reflection of sunlight by spherical
water drops. There are also ‘supernumerary bows’, which occur next
to the blue edge of the rainbow, when the raindrops are uniform in
size. These can be explained by interference. If the water drops were
replaced by an assembly of zinc sulphide spheres (n = 2.32), at what
angles would the rainbows appear, and how many would there be? (NB
This problem cannot be solved analytically, but needs numerical calcu-
lations.) With the help of Chapter 5, explain why light from the rainbow
is polarized.

3.21. The aplanatic surfaces of a sphere are spherical, and therefore the
edges of a circular source can be imaged with no aberrations using
a spherical immersion lens. Discuss how this remark could be devel-
oped into a design for an ideal solar concentrator, with the addition
of a single lens (as in the microscope objective in §3.8). How
could you overcome the problem of chromatic dispersion in this
system?
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4 Fourier theory

J. B. J. Fourier (1768–1830), applied mathematician and Egyptologist, was one

of the great French scientists working at the time of Napoleon. Today, he is best

remembered for the Fourier series method, which he invented for representation

of any periodic function as a sum of discrete sinusoidal harmonics of its fundamen-

tal frequency. By extrapolation, his name is also attached to Fourier transforms or

Fourier integrals, which allow almost any function to be represented in terms of

an integral of sinusoidal functions over a continuous range of frequencies. Fourier

methods have applications in almost every field of science and engineering. Since

optics deals with wave phenomena, the use of Fourier series and transforms to

analyze them has been particularly fruitful. For this reason, we shall devote this

chapter to a discussion of the major points of Fourier theory, hoping to make the

main ideas sufficiently clear in order to provide a ‘language’ in which many of

the phenomena in the rest of the book can easily be discussed. More complete

discussions, with greater mathematical rigour, can be found in many texts such

as Brigham (1988), Walker (1988) and Prestini (2004).

In this chapter we shall learn:

• what is a Fourier series;

• about real and complex representation of the Fourier coefficients, and how

they are calculated;

• how the Fourier coefficients are related to the symmetry of the function;

• how to represent the coefficients as a discrete spectrum in reciprocal, or

wave-vector, space;

• that non-periodic functions can be represented as a continuous Fourier

transform in reciprocal space;

• that the Fourier series can be considered as a special case of the transform;

• about the Dirac δ-function and its applications;

• examples of transforms of simple real and complex functions;

• about two- and three-dimensional Fourier transforms;

• the Fourier inversion theorem, a reciprocal relationship between a function

and its transform;

• about the way in which two functions can be combined by convolution,

whose transform is a product of the individual transforms;
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• that the Fourier transform of a periodic lattice in real space is a reciprocal

lattice in reciprocal space.

• about correlation and auto-correlation functions, which are forms of

convolution, and their transforms.

4.1 Analysis of periodic functions

Fourier invented his series method in order to solve the heat-diffusion equa-
tion (2.31) under specified boundary conditions. This involved expressing the
temperature field as the sum of functions that were periodic in both space
and time. In this chapter, we shall mainly use the spatial representation, f (x),
since later we shall need to extend it to two- and three-dimensional func-
tions. There is no intrinsic difference, of course, between the mathematics of
functions of x and of t, provided that we interpret the results correctly, and
appreciate the meaning of a spatial frequency, which is simply the inverse of
wavelength.

4.1.1 Fourier’s theorem

Fourier’s theorem states that any periodic function f (x) can be expressed as the
sum of a series of sinusoidal functions which have wavelengths that are integral
fractions of the wavelength λ of f (x). To make this statement complete, zero is
counted as an integer, giving a constant leading term to the series:

f (x) = 1
2

C0 + C1 cos
(

2πx
λ
+ α1

)
+ C2 cos

(
2πx
λ/2

+ α2

)
+ · · ·

+ Cn cos
(

2πx
λ/n

+ αn

)
+ · · ·

= 1
2

C0 +
∞∑

n=1
Cn cos(nk0x+ αn), (4.1)

where k0 ≡ 2π/λ is the fundamental spatial frequency. The ns are called
the orders of the terms, which are harmonics. The following argument demon-
strates the theorem as reasonable. If we cut off the series after the first term,
choice of C0 allows the equation to be satisfied at a discrete number of points –
at least two per wavelength. If we add a second term the number of points of
agreement will increase; as we continue adding terms the number of intersec-
tions between the synthetic function and the original can be made to increase
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Figure 4.1

Intersections between a
square wave and its Fourier
series terminated after (a)
the first, (b) the third and
(c) the fifteenth term.

x

f (x)

One period

a

b

x

f (x)

c

One period

without limit (Fig. 4.1). This does not prove that the functions must be iden-
tical when the number of terms becomes infinite; there are examples that do
not converge to the required function, but the regions of error must become
vanishingly small.

This reasoning would, of course, apply to basic functions other than sinu-
soidal waves. The sine curve, however, being the solution of all wave equations,
is of particular importance in physics, and hence gives Fourier’s theorem its
fundamental significance.

4.1.2 Fourier coefficients

Each term in the series (4.1) has two Fourier coefficients, an amplitude
Cn and a phase angle αn. The latter quantity provides the degree of free-
dom necessary for relative displacements of the terms of the series along the
x-axis. The determination of these quantities for each term of the series is called
Fourier analysis.

Another way to express the Fourier coefficients is to write (4.1) as a sum of
sine and cosine terms:

f (x) = 1
2

A0 +
∞∑
1

An cos nk0x+
∞∑
1

Bn sin nk0x, (4.2)

where An = Cn cosαn, Bn = −Cn sinαn.

4.1.3 Complex Fourier coefficients

The real functions cos θ and sin θ can be regarded as real and imaginary parts of
the complex exponential exp(iθ). Algebraically, there are many advantages in
using the complex exponential, and in this book we shall use it almost without
exception. We can write (4.2) in the form

f (x) = 1
2

A0 +
∑

Fn exp(ink0x), (4.3)
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where the range of summation is as yet unspecified. Now let us equate (4.3)
and (4.2) for a real f (x). We then have∑

Fn[cos(nk0x)+ i sin(nk0x)]

=
∞∑
1
[An cos(nk0x)+ Bn sin(nk0x)]. (4.4)

If we assume that the ranges of the summation are identical and then equate
equivalent cosine and sine terms independently, we get

Fn = An; iFn = Bn. (4.5)

This leads to iAn = Bn, which cannot be true since An and Bn are both real! We
have to carry out the complex summation in (4.3) from n = −∞ to+∞ in order
to solve the problem. There are then two independent complex coefficients, Fn
and F−n, corresponding to the pair An, Bn, and we have, on comparing terms
in (4.4),

Fn + F−n = An; i(Fn − F−n) = Bn, (4.6)

whence

Fn = 1
2
(An − iBn) = 1

2
Cn exp(iαn), (4.7)

F−n = 1
2
(An + iBn) = 1

2
Cn exp(−iαn). (4.8)

The Fourier series is therefore written in complex notation as

f (x) =
∞∑
−∞

Fn exp(ink0x), (4.9)

where F0 = 1
2 A0. So far, the function f (x), and hence An and Bn, have been

assumed to be real. It then follows from (4.7) and (4.8) that Fn and F−n are
complex conjugates:

Fn = F∗−n. (4.10)

In general, however, a complex function f (x) can be represented by complex
An and Bn which bear no such relationship.

4.2 Fourier analysis

The determination of the coefficients Fn, called Fourier analysis, can be carried
out by a process that depends on an obvious property of a sinusoidal function –
that its integral over a complete number of wavelengths is zero. Consequently,
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the integral of the product of two sinusoidal functions with integrally related
wavelengths over a complete number of cycles of both functions is also zero
with one exception: if the two wavelengths are equal and the two sine functions

The reasoning here can
be applied to any set of
functions that are
orthogonal, meaning that
the integral of the
product of two different
members is zero.

are not in quadrature, then the integral is non-zero. Therefore, if we integrate
the product of f (x) (wavelength λ) with a sine function of wavelength λ/m, the
result will be zero for all the Fourier components of f (x) except the mth, which
has wavelength λ/m, and the value of the integral will then give the amplitude
of the coefficient Fm.

To express this mathematically let us find the mth Fourier coefficient by
multiplying the function f (x) by exp(−imk0x) and integrating over a complete
wavelength λ. It is convenient to replace x by the angular variable θ = k0x
and then to take the integral Im over the range −π ≤ θ ≤ π , which is one
wavelength. Then

Im =
∫ π

−π

f (θ) exp(−imθ) dθ

=
∫ π

−π

∞∑
−∞

Fn exp(inθ) exp(−imθ) dθ . (4.11)

Every term in the summation is sinusoidal, with wavelength λ/|m−n|, with the
exception of the one for which n = m. The sinusoidal terms, being integrated
over |m− n| wavelengths, do not contribute; so that

Im =
∫ π

−π

Fm dθ = 2πFm. (4.12)

Thus we have a general expression for the mth Fourier coefficient:

Fm = 1
2π

∫ π

−π

f (θ) exp(−imθ) dθ . (4.13)

Note that it includes the zero term, the mean value of f (θ):

F0 = 1
2π

∫ π

−π

f (θ) dθ . (4.14)

4.2.1 Symmetry: even and odd functions

Sometimes a function satisfies the relationship f (θ) = f (−θ), in which case
it is said to be even or symmetric; likewise, if f (θ) = −f (−θ) it is odd
or antisymmetric (see Fig. 4.2). Let us return for a moment to the formu-
lation (4.2) of the Fourier series in terms of the sine and cosine functions.
Now a periodic even function must be expressed as a sum of cosine functions
only, since the sine terms make contributions of opposite sign at +θ and −θ .
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Figure 4.2

A square wave (a) as an
even function, (b) as an
odd function. The function
is defined in the
highlighted region.
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Box 4.1 A basic example: Fourier analysis of a square wave

We shall illustrate Fourier analysis by analyzing a square wave. This has
value 1 over half its period (−π/2 to π/2) and −1 over the other half (π/2
to 3π/2) (Fig. 4.2(a)). The function as defined above is real and even; Fn
is therefore real. If possible, it is usually worthwhile choosing the position
of the origin to make a function even, since then we only need to calculate
the real part of its transform; alternatively, if we had chosen to make the
function equal to 1 from−π to 0 and−1 for 0 to π it would have been odd
and its coefficients all imaginary (Fig. 4.2(b)). This effect − the altering of
the phase of all coefficients together by a shift of origin− is often important
(§4.3.4); the form of the function determines the relative phases of the
coefficients only. For the even function, Fig. 4.2(a):

f (θ) = 1 ∈ (−π/2 ≤ θ ≤ π/2); f (θ) = −1 ∈ (π/2 ≤ θ ≤ 3π/2),

(4.15)

Fn = 1
2π

∫ π

−π

f (θ) exp(−inθ) dθ

= 1
2π

∫ π/2

−π/2
exp(−inθ) dθ − 1

2π

∫ 3π/2

π/2
exp(−inθ) dθ

= 1
nπ

sin
nπ
2
[1− exp(−inπ)]. (4.16)

Thus we have, evaluating F0 from (4.14),

F0 = 0, F±1 = 2
π

, F±2 = 0, F±3 = − 2
3π

,

F±4 = 0, F±5 = 2
5π

. . .
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Thus Bn = 0 and it follows from (4.7) and (4.8) that

even function: Fn = F−n. (4.17)

If, in addition, the function is real, so that (4.10) is true, we find

real even function: Fn = F∗−n = F−n, (4.18)

implying that Fn is real.
Similarly, for an odd function, we must have coefficients An = 0 and

odd function: Fn = −F−n, (4.19)

real odd function: Fn = F∗−n = −F−n, (4.20)

implying that Fn is purely imaginary in the latter case. We see that in all these
cases the symmetry of f (x) is also present in Fn.

4.2.2 Reciprocal space in one dimension

We can think of the Fourier coefficients Fn as a function F(n) of n. As F(n) is
non-zero only for integral values of n, the function can be considered as being
defined for non-integral values but as having zero value there; the positive half
of the function F(n) which represents the series for a square wave can therefore
be drawn as in Fig. 4.3. Given this drawing, we could simply reconstruct the
original square wave by summing the series it represents, except that it gives
no information about the wavelength λ of the original wave. This defect can
be simply remedied. Written in terms of x, the expression for Fn is

Describing a function in
wavenumber, or
reciprocal, space
emphasizes its oscillatory
properties. It is like a
musical score, which
describes music in terms
of component
frequencies rather than
sound amplitude as a
function of time.

Fn = 1
λ

∫ λ

0
f (x) exp(−ink0x) dx. (4.21)

F(k)

Fn

n1 3 5 7 9

0

0 k0 3k0 5k0 7k0 9k0 k

Figure 4.3

Positive half of the
functions F(n) and F(k) for
a square wave.

Information about the wavelength λ is included in (4.21) where k0 ≡ 2π/λ
and the variable k = nk0 is used rather than n (Fig. 4.3); this corresponds to
a harmonic of wavelength λ/n. The variable k is called the wavenumber or
spatial frequency. The function (4.21) becomes

F(k) = 1
λ

∫ λ

0
f (x) exp(−ikx) dx. (4.22)

It is useful now to compare the functions F(k) as λ changes. In Fig. 4.4 this
comparison is carried out, the scales of k and x being the same in (a), (b), (c).
Clearly the abscissa scale of F(k) is inversely proportional to that of f (x). For
this reason (k proportional to 1/λ) the space whose coordinates are measured
by k is called reciprocal space; real space has coordinates measured by x and
reciprocal space by x−1. So far, of course, we have discussed a purely one-
dimensional space; the extension to two and three dimensions is simple, and
will be discussed later.
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Figure 4.4

Square waves of different
scales and their Fourier
coefficients F(k). The waves
are assumed to continue
from −∞ to +∞.
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4.3 Non-periodic functions

Although crystals, which have sets of atoms repeating accurately in three
dimensions, are almost ideally periodic, matter on the macroscopic scale is
usually not so. Natural objects sometimes simulate periodicity in their growth,
but this is never precise and most objects that we have to deal with optically (i.e.
on a scale greater than the wavelength of light) are completely non-periodic.
Since this book is concerned with light and real objects we may therefore
ask why Fourier methods are of any importance, since they apply to periodic
functions only. The answer is that the theory has an extension, not visualized
by Fourier himself, to non-periodic functions. The extension is based upon the
concept of the Fourier transform.

4.3.1 The Fourier transform

We have seen in §4.1.1 that a periodic function can be analyzed into harmonics
of wavelengths ∞, λ, λ/2, λ/3, . . . , and we have shown by Fig. 4.4 how
the form of the function F(k) depends on the scale of λ. When our interest
turns to non-periodic functions we can proceed as follows. Construct a wave
of wavelength λ in which each unit consists of some non-periodic function
(Fig. 4.5). We can always make λ so large that an insignificant amount of
the function lies outside the one-wavelength unit. Now allow λ to increase
without limit, so that the repeats of the non-periodic function separate further
and further. What happens to the function F(k)? The spikes approach one
another as λ increases, but one finds that the envelope of the tips of the spikes
remains invariant; it is determined only by the unit, the original non-periodic
function. In the limit of λ →∞ the spikes are infinitely close to one another,
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Figure 4.5

Illustrating the progression
from Fourier series to
transform. In each line, the
period has been increased,
but the component
wave-form remains the
same. The spectrum F(k) is
therefore sampled at closer
and closer intervals.

f (x) F (k)

and the function F(k) has just become the envelope. This envelope is called
the Fourier transform of the non-periodic function. The limiting process is
illustrated in Fig. 4.5.

Admittedly, this suggests that the Fourier series for a non-periodic function
is a set of spikes at discrete but infinitesimally spaced frequencies rather than
a continuous function. The argument does not show that in the limit λ → ∞
the function becomes continuous, although physically the difference may seem
rather unimportant. From the mathematical point of view it is better to work in
reverse. We now define the Fourier transform of a function f (x) as

F(k) =
∫ ∞

−∞
f (x) exp(−ikx)dx, (4.23)

which is a continuous function of the spatial frequency k. In comparing this with
(4.13), notice that the 1/2π has been dropped; this has no physical significance.
Later (§4.7.5), we shall use the concept of convolution to show that if f (x) is
periodic the transform F(k) is non-zero at discrete and periodic values of
k only.

An important idea illustrated by Fig. 4.5 is that of sampling. The set of orders
of a periodic function can be regarded as equally spaced ordinates of the Fourier
transform of the unit. As the spacing is reduced by increasing the repeat distance
λ, the orders sweep through the transform, sampling its value at ever closer
intervals. This idea is particularly relevant to digital operations. Numerically, a
function (the unit) is defined only within a certain limited region of space. The
mathematics ‘assumes’ that this unit is repeated periodically, and uses (4.13)
to calculate the Fourier series. The transform of the unit is therefore sampled
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Figure 4.6

(a) A square pulse and (b)
its Fourier transform, a sinc
function.
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digitally at closely spaced but distinct points, whose spacing is determined by
the length of the repeat period.

4.3.2 Fourier transform of a square pulse: the ‘sinc’ function

Our first illustration of the calculation of a Fourier transform is the equivalent
example to that in Box 4.1, a single square pulse. We define it to have height
H and width h (Fig. 4.6(a)), being zero outside this region,1 and the integral
(4.23) becomes

F(k) =
∫ h/2

−h/2
H exp(−ikx) dx

= H
−ik

[
exp

(−ikh
2

)
− exp

(
ikh
2

)]

= Hh
sin(kh/2)

kh/2
. (4.24)

The function sin(θ)/θ appears very frequently in Fourier transform theory, and

The square pulse will be
used frequently to
represent light waves
transmitted through slits
or holes. It can also
create a function limited
in space, by multiplying
an infinite function.

has therefore been given its own name, ‘sinc(θ)’. Equation (4.24) can thus be
written:

F(k) = Hh sinc (kh/2). (4.25)

The transform is illustrated in Fig. 4.6(b). It has a value Hh (the area under
the pulse) at k = 0 and decreases as k increases, reaching zero when kh = 2π .
It then alternates between positive and negative values, being zero at kh = 2nπ
where integer (n �= 0). It should be noted that the transform is real: this follows
because the function is symmetrical about the origin (see §4.2.1 and §4.5).

In Fig. 4.7 we can see the reciprocal property of the transform discussed in
§4.2.2. As h is increased, the value of k at which the transform becomes zero
decreases and the interval between successive zeros also decreases; the coarser
the function, the finer is the detail of its transform. Conversely, as h decreases

1 The square pulse with unit height and width is often called ‘rect(x)’, which has unit value
between x = ± 1

2 and zero outside.
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Figure 4.7

Progression from a square
pulse to a δ-function, and
the corresponding changes
in the Fourier transform.
The area Hh remains
constant throughout. H
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the transform spreads out and when h reaches zero there is no detail at all in the
transform, which has become a constant, Hh.

4.3.3 A change in scale

The discussion above allows us to formalize the way in which a change in
the scale of a function affects its Fourier transform. We consider the effect
of changing the x-scale by factor b. Since we have seen that the scales of a
function and its transform are inversely related, we expect that the transform
should be scaled by 1/b. To show that this is indeed correct, we calculate the
transform Fb(k) of f (x/b):

Fb(k) =
∫ ∞

−∞
f (x/b) exp(−ikx) dx (4.26)

= |b|
∫ ∞

−∞
f (x/b) exp(−ikb x/b) d(x/b) (4.27)

= |b|F(kb). (4.28)

As well as the inverse change in scale, notice that the amplitude is also scaled.

4.3.4 A shift of origin

When a function is translated along the x-axis, with no other change in its
form, only the phase of its Fourier transform is affected. To show this, we

Sliding a function to the
right or left along the
x-axis only changes its
phase; its amplitude is
unaffected.
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can calculate the transform of the function f1(x) = f (x − x0). We write x′
for x− x0, and

F1(k) =
∫ ∞

−∞
f (x− x0) exp(−ikx) dx

=
∫ ∞

−∞
f (x′) exp{−ik(x′ + x0)} dx′

= exp(−ikx0)

∫ ∞

−∞
f (x′) exp(−ikx′) dx′

= exp(−ikx0)F(k). (4.29)

This differs from F(k) only by the phase factor exp(−ikx0). In particular, the
amplitudes |F1(k)| and |F(k)| are equal.

4.3.5 Fourier transform of the derivative of a function

Suppose we know the Fourier transform of the function f (x), and need the
transform of its derivative df /dx. This can be found very simply. We write the
transform of the derivative

F(1)(k) =
∫ ∞

−∞
df
dx

exp(−ikx) dx

=
∫ ∞

−∞
exp(−ikx) df , (4.30)

which can be integrated by parts, giving

F(1)(k) = [ f exp(−ikx)]∞−∞ + ik
∫ ∞

−∞
f (x) exp(−ikx) dx (4.31)

= ik F(k). (4.32)

The first term in (4.31) is zero because the value of f (x) at ±∞ must vanish
for its transform to exist. Therefore,

df
dx
→ ik F(k). (4.33)

4.4 The Dirac δ-function

The limiting process described in §4.3.2 leads to a new and very useful function,
the Dirac δ-function. It is the limit of a square pulse as its width h goes to zero
but its enclosed area Hh remains at unity. It is therefore zero everywhere except
at x = 0, when it has infinite value, limh→0 1/h. The transform of the δ-function

The δ-function is widely
used in optics to
represent an ideal point
source or slit.
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can be found by the limiting process above; we start with a square pulse of
width h and height h−1, which has transform

F(k) = sinc(kh/2) (4.34)

and see that as h → 0 the transform becomes unity for all values of k. The
transform of a δ-function at the origin in one dimension is unity.

A mathematically important property of this function is∫ ∞

−∞
f (x) δ(x− a) dx = f (a). (4.35)

This integral samples f (x) at x = a.

4.4.1 A pair of δ-functions

An array of δ-functions at various values of x is a function we shall use
repeatedly:

f (x) =
∑

n
δ(x− xn). (4.36)

From (4.29) its transform is clearly

F(k) =
∑

n
exp(−ikxn). (4.37)

If there are two δ-functions, for example, at xn = ±b/2 we have a transform

F(k) = exp(ikb/2)+ exp(−ikb/2) = 2 cos(kb/2), (4.38)

which is real ( f (x) is even) and oscillatory (Fig. 4.8). Its importance
in discussing the optical experiment of Young’s fringes will be evident
in §8.5.1.

4.4.2 A regular array of δ-functions

The transform of a regular array of δ-functions at x= nb is particularly important
(Fig. 4.9):

f (x) =
∞∑

n=−∞
δ(x− nb). (4.39)

This function is often called the ‘comb’ or ‘sha’ function, i.e. f (x)= comb(x/b).

An array of δ-functions
can be used in optics to
represent a diffraction
grating, or in three
dimensions, a crystal
lattice.

It follows from (4.37) that
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Figure 4.8

(a) Two δ-functions at ±b/2
and (b) their transform,
a cosine function.

f (x) F (k)

x k+4π/b–4π/b+b/ 2–b/ 2

Figure 4.9

Periodic array of δ-functions
and its transform, another
periodic array.

x
0 b 2b

k
0 2π/b 4π/b

F(k) =
∞∑
−∞

exp(−iknb). (4.40)

Now the function f (x) extends to infinity in both the positive and negative
directions, and its integral is infinite. As a result, from the purely mathematical
point of view it does not have a Fourier transform. However, we know that the
mathematics only represents a real physical entity, which must itself be finite
in extent.

We can evaluate (4.40) by considering it as the limit of a finite series, which
can easily be summed. To maintain a real transform, we consider the sum from
−N to +N , which is symmetric about x = 0:

FN (k) =
N∑

n=−N
exp(−iknb), (4.41)

which is easily evaluated as a geometrical series to have the value

FN (k) =
sin
[(

N + 1
2

)
bk
]

sin
(

1
2 bk

) . (4.42)

This function has periodic peaks, of height 2N + 1 whenever the denominator
is zero, i.e. when bk = 2mπ . For large N each one looks like a sinc function:
sin(Nbk)/ 1

2 bk ≈ 2Nsinc(Nbk). In the limit, when N →∞, each of these peaks
becomes a δ-function, with strength 2N × π/Nb = 2π/b. Thus the transform
of the infinite array of δ-functions separated by b (4.39) is a new array, in which
the δ-functions are separated by 2π/b:

f (x) =
∞∑

n=−∞
δ(x− nb)⇒ F(k) = 2π

b

∞∑
m=−∞

δ(k − 2πm/b) (4.43)

or comb(x/b)⇒ 2π
b

comb(kb/2π). (4.44)
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Figure 4.10

Gaussian function and its
transform, another
Gaussian. The widths are
shown at e− 1

2 = 0.60 of
the maximum height.

f (x)

F (k)

x k

1

s −1s−s −s −1

e−1/2

2p s

4.4.3 The Gaussian functionAny function that is
smoothly distributed and
concentrated around a
defined origin has a
transform similar to that
of the Gaussian function.

Another function whose Fourier transform is particularly useful in optics is the
Gaussian (Fig. 4.10):

f (x) = exp(−x2/2σ 2). (4.45)

From the definition of the transform, (4.23), we have

F(k) =
∫ ∞

−∞
exp(−x2/2σ 2) exp(−ikx) dx (4.46)

= exp

[
−k2

(
σ 2

2

)]∫ ∞

−∞
exp

⎧⎪⎨
⎪⎩−

⎡
⎣ x

(2σ 2)
1
2
+ ik

(
σ 2

2

) 1
2
⎤
⎦

2⎫⎪⎬
⎪⎭ dx

by completing the square in the exponent. The integral is standard and occurs
frequently in statistical theory. Its value is independent of k,

∫ ∞

−∞
exp

−ξ2

2σ 2 dξ = (2πσ 2)
1
2 , (4.47)

and therefore

F(k) = (2πσ 2)
1
2 exp

[
−k2

(
σ 2

2

)]
. (4.48)

The original function (4.45) was a Gaussian with variance σ 2; the transform is
also a Gaussian, but with variance σ−2. The half-peak-width of the Gaussian
(the width of the peak at half its maximum height) can be shown to be equal
to 2.36σ . Because the Gaussian transforms into a Gaussian, this example
illustrates particularly clearly the reciprocal relationship between the scales of
the function and its transform.

When we study Gaussian
beam propagation in
§7.3, the value of σ will
become complex. But the
mathematics here is still
valid.
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4.5 Transforms of complex functions

In §4.2.1 we discussed the relationships between Fn and F−n for periodic
functions having various symmetry properties. We included in the discussion
the possibility that f (x) was complex, and since complex functions form the
backbone of wave optics we must extend our discussion of transforms to include
them too. If the function f (x) is complex, and has transform F(k) defined in
the usual manner, we can write down the transform of its complex conjugate
f ∗(x) as∫ ∞

−∞
f ∗(x) exp(−ikx) dx =

[∫ ∞

−∞
f (x) exp(ikx) dx

]∗
= F∗(−k). (4.49)

Thus the transform of f ∗(x) is F∗(−k). It now follows that if f (x) is real, then
f (x) = f ∗(x) and so, as in (4.10),

real function: F∗(−k) = F(k). (4.50)

By similar manipulations we obtain the following relationships, which can be
compared to those derived for Fourier series in (4.17)–(4.20):

even function: F(k) = F(−k), (4.51)

odd function: F(k) = −F(−k). (4.52)

Combining these with (4.50) for real functions, it follows that a real even
function has a real transform, and a real odd function has a pure imaginary
transform. For all these cases, the absolute values |F(k)|2 are symmetrical:

|F(−k)|2 = |F(k)|2. (4.53)

4.5.1 The Hilbert transform

In later chapters we shall often be using complex functions to represent real
physical quantities, for mathematical convenience. The Hilbert transform is
a formal way of defining a complex function associated with a given real
function, and it can be easily expressed in terms of their Fourier transforms. If
the real function is f R(x), where

The Hilbert transform is
important in aperture
synthesis (§11.8) where
we shall be calculating
correlations between
experimentally measured
signals received from
stellar objects.

f R(x) =
∫ ∞

−∞
F(k) exp(−ikx) dk, (4.54)

the associated complex function f (x) = Re f (x)+ iIm f (x) is

f (x) = 2
∫ ∞

0
F(k) exp(−ikx) dk. (4.55)
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The Hilbert transform is unambiguous, because the original function was real,
and therefore F∗(−k)=F(k). It follows that eliminating the transform for
negative k has destroyed no information about the function.

4.5.2 The Fourier transform in two dimensions,
and axial symmetry properties

All that has been said so far about Fourier transforms and series in one dimen-
sion also applies to higher dimensionalities. In particular, two-dimensional
functions (screens) are very important in optics. The transform is defined in
terms of two spatial frequency components, kx and ky, by a double integral:

F(kx, ky) =
∫ ∫ ∞

−∞
f (x, y) exp

[−i(xkx + yky)
]

dx dy. (4.56)

If the function f (x, y) can be written as the product f1(x)f2(y), the integral
(4.56) can be factorized into two one-dimensional transforms:

F(kx, ky) =
∫ ∞

−∞
f1(x) exp(−ixkx) dx

∫ ∞

−∞
f2(y) exp(−iyky) dy

= F1(kx) F2(ky). (4.57)

Three-dimensional analogues of (4.56) and (4.57) can be written down with no
trouble.

When f (x, y) cannot be expressed as a product in the above way, the integral
(4.56) may be difficult to evaluate analytically. An important class of such
problems in optics is that for which f has axial symmetry, and can be written
in terms of polar coordinates (r, θ):

In the same way as the
components (x, y) form a
vector r in direct space,
the components (kx, ky)
form a vector k in
reciprocal space.

f (r, θ) = f1(r) f2(θ). (4.58)

Examples of such problems are discussed in Appendix A.
In two dimensions, axial symmetry properties become prominent. If f (x, y)

is centrosymmetric, i.e.

f (x, y) = f (−x,−y), (4.59)

F(kx, ky) = F(−kx,−ky). (4.60)

Similarly for the case

f (x, y) = −f (−x,−y) (4.61)

F(kx, ky) = −F(−kx,−ky). (4.62)

A most important result follows if f (x, y) is real:

F(kx, ky) = F∗(−kx,−ky), (4.63)
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Box 4.2 Fourier algorithms: fast and discrete
Fourier transforms

In general, when f (x) is not a simple analytical function, the Fourier trans-
form has to be evaluated numerically. In order to do this, the function f (x)
must be defined in a given finite region of size Na, in which it is sampled
at N discrete points xn = na. The Fourier transform is then evaluated in a
finite regime in reciprocal space, at say M discrete points. In this way, the
function is essentially considered as one period of a periodic function, for
which the Fourier coefficients are then calculated using (4.13) in the form
of a sum for each of the latter values:

F(m) = 1
2π

N∑
n=1

f (na) exp
(
−2π inm

NM

)
. (4.64)

When N and M are large, this is a very time-consuming calculation to carry
out directly. A very efficient algorithm, the fast Fourier transform (FFT),
which uses matrix factorization methods to simplify the calculation when
M = N is an integer power of 2, was proposed by Cooley and Tukey in
1965 (Brigham (1988)) and is now very widely used. If M and N are not
powers of 2, the algorithm pads the regions to make them so. However,
the fast Fourier transform is not always the ideal tool. There are many
cases where, for example, one needs the Fourier transform in a limited
region only, or M �= N , or the sampling is not uniform; in these cases, the
direct evaluation of (4.64) might be more efficient. This is called a discrete
Fourier transform (DFT).

implying that |F(kx, ky)|2 is centrosymmetric. Equations (4.59) and (4.60)
imply that both the function and its transform are invariant on rotation by
180◦ about the origin. More generally, if the function is invariant on rotation
by 360◦/n (n-fold axial symmetry) its transform behaves likewise. Finally,
consider the case of a real function with odd n. |F(kx, ky)|2 has n-fold symmetry
and is also centrosymmetric, implying 2n-fold symmetry. An example is an
equilateral triangle which has a transform with six-fold symmetry. Mirror-
plane symmetry or antisymmetry behave similarly; if f (x, y)= ± f (−x, y)
then F(−kx, ky)=± F(kx, ky), and in both cases |F(kx, ky)|2 has mirror-plane
symmetry.

4.6 The Fourier inversion theorem

One very useful property of Fourier transforms is that the processes of trans-
forming and untransforming are identical. This property is not trivial, and will
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be proved below. Another way of stating it is to say that the Fourier transformThe Fourier inversion
theorem will be seen to
be the mathematical
basis of imaging (§12.1)
and is the reason why an
image is an inverted
picture of the object.

of the Fourier transform is the original function again, which is true except for
some minor details, and is known as the Fourier inversion theorem.

If the original function is f (x), the Fourier transform f1(x′) of its Fourier
transform can be written down directly as a double integral:

f1(x′) =
∫ {∫ ∞

−∞
f (x) exp(−ikx) dx

}
exp(−ikx′) dk, (4.65)

which can be evaluated as follows:

f1(x′) =
∫ ∫ ∞

−∞
f (x) exp{−ik(x+ x′)} dx dk

=
∫ ∞

−∞
f (x)

[
exp{−ik(x+ x′)}
−i(x+ x′)

]k=∞

k=−∞
dx. (4.66)

Replacing (x+ x′) by y, the function with the square brackets can be written as
the limit

lim
k→∞

2 sin ky
y

= 2k lim
k→∞ sinc ky. (4.67)

Clearly, this limit looks like a δ-function; it becomes narrower and higher as
k → ∞. The appropriate value of the δ-function can be found by integrating
the function 2k sinc ky. We quote the known definite integral∫ ∞

−∞
sin ky

y
dy = π , (4.68)

from which we deduce that the transform f1(x′) is

f1(x′) =
∫ ∞

−∞
2πδ(x+ x′)f (x) dx = 2π f (−x′). (4.69)

On retransforming the transform we have therefore recovered the original
function, intact except for inversion through the origin (x has become −x) and
multiplied by a factor 2π .2 In the two-dimensional transform of a function
f (x, y) (§4.5.2), the result of retransforming the transform is to invert both
axes, which is equivalent to a rotation of 180◦ about the origin.3

2 This factor is compensation for the 1/2π which we ignored in the definition of the transform,
§4.3.1.

3 It is common to redefine an inverse Fourier transform in a way that ‘corrects’ the above two
deficiencies, so that the transform of the transform comes out exactly equal to the original
function. One defines the forward transform, f (x) to F(k), as before (4.23), and the inverse
transform, F(k) to f1(x′), as

f1(x′) = 1
2π

∫ ∞
−∞

F(k) exp(+ikx′) dk.

With this convention the inverse transform f1(x′) of the forward transform is identical to the
original function f (x). Of course, physical systems are ignorant of such conventions. If we carry
out the transform and its inverse experimentally, as in an imaging system (§12.1.3), the image
is indeed inverted!
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4.6.1 Examples of Fourier inversion

In §4.3.5 we saw that the transform of the derivative df (x)/dx is ikF(k). Now we
can use Fourier inversion to conclude that the integral

∫ x f (x) dx has transform
(ik)−1F(k).

The Fourier inversion theorem can be illustrated by any function that can
itself be transformed analytically, and whose transform can also be transformed
analytically. An obvious example is the Gaussian function (§4.4.3) which
transforms into another Gaussian, the product of their widths being unity.
Another example from §4.4.1 is the pair of δ-functions. We saw that the
function δ(x + b/2) + δ(x − b/2) transforms into 2 cos(kb/2), (4.38). The
inverse transform of the cosine can be evaluated as

2
∫ ∞

−∞
cos

(
kb
2

)
exp(ikx) dk

=
∫ ∞

−∞

{
exp

[
ik
(

x+ b
2

)]
+ exp

[
ik
(

x− b
2

)]}
dk

= 2π
[
δ

(
x+ b

2

)
+ δ

(
x− b

2

)]
, (4.70)

which is the original function multiplied by 2π . In integrating the exponentials
above, we used the same limiting process as before in §4.6. The Fourier
inversion theorem is particularly useful, of course, when the transform can be
carried out analytically in one direction only.

4.7 Convolution

An operation which appears very frequently in optics – and indeed in physics
in general – is called convolution, or folding. The convolution of two real
functions f and g is defined mathematically as

h(x) =
∫ ∞

−∞
f (x′)g(x− x′) dx′. (4.71)

The convolution operation will be represented in this book by the symbol⊗ so

Convolution is a very
generalized form of
blurring or smudging,
where the way in which
an individual point is
smudged is defined
mathematically.

that (4.71) is written

h(x) = f (x)⊗ g(x). (4.72)

This operation is particularly important in Fourier theory since, as we shall see,
the Fourier transform of the convolution of two functions is the product of their
transforms (§4.7.4).

The symbols � or * are
also commonly used to
represent convolution.
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4.7.1 Convolution with an array of δ-functions

Convolution with a single δ-function is particularly easy to appreciate. Suppose
that the function g(x) is a δ-function situated at the point x = b, i.e. g(x) =
δ(x− b). Then the convolution integral (4.71) becomes

h(x) =
∫ ∞

−∞
f (x′)δ(x− b− x′) dx′. (4.73)

Using the sampling equation (4.35), which we write for convenience∫ ∞

−∞
f (x′)δ(a− x′) dx′ = f (a), (4.74)

we see that

h(x) = f (x− b). (4.75)

The origin of the function has been translated to x = b. When g(x) is an array of
δ-functions, convolution with f (x) places this function around every one of the
δs, in any dimensionality. This is the origin of the importance of convolution
in crystallography, where it provides a natural way to describe a periodically
repeated atomic arrangement.

Convolution with the periodic array g(x) =∑n δ(x− nb) provides the link
between the Fourier transform and Fourier coefficients for a periodic function.
If one individual period is described by f (x), convolution then repeats this at
intervals b, thus forming the periodically repeating function. We shall see in
§4.7.5 that the transform recovers the original Fourier coefficients.

4.7.2 Illustration of convolution by means of a
‘pinhole’ camera

The convolution function can be well illustrated by the simplest optical instru-
ment, the pinhole camera. Suppose we consider the photograph of a plane
object taken with a pinhole camera with a large pinhole. Because of the size
of the pinhole, any one bright point on the object will produce a blurred spot
in the image plane, centred at the point x′ where the image would come if
focusing were sharp. In one dimension this blurred spot would be described as
a function g(x− x′) whose origin is at x = x′. The intensity of the blurred spot
is proportional to the intensity f (x′) that the sharp image would have at x′. The
intensity at point x is therefore

f (x′)g(x− x′) (4.76)

and for the complete blurred image the total intensity observed at x is the
integral
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Figure 4.11

Convolution of
two-dimensional functions
illustrated by the pinhole
camera method described
in §4.7.2. The objects are
shown in (a), (b) and (c);
the ‘pinholes’ used are
transparencies identical to
(b) and (c). (d) shows the
self-convolution c ⊗ c, (e)
shows a ⊗ b, (f) shows
the self-convolution b ⊗ b
and (g) shows b ⊗ c.
Since (b) and (c) are
centrosymmetric, their
self-convolutions and
auto-correlations are
identical.

(a) (b) (c) (d )

(e) (f ) (g)

h(x) =
∫ ∞

−∞
f (x′)g(x− x′) dx′. (4.77)

The above description is illustrated in Fig. 4.11, where two dimensions have
been employed and some fancy ‘pinholes’ have been introduced in order to
illustrate various features of convolution. In two dimensions, the convolution
function is written

h(x, y) =
∫ ∫ ∞

−∞
f (x′, y′)g(x− x′, y− y′) dx′ dy′. (4.78)

A quantitative analysis of this demonstration is given in Appendix B.

4.7.3 The importance of convolution in optics

We have devoted considerable attention to the convolution operation because
it has many applications in optics. Although we are preempting discussions in
later chapters, we can briefly mentions three examples of situations that are
considerably simplified by the use of convolutions:

1. A diffraction grating (§9.2) can be represented by a slit or other arbitrary
line-shape function convoluted with a one-dimensional array of δ-functions.

2. The electron density in a crystal is represented by the density in a single
molecular unit convoluted with the three-dimensional lattice of δ-functions
representing the crystal lattice (§8.6.1).
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3. In a Fraunhofer diffraction experiment, the intensity is all that can be
observed directly. The intensity function is the transform of the auto-
correlation of the object, which is a form of self-convolution (§4.9.1).

4.7.4 Fourier transform of a convolution

Not only does the convolution operation occur frequently in physics, but its
Fourier transform is particularly simple. This fact makes it very attractive. We

The convolution and
multiplication operations
are Fourier transforms of
one another.

shall now prove the convolution theorem, which states that the Fourier trans-
form of the convolution of two functions is the product of the transforms
of the original functions.

Consider the convolution h(x) of the functions f (x) and g(x), as defined in
(4.71). Its Fourier transform is

H(k) =
∫ ∞

−∞

[∫ ∞

−∞
f (x′) g(x− x′)dx′

]
exp(−ikx)dx

=
∫ ∫ ∞

−∞
f (x′) g(x− x′) exp(−ikx)dx′dx. (4.79)

By writing y = x− x′, we can rewrite this as

H(k) =
∫ ∫ ∞

−∞
f (x′) g(y) exp{−ik(x′ + y)}dx′dy, (4.80)

which separates into two factors:∫ ∞

−∞
f (x′) exp(−ikx′)dx′

∫ ∞

−∞
g(y) exp(−iky)dy = F(k)G(k) (4.81)

or, simply,

H(k) = F(k)G(k). (4.82)

This is the required result.
We can now invoke the Fourier inversion theorem (§4.6) and deduce imme-

diately that the Fourier transform of the product of two functions equals
the convolution of their individual transforms (up to the ubiquitous mul-
tiplying factor of 2π ), which is an alternative statement of the convolution
theorem.

4.7.5 Fourier transform of a periodic function:
back to Fourier series

The link between the Fourier series and Fourier transform can be reforged
using the convolution operation. As we saw in §4.7.1, a periodic function can
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Figure 4.12

(a) Real part of the
wave-group (4.83); (b) its
Fourier transform.
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Box 4.3 Transform of a wave-group as an example
of convolution

There are many examples of functions that can most conveniently be Fourier
transformed after they have been broken down into a convolution or a
product, and the reader will meet many of them in the succeeding chapters.
We shall give one simple example here, which can be employed as a
convenient model for more complicated ideas (e.g. in §2.4 and §11.1.2).

A Gaussian wave-group has the form A exp(ik0x) modified by a
Gaussian envelope (§4.4.3) having variance σ 2 (Fig. 4.12(a)). It can be
written in the form

f (x) = A exp(ik0x) exp(−x2/2σ 2). (4.83)

This function will immediately be recognized as the product of the complex
exponential exp(ik0x) and the Gaussian (4.45). Its transform is therefore the
convolution of the transforms of these two functions which are, respectively,
2πA δ(k−k0) and (4.48), namely, (2πσ 2)

1
2 exp(−k2σ 2/2). Now the first of

these transforms is a δ-function at the point k = k0, and on convolving the
latter transform with it, we simply shift the origin of the transform Gaussian
to that point, getting

F(k) = (2π)
3
2 σA exp

[
−(k − k0)

2σ 2/2
]

, (4.84)

as shown in Fig. 4.12(b). This result was used in §2.7.

be represented as the convolution of one period g(x) with a one-dimensional
periodic array of δ-functions (Fig. 4.13):

f (x) = g(x)⊗
∑

m
δ(x− mb). (4.85)

The Fourier transform F(k) is then

F(k) = G(k) ·
∑

n
δ(k − 2πn/b), (4.86)
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Figure 4.13

A periodic square wave
(a) represented as the
convolution between a
square pulse and an array
of δ-functions, and (b) its
Fourier transform, the
product of the sinc function
and the transformed array
of δ-functions.

which samples the transform G(k) at intervals separated by 2π/b in k. These
values can be identified as the Fourier coefficients Fn, i.e. Fn is the strength of
the δ-function which appears at k = 2πn/b.4

4.8 Fourier transform of two- and
three-dimensional lattices

We have seen above that the concept of a lattice, which is a multi-dimensional
array of δ-functions with periodic spacing, is important in describing several
physical objects, notably the crystal. In §4.4.2 we calculated the Fourier trans-
form of a one-dimensional lattice, i.e. an infinite array of δ-functions equally
spaced by distance b. We showed this to be also an infinite array of δ-functions,
with separation 2π/b. In mathematical terms,

∞∑
n=−∞

δ(x− nb) FT⇐⇒
∞∑

m=−∞
δ(kx − 2πm/b), (4.87)

or, comb(x/b) FT⇐⇒ comb(kxb/2π). (4.88)

We can use this result to generate transforms of higher-dimensional lattices. The
formal mathematical development for a three-dimensional lattice is given in
the appendix to this chapter; here we will limit ourselves to a geometrical two-
dimensional derivation which follows directly from the idea of convolution.

The origin of this method
of deriving the transform
of a two-dimensional
periodic array of points
was in a very effective
lecture demonstration of
the diffraction pattern of
two superimposed
(multiplied) periodic
gratings. See Appendix B.

4 It is interesting to note, in passing, that we did not need to stipulate g(x) to be a function limited
to a region of length b. Even if it is not so, the Fourier coefficients come out right. There may
be several different functions g(x) which give rise to the same wave-form; the differences in
their transforms G(k) will only be evident at values of k �= 2nπ/b which are not sampled! See
Problem 2.1.
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Figure 4.14

Illustrating the Fourier
transform of a
two-dimensional lattice of
δ-functions. The top row
shows the operations to
create the direct lattice in
(x, y) space. The bottom
row shows the transforms
of the functions and
operations in the top row,
leading to the reciprocal
lattice which is the
transform of the direct
lattice.
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In two dimensions, we first create a set of equally spaced points by multi-
plying a one-dimensional lattice in the x-direction by a single δ-function in the
y-direction:

f1(x, y) = comb(x/a) · δ(y). (4.89)

We now convolve this with a second similar function with axes x′, y′ and
spacing a:

f2(x′, y′) = comb(x′/b) · δ(y′), (4.90)

getting

f12 = f1(x, y)⊗ f2(x′, y′), (4.91)

That instructs us to put the array f2 repeatedly with its origin at each of the
δ-functions of f1. The result is clearly a two-dimensional array of δ-functions
with lattice spacings a and b. It has a repeat region, called the unit cell, which
is a parallelogram with sides a and b and angle γ , which is the angle between
the x and x′ axes (Fig. 4.14(a)).

The Fourier transform F1 of (4.89) is the convolution comb(kxa/2π)⊗1(ky),
which is an infinite one-dimensional array of lines in the ky-direction, spaced
by 2π/a along the kx-axis, which is parallel to x. Likewise, the transform F2
of (4.90) is a similar array of lines spaced by 2π/b along the k′x-axis, parallel
to x′. Finally, we multiply these transforms to obtain the transform F12 of f12
(4.91). The product of two lines is zero, except at the point where they cross,
so that F12 is a new two-dimensional array of δ-functions (Fig. 4.14(b)) called
the reciprocal lattice. From the geometry, one sees that the new unit cell
is a parallelogram similar to that of the original function, but rotated. It has
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Figure 4.15

Relationship between the
direct lattice and the
reciprocal lattice vectors,
defined respectively by
(a, b) and (a∗, b∗). Note
that a · b∗ = 0 and
b · a∗ = 0. One unit cell of
each lattice is shown
shaded.

a

b a* 

b*

Reciprocal latticeDirect lattice

sides a∗ ≡ 2π/(a sin γ ) and b∗ ≡ 2π/(b sin γ ), which are normal to x′ and x
respectively (Fig. 4.15). Formally, we represent the direct unit cell by vectors
a and b, and define the reciprocal lattice vectors

a∗ = 2π
ẑ× b
|a× b| , b∗ = 2π

ẑ× a
|a× b| , (4.92)

b · a∗ = 0, a · b∗ = 0, (4.93)

where ẑ is the normal to the plane. The denominator |a× b| has value equal to
the area of the direct unit cell. In three dimensions, as shown in (4.112),

a∗ = 2π
b× c

a× b · c , (4.94)

etc., cyclically, where the triple product a× b · c is equal to the volume of the
unit cell.

4.9 Correlation functions

A form of convolution function that is of great importance in statistics and has
many applications in physics is the correlation function, which is formally
defined as

hC(x) =
∫ ∞

−∞
f (x′) g∗(x′ − x) dx′. (4.95)

This is clearly the convolution of f (x) with g∗(−x). As its name implies, the
function measures the degree of similarity between the functions f and g.
Suppose the two tend to be similar in magnitude and phase, when referred to
origins at 0 and x0 respectively. Putting x = x0, f (x′) and g(x′ − x0) will then
have about the same complex values and so f (x′) g∗(x′ − x0) will be positive
and real. Thus the integral hC(x0) will be large and positive. We shall use
this function considerably in studying coherence in Chapter 11. Its Fourier
transform is

HC(k) = F(k)G∗(k). (4.96)
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4.9.1 Auto-correlation function and the
Wiener–Khinchin theorem

A particular case of the correlation function is the auto-correlation function,
hAC which is defined by (4.95) with f ≡ g, i.e. by

hAC(x) =
∫ ∞

−∞
f (x′) f ∗(x′ − x) dx′, (4.97)

i.e. f (x) ⊗ f ∗(−x). Since the functions now have the same origin, the auto-
correlation function clearly has a strong peak when x = 0. We get for the
Fourier transform of hAC:

HAC(k) = F(k)F∗(k) = |F(k)|2. (4.98)

In words, (4.98) states that the Fourier transform of the auto-correlation function
is the square modulus of the transform of the function, also known as its power
spectrum. From the Fourier inversion theorem, the statement is also true in
reverse, up to a factor 2π . It is known as the Wiener–Khinchin theorem, and
applies similarly in more than one dimension.

Useful information in the auto-correlation function is not limited to the peak
at x = 0. For example, suppose that a function has a strong periodicity with
wavenumber K0 and period � = 2π/K0. The functions f (x′) and f ∗(x′ + n�)

will then tend to be similar and so their product will be positive; thus periodic
peaks in hAC(x) will appear. The transform, the power spectrum HAC, has a
corresponding peak at k = K0, and is thus useful for recognizing the existence
of periodicities in the function f (x).

In two and three dimensions, the correlation function finds many applications
in pattern recognition, and the auto-correlation function has been widely used in
the interpretation of X-ray diffraction patterns, where it is called the Patterson
function. It is instructive to see how it is built up in a simple case in two
dimensions (Fig. 4.16), where f (x, y) consists of three equal real δ-functions.
On each δ-point of f (x′, y′) we put the origin of the function f ∗(−x,−y), which
is just f (x, y) rotated by 180◦. We immediately see a strong point developing
at the origin. This strong point at the origin is intrinsic to the auto-correlation
of a real function. An experimental application of the spatial auto-correlation
function will be discussed briefly in §12.7.

4.9.2 Energy conservation: Parseval’s theorem

The process of Fourier transformation essentially takes a certain function f (x)
and represents it as the superposition of a set of waves. We shall see later,
in Chapter 8, that Fraunhofer diffraction in optics is described by a Fourier
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Figure 4.16

Auto-correlation of a
two-dimensional function,
consisting of three discs
representing δ-functions
(shown on left). The broken
lines are inserted to guide
the eye. It is convolved
with itself, inverted
through the origin, to give
the auto-correlation. Notice
that the strong spot at the
origin is inherent.

transform, where f (x) represents the amplitude distribution leaving the diffract-
ing obstacle and F(k) represents the amplitude distribution in the diffraction
pattern. No light energy need be lost in this process, and it would therefore
seem necessary that the total power leaving the object be equal to that arriving
at the diffraction pattern. In mathematical terms, we expect that∫ ∞

−∞
| f (x)|2 dx = C

∫ ∞

−∞
|F(k)|2 dk. (4.99)

The constant C was introduced because of the way in which the Fourier trans-
form is defined; it has no physical significance. This is called Parseval’s
theorem. It can be deduced easily from our discussion of the auto-correlation
function in §4.9.1. Applying the Fourier inversion theorem to (4.98), the inverse
transform of |F(k)|2 must be equal to hAC(x). Writing this out explicitly, we
get from (4.71)

1
2π

∫ ∞

−∞
|F(k)|2 exp(ikx) dk =

∫ ∞

−∞
f (x′)f ∗(x′ − x) dx′. (4.100)

Now let x = 0 in this equation. This gives

1
2π

∫ ∞

−∞
|F(k)|2 dk =

∫ ∞

−∞
| f (x′)|2 dx′, (4.101)

which is Parseval’s theorem, and the factor C = 1/2π .

4.10 Advanced topic: Self-Fourier functions

If we consider the Fourier transform as an operator, which acts on a function to
provide its transform, we can ask ‘what are the eigenfunctions and eigenvalues
of the operator?’:

FT[f (x)] = EF(x). (4.102)
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Although this might appear to be a purely mathematical question, we shall see
in §14.6.1 that these eigenfunctions, or ‘self-Fourier functions’ have practical
importance since they define the transverse modes of a laser with a confocal
resonator. We already know of two functions that transform into themselves:
the infinite array of δ-functions, (§4.4.2) for which the eigenvalue is E = 2π/b,
and the Gaussian for which the eigenvalue is E = √2πσ 2. In fact there is an
infinite number of self-Fourier functions, as can be seen from the following
argument. To make it simple, we consider only real and symmetric functions,
but a slightly more complicated formulation (Caola (1991)) covers all cases.
Since f (x) transforms to F(k) and F(k) transforms to f (−x), clearly f (x)+F(x)
transforms to F(k)+f (−k) = f (k)+F(k). However, amongst this multitude of
possible functions there are some which are both wavenumber and space limited
and have practical importance. These can be derived using the relationship
between the transform of a function and those of its derivatives (Problem 4.1):

F(n)(x) =
∫

∂n

∂xn f (x) exp(−ikx) dx = (−ik)nF(k). (4.103)

Now we can use the general idea above to generate the self-Fourier functions
in the following way. Consider the differential equation[

∂n

∂xn + (−ix)n
]

f (x) = αf (x). (4.104)

Taking the Fourier transform of this equation, and using the Fourier inversion
theorem, we get the identical equation in k-space:[

(−ik)n + ∂n

∂kn

]
F(k) = αF(k), (4.105)

which must have identical solutions, up to a constant multiplier. We look in
particular at the solutions for n = 2, which generates the laser modes:

∂2f
∂x2 − x2f = αf , (4.106)

which is the same equation as Schrödinger’s equation for a simple-harmonic
oscillator. The Hermite–Gauss functions are well known as its solutions. The
first solution is the Gaussian, f (x) = (

√
2πσ 2)−1 exp(−x2/2σ 2), which it is

easy to verify by substitution and to show that α = 1. This, we shall see later,
is the amplitude cross-section of a single-mode laser. However, there are many
higher-mode solutions of the equation. Thin vertical-cavity surface-emitting
lasers (VCSEL) can oscillate in high-order modes which are solutions of the
two-dimensional equation equivalent to (4.106):

∇2f − r2f = αf , (4.107)

some of the solutions of which are shown in Fig. 4.17, compared to
observations.
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Figure 4.17

Self-Fourier functions in
two dimensions, compared
with observed transverse
modes of VCSELs.
(Calculations and
experimental results
courtesy of Yoav Yadin and
Meir Orenstein)

Experimental Simulation

Chapter summary

In this chapter we have outlined Fourier theory with emphasis on the physical,

rather than mathematical, aspects. Fourier theory is widely used in optics

because we are dealing with waves and oscillatory phenomena. We learnt:

• That the Fourier series was originally proposed as a way of analyzing

periodic but non-sinusoidal wave-forms, and was later extended to

non-periodic functions in the form of the Fourier transform;

• The important concept of spatial-frequency or reciprocal space, in which

the Fourier transforms of spatial functions exist;

• The definition of the Fourier transform operation in one dimension for a

general complex function, and discussed some examples which

included a square pulse, a Gaussian function, a sine curve, Dirac’s

δ-function and a periodic array of δ-functions, and are summarized in

Fig. 4.18;

• How to combine simple functions by using convolution and

multiplication, which are related to one another by a Fourier transform;

• About Fourier inversion, which means that the Fourier transform of a

Fourier transform recovers the original function, and will be seen later

as the basis of optical imaging;

• About the basic structure of the reciprocal lattice, which is the Fourier

transform of a periodic lattice in real space, and when extended to

three dimensions becomes an important concept in crystallography;
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Figure 4.18 Fourier transforms of seven one-dimensional functions that are derived in the text,
and will be widely used later in the book. Notice that sin(2πx/a) and the step
function are antisymmetric functions, and have imaginary antisymmetric transforms.
The scale bar in real space is a and in reciprocal space 2π/a. The functions and
transforms: (a) rect(x/a) ⇔ a sinc(ka/2) (b) δ(x) ⇔ 1
(c) cos(2πx/a) ⇔ 1

2 [δ(k − a) + δ(k + a)] (d) sin(2πx/a) ⇔ 1
2 i[δ(k − a) − δ(k + a)]

(e) exp(−x2/2σ 2) ⇔ σ
√

2π exp(−k2σ 2/2)

(f)
∑∞

n=−∞ δ(x − na) ⇔ 2π/a
∑∞

m=−∞ (k − 2πm/a) (g) sign(x) ⇔ i/k

• The Wiener–Khinchin theorem, which states that the transform of a

correlation function is the power spectrum of the original function;

• Parseval’s theorem, which relates the power spectrum and the intensity

of the original function;

• A little about self-Fourier functions, which transform into themselves,

and their applications.

Appendix: Formal derivation of the reciprocal
lattice in three dimensions

The concept of the reciprocal lattice in three dimensions can be derived formally
as follows. This is an alternative algebraic approach to the geometrical one used
in §4.8.
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Figure 4.19

Relationship between the
direct lattice and the
reciprocal lattice vectors in
three dimensions.

a

b
c

a* a*

c*

b*

(a) (b)

We define the positions of the δ-functions in an infinite periodic lattice in
terms of three given direct lattice vectors a, b and c as

f (x, y, z) ≡ f (r) =
∞∑

h̃,k̃,m̃=−∞
δ(r− h̃a− k̃b− m̃c). (4.108)

This puts a δ-function at every point of a periodic lattice whose unit cell is the
parallelopiped whose sides are a, b and c (Fig. 4.19(a)).5

The Fourier transform of (4.108) is, writing k for the vector (kx, ky, kz):

F(k) =
∞∑

h̃,k̃,m̃=−∞
exp[−ik · (h̃a+ k̃b+ m̃c)]. (4.109)

This expression can be simplified if we define three new vectors a� b� and c�
such that

a · a� = b · b� = c · c� = 2π (4.110)

a� · b = a� · c = 0 and cyclically. (4.111)

In other words, a� is normal to b and c etc. These conditions are satisfied if

a� = 2π
b× c

a · b× c
= 2π

b× c
V

, (4.112)

where V is the volume of the unit cell, and equivalently for b� and c�.
The vectors a�, b� and c� are not parallel, and so k can be expressed as a

linear combination of them:

k = h̃�a� + k̃�b� + m̃�c�, (4.113)

where h̃�, k̃� and m̃� are, for the present, any numbers. Then (4.109) becomes

F(k) =
∞∑

h̃,k̃,m̃=−∞
exp[−i(h̃h̃�a� · a+ k̃k̃�b� · b+ m̃m̃�c� · c)]

=
∑

exp[−2π i(h̃h̃� + k̃k̃� + m̃m̃�)]. (4.114)

5 For a given lattice, there are many different ways of choosing a, b and c, but there are usually
one or two that are obviously simplest.
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This sum, for general h̃�, k̃�, m̃�, is usually zero, being an infinite sum of
complex numbers that cancel since they are distributed uniformly around the
unit circle. However, if h̃�, k̃� and m̃� are integers, every term is unity, and
F(k) is infinite. Thus F(k) is a three-dimensional array of δ-functions on the
lattice defined by the vectors a�, b� and c�. This array is called the reciprocal
lattice. In two dimensions, this was illustrated in Fig. 4.15, and the equivalent
three-dimensional structure is shown in Fig. 4.19(b).

Problems

4.1. Given that the transform of f (x) is F(k), find a general expression for
the transform of

∫ x
0 f (x′) dx′.

4.2. The ‘Hartley transform’ of a real function v(x) is defined as

H(k) =
∫ ∞

−∞
v(x)[cos kx+ sin kx] dx. (4.115)

Show that it is related to the Fourier transform by

H(k) = Re[V (k)] − Im[V (k)]. (4.116)

Devise a method, using Fourier optics, to record the Hartley transform
optically. Note that it contains all the information of the Fourier trans-
form in a single real function, but only works for real functions. See
Bracewell (1986) for a thorough discussion; an experimental method is
given by Villasenor and Bracewell (1987).

4.3. Find the Fourier transform of a decaying series of δ-functions:

f (t) =
∞∑

n=0
δ(t − nt0)e−αn. (4.117)

How can this result be used to understand the Fabry–Perot interfero-
meter?

4.4. Derive the Fourier transform of a periodic triangular wave, defined in
one period as y = |x| (−π < x ≤ π ). How can the result be related to
the auto-correlation of a square pulse?

4.5. Use the result of the previous problem to simulate the results of the
experiment on the guitar string described in Box 2.1.
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4.6. The period of a square wave is b, the value being 1 for a period c within
the cycle and 0 for b − c (this is called ‘duty cycle’= c/b). Use the
convolution theorem to study how its Fourier transform changes as a
function of c/b. What happens when c/b → 1?

4.7. Show that the self-convolution of sinc(ax/2) is the same function
multiplied by a constant.

4.8. Compare the functions ( f1⊗ f2)× f3 and f1⊗ ( f2× f3) and their trans-
forms, when f1= ∑∞

n=−∞ δ(x− nb), f2= rect(x/b) and f3= exp(iαx).

4.9. The convolution has some odd properties. For example, a group of
three δ-functions at intervals b can be represented as the product of
the infinite periodic array

∑
δ(x− nb) multiplied by rect(x/c) where c

has any value between 2b + ε and 4b − ε (ε arbitrarily small). Show
that the transform, which can be expressed as a convolution, is indeed
independent of the argument of rect between these limits. (This problem
is not easy!) The solution is discussed in detail by Collin (1991).

4.10. A periodic array of δ-functions has every fifth member missing. What
is its Fourier transform?

4.11. The image of a thick black straight line at an angle to the x- and y-axes
on a white background is digitized on a grid of N × N squares, so that
a square is white or black depending on whether it is more or less than
half covered by the line (Fig. 4.20). The digital Fourier transform of the
line is then calculated. When N is small, the transform is predominantly
along the kx and ky axes (transforms of elementary squares). As N
increases, the transform approaches a limit that is predominantly along
the axis at right-angles to the line. How does the transition take place?

4.12. A ‘wavelet transform’ is the Fourier transform of a function whose
spectrum changes with time, and consists of a representation of the
Fourier transform measured during an interval δt as a function of time
(for examples see Combes et al. (1990)). It is often used in speech and
music analysis. With the help of the convolution theorem, show that δt
and the frequency resolution δω of the wavelet transform are related by
δt · δω ≈ 2π .

4.13. A long one-dimensional quasi-periodic array of δ-functions is created as
follows. It has a basic period b, and within each cell there is a δ-function
at either x = 0 or x = h where h < b/2. The probability of each is 50%.
Use the concept of the auto-correlation function to calculate the power
spectrum of this array.
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Figure 4.20

Digital representation of a
diagonal line.
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5 Electromagnetic waves

This chapter will discuss the electromagnetic wave as a most important example of

the general treatment of wave propagation presented in Chapter 2. We shall start

at the point where the elementary features of classical electricity and magnetism

have been summarized in the form of Maxwell’s equations, and the reader’s

familiarity with the steps leading to this formulation will be assumed (see, for

example, Grant and Phillips (1990), Jackson (1999), Franklin (2005)). It is well

known that Maxwell’s formulation included for the first time the displacement

current ∂D/∂t, the time derivative of the fictitious displacement field D= ε0E+P,

which is a combination of the applied electric field E and the electric polarization

density P. This field will turn out to be of prime importance when we come to

extend the treatment in this chapter to wave propagation in anisotropic media in

Chapter 6.

In this chapter we shall learn:

• about the properties of electromagnetic waves in isotropic linear media;

• about simple-harmonic waves with planar wavefronts;

• about radiation of electromagnetic waves;

• the way in which these waves behave when they meet the boundaries

between media: the Fresnel coefficients for reflection and transmission;

• about optical tunnelling and frustrated total internal reflection;

• about electromagnetic waves in conducting media;

• some consequences of the time-reversal symmetry of Maxwell’s equations;

• about electromagnetic momentum, radiation pressure and optical

tweezers;

• about angular momentum of waves that have spiral wavefronts, instead of

the usual plane wavefronts;

• what happens to waves in materials where both the electric and magnetic

susceptibilities are negative, which has recently given rise to the new topic

of left-handed, or negative refractive index materials.

Essentially the rest of the book consists of elaboration of these ideas, until the

final chapter, which discusses the quantization of the electromagnetic field, an

aspect that Maxwell could not have predicted in his lifetime and that is now one

of the most vibrant areas of modern research.
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5.1 Maxwell’s equations and their development

In his day, J. C. Maxwell did not have the modern concepts of vector differential
operators (grad, div, curl) at his disposal. One of his major achievements
was to summarize the classical properties of the electric fields E and D, the
magnetic fields H and B, charge density ρ and current density j, in a set of
20 differential equations relating their various components! It was an almost

Some of Maxwell’s other
major achievements
were in colour vision,
thermodynamics and
statistical mechanics.

incredible achievement that he could see that these equations led to wave
propagation. Using vector operators, his results can today be summarized in
four elegant and simple equations, and the derivation of the wave motion is
much more transparent. The equations are as follows:

Gauss’s law in electrostatics becomes: ∇ · D = ρ, (5.1)

Gauss’s law in magnetostatics becomes: ∇ · B = 0, (5.2)

Ampère’s law becomes: ∇ ×H = ∂D
∂t
+ j, (5.3)

Faraday’s law becomes: ∇ × E = −∂B
∂t

. (5.4)

In vacuum, D and E are identical fields; the fact that in SI units, which will
be used in this book, D = ε0E, where ε0 has a non-unit value, only reflects
the fact that D and E are measured in different units. The same applies to the
applied magnetic field H and the magnetic induction B, which is the measured
field when magnetic polarization effects are taken into account. In a vacuum,
B = μ0H, where μ0 reflects the difference in units. In a medium, D really
does differ from E, and B from H. This is represented, in the case of a linear
isotropic medium, by scalar dimensionless constants ε (dielectric constant),
and μ (magnetic permeability):

D = εε0E, (5.5)

B = μμ0H. (5.6)

The values of ε and μ are usually frequency dependent, as will be discussed in
Chapter 10.

5.1.1 Electromagnetic waves in an isotropic linear
non-conducting medium

The simplest case for which Maxwell’s equations lead to a non-dispersive wave
equation (2.6) is in a medium which is isotropic, linear and non-conducting,
where charge density ρ and current density j are both zero. An isotropic
medium is one in which all directions in space are equivalent, and there is no
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difference between right-handed and left-handed rotation. A linear medium is
one in which the polarization produced by an applied electric or magnetic field
is proportional to that field. Since interatomic electric fields are of the order of
1011 V m−1, macroscopic laboratory electric fields (usually < 108 V m−1) are
small in comparison, and their effects are consequently linear. The oscillating
fields produced by intense laser beams are often orders of magnitude larger and
can cause non-linear response, which will be discussed briefly at the end of
Chapter 13.

Materials such as gases,
monatomic liquids and
glasses are examples of
such media. Water and
indium-tin-oxide are
opaque conductors at
low frequencies, but
transparent and
non-conducting at optical
frequencies. Then (5.1)–(5.4) become

∇ · D = εε0∇ · E = 0, (5.7)

∇ · B = μμ0∇ ·H = 0, (5.8)

∇ ×H = ∂D
∂t
= εε0

∂E
∂t

, (5.9)

∇ × E = −∂B
∂t
= −μμ0

∂H
∂t

. (5.10)

Taking (∇×) of both sides of (5.10) and substituting (5.9) we have

∇ × (∇ × E) = −μμ0
∂

∂t
(∇ ×H) = −μμ0εε0

∂2E
∂t2 . (5.11)

On expanding ∇ × (∇ × E) = ∇(∇ · E)−∇2E, (5.11) becomes

∇2E = εμ ε0μ0
∂2E
∂t2

. (5.12)

In Cartesians, ∇2E is the vector

∇ · (∇E) ≡ (∇2Ex,∇2Ey,∇2Ez).

5.1.2 Wave velocity and refractive index

Following §2.2, we immediately see that the solution to (5.12) is a vector wave
with velocity

v = (εμ ε0μ0)
− 1

2 . (5.13)

In free space, this velocity is c = (ε0μ0)
− 1

2 which is an important fundamental
constant, now defined as 2.997 924 58× 108 m s−1 exactly. Following this
definition, the SI defines μ0 as 4π × 10−7 H m−1 from which ε0 can be
calculated as (μ0c2)−1 = 8.854× 10−12 F m−1.

In accordance with the usual practice in optical work we shall assume in
most of the book that the magnetic permeability μ of media is unity at the
frequencies of light waves, unless otherwise stated. Recently the possibility

This value of c retains the
metre and second as
accurately as they have
ever been defined, but
makes c itself the
fundamental constant – a
decision made in 1986.

of negative refractive index or left-handed materials has been raised, and a
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requirement for these materials is that μ �= 1, but a discussion of these will be
delayed till §5.10. Assuming then that μ = 1, the ratio between the velocity of
electromagnetic waves in a vacuum to that in an isotropic medium, which is
the definition of refractive index, n, is then

n = c/v = ε
1
2 , (5.14)

where again the value of ε at the right frequency must be used.

5.2 Plane wave solutions of the wave equation

The plane wave (cf. §2.5)

E = E0 exp[i(k · r− ωt)] (5.15)

is an important solution of (5.12) whereω/k = v. For this wave-form,∇ ≡ −ik
and ∂/∂t ≡ iω, and (§2.5.2) allows us to write (5.7)–(5.10) in the form

k · D = εε0k · E = 0, (5.16)

k · B = μ0k ·H = 0, (5.17)

k×H = −ωD = −ωεε0E, (5.18)

k× E = ωB = ωμ0H. (5.19)

These equations immediately give us an insight into the disposition and size of
the field vectors (Fig. 5.1): D, H and k form a right-handed mutually orthogonal
set, as do E, B and k, and by virtue of the isotropy of the medium, also E,
H and k. Electromagnetic waves are therefore transverse. Moreover, the
magnitudes of E and H are related by

Z ≡ E
H
= k

εε0ω
=
√

μ0

ε0

1√
ε

. (5.20)

The constant Z is called the impedance of the medium to electromagnetic
waves. In free space ε = 1 and Z0 = √

μ0/ε0 = cμ0 = 377 ohms. Then,
from (5.14),

Z = Z0/n (5.21)

relates the impedance of a medium to its refractive index.
The plane containing D and k is called the plane of polarization, which will

The impedance is the
ratio of E to H; E has units
of volts/metre (V m−1)

and H is measured in SI in
amperes/metre (A m−1),
so that Z has dimensions
volt/ampere = ohm.

be of paramount importance in Chapter 6.
The fact that equations (5.16)–(5.19) are completely real indicates that there

are no phase differences between the oscillations of the electric and magnetic
fields. H can thus be written

H = H0 exp[i(k · r− ωt)], (5.22)

where H0 is orthogonal to k and E0 and has magnitude E0/Z.
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5.2.1 Flow of energy in an electromagnetic waveS = E x H

k
H, B

E, D

Figure 5.1

Disposition of vectors in
an electromagnetic wave
in an isotropic medium
propagating along the
direction of k.

If there is a phase
difference between E and
H, the mean value of the
wave power S = 〈EH〉
depends on it. In
particular, when the
phase difference is 90◦,
as in an evanescent wave
(§5.5.1), S = 0.

An important feature of electromagnetic waves is that they can transport energy.
The vector describing the flow of energy is the Poynting vector, which can be
shown in general to be

S = E×H. (5.23)

It has dimensions of energy per unit time per unit area, and its absolute
value is called the intensity of the wave. It is easy to see that this vector
lies parallel to k in the isotropic medium. The time-averaged value of S,
when E and H have the same phase, and are mutually orthogonal as in
Fig. 5.1, is

〈S〉 = 〈E0 sinωt H0 sinωt〉 = 1
2

E0H0 = 1
2

E2
0/Z (5.24)

(since the average value of sin2 ωt is 1
2 over a time
 1/ω).

5.3 Radiation

Electromagnetic radiation is initiated by moving charges. Two types of source,
a linearly accelerating charge distribution and an oscillating multipole, are
of particular importance in optics and we shall discuss them briefly. A full
treatment is given in the texts on electromagnetic theory.

5.3.1 Radiation by an accelerating charge

A charged particle moving at uniform velocity in a straight line is equivalent to
an electric current, and produces a constant magnetic field. This does not radiate
electromagnetic waves. However, if the particle accelerates, the magnetic field
has a time derivative that results in an electric field too. Then, the cross product
S of the electric and magnetic fields results in radiation of electromagnetic
energy. For a particle of charge q moving with velocity v(t) and acceleration v̇,
the radiative electric field at radius vector r ≡ n̂r is

E = q
4πε0rc2 [n̂× (n̂× v̇)], (5.25)

with magnitude |E| = qv̇
4πε0c2r

sin θ , (5.26)
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Figure 5.2

Radiation from an
accelerating charge: (a)
orientation of vectors, (b)
section of the radiation
polar diagram, which
shows the intensity of
radiation as a function of
its direction. This has the
form of a torus in three
dimensions.

q

Direction of 
acceleration

n
q

n

Er

v

H

(a) (b)

where θ is the angle between v̇ and n̂. The field lies in the plane containing
these vectors, transverse to n̂, as shown in Fig. 5.2(a).

The magnetic field is given by H = Z−1
0 (n̂× E) and is thus also transverse

to n̂, but polarized normal to the (v, n̂) plane. The fields are retarded, which
means that v is evaluated a time r/c earlier than E and H are measured. Together,
they result in energy being radiated predominantly in the plane normal to the
direction of the acceleration. The Poynting vector is, from (5.26),

S = E×H = n̂q2v̇2

16π2ε0c3r2 sin2 θ , (5.27)

which has maximum value in the direction normal to v̇. We can represent this
by a radiation polar diagram in which the magnitude of S(n̂) is represented
as a polar graph with its centre at the radiating charge, Fig. 5.2(b). In the
case of a charged particle traversing a circular orbit, as in a synchrotron, the
radiation is then maximum in the plane tangential to the orbit and perpendicular
to the instantaneous acceleration v̇. The total power radiated is then found by
integrating (5.27) over the surface of a sphere of radius r:

P = q2v̇2

6πε0c3 . (5.28)

5.3.2 Radiation emitted by an oscillating dipole

The radiative system most frequently encountered in elementary optics is a
periodically oscillating dipole. This arises, for example, in scattering theory
(§13.2) when a wave is incident on a polarizable body – an atom, molecule or
larger particle. The electric field of the wave polarizes the body and gives it a
dipole moment which then oscillates at the wave frequency.

The radiated fields can be derived directly from §5.3.1. A point charge q
has position z(t) = a cosωt, representing a dipole with instantaneous moment

At distances of the order
of a or smaller we have
near-field radiation,
which is used for imaging
in the near-field scanning
optical microscope
(§12.6.3).

p = qz = qa cosωt. The acceleration is

v̇ = −aω2ẑ cosωt. (5.29)
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Figure 5.3

Synchrotron radiation.
The diagram shows
sections of the radiation
polar diagrams in the plane
of the orbit, for charged
particle at
v/c = 0.2, 0.5 and 0.9,
transformed relativistically
to the laboratory frame of
reference. The broken lines
show the axes along which
the power becomes zero,
which confine the radiated
beam. The figures are
scaled to the same
maximum value; in fact,
for a given value of v̇, the
maxima in the direction of
v are in the ratio 2:8:1000
for the three examples.
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v

v

v

v

v

v

v/c = 0.2 v/c = 0.5 v/c = 0.9(a) (b) (c)

Box 5.1 Synchrotron radiation

A synchrotron is a charged particle accelerator with the form of a ring
in which electrons or other charged particles are accelerated during linear
motion in an electric field, and uniform magnetic fields are used to constrain
them to a periodic orbit of order 100 m radius. A detailed description of the
physics is given by Wille (1991). A pulse of electrons initially accelerated
to an energy of about 10 MeV is injected into the ring and travels around
it many times, the accelerating field being synchronized (hence the name
‘synchrotron’) with each arrival of the pulse. X-radiation is then emitted
by the electrons in the magnetic field regions, because of their centripetal
acceleration. As the energy of the electrons increases, the magnetic fields
have to be changed synchronously to keep the electrons in orbit. The energy
loss by radiation increases fast, and equilibrium is reached at about 10 GeV.
Several synchrotron radiation sources of this type operate around the world.

The calculation in §5.3.1 assumed that the charge motion is not relativis-
tic, i.e. v  c. However, as v → c the radiative power increases enormously
for two reasons: first, because of the dependence on v̇2, and second because
the radiation becomes more and more confined to a small angular range
close to the direction of v when Fig. 5.2 is transformed to the laboratory
frame of reference. The result of a relativistic calculation of the angular
power distribution of the radiation is then shown in Fig. 5.3, where we
emphasize the fact that the scale changes by a factor of 500 between (a)
and (c).

The frequency spectrum of synchrotron radiation arises from Fourier
analysis of what is essentially a short burst of radiation which is emitted
every time an electron passes through the curved orbital region. In prac-
tice this contains considerable amounts of X-radiation concentrated into
an intense almost-collimated beam of radiation. Important applications of
synchrotron X-radiation which are discussed later in this book are X-ray
diffraction by large molecules (§8.6), including phase retrieval methods for
non-periodic structures (§8.8), and X-ray microscopy using Fresnel zone
plates as imaging elements (§7.5).
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Then, at distances large compared with a we have E and H transverse to n̂:

E = −qaω2

4πε0c2r
[n̂× (n̂× ẑ)], (5.30)

H = Z−1
0 n̂× E. (5.31)

The radiation polar diagram for the Poynting vector S = E×H from such an
oscillating dipole has the same sin2θ dependence as in (5.27), which was shown
in Fig. 5.2(b). It is most important to appreciate that S has zero value along
the axis ẑ of the dipole, emphasizing the fact that electromagnetic radiation is
transversely polarized.

The total power radiated from the dipole is, like (5.28),

P = 1
6πε0

· p2
0ω

4

c3 cos2ωt, (5.32)

where p0 = qa is the amplitude of the dipole moment oscillations. Since the
average value of cos2x is 1

2 , the mean power radiated during a period
 ω−1 is

〈P〉 = p2
0ω

4

12πc3ε0
. (5.33)

A noticeable feature of this expression is the strong dependence on ω; the
power radiated from a dipole oscillator is proportional to the fourth power of
the frequency. One practical result of this dependence is the blue colour of the
sky (§13.2.1); another one is a basic limitation to the transparency of glass and
optical fibres (§10.2).

A heated body, such as
a filament lamp, emits
electromagnetic radiation
because the electrons
and atoms are in constant
motion. They create
random dipole moments,
which radiate at a wide
range of frequencies. This
‘black-body radiation’ is
discussed in §14.1

5.4 Reflection and refraction at an abrupt
interface between two media

At a sharp boundary between two media, there are simple relationships that
must be obeyed between the fields on the two sides. The components of the
fields E and H parallel to the surface are equal on the two sides, whereas the
normal components of D and B must likewise be continuous. Full proof of these
conditions, which we shall use extensively in what follows, is given in the texts
on electromagnetic theory. Application of the boundary conditions allows us
to derive reflection and transmission coefficients for electromagnetic waves.

5.4.1 The Fresnel coefficients

Suppose that a plane electromagnetic wave with wave-vector k and electric
field amplitude E0 is incident on a plane surface separating isotropic media
with refractive indices n1 and n2. The angle of incidence between the incident
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Figure 5.4

Incident, reflected and
transmitted waves.

Medium Z1, n1

Medium Z2, n2

ι

r

Incident wave,
amplitude I

Reflected wave,
amplitude R Transmitted wave,

amplitude Tj

wave-vector k and the normal to the surface n̂ is ı̂ . Without loss of generality
we can treat separately the two cases where the incident vector E lies in the
plane defined by k and n̂, denoted by ‖, and that where E is normal to this
plane, denoted by ⊥. Any other polarization, plane or otherwise (§6.2), can be
considered as a linear superposition of these two cases.

Other names which are
commonly used for ‖
are p or TM (transverse
magnetic), and for ⊥ are
s (German: senkrechte)
or TE (transverse electric).

Figure 5.4 shows the geometry of this situation. Notice that reflected and
transmitted waves have been introduced. The plane containing the incident
wave-vector k, the reflected and transmitted wave-vector and the normal n̂
is the (x, z) plane, and the vector n̂ is along the z-direction. We denote the
amplitudes (electric field magnitudes) of the incident, reflected and transmitted
waves by I , R and T respectively. The magnitudes of the wave-vectors in the
two media are k1 and k2 and clearly k1/n1 = k2/n2 = k0 since both waves
have the same frequency.

Consider first the ⊥ mode, so that the incident E = (0, I , 0). At t = 0,

incident wave: Ey = EyI = I exp[−i(k1z cos ı̂ + k1x sin ı̂)],
reflected wave: Ey = EyR = R exp[−i(k1z cos ĵ + k1x sin ĵ )], (5.34)

transmitted wave: Ey = EyT = T exp[−i(k2z cos r̂ + k2x sin r̂)].
Any changes of phase occurring on reflection and transmission will be indicated
by negative or complex values of R and T . The magnetic fields are related by
impedances Z = E/H = Z0/n and are perpendicular to k and E. The fact that
the reflected wave travels in the opposite z-direction to the others will be taken
care of by the appropriate value of ĵ so that the Poynting vector, the energy flow,
is in the correct direction. Given the direction of the field E = (0, Ey, 0), we find

incident wave: Hz = EyI Z−1
0 n1 sin ı̂ ,

Hx = −EyI Z−1
0 n1 cos ı̂ ;

reflected wave: Hz = EyRZ−1
0 n1 sin ĵ , (5.35)

Hx = −EyRZ−1
0 n1 cos ĵ ;

transmitted wave: Hz = EyT Z−1
0 n2 sin r̂,

Hx = −EyT Z−1
0 n2 cos r̂.
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The boundary conditions can then be applied. Ey is itself the parallel component,
which is continuous, so from (5.34) at the point x = 0, z = 0 we have

I + R = T . (5.36)

For EyI + EyR = EyT at any point in the plane z = 0, their oscillatory parts
must be identical:

k1 sin ı̂ = k1 sin ĵ = k2 sin r̂, (5.37)

from which ĵ = π − ı̂ and Snell’s law follows:

sin ı̂ = k2

k1
sin r̂ = n2

n1
sin r̂ = nr sin r̂, (5.38)

where nr is the relative refractive index between the two media. Continuity of
the parallel component Hx at (x, z) = (0, 0) gives

IZ−1
1 cos ı̂ + RZ−1

1 cos ĵ = TZ−1
2 cos r̂. (5.39)

We define reflection and transmission coefficients R ≡ R/I , T ≡ T/I . Then,
for this polarization (denoted by the subscript ⊥) we have from (5.36), (5.37)
and (5.21),

R⊥ = n1 cos ı̂ − n2 cos r̂
n1 cos ı̂ + n2 cos r̂

= cos ı̂ − nr cos r̂
cos ı̂ + nr cos r̂

, (5.40)

T⊥ = 2n1 cos ı̂

n1 cos ı̂ + n2 cos r̂
= 2 cos ı̂

cos ı̂ + nr cos r̂
. (5.41)

The coefficients for the ‖ plane of polarization can be worked out similarly.
When R and T refer to the component Ex, we find:

R‖ = n1 cos r̂ − n2 cos ı̂

n1 cos r̂ + n2 cos ı̂
= cos r̂ − nr cos ı̂

cos r̂ + nr cos ı̂
, (5.42)

T‖ = 2n1 cos r̂
n1 cos r̂ + n2 cos ı̂

= 2 cos r̂
cos r̂ + nr cos ı̂

. (5.43)

These functions are known as Fresnel coefficients and are shown in Fig. 5.5.
The two cases are sometimes combined in the convenient forms

R = u1 − u2

u2 + u1
, (5.44)

T = 2u1

u2 + u1
, (5.45)

Fresnel’s equations are
valid also for imaginary
or complex values of n or
u, and examples will be
discussed in §5.5.2 and
§5.6 respectively.

where

for ⊥ u1 ≡ n1 cos ı̂ , u2 ≡ n2 cos r̂, (5.46)

for ‖ u1 ≡ n1 sec ı̂ , u2 ≡ n2 sec r̂. (5.47)
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Figure 5.5

(a) Amplitude reflection
coefficients R(ı̂) at the
surface of a medium of
refractive index nr = 1.5
for the ⊥ and ‖
polarizations. (b) Intensity
reflection coefficients
|R(ı̂)|2. The broken line
shows their average, which
applies when the incident
light is unpolarized.

This form is particularly useful in formulating the general theory of multilayer
dielectric systems (§10.4), since both polarizations and all angles of incidence
can be treated with the single pair of formulae.

At normal incidence, the reflection and transmission coefficients for the two
polarizations are equal and are given by

R = n1 − n2

n1 + n2
= 1− nr

1+ nr
, (5.48)

T = 2n1

n1 + n2
= 2

1+ nr
. (5.49)

As an example, at an air–glass interface, where nr = 1.5, the amplitude reflec-
tion coefficient R (5.48) is −0.5/2.5 = −0.2, and so the intensity reflection
coefficient R2 = 4% (Fig. 5.5). This is a typical reflection coefficient for an
uncoated glass surface.

5.4.2 Brewster angle

For the polarization plane parallel to the incidence plane, Fig. 5.5 indicates
that the reflection coefficient is zero at a particular angle ı̂B. For this condition
we have

n1 cos r̂ − n2 cos ı̂ = 0,
cos r̂
cos ı̂

= n2

n1
= nr = sin ı̂

sin r̂
. (5.50)

We leave it to the reader to confirm that this equation can be rewritten as

tan ı̂ = cot r̂ = nr. (5.51)
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Figure 5.6

A shop window display is
photographed at the
Brewster angle with
respect to the window
pane. In unpolarized light,
the view is dominated by
the reflection of the street
scene in the glass, but
through a filter
transmitting horizontally
‖-polarized light only, the
reflection is eliminated and
the display is clear.

i B

Camera

Polarizer

Window

The angle ı̂ = ı̂B which is the solution of this equation is called the Brewster
angle. At this angle of incidence, light of the parallel polarization is not
reflected. A striking example of Brewster reflection is shown in Fig. 5.6.

5.5 Incidence in the denser medium

When nr < 1, meaning that the incidence is in the denser medium, several
interesting phenomena occur. First, we should point out that the fact that T
can be greater than unity in (5.49), and (5.41) or (5.43) for certain angles, does
not contradict the conservation of energy. We must calculate S in each case.
For (5.49), putting S = E2Z−1 = E2nZ−1

0 per unit area, the proportion of the
energy transmitted is(

2n1

n2 + n1

)2 n2

n1
= 4n1n2

(n1 + n2)2 =
4nr

(1+ nr)2 , (5.52)

which reaches a maximum value of 1 when nr = 1. At non-normal incidence,
the fact that the areas of transmitted and reflected beams are in the ratio cos ı̂ :
cos r̂ must also be taken into account when calculating total energy flows.

5.5.1 Total internal reflection

In the usual situation, where nr < 1, any angle of incidence results in a cal-
culable angle of refraction r̂. But if nr < 1, there is no real solution for r̂ if
ı̂ < sin−1nr≡ ı̂c. This angle is called the critical angle, and above it both |R⊥|
and |R‖| become unity. This phenomenon is called total internal reflection.
How can the wave-field be described at angles ı̂ < ı̂c? We postulate for such
angles a complex angle of refraction as a formal solution to Snell’s law. It then
turns out that the disturbance in the second medium is evanescent, as follows.
For the equation

sin r̂ = 1
nr

sin ı̂ ≡ (1+ β2)
1
2 > 1 (5.53)
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Figure 5.7

Modulus and phase of the
reflection coefficient
R = |R| exp(iα) at the
surface when incidence is
in the denser medium,
nr = 1/1.5. The Brewster
angle is ı̂B and the critical
angle ı̂c.

we have

cos r̂ = (1− sin2r̂)
1
2 = ±iβ (β real and positive). (5.54)

Of the two signs for cos r̂, the upper and lower ones will be seen to apply to
waves propagating along+z and−z respectively. Substituting in the equations
for R and T (5.40)–(5.43) we obtain

R⊥ = cos ı̂ ∓ inrβ

cos ı̂ ± inrβ
, (5.55)

T⊥ = 2 cos ı̂

cos ı̂ ± inrβ
, (5.56)

R‖ = ±iβ − nr cos ı̂

±iβ + nr cos ı̂
, (5.57)

T‖ = ±2iβ
±iβ + nr cos ı̂

. (5.58)

As the reflection coefficients are both of the form

R = p− iq
p+ iq

= exp
[
−2i tan−1

(
p
q

)]
= exp(−iα), (5.59)

it is clear that they represent complete reflection (|R| = 1) but with a phase
change α:

α⊥ = ±2 tan−1 nrβ

cos ı̂
, (5.60)

α‖ = ∓2 tan−1 nr cos ı̂

β
. (5.61)

The reflection coefficient
near ı̂c is a very steep
function of ı̂ , and this
effect can be used to
visualize surface defects
on a transparent sample.

Figure 5.7 shows the reflection coefficient for nr = 1.5−1 over the whole
range of ı̂ from zero to π/2.
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Neither of the transmission coefficients is zero, however, and so we
must investigate the transmitted wave more closely. We shall write the
space-dependent part of the transmitted wave in full:

E = E0 exp[−i(kz cos r̂ + kx sin r̂)]
= E0 exp(∓kβz) exp[−ikx(1+ β2)

1
2 ]. (5.62)

When the upper signs in (5.54)–(5.62) are chosen, the wave is evanescent and
decays exponentially to zero as z → ∞. The characteristic decay distance is
(kβ)−1. As an example, a material with n = 1.5 has a critical angle of 41.8◦.
Then at an incident angle of 42.8◦,

β = (2.25 sin2 42.8◦ − 1)
1
2 = 0.20

and the decay distance is thus λ/2πβ ≈ 0.8λ.
The phenomena of total internal reflection and the consequent evanescent

wave have several important uses. Various types of prism employing total
internal reflection are used in optical instruments; a common application is
found in the design of binocular field glasses. In optical waveguides and fibres
(§10.1 and §10.2), repeated total internal reflection at the wall or an interface
between media is used to transfer light energy along the length of the fibre,
with negligible loss. In addition, the existence of the evanescent wave outside
the fibre gives rise to one of the ways in which energy can be extracted without
any mechanical disturbance.

Evanescent penetration
into the less dense
medium at angles above
the critical angle is used
in surface plasmon
resonance bio-sensors,
for example, which
respond only to surface
physics and chemistry
within the evanescent
layer (§13.7)

5.5.2 Optical tunnelling, or frustrated total
internal reflection

If light is totally reflected from a plane surface at an angle greater than the
critical angle, but a second interface exists within the region of the evanescent
wave, the reflection is no longer total, and we have the phenomenon of optical
tunnelling or frustrated total internal reflection whereby a wave is partially
transmitted through a region where it would be forbidden by geometrical optics.
This is the electromagnetic equivalent to alpha-particle or electron tunnelling
in quantum mechanics. A schematic experiment is shown in Fig. 5.10. This
process has several applications, such as beamsplitters and optical waveguide
couplers.

Calculation of the transmittance through the ‘forbidden layer’ is not diffi-
cult, once the effective refractive indices of the media are expressed in terms
of u1 and u2 (5.44), (5.45), where clearly the value of u2 in the air layer
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Figure 5.8

Phase difference
π + α‖ − α⊥ for nr = 1/1.5
as a function of the angle
of incidence. In the region
of critical reflection, ı̂ > ı̂c,
the maximum phase
difference is about π/4 at
ı̂ = 52◦.
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Fresnel rhomb.
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Box 5.2 The Fresnel rhomb: an application of the phase
change on total reflection

The phase changes (5.60) and (5.61) for the two polarizations for propa-
gation in the z-direction have somewhat different dependence on the angle
ı̂ in the region between ı̂c and π/2. Using the upper signs again in both
equations, they can be seen to have the values 0 and π respectively at
ı̂ = ı̂c (β = 0), and π and 0 at ı̂ = π/2. The difference α‖ − α⊥ + π

can be evaluated for any particular value of nr, and is shown in Fig. 5.8
for nr = 1.5−1. When β/ cos ı̂ = 1 the phase difference has its maximum
value; for this case, it is 45◦ − π at ı̂ = 52◦.

Fresnel designed a circular polarizer that takes advantage of this property.
Circularly polarized light, which will be discussed in §6.1.2, consists of the
superposition of two waves with orthogonal polarization and a±π/2 phase
difference between them. This phase difference might be introduced by total
internal reflection, but from the figure you can see that for normal glass, a
maximum difference only just larger than π/4 can be produced by a single
reflection. Fresnel’s rhomb (Fig. 5.9) uses two successive reflections at the
required angle to introduce the required π/2(−2π) shift in a single piece of
glass called a Fresnel rhomb. An advantage of the rhomb over other methods
of achieving circular or elliptic polarization is that it is almost independent
of the wavelength and the angular range over which it works is quite large.



144 Electromagnetic waves

Figure 5.10

Tunnelling of a wave
through the air gap
between two media,
spaced by d ∼(kβ)−1. Medium n1 Medium n1 

i > ic

Incident wave,
amplitude I 

Reflected wave,
amplitude R~I

Transmitted wave,
amplitude T    R

d

Air

<<

Figure 5.11

(a) Experiment to show
optical tunnelling. (b)
Observation with ı̂ > ı̂c.
(c) Observation with ı̂ < ı̂c.

i(a) (b) (c)

is imaginary. We can anticipate the technique to be developed in §10.4 for
multilayer calculations and quote the result:

T =
[
cosh kβd + 1

2 sinh kβd(n cos ı̂/β − β/n cos ı̂)
]−1

∼ e−kβd at large d. (5.63)

It is easy to demonstrate the tunnelling by the experiment shown in Fig. 5.11(a).
The second prism of Fig. 5.10 is replaced by a lens with a large (∼1 m) radius
of curvature, which rests lightly on the horizontal hypotenuse of the prism,
so that a variety of values of d are sampled simultaneously. Looking at the
reflected light, a dark patch indicating frustrated reflection around the point
of contact can be seen – Fig. 5.11(b). Altering the incidence in the prism to
an angle below the critical angle returns u2 to a real value and interference
fringes (Newton’s rings) replace the patch – Fig. 5.11(c). These can be used
to calibrate the thickness profile of the forbidden layer and to confirm that
significant tunnelling occurs up to thicknesses of about 3

4λ.

5.5.3 Energy flow in the evanescent wave

The amplitude of the evanescent wave decays with increasing z, so clearly no
energy can be transported in that direction, away from the interface. But on
the other hand, the wave is there, and has an energy density, so we have to
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show that energy transport within it is restricted to the directions parallel to
the interface. For the ⊥ wave in the second medium, substitution of (5.62) in
(5.34) and (5.35) shows the fields to be

Ey = E0 exp(−kβz) exp
{
−i
[

kx
(

1+ β2
) 1

2 − ωt
]}

, (5.64)

Hz = Z−1
0 sin r̂ Ey = Z−1

0 (1+ β2)
1
2 Ey

= Z−1
0 (1+ β2)

1
2 E0 exp

{
−i
[

kx
(

1+ β2
) 1

2 − ωt
]}

, (5.65)

Hx = Z−1
0 cos r̂ Ey = iZ−1

0 βEy

= Z−1
0 E0β exp

{
−i
[

kx
(

1+ β2
) 1

2 − ωt + π/2
]}

. (5.66)

So the Poynting vector has components

Sx = EyHz ∼ E2
y (1+ β)

1
2 , (5.67)

Sz = −EyHx ∼ iβE2
y . (5.68)

The imaginary value of Sz tells us that no energy is transported normal to the
surface; it is clear from (5.64) and (5.66) that Ey and Hx have a π/2 phase
difference and so the average of their product is zero. However, there is no
phase difference between Ey and Hz and so 〈Sx〉 �= 0, and energy is transported
in that direction.

5.6 Electromagnetic waves incident
on a conductor

The media we have discussed so far have all been insulators, as a result of
which we have been able to neglect the current term in the equation (5.3),

∇ ×H = ∂D
∂t
+ j. (5.69)

In order to understand what happens to an electromagnetic wave incident on a
conductor we must bring this term into play, as the electric field E will induce
a non-zero current density j if the conductivity σ is appreciable:

j = σE. (5.70)
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We can substitute (5.70) into (5.69), at the same time replacing D by εε0E
to give

∇ ×H = εε0
∂E
∂t
+ σE. (5.71)

Now, remembering that the wave is oscillatory with frequency ω, we replace
the operator ∂/∂t by −iω and thus obtain the equation

∇ ×H = −iε0Eω

(
ε − σ

iωε0

)
. (5.72)

The conductivity term can be absorbed into the dielectric constant by letting it
be complex:

ε̃ = ε + σ

iωε0
. (5.73)

This is an important result; propagation in a conductor can be treated formally
as propagation in a medium with a complex dielectric constant. The reason is
easy to see. In an insulator the dielectric field produces displacement current
∂D/∂t in quadrature with it; in a conductor the real current density is in phase
with E, and thus the net effect is a total current at an intermediate phase angle,
which is represented by a complex ε̃.

As the mathematics is now similar to that in §5.1 for a real dielectric,
we shall take the standard result, which defines a complex refractive index
ñ = c/v = ε̃

1
2 , and substitute ε̃ from equation (5.73) to give

ñ = c
v
=
(
ε + iσ

ε0ω

) 1
2

. (5.74)

Let us assume ε to be of the order of unity. Then, substitution of values for
σ and ω for metallic conductors shows the imaginary term to be completely
dominant even at optical frequencies. We therefore write

ñ ≈ (iσ/ε0ω)
1
2 = (σ/2ε0ω)

1
2 (1+ i). (5.75)

The accepted nomenclatures for the complex refractive index are somewhat
confusing: ñ ≡ n+ ik̃, or ñ ≡ n(1+ iκ). Here we use the former.

We can then write down the effect of applying a wave of frequency ω,

E = E0 exp[i(kz− ωt)] = E0 exp[iω(ñz/c− t)], (5.76)

normally to the surface z = 0 of a conductor; at depth z we have, from (5.75),

E(z) = E0 exp
[
−
(
σω/2ε0c2

) 1
2 z
]

exp
{

i
[(

σω/2ε0c2
) 1

2 z− ωt
]}

.

(5.77)
This is an attenuated wave, with characteristic decay length l, called the skin
depth, and wavelength λc inside the conductor given by

l = λc/2π = (2ε0c2/σω)
1
2 . (5.78)
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Thus, using ñ≡ n+ ik̃, we have n= k̃= λ/λc
 1. The decay per wavelength
l/λc= 1/2π is independent of the frequency and implies that a wave travels less
than a wavelength inside a conductor. However, when we come to substitute
the value of the conductivity of metals into (5.78), we find that the value
of l is very small compared with the free-space wavelength, indicating very
large values of n and k̃. For example, at 1000 Hz the skin depth in copper is
2.1 mm and the wavelength in the metal 13 mm, compared with the free-space
wavelength λ = 3×105 m; at 108 Hz, the skin depth is 6μm and the free-space
wavelength 3 m.

If the conductivity were frequency independent, n would be very large even
at optical frequencies, but this is not so; atomic and plasma resonances, which
will be discussed in Chapter 13, change the picture completely. Typical values
of ñ for metals often used in optics at λ = 600 nm are: copper, ñ = 0.2+ i3.5;
silver, ñ = 0.08 + i4.2; aluminium, ñ = 1.02 + i6.5. The values of n are,
surprisingly, less than or approximately 1.

5.6.1 Reflection by a metal surface

Calculation of the reflection by a metal surface in principle requires substitution
of the complex refractive index ñ into Fresnel’s equations (5.40) and (5.42).
At long wavelengths, where n = k 
 1, this gives us, for incidence at ı̂ in the
‖ mode,

R‖ = cos r̂ − n(1− i) cos ı̂

cos r̂ + n(1− i) cos ı̂
. (5.79)

Since n 
 1 we can assume cos r̂ = 1, whence

When using metal-coated
mirrors at high angles of
incidence, you should
always remember that
they can introduce phase
changes, which may
differ between the two
principal polarizations.

R‖ = 1− n(1− i) cos ı̂

1+ n(1− i) cos ı̂
. (5.80)

For small angles of incidence ı̂ , R‖ has the value (1−n−in)/(1+n+in) which
is close to −1, with a phase difference of about π between the reflected and
incident waves. On approaching glancing incidence, the phase of the reflected
wave changes continuously, reaching R‖ = +1 at ı̂ = π/2. The phase change
occurs around what might be described as a ‘quasi Brewster angle’ at which
the real and imaginary parts of R are comparable, i.e.

n cos ı̂ ≈ 1; (5.81)

here the value of |R| falls to a value less than unity.
However, at optical frequencies the values of n and k̃ are small. In particular,

when n < 1 we might naively expect to see an anomaly for incidence at a critical
angle ı̂c = sin−1n and total external reflection of light at greater angles. This
is not so. In fact the subject of propagation of waves in an absorbing material
with complex ñ is complicated, in particular the interpretation of Snell’s law
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Figure 5.12

The reflectivity of metals,
as a function of angle of
incidence, showing |R‖|2,
|R⊥|2 and the phase of the
‖ mode: (a) for a metal at
very long wavelengths,
with n = k � 1 and (b) for
silver at λ = 600 nm,
where ñ = 0.08 + i4.2.

for a complex angle of refraction. It turns out that under these circumstances
the k-vector is not normal to the wavefronts, because in an absorbing material
at non-normal incidence energy can flow along the wavefront, and then it turns
out that Snell’s law does not apply to the k-vector as it does in transparent
materials. Essentially, the reason is that when the light is strongly absorbed, the
flow of energy S must be approximately normal to the interface, and this pulls
k into a similar direction. The full mathematical development can be found in
Sokolov (1960) and Born and Wolf (1999). As a result, the expected critical
angle and total reflection are absent, and the reflectivities of metals, while often
high, are less than unity. The phenomenon of the ‘quasi Brewster angle’ does
seem to be a common feature. But it is interesting to note that when n is small
it is the loss factor k̃ in the complex refractive index that is responsible for the
high reflectivity; at normal incidence, for example,

|R|2 =
∣∣∣∣∣1− n− ik̃
1+ n+ ik̃

∣∣∣∣∣
2

= (1− n)2 + k̃2

(1+ n)2 + k̃2
→ 1 (5.82)

when k̃ 
 n. Figure 5.12 compares the long-wave theory (5.80) to a full
calculation for silver at optical wavelength.

5.7 Reciprocity and time reversal:
The Stokes relationships

The reader may have noticed that the reflection coefficient (5.44) is negative
when incidence is in the lower-index medium, and positive, with the same
value, if the light ray is exactly reversed, so that it is incident in the denser
medium. This reversal of the sign of the reflection coefficient when the light path
is reversed is a feature of non-absorbing systems which arises in a very general
manner. It is the result of the time-reversal symmetry of Maxwell’s equations

The arguments in this
section do not apply
if the media have
significant absorption,
because (5.3) is not time
reversible.
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Figure 5.13

Reflection from opposite
sides of an interface. (a)
Usual situation, I incident
from the left; (b)
time-reversed situation; (c)
I3 incident from the right;
(d) I4 incident from the
left.
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in the absence of absorption mechanisms, which would be represented by a
non-zero current density term j in (5.3).

If we change t in equations (5.9) and (5.10) to −t we find no change in the
resulting wave equation (5.12). So any set of related waves, such as the usual
incident, reflected and transmitted trio, has an equally valid time-reversed set.
But the effect of changing t to −t in a wave is to reverse the direction of its
propagation without affecting its amplitude, so that if we apply this procedure
to the trio shown in Fig. 5.13(a), we get those in Fig. 5.13(b). The reflector is
completely general here, except that it must be non-absorbing; it could be a
single interface or any multilayer or other system satisfying this requirement.
The incident, reflected and transmitted amplitudes I , R and T in both figures are
related by coefficients R = R/I and T = T/I . In Fig. 5.13(b) the amplitudes
are unchanged, but it represents an unusual situation: there are two incident
waves and one leaving the system. Obviously, some form of interference must
be involved, but that is all within the framework of Maxwell’s equations and
the details don’t matter to us. However, the situation in Fig. 5.13(b) can be rep-
resented by the superposition of two perfectly conventional trios, one incident
from each side, which are shown in Fig. 5.13(c) and (d). The former has inci-
dence from the reverse side, and reflection and transmission coefficients �R and
�T respectively. In the figures, the amplitudes have been labelled accordingly.
Equating amplitudes of Fig. 5.13(b) to the sum of the last two, gives us

I = �T I3 +RI4, (5.83)

RI = I4, (5.84)

0 = �RI3 + T I4, (5.85)

T I = I3. (5.86)

These lead directly to the solutions

�R = −R, (5.87)

1 = T �T +R2. (5.88)

Equation (5.87) represents a general result, of which reflection at a dielectric
surface is one example: the reflection coefficients from opposite sides of a
non-absorbing partial reflector are equal and opposite in sign. Conservation
of energy in the system is then expressed by (5.88).

The result (5.87) is of key
importance in many
interferometers. For
example, in the
Fabry–Perot (§9.5.1) it
explains the
complementarity
between the reflected
and transmitted spectra.
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The assumption thatR andT are real quantities implies that neither reflection
nor transmission of the wave introduces a phase change. But there are many
cases, such as total internal reflection, §5.5.2, where this is not true. It is
really quite easy to extend the argument to complex values of R and T . The
starting point is to realize that the time-reversed field corresponding to E is E∗.
Although we shall not prove this in general (see Altman and Suchy (1991)), one
can appreciate its significance in the case of total internal reflection, where the
transmitted wave carries no energy and the reflection coefficient is R = eiα . An
incident wave I is reflected as IR = Ieiα . Now, in the time-reversed system,
we begin with the field (Ieiα)∗, which is reflected with the same reflection
coefficient into I∗. This demonstrates that using the complex conjugate wave
in the time-reversed system is consistent in this example.

Now we replace I by I∗ in Fig. 5.13(b) and then follow through the same
calculation as in (5.83)–(5.86). This gives us the following two equations,
which are valid for any partially reflecting non-absorbing system:

T ∗�T +R∗R = 1, (5.89)

T ∗ �R+R∗T = 0. (5.90)

It is also possible to deduce phase relationships between the various reflection
and transmission coefficients. For example, if we choose the arbitrary reference
surface of reflection for a complex reflector such that T is real, (5.90) gives the
Stokes relations in their complex form:

�R = −R∗, (5.91)

1 = �T T +RR∗. (5.92)

Without defining any particular reference surface, we can make a general
statement about the phase differences δ between T and R, and δ̄ between �T and
�R. By writing T and R in the form A exp(ib) and substituting into (5.89) and
(5.90), we find that δ + δ̄ = π (Zeilinger (1981)). A symmetrical beamsplitter
must then have δ = δ̄ = 1

2π .
We conclude by reminding the reader that the above relationships are valid

if the system is non-absorbing. Obviously, in an absorbing system no such
generalization is possible; consider, for example, the properties of a metal foil
painted green on one side!

5.8 Momentum of an electromagnetic wave:
Radiation pressure

We saw in §5.2.1 that electromagnetic waves transport energy. They also trans-
port momentum. The effect is very small, and needs delicate instrumentation
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or intense light sources in order to observe it. Suppose that a plane wave with
electric field amplitude E0x is incident on a perfect conductor surface normal to
z which therefore reflects it completely. This means that twice the momentum
of the incident light is transferred to the conductor; the resulting force is called
radiation pressure. Because the conductivity is infinite, the electric field at
the surface has to be zero; in other words, the incident and reflected waves
set up a standing wave which has a node of the electric field at the surface.
As a result, the magnetic fields at the surface add, giving a total field there
Hy(z = 0) = 2H0y cosωt (Fig. 5.14). Now this field at the surface decays very
quickly within the skin depth of the conductor by inducing electric currents in
the x-direction. The currents interact with the magnetic field Hy to produce a
Lorentz force in the z-direction, which is the cause of the radiation pressure.
Quantitatively, the current density is related to the magnetic field by Ampère’s
law (5.3) for the case where E and therefore D are zero:

jx = ∂Hy

∂z
(5.93)

Ex

Hy

jx

Fz

Figure 5.14

Wave-fields at the surface
of an ideal conductor.

and the Lorentz force μ0j×H can be integrated throughout the reflector (much
thicker than the skin depth) to give the total force

Fz = μ0

∫ 0

−∞
jx Hy dz = μ0

∫ 0

−∞
Hy

∂Hy

∂z
dz = 1

2
μ0H2

y (z = 0). (5.94)

Now this force can be related to the Poynting vector of the incident wave,
which is in this case

S = 〈E×H〉 = E0xH0y
〈
cos2ωt

〉
= 1

2
E0xH0y = 1

2
Z0H2

0y; (5.95)

then, inserting the value of Hy(z = 0), the force is

Fz = 2μ0H2
0y

〈
cos2ωt

〉
= μ0H2

0y = 2S/c, (5.96)
Figure 5.15

Optical tweezers: (a) A
dielectric particle is
attracted towards the
maximum field intensity at
the focus of a light beam
by the gradient in
electromagnetic energy
density. (b) Geometric
optics interpretation
of the force: refraction
creates transverse light
momentum which is
balanced by a force on the
refracting particle.

Force in
direction
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Box 5.3 Optical tweezers

Although radiation pressure is very small compared to everyday experi-
ence, it can be used to manipulate tiny particles and to measure forces
applied to them by their surroundings. The systems used for this pur-
pose are called optical tweezers (Ashkin (1970)). As we saw, light
pressure is associated with the change in direction of a light wave (reflec-
tion in §5.8) and its magnitude is proportional to the energy density of
the wave.

A small dielectric particle with ε > 1 is placed in a region of non-uniform
electric field. As a result, it becomes electrically polarized parallel to the
field and then experiences a force towards the highest electric field in the
same way as a piece of soft iron with μ > 1 is attracted to a magnet, where
the magnetic field is largest. Therefore, if light is brought to a focus, small
dielectric particles are attracted to the focal point, where the electric field
is largest. Conversely, a small bubble in a dielectric fluid is repelled from
the focus. We can express this force quantitatively in terms of the potential
energy −p · E of a dipole p in an electric field. If the dipole is induced by
the field itself, the potential energy U and the force −∇U on a particle of
volume v are

U = −1
2

vε0(ε − 1)E2, (5.97)

F = 1
2

vε0(ε − 1)∇(E2). (5.98)

The force pushes the particle towards the highest field. If we look at the
distribution of light intensity 1

2 cε0E2 around the focus of a light beam
(usually a laser, but the coherence is not essential) in Fig. 5.15(a) or
Fig. 7.9, we see that the gradient of E2 is always directed towards the
focal point.

Another, ‘semi-classical’, way of looking at the trapping of a dielectric
sphere by converging light uses ray optics combined with the momentum
of electromagnetic waves. When a light ray such as A in Fig. 5.15(b) is
refracted by the transparent particle, most of the light suffers a change
in direction from A to B; a little is reflected at the surface, but this can
be neglected. As a result of the change in direction, the wave acquires a
transverse momentum, which must be balanced by an equal and opposite
momentum of the particle, resulting in a force on it. Only when it is situated
symmetrically about the point of maximum intensity do the forces on the two
sides of the symmetry axis cancel to give stable equilibrium. This force can
be used to manipulate particles and then make mechanical measurements
on them.
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using the value Z0= cμ0. The rate of momentum transport in the incident wave
is half of this, and therefore has the value S/c. Once can then appreciate why
the radiation pressure is so small, because c is so large: even a 1 W laser only
produces a force of 1/c ≈ 3× 10−9 newton when absorbed by an object!

5.9 Advanced topic: Angular momentum
of a spiral wave

A wave with circular polarization carries angular momentum, a classical phe-
nomenon (albeit rather difficult to prove directly from Maxwell’s equations)
that has a simple quantum equivalent: a photon has spin±�, the sign depending
on whether it has right- or left-handed circular polarization. A more recent dis-
covery is a phenomenon akin to orbital angular momentum which is possessed
by a wave with a spiral wavefront (Padgett and Allen (2000)). This wavefront
is like a screw dislocation in a crystal, and has a singularity along its axis; we
shall see that the photon equivalent has angular momentum m�, where m can
be any integer. Again, this is quite consistent with Maxwell’s equations.

A spiral phase mask is
used as a component in
the super-resolution
technique of STED
(§12.6.4). The far-field
diffraction pattern of a
spiral wave always has
a zero at its centre and
this is the key to the
resolution enhancement.

Suppose we create a monochromatic plane wave with transverse electric
field in the (x, y) plane which we express in cylindrical polar coordinates:

E(r, t) = E(r,ψ , z, t) = E0(r) exp[i(ωt − k0z− mψ)]. (5.99)

Clearly, at r = 0, all values of ψ refer to the same point in space, so that E0(0)
has to be zero. This wave has spiral wavefronts. If we look at a given wave-
front, φ =constant at given t, we have k0z + mψ = constant, meaning that as
we go round a closed loop at given r, taking ψ from zero to 2π , z increases by
2πm/k0 = mλ. Since wavefronts are separated byλ, the wavefront looks like an
m-start screw, left- or right-handed according to the sign of m (Fig. 5.16(c)). At
radius r, the wavefront is therefore tilted locally with respect to the (x, y) plane
by an angle θ whose tangent is the pitch mλ divided by the perimeter of the loop
2πr, tan θ = mλ/2πr. Now the momentum associated with the wave propa-
gates normal to the wavefront, so it is clear that the result is angular momentum.

Quantitatively, consider an elementary area δA which transmits power
S(x, y)δA. This is the axial component of power that is locally travelling in
a spiral manner normal to the wavefront, at angle θ , and therefore the trans-
verse component is S δA tan θ . This corresponds to transverse momentum rate
δp = S δA tan θ/c in the azimuthal direction. Substituting the value of tan θ ,
we have angular momentum rate

δL = r δp = rS δA
c

· tan θ = rS δA
c

· mλ

2πr
= S δA mλ

2πc
. (5.100)
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Figure 5.16

A spiral wave, created by
separating the sides of a
crack in a plastic sheet. (a)
Construction of the phase
plate; (b) an interference
pattern between the spiral
wave and a plane wave,
showing a dislocation with
m = 3; (c) interference
pattern of the same spiral
wave with a spherical
wave. (Rotschild et al.
(2004))

(a) (b) (c)

Thus the rate of angular momentum transfer by the complete beam, with power
P = ∫ S(x, y) d A is L = Pmλ/2πc = Pm/ω. Notice that this integral takes into
account the facts that the beam is limited in extent and also has zero intensity
along the singularity. It is important to see the quantum equivalent, where the
beam is described by n photons per second, each with energy �ω. Substituting
P = n�ω, we find L = nm�, i.e. the angular momentum per photon is m�.

There are several ways to construct a spiral wave, which include interference
between laser modes (§14.6.1) and phase masks of various types. A particularly
simple one uses the region around the termination of a crack in a plastic plate,
where controlled separation between the two sides of the crack allows the value
of m to be adjusted (Fig. 5.16). When a spiral wave is used to operate optical
tweezers, the transfer of angular momentum to a trapped body results in its
rotation, and the device is called an ‘optical wrench’.

5.10 Advanced topic: Left-handed, or negative
refractive index materials

Although they were first discussed by Veselago (1968) in a paper whose clarity
makes it a delight to read, the properties of materials with negative refractive
index were essentially ignored until brought to light by Pendry (2000). Since
then, new materials with the required optical properties have been created,
and most of the theoretical predictions for optics of such materials have been
verified. In this section we shall outline the differences between the new and
old physics, and give some examples of significant experimental results that
have been obtained.

We start with the observation that (5.14) really ought to be written

n = c/v = ±(εμ)
1
2 . (5.101)

However, since the wave-vector k = nk0 represents the direction in which
the wave is propagating, we automatically assumed that n is positive. Now,
to get the taste of the curious properties of the new materials, let us look at
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Figure 5.17

(a) Field and wave-vectors
in a left-handed material,
compared with a normal
(right-handed) material.
(b) Refraction of a ray at
the interface between
materials with n = 1 and
n = −1. (c) Aberration-free
imaging by a parallel-sided
slab of material with
n = −1 in air.
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the situation that is obtained when both ε = −1 and μ = −1. We return to
Maxwell’s equations (5.9) and (5.10), which are now written

∇ ×H = ∂D
∂t
= −ε0

∂E
∂t

, (5.102)

∇ × E = −∂B
∂t
= μ0

∂H
∂t

. (5.103)

Substituting, as before, iω for ∂/∂t and −ik for ∇, we have

k×H = ε0ωE, (5.104)

k× E = −μ0ωH. (5.105)

The Poynting vector, S = E×H does not depend on ε and μ and is therefore
unchanged. Now we redraw Fig. 5.1 as Fig. 5.17(a) and immediately see that k
and S have opposite directions, i.e. the wave energy propagates counter to the
wave-vector. Moreover, the triad [E, H, k] is left-handed, compared to normal
materials in which it is right-handed; thus the name left-handed materials.
The situation where k and S are not parallel will be discussed in greater detail
in Chapter 6 as a common feature of anisotropic materials, but here we are
discussing a basically isotropic material which exhibits the extreme case where
the vectors are anti-parallel. Another way of describing this situation is to say
that the wave and group velocities are in opposite direction. Since the former is
v = ω/k and the latter vg = dω/dk, it becomes clear that the type of material
involved is very dispersive (§2.4).

5.10.1 A lens with no spherical aberration: the superlens

Let us first consider the geometrical optics of a plane interface, normal to z,
between vacuum with n = 1 and a left-handed material with n = −1. Most
simply, we can just write Snell’s law and deduce that sin r̂ = − sin ı̂ ; thus, with
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no approximations, r̂ = −ı̂ or r̂ = π+ ı̂ . This is true, but bears a little analysis.
The directions of the vectors k on the two sides of the interface in the (x, z)
plane have components kx in the plane and kz normal to the interface, across
which Exy and Hxy are continuous. Now, following the spirit of §5.4.1, kx must
be identical on both sides. On the other hand, from Fig. 5.17(a), kz is reversed.
Thus the refraction angle of π + ı̂ is explained. Taking into account the fact
that in the left-handed material S and k are anti-parallel, it follows that S is
refracted at −ı̂ .

Now consider refraction of light originating from a point source by a parallel-
sided plate of material with n = −1. Since the light rays follow the routes
determined by r̂ = −ı̂ it should be clear from Fig. 5.17(c) that the rays intersect
exactly at the points shown, producing a 1:1 image in the rightmost plane. This
is not a conventional image, whose magnification depends on the distances
of object and image planes, but it must always have unit magnification, and

We should remark that n
might be complex (§5.6),
but it is only its real part
that determines the
refractive behaviour.

since the relationship r̂ = −ı̂ contains no approximations, it has no classical
aberrations (§3.7). In terms of imaging theory in physical optics, discussed in
Chapter 12, it should at least be diffraction limited.

However, Pendry (2000) made a stronger claim than this. A point-like object
of size a smaller than the wavelength λ radiates part of its energy into waves that
have spatial frequencies up to 2π/a, but as we have seen in §5.5.1 these waves
propagate evanescently, and are therefore attenuated significantly in a distance
of the order of a (§2.3.2). In normal imaging systems, these waves never
contribute to the image, because at any reasonable distance their amplitudes
are negligible; the fields with spatial frequency 2π/a decay as exp(−k0βz),
where β = √

λ2/n2a2 − 1 ≈ λ/na (5.62). However, when n is negative, the
waves grow exponentially at the same rate! In detail, one has to consider
the exact boundary conditions for incidence of an evanescent wave at the
boundary between media with n= 1 and n= −1 to show that the decaying
wave converts into a growing wave. Now, when we look at the distances
involved in Fig. 5.17(c), we see that in its passage from object to image, every
ray traverses a path that is exactly half in the n = 1 medium and half in the
n = −1 medium, so that the exponential decay of the evanescent wave in the
former medium is exactly cancelled by the exponential growth in the latter. On
this basis, image information on a scale smaller than the wavelength is also
imaged by this type of lens, and for this reason it has been called a ‘superlens’.

5.10.2 Achieving negative refractive index using
meta-materials

In his paper, Veselago (1968) pointed out that an ionized gas plasma of the
right density could provide values of ε < 0, (§5.6) and by applying a magnetic
field to the plasma, possibly μ could be made negative too. However, this
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5 mm

0.25 mm

(a)

Incident 10.5 GHz 
microwave beam

Meta-material
prism

(b)

Refracted beam

Figure 5.18 A meta-material designed to have negative refractive index at 10.5 GHz. (a) One unit
of the construction. Units were assembled on a square lattice with period 5 mm to
provide the refracting medium. (b) Refraction experiment using a 18.4◦ prism cut
from the meta-material, which refracted the microwaves by an angle of −61◦
(n = −2.7). (After Shelby et al. (2001))

was not followed up, and when work on the subject was revived after 2000,
a different approach was taken. First, several metals have negative values
of Re(ε) = n2 − k̃2 (§5.6), and silver is typically chosen because Im(ε) is
relatively small. The trouble is that there are no natural materials with negative

Meta-materials, with
sub-wavelength
structures, should be
contrasted with photonic
crystals, to be discussed
in §10.5, where the array
dimensions are
comparable to the
wavelength and the
lattice structure is
important.

μ. In order to obtain this, it is necessary to use resonant circuits, designed to
be above resonance at the frequency of operation. The first materials of this
sort were demonstrated by Smith et al. (2000) and Shelby et al. (2001), and
worked at a frequency of 10.5 GHz (λ= 3 cm). A large number of small (mm-
sized) double split ring resonators were etched in copper film and arranged on a
lattice with period considerably shorter than the wavelength, so that they would
behave as a continuum. Each ring is an inductor L, and the proximity of two
rings created a capacitance C; the design was such that jointly the rings would
have a resonance at a lower frequency

√
LC than that of the wave, creating a

phase difference of π between the applied and induced magnetic fields, and
thus negative μ. The addition of parallel wires created an effective dielectric
medium with a bulk plasma resonance (§13.3.4) frequency which could also
be engineered to be below the wave frequency, creating the necessary negative
ε. A prism constructed from this medium was shown experimentally to deviate
a beam of microwaves by an angle corresponding to n = −2.7 (Fig. 5.18). The
first evidence of sub-wavelength resolution by a superlens (§5.10.1) was also
obtained by this system.

A composite material of this type, which behaves as a continuum despite its
being constructed from a sub-wavelength array of small designed elements, is
called a ‘meta-material’. More recently, meta-materials have been constructed
to provide negative refraction in the infra-red and optical regions; here, the
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negative Re(ε) of silver or other metals can be employed (§5.6), together with
nanometric-scale resonant structures to provide the negative μ.

Chapter summary

In this chapter we studied:

• Maxwell’s equations and their solutions for harmonic waves;

• Plane waves and the relationship between their electric and magnetic

fields;

• The Poynting vector, which describes energy flow in a wave;

• Radiation from accelerating charges, including synchrotron radiation;

• The derivation of Snell’s law of refraction from boundary conditions at

an interface;

• The Fresnel coefficients for reflection and refraction of plane waves at

interfaces;

• Total internal reflection, optical tunnelling and evanescent waves;

• The optics of conducting media, which can be represented by a complex

dielectric constant;

• Relationships between the reflection coefficients at opposite sides of a

loss-less partial reflector;

• Momentum and angular momentum of electromagnetic waves;

• Optical tweezers, which use light pressure to manipulate tiny particles;

• Left-handed, or negative refractive index materials, and how they can

be constructed from sub-wavelength-sized structures.

Problems

5.1. Two equal and opposite dipoles ±p separated by vector l constitute a
quadrupole. There are two generic types, with l ‖ p and l ⊥ p. When
l  λ, show that Eq(r), the field of an oscillating quadrupole, can be
related to that of the dipole Ep by

Eq = −ik0Ep(l · r)/r, (5.106)

and find the frequency dependence and radiation polar diagram for the
power radiated by each of the generic types.

5.2. Estimate the pulse length and hence the peak frequency of synchrotron
radiation from an electron travelling at velocity v ≈ c round a circle of
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radius R. Use the facts that the electron only radiates within an angular
range of ψ = 2/γ (Fig. 5.3) around the line of sight, and it is travelling
almost parallel to the line of sight at almost c.

5.3. Light tunnels between two prisms as in Fig. 5.10. What is the wave
velocity in the tunnelling region? Now consider a Gaussian wave-
group tunnelling through; can it propagate a signal faster than c? (For a
discussion of this topic, see §13.5.)

5.4. Design a beamsplitter for wavelength 0.5μm based on frustrated total
internal reflection, based on two glass prisms with refractive index 1.5
separated by a layer of cement with refractive index 1.3.

5.5. Suppose that a reflector has a completely symmetrical construction
(e.g. a quarter-wavelength-thick free-standing plate, which has non-zero
reflection coefficient). What is the value of R?

5.6. Show that at the Brewster angle the reflected and transmitted rays are
orthogonal. When incidence is in the air, consider the reflected ray as
originating in dipole radiation (Huygens-like) from surface dipoles on
the interface, and show that the reflection coefficient for the ‖ mode
must indeed be zero at this angle. Can you extend this argument to
Brewster-angle reflection when the incidence is within the medium, at
an interface with air?

5.7. A pile of glass plates (n = 1.5) is used to polarize light by Brewster-
angle reflection. If the incident light is incoherent and unpolarized,
derive an expression for the degree of polarization (ratio of ‖ to ⊥) of
the transmitted light as a function of the number of plates.

5.8. Magnesium fluoride (MgF2) has refractive index 1.38. A 45◦, 45◦, 90◦
prism is constructed from this material and is used to turn a light beam
by 90◦ by internal reflection at its hypotenuse. Relate the polarization
vector after the reflection to that before, for both linearly and circularly
polarized light (cf. §9.6).

5.9. A simple (free-electron) metal has conductivity σ . What thickness of
it is necessary as a coating to make a beamsplitter that reflects and
transmits equal intensities of a wave with frequency ω, and how much
of the light is absorbed in the process? Ignore the substrate, to make
things simpler.

5.10. An ellipsoidal dielectric particle is trapped by an optical tweezer. How
will it align with respect to the optical axis?
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5.11. A ball of plastic, n = 1.5 and 1μm diameter is trapped in an optical
tweezer employing a laser that has 10 mW focused into a 3μm focal
spot. Estimate how much force would be required to extract the ball
from the trap.

5.12. Is a small, highly reflecting metal particle attracted or repelled by an
optical tweezer?

5.13. A spiral wave with angular momentum given by m = 1 is reflected from
a perfect mirror. Does the reflected wave have m = +1 or m = −1, and
is angular momentum transferred to the mirror in the process?

5.14. Consider the design of an aplanatic lens (§3.8) using a material with
refractive index −2.
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6 Polarization and anisotropic media

As we saw in Chapter 5, electromagnetic waves in isotropic materials are trans-

verse, their electric and magnetic field vectors E and H being normal to the

direction of propagation k. The direction of E or rather, as we shall see later, the

electric displacement field D, is called the polarization direction, and for any

given direction of propagation there are two independent polarization vectors,

which can be in any two mutually orthogonal directions normal to k. However,

when the medium through which the wave travels is anisotropic, which means

that its properties depend on orientation, the choice of the polarization vectors

is not arbitrary, and the velocities of the two waves may be different. A material

that supports two distinct propagation vectors is called birefringent.

In this chapter, we shall learn:

• about the various types of polarized plane waves that can propagate –

linear, circular and elliptical – and how they are produced;

• how an anisotropic optical material can be described by a dielectric tensor

ε, which relates the fields D and E within the material;

• a simple geometrical representation of wave propagation in an anisotropic

material, the n-surface, which allows the wave propagation properties to

be easily visualized;

• how Maxwell’s equations are written in an anisotropic material, and how

they lead to two particular orthogonally polarized plane-wave solutions;

• that the fields D and B of these plane waves remain transverse to k under

all conditions, but E and H, no longer having to be parallel to D and B, are

not necessarily transverse;

• that the Poynting vector S in an anisotropic material may not be parallel to

the wave-vector k;

• about uniaxial and biaxial crystals, where the particular plane-wave

solutions of Maxwell’s equations are linearly polarized;

• about optically active materials with helical structures where these

solutions are circularly polarized;

• about materials where anisotropy can be induced by external electric,

magnetic or stress fields;

• a little about meta-materials with sub-wavelength structures, which have

interesting ‘designer-controlled’ properties.
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Figure 6.1 An assembly of plastic discs with varying diameters are sandwiched between two
vertical glass plates, but can move freely in the vertical plane under their own
weight. The assembly is visualized between crossed polarizers. The transmitted light
picture uses the photo-elastic properties (§6.9.2) of the plastic to visualize ‘force
chains’ between the discs, showing that their weight is supported by chains of
touching particles. This experiment models the structure and mechanics of
sand-piles. (Experiment by Sarel Matza and Yuval Regev)

Polarization of light has numerous applications, ranging from microscopy to

studies of the magnetic fields in far-away galaxies. Many of them can easily be

seen if we look at the world around us through a polarizing film, which selectively

passes light with a particular direction of the vector E. For example, light from

the blue sky is partially polarized, and when it is reflected from a car windscreen,

the photo-elastic effect visualizes the strain pattern in the glass. Figure 6.1 shows

a dramatic application of this effect in a study of the mechanics of granular

materials.

6.1 Polarized light in isotropic media

Before we enter the complications of anisotropic media, we shall study
two important plane-wave solutions of Maxwell’s equations in an isotropic
medium, and see how they are produced. These are waves that have well-
defined polarization.
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Figure 6.2

Electric field vector at time
t = 0 for (a) linearly
polarized and (b) circularly
polarized waves.
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6.1.1 Linearly polarized light

The simplest basic periodic solution to Maxwell’s equations is a plane wave
in which E, H and k form a triad of mutually perpendicular vectors. This is
called a linearly polarized (or plane-polarized ) wave: E = Ey, H = −Hx
and k = kz in Fig. 6.2(a). The vectors E and k define a plane called the plane
of polarization. We have

E = E0 exp[i(k · r− ωt)], (6.1)

H = H0 exp[i(k · r− ωt)]. (6.2)

The energy flow or Poynting vector S = E×H is parallel to k. For a given
direction of k any pair of orthogonal polarizations can be chosen to represent
independent ways of fulfilling these requirements.

A homogeneous
polarized light wave can
be described either as a
superposition of two
linearly polarized waves
with orthogonal
polarizations, or as a
superposition of two
circularly polarized waves
with opposite senses.
Such descriptions do not
apply to inhomogeneous
waves, such as a spiral
wave (§5.9).

6.1.2 Circularly polarized light

In a medium that responds linearly to electric and magnetic fields (i.e. we
assume B is proportional to H , and D to E), any linear superposition of the
above two linearly polarized waves is also a solution of Maxwell’s equations.
A particularly important case is that in which the two waves are superposed
with a phase difference of π/2 (either positive or negative) between them. If we
take the example where k is in the z-direction, and the two linearly polarized
waves have equal amplitudes

E01 = E0x̂, E02 = E0ŷ, (6.3)

in which x̂ and ŷ are unit vectors along the x- and y-axes, we have the
superposition with π/2 phase difference

E = E0x̂ exp[i(kz− ωt)] + E0ŷ exp[i(kz− ωt + π/2)]. (6.4)
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Remembering that the real electric field is the real part of this complex vector,
we have

ER = E0x̂ cos(kz− ωt)+ E0ŷ sin(kz− ωt). (6.5)

At given z, this represents a vector of length E0 which rotates around the
z-axis at angular velocity ω. The sense of rotation is clockwise as viewed by
an observer; this is called right-handed circularly polarized light.

Alternatively, if we were to freeze the wave at time t = 0, the vector ER has
the form

ER = E0(x̂ cos kz+ ŷ sin kẑ). (6.6)

This vector, when drawn out as a function of z, traces out a right-handed screw
(Fig. 6.2(b)). The magnetic field traces a similar screw, describing H ⊥ E.

If the phase difference between the two linearly polarized components is
−π/2, a second independent polarization, in which the sense of rotation of E
is anti-clockwise, is created. This is called left-handed circularly polarized
light. At given t, the vector traces out a left-handed screw.

6.1.3 Elliptically polarized light

The superposition described in §6.1.2 need not involve two linearly polarized
waves of equal amplitude. If the two waves have amplitudes E0x and E0y, then
it is easy to see that the vector in Fig. 6.2 traces out a screw of elliptical cross-
section. Similarly, at constant z, the vector ER traces out an ellipse. This type
of light is called elliptically polarized light and also has left- and right-handed
senses.

6.1.4 Fundamental significance of polarized types

When we introduce quantum optics in Chapter 14, we shall see that the quantum
statistics of the electromagnetic field are equivalent to those of an ensemble of
identical particles with Bose statistics. These are called photons. In order to
have such statistics, they must have integral spin. Moreover, we shall see that
in order to conserve angular momentum when light interacts with atoms, this

Linearly polarized light is
not a pure photon state,
but is a superposition of
photons with positive
and negative spin.

must be±1 units of �. It therefore emerges that the closest equivalent to a single
photon is a wave with circular polarization, right-handed for spin= +1 and
left-handed for spin= −1 (Problem 6.17). Linearly polarized light should then
be rightly considered as the superposition of two circularly polarized waves
with opposite handedness; the direction of polarization achieved then depends
on the phase difference between the two circularly polarized waves.
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6.1.5 Partially polarized and unpolarized light

Light generated by a discharge or filament lamp is generally not polarized.
What this really means is that such light can be described as a superposi-
tion of many linearly polarized waves, each having its own random plane of
polarization and individual phase. Moreover, because the light is not strictly
monochromatic, the phase relation between the waves changes with time. Such
a chaotic collection of waves has no discernable polarization properties and
is called unpolarized. Sometimes, such light has a statistical preference for a
particular plane of polarization because of some anisotropy in the medium and
is partially polarized. An example is light from blue sky, where scattering
provides the anisotropy (§13.2.2).

It is sometimes necessary to describe the degree of polarization of a light
wave. There are several ways of doing this, which are described in detail
in specialized texts (e.g. Azzam and Bashara (1989)). Basically, incoherent
partially polarized light (the most general practical case) can be described
by an unpolarized intensity plus a polarized intensity, the latter of which has
an axis, degree of elliptical polarization and sense of rotation. It is possible to
express these properties in terms of four parameters, which form a four-element
vector called the Stokes vector. A polarizing element or mirror, which changes
the polarization state of a wave, can then be described by a 4× 4 matrix called
a Müller matrix, which multiplies the Stokes vector of the incident wave to
give that of the outgoing one. If the light is coherent, fewer parameters are
needed to describe it, since an unpolarized coherent component does not exist.
We shall not use these descriptions in the rest of this book, and therefore will
not discuss them further.

6.1.6 Orthogonal polarization states

Two modes of polarization are called orthogonal if their electric field vectors
are orthogonal in the conventional manner:

E1 · E∗2 = 0. (6.7)

The electric field vector intended here is the complex amplitude1 which mul-
tiplies exp[i(k · r − ωt)]. For example, for linearly polarized waves, these
amplitudes are two real vectors which are orthogonal in the usual geometric
sense; E1 normal to E2 implies that

1 E as observed is a real electric field. The complex E used in the mathematics here is a complex
function whose real part is the observed field. The relationship between the two, the Hilbert
transform, was discussed in §4.5.1.
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E1xE2x + E1yE2y = 0. (6.8)

Two circularly polarized waves with opposite senses are likewise orthogonal.
From (6.4) we have

E1 = E0(x̂+ iŷ), E2 = E0(x̂− iŷ)

E1 · E∗2 = E2
0(x̂ · x̂+ i2ŷ · ŷ) = 0. (6.9)

Any elliptically polarized mode has an orthogonal companion; the two can be
shown to have the same ellipticity but with major and minor axes interchanged
and opposite senses.

6.2 Production of polarized light

Any dependence of the propagation properties of light on its polarization can
be used, in principle, to produce polarized light. Two well-known phenomena
having this property are reflection at the surface of a dielectric (§5.4) and scat-
tering by small particles (§13.2.2). Other methods, which will be discussed in
more detail later, involve crystal propagation (§6.8.3) and selective absorption
(dichroism, §6.2.2).

The action of ‘polarizing light’ essentially means taking unpolarized light
and extracting from it a beam of polarized (linear, circular or elliptical) light.

There is no way of
creating a beam of
polarized light from a
beam of unpolarized light
without either wasting
part of its energy or
changing its geometrical
properties.

The rest of the light, which is sometimes just as well polarized in an orthogonal
orientation, is wasted, or may be used for some other purpose. There is no way
of reorganizing the light so as to get a single beam of polarized light from an
unpolarized source without making the beam either broader or more divergent.
Such a process, were it possible, could be used to defy the second law of
thermodynamics! (Problem 6.10).

6.2.1 Polarization by reflection

One of the easiest ways to polarize light is to reflect it from a plane dielectric
surface between two media at the Brewster angle (§5.4.2):

ı̂B = tan−1 nr, (6.10)

where nr is the ratio between their refractive indices. At this angle, the reflection
coefficient for the ‖ component is zero; thus the reflected light is completely
polarized in the ⊥ direction (Fig. 6.3). However, even for this component the
reflection coefficient is small (typically 5–6%) so that this method of polariza-
tion is quite inefficient. The polarization is also complete only for a specified
angle of incidence. By stacking several plates in series, each one of which
reflects some of the⊥ component, the transmitted ‖ component can be polarized
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Figure 6.3

Polarization by reflection at
the Brewster angle. The
reflected light is
‖-polarized, since the
reflection coefficient
R⊥ = 0.

Unpolarized light -polarization
only

Transparent plate

ιB

⊥

reasonably well, with less angular sensitivity (Problem 5.7). Polarization by
Brewster-angle reflection has one important practical property; it is automati-
cally calibrated in the sense that the geometry alone defines exactly the plane
of polarization. It is also extremely sensitive to surface quality and structure,
a property that is exploited in the technique of ellipsometry for investigating
interfaces (Azzam and Bashara (1989), Tompkins (2006)).

Crystal polarizers use total internal reflection to separate polarized com-
ponents from unpolarized light, and must be used if the highest quality of
polarization is required. We shall discuss these in more detail in §6.8.3.

6.2.2 Polarization by absorption

Several materials, both natural and synthetic, absorb different polarizations by
different amounts. This behaviour is called dichroism. It is widely used to
polarize light linearly, and may also be used to polarize it circularly.

A well-known mechanism that polarizes light linearly by this effect is a
parallel grid of conducting wires separated by less than one wavelength. This
system transmits most of the light when its electric polarization vector is normal
to the wires. No diffraction orders are created (§8.5.3) if the separation is less
than λ. But if the electric field vector is parallel to the wires, currents are
induced in them and the wave energy is absorbed. So an incident unpolarized
beam emerges polarized fairly well normal to the wires.2 Polarizers of this sort
are constructed by microfabrication or ion-implantation of gold or silver strips
on a transparent dielectric substrate. The most common polarizing material,
‘Polaroid’, also uses this mechanism (see Box 6.1).

6.2.3 Extinction ratio

A measure of the effectiveness of a polarizer is gained by passing unpolarized
light through two identical devices in series. If the two transmit along parallel
axes, a single component is transmitted by both, and the output intensity is
I1. If the two polarizers are now ‘crossed’, so that the transmitting axes are
perpendicular, ideally no light would be transmitted, but in practice a small
intensity I2 passes. Careful orientation of the polarizers minimizes this value.

2 This is popular and easy to demonstrate using centimetre microwaves.
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Box 6.1 Dichroic polarizers: Polaroid film

Polaroid film,3 developed by Edwin Land in 1932, works like the array
of thin conducting wires, which are in this case produced chemically. It
is manufactured in two different ways. The original method consisted of
putting many microscopic needle-shaped crystals of iodoquinine sulphate
(herapathite) into a transparent nitrocellulose film, which was then stretched
to align the crystals. In 1938 Land improved the process and the Polaroid
film we now use consists of a stretched film of polyvinyl alcohol dyed with
iodine. The oriented conducting polymeric chains behave similarly to the
wire grid. This material is cheap to produce and can be made in thin sheets
of almost unlimited size.

The ratio I1/I2 is called the extinction ratio. In good crystal polarizers this
may be as high as 107, and a similar value can be obtained for clean reflectors
exactly at the Brewster angle. Polaroid typically gives a value of 103.

6.3 Wave propagation in anisotropic media:
A generalized approach

In the next two sections we shall discuss the way in which the electromagnetic
wave propagation theory in Chapter 5 must be extended to take into account
the anisotropic (orientation dependent) properties of the material. This will
be done at a purely phenomenological level; no account will be given of the
atomic or molecular origin of the anisotropy, which is a subject well outside
the scope of this book.

6.3.1 Huygens’ construction

We shall first discuss the general relationship between propagation of waves and
rays and anisotropic properties. This was first done in about 1650 by Huygens,
who considered ‘wavelets’ originating from points on a given wavefront AB of
limited extent, as in Fig. 6.4 (see also Fig. 2.6(b)). If the velocity is a function
of the direction of propagation, the wavelets are not spherical; we shall see
that they are in fact ellipsoidal. The new wavefront A1B1 is then the common
tangent to the wavelets, as shown. But the position of the wavefront A1B1
moves sideways, showing that the light ray which it represents is at an angle to
the wave-vector. This is a common feature of crystal propagation: the Poynting

3 The widely used polarizing film commonly called ‘Polaroid’ should not be confused with instant
Polaroid photographic film, which has now been made obsolete by the digital camera.
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Figure 6.4

Huygens’ principle applied
to propagation of a limited
beam in an anisotropic
medium. The black spots
emphasize the points
where the wavefront is
tangent to the wavelets;
these points are not
necessarily on the
symmetry axes of the
ellipsoid.
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vector S, represented by the direction AA1 of the light ray, is not in general
parallel to k.

6.3.2 The refractive-index surface, or n-surface

The exact relationship between the velocity anisotropy and S can easily be
visualized by a geometrical method. To establish the method we need a small

The n-surface in optics is
analogous to the Fermi
surface of a metal in
solid-state physics. The
same idea can be applied
to any type of wave
propagation.

amount of formal mathematics. For monochromatic light at frequency ω0 the
refractive index, since it is a function of the direction of propagation, can be
written as a vector:

n = ck
ω0

, (6.11)

where k has the value of the wave-vector measured in the medium for
propagation in that direction, and the vector n has the same direction.

Now the phase velocity is v = ω/k. The group velocity vg, which is the
velocity of propagation of energy and therefore corresponds in direction to S,
has components, by extension of §2.4,

vgx = ∂ω

∂kx
, vgy = ∂ω

∂ky
, vgz = ∂ω

∂kz
. (6.12)

This is written in vector terminology:

vg = ∇k ω ≡
(
∂ω

∂kx
,
∂ω

∂ky
,
∂ω

∂kz

)
(6.13)

= c
ω0

(
∂ω

∂nx
,
∂ω

∂ny
,
∂ω

∂nz

)
= c

ω0
∇n ω. (6.14)
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Figure 6.5

Construction of the
n-surface, which is a polar
plot of the value of n as a
function of the direction of
propagation k̂. The
Poynting vector S has
direction normal to the
surface; n is defined as
parallel to the propagation
vector k.
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We shall now represent the propagation properties in the medium by the vector
n. At a particular value ω = ω0 this has a given value for each direction of
propagation and therefore can be represented by a closed surface.4 The radius
vector, from the origin to the surface, in each direction is equal to the value
of n for propagation in that direction. We shall call this the refractive-index
surface, or n-surface. In other texts, for example Born and Wolf (1999), it
is called the inverse surface of wave-normals. Since (6.14) is analogous to
the well-known electrostatic relationship E = −∇V , which shows that lines of
electric field E are normal to the equipotential surfaces V= constant, it follows
similarly that the vector vg (6.14) is normal to the surface of constant ω, i.e.
normal to the n-surface. The velocity vg can be identified with the Poynting
vector S (§5.2.1) since both represent the transfer of energy.

In general, once we have found the n-surface for a given material at frequency
ω0, we can investigate wave propagation in that material geometrically. For
a given wave-vector k (Fig. 6.5), we find the appropriate value of n as the
radius of the n-surface in direction k, and the direction of S as the normal to
the n-surface at that point. Clearly, in an isotropic material the n-surface is a
sphere, and S ‖ k.

6.4 Electromagnetic waves in an
anisotropic medium

We shall now solve Maxwell’s equations when the dielectric properties of the
medium are anisotropic. As in most of Chapter 5, we assume no magnetic
polarization (i.e. μ = 1) since this is usually the case in transparent media at
optical frequencies. For harmonic plane waves of the form

E = E0 exp[i(k · r− ωt)] (6.15)

4 If there is no propagation possible in a certain direction, the surface does not exist in that orien-
tation, and is therefore not closed. This happens if, for example, the propagation is evanescent
in that direction. See §6.10, for example.
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Figure 6.6

(a) The vectors k, E and
k × (k × E); (b) vectors D, E,
S, k and H for a wave. k
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we once again use the operator substitutions (§2.2) as we did in §5.1:

∂

∂t
= −iω, ∇ = ik. (6.16)

Maxwell’s equations in an uncharged insulator then emerge as:

∇ · B = 0 ⇒ ik · B = 0, (6.17)

∇ · D = 0 ⇒ ik · D = 0, (6.18)

∇ ×H = ∂D
∂t
⇒ ik×H = −iωD, (6.19)

∇ × E = −∂B
∂t
⇒ ik× E = iωB. (6.20)

These equations should be compared with (5.16)–(5.19). Notice that D and B
are transverse (normal to k). Substituting μ0H for B (non-magnetic material),
we take (k×) equation (6.20) and get

k× (k× E) = μ0ωk×H = −μ0ω
2D. (6.21)

This equation relates the vectors k, E and D. In the isotropic case, D = ε0εE,
giving k× (k× E) = −k2E = −μ0ω

2ε0εE, which can easily be seen to
revert to (5.13).

First we look at the disposition of the vectors in (6.21). The vector k×(k×E)

lies in the plane of k and E, normal to k. For the equation to have a solution at
all, D must therefore lie in the plane of k and E. We also know from (6.18)
that D is normal to k, as illustrated in Fig. 6.6. This condition defines what we
shall call a characteristic wave, which is a propagation mode for the material.
For such a wave, there is an angle θ between E and D and

In anisotropic media the
electric field is not
necessarily transverse to
k, but the displacement
field D is always
transverse.

|k× (k× E)| = k2E cos θ = μ0ω
2D. (6.22)

The wave velocity is thus given by

v2 = ω2

k2 =
E cos θ
μ0D

. (6.23)
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Finally, from (6.17)–(6.19), the magnetic fields B and H are normal to k and
to D, so that a full picture of the disposition of the vectors D, E, k, H and the
Poynting vector S = E×H can be drawn, Fig. 6.6(b).

The problem we have to solve for a particular medium is, having chosen
the direction of the wave-vector k, to identify the characteristic waves, which
means finding those directions of D that result in coplanar D, E and k. Then
the wave velocity and refractive index n = c/v can be found from (6.23).
There will be in general two distinct solutions for each direction of k (under
some circumstances they may be degenerate). The polarizations of the two
characteristic waves will be found to be orthogonal (§6.1.6). Thus when we
construct the n-surface (§6.3.2) we shall find it to be doubly valued (i.e. two
values of n in each direction), which leads to many interesting and important
properties. For this reason, anisotropic optical crystals are called birefringent.

6.5 Crystal optics

In this section we shall first describe how the dielectric properties of an
anisotropic material are described by a tensor (or matrix), which can be rep-
resented geometrically by means of an ellipsoid. We then go on to use the
geometry of the ellipsoid to find the characteristic waves for the material and
their velocities. These define the shape of the n-surface, from which all the
optical properties can then be deduced.

6.5.1 The dielectric tensor

Crystals are anisotropic because of their microscopic structure. Here we shall
only consider the anisotropy as a continuum phenomena, because interatomic
distances are orders of magnitude smaller than the light wavelength. In an
anisotropic linear dielectric medium, the vectors D and E are proportional in
magnitude, but not necessarily parallel, so that we write a tensor relationship

D = ε0εE. (6.24)

In (6.24) the dielectric tensor, ε, represents the matrix

Three principal dielectric
constants are needed to
describe the relationship
between D and E; in the
most general case they
are all different.

ε =
⎛
⎝ε11 ε12 ε13
ε21 ε22 ε23
ε31 ε32 ε33

⎞
⎠. (6.25)

Its meaning is straightforward. If an electric field E = (E1, E2, E3) is applied,
the resulting displacement field D has components (D1, D2, D3) where

Di = ε0[εi1E1 + εi2E2 + εi3E3]. (6.26)



173 6.5 Crystal optics

The theory of linear algebra shows that there always exist three principal axes
(i = 1, 2, 3) for which Di and Ei are parallel. We then have three principal
dielectric constants εi defined by

D1i
E1i

= D2i
E2i

= D3i
E3i

= ε0 εi. (6.27)

The three principal axes are mutually orthogonal and, for a non-absorbing
crystal, the εi’s are real. By using these three axes as x, y and z, the tensor
(6.25) can be written in a simpler diagonal form, which we shall use as far as
possible:

ε =
⎛
⎝ε1 0 0

0 ε2 0
0 0 ε3

⎞
⎠ . (6.28)

In a non-absorbing medium, ε1, ε2 and ε3 are real; this can be shown to be
equivalent to εji = ε∗ij in (6.25), and is the definition of a Hermitian tensor. The
process of rotating the tensor so that (x, y, z) become principal axes is called
diagonalizing the tensor and the technique for doing it is discussed in every
book on linear algebra. The most general crystal, called a biaxial crystal for
reasons which will be apparent later, has three distinct values for ε1, ε2, ε3; in
crystals with higher symmetry, uniaxial crystals, two of the values are equal
(say, ε1 = ε2). If all three are equal, the material is isotropic.

6.5.2 The index ellipsoid, or optical indicatrix

To carry out our plan of presenting crystal optics geometrically we need to
represent the tensor as an ellipsoid. In general, the ellipsoid with semi-axes
a, b, c is the surface

x2

a2 +
y2

b2 +
z2

c2 = 1. (6.29)

In formal terms this can be written

(x, y, z)

⎛
⎝a−2 0 0

0 b−2 0
0 0 c−2

⎞
⎠
⎛
⎝ x

y
z

⎞
⎠ = 1, (6.30)

or, in shorthand r ·M · r = 1. (6.31)

The inverse to (6.24) is

E = ε−1
0 ε−1 · D, (6.32)
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Figure 6.7

The optical indicatrix and
the relationship between D
and E. E is normal to the
surface of the indicatrix.

Dz

DyDx

D
E
(normal to ellipsoid)

where, for the diagonal form (6.28),

ε−1 ≡
⎛
⎜⎝ε−1

1 0 0
0 ε−1

2 0
0 0 ε−1

3

⎞
⎟⎠. (6.33)

We can now study the geometrical meaning of the formal equation ε0D · E = 1
which becomes, using (6.32),

D · ε−1 · D = 1. (6.34)

This is represented by the ellipsoid (6.30) if (x, y, z) replaces D, ε1 = a2,
ε2 = b2 and ε3 = c2, i.e.

D2
x

ε1
+ D2

y

ε2
+ D2

z
ε3
= 1. (6.35)

Thus the ellipsoid, Fig. 6.7, has semi-axes ε
1
2
1 , ε

1
2
2 , ε

1
2
3 which we shall see

to be three principal values of the refractive index n (remember that in an
isotropic medium n = ε

1
2 : §5.1.2). To understand the meaning of the ellipsoid,

we imagine D varying in direction, its length being calculated at each point so
that D · E = 1 (in units of energy density). The tip of the vector D then traces
out the ellipsoid. The vector E can be shown to have the direction of the normal
to the ellipsoid at the tip of D (Fig. 6.7).5

The polarization vector of
a propagating wave
determines its velocity.

5 Proof: the tangent plane to the ellipsoid (6.29) at (x1, y1, z1) is

xx1
a2 + yy1

b2 + zz1
c2 = 1. (6.36)

A vector normal to this plane is (x1/a2, y1/b2, z1/c2). Replacing (x1, y1, z1) by D and a2 by ε1,
etc., shows this normal to be in the direction of E.
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Figure 6.8

(a) The elliptical section of
the indicatrix PQRS which is
normal to k. (b) The
tangent planes are
indicated at two points on
PQRS to show that on the
axes (at P, for example) D,
E and k are coplanar, but
not at other points. (c)
Projection of E on the plane
of the ellipse emphasizes
the fact that only at the
extrema are D, E and k
coplanar.

P

QS

R

k

(a) (c)

(b)

E

D O

Q

E D
R

P

S
E

D
E

E

D

D

k

The refractive index n for the wave with polarization vector D then follows
simply:

n2 = c2

v2 =
c2μ0D
E cos θ

= ε0c2μ0D2

ε0ED cos θ
= D2 (6.37)

since ε0ED cos θ = ε0E · D= 1 at all points on the ellipsoid and ε0μ0c2= 1.
Thus n = |D|. In other words, the radius vector of the ellipsoid in each direc-
tion equals the refractive index of the medium for a wave with polarization
vector D in that direction. This ellipsoid is called the index ellipsoid or opti-
cal indicatrix. Notice, by the way, that the values have come out correctly in a

principal direction, x for example; the ellipsoid has semi-axis ε
1
2
1 , which is just

the refractive index for a wave polarized in that direction. It is most important
to realize that it is the polarization direction, not the propagation direction,
which determines the velocity of the wave. Waves propagating in different
directions, but with the same polarization vector, travel at the same velocity.

6.5.3 Characteristic waves

We now have to determine the polarizations and velocities of the characteristic
waves for a given propagation direction k. We saw, in §6.4, that the requirement
for characteristic waves is that D, E and k have to be coplanar. We now have the
means to find them. We proceed as follows, given the propagation vector k:

1. We find all possible polarizations D. These lie in a plane normal to k since
D is always transverse (6.18).

2. We construct E for each D using the indicatrix. Recall that E is normal to
the surface of the indicatrix at the tip of D (§6.5.2).

3. We look for coplanar D, E and k.

Figure 6.8 illustrates these stages. In stage 1, we construct a plane normal
to k through the origin. It intersects the indicatrix in an ellipse. In stage 2, we
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Figure 6.9

Photograph of refraction of
an unpolarized laser beam
by a crystal of sodium
nitrate (NaNO3), whose
natural growth facets form
a prism. A reflected beam
and two refracted beams
are visible, showing the
existence of two refractive
indices. At P the refracted
beams meet a polarizer,
which transmits only one
beam.

Incident

Reflected

Refracted

Crystal

construct E normal to the indicatrix at each point on the intersection ellipse.
By symmetry, stage 3 selects the points which are on the major and minor axes
of the intersection ellipse as those for which E lies in the (k, D) plane. Thus
there are always two characteristic waves for propagation with a particular k,
and OP and OQ in the figure represent their polarization vectors, which must
be orthogonal. Their refractive indices are given by the lengths of OP and OQ.
The existence of two waves with different refractive indices and polarizations
is shown by the photograph in Fig. 6.9.

6.5.4 The n-surface for a crystal

We can get a good idea of the shape of the n-surface in three dimensions by
working out its sections in the (x, y), (y, z) and (z, x) planes. Without loss of
generality, assume the indicatrix to have minor, intermediate and major axes of
lengths n1, n2 and n3 along the x, y and z-axes respectively.

The n-surface is
constructed from two
sheets, representing two
orthogonal polarization
states.

Start with k along x and consider what happens as it rotates in the (x, y)
plane, as in Fig. 6.10. When k is along the x-axis, the ellipse PQRS of Fig. 6.8
has its major and minor axes OZ = n3 and OY = n2. When k rotates around
z, OZ is always the major axis, but the minor axis changes gradually from OY
to OX = n1, which value it reaches when k is along y. Plotting the two values
of n on a polar plot as a function of the direction of k gives us the section of
the n-surface in the (x, y) plane. Figure 6.11(a) shows the result. There is a
circle, radius n3, corresponding to polarization in the z-direction and an ellipse
(n2, n1)

6 corresponding to polarizations orthogonal to z and k.

Dx

Dz

Dy

k

P

Q

R

S

Figure 6.10

Section of the indicatrix
when k lies in the (x, y)

plane.

In the same way we construct the sections in the (y, z) plane (Fig. 6.11(b)) and
(z, x) plane (Fig. 6.12). The latter figure shows the circle of radius n2 to intersect
the ellipse (n3, n1) at four points A. These correspond to two circular sections
of the indicatrix (Fig. 6.13), and the directions k corresponding to the OA’s are
called optic axes. For propagation in these directions, the two characteristic
waves are degenerate (and so in fact any two orthogonal polarizations could
be chosen for characteristic waves). Since there are two such orientations OA,
the general crystal (n3 �= n2 �= n1) is called biaxial. It is quite easy to see that
6 Meaning the ellipse with major axis n2 and minor axis n1.
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Figure 6.11

Sections of the n-surface
(a) in the (x, y) plane and
(b) in the (y, z) plane.
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Figure 6.12

Section of the n-surface in
the (z, x) plane. The two
directions OA are the optic
axes.
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there are no other circular sections of the general ellipsoid, so there are no other
optic axes.

Construction of the complete n-surface can now be done, qualitatively, by
interpolation, and this will serve us sufficiently for understanding the physics
of crystal optics. One octant of the surface is shown in Fig. 6.14. The surface
clearly has two branches, which we shall call ‘outer’ and ‘inner’. They touch
along the optic axis, which is the only direction for which the refractive indices
of the two characteristic waves are equal. The other octants are constructed by
reflection.

nz

nx

Optic
axis

Optic
axis

Figure 6.13

Two circular sections of the
indicatrix.

6.5.5 Ordinary and extraordinary rays

Once we have constructed the n-surface, it is in principle a simple matter to
deduce the polarizations and Poynting vectors S of the two characteristic waves
in any given direction (Fig. 6.15). We associate with each direction of k and
characteristic polarization a ray that travels in the direction of S. The ray is
what is actually seen when a wave travels through a crystal (Fig. 6.16), and the
existence of two rays for any given k direction gives rise to the well-known
phenomenon of the double image (see Fig. 1.3). Two types of ray can be
defined:

– an ordinary ray, for which S and k are parallel;
– an extraordinary ray, for which S and k are not parallel.
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Figure 6.14

One octant of the n-surface
for a biaxial crystal,
showing the inner and
outer branches.
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Figure 6.15 The n-surface for a biaxial crystal. Suffix ‘i’ refers to the inner branch, which is
shaded, and ‘o’ to the outer branch. k1 represents the most general direction for
which there are two extraordinary rays. k2 lies in a symmetry plane, and there is one
ordinary and one extraordinary ray. k3 lies along a symmetry axis, and there are two
ordinary rays. k4 is along the optic axis OA and S is located on a cone, in a direction
depending on the polarization vector D. k5 is used to show how the vector H is
constructed normal to k and S, and D, normal to k and H.

Figure 6.16

An unpolarized light ray
splits into two as it
traverses a crystal plate;
this is the origin of the term
birefringent. The angles
between extraordinary rays
and the interface clearly do
not satisfy Snell’s law. The
optic axis is in direction OA.

A

O

Since Snell’s law applies to the directions of k, it applies to S as well only for
ordinary waves. In general we find one general and two special cases, which
are illustrated by Fig. 6.16:
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1. In an arbitrary direction k1 both surfaces give rise to extraordinary rays.
Once S and k are known, the magnetic field vector H is determined by
being their common normal, and the polarization vector D by being the
common normal to k and H.

2. If k2 lies in a symmetry plane (x, y), (y, z) or (z, x) there is one ordinary and
one extraordinary ray.

3. If k3 lies along one of the axes x, y or z, both rays are ordinary, despite their
having different values of n.

6.5.6 Conical propagation

A peculiar form of propagation occurs when k is along the optic axis (k4 in
Fig. 6.15). Because of the degeneracy of n, any polarization can be chosen
(§6.5.4), but each one gives rise to a different S. The various S’s possible
lie on a cone, one edge of which is along the optic axis. If we have a plate of
a biaxial crystal, and an unpolarized light beam is incident on it so that it is
refracted into the optic axis, the light spreads out into a conical surface inside
the crystal, and exits the plate as a ring. This phenomenon is called external
conical refraction. Conical refraction also occurs in photonic crystals, which
are discussed in §10.5.

6.6 Uniaxial crystals

Many crystals have a dielectric tensor that has only two distinct principal values.
Then (6.28) becomes

ε =
⎛
⎝ε1 0 0

0 ε1 0
0 0 ε3

⎞
⎠. (6.38)

It follows that the indicatrix is a spheroid (ellipsoid of revolution) with one
semi-axis of length n3 and circular section of radius n1. Visualizing the n-
surface via its sections gives once again a two-branched surface. One branch
is a sphere of radius n1; the other is a spheroid with semi-axis n1 and section
of radius n3. It is immediately apparent that the two branches touch along the
nz-axis, which is the only optic axis (Fig. 6.17(a)). Hence the name for such
crystals, uniaxial crystals. It is usual to refer to n1 as the ordinary index (no)
and n3 as the extraordinary index (ne); if ne > no, the crystal is said to be
positive uniaxial, and if ne < no, negative uniaxial. Table 6.1 gives several
examples.
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Table 6.1. Refractive indices of some common biaxial and uniaxial
crystals at λ = 589 nm

Principal refractive indices

Crystal n1 (no) n2 n3 (ne)

Mica [typically (KF)2(Al2O3)3(SiO2)6(H2O)] 1.582 1.587 1.552
Lithium borate [LiB3O5] 1.578 1.601 1.621
Lithium niobate [LiNbO3] 2.30 2.21
Calcite, or Iceland spar [CaCO3] 1.66 1.49
Potassium di-hydrogen phosphate, KDP [KH2PO4] 1.51 1.47
Crystalline quartz [SiO2] 1.54 1.55
Sapphire [Al2O3] 1.768 1.760
Sodium nitrate [NaNO3] 1.59 1.34
Calomel [Hg2Cl2] 1.97 2.66
Ice [H2O] 1.309 1.311

Figure 6.17

Axial sections of the
n-surface of uniaxial
crystals: (a) such as calcite,
(b) such as quartz, which is
also optically active. O

nz

nx

nz

nx

O

(a) (b)

6.6.1 Propagation in a uniaxial crystal

It follows from the form of the n-surface, as the reader will easily verify, that:

1. For a general k there is one ordinary and one extraordinary ray;
2. For k along the optic axis, there are two degenerate ordinary rays;
3. For k normal to the optic axis, two ordinary rays propagate with indices no

and ne. The former is polarized along the optic axis (z) and the latter in the
orthogonal direction in the (x, y) plane.

4. Conical propagation does not occur.

6.6.2 Optical activity

When a linearly polarized wave enters a quartz crystal along its optic axis, it is
found that the plane of polarization rotates at about 22◦ per mm of propagation.
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Figure 6.18

Positions of silicon atoms in
right- and left-handed
quartz, projected on a
plane normal to the optic
axis. The broken line
outlines the unit cell,
within which there are
atoms at levels of 0, 1

3 and
2
3 of the cell height,
indicated by open, shaded
and filled circles
respectively. These form
helices of opposite sense in
the two diagrams. Quartz is a uniaxial crystal, so this is not consistent with the behaviour that

we have described so far. The continuous rotation of the plane of polariza-
tion is known as optical activity and can occur in any material, crystalline
or non-crystalline, having a helical structure – such as quartz which occurs
naturally in both right- and left-handed versions (Fig. 6.18). Sugar solutions
are the most well-known examples of non-crystalline optically active media;
dextrose rotates the polarization in a right-handed sense, whereas laevulose is
the opposite.

Phenomenologically the dielectric properties of an optically active uniaxial
crystal can be described by a Hermitian dielectric tensor with imaginary off-

Optical activity, in which
the plane of polarization
rotates with propagation,
is the only birefringent
property that can be
associated with an
isotropic medium, such
as a liquid.

diagonal components.7 We write

ε =
⎛
⎝ ε1 ia 0
−ia ε1 0

0 0 ε3

⎞
⎠. (6.39)

This tensor satisfies εij= ε∗ji , i.e. is Hermitian, and can be diagonalized to
give principal values ε1 + a, ε1 − a and ε3. The principal polarizations are,
respectively, D1= (1, i, 0), D2= (1,−i, 0), D3= (0, 0, 1). The first two repre-
sent circularly polarized waves propagating along the z-axis, since they show
π/2 phase differences between the oscillations of their x and y components.

When a wave propagates parallel to z in such a medium we can now see why
its plane of polarization rotates. A linearly polarized wave can be constructed
from the superposition of two circularly polarized waves of opposite senses:

Dr = D0(1, i, 0) exp[i(nrk0z− ωt)], (6.40)

Dl = D0(1,−i, 0) exp[i(nlk0z− ωt)], (6.41)

7 We shall derive such a tensor for a magneto-optical medium in §13.3.5.
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in which the refractive indices nr and nl are, respectively, (ε1 ± a)
1
2 . Their

mean is n̄ and difference δn. Combined:

D = Dr + Dl = 2D0

(
x̂ cos

1
2
δn k0z+ ŷ sin

1
2
δn k0z

)
exp[i(n̄k0z− ωt)].

(6.42)

The angle of the plane of polarization, tan−1(Dx/Dy)= 1
2δn k0z, increases

continuously with z. The rate of 22◦ per mm gives, for green light, δn ≈
7× 10−5. Because this value is so small, quartz behaves as a normal uniaxial
crystal for propagation in all directions except very close to the optic axis. Its
n-surface is shown schematically in Fig. 6.17(b).

An isotropic optically active material, such as sugar solution, can be
described by an n-surface consisting of two concentric spheres, with radii
nr and nl.

Corn syrup is a popular
and inexpensive material
that shows strong optical
activity.

6.7 Interference figures: Picturing the anisotropic
properties of a crystal

A useful and beautiful way of characterizing the anisotropic properties of
crystals is to observe the interference pattern between the two characteristic
waves, presented as a function of the angle of incidence of the light. These
patterns, called interference figures or conoscopic figures, have symmetry
related to that of the n-surface, and provide quantitative information about the
differences between nx, ny and nz. In white light, the figures are beautifully
coloured. To see the interference figure, place a parallel-sided crystal plate
between crossed polarizers. If the crystal is large enough, simply look through
this sandwich at a distant extended source, so that each point in the image
corresponds to parallel light that has crossed the crystal at a different angle.
If the sample is small, the same effect can be obtained in a microscope by
using the condenser to focus a distant source to a point in the crystal, and
then observing the far-field image in the back focal plane of the microscope
objective. The two methods are shown in Fig. 6.19. Sometimes a quarter-wave
plate is added before the condenser lens.

The basic principle underlying interference figures is that the optical path
lengths of the two characteristic waves differ within the crystal plate, and
therefore if both are excited together, and both have field components parallel
to the analyzer, they will interfere to give an interference pattern. Since the path
differences are a function of the direction of propagation, but not of the position
in the crystal, a clear interference pattern will be seen in the far field (§9.3.3).
The exact details of the patterns are quite complicated, mainly because the two
waves in the crystal are refracted to different angles and therefore do not travel
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Figure 6.19 Three methods of observing interference figures in crystals. (a) A distant extended
source is observed through a parallel-sided crystal slab placed between crossed
polarizers, so that each point on the source provides illumination in a different
direction. (b) In a microscope the condenser is used to focus linearly polarized light
to a point in the crystal, and the transmitted light is observed through a crossed
analyzer in the back focal plane of the objective. (c) A laser beam is focused into the
crystal sandwiched between polarizers and its projection observed on a screen.

parallel to one another, but a good qualitative understanding can be obtained if
this fact is ignored. A full analysis can be found in Born and Wolf (1999) and
a practical description in the website of Derochette (2008).

We shall consider the case of a crystal plate with thickness h placed between
crossed polarizer and analyzer (Fig. 6.20). In this case, an isotropic material
would give a completely black field. The waves travel within the crystal in a
direction defined by the polar angle θ , measured with respect to the normal to the
crystal plate, and the azimuthal angleφ. Theφ axis is defined such that the polar-
izer and analyzer transmit waves with electric field along φ = 0 and φ = π/2
respectively. Now, as we mentioned before, here we assume that the two char-
acteristic waves travel at the same angle θ within the crystal (this corresponds to
a different angle θext outside the crystal because of Snell’s law, but this does not
affect the qualitative observations). The two characteristic waves travelling in
direction (θ ,φ) have refractive indices n1(θ ,φ) and n2(θ ,φ), and polarization
vectors at azimuthal angles ψ(θ ,φ) and π/2 + ψ(θ ,φ). Their optical paths
within the crystal are therefore hn1 cos θ and hn2 cos θ and their amplitudes

An interference figure
arises because the optical
path difference between
the characteristic waves
is a function of the angle
of incidence.

within the crystal are proportional to cosψ and sinψ respectively. When they
interfere at the crossed analyzer, their amplitudes are multiplied respectively
by sinψ and − cosψ , giving interference fringes with intensity profile

I(θ ,φ) = I0 cos2ψ sin2ψ sin2[(n1 − n2)hk0 cos θ ]. (6.43)

Since we are looking in the far field, the observation shows this light intensity
as a function of θext.

x

y

z

qf

k

Figure 6.20

Coordinates for describing
conoscopic figures.
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Figure 6.21

Interference figure of
a uniaxial crystal:
(a) theoretical result
(6.44); (b) observed figure
in a crystal of lithium
niobate (LiNbO3) at
λ = 632 nm.

(a) (b)

6.7.1 Interference figures in uniaxial crystals

In a uniaxial crystal (§6.6) the n-surface has a spherical branch with radius
no and a spheroidal branch with polar radius no and equatorial radius ne, so
that n1= no and n2= no + (ne − no) sin2θ , when θ = 0 is the optic axis. The
polarization vectors of the characteristic waves are respectively tangential and
radial. It follows simply that for a crystal plate with faces normal to the optic
axis, the interference figure is given by

I(θ ,φ) = I0 cos2φ sin2φ cos2[hk0(ne − no) sin2θ cos θ ]. (6.44)

This picture is shown in Fig. 6.21, and can be seen to have circular fringes of
gradually increasing density, crossed by dark radial fringes at φ = 0 and π/2.
Putting (6.44) equal to zero, the azimuthal fringe zeros are at angles hk0(ne −
no) sin2θ cos θ = mπ or for small θ , θ2 ≈ mλ/2h(ne − no). This implies
quadratically spaced fringes – essentially Newton’s rings between the spherical
and spheroidal branches of the n-surface. When the optic axis lies in the plane
of the plate, a different interference figure is observed. This can be understood
by the same method, and is left as an exercise for the reader (Problem 6.11).

6.7.2 Interference figure of a biaxial crystal

When the crystal plate is biaxial, we shall not try to describe the situation
analytically since we never gave an analytical form for the n-surface for a
biaxial crystal in §6.5.4. A complete analysis has been given by Berry et al.
(1999). However, the general principles should be clear. We assume that the
plate is normal to one of the symmetry axes of the indicatrix, Fig. 6.22(a), so that
the optic axes are in two centro-symmetrically disposed directions ±(θa,φa).
Around these directions, we saw that n1−n2 goes linearly through zero because
the inner and outer surfaces of the n-surface are conical with apices touching
at the optic axes. We therefore expect a black spot (because there is no path
difference) along each optic axis, with equally spaced, approximately circular
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Figure 6.22

Interference figure of a
biaxial crystal obtained
using a piece of an
overhead projector slide
sandwiched between
crossed polariods. This was
done using the method of
Fig. 6.19(c), since the angle
between the z-axis and the
optic axes is 39◦: (a) with
the z-axis at centre of the
field of view; (b) with the
optic axis at the centre.

(b)(a)

fringes around it, representing the conical shapes of the touching branches
(Fig. 6.22(b)). Now if we choose k in a starting direction slightly displaced
from an optic axis, and from there go in a complete circle of 2π around the
axis while observing the angle ψ of the polarization vector of the characteristic
waves, we see from Fig. 6.15 (k4) that ψ changes by only π . Thus in the
biaxial case there is only one dark diametric fringe crossing each of the points
±(θa,φa), not two as in the uniaxial case. In fact the uniaxial case corresponds to
a merger of the two optic axes, with the diametric fringes mutually orthogonal.

Next we can look at the centre point θ = 0 on the interference figure. Here the
phase difference is hk0(ni−nj), where ni and nj are two of the principal refractive
indices. This phase difference can be determined absolutely by counting fringes
out to one of the optic axes, where it has become zero.

A simple demonstration of the interference figure can easily be made using an
extruded plastic film, such as overhead projector film, as a biaxial crystal. The
film is sandwiched between crossed polaroid filters and has been called a ‘black
light sandwich’. The film acts as a biaxial crystal because of the photo-elastic
effect (§6.9.2); the thickness dimension has been compressed, one direction
has been stretched, and the third one remains unstressed. Since this device can
be produced in large sheets, there is no need to observe it under a microscope,
and the configuration of Fig. 6.19(a) can conveniently be used, but it is difficult
to see both optic axes simultaneously because of the large angle between them
(Fig. 6.22).

6.8 Applications of propagation in
anisotropic media

To follow the propagation of a wave of given k and polarization state in an
anisotropic medium we first have to express its D vector as a superposition
of those of the two characteristic waves for the same k. We then follow each
one according to its refractive index, and recombine the two at a later stage. If
there is an interface to another medium, it is necessary to ensure continuity of
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the fields, which involves applying Snell’s law separately to each characteristic
wave (§6.8.2).

6.8.1 Quarter- and half-wave plates

A linearly polarized plane wave is incident normally (z-direction) on a parallel-
sided crystal slab of thickness l, such that its plane of polarization bisects
those of the two characteristic waves propagating in the same direction; their
D vectors will define the x- and y-axes. The two characteristic waves have

Polarizers used on
cameras often have a
quarter-wave plate
attached to them. Why?

refractive indices n1 and n2, whose mean is n̄ and difference δn. We have

D = D0x̂ exp[i(n1k0z− ωt)] + D0ŷ exp[i(n2k0z− ωt)], (6.45)

which, at z = 0, combine to give the incident wave D = D0(1, 1, 0) exp(−iωt).
At non-zero z, (6.45) can be written

D = D0

[
x̂ exp

(
−1

2
iδn k0z

)
+ ŷ exp

(
1
2

iδn k0z
)]

exp[i(n̄k0z− ωt)].
(6.46)

Some particular cases are of great importance.
1. When 1

2δn k0z = π/4 the phase difference between the x̂ and ŷ components
has the value π/2. The incident linearly polarized wave has become circularly
polarized. A plate with this thickness, l = π/(2k0δn) = λ/(4δn), is called a
quarter-wave plate. If the plane of polarization of the incident wave is in the
second bisector of x̂ and ŷ the opposite sense of rotation is obtained, and if it
does not exactly bisect x̂ and ŷ, the outgoing wave is elliptically polarized. In
the reverse situation, a quarter-wave plate converts circularly polarized light
into linearly polarized. According to the values given in §6.5.5, a quarter-wave
plate for λ= 590 nm made from mica has thickness about 0.025 mm.

2. A plate of the same material with twice the above thickness can easily be
seen to reflect the plane of polarization in the (x, z) and (y, z) planes, and there-
fore also reverses the sense of rotation of an incident circularly or elliptically
polarized wave. It is called a half-wave plate.

6.8.2 The Pöverlein construction

The n-surface construction lends itself easily to the graphical solution of refrac-
tion problems at interfaces between crystals. We should remember that Snell’s
law, arising as it does from the continuity of E and H at the interface, is always
true for the k vector directions. Now suppose that we consider the refrac-
tion of light from, say, a homogeneous material of index n1 into the crystal.
Figure 6.23 shows the section of the n-surface in the plane of incidence, which
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Figure 6.23

Illustrating the Pöverlein
construction. OB is the
projection of both ko and
ke on the interface, and is
equal to the projection OA
of the incident k vector.
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Glan air polarizing prism.
The chief ray is indicated by
a full line, and is normal to
the entrance and exit
surfaces. The broken lines
represent the limits of the
angular field for which the
polarization is complete. If
the air gap is filled with a
low-index cement, a more
stable structure is obtained,
but the angular field is
reduced.

E
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E
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contains the k vectors of the incident and refracted rays as well as the normal
to the surface. The construction described by the figure equates the projec-
tions k sin θ = k0n(θ) sin θ (OA for the incident wave and OB for the two
refracted waves) on the interface. It is known as Pöverlein’s construction and
can also be used for refraction at an interface between different birefringent
materials.

6.8.3 Crystal polarizers

Crystal polarizers separate the two orthogonal polarizations by using the fact
that the critical angle is a function of the refractive index and therefore depends
on the polarization state. A typical example is the Glan prism which is generally
constructed from calcite. The construction is illustrated by Fig. 6.24, the optic
axes of both halves of the device being normal to the plane of the diagram.
Clearly, when the angle of incidence at the air layer is between the critical angles
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sin−1no and sin−1ne, only the extraordinary polarization is transmitted. The
reflected wave is mainly ordinary polarization, but contains some extraordinary.
The crystal is cut so that this interface lies half-way between the two critical
angles when light is incident normally on the input surface.

If the two halves are cemented with a glue having refractive index nB between
no and ne, variants on this idea – the Glan–Thompson and Nicol prisms – are
obtained. In this case there is a critical angle only for the ordinary wave. The
Nicol prism is constructed around natural cleavage angles of the calcite.

6.9 Induced anisotropic behaviour

The discussion so far has assumed that the anisotropy of a crystal is the result
of its structure. There are, however, many instances in which the properties
of an isotropic material (such as a liquid, polymer or a cubic crystal) become
anisotropic because of some external field; in addition, the optical properties of
many anisotropic materials can be changed by applied fields. We shall describe
below a few examples of such behaviour, but the description should not be
considered in any way as exhaustive. Some other aspects of induced dielectric

External fields of many
types can create
anisotropy in an
otherwise isotropic
material. Both linear and
non-linear effects arise.

effects will be discussed in Chapter 13. A much more detailed description will
be found in the book by Yariv (1989).

6.9.1 The electro-optic effect

Application of an external electric field can cause induced anisotropy. Two
types of effect are common. First, many isotropic materials such as glass, and
liquids such as nitrobenzene, become uniaxial with their optic axis along the
direction of the electric field. Since there is no way that an isotropic material
could be sensitive to the sign of the field, the effect has to be proportional
to the square (or a polynomial including only even powers) of the applied
field E0:

ne − no ∝ E2
0. (6.47)

This is called the Kerr effect.
On the other hand, crystals without a centre of symmetry in the atomic

arrangement of their unit cell are able to distinguish between positive and
negative fields and so the electro-optic effect can depend on any power of
the field; in particular, a linear effect is possible. Its magnitude can also be
a function of the orientation of the field and so a complete description of the
effect, even at a phenomenological level, becomes quite involved. It is usual
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to describe the electro-optic effect in terms of parameters that relate directly to
the distortion of the indicatrix, (6.32), which is written explicitly:

D2
x

n2
1
+ D2

y

n2
1
+ D2

z
n2

3
= 1. (6.48)

We shall consider here only one example, the Pockels effect in a uniaxial
crystal. In this effect the application of the field E0 parallel to the optic axis
makes equal and opposite linear changes in n1, the refractive indices for the two
polarizations perpendicular to the applied field. It is usual to write the distorted
indicatrix in the form

D2
x

(
1
n2

1
+ rE0

)
+ D2

y

(
1
n2

1
− rE0

)
+ D2

z
n2

3
= 1, (6.49)

in which we have assumed that the changes in n are very small. Then the actual
changes in the x- and y-axes of the ellipsoid are±δn1 ≈ ∓rE0n3

1/2. Clearly, the
crystal is now biaxial. It follows that a wave propagating along z, for example,
can become elliptically polarized in the same way as we discussed in §6.8.1
and a slab crystal of thickness l in the z-direction will act as a quarter-wave
plate when

lE0 = λ/4rn3
1. (6.50)

The product lE0 is a voltage that is independent of the thickness of the slab
and is called the quarter-wave voltage, typically 500 V. Both the Kerr effect
and the linear electro-optic effects such as the Pockels effect can be used to
make an electrically operated optical shutter by placing the sample or crystal
between crossed polarizers.

6.9.2 The photo-elastic effect

A strain field can affect the indicatrix of an isotropic medium such as glass,
Perspex (lucite or polymethyl-methacrylate) or various epoxy resins. One can
imagine the indicatrix being distorted when the medium stretches and this is,
qualitatively, the basis of the effect. The material becomes uniaxial with its
axis along that of the strain; the birefringence no − ne is then proportional to

This effect was first
investigated by Maxwell,
who used gelatin, and
was the subject of his
third paper, published
when he was 19 years
old in 1850.

the difference between the strain components along the axis and normal to it.
To observe the effect, it is then necessary to place the sample between crossed
polarizer and analyzer, with their axes at 45◦ to the strain axis. The effect is of
considerable importance as a method of visualizing strain fields in complicated
two-dimensional bodies, models of which can be constructed from the above
materials (Figs. 6.1 and 6.25).
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Figure 6.25

An example of the
photo-elastic effect. A
piece of strained Perspex is
observed in monochromatic
light between crossed
polarizers, oriented (a) at
±45◦ and (b) 0◦ and 90◦
to the edges of the strip.

(a) (b)

6.9.3 The magneto-optic effect

Many isotropic diamagnetic materials, including glass and water, become opti-
cally active when a magnetic field is applied to them, the induced optic axis
being parallel to the applied field B0. Then, if a wave propagates with k ‖ B0,
its plane of polarization rotates, in one sense if k is in the same direction as B0,
and in the other sense if they are opposite. The effect can be used to measure
magnetic fields and visualize field patterns (see Box 6.2).

We describe this in a manner identical to (6.39), in which the parameter
a is proportional to B0, a = rBB0. A microscopic model that illustrates this
effect for an electron plasma will be described in §13.3.5. It then follows from
(6.41) that the two refractive indices, for left- and right-handed polarizations,
satisfy δn = nl − nr = n3rBB0 when rBB0  n−2. The angle of rotation of the
plane of polarization per unit propagation distance is then 1

2 k0 δn= 1
2 k0n3rBB0.

The constant V = 1
2 k0n3rB is called Verdet’s constant, and is approximately

proportional to λ−2. At λ = 546 nm, for water, V = 20 deg T−1 m−1 and for
the commonly used magneto-optic indicator europium selenide (EuSe) below
the temperature 7 K, V = 108 deg T−1m−1.

There is an important difference between optical activity in a crystal and
the magneto-optic effect which emphasizes the properties of the magnetic field
as a pseudo-vector.8 If a wave propagates through an optically active crystal,
is reflected normally by a mirror and then returns through the crystal, the net
rotation of the plane of polarization is zero, because the mirror interchanges
left- and right-handed circularly polarized components, and so the rotation
resulting from the first passage is cancelled in the second. However, if the same
experiment is carried out with a magneto-optic material, the propagation being
parallel to B0, not only is the handedness of the wave reversed on reflection,
but also the sign of the magneto-optic effect, because after the reflection the
direction of k is reversed with respect to B0. So the net result of the two passages
is twice the effect of the single one. A similar analysis of the electro-optic effect
vis-á-vis birefringence (which will be left as an exercise to the reader), shows
no such distinction. This property of the magneto-optic effect allows us to

8 A screw remains left- or right-handed from whichever end you look at it. But the helix traced
out by an electron in a magnetic field as it comes towards you reverses its helicity if you reverse
the field direction.
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Figure 6.26

Quantized flux vortices in
niobium visualized using
the magneto-optic effect in
europium selenide at 4 K.
The average magnetic field
applied is only 4 × 10−4 T.
(Photograph courtesy of
Daniel Golubchik;
Golubchik et al. (2009))

1 micron

construct a one-way light valve, or isolator. If we have a magneto-optic plate
in a field such that the rotation obtained is π/4, and it is sandwiched between
polarizer and analyzer with their axes separated by this angle, a wave in one
direction will be transmitted by both polarizers. A wave in the other direction,
however, will find itself with polarization exactly orthogonal to the polarizer
when it leaves the device, and so is absorbed. This type of device is widely
used in microwave equipment.

Box 6.2 An application of the magneto-optic effect:
visualizing flux vortices in superconductors

When a magnetic field is applied to a type-II superconductor, it does
not penetrate it uniformly, but the field is concentrated into quantized
flux vortices, each one having a magnetic flux of ±�/2e, where � is
Planck’s constant and e is the electron charge. The size of the penetra-
tion region, which is a normal conductor, is the superconducting coherence
length. It is quite a challenge to visualize these flux vortices, since the
value of the magnetic field is only about 10−4 tesla. The magneto-optic
effect can be used to do this (Fig. 6.26). A film of europium selenide
(EuSe) and a reflecting layer of aluminium are deposited on a supercon-
ductor, which is then cooled to liquid helium temperature. The reflected
light is observed between crossed polarizers in a microscope, and when
a small magnetic field is applied, the flux vortices become visible. The
field has to be small enough that the distance between them is greater than
a few micrometres, otherwise the microscope cannot resolve individual
vortices.
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6.10 Advanced topic: Hyperbolic propagation
in meta-materials

We assumed throughout this chapter that the eigenvalues of the dielectric tensor
are positive, and that the axes of the optical indicatrix, which are the square
roots of the eigenvalues, are therefore real. Does this have to be so? Do there
exist materials whose eigenvalues are negative or complex, which could lead
to different types of propagation? The answer is certainly yes. During the
years up to about 1960, much work was carried out on propagation of radio
waves in a plasma of electrons and ions in a magnetic field, out of which arose
the geometrical formalism developed in this chapter. Such waves have been
extensively studied in the Earth’s ionosphere (Budden (1966)). In Chapter 13,
there is a short discussion of the dielectric tensor of such a medium, from
which it can easily be seen that in certain frequency regions (determined by
the bulk plasma and cyclotron frequencies) the eigenvalues of ε are indeed
negative. What this means in terms of propagation is that the refractive index
is imaginary for waves with certain propagation directions and polarizations,
resulting in evanescent propagation of these waves (§2.3.2).

In recent years, the optics of composite materials has received considerable
attention. Such materials are built out of several components with different opti-
cal properties. We have already discussed one example of such a ‘meta-material’
in §5.10.2, where sub-wavelength structures having resonant properties were
used to create materials with negative values of both ε and μ, leading to
real negative refractive index. Another example, which will be discussed in
§10.5, is the ‘photonic crystal’, where the structure of a composite optical
material is designed to be periodic, with lattice spacing commensurate with
the wavelength. Then, interference between waves internally reflected within
the material influences its optical properties strongly. In this section we shall
derive some of the properties of a simpler composite system having anisotropic
properties, which can lead to negative ε for some polarizations.

In §5.6 we discussed the optical properties of metals, and pointed out that
several of the noble metals have complex dielectric constants with negative
real parts. Silver is a good example because the imaginary part of ε is rela-
tively small. It is possible to construct an anisotropic composite material from
alternating thin layers of such a metal and a transparent dielectric. Of course,
the material is only transparent for short distances because of Im(ε), but we
shall ignore this fact in the following discussion. Using elementary electrostat-
ics we can calculate the effective dielectric constant of such a structure made
from two dielectrics with thicknesses d1,2 and ε1,2. When an electric field is
applied parallel to the layers, E‖ is conserved at the interfaces and the mean
field D̄ is the weighted mean of the fields D = εE in the two types of layer,
giving:
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Figure 6.27 An anisotropic material is constructed from alternating layers of silver (ε < 0) and
aluminium oxide (ε > 0). (a) Layer structure, where d � λ; (b) the indicatrix is a
hyperboloid of one sheet, which replaces the index ellipsoid of §6.5.2; (c) the
refractive-index surface consists of a sphere of radius no touching a hyperboloid of
two sheets. Along the asymptotic cone, the extraordinary refractive index ne

diverges to ∞.

ε‖ = D̄
E
= d1ε1 + d2ε2

d1 + d2
. (6.51)

On the other hand, when E is perpendicular to the layers, D⊥ is conserved at
the interface, and the mean field Ē is the weighted mean of the fields E = D/ε.
Thus

ε⊥ = D
Ē
= d1 + d2

d1/ε1 + d2/ε2
. (6.52)

Now suppose that the two values of ε have opposite signs. Then ε1 + ε2 will
have opposite sign to ε−1

1 + ε−1
2 . In the range of d1/d2 between |ε1/ε2| and

|ε2/ε1|, we find that ε‖ and ε⊥ also have opposite signs.
A material with the above properties, illustrated in Fig. 6.27(a), behaves as

a uniaxial material because there are two parallel orientations (x and y) and one
perpendicular one (z). But now, because of the opposite signs of the principal
values of ε, the indicatrix becomes a hyperboloid of one sheet instead of the
spheroid of §6.6:

D2
x

ε‖
+ D2

y

ε‖
+ D2

z
ε⊥

= 1. (6.53)

This represents a hyperboloid of one sheet if ε‖> 0 and ε⊥< 0, and a
hyperboloid of two sheets if the signs are reversed.

A practical example uses layers with equal thicknesses of silver (ε=
−2.4 + i0.25) and aluminium oxide (Al2O3) (ε = +3.2). Then the real parts
of ε‖ = +0.4 and ε⊥ = −9.6, leading to an axially symmetric hyperboloidal
indicatrix of one sheet with axes n1 = n2 = 0.63 and n3 = i3.1 (Fig. 6.27(b)).
Following through the procedure to construct the refractive-index surface we
find a sphere for the ordinary waves and a hyperboloid of two sheets for the
extraordinary waves; the two surfaces touch along the optic axis, which is the
z-axis (Fig. 6.27(c); compare to Fig. 6.17(a)). What is interesting to note is
that the extraordinary refractive index diverges along the asymptotic cone of
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the hyperboloids, a fact that has been used to achieve extremely high spatial
resolution, essentially by using such a material as an immersion lens (§3.8).
Such a lens has been called a ‘hyperlens’ (Jacob et al. (2006), Lee et al.
(2007)).

Chapter summary

In this chapter we studied polarized light, and how its passage through

crystals is related to their anisotropic properties. We saw that:

• In an isotropic medium, a plane wave can be described as a

superposition of two orthogonally polarized characteristic waves, which

are degenerate.

• In an anisotropic medium, the characteristic waves may not be

degenerate and their polarizations and propagation velocities are

determined by the parameters of the medium. The characteristic waves

may be linearly or circularly polarized.

• The dielectric properties of a crystal can be represented by a dielectric

tensor, which is described geometrically by an index ellipsoid (optical

indicatrix).

• We can represent the refractive and polarization properties of a

medium by a refractive-index surface (n-surface) which is a polar plot

of the refractive index n as a function of the wave-vector direction k̂.

The surface is double-valued in an anisotropic medium; the

polarizations and Poynting vectors of the characteristic waves are then

related geometrically to its form.

• Interference figures are an attractive method of visualizing the

anisotropic properties of a material.

• Unpolarized light can be polarized by a variety of effects, ranging

from Brewster angle reflection to the use of devices constructed from

crystals.

• Anisotropic properties can be induced in isotropic materials by means of

external fields, the important ones being electric, magnetic and stress

fields.

• Artificial anisotropic materials can be constructed using sub-wavelength

structures built up from materials with different isotropic dielectric

properties, and these can have designed properties that are not found

in normal materials.
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Problems

6.1. A beam of light is known to be partly unpolarized and partly circularly
polarized. How would you find the proportions of each?

6.2. Devise a method to find absolutely the sense of rotation of an elliptically
polarized wave (i.e. not by comparison with a known material).

6.3. A quartz plate has thickness d and its optic axis makes an angle 45◦ to
its faces. A ray of unpolarized light enters normal to the plate and leaves
as two separate polarized rays. Given that no = 1.544 and ne = 1.533,
find the separation between the two exiting rays.

6.4. Mica (biaxial) has refractive indices 1.587 and 1.582 for propagation
normal to the cleavage plane, and the third value is 1.552. A sheet of
cleaved mica, observed between crossed polarizers, is seen to have a
purple colour, i.e. it transmits red and blue light, but not green. Estimate
the thickness of the sheet. How does the colour change (a) as the mica
is turned in its own plane, (b) as one of the polarizers is turned in its
own plane? What is the angle between the normal to the sheet and the
optic axis?

6.5. A parallel beam of sodium light (spectral doublet with λ = 589.3 nm
and 589.6 nm passes through a pair of parallel polarizers separated by a
calcite plate whose optic axis lies in the plane of its faces, at 45◦ to the
axes of the polarizers. One line of the doublet is transmitted and one is
absorbed. Calculate the thickness of the plate, given that in the above
spectral region:
ne = 1.486 and dne/dλ = −3.53× 10−5nm−1,
no = 1.658 and dno/dλ = −5.88× 10−5nm−1.

6.6. Design a Glan polarizer, made from two calcite prisms separated by an
air gap. Calculate the optimum angles of the two prisms, their crystal
orientations with respect to the optic axis, and the angular range over
which the transmitted polarization is pure, and the extinction ratio for
the reflected wave at the centre of the range. Repeat the design for a
cemented prism, using an optical cement with refractive index equal to
the smaller of ne and no.

6.7. How is Pöverlein’s construction used to describe reflection at the
plane surface of a crystal? An unpolarized ray enters obliquely into a
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parallel-sided crystal plate, whose optic axis is at an arbitrary angle.
The ray is reflected to and fro between the surfaces many times. Into
how many distinct rays does it separate after N reflections?

6.8. Corn syrup is an excellent example of an isotropic optically active
medium. Linearly polarized white light is incident on a sample of length
10 cm, and as the analyzer is rotated a complete spectrum of colours can
be observed. Estimate the difference in refractive index nl − nr, given
that the mean value is 1.50.

6.9. A linearly polarized light beam is incident normally on a parallel-sided
transparent plate. After transmission, it is reflected back to its start-
ing point by a plane metal-coated mirror. Compare the final state of
polarization to the initial state for the following types of plate:
(a) a birefringent plate with its optic axes in arbitrary directions;
(b) a plate showing the Pockels effect, with the applied electric field

parallel to the light beam;
(c) an optically active plate, with optic axis parallel to the light beam;
(d) a magneto-optic plate with applied magnetic field parallel to the

light beam.

6.10. Consider possible practical ways of creating a completely polarized light
beam from an unpolarized source. For example, a polarizing prism is
used to create two orthogonally polarized beams, one of which is then
rotated in polarization before the two are recombined. Show that the
brightness of the output beam can never exceed that of the input (bright-
ness is defined as power per unit area, per unit wavelength interval, per
unit solid angle for a given polarization) and therefore the second law
of thermodynamics is obeyed.

6.11. What does the interference figure look like for a uniaxial crystal with
the optic axis in the plane of the slab?

6.12. A stack of glass plates (n= 1.5) is used to polarize incoherent light
incident at the Brewster angle. What fraction of the transmitted light is
polarized after transmission through a stack of N plates?

6.13. From Fig. 6.22 estimate the three refractive indices of the polymer sheet,
given that its thickness is 0.10 mm and mean refractive index 1.49.

6.14. What would the interference figure of a parallel-sided sample of
an isotropic optically active material (such as sugar solution) look
like?
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6.15. In photo-elastic experiments, a quarter-wave plate is often added
between the polarizer and the sample. What is its effect on the
observations?

6.16. In the photo-elastic effect in an isotropic material the degree of birefrin-
gence, no − ne, is proportional to the difference between the principal
stresses, px − py. Describe the pattern of fringes that is observed in
a plastic model of a cantilever beam of uniform cross-section, rigidly
supported horizontally at one end, and with a weight at the other. What
orientation of polarizers is necessary to make the effect clearest?

6.17. A right-handed circularly polarized wave with wavelength λ is incident
in the z-direction on a half-wave plate made from a crystal with principal
refractive indices (for x- and y-polarizations) n1 and n2.
(a) What is the thickness of the plate?
(b) Show that the wave exits the plate with left-handed circular

polarization.
(c) Use the fact that the torque exerted by an electric field E on a dipole

p is p× E to find the torque exerted on the plate as it reverses the
circular polarization.

(d) Show that your result agrees with the quantum interpretation that
right- and left-handedly polarized photons have angular momenta
of ±� respectively.
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7 The scalar theory of diffraction

Why did it take so long for the wave theory of light to be accepted, from its

instigation by Huygens in about 1660 to the conclusive demonstrations by Young

and Fresnel in 1803–12? In retrospect, it may be that Huygens did not take into

account the wavelength; as a result the phenomenon of interference, particu-

larly destructive interference, was missing. Only when Huygens’ construction was

analyzed in quantitative detail by Young and Fresnel did interference fringes and

other wavelength-dependent features appear, and when these were confirmed

experimentally the wave theory became generally accepted. It was because the

wavelength, as measured by Young, was so much smaller than the size of every-

day objects that special experiments had to be devised in order to see the effects

of the waves; these are called ‘diffraction’ or ‘interference’ experiments and will

be the subject of this chapter. Even so, some everyday objects, such as the drops

of water that condense on a car window or the weave of an umbrella, do have

dimensions commensurate with the wavelength of light, and the way they diffract

light from a distant street light is clearly visible to the unaided eye (Fig. 7.1).

The distinction between the terms diffraction and interference is somewhat

fuzzy. We try to use the term diffraction as a general term for all interactions

between a wave and an obstacle, with interference as the case where several

separable waves are superimposed. However, it is not always possible to maintain

this distinction; the name ‘diffraction grating’, for example, is too well entrenched

to be changed. But with this terminology, interference becomes a special case of

diffraction, in an analogous way to the Fourier series being a special case of the

Fourier transform. For this reason we are going to study diffraction first, as the

more general situation.

In this chapter we shall learn:

• how we can describe most diffraction problems in terms of a scalar wave

theory, and what are the limitations to this theory;

• how we express Huygens’ principle for scalar waves;

• about the difference between Fresnel (near-field) and Fraunhofer (far-field)

diffraction;

• the experimental conditions needed for Fresnel diffraction;

• about Fresnel diffraction experiments with circular obstacles;
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Figure 7.1

Diffraction pattern
observed when looking
through a silk scarf at a
distant street light. The
original picture showed the
spectrum of the lamp, but
this cannot be seen in
monochrome rendering.
The scarf was draped over
the camera lens.

• how a zone plate focuses light;

• about the propagation of Gaussian beams, which will be applied later to

laser beams;

• about the Gouy phase shift when a wave goes through a focus;

• how we calculate Fresnel diffraction patterns of slits and edges;

• how zone plates are applied to X-ray microscopy using synchrotron

radiation.

7.1 The scalar-wave theory of diffraction

The formulation of a diffraction problem essentially considers an incident free-
space wave whose propagation is interrupted by an obstacle or mask which
changes the amplitude and/or phase of the wave locally by a well-determined
factor. The observer at a given point, or set of points on a screen (the eye’s
retina, for example), measures a wave-field corresponding to the superposition
of the part of the incident field that was not affected by the obstacle and other
fields that were generated in order to satisfy Maxwell’s equations at points
on the obstacle, according to appropriate boundary conditions. An example
of a problem that has been solved this way is the diffraction of a plane wave
by a perfectly conducting sphere; this is called Mie scattering and a detailed
account of it is given by Born and Wolf (1999), Bohren (1983) and van de
Hulst (1984).

Unfortunately the class of analytically soluble problems of this type is too
small for general use and a considerably simpler approach has been devel-
oped, based on Huygens’ principle (§2.6.1). This approach describes most
diffraction phenomena in a satisfactory, if not completely quantitative man-
ner. It makes the basic approximation that the amplitude and phase of the
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electromagnetic wave can be adequately described by a scalar variable,
and that effects arising from the polarization of waves can be neglected.
It is called the scalar-wave approximation. Below, we shall develop this
approach intuitively, giving its mathematical justification in an appendix to this
chapter.

7.1.1 Limitations to the scalar-wave approximation

In principle, a scalar-wave calculation should be carried out for each component
of the vector wave, but in practice this is rarely necessary. On the other hand, a
simple example will illustrate the type of conditions under which the direction of
polarization might be important. We consider how we would begin the problem
of diffraction by a slit in a perfectly conducting sheet of metal. Considering
each point on the plane of the sheet as a potential radiator, we see that:

Despite the limitations,
scalar-wave diffraction
theory is surprisingly
accurate even under
conditions where you
might expect it not to be!

1. points on the metal sheet will not radiate at all, because the field E must be
zero in a perfect conductor;

2. points in the slit well away from its edges can radiate equally well in all
polarizations;

3. points close to the edge of the slit will radiate better when E is perpendicular
to the edge of the slit than when E is parallel. This occurs because E‖ changes
smoothly from zero in the metal to a non-zero value in the slit, whereas E⊥
is not continuous and can therefore change abruptly at the edge (§5.4).

The slit thus produces a diffraction pattern appropriate to a rather smaller
width when the illumination is polarized parallel to its length. Because such
differences are limited to a region within only about one wavelength of the edge
of the obstacle, they become most noticeable for objects with much fine detail on
the scale of less than a few wavelengths. For example, the efficiency of metal-
coated diffraction gratings (§9.2.5) is almost always polarization dependent,
and closely spaced wire grids with spacings of the order of 2μm are efficient
polarizers at infra-red wavelengths. The most common polarizers (Polaroid,
§6.2.2) use this effect.

Having voiced these reservations, we now invite the reader, for the time
being, to forget that light consists of two oscillating vector fields, and imagine
the vibration to be that of a single complex scalar variable ψ with angular
frequency ω and wave-vector k0 having magnitude ω/c in its direction of
propagation. Because ψ represents a complex scalar field it has both amplitude
and phase. The time-dependent wave-factor exp(−iωt) is of no importance in
this chapter, since it is carried through all the calculations unchanged. It will
therefore be omitted.
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Figure 7.2

Definition of quantities for
the diffraction integral. The
wave at P originates from Q
and is diffracted by
screen R.
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7.1.2 Reformulating Huygens’ construction

Let us try intuitively to build a theory of diffraction based on Huygens’ principle
of the re-emission of scalar waves by points on a surface spanning the aperture.
A more rigorous, but still scalar-wave, derivation of the same theory was
derived by Kirchhoff and is given as an appendix to this chapter. But most of
the parts of the formulation can be written down intuitively, and we shall first
derive it in such a manner.

A reminder: Huygens
considered each point on
a wavefront as a virtual
source for a new
spherical wave, called a
‘wavelet’, and the
envelope of the wavelets
after a given time
defined a new wavefront.

We shall consider the amplitude observed at a point P arising from light
emitted from a point source Q and scattered by a plane mask R (Fig. 7.2). We
shall suppose that if an element of area dS at S on R is disturbed by a wave
ψ1 this same point acts as a coherent secondary emitter of strength bfSψ1dS,
where fS is called the transmission function of R at point S. The factor b
is the strength with which the reradiation occurs, for unit disturbance, and its
value will be derived subsequently. In the simplest examples fS is zero where
the mask is opaque and unity where it is transparent, but it is easy to imagine

From its dimensions, b is
an ‘inverse scattering
length’.

intermediate cases, including complex values of fS which change the phase
of the incident light by a given amount. The coherence of the re-emission is
important; the phase of the emitted wave must be exactly related to that of
the initiating disturbance ψ1, otherwise the diffraction effects will change with
time.

The scalar wave emitted from a point source Q of strength aQ can be written
as a spherical wave of wavenumber k0 = 2π/λ (§2.5.3),

ψ1 = aQ

d1
exp(ik0d1), (7.1)

and consequently dS acts as a secondary emitter of strength baS = bfSψ1 dS,
so that the contribution to ψ received at P is

dψP = bfSψ1d−1 exp(ik0d) dS

= bfSaQ(dd1)
−1 exp[ik0(d + d1)] dS. (7.2)
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The total amplitude received at P is therefore the integral of this expression
over the plane R:

By including waves that
also go in the reverse
direction, Huygens
reached an absurd
situation where there
was no unique solution to
a propagation problem.
He solved this by
assuming the inclination
factor in the reverse
direction to be zero.

ψP = baQ

∫ ∫
R

fS
dd1

exp[ik0(d + d1)] dS. (7.3)

The quantities fS , d and d1 are all functions of the position S. It will be shown
in the appendix that the factor b should really contain an inclination factor
g(θ) too; i.e. the strength of a secondary emitter depends on the angle between
the directions of the incident and scattered radiation, θ in Fig. 7.2. Huygens
intuitively considered this factor to be unity in the forward direction and zero
in the reverse, as shown in §2.6.1 and Fig. 7.20, and he was not far wrong!
However, we shall ignore this inclination factor for the time being, because
we shall be using a paraxial approximation where the angles of scattering are
small.

7.1.3 Paraxial approximation for scalar diffraction

Diffraction calculations involve integrating the expression (7.3) (or its more
rigorous counterpart (7.73)), under various conditions representing real experi-
ments. We shall consider a classification which will help to make the principles
clearer. First let us restrict our attention mainly to a system illuminated by a
plane wave. We do this by taking the source Q to a very distant point and mak-
ing it very bright; we therefore make d1 and aQ very large while maintaining
their ratio constant:

aQ/d1 = A. (7.4)

Now we shall consider the situation where we let R coincide with a plane
wavefront of the incident wave. The axis of the system is defined as the normal
to R through its origin O. If we denote the position of S by vector r in the plane
of R, fS is replaced by f (r) and (7.3) becomes

ψ = Ab exp(ik0z1)

∫ ∫
R

f (r)
d

exp(ik0d) d2r, (7.5)

where z1 is the normal distance from Q to R. The factor exp(ik0z1), being
constant over the plane R, will henceforth be absorbed into A. The intensity
observed at P is

I = |ψ |2 ≡ ψψ∗. (7.6)

Diffraction effects can conveniently be classified into Fresnel, or near-field
and Fraunhofer or far-field types depending on the way in which the phase
k0d changes as we cross the mask R. This depends on the relative values of the
distance d between the point S and the point of observation, the extent of R for
which f (r) is not zero (i.e. the size of the mask’s transmitting region) and the
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Figure 7.3

Elements of a diffraction
calculation in the Fresnel
approximation.
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wavelength λ = 2π/k0. If k0d is found to vary linearly with r, the diffraction
is called Fraunhofer diffraction; if the variation has non-linear terms of size
greater than about π/2, the diffraction is called Fresnel diffraction. We can
translate this statement into quantitative terms if we define a circle of radius
ρ which just includes all the transmitting regions of R (Fig. 7.3). We now
observe the diffraction in the plane P normal to the axis at distance z from the
mask. Then at a point P in this plane, at vector distance p from the axis, the
phase k0d of the wave from r is

k0d = k0(z2 + |r− p|2)1/2 � k0z+ 1
2

k0z−1(r2 − 2r · p+ p2)+ · · ·, (7.7)

where we have assumed that r and p are small compared with z. This expression
contains:

• the constant term k0

(
z+ 1

2 p2/z
)

,
• the term k0r · p/z which is linear in r, and
• the quadratic term 1

2 k0r2/z.

Now since the largest value of r that contributes to the problem is ρ, the
maximum size of the quadratic phase term is 1

2 k0ρ
2/z. This means that

Fresnel or Fraunhofer conditions are obtained depending on whether 1
2 k0ρ

2/z
is considerably greater or less than about π/2. In terms of wavelength λ this
gives us:

Fresnel, or near-field diffraction: ρ2 ≥ λz; (7.8)

Fraunhofer, or far-field diffraction: ρ2  λz. (7.9)

For example, if a hole of diameter 2 mm is illuminated by light of wavelength
5 × 10−4 mm, Fresnel diffraction patterns will be observed at distances z

This example illustrates
where the terms
‘near-field’ and ‘far-field’
have their origin.

less than 2 m, and Fraunhofer diffraction at much greater distances. Calculation
of the patterns will show that the transition from one type to the other is
gradual.
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We can remark at this stage that when the mask is illuminated by a point
source at a finite distance z1, as in Fig. 7.3, (7.7) can easily be modified.1 The
phase of the wave at P is then

k0(d1 + d) = k0

[(
z2

1 + r2
)1/2 + (z2 + |r− p|2)1/2

]

� k0(z+ z1)+ k0r2

2

(
z−1 + z−1

1

)
+ k0p2

2z
− k0

z
r · p+ · · ·.

(7.10)

An equivalent differentiation between Fresnel and Fraunhofer diffraction
classes then arises with z replaced by 1/

(
z−1 + z−1

1
)

in (7.8) and (7.9):

Fresnel diffraction: ρ2 ≥ λ/
(

z−1 + z−1
1

)
; (7.11)

Fraunhofer diffraction: ρ2  λ/
(

z−1 + z−1
1

)
. (7.12)

Replacement of z−1 by z−1 + z−1
1 can be applied to all the results in §7.2.

7.1.4 Experimental observation of diffraction patterns

Using a point source of monochromatic light or a coherent wavefront from a
laser, it is easy to observe diffraction patterns of both types. When using a
conventional source, such as a discharge or other lamp, it is important to make
sure that it is really small enough for the radiated wave to be a true spherical
wave. In other words, the spherical waves emitted by various points in the
source, assuming it to have finite extent D, must coincide to an accuracy of

In Chapter 11, we shall
see that astronomers
essentially use the
quality of diffraction
patterns to measure the
size of stellar sources.

better than 1
4λ over the transmitting part of R, which is the circle of radius ρ.

The requirement for this is easily seen to be

Dρ/z1 <
1
4
λ. (7.13)

As we shall see in Chapter 11, this amounts to saying that the radiated wave is
coherent across the transmitting part of the mask. For our 2 mm circular hole,
at a distance z1 = 1 m the source must have dimensions D < 0.1 mm; at a
distance of 1 km a 10 cm diameter street lamp will suffice.

To observe Fresnel patterns, it is only necessary to put a screen at the required
distance z. Figure 7.4 shows the ‘shadow’ of a paperclip illuminated by a point
source, which is a typical Fresnel diffraction pattern.

1 When the object is one-dimensional, for example a slit or series of slits, it is possible to replace
the point source Q by a line or slit source. Each point of the line source produces a diffraction
pattern from the obstacle, and provided these are identical and not displaced laterally they will
lie on top of one another and produce an intensified version of the pattern from a point source.
This requires the line source and slit obstacle to be accurately parallel, but no new physical ideas
are involved.
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Figure 7.4

Fresnel diffaction fringes
around the shadow of a
paperclip.

To observe Fraunhofer patterns, we must make the quadratic term in r small
enough to satisfy either condition (7.9) or (7.12). One way of doing this is to
make both z and z1 very large; more conveniently we can make z = −z1 by
using a lens to put the observing screen in a plane conjugate to the source. For
example, we can look directly at the source, so that the retina of the eye is
conjugate to the plane of the source, and by inserting the obstacle anywhere
along the line of sight (close to the pupil is best) the Fraunhofer pattern can be
observed. Defocusing the eye converts the pattern into a Fresnel pattern. For
quantitative work one uses a point source with a lens giving a parallel beam, or
else an expanded collimated laser beam, either of which is equivalent to infinite
z1. The Fraunhofer pattern is then observed on a screen at a large enough z, or
else in the focal plane of a converging lens, which is conjugate to the infinite z.
Many of the photographs in this book were taken with an optical diffractometer,
Fig. 8.2(b), which is constructed on the above principle.

7.2 Fresnel diffraction

The following sections will be devoted to examples of Fresnel diffraction in
a few simple systems. Fraunhofer diffraction and its applications will be dis-
cussed separately in Chapters 8 and 9 since they are far more important as
analytical tools. But the more general case of Fresnel diffraction has applica-
tions in holography (§12.5), in the design of diffractive optics and in imaging
at wavelengths where refractive optics is not feasible (§7.5), and historically
was of crucial importance in clinching the validity of the wave theory of light
(§7.2.4 and §1.1.3).

The basic integral to be evaluated is equation (7.5):

Diffractive optics is a
growing field where
optical elements are
designed using
diffraction principles,
allowing more flexibility
in design than glass
optics. However, the
wavelength dependence
is a problem.

ψ = Ab
∫ ∫

R

f (r)
d

exp(ik0d) d2r. (7.14)
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For any given situation this integral can obviously be evaluated numerically,
but we gain little physical intuition from numerical solutions, so we shall leave
them as a last resort, or when accurate values are required. The first class
of problems we shall deal with have axial symmetry, and the integral can
be performed analytically in several cases. Then we shall discuss the use of
amplitude–phase diagrams, which illustrate some of the principles of diffraction
rather well in a geometrical manner.

7.2.1 The Fresnel approximation, and evaluation of the
Huygens scattering strength

Fresnel, in about 1810, realized that for apertures small compared to the distance
z to the screen (radius ρ  z), d in the exponent of (7.14) can be expanded
by the binomial theorem, and terms beyond the quadratic one neglected, as in
§7.1.3. The integral can then be written2

ψ = Ab
∫ ∫

R

f (r)√
z2 + r2

exp

[
ik0

(
z+ r2

2z

)]
d2r

= Ab exp(ik0z)
∫ ∫

R

f (r)√
z2 + r2

exp

(
ik0

r2

2z

)
d2r. (7.15)

This can now be integrated by parts, provided that the aperture R has axial
symmetry, extending out to radius R. Using the variable s ≡ r2, from which
d2r = 2πr dr = π ds, we write the factor h(s) ≡ f (r)/

√
z2 + r2. Then the

integral becomes

ψ = Ab exp(ik0z)
∫
R

h(s) exp
(

ik0
s

2z

)
π ds (7.16)

= πAb exp(ik0z)
2z
ik0

{[
h(R2) exp

(
ik0

R2

2z

)
− h(0)

]

−
∫ R2

0

dh
ds

exp
(

ik0
s

2z

)
ds

}
. (7.17)

In order to evaluate b, we consider the case of a very large aperture where
f (r) = 1, which negligibly affects the propagation of the incident plane wave.

2 The inclination factor g(θ) could be included here, since θ can be expressed in terms of r
and z, but since it has a value of 1, according to Huygens, or between 1 and 1

2 according to
Kirchhoff (Appendix), we do not include it here, as it makes no important difference to the
results.
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We can then make two reasonable assumptions: first that R is large enough for
h(R2) to be neglected with respect to h(0), and then that the integral on the
second line of (7.17) is negligible, because the integrand is a small function
dh/ds ∼ z−3 multiplied by a rapidly oscillating one. The integral (7.17) then
simplifies to

We determine the
inverse scattering length
b by observing that a
very large aperture
negligibly affects
near-field wave
propagation on its axis.

ψ = −exp(ik0z)
2πAbz

ik0
h(0)

= −Ab exp(ik0z)
2π
ik0

, (7.18)

Since h(0) = f (0)/z = 1/z. But on making the aperture large enough for its
effects to be negligible, the result must be identical to that which we would
have obtained without an aperture at all, namely A exp(ik0z), from which it
follows that

b = −ik0

2π
= −i

λ
. (7.19)

This result is also derived rigorously in the appendix.

7.2.2 Fresnel diffraction by apertures with axial symmetry

In systems with axial symmetry, the value of ψ on the axis p = 0 can be
evaluated by direct integration of (7.15), giving

ψ = ik0A
2z

∫ ∞

0
f (s) exp

(
ik0s
2z

)
ds. (7.20)

The integral is clearly of Fourier transform type, although the limits of inte-
gration are from zero (not −∞) to∞, which can be shown to make negligible
difference in many physical situations. For off-axis points, p �= 0, the inte-
grals usually have to be calculated numerically, but one important exception is
discussed in §7.3.

A concept called ‘Fresnel
zones’ allowed off-axis
diffraction patterns to be
qualitatively appreciated,
but is hardly necessary
today because the
integrals can be
calculated numerically.

We shall consider four important examples:

1. a circular hole of radius R  2z/k0, for which f (s) = 1 when s < R2,
otherwise 0;

2. a circular disc of radius R, for which f (s) = 1 when s > R2, otherwise 0;
3. a zone plate, for which f (s) is periodic, and which acts like a lens;
4. a beam with Gaussian amplitude profile, f (s) ∼ exp(−αs), where α can be

either real or complex. In the latter case, the imaginary part of α indicates
that the wavefront not only has a Gaussian profile, but is also converging or
diverging, depending on its sign.
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Figure 7.5

Fresnel diffraction patterns
of a circular hole: (a) when
kR2/2z = 2nπ and (b)
when kR2/2z = (2n + 1)π .

(b)(a)

7.2.3 The circular hole

The integral becomes, under the conditions (1) above,

ψ = ik0A
2z

∫ R2

0
exp
(

ik0s
2z

)
ds (7.21)

= A
[

exp(ik0R2/2z)− 1
]
. (7.22)

The observed intensity is

|ψ |2 = 2A2[1− cos(k0R2/2z)
]
. (7.23)

As the point of observation moves along the axis, the intensity at the centre
of the pattern alternates periodically with z−1 between zero and four times the
incident intensity A2 (Fig. 7.5).

7.2.4 The circular disc

For case (2) we have to evaluate the integral (7.17) from a lower limit s = R2

out to a large value. Following through the integration by parts, we obtain

ψ = Az exp(ik0z)h(R)

= A exp(ik0z)
z√

z2 + R2
. (7.24)

Thus the intensity on the axis, when R  z, is

|ψ |2 ≈ A2 (7.25)

for all values of z. This surprising result, that there is always a bright spot at
the centre of the diffraction pattern of a disc (Fig. 1.3), finally converted the
opponents to the wave theory of light when it was experimentally verified by
Fresnel and Arago (§1.1.3). Fresnel diffraction has thus been of vital importance
to the development of optics.

Repeating the
Fresnel–Arago
experiment today using a
laser source is very easy
(Appendix B), but of
course lasers were not
available in 1818!
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Figure 7.6

Zone plate with
square-wave profile
1
2

[
1 − cos

(
πr2/R2

0

)]

rounded to 0 or 1, as
shown in Fig. 7.7.

7.2.5 The zone plate

A zone plate is a series of transparent and opaque rings (Fig. 7.6) whose radii
are calculated so that on the axis, at a certain distance, the transmitted waves
all have the same phase. For a long time, the zone plate was little more than
an amusing physical toy to illustrate Fresnel diffraction. In recent years, its
significance has been enhanced as providing a simple model for understanding
holograms (§12.5) and it has found applications in X-ray microscopy (§7.5) and
in the emerging technology of diffractive optics. A zone plate can be made by
photo-lithography of an absorbing film by photo-reducing a drawing like that
shown in Fig. 7.6, which is calculated so as to make g(s) a periodic function
of s with period 2R2

0 (Fig. 7.7). The simplest form would have an all-positive
sinusoidal profile

g(s) = 1
2

[
1+ cos

(
πs
R2

0

)]
, (7.26)

but this is not usually very practical because photo-lithography of absorbing
films is not a linear process and only values of g(s) = 0 or 1 can be produced
accurately. We therefore consider the square-wave profile

g(s) = 1 for 2nR2
0 < s < (2n+ 1)R2

0,

g(s) = 0 for (2n+ 1)R2
0 < s < (2n+ 2)R2

0. (7.27)

The Fourier series for this function (§4.2.1) has δ-function-like orders with
amplitudes Gm = (−1)(m−1)/22/mπ at m = 0 and odd values of m. There-
fore, from (7.20), the zone plate concentrates an incident plane wave to a
series of foci at axial positions given by k0/2z=mπ/R2

0 for these values of m,
i.e. at

zm = k0R2
0/2mπ = R2

0/mλ. (7.28)
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Figure 7.7

Functions f(r) and g(s)
(where s = r2) for a zone
plate.

r

1

s

g (r 2) = g (s)

f (r ) 

The order m has amplitude ik0Gm/2zm. Since both zm and Gm are proportional
to 1/m, all the foci with odd m have equal amplitudes. This is a mathematical
quirk that is true for the symmetrical square wave only, but means that in general
the higher order foci cannot be neglected (see §7.5). The wave corresponding
to m = 0 focuses at infinite z, and is a continuation of the incident plane
wave. The other foci are at both positive and negative distances, corresponding
to both converging and diverging lenses, and in practical applications the
unwanted orders have to be blocked. As will be seen in §9.2.4, the first-order
focus cannot contain more than 10% of the incident power; this is called the
diffraction efficiency.

The zone plate behaves in a similar way to a lens. If we concentrate on one
particular focus, m = +1 say, we can see from §7.1.3 that if illumination is
provided by a point source at distance z1 (Fig. 7.2) the position of the image
moves out to satisfy

1
z1
+ 1

z
= λ

R2
0

, (7.29)

which makes the zone plate equivalent to a lens with focal length R2
0/λ. It clearly

suffers from serious chromatic aberration (see Problem 7.4). Such ‘lenses’ are
now used for X-ray microscopy (§7.5) and as the basis of diffractive optical
systems.

In diffractive optical systems, zone-plate lenses are used to replace refractive
lenses. It is then important to improve the efficiency by creating only a single
focus. This requires a phase mask, of the form g(s) = exp

(
iπs/R2

0
)
, whose

The field of diffractive
optics is based on the
fact that a zone plate
behaves as a lens, but
it is easy to introduce
corrections for
aberrations. Their
chromatic aberration has
the opposite sign to that
of glass lenses. Several
camera lens companies
now manufacture lenses
combining both
diffractive and refractive
elements.

Fourier transform is a single δ-function, and must be manufactured by photo-
lithography in a transparent material (Problem 7.6). This is the equivalent of a
blazed grating, to be discussed in §9.2.5.

7.3 Propagation of a Gaussian light beam

One of the few Fresnel diffraction problems that can be solved analytically
at all points (x, y, z), not just on the axis, starts with a wavefront that has an
axially symmetric Gaussian profile (see also Problem 7.13). The reason that
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this is analytically soluble is that the Fresnel propagator exp[ik0(r− p)2/2z]
is also Gaussian, albeit with an imaginary variance iz/k0. This problem is very
important because it demonstrates clearly how a light beam propagates; it is

Propagation of Gaussian
beams is very important
in laser physics. It is
usually treated by
solution of the Helmholtz
equation (7.60).

particularly relevant to laser beams, which do in fact usually have a Gaussian
profile (§9.5.4). We shall use it here to model such a beam as it propagates
through a focal point. The topic of Gaussian beam propagation is dealt with
thoroughly in detail in texts on laser physics and photonics, such as Siegman
(1986) and Saleh and Teich (1991).

First, consider the way in which a light wave having a converging spherical
wavefront with radius of curvature R focuses to a point at z = R. Within the
Fresnel (paraxial) approximation, we write the wave amplitude in the plane
z = 0 as

ψ(x, y, 0) = exp(−ik0r2/2R). (7.30)

Now, from (7.5), we express the amplitude at the point (x0, y0, z) as

ψ(x0, y0, z) = exp(ik0z)
ik0

2πz

∫ ∫ ∞

0
exp(−ik0r2/2R) exp

(
ik0(r− r0)

2

2z

)
d2r.

(7.31)

This integral can be evaluated easily once one realizes that it is a convolution
between two Gaussian functions with complex arguments. Actually they are
imaginary arguments here, but shortly we shall require them to be complex.
Thus we write (7.31) as

ψ(x0, y0, z) = exp(ik0z)
ik0

2πz

{
exp(−ik0r2/2R)⊗ exp(ik0r2/2z)

}

≡ exp(ik0z)
ik0

2πz
q(r). (7.32)

The convolution q(r) can easily be evaluated by taking the Fourier transform
Q(k) of q(r), which is the product of two Gaussians, equal to a single Gaussian,
and transforming Q(k) back into r space. It is necessary to keep track of the
prefactors in the transformations, including a factor 4π2 which enters from the
two-dimensional Fourier inversion theorem (the square of the 2π prefactor in
(4.70)), after which we find

ψ(x0, y0, z) = exp(ik0z)
R

z− R
exp

[
ik0
(
x2

0 + y2
0
)

2(z− R)

]
. (7.33)

As you might expect, its value diverges to infinity at the focal point z = R,
where the phase is indeterminate. The intensity falls as (z − R)−2: the inverse
square law. Notice also that the sign of ψ changes as we go through the focus,
indicating a phase jump of π , known as the Gouy phase shift. We shall study
this phase shift in more detail later. The wavefront structure is illustrated in
Fig. 7.8.
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Figure 7.8

Wavefronts of a spherical
wave converging to a focus
and then diverging from it.
Notice the phase shift of π

as the wave goes through
the focus.

l F

The calculation above is unphysical, since we assumed that the input wave
amplitude is constant out to infinity, while still using the paraxial approximation.
Now we shall put this right by replacing the incident wave curvature 1/R by
a complex value which will ensure that the wave energy is limited to a small
region near the axis. Specifically, we write

1
R
= 1

R0
+ 1

ik0σ 2 , (7.34)

which means that the wavefront has radius of curvature R0 and has a Gaussian
parameter σ (as in §4.4.3). Then, in the plane z = 0 we have

ψ(x, y, 0) = exp(−r2/2σ 2) exp(−ik0r2/2R0), (7.35)

|ψ | = exp(−r2/2σ 2). (7.36)

The paraxial conditions will be fulfilled if λ σ  R0. Now, for the complex
curvature R from (7.34), we substitute in (7.33),

1
z− R

= R2
0 + k2

0σ
4

z
(
R2

0 + k2
0σ

4
)− R0k2

0σ
4 − iR2

0k0σ 2
. (7.37)

This rather formidable-looking expression has the structure A/[B(z) + iC]
which has maximum value when B(z) = 0, i.e. at the position z = zw where

zw = R0k2
0σ

4

R2
0 + k2

0σ
4

. (7.38)

At this position, the wave amplitude is

ψ(x0, y0, zw) = exp(ik0zw)
R

z− R
exp

[
−(x2

0 + y2
0
)

2w2

]
, (7.39)

where the waist radius w is defined by

w2 = R2
0σ

2

R2
0 + k2

0σ
4

. (7.40)

When z = zw the light beam is narrowest (hence the term ‘waist’) and most
intense. It is closer than the focal point z = R0 although it does approach the
focus as σ increases. On the other hand, as σ → 0, the waist approaches the
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input plane z = 0. Another important observation is that in the plane of the
waist the wavefront is planar. This is clear because in the exponent in (7.39)
the multiplier of x2

0 + y2
0 is real. Evaluating (7.33) at all points shows that the

wavefronts, while initially concentric around the focal point, become flatter
as the wave approaches the waist. This means that the wavefronts cannot be
separated by equal distances λ (only concentric spheres or coaxial cylinders
could satisfy this requirement), and therefore there has to be a more extended

The ‘intensity transport
equation’ relates the rate
of change of intensity
along the axis to the
curvature of the
wavefront (Problem 2.8).
Then, if the intensity has
a maximum, the
wavefronts must have
zero curvature, i.e. be
planar.

phase anomaly of the Gouy type in that region. Figure 7.9(a) shows the way in
which the Gaussian beam becomes confined as it goes through the waist, and
the corresponding form of the wavefronts.

Now let us look at the prefactor to the exponent in (7.33) with the complex
curvature:

R
z− R

=
[ z

R
− 1

]−1 =
[

z
R0
− 1+ ik0z

σ 2

]−1
, (7.41)

= −1+ ik0σ
2

R0
(7.42)

on inserting the value for zw from (7.38). On integrating (7.39) the total inten-
sity of the beam is then found to be 2πσ 2, confirming that energy is indeed
conserved.

We can compare w with the radius of the spot in the focal plane z = R0 by
direct substitution in (7.39). Then

ψ(x0, y0, R0) = exp(ik0R0)
ik0σ

2

R0
exp

[
−k2

0
(
x2

0 + y2
0
)
σ 2

2R2
0

+ ik2
0
(
x2

0 + y2
0
)

2R0

]
.

(7.43)

The amplitude in this plane has the Gaussian form exp
(−r2

0/2s2), where
s=R0/k0σ ; anticipating Chapter 8, this is the Fraunhofer diffraction pattern of
a Gaussian mask. The position of the waist can be found by a simple geometri-
cal construction using the Gaussian parameters σ and s, as shown in Fig. 7.9(c).
The size of the waist can be written simply in terms of σ and s from (7.40):

w−2 = σ−2 + s−2, (7.44)

which shows again that w is smaller than both σ and s, and that a broader beam,
with larger σ , creates a more tightly focused waist (§4.4.3).

Now we shall look in more detail at the way in which the intensity and
phase of the Gaussian beam change as we go through the waist. Once again
substituting (7.34) into (7.33), this time at axial points (0, 0, z) we have

ψ(0, 0, z) = 1
(z/R0 − 1)− iz/k0σ 2 exp(ik0z). (7.45)

The Gouy phase shift has
been employed in optical
interferometers to obtain
an achromatic phase
shift, independent of the
wavelength.
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Figure 7.9 (a) Wavefronts of a Gaussian wave converging to a focus and then diverging from it.
The shape of the ‘waist’ structure is shown by drawing the locus of the 1/e points of
the Gaussian in each plane. (b) Intensity of the wave along the axis, showing the
peak at the waist, and its phase relative to a propagating plane wave of the same
frequency. The phase graph shows the Gouy phase shift in the waist region, where
its gradient is maximum. (c) A simple construction to find the position of the waist,
as a function of the Gaussian parameters σ in the incident plane z = 0 and s in the
focal plane z = R0.

This has intensity profile along the axis

I(z) =
[(

z
R0
− 1

)2
+ z2

k2
0σ

4

]−1

. (7.46)

This is a bell-shaped curve whose maximum is at z = zw and whose height falls
to half of the peak at zw ± zR where zR ≈ z2

w/k0σ
2 = k0w2. This distance is

called the Rayleigh length. The depth of focus, which is the distance between
the two axial positions at which the focal spot has blurred to twice the area it
had at the waist, equals 2zR.

The phase of the wave now changes through the waist in a continuous
manner. Relative to the continuous plane wave exp(ik0z), the phase of (7.45) is

φ(z) = arctan
[

zR0

k0σ 2(z− R0)

]
. (7.47)
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Figure 7.10

The Gouy effect. The
photographs show
interference patterns
between a plane wave and
a focused spherical wave
with Gaussian profile (a)
after the focus, F, and (b)
before it. The experimental
set-up is sketched below;
the mirrors M1 and M2 have
different focal lengths. The
phase change of π in the
relative phase is clear, since
the central fringe is bright
in (a) and dark in (b).

(a) (b)

F

M1

M2

This goes from zero to π in a continuous manner, having maximum gradient at
the waist and value π/2 at the focus. It is called the Gouy phase. The intensity
and phase changes along the axis are shown in Fig. 7.9(b), and the Gouy phase
change is illustrated by an interference experiment in Fig. 7.10.

7.4 Fresnel diffraction by linear systems

There is no simple analytical method to evaluate the Fresnel integral (7.15) for
systems without circular symmetry, and either numerical or graphical methods
must be used. The latter give us some physical insight into the rather beautiful
forms of Fresnel diffraction patterns. In Cartesian coordinates, (7.15) becomes

ψ = ik0A
2πz

∫ ∫
R

f (x, y) exp
[

ik0

2z
(x2 + y2)

]
dx dy. (7.48)

As an example of the use of graphical methods, we shall briefly consider
systems in which f (x, y) can be expressed as the product of two functions,
f (x, y) = g(x)h( y), so that (7.48) becomes

ψ = ik0A
2πz

∫ ∞

−∞
g(x) exp

(
ik0

2z
x2
)

dx
∫ ∞

−∞
h(y) exp

(
ik0

2z
y2
)

dy. (7.49)

The two integrals can then be evaluated independently.

7.4.1 Graphical integration by amplitude–phase diagrams

Integrals of the type

ψ =
∫ x2

x1

f (x) exp[iφ(x)] dx (7.50)

Amplitude–phase
diagrams have also been
widely used for solving
diffraction problems that
do have analytical
solutions, because they
give a lot of qualitative
insight into the origins of
features of a diffraction
pattern.
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Figure 7.11

Complex plane diagram of
the integral
ψ = ∫ x2

x1
f(x) exp[iφ(x)] dx.

x1

x2

1/k

df

y
increment f (x)exp[if (x)] dx

Real(y)
tan−1(f)

Imag(y)

can be evaluated by representing the real and imaginary parts of ψ as coordi-
nates in the complex plane. We represent each infinitesimal increment of ψ

dψ = f (x) exp[iφ(x)] dx (7.51)

by a vector of length f (x) dx at angle φ(x) to the real axis. The value of ψ is
then the vector sum of the increments, which is the vector joining the x1 and
x2 ends of the curve formed by all the increments head-to-tail. This is called
an amplitude–phase diagram, and the physics emerges from the geometry of
the resulting curve which is drawn schematically in Fig. 7.11. The geometrical
properties of the generated curve can best be appreciated by expressing its
curvature κ as a function of position σ measured along the curve. Then, from
Fig. 7.11, κ = dφ/dσ and dσ = f (x)dx, so that

κ = 1
f (x)

dφ
dx

. (7.52)

Classically, amplitude–phase diagrams have been extensively used to evaluate
complex integrals of the Fresnel type, but of course today they have largely been
displaced by numerical methods. However, construction of an amplitude–phase
diagram for an integral often provides an intuitive feeling for the result and this
can shorten the way to physical meaning. For example, as f (x)→ 0 or dφ/dx
is large, the curvature becomes very large and the curve winds itself into a lim-
iting dot and does not contribute to the integral. As a result, the most important
parts in defining the value of a complex integral are those where f (x) is large
and the phase φ has a turning point, dφ/dx = 0. Evaluating the integral by con-
sidering these points alone is called the method of stationary phase. Below,
we shall briefly describe the method as applied to Fresnel diffraction by linear
systems.

7.4.2 Diffraction by a slit

Let us consider the problem of diffraction by a single long slit defined in
the plane R from x1 to x2, so that g(x)= 1 between these limits and is zero
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Figure 7.12

The Cornu spiral. The
section from t = t1 to t2 is
shown emphasized, and
the complex amplitude
observed is given by the
vector between these two
points. The intensity is the
square of this vector.

t
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t2
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C+
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Imag(I)

elsewhere; h( y)= 1 everywhere. The integral (7.49) for ψ then gives the
amplitude and phase of the disturbance at P, the axial point (0, 0, z):

ψ = ik0A
2πz

∫ x2

x1

exp
(

ik0

2z
x2
)

dx
∫ ∞

−∞
exp
(

ik0

2z
y2
)

dy. (7.53)

The second integral in (7.53) can be evaluated analytically (see §7.3) as√
2πz/k0i. The first integral can be written in terms of the dimensionless

variable t = x
√

k0/z ≡ βx:

I = 1
β

∫ βx2

βx1

exp

(
it2

2

)
dt. (7.54)

From (7.52), the amplitude–phase diagram for this integral has the property
that its curvature equals the distance from the origin, as measured along the
curve. It is called the Cornu spiral and is illustrated in Fig. 7.12. In fact,
the x- and y-axes are, respectively, the Fresnel integrals

∫ t
0 cos(t′2/2) dt′ and∫ t

0 sin(t′2/2) dt′. To calculate the diffraction pattern from the slit we take a
series of values of t1 and t2 such that (t1 − t2)/β is the width of the slit, and
measure the vector length between the points on the spiral at t1 and t2. This
gives the amplitude and phase of ψ at P, which is opposite x = 0. Repeating
the calculation as a function of the starting value t1, which relates the point of
observation P on the axis to the lateral position of the slit, gives the complete
pattern. It will be seen, then, that diffraction patterns become quite intricate
when both t1 and t2 are in the ‘curls’ of the spiral – i.e. when (t1−t2) is typically
of the order of, or greater than, 10. Figure 7.13 shows the calculated intensity
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Figure 7.13

(a) Amplitude of the
Fresnel diffraction pattern
calculated for a slit of width
0.9 mm observed with
z = 20 cm, z1 = 28 cm and
λ = 0.6 μm. The
geometrical shadow is
indicated by the broken
lines. (b) Photograph of the
diffraction pattern
observed under these
conditions.

(a) (b)

Figure 7.14

The Fresnel diffraction
pattern of a single straight
edge: (a) calculated from
(7.54), where the
geometrical shadow is
shown as a broken line; (b)
photographed. The edges
of the shadow of the
paperclip in Fig. 7.4 also
show this phenomenon.

(a) (b)

and the diffraction pattern observed for a value of (t1 − t2) = 8.5. Using light
of wavelength 0.6μm in (7.54) this corresponds to (x1 − x2)

2/z � 7μm – for
example, a slit 2.7 mm wide at z = 1 m.

7.5 Advanced topic: X-ray microscopy

We shall see in §13.3.3 that the refractive index of materials for X-rays is
very slightly less than unity (n − 1 ∼ −10−6) so that useful lenses cannot
be constructed for use at such wavelengths. Another possibility for X-ray
imaging is to use glancing-angle mirrors employing total external reflection,
but because of the difficulties involved in accurate figuring of the ellipsoidal
surfaces of such mirrors they have not so far been able to achieve high enough
resolution for microscopy, although they are employed in X-ray astronomy.
However, in Fresnel’s zone plate we have an alternative focusing element
consisting of a series of rings that are alternately transparent and opaque to
X-rays. As a result of advances in microfabrication (Unger et al. (1987)), such
zone plates can now be constructed from gold on a transparent substrate at a
scale which makes them suitable for X-ray microscopy. A typical layout for an
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t c+

Figure 7.15

Cornu-spiral construction
for the edge wave
observed in the shadow
region. As t advances, the
vector rotates just like the
wave from a line source;
hence the term ‘edge
wave’.

Box 7.1 Diffraction by a single edge: the edge wave

A commonly observed diffraction pattern that can be easily recognized as
resulting from the geometrical properties of the Cornu spiral is the pattern
from a straight edge. Here, this is defined as an aperture extending from a
finite value of t to infinity and its diffraction pattern is shown in Fig. 7.14.
Fringes of this type are commonly seen around the shadow of any sharply
defined object, and in a microscope might be used to judge the degree of
defocus of such an object. The vector representing ψ(t) joins the point t to
C+. When t is positive, so that t = 0 is in the geometrical shadow, the vector
simply rotates about C+, becoming monotonically shorter with continuously
increasing and slowly accelerating phase as t → ∞ (Fig. 7.15). This is
almost identical with the phase variation of a wave coming from a line
source. As a result, the edge appears to be a bright line; this is known as an
edge wave, and explains why a sharp edge appears to be highlighted when
observed from the shadow region. In the illuminated part, the fringes result
from interference between the edge wave and the transmitted wave.

X-ray microscope based on a synchrotron radiation source (§5.3.1) is shown
in Fig. 7.16.

Supposing that we use a wavelength of 5 nm, and require a focal length of
1 mm. The scale of the rings is then given by (7.29):

R0 =
√

f λ = 2.7μm. (7.55)

The nth ring has a radius R0
√

n, and its thickness is approximately R0/
√

n,
so that if there are to be several hundred rings we require fabrication with a
lateral scale resolution of 50 nm. Such structures have been made by electron-
beam writing on a photo-resist film which, following several etching and
electroplating stages, results in a zone plate of gold rings 150 nm thick which
is sufficient to absorb X-rays of this wavelength. The zone plate is supported
on a 120 nm thick X-ray-transparent silicon nitride substrate.

We can calculate the resolution limit of such a ‘lens’ using the methods
that will be developed in §12.2. First of all, the transverse resolution limit is
equivalent to that of a lens with outer diameter D equal to that of the zone plate.

The transverse resolution
limit of a zone plate is
given by the width of its
finest (outermost) ring.

We shall assume it to have N rings so that, from (7.27), smax = D2/4 = 2NR2
0.

Then the resolution limit δxmin, using (7.29) for the focal length f is

δxmin = f θmin = 1.22f λ
D

= 1.22f λ
2
√

2NR0
= 1.22R0

2
√

2N
. (7.56)

This is can usefully be compared with the thickness of the outermost ring, which
is
√

2NR0−
√

2N − 1R0 � R0/
√

2N for large N . In other words, the transverse
resolution limit is approximately equal to the scale of the finest ring, which
is determined by the fabrication technique (about 50 nm). The longitudinal
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Figure 7.16

Schematic layout of the
X-ray microscope at BESSY
based on a synchrotron
source. For clarity, rays are
shown on one side of the
axis only. It uses two
Fresnel zone plates, the
first as a condenser and
the second for imaging.
(After Niemann et al.
(1986))
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resolution is wavelength dependent. The images, at positions given by (7.28)
where the primary image n = 1 is the only one of interest (the others are
blocked by appropriately placed baffles), are ideally sharp only when N →∞.
Otherwise, from the Fourier theory for a finite number N of oscillations (§8.5.3),
we have the relative width of the image:

δL
L
= 1

N
, (7.57)

δL = R2
0k0

2Nπ
= 1

N

(
R2

0
λ

)
= D2

8N2λ
. (7.58)

As is usual in imaging systems, the longitudinal and transverse resolutions are
related by

δL
λ
�
(
δxmin

λ

)2
, (7.59)

i.e. the longitudinal resolution limit approximately equals the square of the
transverse resolution limit, when both are measured in units of the wavelength.
The transverse resolution limit is about 4λ, and so the longitudinal limit is about
16λ. The poor depth discrimination indicated by the last figure, which might
be seen as a disadvantage, has been put to good use in forming tomographic
images, where a number of views from different directions are synthesized
mathematically into a three-dimensional picture of the object.

An example of an image is shown in Fig. 7.17. An alternative technique,
inverting the X-ray diffraction pattern with the aid of phase retrieval, will be
discussed in §8.8. The main problem that needs solution is the poor efficiency
of the zone plate (<10%) which means that high X-ray dosages are necessary
for imaging and therefore the technique is only available at synchrotron or
other high intensity sources; the high intensity is also not healthy for biological
samples. A phase-modulated zone plate, particularly if it can be blazed (§9.2.5),
is clearly one answer here.
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Figure 7.17

Images of budding yeast
made using X-rays with
λ = 2.4 nm: (a) projection
image and (b) a section
obtained by tomographic
reconstruction from a series
of projections in different
directions. The scale bar on
(b) is 0.5 μm. (Courtesy of
C. Larabell; Larabell and
Le Gros (2004))

(a) (b)(a)

Chapter summary

This chapter was devoted to the diffraction of optical waves and the subject of

near-field, or Fresnel, diffraction in particular. We saw:

• That a full solution of wave propagation using Maxwell’s equations is

too difficult under most circumstances, and can be replaced by a

scalar-wave diffraction theory, which is much easier to visualize and

calculate;

• Some limitations of the scalar-wave theory and when it cannot be used;

• How to formulate scalar-wave diffraction by an obstacle by using

Huygens’ wavelets;

• That diffraction problems can be conveniently classed as near-field

(Fresnel) and far-field (Fraunhofer) diffraction; the latter class has such

far-reaching consequences that the next chapter will be devoted to it

specifically;

• Some solutions for near-field, or Fresnel, diffraction by axially

symmetric objects, where the necessary integrals can be performed

analytically;

• How a Fresnel zone plate can be constructed to behave like a diffractive

lens, and that this is the source of a new industry of ‘diffractive optics’;

• That Gaussian light beam propagation can be treated as a Fresnel

diffraction problem;

• That there is a Gouy phase shift of π when a wave goes through a

focus;

• How to use an amplitude–phase diagram for solving diffraction

problems graphically or numerically;

• That Fresnel zone plates are being used today for imaging with soft

X-rays, for which no lenses are available.
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Appendix: The Huygens–Kirchhoff
diffraction integral

Kirchhoff reformulated the diffraction problem for a scalar wave, which we
derived intuitively in §7.1.2, in a more rigorous manner as a boundary-value
problem. In the next two sections, (7.3) will be rederived, with an explicit form
for the inclination factor g(θ).

An electromagnetic field within a bounded region of space can be uniquely
determined by the boundary conditions around this region. Kirchhoff showed
that this approach is consistent with the idea of reradiation by points on a
wavefront through the aperture. Since we are dealing with harmonic fields
having time dependence exp(−iωt), the wave equation (2.49) becomes

∇2ψ = −ω2

c2 ψ = −k2
0ψ , (7.60)

which refers to any component of the electric or magnetic wave-field. This
is called the Helmholtz equation. We shall see that the field ψ(0) at a point
inside the bounded region can be written in terms of ψ and its derivatives on
the boundary of the region. In simple cases where these are determined by
external waves originating from a point source the result is very similar to the
one which we have already found intuitively.

The exact mathematics for the diffraction integral

In problems involving boundaries it is often convenient to study the properties
of the differences between two solutions of an equation rather than of one
solution alone, since the boundary conditions become simpler to handle. The
diffraction integral provides one such example, and we shall compare the
required solution ψ(r) of (7.60) with a trial solution

ψt = at

r
exp(ik0r), (7.61)

which is a spherical wave (2.48) radiating from the origin. This wave satisfies
(7.60) except at r = 0. This origin we shall define as the point of observation
P, at which ψ has the value ψ(0). The two wave-fields ψ (to be calculated)
and ψt (the convergent reference wave) satisfy the equation

ψ∇2ψt − ψt∇2ψ = −ψk2
0ψt + ψtk2

0ψ = 0 (7.62)

at all points except r = 0, because both ψ and ψt are solutions of (7.60). We
shall now integrate expression (7.62) throughout a volume V bounded by a
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surface S. The volume integral can be changed by Green’s theorem to a surface
integral:∫ ∫ ∫

V
(ψ∇2ψt − ψt∇2ψ) dV =

∫ ∫
S
(ψ∇ψt − ψt∇ψ) · n dS, (7.63)

r
n

n
O

V

S0

S1

Figure 7.18

The surface for integration,
shown as a two-
dimensional section. V lies
between S0 and S1. Since
S0 is a sphere surrounding
a hole in V, its outward
normal vector n is
anti-parallel to r.

n being the outward normal to the surfaceS at each point. Because the integrand
(7.62) is zero, the integrals (7.63) are also zero, provided that the region V does
not include the origin r = 0. The surface S is therefore chosen to have two
parts, as illustrated in Fig. 7.18: an arbitrary outer surface S1 and a small
spherical surface S0 of radius δr (much less than one wavelength) surrounding
the origin. Volume V lies between the two surfaces, and n, being the outward
normal from V , is therefore inward on S0 and outward on S1.

Over this two-sheet surface we thus have, for (7.63)[∫ ∫
S0

+
∫ ∫

S1

]
(ψ∇ψt − ψt∇ψ) · n dS = 0. (7.64)

We can evaluate the gradient of ψt from (7.61):

∇ψt = atr
r2 ik0 exp(ik0r)− atr

r3 exp(ik0r) = atr
r3 (ik0r − 1) exp(ik0r) (7.65)

and substitute in (7.64) to obtain∫ ∫
S0+S1

at

r3 exp(ik0r)[ψ(ik0r − 1)r+ r2∇ψ] · n dS = 0. (7.66)

The S0 contribution can be evaluated directly, since over the small sphere of
radius δr we can consider ψ to be constant, equal to ψ(0). Also, since n is then
the unit vector parallel to −r, we have r · n = −r and can substitute r2 d� for
dS. Thus∫ ∫

S0

at

r3 exp(ik0r)[ψ(0)(ik0r − 1)r+ r2∇ψ(0)] · nr2 d�

= −
∫ ∫

S0

at exp(ik0r)[ψ(0)(ik0r − 1)− r∇ψ(0) · n] d�, (7.67)

evaluated at r = δr, d� being the element of solid angle. In the limit as δr → 0
there is only one term which does not approach zero and that is

−
∫ ∫

S0

at exp(ik0δr)ψ(0)d�→−4atπψ(0), (7.68)

since k0 δr  1. Equation (7.66) therefore gives, cancelling at,∫ ∫
S1

1
r3 exp(ik0r)[ψ(ik0r − 1)r+ r2∇ψ] · n dS = 4πψ(0). (7.69)

This expression is the analytical result of the wave equation (7.60). To
summarize, it relates the value of the scalar waveψ at the origin to its values and
gradients on an arbitrary surface S1 surrounding the origin at a non-negligible
distance from it.
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Figure 7.19

Part of the surface S1

showing normal, vectors
and angles.

P
Q

d1
d

n
q1

q

S1

Illumination by a point source

Suppose now that the disturbance on S1 originates from a point source Q.
We consider a point S on S1 at r = d which also lies a distance d1 from Q
(Fig. 7.19). The incident wave at S has amplitude (aQ/d1) exp(ik0d1) and if the
transmission function at this point is fS , the reradiated values of ψ(d) and its
gradient are then

ψ(d) = fSaQ

d1
exp(ik0d1), (7.70)

∇ψ = fSaQd1

d3
1

(ik0d1 − 1) exp(ik0d1), (7.71)

q

1

Huygens

Kirchhoff

g(q)

Figure 7.20

The inclination factor g(θ)

for θ1 = 0 displayed in
polar coordinates. The
Kirchhoff result can be
compared to Huygens’
guess.

as in (7.65). Substituting these values into (7.69) gives

aQ

∫ ∫
S1

fS exp[ik0(d + d1)]
[

d · n
d1d3 (ik0d − 1)− d1 · n

dd3
1

(ik0d1 − 1)

]
dS

= −4πψ(0). (7.72)

The scalar products can be seen from the diagram to be d · n = d cos θ and
d1 · n = −d1 cos θ1. When d and d1 are both very much greater than the
wavelength, we can neglect 1 with respect to k0d and then, with the angles θ

and θ1 defined as in Fig. 7.19,

ψ(0) = − ik0aQ

2π

∫ ∫
S1

fS
dd1

exp[ik0(d + d1)]
(

cos θ + cos θ1

2

)
dS. (7.73)

This is the theoretical basis for the expression (7.3) which we have already
used in our diffraction calculations. It contains two extra pieces of information.
The first is a definite form 1

2(cos θ + cos θ1) for the inclination factor g(θ),
which is shown in Fig. 7.20 where it is compared with the Huygens guess
(§2.6.1). For paraxial conditions, g(θ) = cos θ = cos θ1 � 1 as assumed in
(7.3). In the backward direction cos θ = −1 and g(θ) = 0. The second point of
interest is that the scattering strength b = −ik0/2π = −i/λ has been derived
directly (7.19).
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Problems

7.1. A plane wave is incident normally on a mask containing a 1 mm hole.
What is the furthest distance from the mask at which one can observe a
diffraction pattern with zero intensity at its centre?

7.2. A 5 mm diameter disc is used to demonstrate the classic experiment
showing the bright spot at the centre of its Fresnel diffraction pattern.
The screen is at 1 m distance. What irregularity in the edges of the disc
can be tolerated? Estimate the diameter of the bright spot on the screen.

7.3. Calculate the distances of the bright and dark fringes from the edge
of the geometrical shadow in the diffraction pattern of a straight edge,
observed in parallel light on a screen at 1 m distance from the edge.

7.4. What is the dispersive power (§3.7.3) of a Fresnel zone plate, considered
as a lens? Design an achromatic doublet using a zone plate and a glass
lens.

7.5. Find the variation of intensity along the axis of an annular aperture with
inner and outer radii R1 and R2 illuminated by parallel light.

7.6. What efficiency would you expect to obtain from a zone plate with all
rings transparent, but with phases (a) alternately 0 and π , (b) cyclically
0, π/2,π , 3π/2? How is the latter related to a blazed grating (§9.2.5)?

7.7. A pinhole camera forms an image of a distant object on a screen at
distance d from the pinhole. What diameter of pinhole gives the sharpest
image? (Take into account both diffraction and convolution of the image
with the aperture of the pinhole.)

7.8. Use the Cornu spiral to calculate the Fresnel diffraction pattern of a slit
of width 1 mm on a screen at 1 m distance, when illuminated by parallel
light. Compare this with the Fraunhofer pattern, obtained by inserting
a lens of focal length 1 m immediately after the slit.

7.9. Devise a method of using amplitude–phase diagrams for Fraunhofer
diffraction patterns, and apply it to finding the pattern of a periodic
array of six thin slits.

7.10. Use the Cornu spiral to design a linear zone plate, by choosing slits
with positions and widths such that all their contributions to ψ have the
same sign.
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7.11. Study the design of the X-ray microscope in Fig. 7.16 and see what
are the trade-offs between the field of view and efficiency of imaging,
which arise because of the need to block the centre of the zone plate.

7.12. Show that computations of Fresnel diffraction patterns can conve-
niently be carried out by calculating the two-dimensional Fourier
transform of the object function, multiplied by a quadratic phase
function exp(−iαr2), and show how to relate α to the experimental
conditions. Illustrate your answer with some examples.

7.13. The transmission function of an annular mask is given by f (r, θ) =
δ(r − R0)g(θ), i.e. the mask is only transparent around the ring of
radius R0, but has arbitrary complex transmission function g(θ) around
it. Using the Fresnel approximation, show that the diffraction pattern
I(p) is independent of z except for its scale, which depends linearly on
z. For the case g(θ) = 1, show that the diffraction pattern is given by a
Bessel function (Appendix A). For this reason, beams which are limited
by an annular aperture are called Bessel beams or non-diffracting
beams.
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8 Fraunhofer diffraction and interference

The difference between Fresnel and Fraunhofer diffraction has been discussed

in Chapter 7, where we showed that Fraunhofer diffraction is characterized by

a linear change of phase over the diffracting obstacle, contrasting the quadratic

phase change responsible for Fresnel diffraction. Basically, Fraunhofer diffrac-

tion is the limit of Fresnel diffraction when the source and the observer

are infinitely distant from the obstacle. When the wavelength is very short

and the obstacles are very small, such conditions can be achieved in the lab-

oratory; for this reason Fraunhofer diffraction is naturally observed with X-rays,

electrons, neutrons, etc., which generally have wavelengths less than 1 Å. The

study of Fraunhofer diffraction has been fuelled by its importance in understand-

ing the diffraction of these waves, particularly by crystals. This has led to our

present-day knowledge of the crystalline structures of materials and also of many

molecular structures. Figure 8.1 shows a famous X-ray diffraction pattern of a

crystal of haemoglobin, from about 1958, whose interpretation was a milestone

in visualizing and understanding biological macromolecules. The techniques used

in interpreting such pictures will be discussed in the later parts of the chapter.

In optics, using macroscopic objects in a finite laboratory, the linear phase

change can be achieved by illuminating the object with a beam of parallel light. It

is therefore necessary to use lenses, both for the production of the parallel beam

and for the observation of the resultant diffraction pattern.

In this chapter we shall learn:

• how to observe Fraunhofer diffraction patterns;

• about the relationship between Fraunhofer diffraction and the Fourier

transform;

• why phase information in the patterns is lost in the recording process;

• some examples of diffraction patterns;

• general principles of Fraunhofer diffraction;

• about interference between several identical apertures;

• about three-dimensional Fraunhofer diffraction, and its importance in

crystallography;

• how, in practice, it is often possible to retrieve the lost phases;

• how this has improved both modern crystallography and the Hubble Space

Telescope.
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Figure 8.1

Precession photograph of
haemoglobin. X-ray
diffraction by crystals is an
important application of
Fraunhofer diffraction. (By
courtesy of M. F. Perutz)

8.1 Fraunhofer diffraction in optics

8.1.1 Experimental observation of Fraunhofer patterns

In (7.10) we showed the optical path from an axial point source Q at distance
z1 to the general point P in the observation plane at z, via a point S in the mask
plane R (as in Fig. 7.3), to be

How to observe
Fraunhofer diffraction
patterns in the laboratory
and in the street.

QSP � z+ z1 + 1
2

(
z−1 + z−1

1

)
r2 + 1

2
z−1( p2 − 2r · p)+ · · ·, (8.1)

where S is at r ≡ (x, y) and P at p ≡ ( px, py) in their respective planes, with
origins on the axis of illumination. Let P now be defined by the direction
cosines (l̃, m̃, ñ) of the line OP joining the origin of the mask to P. Then, when
p  z we can write p = (z l̃, z m̃), and

QSP � z+ z1 + 1
2

(
z−1 + z−1

1

)
r2 + 1

2
z
(
l̃2 + m̃2)− xl̃ − ym̃

� z+ z1 − xl̃ − ym̃+ · · ·. (8.2)

In the last line above, all second- and higher-order terms have been neglected. It
is this linear dependence on x and y that is the origin of the great importance of
Fraunhofer diffraction. As was pointed out in §7.1.4, experimental conditions
can easily be devised so that the second-order terms are zero, even for quite
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Figure 8.2

Set-ups for laboratory
experiments on Fraunhofer
diffraction: (a) using a laser
source (A); (b) optical
diffractometer, where the
source A is a mercury
discharge lamp. In the
diagrams B is a pinhole to
ensure spatial coherence
over the mask; C and D are
high quality lenses, E is an
optically flat mirror. The
diffraction pattern of a
mask at R is seen in the
plane F .

A

B

C

D

E

F

R

A

B

C

R

D

F
(a) (b)

large r. An everyday situation is when z1 = −z (observing screen conjugate to
the point source Q); this arises when you look at a distant point source such as
a monochromatic (sodium) street lamp, with the diffracting mask right in front
of your eye.

Quantitative laboratory experiments are carried out with the aid of lenses or
lens combinations, as in Fig. 8.2(a). The point source, a laser beam focused on
a pinhole, is situated at the focal point B of the first lens C, so that a plane wave
is incident on the mask R, and thus z1 →∞. The light leaving the mask passes
through a second lens D, and the observation plane is the focal plane F of that
lens, so that z →∞. Each point in this plane corresponds to a vector (zl̃, zm̃).
Clearly the observation plane is conjugate to the point source, irrespective of
the distance between the two lenses.

Many of the older photographs in this book were taken with an optical
diffractometer, shown in Fig. 8.2(b), which was designed for accurate exper-
iments of this sort. It was developed in the 1950s as an ‘analogue computer’
(Taylor and Lipson (1964)) for solving X-ray crystal diffraction problems,
which will be discussed in §8.6. Although this instrument today seems old-
fashioned, the use of a conventional discharge lamp source instead of a laser
does avoid the appearance of laser speckle and spurious interference fringes in
the diffraction patterns, which you might notice in some of the newer figures,
although we took pains to avoid them!
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Figure 8.3

(a) Illustrating the
geometry of Fraunhofer
diffraction by a
two-dimensional object;
(b) detail of the region OZX.
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8.2 Fraunhofer diffraction and Fourier transforms

We shall now examine the argument in §8.1.1 in more detail, for the case
illustrated by Fig. 8.3 in which the incident light is a plane wave parallel to the
optical axis and observation is in the focal plane of the second lens.

Consider a plane wave travelling along the z-axis (Fig. 8.3) and incident at

Fraunhofer diffraction
experiments are an
excellent way of learning
about Fourier transforms.

z = 0 on a mask with amplitude transmission function f (x, y). The diffracted
light is collected by a lens of focal length F situated in the plane z = U .

All light waves leaving the screen in a particular direction are focused by
the lens to a point in the focal plane. In the figure XB, OA, YC are all parallel
and are focused at P. The amplitude of the light at P is therefore the sum of the
amplitudes at X , O, Y , etc., each with the appropriate phase factor exp(ik0XBP),
etc., where XBP indicates the optical path from X to P via B, including the path
through the lens.

Now the amplitude at X , the general point (x, y) in the plane z = 0, is
simply the amplitude of the incident wave, assumed unity, multiplied by the
transmission function f (x, y). To calculate the optical path XBP we remember
that according to Fermat’s principle (§2.6.4) the optical paths from the various
points on a wavefront to its focus are all equal. The direction of XB, OA, . . . is
represented by direction cosines (l̃, m̃, ñ). Then the wavefront normal to them,
through O, which focuses at P is the plane

l̃x+ m̃y+ ñz = 0 (8.3)
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and the optical paths from the wavefront to P, i.e. OAP and ZBP are equal.
Now ZX is just the projection of OX onto the ray XB, and this can be expressed
as the component of the vector (x, y, 0) in the direction (l̃, m̃, ñ), namely,

ZX = l̃x+ m̃y. (8.4)

Thus,

XBP = OAP− l̃x− m̃y. (8.5)

The amplitude at P is obtained by integrating f (x, y) exp(ik0XBP) over the
screen, ignoring the prefactor ik0/2πz from (7.20):

ψP = exp(ik0OAP)
∫ ∫

f (x, y) exp[−ik0(l̃x+ m̃y)] dx dy. (8.6)

We define

u ≡ l̃k0, v ≡ m̃k0 (8.7)

to represent the position of P, and write

ψ(u, v) = exp(ik0OAP)
∫ ∫

f (x, y) exp[−i(ux+ vy)] dx dy. (8.8)

The Fraunhofer diffraction pattern amplitude is therefore given by the
two-dimensional Fourier transform of the mask transmission function
f (x, y).

The coordinates (u, v) can also be related to the angles of diffraction θx and θy
between the vector (l̃, m̃, ñ) and the vertical and horizontal planes, respectively,
containing the axis. Then l̃ = sin θx, m̃ = sin θy, and

u = k0 sin θx, v = k0 sin θy. (8.9)

The coordinates ( px, py) of P can be related exactly to u and v only if the details

The Fraunhofer pattern is
an expression of the
wave transmitted by the
mask as a superposition
of plane waves, each
travelling in a different
direction. This is the
Fourier transform.

of the lens are known. For paraxial optics, the direction cosine ñ ≈ 1 and

px = Fl̃/ñ ≈ uF/k0, py = Fm̃/ñ ≈ vF/k0, (8.10)

where F is the effective focal length of the lens. It would be useful if the linear
approximation could be preserved out to larger angles, and lenses with this
property have been designed. In general, however, one has to work at small
angles for the ( px, py) : (u, v) relationship to be linear.

When we observe a diffraction pattern, or photograph it, we measure
the intensity |ψ(u, v)|2, and the exact value of OAP is irrelevant. We then have
from (8.8)

|ψ(u, v)|2 =
∣∣∣∣
∫ ∫

f (x, y) exp[−i(ux+ vy)] dx dy
∣∣∣∣
2

. (8.11)
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8.2.1 The phase of the Fraunhofer diffraction pattern

The intensity of the diffraction pattern is independent of the exact distance
OC between the mask and the lens, in that this distance only affects the phase
factor exp(ik0OAP). For some purposes, it is necessary to know the phase of
the diffraction pattern also, for example if the diffracted wave is to be allowed
to interfere with another coherent light wave as in some forms of pattern
recognition or holography (§12.5).

Now the factor exp(ik0OAP) is quite independent of f (x, y), since it is
determined by the geometry of the optical system. It is very easy to calculate

Although the phase of
the diffraction pattern is
lost when we photograph
it, there are ways of
retrieving or recording it.
See §8.8 and §12.5
where these are
described.

it for the particular case where f (x, y) is δ(x) δ( y). This represents a pinhole in
the mask at O. Then the diffraction pattern is, from (8.8),

ψ(u, v) = exp(ik0OAP)
∫

δ(x) exp(−iux) dx
∫

δ( y) exp(−ivy)] dy

= exp(ik0OAP). (8.12)

However, we know that the action of the lens in general is to focus the light
from the pinhole. Of particular interest is the case where the mask is in the
front focal plane (OC = F). Then the wave leaving the lens is a plane wave
with wavefronts normal to the z-axis:

ψ(u, v) = exp(ik0OAP) = constant. (8.13)

Therefore, when the object is situated in the front focal plane of the lens,
the Fraunhofer diffraction pattern represents the true complex Fourier
transform of f (x, y). For all other object positions the intensity of the diffrac-
tion pattern is that of the Fourier transform, but the phase is not.

8.2.2 Fraunhofer diffraction in obliquely incident light

If the plane wave illuminating the mask in Fig. 8.3 does not travel along the
z-axis, the foregoing treatment can be adjusted in a rather simple manner.
Specifically, when the incident wave-vector has direction cosines (l̃0, m̃0, ñ0)
the phase of the wave reaching the point (x, y) on the mask is advanced by
k0(l̃0x + m̃0y) with respect to that at the origin. Thus the retardation of the

Diffraction gratings are
usually illuminated at an
angle in order to increase
their resolving power
(§9.2.2)

component from (x, y)with respect to that from (0, 0) is k0[(l̃−l̃0)x+(m̃−m̃0)y].
The integral (8.6) is now

ψP = exp(ik0OAP)
∫ ∫

f (x, y)

× exp{−ik0[(l̃ − l̃0)x+ (m̃− m̃0)y]} dx dy. (8.14)
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This can still be written in the form (8.8)

ψ(u, v) = exp(ik0OAP)
∫ ∫

f (x, y) exp[−i(ux+ vy)] dx dy, (8.15)

provided that u and v are redefined:

u = k0(l̃ − l̃0), v = k0(m̃− m̃0). (8.16)

Now, remembering that (l̃, m̃) are defined as sines of the angles (θx, θy), we see
that u and v can be written

u = k0(sin θx − sin θx0), v = k0(sin θy − sin θy0). (8.17)

This formulation will be important when we study the resolution limits of
diffraction gratings (§9.2.2) and incoherent imaging (§12.2.5).

8.3 Examples of Fraunhofer diffraction by
one- and two-dimensional apertures

In this section we shall apply the theory developed above to some specific
examples. The results will be illustrated by experimental photographs, which
demonstrate that the theory really works well in practice.

8.3.1 Fraunhofer diffraction by a slit

We represent a slit of width a by the function

f (x, y) = rect(x/a) =
{

1 |x| ≤ a/2,
0 |x| > a/2.

(8.18)

Notice that the slit is considered to be infinitely long in the y-direction. The
function f (x, y) separates trivially into a product of functions of x and y only
(the latter being the constant 1) and so, from §4.3.2,

ψ(u, v) =
∫ a/2

−a/2
exp(−iux) dx

∫ ∞

−∞
exp(−ivy) dy

= 2 sin(au/2)
u

δ(v) = a sinc(au/2) δ(v). (8.19)

The intensity of the Fraunhofer diffraction pattern along the axis v = 0 is

|ψ(u, 0)|2 = a2 sinc2(au/2). (8.20)

The function introduced here, sinc(x) ≡ sin(x)/x, shown in Fig. 8.4(a), was
discussed in §4.3.2, but is so important that we repeat its properties here. It has
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Figure 8.4

(a) Form of the function
sinc(x). (b) The intensity of
diffraction by a slit of width
a, a2 sinc2( 1

2 au).

a2

|ψ |(u) 2

u

a

2π/a

4π/a

ψ(u)

u

(a) (b)

a maximum of 1 at x = 0, since sin(x) ≈ x for small values of x, and is zero at
regular intervals where x = mπ , m being a non-zero integer. The values of the
interleaving maxima are approximately proportional to

(
m+ 1

2
)−1; this result

arises if we assume that these maxima lie half-way between the zeros, which
is not quite true. Figure 8.4(b) shows the observed intensity, |ψ(u, 0)|2. The

The function sinc(x),
(Fig. 8.4(a)), the
diffraction pattern of a
slit, occurs frequently in
diffraction theory.

zeros in this function occur at angles given by

k0a sin θ = 2mπ , a sin θ = mλ. (8.21)

8.3.2 Diffraction by a blurred slit, represented
by a triangular function

The sharp edges of an
aperture give rise to
oscillatory side-bands;
smoothing the edges
reduces the prominence
of these oscillations.

We now assume that the transmission function at the edges of the slit varies
continuously and linearly with x so as to define a slit of the same width a as
before, but with blurred edges. This will demonstrate that the effect of blurring
the sharp edges is to reduce the prominence of the side-bands in the diffraction
pattern. Consider

f (x, y) =
{

1− |x|/a |x| ≤ a,
0 |x| > a.

This slit has effective width (defined as
∫

f (x) dx /fmax; see §8.3.5) equal to a,
the same as that of the previous slit (§8.3.1). Then, integrating by parts, one
finds

ψ(u, v) =
[

1
a

∫ a

0
(a− x) exp(−iux) dx+ 1

a

∫ 0

−a
(a+ x) exp(−iux) dx

]

×
∫ ∞

−∞
exp(−ivy) dy = a sinc2(au/2) δ(v). (8.22)

The form of ψ(u, 0) is the same as shown in Fig. 8.4(b). It is everywhere
positive, reaching zero at values of u given by

au/2 = mπ ; a sin θ = mλ. (8.23)
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The positions of these zeros are thus exactly the same as for the uniform
slit; since their effective widths are the same this result is not surprising. But
the maxima of the side-bands produced are much less; their intensities are
proportional to (2m + 1)−4. Further smoothing of the function f (x, y) at the
edges of the slit results in even weaker side-bands. A very smooth function
is the Gaussian discussed in §4.4.3 and §8.3.6 whose transform has no side-
bands at all. Notice that the diffraction pattern intensities in both this case and
that of the sharp-edged slit (§8.3.1) are functions centro-symmetrical about
(u, v) = (0, 0), since f (x, y) is real.

8.3.3 Diffraction pattern of a rectangular hole

Now we consider a rectangular hole of sides a and b, parallel to the x- and
y-axes respectively,

f (x, y) = rect(x/a) rect( y/b). (8.24)

Since this function is the product of independent functions of x and y, (8.8) can
be written as a product:

The diffraction pattern of
a rectangular aperture is
a two-dimensional ‘sinc’
function with dimensions
inversely proportional to
those of the aperture
itself.

ψ(u, v) =
∫ a/2

−a/2
exp(−iux) dx

∫ b/2

−b/2
exp(−ivy) dy. (8.25)

Since the origin is at the centre of the aperture the function is even and therefore
has a real transform. Thus

ψ(u, v) = ab sinc
(

1
2 ua

)
sinc

(
1
2 vb
)

, (8.26)

each factor being similar to that derived for a uniform slit (8.19). The diffraction
pattern has zeros at values of ua and vb equal to non-zero multiples of 2π . Thus
the zeros lie on lines parallel to the edges of the slit, given by the equations

u = m1
2π
a

and v = m2
2π
b

. (8.27)

The centre peak, for example, is bounded by lines given by m1= ± 1 and
m2 = ±1, which form a rectangle whose dimensions are inversely proportional
to those of the diffracting aperture (Fig. 8.5). The peaks off the u- and v-axes
are very weak, and are difficult to bring out in a photograph.

8.3.4 Diffraction pattern of apertures with axial symmetry

The diffraction pattern of a circular aperture is most important, since almost
all optical systems have axial symmetry, and their elements are bounded by
circular apertures. But now the integral (8.11) is more difficult to evaluate

Axially symmetric
apertures have diffraction
patterns described by
Bessel functions
(Appendix A).



236 Fraunhofer diffraction and interference

u

sinc(u)

(a) (b) (c)

Figure 8.5 (a) A rectangular aperture, with vertical-to-horizontal aspect ratio b/a ≈ 2. (b) The
calculated diffraction pattern amplitude along the x-axis, of form sinc(ua/2)
superimposed on the calculated amplitude of the diffraction pattern
|sinc(au/2)sinc(vb/2)|. (c) The observed diffraction pattern. Notice that the
vertical-to-horizontal aspect ratio is now b/a ≈ 1

2 .

since the limits are not independent. It is necessary to use polar coordinates
both for points in the aperture and in the diffraction pattern. If (r, θ) are the
polar coordinates in the aperture

x = r cos θ and y = r sin θ , (8.28)

and if (ζ ,φ) are the polar coordinates in the diffraction pattern,

u ≡ ζ cosφ and v ≡ ζ sinφ. (8.29)

Thus equation (8.8) becomes

ψ(ζ ,φ) =
∫ 2π

0

∫ ∞

0
exp[−i(rζ cosφ cos θ + rζ sinφ sin θ)] r dr dθ

=
∫ 2π

0

∫ ∞

0
exp[−irζ cos(θ − φ)]r dr dθ . (8.30)

This integral must be performed in terms of Bessel functions (Appendix A).
First, we calculate the outer (θ) integral, which is the diffraction pattern of a
thin annular aperture. Let it have radius r and thin width δr  r. The symmetry
dictates that the result will be independent of φ, so we can put φ = 0 and then
the formulation (A.1) gives us

The diffraction patterns
shown in this chapter
were mainly
photographed using the
diffractometer shown in
Fig. 8.2(b).

ψ(ζ ,φ)a = ψ(ζ , 0)a =
∫ 2π

0
exp[−irζ cos(θ)]r δr dθ (8.31)

= 2πrδr J0(rζ ). (8.32)

In Fig. 8.6, (8.32) is compared with an experimental observation. The zero-
order Bessel function has a sharp central peak (actually the narrowest that can
be obtained from any real and positive aperture within the bounds of r) and
quite a strong ring structure, which is clearly evident in the photograph.
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Figure 8.6

(a) Annular aperture.
(b) Form of the function
J0(u), the radial amplitude
distribution in the
diffraction pattern of
an annular aperture,
superimposed on the
two-dimensional form of
the amplitude | J0(ζ )|.
(c) Observed Fraunhofer
diffraction pattern of an
annular aperture.

(c)(b)

J0(u)

u

(a)

Figure 8.7

(a) Circular aperture.
(b) Form of function
2 J1(u)/u, the radial
amplitude distribution in
the diffraction pattern of a
circular aperture,
superimposed on the
two-dimensional form of
the amplitude | J1(ζ )/ζ |.
(c) Observed Fraunhofer
diffraction pattern of a
circular hole.

1.0

2J1(u) u

u

(b)(a) (c)

The diffraction pattern of a circular hole is obtained by integrating (8.32)
from 0 to R. The integral can be performed using power series (A.2) and shown
to be the Airy function:

ψ(ζ ,φ) = 2πRJ1(ζR)
ζ

= πR2
[

2J1(ζR)
ζR

]
. (8.33)

The form of (8.33) is interesting and very important. J1(x) is equal to x/2
at small values of x and therefore, like sinc(x), the function 2 J1(x)/x has a
finite value of unity at x = 0. It then decreases to zero, becomes negative and
continues to oscillate with a gradually decreasing period that tends to a constant
as in Fig. 8.7(b).

The diffraction pattern is shown in Fig. 8.7(c). The central peak is known
as the Airy disc, and it extends to the first zero, which occurs at x = 3.83, or
at angle ζ/k0 = 0.61λ/R. As one would expect from the properties of Fourier
transforms, the radius of the Airy disc is inversely proportional to the radius of
the hole.

It should also be noted from equations (8.26) and (8.33) that the amplitude at
the centre of the diffraction pattern is proportional to the area of the hole, and
therefore the intensity at that point is proportional to the square of the area. This
result makes sense when we realize that the linear dimensions of the diffraction
pattern are inversely proportional to those of the hole. Thus the total energy
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flow in the diffraction pattern, which is proportional to the area of the hole, is
mainly concentrated in a region that is inversely proportional to that area.

8.3.5 Section of a diffraction pattern through the origin:
effective width

The derivation of the form of the diffraction pattern in terms of a Bessel function
does not really throw any light upon the physics of the problem. If it had not
been that Bessel functions appear in other physical problems, their properties
would not have been studied and we should be no nearer an acceptable solution
when the equation (8.33) had been derived. It is, however, possible to see a
rough solution in terms of the concepts discussed in §8.3.1 and §8.3.2.

Suppose we have a function f (x, y) whose diffraction pattern is ψ(u, v).
Along the axis v = 0, we have in general

ψ(u, 0) =
∫ ∫

f (x, y) exp(−iux) dx dy

=
∫ ∞

−∞

[∫ ∞

−∞
f (x, y) dy

]
exp(−iux) dx. (8.34)

This means that the axial value ψ(u, 0) is the Fourier transform of the inte-

The effective width is a
useful tool for estimating
the scale of a diffraction
pattern.

gral f0(x)=
∫

f (x, y) dy. This has converted the two-dimensional Fourier
transform into a one-dimensional one whose properties might be easier to
appreciate intuitively. For many functions, we can define an ‘effective width’
weff =

∫
f0(x) dx/max( f0), and the diffraction pattern along the axis then has

a characteristic dimension 2π/weff .
As an example, we can apply this to the circular aperture. The integral is

a semicircular function and its effective width is πR/2 (Fig. 8.8). A slit with
width weff has diffraction pattern along the u-axis

ψ(u, 0) = weff sinc(πuR/4), (8.35)

which has its first zero when uR = 4. This agrees quite well with the exact
value, uR = 3.83, from the Bessel function.

f (x,y) dy

x

Figure 8.8

The ‘effective width’ of
a circular aperture. The
shaded rectangle and the
hatched circle have equal
areas.

8.3.6 Diffraction pattern of a Gaussian mask

The diffraction patterns of the apertures studied so far show noticeable outer
rings or side-bands, which arise as the result of the sharp cut-off at the edge
of the aperture. We saw an example in §8.3.2 of how these can be reduced
by blurring the edges. You can see this qualitatively because blurring corre-
sponds to convolution with a ‘smearing function’ whose transform multiplies
the diffraction pattern and reduces the intensity of the outer parts where the
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rings are. A sufficiently smooth function has no side-bands at all. We can illus-
trate this by using the Gaussian function, and we consider a circular aperture
whose transmission function is

f (x, y) = exp[−(x2 + y2)/2σ 2]. (8.36)

This also represents a Gaussian light beam incident on the plane R in a diffrac-
tometer, and the same problem was discussed in §7.3. Since this function,
despite its axial symmetry, can be written as the product of independent
Gaussian functions of x and y, we have the Fourier transform from (4.48):

ψ(u, v) = 2πσ 2 exp(−u2σ 2/2− v2σ 2/2)

= 2πσ 2 exp(ζ 2σ 2/2). (8.37)

The result is also a Gaussian spot, and is the most well-known exam-
ple of a ‘self-Fourier function’ (§4.10). In the diffraction plane at dis-
tance F=R0, using the paraxial form ζ = k0r/F we have the Gaussian
ψ(r)= 2πσ 2 exp

(−k2
0r2σ 2/2R2

0
)

which is the same result as we obtained by
Fresnel diffraction (7.43).

8.4 Some general diffraction principles

Having worked through a number of specific examples, we shall now discuss
some general principles that apply to Fraunhofer diffraction, and are of great
importance in gaining an intuitive understanding of these patterns.

8.4.1 Diffraction by an object with phase variation only

There are many objects, including many natural ones, that do not absorb

If a mask only absorbs
light, its diffraction
pattern is centro-
symmetrical. If it changes
the phase too, the
diffraction pattern
may not be centro-
symmetrical

light appreciably but change its phase on transmission. Any ordinary piece of
window glass will do this; it is transparent, but its thickness is not uniform
and light passing through different parts of it suffers a varying amount of
phase retardation. If the refractive index of the glass is n, the optical difference
between two paths including different thicknesses t1 and t2 is

(n− 1)(t1 − t2) (8.38)

and consequently an incident plane wave emerges from the glass sheet with
wavefronts that may no longer be planar (Fig. 8.9). Since waves of different
phases but the same amplitudes are represented by complex amplitudes with
the same modulus, this situation can be represented by a complex transmission
function f (x, y) with constant modulus and is called a phase object. When
calculating the Fraunhofer diffraction pattern of a phase object it is important
to realize that, because the transmission function f (x, y) is a complex function,
the diffraction pattern may not be centro-symmetric (§4.2.1).
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We shall take as an example a thin prism of angle α  1 and refractive
index n. The thickness t of the prism at position x is αx (Fig. 8.10) and its
transmission function is thus

f (x, y) = exp[ik0(n− 1)t]
= exp[ik0(n− 1)αx]. (8.39)

Incident
wave 

Figure 8.9

Distortion of a plane
wavefront by a
non-uniform glass plate.

x

a ax

Figure 8.10

A thin prism of angle α.

The prism is assumed to be infinite in extent along both x- and y-directions.
The diffraction pattern corresponding to f (x, y) is then

ψ(u, v) =
∫ ∞

−∞
exp[ik0(n− 1)αx] exp(−iux) dx

∫ ∞

−∞
exp(−ivy) dy

= δ[u− (n− 1)k0α] δ( y). (8.40)

The diffracted wave thus travels in the direction represented by

u = k0(n− 1)α, v = 0. (8.41)

Substituting for u this gives θ ≈ (n − 1)α for small θ . The light thus remains
concentrated in a single direction, but is deviated from the incident by the
same angle as deduced from geometrical optics. Notice that (8.40) is not
centro-symmetric, since it consists of a single δ-function which is not at the
origin.

8.4.2 Addition of diffraction patterns

Since diffraction is a linear process, diffraction pattern amplitudes can be
combined algebraically. This often allows the diffraction patterns of rela-
tively complicated objects to be derived if their transmission functions can
be expressed as an algebraic sum of simpler ones. The separate components of
the object must of course be expressed with respect to the same origin, and the
complete transform is then obtained by summing the complex amplitudes of
the component transforms. For example, it is possible to derive the diffraction
pattern of three slits by adding the transform of the two outer ones to that of the
inner one, or the diffraction pattern of a rectangular frame by subtracting the
transform of the inner rectangle from that of the outer one. In every case one
must be careful about the prefactors of the Fourier transforms. Some examples
of this sort are included as problems.

Diffraction pattern
amplitudes can be
combined algebraically.

8.4.3 Complementary screens: Babinet’s theorem

Babinet’s theorem relates the Fraunhofer diffraction patterns of two comple-
mentary screens. Two screens are said to be complementary if they each
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Figure 8.11

Babinet’s theorem.
Diffraction patterns of two
complementary masks
(shown as insets) when
illuminated by a Gaussian
beam. The positive mask
(a) was cut from metal foil
and the negative (b)
produced by evaporating
metal through it onto a flat
glass plate.

(a) (b)

Box 8.1 Demonstration of Babinet’s theorem

Experimental confirmation of Babinet’s theorem is an interesting exercise,
mainly because of the strength of the central peak. If the unobstructed
beam is very large, and one of the masks is mainly transparent, the peak is
extremely strong for that mask and usually dominates its diffraction pattern,
whereas it is negligible for the other mask. To get a convincing experimen-
tal confirmation of the theorem, the following rules should therefore be
followed.

1. The edges of the unobstructed beam should be blurred. This suppresses
the outer parts of its transform. In fact, using a Gaussian beam gives the
most concentrated central peak with the weakest wings.

2. The positive and negative masks should each be about 50% transmitting,
to give the strongest diffraction patterns in both cases.

3. The masks should contain fine detail so as to give rise to a strong
diffraction pattern well outside the central peak.

consist of openings in opaque material, the openings in one corresponding
exactly to the opaque parts of the other. Then the diffraction patterns of two
such screens are exactly the same except for a small region near the origin.
For example, the pattern of a set of opaque discs should be the same as that of
a set of equally sized holes similarly arranged, except around the origin. The
theorem is illustrated by the masks and diffraction patterns shown in Fig. 8.11.

The theorem can be proved on general grounds using the scalar theory
of diffraction. Suppose that the amplitudes of the diffraction patterns of two
complementary screens when illuminated by a certain beam are ψ1 and ψ2.
Now, the diffraction function for a combination of apertures can be obtained
by adding the separate (complex) functions. If we add ψ1 and ψ2 we should
obtain the diffraction function for the unobstructed beam. If this beam is large
in extent, the sum of ψ1 and ψ2 is then confined to a small region round
the centre; the rest is blank. Therefore the sum of ψ1 and ψ2 must be zero
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Figure 8.12

The diffraction pattern of
two circular holes is the
product of the diffraction
function and the
interference function. The
former is the Airy disc
pattern (§8.3.4) and the
latter is a cosine function.

u

y(u) Interference function
for two d-functions 

Diffraction function
for a circular hole 

Amplitude of the
diffraction pattern

everywhere except for this small central region. The moduli of ψ1 and ψ2
outside this region must therefore be equal, their phases differing by π . The
intensity functions are the same.

8.5 Interference

We have so far considered only the effect of modifying a single wavefront;
we shall now consider the effects occurring when two or more wavefronts
interact. These effects are called interference. In this section, we shall concern
ourselves mainly with wavefronts from identical masks.

For identical apertures we can make use of the principle of convolution

The relationship between
interference and
diffraction is like that
between the Fourier
series and transform.

(§4.7). For example, two similar parallel apertures can be considered as the
convolution of one aperture with a pair of δ-functions, one at the origin of
each. The interference pattern is therefore the product of the diffraction pattern
of one aperture and that of the pair of δ-functions (§4.4.1). We can therefore
divide such an interference problem into two parts – the derivation of the
Fourier transform of the single aperture and that of the set of δ-functions. The
transform of the single aperture is called the diffraction function and that
of the set of δ-functions is called the interference function; the complete
diffraction pattern is the product of the two. This is shown for two circular
holes in Fig. 8.12.

8.5.1 Interference pattern of two circular holes

We can regard a pair of circular holes, with separation a, as the result of
convolving a single hole with a pair of δ-functions. Now from §4.4.1 the
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Figure 8.13

Experimental diffraction
patterns of pairs of circular
holes: (a, b) separated by
about five times their
diameter; (c, d) separated
by about 18 times their
diameter. Note that the
fringes are normal to the
line joining the holes.

(a)

(b) (d)(c)

transform of the two δ-functions is given by

ψ(u, v) = 2 cos(ua/2). (8.42)

Thus the diffraction pattern of the two holes is the diffraction pattern of one
of them multiplied by a cosine function, varying in a direction parallel to the
separation a, Fig. 8.13.

The zeros of the function (8.42) occur at values of θ given by

ua/2 =
(

m+ 1
2

)
π , (8.43)

where m is an integer. Since u = k sin θ = 2π sin θ/λ, this simplifies to

a sin θ =
(

m+ 1
2

)
λ. (8.44)

It will be realized that what we have achieved is a rather roundabout method of
deriving an expression for Young’s fringes. There are, however, several reasons
for using this approach: first, we have derived the full expression for the profile
of the fringes, not just the spacing; second, we have demonstrated use of the
convolution method in a simple example; and, third, we have prepared the
ground for more complicated systems, such as those that follow.

8.5.2 Interference pattern of two parallel apertures
of arbitrary shape

We can regard a pair of similar parallel apertures (Fig. 8.14) as the convol-
ution of a single aperture with two δ-functions. The diffraction pattern is
therefore the product of the diffraction pattern of a single aperture and the
interference function, which is a set of sinusoidal fringes. This is illustrated in
Fig. 8.15. The argument is obviously applicable to a pair of apertures of any

Convolution is a powerful
tool that can often be
used to break down a
complicated structure
into simpler ones.

shape.
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Figure 8.14

Pair of parallel apertures
with quite a complicated
structure.

Figure 8.15

(a) Diffraction pattern of
one of the apertures in
Fig. 8.14. (b) Complete
diffraction pattern of the
mask in Fig. 8.14.
(c) Superposition of (a) and
(b) showing that (b) is (a)
multiplied by a cosine
function.

(a) (b) (c)

8.5.3 Interference pattern of a regular
array of identical apertures

An array of apertures can be regarded as the convolution of a set of δ-functions
with one aperture. From §4.4.2 we find that, if the δ-functions form a regular
one-dimensional lattice with spacing d, the transform is

ψ(u, v) =
N−1∑
n=0

exp(−iund), (8.45)

|y(u)|2

u

0 2p 4p

Figure 8.16

Diffraction by six parallel
slits. Form of the function
sin2(uNd/2)/ sin2(ud/2)
for N = 6.

where N is the number of apertures. When N →∞, the sum is (§4.4.2)

ψ(u, v) =
∞∑

m=−∞
δ(u− 2πm/d). (8.46)

The index m is called the order of diffraction. When N is finite, the sum of
the geometrical series (8.45) is

ψ(u, v) = 1− exp(−iuNd)
1− exp(−iud)

. (8.47)

The intensity is given by

I(u, v) = |ψ(u, v)|2 = sin2(uNd/2)
sin2(ud/2)

. (8.48)

This expression, which is plotted in Fig. 8.16 for N = 6, has some interesting
properties. It is zero whenever the numerator is zero except when the denom-
inator is also zero; then it is N2. As the number of apertures increases, the
number of zeros increases and the pattern becomes more detailed. Two exam-
ples are shown in Fig. 8.17. The peaks of intensity N2 – called the principal
maxima – become outstanding compared to the smaller subsidiary maxima, of
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Figure 8.17

Region of u between about
±2π/d of the diffraction
patterns of N parallel slits:
(a) N = 4; (b) N = 8. In this
experiment, the slit arrays
were masked by a circular
aperture, whose transform
is convolved with (8.48).

which there are N − 2 between the principal maxima. In fact, these principal
maxima approximate to the δ-functions of (8.46), namely δ(u− 2mπ/d).

The conditions for the production of principal maxima are that ud/2 = mπ .
Since for normal incidence u = 2π sin θ/λ, we have

d sin θ = mλ, (8.49)

the well-known equation for the diffraction grating.

8.5.4 Diffraction gratings

The diffraction grating is a one-dimensional periodic array of similar apertures.
If the grating is used in transmission, the apertures are narrow slits; if in
reflection they are narrow mirrors. Because they are important interferometric
instruments, gratings will be discussed in depth in §9.2; here we shall only
briefly outline the Fraunhofer diffraction theory of the basic grating, because it
provides a useful basis for understanding other systems, such as the hologram
and image formation. If each slit has transmission function b(x), and the line
spacing is d, the complete transmission function is

f (x) = b(x)⊗
N/2∑

n=−N/2
δ(x− nd), (8.50)

where a total number N slits has been assumed. When N →∞, the transform
of the

∑
is given by (8.46) and

ψ(u) = B(u)
∞∑

m=−∞
δ(u− 2πm/d). (8.51)

Now we should recall the general definition of u (8.16); for light incident at
angle θ0 to the axis, and diffracted to angle θ , we have

u = 2π
λ

(sin θ − sin θ0). (8.52)
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Figure 8.18

(a) Face of a gentleman.
(b) His diffraction pattern.
Contrast has been
enhanced, and the
δ-function at the origin
has been masked, in order
to bring out the various
details discussed in the
text.

(a) (b)

Box 8.2 An example including many of the principles
of two-dimensional diffraction patterns

In this example, we shall try to construct the diffraction pattern of the
gentleman illustrated in Fig. 8.18(a). The mask is considered as a two-
dimensional amplitude object, with zero phase at all points, and transmission
function either 0 or 1.

First, we use Babinet’s theorem which relates the function to a com-
plementary mask in which the face is white on a black background, and
all information lies within a bounded region. The radius of this bounded
region r determine the smallest detail in the pattern, u0 ≡ 2π/r. The result
is a δ-function at the origin. Next, we consider the two eyes. They are
annuli of diameter about r/4 and so they contribute a J0 function centred on
the origin, with rings having radii approximately multiples of 4u0. Because
there are two eyes, these rings are crossed by vertical fringes spaced by 2u0.
The nose is a triangle. Its transform has three-fold symmetry, but because
it is a real function, the diffraction pattern also has a centre of symmetry;
therefore the pattern has six-fold symmetry. The major features of the trian-
gle are its edges. These create streaks in the directions normal to the edges,
and these streaks dominate the pattern, forming a six-pointed star. The teeth,
beard and hair are periodic functions limited by a rectangular border, longer
in the horizontal direction. The transforms of these functions are each a
periodic set of δ-functions, separated by about 24u0, each convolved with a
sinc×sinc function (the transform of a rectangular aperture) stretched in the
vertical direction. Since there are three such arrays, one with phase π differ-
ent from the other two, this pattern is crossed by some rather complicated
horizontal interference fringes with spacing about u0. Having descibed these
details, we can now compare them with the calculated diffraction pattern of
the gentleman’s portrait in Fig. 8.18(b).
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Since sin θ and sin θ0 lie between−1 and 1, the maximum observable value of
u is 4π/λ. So that, although (8.51) is defined for all m, the diffraction condition
is in general

mλ = d(sin θ − sin θ0). (8.53)

The amplitudes of the various orders of diffraction are given by the transform
of the individual aperture, B(u). A common example is a square-wave grating
(Ronchi ruling) where b(x) = rect(2x/d). Without repeating the details, one
immediately sees from Fig. 4.3 that the even orders of diffraction are missing
and the odd orders have steadily decreasing intensity. Although Fig. 4.3 does
not show the zero order, it must be added here because b(x) is positive definite
and ψ(0) is its integral (see §8.3.5), which is non-zero. The existence of a
strong zero order for a positive-definite function has important consequences,
which will be discussed in §9.2.4 and §12.5.

A finite grating (all real gratings are, of course, finite) is given by summing
(8.50) to finite N . This is conveniently expressed by multiplying the infinite
sum by a ‘window function’ of length Nd which ‘transmits’ only N δ-functions.
Then the grating is represented by

f (x) = b(x)⊗
[ ∞∑

n=−∞
δ(x− nd) · rect(x/Nd)

]
. (8.54)

Notice the order of the operations (i.e. the positions of the large brackets); it
is important to carry out the product first, and the convolution afterwards, in
order to represent a finite number of complete slits. The reverse order might
give incomplete slits at the end. The difference here is minor, but it is not
difficult to construct examples for which the order of convolution and product
is very important. Convolution and multiplication are not associative.

The diffraction pattern of (8.54)

ψ(u) = B(u) ·
[∑

δ

(
u− 2πm

d

)
⊗ sinc

(
uNd

2

)]
(8.55)

has the following characteristics. There are well-defined orders of diffraction
(for large N) as defined in (8.53) but each one has a sinc(uNd/2) profile. This
has width (from the peak to the first zero) �u = 2π/Nd, which is (1/N) of the
distance between the orders.

8.5.5 Interference pattern of a lattice of pinholes

We can now extend our results to an array of pinholes, periodic in x and y,
which we may call a two-dimensional lattice. We can approach this through a
set of four pinholes, at positions±(x1, y1),±(x2, y2), see Fig. 8.19(a). We have
to evaluate the expression

The diffraction pattern of
a two-dimensional array
retains the angles of the
original object.
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Figure 8.19

(a) Two pairs of pinholes;
(b) diffraction pattern of
(a), showing crossed
fringes; (c) reciprocal
lattice – the diffraction
pattern of an extended
lattice of pinholes based on
(a) as unit cell.

(a) (b) (c)

ψ(u, v) =
∑

exp[−i(ux+ vy)]
= 2[cos(ux1 + vy1)+ cos(ux2 + vy2)]
= 4 cos

(
u

x1 + x2

2
+ v

y1 + y2

2

)
cos

(
u

x1 − x2

2
+ v

y1 − y2

2

)
.

(8.56)

As in §8.5.1, we see that this function has maxima at values of u and v given
by the equations

u(x1 + x2)+ v( y1 + y2) = 2m1π ,

u(x1 − x2)+ v( y1 − y2) = 2m2π , (8.57)

where m1 and m2 are integers. The interference pattern is therefore the product
of two sets of linear fringes, each set being perpendicular to the separation of
the pairs of holes (Fig. 8.13). Such crossed fringes are shown in Fig. 8.19(b).

Box 8.3 The symmetry of diffraction patterns

The Fourier transform of a two-dimensional function has the same axial
symmetry as the original function, since rotating the object by a certain angle
rotates the transform by the same angle. In addition, if the function is real,
the transform intensity must be centro-symmetrical. Now, if the function
has an even-fold axial symmetry, the centro-symmetry occurs naturally, but
if it has odd-fold symmetry, the centro-symmetry has to be added. This
results in a striking difference between the patterns of odd- and even-fold
masks, which is illustrated by Fig. 8.20, where the diffraction pattern of
a regular hexagon of holes is compared with that of a regular pentagon.
These patterns have six- and ten-fold symmetry respectively. There are
also important qualitative differences between the patterns. The former (6)
is the square of a continuous real function, which has either positive or
negative values, and therefore its square has clear and continuous zero
lines. However, the latter (5) is the square modulus of a complex function,
which can go from positive to negative without passing through zero. The
zero regions therefore do not need to be continuous. This difference can be
seen in the figure.
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Figure 8.20

Diffraction patterns of a
regular hexagon of holes
and a regular pentagon of
holes. The pentagon must
be produced very accurately
for the diffraction pattern
to have 10-fold symmetry,
since any slight error
produces a pattern that has
clear two-fold symmetry!
(Experiment by Igor
Yulevich)

Figure 8.21

(a) A lattice of parallel
apertures. (b) Diffraction
pattern of (a).

(a) (b)

By reasoning analogous to that of §8.5.3, we can see that as the lattice of
pinholes, with these four points providing the unit cell, increases in extent, the
conditions for constructive interference become more precisely defined. In the
limit, the interference pattern then becomes a collection of points, also arranged
on a lattice (Fig. 8.19(c)). This is called the reciprocal lattice of the original
(direct) lattice, because u and v are reciprocally related to the separations of
the pairs of holes in Fig. 8.19(a). The concept was discussed mathematically
in Chapter 4 as the Fourier transform of a periodic array of δ-functions, and is
the basis of crystal diffraction (§8.6.3).

8.5.6 Interference pattern of a lattice of parallel apertures

If we have an extended lattice of similar apertures such as Fig. 8.21(a), we
may consider it as the convolution of a single aperture with the lattice having
translations a and b. Then the diffraction pattern (Fig. 8.21(b)) is the product
of the interference function due to the lattice and the diffraction pattern of the
single aperture. In other words, the reciprocal lattice pattern is multiplied by
the diffraction pattern of the unit. When the unit is simple, then the influence
of the diffraction function is clear; if the pattern is more complicated, as in
Fig. 8.22(a), the result is still true, but the diffraction function is more difficult
to recognize. Note that there may be several choices for a and b, but the final
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Figure 8.22

(a) Provided that the object
repeats exactly, one can
always define a unit cell,
which may not be unique;
two possibilities are shown
shaded. (b) Diffraction
pattern of (a).

(b)(a)

Figure 8.23

(a) Set of holes
representing a lattice of
chemical molecules.
(b) Diffraction pattern of
(a). (c) Diffraction pattern
of a unit of (a), with (b)
superimposed.

(a) (b) (c)

result is always the same! Figure 8.23 shows a set of holes representing a
lattice of molecules (a) and its diffraction pattern (b). The relationship to the
diffraction function is shown in (c).

We may look upon the diffraction pattern of a repeated unit in another way.
A single unit of Fig. 8.23(a) gives a particular diffraction function; the effect
of putting the units on a lattice is, apart from making the pattern stronger, to
make the diffraction pattern observable only at the reciprocal lattice points. This
process is called sampling; it is important in dealing with diffraction by crystals,
and has many applications in image processing and communication theory.

If we regard the set of apertures as a two-dimensional diffraction grating, the
reciprocal lattice represents its set of orders. Each reciprocal lattice point is an
order of diffraction (§8.5.3), specified now by two integers, h̃� and k̃�, instead
of one. In three dimensions (§8.6) we shall see that three integers are needed.

8.5.7 Diffraction by a random array of parallel apertures

Suppose that the diffracting object consists of a collection of parallel apertures
arranged randomly. We can regard the collection as the convolution of the
single aperture with a set of δ-functions representing the aperture positions.

We therefore need to determine the diffraction pattern of a set of N randomly

The Earth’s atmosphere
behaves rather like a
random mask in front of
a telescope. In §12.7, you
can see how Fraunhofer
diffraction is used to
overcome this problem.

arranged δ-functions. This problem is expressed mathematically as

ψ(u, v) =
∫ ∫ N∑

n=1

δ(x− xn) δ( y− yn) exp[−i(ux+ vy)] dx dy

=
∑

exp[−i(uxn + vyn)], (8.58)
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where the nth aperture has random origin at (xn, yn) (Fig. 8.24). This sum
cannot be evaluated in general. But the intensity of the transform

I(u, v) = |ψ(u, v)|2 (8.59)

can be evaluated by writing the square of the sum (8.58) as a double sum:

|ψ(u, v)|2 =
∣∣∣∣∣

N∑
n=1

exp[−i(uxn + vyn)]
∣∣∣∣∣
2

=
N∑

n=1

N∑
m=1

exp{−i[u(xn − xm)+ v( yn − ym)]}. (8.60)

Now since xn and xm are random variables, (xn− xm) is also random and so the
various terms usually make randomly positive or negative contributions to the
sum. There are two exceptions to this statement. First, the terms with n = m
in the double sum all contribute a value ei0 = 1, and there are N of them, so
that the expected value of the double sum (8.60) is N . Second, when u = v = 0,
all the terms in the sum contribute 1, and the value of (8.60) is N2, so that we
can write the statistical expectation:

I(u, v) = N + N2δ(u, v), (8.61)

where δ(u, v) has the value of unity at (u, v)= (0, 0) and is zero elsewhere
(Kronecker delta). The function (8.61) represents a bright spot of intensity N2

at the origin and a uniform background of intensity N .

(xn, yn)

x

y

Figure 8.24

A random set of similar
apertures, showing the
origin (xn, yn) of an
individual one.

Of course a truly random distribution does not exist in practice and the above
description must really be modified. First, if the N points all lie within a finite
region (say a square of side D) the terms in the double sum (8.60) will all
have positive values even if u and v deviate from zero by as much as π/2D.
So the spot at the origin has a finite size, of this order of magnitude. Second,
the randomness of the distribution might be restricted to avoid the overlapping
of neighbouring apertures. This can be shown to result in a weak structure
appearing in the background term. Third, because N is finite, the oscillatory
terms in (8.60) do not cancel exactly and there are fluctuations in the uniform
background which are called ‘speckle’.

We now recall that the object was expressed as the convolution of a single
aperture with the random array of δ-functions. Its diffraction pattern is then the
product of the diffraction pattern of a single object and the function (8.61). At

Speckle patterns are the
interference patterns of a
finite number of
randomly phased waves.

all points except the origin and its immediate vicinity the result is an intensity
just N times the intensity of the single aperture’s diffraction pattern. Only at
the origin itself there appears a bright spot, with intensity N2 times that of the
zero order of the single aperture diffraction pattern. The result is illustrated
by Fig. 8.25. If the number of apertures becomes very large, the bright spot
is the only observable feature. However, if the phases of the apertures are
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Figure 8.25

(a) Mask of random parallel
apertures; (b) diffraction
pattern of one unit of (a);
(c) complete diffraction
pattern of (a); the centre
inset is an under-exposed
part of the diffraction
pattern showing the strong
spot at the centre, at the
end of the arrow. Notice
also that the region around
the central spot is dark,
indicating some
correlations between the
positions of the apertures,
since they cannot overlap.

(a) (b) (c)

random, as well as their positions, the central peak may be completely absent.
A practical application of this analysis to astronomical imaging, called speckle
interferometry, will be discussed in §12.7.

8.6 Three-dimensional interference

Fraunhofer diffraction by three-dimensional obstacles has been of major impor-
tance in the development of modern science, because it has allowed us to
visualize the structures of materials down to the atomic scale. The most impor-
tant application is diffraction by a crystal. It is not just a straightforward
extension from one and two dimensions to three. The theory developed so far
has essentially described the diffraction pattern as the solution of a boundary-
value problem, in which the incident wave on the surface (mask) was allowed
to develop according to Huygens’ principle, as expressed mathematically by
the Kirchhoff–Huygens theory. If the scattering object is three-dimensional,
the boundary conditions are over-defined, and a diffraction pattern consistent
with all of them may not exist. In fact we shall see that the Fourier transform
alone does not describe the diffraction pattern, but another condition, described
by the construction of the Ewald sphere has also to be satisfied, and tells us
which parts of the transform contribute to the pattern.

8.6.1 Crystals and convolutions

Crystals are three-dimensional gratings and diffract waves of compatible wave-
lengths: neutrons, electrons, atoms and X-rays. The general principles of
diffraction by any of these waves are the same; just the relevant parameters
must be used. The discussion here will centre around X-rays. The theory was
originally developed by M. von Laue for the weak scattering case, which
means that the probability of a wave being scattered twice within the crystal is
negligible.

Crystallography has been
a major motivation for
studying Fraunhofer
diffraction. Many crystal
structures were
elucidated intuitively
using the principles in
this chapter.
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Figure 8.26

Interpretation of the X-ray
diffraction by Na-DNA
strands. (a) The diffraction
pattern. (b) The basic
features of the helix used
in the interpretation. Only
one set of tilted apertures
is shown and the black dots
represent P atoms. (c)
Diffraction patterns of
these features. (Bragg
(1975))

p a

D

d

2p /p

2p /d a

2p /D

(a) (b) (c)

Box 8.4 Example: X-ray diffraction by DNA strands

Probably the most famous X-ray diffraction pattern of a non-crystalline
material ever taken is that of Na-DNA strands photographed by Rosalind
Franklin in 1952. J. D. Watson wrote in The Double Helix: ‘The instant I saw
the picture my mouth fell open and my pulse began to race. The pattern was
unbelievably simpler than those obtained previously (‘A’ form). Moreover,
the black cross of reflections which dominated the picture could arise only
from a helical structure.’

You can understand this from what we have learnt so far. First, the
sample was a random collection of strands with the same orientation, so
the diffraction pattern is the same as that of a single strand, except for the
zero order, which was masked out. Then, as Bragg (1975) points out, the
diffraction pattern shown in Fig. 8.26(a) is dominated by scattering from
the heavy P atoms arranged regularly along a helix, at equal intervals d
along the z-axis. The helix itself, seen from the side, appears roughly as
two periodic arrays of slits inclined at the pitch angle ±α (Fig. 8.26(b)),
and separated by the pitch length p. This gives a periodic set of lines with
spacing 2π/p normal to kz multiplied by a ‘sinc’ stretched out along lines
at ±α to kz. Furthermore, the regular spacing of P atoms in the base-pairs
along the z-direction gives strong reflections at kz = ±2π/d. These features
are shown in Fig. 8.26(c). You can deduce from the picture that p/d is about
10, which means that there are 10 P atoms in each turn of the spiral –
correct. The strong spots along the kx-axis result from the predominance of
P atoms along the edges of the strand in the side projection, lines of atoms
at x = ±D/2.
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Figure 8.27

Two-dimensional
representation of a crystal
structure as the convolution
between the lattice and a
unit cell.

Lattice Unit cell Crystal

Convolution

A crystal is a collection of atoms. From the point of view of X-ray diffraction,
since X-rays are scattered only by electrons,1 a crystal can be considered as
a periodic set of positions represented by δ-functions, convolved with the
electron density function of the group of atoms being repeated, which may be
one or more molecular units. The periodic set of δ-functions is called the crystal
lattice and the repeated spatial volume associated with each δ-function is called
the unit cell. The group of atoms resides in the same position and orientation in
every unit cell. Therefore we can regard the crystal as composed of the unit cell
contents convolved with the lattice positions. These ideas are illustrated in two
dimensions in Fig. 8.27. This would lead to an infinite crystal. We therefore limit
its extent by multiplying the lattice by a shape function, the external boundary.

From the convolution theorem, therefore, we see that the transform of the
electron density of the crystal is the transform of the lattice, convolved
with that of the shape function, and multiplied by the transform of the
contents of the unit cell. This is a complete outline of the theory of X-ray
diffraction. All that remains is to fill in the details! In the following section we
shall discuss diffraction by the crystal lattice, and in §8.8.2 we shall touch on
the problems involved in determining the atomic positions within the unit cell.

8.6.2 Diffraction by a three-dimensional lattice

We are concerned with the diffraction pattern produced by a three-dimensional
lattice of δ-functions. Suppose we have an incident wave with wave-vector k0,
and that it is diffracted to a direction with vector k. In order to conserve energy,
the incident and diffracted waves must have the same frequency,

ω0 = ck, (8.62)

and therefore the moduli of k and k0 must be equal,

|k| = |k0|. (8.63)

1 Neutrons are scattered by the nuclei of the atoms, and so neutron diffraction investigates the
density of nuclear matter.
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Alternatively, we can say that the waves must have the same time variation,
exp(−iω0t), since this must pass unchanged through the calculation of diffrac-
tion by a stationary lattice. This is called elastic scattering. The condition
(8.63) can be represented geometrically by saying that k0 and k must be radius
vectors of the same sphere, which is called the Ewald sphere, reflecting
sphere or sphere of observation (Fig. 8.28). An order of diffraction satisfying
this condition is called a Bragg reflection, after W. L. Bragg who, in 1912,
introduced the idea of reflection of X-rays by lattice planes.

Elastic scattering: no
energy is lost by the
scattered wave. Inelastic
scattering: energy is lost
to, or gained from
excitations (e.g.
phonons) in the
scattering object.

k0

k
k − k0

Figure 8.28

Ewald sphere, or sphere of
observation.

We can now calculate the total wave scattered by a lattice of δ-function
point scatterers. The point δ(r− r′) scatters a wave of complex amplitude
proportional to the incident wave at that point, i.e. bs exp[ik0 · r′], where bs is
the scattering strength.2 In the direction k this wave will have amplitude

ψ = bs exp[ik0 · r′] exp[ik · (r− r′)]
= bs exp[ik · r] exp[i(k0 − k) · r′]. (8.64)

The total diffracted beam with wave-vector k is therefore given by summing
(8.64) over all positions r′ of the lattice of δ-functions with unit-cell vectors a,
b, c. Following §4.8,

f (r′) = bs

∞∑
h̃,k̃,l̃=−∞

δ(r− h̃a− k̃b− l̃c) (h̃, k̃, l̃ integers), (8.65)

which reduces to the summation

�(k) = bs exp(ik · r)
∞∑

h̃,k̃,l̃=−∞
exp{i[(k− k0) · (h̃a+ k̃b+ l̃c)]}. (8.66)

In the same way as we saw in §4.12, the summation is clearly zero unless the
phases of all the terms are multiples of 2π :

(k− k0) · (h̃a+ k̃b+ l̃c) = 2πs (s is an integer). (8.67)

One trivial solution to this equation which also satisfies (8.63) is

k− k0 = 0 (s = 0). (8.68)

But there is also a host of other solutions.

8.6.3 Reciprocal lattice in three dimensions

These other solutions to (8.67) can be derived by means of a reciprocal lattice
(§8.5.5). The vectors k − k0 between points in the reciprocal lattice are also

Each reciprocal lattice
vector represents a
vector distance between
atomic planes in the
crystal.

2 When the value of bs is very small, multiple scattering of the waves, which would be proportional
to b2

s , can be neglected. This is true for X-rays and neutrons, but not for electrons. See Cowley
(1995).
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Figure 8.29

(a) Direct lattice unit cell.
(b) Reciprocal lattice unit
cell. In (a) the vector a is
shown to be normal to b
and c.

a

b
c

a* a*

c*

b*

(a) (b)

solutions of (8.67). In three dimensions, the reciprocal lattice vectors a�, b�

and c� are defined in terms of the real lattice vectors, which were shown in the
appendix to Chapter 4 to be

a� = 2πV−1 b× c,
b� = 2πV−1 c× a,
c� = 2πV−1 a× b,

(8.69)

where V = a · b× c is the volume of the unit cell in real space.
It now follows that if (k−k0) can be written as the sum of integral multiples

of a�, b� and c�,

(k− k0) = h̃�a� + k̃�b� + l̃�c� (h̃�, k̃�, l̃� are integers), (8.70)

the summation (8.66) diverges; otherwise it is zero. This defines the three-
dimensional reciprocal lattice of δ-functions at the points (8.71) (Fig. 8.29).

When X-rays are reflected by angle 2θ from a single set of lattice planes
spaced by a, (8.63) gives (k − k0) = (4π/λ) sin θ and (8.70) simplifies to the
well-known Bragg law of diffraction,

nλ = 2a sin θ , (8.71)

where we replaced h̃� by the conventional n.
The observed diffraction pattern consists of those beams that satisfy both

(8.63) and (8.71). The two conditions are represented geometrically by the
Ewald sphere and the reciprocal lattice respectively. One therefore draws the
Ewald sphere and the reciprocal lattice superimposed and looks for intersec-
tions (Fig. 8.30). The sphere passes through the origin of reciprocal space
(because k−k0 = 0 is a point on it) and its centre is defined by the direction of
the vector k0. Mathematically, the exact intersection of a sphere and a set of dis-
crete points is negligibly probable; but because neither an exactly parallel beam
nor a purely monochromatic source of X-rays exists, the sphere has a non-zero
thickness and diffraction by a crystal does in fact occur. (One important point
is the trivial solution (8.68) which ensures that at least one ‘diffracted’ beam –
the unscattered one – exists to carry away the incident energy.) When ‘white’
X-rays are used, containing a broad band of wavelengths, many diffracted
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l*a*l*a*k0

k2

k1

k3

m*b* m*b*

Radius
k0(min)

Radius
k0(max)

(a) (b)

Figure 8.30 (a) Two-dimensional representation of the intersection between the Ewald sphere of
observation and the reciprocal lattice, showing directions of the incident beam k0

and of three possible diffracted beams k1, k2 and k3. (b) With broad-band radiation,
k0 is not well defined, and all reciprocal lattice points in the shaded region between
the two spheres representing the maximum and minimum values of k0 will reflect;
the resulting diffraction pattern is called a ‘Laue photograph’ and can be used to
determine the lattice structure and orientation of a crystal (Fig. 8.31).

Figure 8.31

Laue photograph of beryl.
It shows crystal diffraction
using ‘white’ X-rays
having a large range
of wavelengths.
(From Lipson (1970))

beams can occur, and we have a ‘Laue photograph’, but quantitative inter-
pretation of such pictures is difficult and they are mainly used for qualitative
purposes (Fig. 8.31). By controlling the direction of the incident beam k0 and
moving the crystal and recording screen in appropriate ways, it is possible to
produce a section of the reciprocal lattice with, say, one of the indices h̃�, k̃�,
l̃� constant. Such a photograph is shown in Fig. 8.1.

In Fig. 8.21 we saw an
example of the
diffraction pattern of a
crystal with a
complicated unit cell.

8.6.4 Diffraction by a complete crystal

We can see from Figs. 8.1 and 8.22 that the intensities of the orders of diffraction
vary in an irregular way; some are strong and some weak. This variation
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arises as it did in Fig. 8.21 as a result of multiplying the reciprocal lattice
(the interference function) by the transform of the atomic positions within the
unit cell, the diffraction function. A major part of crystallography consists
of interpreting these variations (§8.8.2). In the case of X-ray and neutron
diffraction it is usually correct to assume that the scattering is weak, so that
only single scattering events need to be taken into account. Electron diffraction
is different, and corrections must be applied for multiply scattered waves.
The results are too complicated to discuss here (see Cowley (1995)) but also
contribute to the differences between the intensities of the various orders. One
can also see that the spots in Fig. 8.1 have finite size. This is caused by the
geometry of the apparatus – finite size of X-ray focus, angular divergence of
beam and so on. Even if these factors could be allowed for, however, the spots
would still have a non-zero size because of the shape function of the crystal
(§8.6.1). This effect can only be observed if the sample is very small in at least
one dimension (e.g. a nano-crystal or a surface).

8.7 Inelastic scattering: The acousto-optic effect

Another three-dimensional diffraction effect that can conveniently be treated in
the weak scattering limit by the concepts of the reciprocal lattice and observation
sphere is the acousto-optic effect, which is basically a situation in which a
sinusoidal refractive index modulation is impressed on an initially uniform

Acousto-optic devices are
also used for laser
scanning and
modulation.

material by a longitudinal sound or ultrasonic wave. Acousto-optic cells are
widely used as fast optical switches or shutters, because they allow an incident
optical wave to be diffracted selectively into a chosen direction by application
of an acoustic signal. Moreover, since the frequency of the diffracted wave
is shifted by an amount equal to the acoustic wave frequency, acousto-optic
devices can also be used for changing a laser frequency in a controlled manner.
If the acoustic wave is not sinusoidal, the acousto-optic cell can be used as a
spectrum analyzer.

A particularly simple case is that of an ultrasonic plane wave propagating in a
homogeneous compressible material such as water.3 Because of the finite com-
pressibility of water, the local density and hence refractive index responds to the
oscillating pressure of the ultrasonic wave, creating a propagating sinusoidal
modulation of amplitude A to the refractive index:

n(r) = nW + A cos(q · r−�t), (8.72)

where nW is the refractive index of water at atmospheric pressure and the ultra-
sonic wave has frequency � and wave-vector q. The velocity of sound in water

3 Water is a good medium for demonstrating the effect. Crystals such as PbGeO4 have been
developed to use it for solid-state applications.
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is vs ≈ 1200 m s−1, and so for a frequency �= 2π × 10 MHz, the wavelength
2π/q of the ultrasonic wave is about 0.1 mm,
 λlight. The water behaves as a
three-dimensional phase grating with this period, and because vs c we first
assume that an incident light wave sees it as a stationary modulation.

This is a well-defined problem, but one whose exact solution is elusive
because the incident wave is refracted as well as diffracted by the medium.
We only discuss here a very approximate approach that illustrates the physics
of the problem; further details can be found in the books by Born and Wolf
(1999), Korpel (1997) and Yariv (1991).

Diffraction of light by a weak three-dimensional sinusoidal grating can be
treated by the same techniques that we used for crystal diffraction.4 The grating
is represented by a three-dimensional scattering function f (r). In §13.3.1 we
shall see formally that n − 1 for a material is proportional to its density,
and since the scattering strength is also proportional to the density we can
write f (r) = η[n(r)− 1] to represent this, where η is a constant depending on
the material.

Now the modulation in (8.72) A  1 (typically < 10−6), so that

f (r) = η[nW − 1+ A cos(q · r−�t)]
= η[nW − 1] + 1

2
ηA exp[i(q · r−�t)] + 1

2
ηA exp[−i(q · r−�t)].

(8.73)

The Fourier transform of this function in reciprocal space u is

F(u) = (nW − 1)δ(u)+ 1
2

iA e−i�tδ(u− q)+ 1
2

iA ei�tδ(u+ q), (8.74)

which represents three δ-functions, a strong one at the origin and two weak
ones at ±q, oscillating at ±� respectively. When we recall the time-variation
exp(iωt) of the incident light, this means that the diffracted waves have
frequencies ω and ω ±� respectively.

The diffraction problem is then represented by the superposition of the
sphere of observation on this Fourier transform (Fig. 8.32). It is shown first for
incidence normal to q in Fig. 8.32(a); it is clear that there is no diffracted beam
in this case. There are only two angles of incidence at which diffraction occurs,
±α, shown for +α in Fig. 8.32(b). The angles α are clearly given by

q = ±2k0 sinα. (8.75)

Putting q = 2π/� and k0 = 2π/λ, this translates to

λ = 2� sinα, (8.76)

4 We should remark that the wavelength of light is so large compared to the interatomic spacing
that any crystalline reciprocal lattice points are completely off scale (by about five orders of
magnitude) compared to the region of reciprocal space discussed here.
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Figure 8.32

Reciprocal space
construction for diffraction
of an incident wave-vector
k0 by an ultrasonic wave of
wave-vector q: (a) normal
incidence; (b) at the angle
α for Bragg diffraction;
(c) interpretation in terms
of Bragg’s law.
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k0 u

q k
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which is the familiar form of the Bragg diffraction formula (8.71) for lattice
planes with spacing � (see Fig. 8.32(c)).

Generally, the size of a sample or crystal used for acousto-optic experiments
may not be large compared with the acoustic wavelength. In such a case, the
transmission function is multiplied by a shape function (§8.6) with value 1
within the sample, 0 outside. In its transform, each of the three δ-functions is
therefore convolved with the transform of the shape function, giving it a finite
size. This means that the Bragg condition (8.76) need not be fulfilled exactly.

An extreme case occurs when the sample is thin in the direction normal to q,
so that the transform points are greatly elongated in this direction (Fig. 8.33).
Diffraction can then be observed for incidence in any direction. It is easy to
show that these angles satisfy the two-dimensional diffraction grating equation
for oblique incidence (8.53). This is called the Raman–Nath scattering limit.
In this limit, the diffraction pattern can be calculated by representing the sample
as a thin phase grating. If the thickness of the sample is d, and we assume q to
be parallel to the x-direction, we have optical thickness d[nW+A cos(qx−�t)]
and therefore the sample behaves as a grating with

u

q

−q
k0

k

Figure 8.33

Reciprocal space
construction for diffraction
by an ultrasonic wave in a
thin sample.

f (x) = exp[ik0d(nW + A cos(qx−�t))]. (8.77)

If the amplitude of the phase variation k0dA  1 its Taylor expansion and
Fourier transform are

f (x) = exp(ik0dnW)[1+ k0dA cos(qx−�t)], (8.78)

F(u) = exp(ik0dnW)

[
δ(u)+ 1

2
iAk0d e−i�tδ(u− q)

+ 1
2

iAk0d ei�tδ(u+ q)
]

, (8.79)

indicating the formation of weak first orders surrounding a strong undiffracted
zero order. If Ak0d is larger, the Fourier transform can be performed by the use
of Bessel functions (Appendix A) and shows that the diffracted orders m have
amplitudes proportional to Jm(Ak0d). Experimentally, it is not difficult to reach
the conditions where higher orders have appreciable intensities.

Because the velocity of light is much greater than that of sound, the light
essentially sees the grating as stationary. However, the time-dependent ampli-
tudes of the δ-functions Ak0d exp(±i�t) do have practical effects. Since the
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two diffracted waves are shifted in frequency by ±� they can, for example,
interfere to give a moving fringe pattern. The frequency shift can be simply
interpreted as a Doppler effect when the wave is reflected by a moving grating
(Problem 8.13), or as the condition for conservation of energy when a phonon
is either absorbed or emitted by a photon.

8.8 Advanced topic: Phase retrieval
in crystallography

When a diffraction pattern is recorded by photography or any other energy
detector, the phase of the wave is lost. Diffraction is such a powerful method
of investigating the structure of matter that it is imperative to find a way of

Phase retrieval is an
important solution to the
phase problem (§8.2.1).

applying an inverse Fourier transform to a diffraction pattern in order to reveal
directly the structure of the diffracting object. However, the reverse transform
has to be applied to the complex amplitude pattern, and if the phases are lost,
this is not known completely. This is called the phase problem, and finding a
solution to it, called phase retrieval, is extremely important in crystallography
and other imaging problems.

Although in principle the phase problem can have no general solution (there
is an infinite number of mathematical functions that give the same diffraction
pattern intensities), in practice the addition of some reasonable constraints usu-
ally leads to a unique solution, and techniques have been developed by which
this solution can be found. For their pioneering work in phase retrieval in crys-
tallography, Hauptman and Karle were awarded the Nobel prize for chemistry
in 1985. As a result, the interpretation of most crystalline X-ray diffraction
patterns has today become a fairly straightforward technical matter, although
supplementary techniques are still needed for the most complicated crystals
(§12.1.5). The most difficult part is often the preparation of the crystal itself!
In this section we discuss the ideas behind the solutions in crystallography,
where the diffraction pattern of the crystal is sampled at the reciprocal lattice
points (§8.5.6) only. In §8.9 we shall use similar methods for the determination
of phase errors in optical systems from image data (notably the Hubble Space
Telescope).

8.8.1 A-priori information and constraints

As we pointed out above, some constraints are required to make the solution
unique. In crystallography, the object function is the electron density of a crystal
which is real and positive. In an optical system, the object to be determined
might be the phase in the aperture stop, where the amplitude is assumed to
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be uniform. The second piece of a-priori information is an estimate of the
dimensional extent of the object, which in crystallography is given by the
dimensions of the unit cell of a crystal (known from the reciprocal lattice) and
the number of atoms in it; in the optical case this would be the size and shape
of the aperture stop.

8.8.2 Direct methods in crystallography

The determination of the crystal structure from the intensities of its X-ray
diffraction spots alone is called a direct method, and should be contrasted
with other techniques which require the addition of further information, such
as the heavy-atom method outlined in §12.1.5. Although such methods were
first proposed around 1950, their need for quite considerable computations
delayed their development till the 1970s, when powerful electronic computers
became generally available. In this section we shall outline the ideas behind
the direct method, with a simple example. Two useful reviews of the field have
been given by Woolfson (1971) and Hauptman (1991).

We saw in §8.6 that a crystal can be described by the convolution between
the molecular electron density (or that of a group of molecules with some well-
defined geometrical relationship) and the crystal lattice. The diffraction pattern
of the former is then sampled at the reciprocal lattice points. The distances and
angles between the diffraction spots allow the reciprocal lattice, and hence the
real lattice, to be determined easily.

The amplitude of the diffraction pattern at reciprocal lattice point h, defined
by (8.71)

h = h̃�a� + k̃�b� + l̃�c� (8.80)

is related to the electron density ρ(r) within the unit cell by

F(h) = V−1
∫ ∫ ∫

cell
ρ(r) exp(−ih · r) d3r, (8.81)

which is the three-dimensional Fourier transform of ρ(r).
Suppose the cell contains N atoms, and for simplicity let each one have

electron density Zs(r) with respect to its own origin, where s(r) represents the
shape of a ‘typical’ atom.5 The difference between one atom and another is here
contained in the value of Z, the atomic number. The electron density ρ can then
be expressed by the convolution between s(r) and a set of N δ-functions at the

5 The ‘shape of a “typical” atom’ is assumed here for pedagogical purposes, and is not a
requirement of the method.



263 8.8 Advanced topic: Phase retrieval in crystallography

atomic positions rj, where the jth δ-function has strength Zj. Equation (8.81)
can then be written as a sum:

F(h) = S(h)
N∑

j=1

Zj exp(−ih · rj), (8.82)

where S(h) is the transform of s(r) and is a smooth and reasonably well-known
function. Finally, the intensity measured at reciprocal lattice point h is |F(h)|2:

|F(h)|2 = |S(h)|2
∣∣∣∣∣∣

N∑
j=1

Zj exp(−ih · rj)

∣∣∣∣∣∣
2

,

= |S(h)|2
N∑

j=1

N∑
k=1

ZjZk exp[−ih · (rj − rk)]. (8.83)

In (8.83) there are four unknowns for each position j – these are Zj and the three
components of rj – and there are N values of j; in all, 4N unknowns. Therefore,
if |F(h)|2 is measured at more than 4N different values of h, in principle
there is enough information for all the variables to be determined. Since the
measurement of this number of reflections, or even many more, is usually
possible, the problem should not only be soluble but even over-determined!
The question is, how can the solution be found?

The discussion here will centre around a few key points with the intention of
making the ideas clear without mathematical complexity. In this vein, consider
a crystal of molecular units each having N identical point atoms. Thus all
the Zjs are equal, and since the atoms are considered as δ-functions we put
S(h) = 1. Now consider the two functions ρ(r) and ρ2(r). They are

ρ(r) =
N∑

j=1

δ(r− rj), (8.84)

ρ2(r) = β

N∑
j=1

δ(r− rj). (8.85)

The former is required to be positive (§8.8.1) and the second is obviously so.6

The Fourier transform of (8.84) is F(h) and that of (8.85) is its auto-correlation

F(h)⊗ F∗(−h) =
∑

k
F(k)F∗(k− h). (8.86)

But also, from (8.84) and (8.85), ρ2(r) = βρ(r) and so (8.86) becomes

βF(h) =
∑

k
F(k)F∗(k− h). (8.87)

6 The factorβ represents the ratio between δ(x) and its square – unknown, but definitely positive. Its
value is irrelevant here. Remember that the δ-function is a mathematical abstraction representing
a real atom.
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This is known as Sayre’s equation for point atoms. Let us now separate the
amplitude and phase of each F(h) by writing F(h) = E(h) exp[iφ(h)]. It then
follows on multiplying (8.87) by F∗(h) that

βE2(h) =
∑

k
E(h)E(k)E(k− h) exp{i[−φ(h)+ φ(k)− φ(k− h)]}.

(8.88)
A practical method of getting a good first approximation to the solution is based
on this equation, observing that βE2(h) is positive.

Measurement of the diffraction pattern gives us values for E(h) for many
values of h. We should recall (§4.2.1) that for real ρ, F(h) = F∗(−h), so that
E(h) = E(−h) and φ(h) = −φ(−h). The method for determining the phases
goes as follows, and can be followed using the example in Fig. 8.34. First, note
that the actual values of the phases φ are determined by the origin of the unit
cell, which is in principle arbitrary, although the symmetry of the molecule will
often dictate some preferred choice. In a three-dimensional case, the phases
of any three of the diffraction spots h1, h2 and h3 (usually the strongest three)
can therefore be assigned arbitrary values of zero provided that the vectors are
not linearly related. Moreover, if the molecule is centro-symmetric, choosing
the origin at the centre of symmetry makes all the phases zero or π . Now
prepare a table of E(h)E(k)E(h± k), for all measured values of h and k,
as in Fig. 8.34(b). Then choose the largest entry. For the value of (8.88) to
be positive it is most likely that this term will make a positive contribution
to the sum, since it is its largest term. If so, the sum of the phases will be
zero:

φ(h)± φ(k) .= φ(h± k), (8.89)

in which the sign .= is to be read as ‘expected to be equal to’. It is very
likely that one or more of the three vectors involved in this equation has been
assigned phase 0. By repeating the process for the various entries in the table
in descending order, a series of relationships between the phases is obtained,
with reliability depending on the value of the triple product E(h)E(k)E(h± k).
This allows us to express all the phases in terms of the three chosen to be zero
and the phases of a small number of additional prominent spots, whose phases
are represented by symbols a, b, c . . .

The next stage in the determination involves reconstructing the object from
the known amplitudes and the estimated phases. Since some of them have been
given arbitrary symbols, it is necessary to perform a series of reconstructions,
with various values assigned to the symbols. The set of phases that reconstructs
an object with the least negative parts and having the closest similarity to
a-priori expectations of the structure (number of atoms, bond lengths etc.)
is assumed to be roughly correct. An improvement to the phases is found
by retransforming this approximate structure with all the negative electron
densities set to zero. The phases calculated this way are then used, together
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Figure 8.34 Illustrating the direct method in crystallography, for a linear centro-symmetric array
of six atoms. (a) The diffraction amplitudes E(h) observed at sixteen reciprocal lattice
points. (b) The table of triple products E(h) E(k) E(h − k) in pictorial form, where
white is largest. Three spots are assigned arbitrary phases a, b and c, and phases of
the others are determined by applying (8.89). (c) The original object, and its
reconstruction using the diffraction spots whose phases have been related to a, b
and c, for the eight possibilities where they each have values ±1. Clearly (−, +, −)
best satisfies the a-priori conditions: that there are six identical atoms, and the the
function is positive definite.

with the measured amplitudes, to return a better structure, and this process is
iterated several times until the required degree of accuracy is obtained. The
process works better in two and three dimensions than in one because increasing
the dimensionality increases the number of possible relations.

8.8.3 A centro-symmetrical example of the direct method

The method described above is so important in modern crystallography that we
shall illustrate it with a simple one-dimensional example, as shown in Fig. 8.34.
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We use a centro-symmetrical example, consisting of six equal point ‘atoms’
known to be at integer points x in the region (1, 16), and arranged symmetrically
about x = 8. This is the a-priori information, in addition to the measured
diffraction amplitudes, square roots of the intensities, shown in Fig. 8.34(a).
The symmetry means that the phases are either zero or π (i.e. signs ‘+’ or
‘−’). In one dimension we can arbitrarily assign ‘+’ to the one strongest
diffraction spot (excluding that at the origin), at h = 7; three more strong spots
are assigned phases a at h = 11, b at h = 9 and c at h = 8. Figure 8.34(b)
shows the table of triple products E(h)E(k)E(h − k) in pictorial form, where
the brightest pixels correspond to the largest values. The phases of as many
as possible of the spots (h= 4, 5, 7, 8, 9, 11 and 12) are determined in terms of
a, b and c by using (8.89). Assigning + and − to each of a, b and c in turn
gives eight different reconstruction estimates for the original function when (a)
is retransformed using the known values of E(h) with the appropriate phases.
These are shown in (c) together with the original function. Without knowing
the original function, it is clear that choosing phases a = −, b = +, c = −
reconstructs a function that has the clearest six points on a dark background.
This provides a good starting point for the iterative stage of the retrieval, which
determines the phases of the remaining spots.

8.9 Advanced topic: Phase retrieval in an optical
system – the Hubble Space Telescope and COSTAR

When the Hubble Space Telescope was launched in 1990, it was soon discov-
ered that the images were blurred due to unexpectedly large aberrations of the
2.4 m primary mirror. The question immediately arose as to whether the exact
form of the aberrations could be deduced from analysis of the blurred images
of point stars (Fig. 8.35), which would enable the design and installation of
a correction system. The aberrated images are essentially diffraction patterns
of the aperture stop considered as a phase mask, whose value represents the
aberration. In this section we shall show how this was done analytically by
phase retrieval.

After the first pictures were received, data on the aberrated images of point
stars photographed at known wavelengths in several planes near the parax-
ial focus were made available to a number of research groups who each
used a different analytical technique to determine the aberration. One of
the groups used a phase retrieval method (Fienup et al. (1993)). The sub-
stantial agreement between the results of the various groups encouraged the
design of a correction system, COSTAR,7 which was successfully installed

Phase retrieval was one
of the methods used to
design correction optics
for the Hubble Space
Telescope in 1990.

7 Corrective Optics Space Telescope Axial Replacement.
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Figure 8.35

An example of the
monochromatic image of a
point star as observed by
the Hubble Space Telescope
(a) before correction by
COSTAR, and (b) after
correction. (Courtesy of
NASA)

(a) (b)

during a Space Shuttle mission in 1994, and which restored to the telescope its
intended diffraction-limited performance. Certainly, this must have been the
most expensive eyeglasses ever made! The various methods of analysis used
for determining the aberration function are described in a series of papers in a
special feature issue of the journal Applied Optics (Vol. 32, no. 10, 1993).

The basic algorithm for finding the phases is due to Gershberg and Saxton
(1972) and was written to derive a mask transmission function, given its
outer bound and the measured intensity of its diffraction pattern. It was ini-
tially developed, with Fresnel rather than Fourier transforms, for achieving
phase-contrast from defocused electron microscope images (Misell (1973))
and further developments are discussed by Fienup (1982).

For a problem of the Hubble telescope type, where there is an unknown phase
aberration in the aperture, we consider Fraunhofer diffraction at wavelength λ

by a complex mask which is described by the function

f (x, y) = a0(x, y) exp[iφ(x, y)]. (8.90)

Here a0(x, y) = 1 in the transparent regions of the aperture stop and zero
otherwise, and exp[iφ(x, y)] describes the aberration.8 The point spread
function (§12.2.1) is described by the intensity of the Fourier transform of
the mask function, |F0(u, v)|2, and is photographed as the image of a distant
isolated star. When the telescope is defocused, the image plane is moved an
axial distance � from the focal plane z = L and an additional quadratic phase
is introduced (in the paraxial limit): exp

{
1
2 ik0(x2 + y2)[1/(L+�)− 1/L]

}
.

An example of an aberrated image is shown in Fig. 8.35(a). The problem here
is to deduce φ(x, y) from |F0(u, v)|2 and a0(x, y) knowing only the intensity
|F|2 as a function of �.

The method uses an iterative algorithm in which the mutual transform relation
between mask and image is repeatedly applied, the known values of a0 and
|F0| being used as constraints at each stage. It works as follows. We begin by
assigning a trial phase function φ1, which must have no symmetry (otherwise
that symmetry may permeate the solution):

f1(x, y) = a0(x, y) exp[iφ1(x, y)]. (8.91)

8 The aperture stop of the Hubble telescope has an off-axis central obscuration.
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Figure 8.36

Phase-retrieval algorithm.
guess f1

j = 1

fj  = a0 exp(ifj) FT Fj =|Fj | exp(iΦj)
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|Fj |
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< noise?
yes

no
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The Fourier transform F1(u, v) = |F1(u, v)| exp i�1(u, v) is calculated. In the
next stage, the value of the modulus |F1(u, v)| is replaced by the known
value, |F0(u, v)| (the square root of the intensity of the image). The new
function F′1(u, v) = |F0(u, v)| exp i�1(u, v) is then inversely transformed to
get a new estimate of the aperture function: f ′2(x, y) = a2(x, y) exp[iφ2(x, y)].
The modulus a2 is next replaced by the known value a0 and the new function
f2(x, y) = a0(x, y) exp[iφ2(x, y)] replaces f1 in (8.91). This process is iterated
as many times as necessary to achieve a stable solution (Fig. 8.36). It will be
clear if this solution is correct, when it reproduces the known image to within
its noise limits; however, the program might possibly stagnate to a value that
is clearly incorrect but does not improve with further iteration. This problem
can be overcome by using out-of-focus images (� �= 0), where the image
data F(u, v) are spread over a larger region of the (u, v) plane, and the results
are found to be more reliable;9 the quadratic phase resulting from the known
defocus can afterwards be removed analytically. The most reliable results in
fact come from using several values of � within one algorithm which shifts
periodically from one to another during the iterations. Once the value of φn
has stabilized to the value which reproduces |F0(u, v)|2 within its noise level,
the form of the aberration has been determined, and can be compared to that
obtained by other methods (e.g. Barrett and Sandler (1993)). To demonstrate
the performance of the algorithm, we show in Fig. 8.37 a simulated example
in which the point spread function for coma aberration was initially calculated,
and this was used as input to the algorithm described above in order to retrieve
the phase error in the aperture stop. We shall not go into the details of the
optics used to correct the aberration in COSTAR, but the excellent astronomi-
cal images (Fig. 8.38) obtained after the correction are witness to the power of
this technique.

9 Astronomers often use out-of-focus images of point stars for critical alignment of telescope
optics, for the same reason.
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50 100After 10 iterationsOrigin

cos(f) in
aperture
stop

Point
spread
functions

Figure 8.37 A simulated example to illustrate phase retrieval for a circular aperture. The source
aperture has third-order coma and the measured point spread function is shown. The
algorithm started with a random phase guess and finds the phase function by
iteration. The difference between the retrieved functions and the source, shown on
the right, is a constant phase which does not affect the point spread function.

Chapter summary

In this chapter we discussed the principles of Fraunhofer diffraction by two-

and three-dimensional objects.

• We saw that a Fraunhofer diffraction pattern can be described

mathematically by a Fourier transform.

• We saw that when we can observe only the intensity (square modulus)

of the transform, we lose all information on the phase; this led to a

major problem in interpreting patterns: the ‘phase problem’.

• We calculated several examples of diffraction by amplitude masks, and

saw that they are all centro-symmetric because the object function

is real.

• We saw some examples of diffraction by phase masks, where the

patterns are not centro-symmetric.

• We learnt how to describe interference patterns, which are diffraction

patterns of repeated basic apertures, by the convolution operation.

• In three-dimensional diffraction, we saw that the three-dimensional

Fourier transform is sampled by the Ewald or observation sphere, which

represents all possible diffraction conditions that conserve photon

energy.

• We learnt that three-dimensional Fourier transforms are the basis of

X-ray and neutron crystallography.

• We saw how to represent the acousto-optic effect as a

three-dimensional diffraction example, where photon energy is not

conserved because energy can be exchanged with acoustic waves.
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Figure 8.38

Comparison between
images of the core of the
galaxy M100 (a) before
and (b) after mounting
COSTAR on the Hubble
Space Telescope. (Courtesy
of NASA)

Figure 8.39

(a) Phase image with
30 nm resolution of a yeast
cell made with 750 eV
X-rays using phase
retrieval, compared with
(b) a scanning X-ray image
showing absorption data
(at 540 nm). The original
published colour image (a)
shows both absorption and
phase data, but the
grey-scale reproduction
here shows mainly the
phase contribution.
(Courtesy of C. Jacobsen;
Shapiro et al. (2005))

Box 8.5 Phase retrieval used in X-ray microscopy

Another field in which phase retrieval has recently been successful is in cre-
ating images of small non-periodic biological entities such as cells directly
from their soft X-ray scattering patterns. Here there is no crystal, so the
method of §8.9 has to be used (Shapiro et al. (2005)). It is interesting to
note that the object in this case has both absorption and phase structures;
its diffraction pattern is not centro-symmetrical. Both can be determined by
phase retrieval when the boundary of the object is constrained sufficiently
well (adaptively, during the procedure) and the pattern is sampled at very
closely separated spatial frequencies. This requires the incident X-ray beam
to be considerably larger than the sample diameter, so that its diffractive
spreading is smaller than the required spatial frequency resolution. The
method needs scattering data with exceptionally high signal-to-noise ratio
and dynamic range, and this is obtained by averaging many samples made
with different exposures. An example of the image of a yeast cell made
by this method is shown in Fig. 8.39, where the result is compared with
an absorption image of the same cell produced by scanning with an X-ray
beam focused by means of a zone plate (§7.2.5). The two techniques of
X-ray scanning and phase retrieval have also been employed together, by
analyzing a series of small area diffraction patterns in order to improve
resolution further (Thibault et al. (2008)).
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• We studied examples of phase retrieval, where the diffraction pattern

intensity and a-priori information about the object are used to solve

the phase problem algorithmically. We saw examples of how these

methods have been applied to two different types of problem:

interpretation of X-ray diffraction patterns, and correction of the optics

of the Hubble Space Telescope.

Problems

All diffraction patterns in these problems are of Fraunhofer type. In numerical
problems, assume that λ = 0.5μm.

8.1. Deduce the diffraction pattern of a set of four equally spaced slits by
considering them as
(a) a pair of pairs of slits,
(b) a double slit in the centre, flanked by a second double slit with three

times the spacing. Show that both methods give the same answer.

8.2. Deduce the diffraction pattern of a square frame by subtracting the
pattern of a square from that of a slightly larger one.

8.3. Find the diffraction pattern of a group of four pinholes at the points
(x, y) = (a, 0), (−a, 0), (b, a) and (−b,−a) by using the concept of the
reciprocal lattice.

8.4. A mask consists of an array of 5 × 3 small circular holes. Find its
diffraction pattern. Alternate holes in both directions are now covered
with plates that change the phase of their transmission functions by π .
What is the diffraction pattern now?

8.5. An elliptical aperture has semi-axes a and b. Calculate its diffraction
pattern.

8.6. In the apparatus of Fig. 8.2 to observe Fraunhofer diffraction patterns, a
slit aperture of width 1 mm in the mask planeR gives rise to a diffraction
pattern in the plane F with effective width 1 mm. What is the effective
focal length of the lens D? Suggest two lenses from which a telephoto
lens of this focal length could be constructed.

8.7. Figure 8.40 shows 20 apertures and Fig. 8.41 shows 20 diffraction
patterns. All the patterns were photographed to the same scale, but may
have had different exposures. Match each pattern to its aperture and
find its correct orientation.
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Figure 8.40

Masks for Problem 8.7.

Figure 8.41

Diffraction patterns for
Problem 8.7.

18

1

5

9

13

17

4

8

12

16

3

7

11

15

2

6

10

14

19 20



273 Problems

Figure 8.42

Four masks and five
diffraction patterns.

A B C

D

1 2 3 4

E

8.8. A diffraction pattern intensity is observed to be centro-symmetric. Can
you deduce from this that the mask transmission function is real?

8.9. Figure 8.42 shows five diffraction patterns and four masks each con-
sisting of a pair of triangular holes. Which pattern corresponds to each
mask? The fifth pair of holes corresponds to a pair of holes not shown;
what is it? There are two symmetry-related solutions.

8.10. What is the Fraunhofer diffraction pattern of a mask in the form of a
chessboard with opaque and transparent squares?

8.11. A square aperture is half-covered by a sheet of transparent film which
introduces a phase lag of π/2. What is its diffraction pattern?

8.12. Calculate the diffraction pattern intensity of a mask consisting of six
holes at the corners of a regular hexagon. Now repeat the calculation
with one extra hole in the centre. Show how comparison of the two
diffraction patterns allows the phase to be determined at each point. Use
this calculation to explain the heavy-atom method in crystallography.

8.13. A plane wave of wavelength λ0 is normally incident on a diffraction
grating moving transversely at velocity v  c in a direction normal to
its slits. Find the wavelengths of the various diffraction orders.

8.14. A mask has many horizontal rows of holes. The rows are equally spaced
in the vertical direction, and within each row the holes are equally
spaced. However, the holes in a given row are randomly situated with
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Figure 8.43

Mask for Problem 8.14.

Figure 8.44

Diffraction pattern for
Problem 8.17.

respect to those in the rows above or below it (see Fig. 8.43). What is
its diffraction pattern? Hint: use the auto-correlation function.

8.15. The atoms in a crystal are regularly spaced on a lattice of spacing a,
but vibrate randomly about their equilibrium positions because of ther-
mal effects. The r.m.s. vibration amplitude is b a. Show that the
diffraction spots remain sharp but become weaker at large distances
from the origin of the reciprocal lattice, and that there is a continu-
ous background which increases with that distance. This is called the
Debye–Waller effect.

8.16. Find the diffraction pattern of a triangular hole in an opaque screen.
Hint: it is easier to calculate the diffraction pattern of the differential of
this mask.

8.17. Figure 8.44 shows the diffraction pattern of a certain mask, consisting
of holes in an opaque screen. Describe the mask as fully as you can.

8.18. An antenna array used in radio astronomy consists of a set of antennae
equally spaced along a north–south line. By reciprocity, the detection
pattern of the antenna array is just the same as the radiation pattern if the
antennae were radiating at the same wavelength. The spacing between
the antennae is smaller than the wavelength. Show that the array only
receives radiation from a specific direction in the N–S plane, and that
the direction can be chosen by introducing equal phase delays between
adjacent antennae. This is called a phased array.
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Figure 8.45

Diffraction pattern of a
piece of woven gauze.

8.19. The Mills cross antenna used in radio astronomy consists of two orthog-
onal linear phased arrays (see previous problem) of N equally spaced
antennae. The two arrays have one common antenna, at the point
where they cross. Two signals are recorded; one is the sum of the
responses of the two arrays and the other is the difference between their
responses. Show that subtracting the intensity of one signal from that
of the other gives an output that is the equivalent of an N ×N matrix of
antennae.

8.20. Figure 8.45 shows the diffraction pattern of a piece of woven gauze.
Explain as many features of the diffraction pattern as you can, including
in particular the weak spots at the midpoints (one is shown by the arrow).

8.21. A perfect crystal is disturbed by a single phonon with wavelength equal
to a few times the interatomic spacing. Draw the reciprocal lattice for
this crystal. Deduce the diffraction pattern for waves with wavelength
about one-tenth of the lattice spacing, using the Ewald sphere construc-
tion. This is the basis of phonon spectroscopy of crystals using slow
neutrons (Squires (1996)).
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9 Interferometry

In Chapter 8 we discussed the theory of Fraunhofer diffraction and interference,

emphasizing in particular the relevance of Fourier transforms. In this chapter we

shall describe the applications of interference to measurement; this is called inter-

ferometry. Some of the most accurate dimensional measurements are made by

interferometric means using waves of different types, electromagnetic, matter,

neutron, acoustic etc. One current highlight of optical interferometry is the devel-

opment of detectors that can measure dimensional changes as small as 10−19 m,

which should be induced by gravitational waves emitted by cataclysmic events

in the distant Universe. A picture of one such interferometer, which has two

orthogonal arms each 4 km in length, is shown in Fig. 9.1 and the design of this

instrument will be discussed in more detail in §9.7.

An enormous variety of interferometric techniques has been developed during

the years, and we shall limit ourselves in this chapter to a discussion of exam-

ples representing distinctly different principles. There are several monographs

on interferometry that discuss practical aspects in greater detail, for example

Tolansky (1973), Steel (1983), Hariharan (2003) and Hariharan (2007).

In this chapter we shall learn about:

• Young’s basic two-slit interferometer and its capabilities;

• interference in a reflecting thin film;

• diffraction gratings: how they work and how they are made, their resolving

power and their efficiency;

• two-beam interferometers of several types;

• Michelson’s interferometer and its most important applications;

• the Sagnac effect and optical gyroscopes;

• multiple-beam interferometry;

• the Fabry–Perot étalon: its structure and resolving power;

• laser resonators and the modes they support;

• Berry’s geometrical phase in interferometry;

• gravitational wave detectors.
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Figure 9.1

Aerial photograph of the
gravitational wave detector
LIGO at Hanford, WA, USA.
The two arms are 4 km in
length and are oriented NW
and SW. The optical layout
of this interferometer is
shown in Fig. 9.35.
(Photograph courtesy of
the LIGO Laboratory)

9.1 Interference between coherent waves

The discovery of interference effects by Young (§1.1.3) enabled him to make
the first interferometric measurement, a determination of the wavelength of
light. Even this primitive system, a pair of slits illuminated by a common point
source, can be surprisingly accurate, as we shall see in §9.1.1.

The use of a common source was necessary to ensure that the interfering
waves were coherent. In general, interference is possible between waves of
any non-zero degree of mutual coherence (see §11.3), but for the purposes of

Interference can only
occur between waves
that have a constant
phase difference
between them, called
‘coherent waves’.

this chapter we shall simply assume that waves are either completely coherent
(in which case they can interfere) or incoherent (in which case no interfer-
ence effects occur between them). The concept of complete coherence between
two waves implies that there is a fixed phase relationship between them, and
the interference effects observed are therefore stationary in time; they can
therefore be observed with slowly responding instruments such as the eye or
photography. We combine coherent waves by adding their complex ampli-
tudes, and then calculate the intensity by taking the square modulus of the
sum; we combine incoherent waves by calculating their individual intensi-
ties first, and then adding, and there are no interference effects. The need for
coherence between the interfering waves generally dictates at optical frequen-
cies that they must all originate from the same source; the various ways of
dividing an incident wave into separate parts and interfering them, after they
have been influenced by the system to be measured, constitute the different
interferometers.
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Figure 9.2

Set-up for Young’s fringes.
A source illuminates a
single slit which then
provides coherent
illumination at two slits in
an opaque screen. Young’s
original set-up was
different, and is shown in
Fig. 1.2.
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Figure 9.3

Set-up for Lloyd’s mirror
fringes. Notice the phase
change on reflection, which
results in the zero-order
fringe being dark. The
lower half of the picture
shows the fringe pattern as
seen through the mirror.
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9.1.1 Young’s fringes

Young’s fringe experiment, which he carried out in 1801, constitutes the basic
interferometer, and it is worth dwelling briefly on some of its basic aspects.
According to Huygens’ principle, each slit behaves as a source of coherent
waves, and the wavefronts are circular in the two-dimensional projection shown
in Fig. 9.2. The maxima and minima of the interference pattern arise at points
where the waves interfere constructively (amplitudes add) or destructively
(amplitudes subtract). In the simplest case, where the two slits emit with the
same phase, constructive interference occurs when the path difference is an
integer number of wavelengths and destructive interference when the number
is integer-plus-half. The loci of such points lie on a family of hyperbolae whose
foci are at the two slits. In three dimensions we replace the slits by pinholes
and the loci of the fringes are a family of hyperboloids having their foci on
the pinholes. Their intersection with a plane screen at a large distance gives
approximately straight fringes.

One simple way of producing two coherent sources is to use a single point
source and its image in a plane mirror; this is called the Lloyd’s mirror
experiment and is shown in Fig. 9.3. If the source is nearly in the plane of
the mirror, the separation of the source and its image is quite small, and
well-separated interference fringes can be produced. Obviously, however, the
zero-order fringe – that which is equidistant from the two sources – lies on the

At large distances,
Young’s fringes lie on
planes intersecting in the
centre-line midway
between the two slits.
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mirror itself; but if one extrapolates back to the position where it should be,
one finds that there is a minimum of intensity there, not a maximum. There is
therefore some asymmetry between the source and its image; this can be traced
to the change of phase that occurs when light is reflected from a medium of
higher refractive index (§5.4) or from a conductor (§5.6.1).

Although one would not usually employ Young’s fringes for high-resolution
measurements of wavelength, it is of interest to see what could be achieved.
The slits are represented by a transmission function consisting of two
δ-functions separated by distance a (§8.5.1) and we showed that the amplitude
of the diffraction pattern observed on a distant screen (Fraunhofer conditions)
is then

ψ(u) = 2 cos(ua/2). (9.1)

Writing this in terms of the angular variable sin θ , where u = k0 sin θ ,

ψ(sin θ) = 2 cos
(

1
2

k0a sin θ

)
; (9.2)

I = |ψ(sin θ)|2 = 4 cos2
(

1
2

k0a sin θ

)
. (9.3)

If two separate wavenumbers k1 and k2 contribute to the source, the intensities
add incoherently and so, assuming equally bright sources,

I = 4
[

cos2
(

k1a
2

sin θ

)
+ cos2

(
k2a
2

sin θ

)]
. (9.4)

The two sets of cos2 fringes will be out of phase and therefore cancel one
another to give a uniform intensity when, for integer m,

k1a
2

sin θ − k2a
2

sin θ = (2m+ 1)
π

2
. (9.5)

A primitive condition for wavelength resolution is, intuitively, that at least
one such cancellation will occur at an observable angle θ < 90◦; this occurs
if δk ≡ k1 − k2 > π/a or, for |k1 − k2|  k̄ ≡ (k1 + k2)/2, in terms of
wavelength λ = 2π/k,

δk
k̄
= (−)

δλ

λ̄
>

λ̄

2a
. (9.6)

This is called the limit of resolution; its inverse, λ̄/δλ is called the resolving
power. For example, if a ∼ 1 mm and λ ∼ 0.5 nm, a resolving power of order
4000 has been achieved, which is quite good for such a primitive experiment. In
fact, if the sources are bright, one could map the fringe profile accurately, and fit
it to (9.4) thereby improving the accuracy greatly. If the source contains more
than two wavelengths, as shown in Fig. 9.4, more sophisticated techniques are

Even a simple pair of
slits separated by 1 mm
can be used as a
spectrometer with an
accuracy of 1/40%, but it
is not a convenient or
efficient means of doing
spectroscopy.
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Figure 9.4

Interference fringes from
(a) a monochromatic
source, (b) a polychromatic
line source (mercury lamp),
(c) a broad-band source.

(a) (b) (c)

Figure 9.5

(a) Newton’s rings in light
reflected from a glass plate
and a lens in contact with
it. (b) Construction to find
d(r). r

2R–d
R

d (r )

(b)(a)

required, such as Fourier transform spectroscopy (§11.5), but this discussion
contains all the physics of all two-beam interferometry!

9.1.2 Newton’s rings

We saw in the first chapter that Newton observed ring-like interference fringes
between light reflected from a plane surface and a curved surface in contact with
it (Fig. 9.5(a)). However, he failed to appreciate the significance, and missed
discovering light waves! It is easy to see (now) the origin of the effect. The
curved surface is usually obtained using a long focal-length lens, and we denote
by R the radius of curvature of the lens surface which contacts the plane surface
at r = 0. Then the separation d(r) between the plane and the curve is given
by Euclid: r2 = d(2R − d) ≈ 2Rd (Fig. 9.5(b)). In monochromatic light, the
reflected waves at radius r then have a phase difference δφ(r) = 2dk0(r)+ π ,
the π arising from the reflection coefficients at the two surfaces, which are
equal but have opposite signs (§5.7). As a result, dark interference fringes are
seen whenever the waves are in antiphase, i.e. δφ = odd π . This defines a set
of dark circles with 2k0d(r) = 2mπ where m is an integer:

2k0r2/2R = 2mπ , r = √Rλm. (9.7)

We then see a set of circular fringes with radii proportional to the square roots
of the natural numbers, on a scale proportional to

√
Rλ, a picture that appears

commonly in interference between a spherical wave and a plane wave, or
two spherical waves (see, for example, Fig. 9.15(b)). When the light is not
monochromatic, each wavelength gives its own set of fringes scaled by

√
λ and
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Box 9.1 Interference in films of oil and soap bubbles

An everyday situation that gives rise to interference fringes is a thin film,
either in the form of a soap bubble or a film of oil on a wet road. Here,
the interference occurs between pairs of sources that are images of the
same point on an extended source, often the sky, in the two surfaces of the
film. This way, coherence between the two interfering waves is achieved
despite the fact that the source is obviously incoherent. We would not use
this situation for measuring the wavelength, because the separation of the
two surfaces is usually too small, but it can often be used to determine
the thickness of the film. The brilliant colours observed when the source is
white are often a great help in distinguishing between the various orders of
interference. Notice that when the film of a soap bubble becomes very thin,
no light is reflected; the film is black. This occurs because the reflection
coefficients from the two sides have opposite signs (§5.7), and so when
the path difference between the two reflected waves is much smaller than
the wavelength, destructive interference occurs. The opposite is true of a
film of oil on water, when the refractive index of the oil is less than that of
water. In that case the two reflection coefficients have the same sign, and the
interference between waves reflected from a very thin film is constructive.

the composite pattern becomes blurred after a few fringes. Young actually used
Newton’s rings, and not the two-slit experiment, to deduce the wavelength of
light of various colours.

9.2 Diffraction gratings

A great practical improvement over the two-slit system is the diffraction
grating, which is a one-dimensional periodic array of similar apertures, usually
narrow slits or mirrors, which makes the fringes (9.1) much sharper than a
sinusoidal function. We have seen in §8.5.3 that the diffraction pattern of such
an array is a periodic series of δ-functions

∑
Fmδ(u − um), called orders

of diffraction, whose strengths Fm are determined by the exact shape and
dimensions of the apertures. The positions of the δ-functions um are determined
only by the period of the array; from (8.52),

u = k0(sin θ − sin θ0) = um = 2πm/d, (9.8)

where m is the order of diffraction. Because k0 enters the definition of u, the
angle of diffraction θ depends on the wavelength λ = 2π/k0; this dependence
makes diffraction gratings important tools for spectroscopy. We shall discuss
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them in the framework of the scalar approximation, despite the real need for a
vector formulation, as pointed out in §7.1 (Hutley (1982)).

9.2.1 Production of diffraction gratings

To appreciate some aspects of the succeeding theory, we need a little acquain-
tance with methods of production of diffraction gratings. The first serious
gratings were made by scribing a series of lines on glass or metal with a fine
diamond. Rowland used an accurate screw to translate the diamond laterally
through a small distance between each pair of lines. Obviously much is implied
in this sentence: the diamond and the flat upon which the grating is to be ruled
must be carefully chosen; the screw and flat must be accurately adjusted relative
to each other; the diamond point must not change during the ruling operation;
and the temperature of the whole apparatus must be kept constant so that no
irregular expansions occur. Thus, machines for making gratings, called ruling
engines, are extremely complicated and costly.

Most high-quality gratings today are holographic diffraction gratings. As
will be pointed out in §12.5, holograms are essentially complicated diffraction
gratings. They can also be designed to be simple diffraction gratings. The
development of high-resolution photo-resists for the microelectronic industry
has made it possible to photograph a very fine interference pattern between
plane waves. This produces, in a single exposure, a grating with many thousands
of lines. For example, if two coherent plane waves from a laser with wavelength
of say 0.5μm interfere at an angle of 2α = 60◦, the interference pattern has
Young’s fringes with a spacing λ/2 sinα = 0.5μm. Because the laser lines are
very sharp the number of fringes is enormous, and a grating many centimetres

Diffraction grating
production has
developed from
individual gratings
inscribed on an optically
flat plate, to mass
production of replicas
made from a master
grating, and to gratings
produced by holography
and photo-lithography.

long can be produced in a single exposure. This technique completely avoids the
problem of errors in line position, which is very troublesome in ruled gratings.

Another advantage of the holographic grating is that the line spacing can
be arranged to be non-uniform in a planned way so as to correct for known
aberrations in the associated optics or to reduce the number of accessory optical
elements required. For example, a self-focusing grating can be produced by
using as the source of the grating the interference pattern between two spherical
waves.

Most serious diffraction gratings are reflection gratings, being either ruled on
an optically flat reflecting surface, or being produced holographically on such
a surface by etching through the developed photo-resist. This preference arises
because reflection gratings are generally phase gratings, whose efficiency, both
in theory and in practice, can be considerably larger than that of transmission
gratings (§9.2.4). Gratings can also be produced on cylindrical and spherical
surfaces in order to add a further dimension to the possible correction of
aberrations.

The main use of
diffraction gratings is for
spectroscopy. The quality
of a diffraction grating is
judged by the apparent
spectral width of a
monochromatic line, and
the absence of ghosts
(§9.2.3).



284 Interferometry

9.2.2 Resolving power

One of the most important functions of a diffraction grating is the measurement
of the wavelengths of spectral lines; because we know the spacing of the grating
we can use equation (9.8) to measure wavelengths absolutely. The first question
we must ask about a grating is ‘What is the smallest separation between two
wavelengths that will result in two separate peaks in the spectrum?’ This defines
the limit of resolution. We shall see that the limit results from the finite length
of a grating.

The problem can be considered in terms of §8.5.3, where we saw that
the diffraction pattern of a finite number of equally spaced apertures has both
principal and secondary maxima. In the case of N slits there are N−1 zero values
of the intensity between the principal maxima. If two different wavelengths are
present in the light falling on a grating, the intensity functions will add together;
we need to find the conditions under which the principal maxima can clearly
be discerned as double. We therefore have to consider in more detail the exact
shape of the interference function.

From (8.48), the intensity function (normalized to unity at u = 0) is

I(u) = sin2(uNd/2)
N2 sin2(ud/2)

. (9.9)

This has principal orders with I(u) = 1 at u = 2mπ/d and zeros at

u = 2(m+ p/N)π/d, (9.10)

where p is an integer 1 ≤ p ≤ N − 1. Between the zeros are subsidiary
orders. Now if the intensities of the two incident wavelengths are equal, their
combined intensity is the sum of two functions like (9.9), when expressed in
terms of the angle θ . A reasonable criterion for resolution was suggested by
Rayleigh, who considered that the two wavelengths would just be resolved if
the principal maximum of one intensity function coincided in angle with the
first zero (p = 1) of the other (Fig. 9.6(a)). This is a useful criterion, if a little
pessimistic, and will be discussed further in §9.5.2 and in §12.2.1 where it is
used in an imaging context. Using the Rayleigh criterion, we find from (9.10)
that the first zero is separated from the main order by δu = 2π/Nd. Now from
the definition of u as in (9.8), we can write, for a given angle θ ,

δu
u
= δk

k
= −δλ

λ
. (9.11)

The resolving power is defined asλ/δλmin, which for order m, at u = 2πm/d, is

λ

δλmin
= uNd

2π
= mN . (9.12)

This result shows that the resolving power obtainable does not depend solely
upon the line spacing; if a coarse grating is made, a higher order can be used
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Figure 9.6

The addition of two
diffraction-grating
functions for two
just-resolved wavelengths
λ1 and λ2, showing
resolution of the two
wavelengths according to
(a) the Rayleigh criterion,
and (b) the Sparrow
criterion (§9.5.2).

I(q) I(q)

q

l1

l2

l1

l2

sum sum

q
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and the resolving power may be as good as that of a finer grating. If L is the
total length of the grating, d = L/N and the resolving power is equal to

λ

δλmin
= mN = Nd

λ
(sin θ − sin θ0) = L

λ
(sin θ − sin θ0). (9.13)

Thus, for given angles of diffraction θ and incidence θ0, the resolving power
depends only on the total length of the grating. The highest resolving power
is obtained when θ0 →−π/2 and θ → π/2, whence

λ

δλmin
→ 2L

λ
. (9.14)

Gratings should therefore be made as long as possible. In fact, we might as well
just make a pair of slits at distance L apart, although they would use the light
very inefficiently. This situation, Young’s slits, has already been discussed in
§9.1.1. For example, from (9.14) with λ = 0.5μm, a grating 5 cm long should
give a resolving power approaching 2 × 105 although it is difficult to use θ

and θ0 around 90◦. Another important resolution criterion, due to Sparrow, is
discussed in §9.5.2.

9.2.3 Effects of periodic errors: ghosts and side-bands

There is one type of error that often arises in ruled gratings and does not affect
the resolving power but is nevertheless undesirable for other reasons; this is
a periodic error in line position. It can arise from a poor screw or by a badly
designed coupling between the screw and the table carrying the grating (§9.2.1),
and has the effect of enhancing some of the secondary maxima.

As an example we shall analyze the situation where errors in line position

Ghosts are satellite
orders of diffraction
surrounding a principal
order, and may be
mistaken by a
spectroscopist for fine
structure in a spectral
line.

are repeated every qth line; the true spacing is qd, and therefore q times as
many orders will be produced. Most of them will be very weak, but some may
be strong enough to be appreciable compared with the main orders. To make
the problem soluble analytically we assume the line positions xp to contain a
small error which is sinusoidal in position, having maximum size ε  d,

xp = pd + ε sin 2πp/q. (9.15)
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Figure 9.7

Representation of the
principal orders of
diffraction and ghost orders
from a grating with
periodic errors in line
position. The broken line
shows the dependence of
the ghost intensities on m2.
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The grating is then represented by the set of δ-functions

f (x) =
∑

p
δ(x− pd − ε sin 2πp/q), (9.16)

whose Fourier transform is

F(u) =
∑

p
exp[−iu(pd + ε sin 2πp/q)]

≈
∑

p
[exp(−iupd) (1− iuε sin 2πp/q)] (9.17)

since ε  d. On writing sin 2πp/q as 1
2 i[exp(−2iπp/q)− exp(2iπp/q)], this

is easily shown to be

F(u) =
∑

m
δ

(
u− 2πm

d

)
− uε

2

∑
m

δ

[
u− 2π

d

(
m+ 1

q

)]

+ uε
2

∑
m

δ

[
u− 2π

d

(
m− 1

q

)]
, (9.18)

where m is the order of diffraction. The summations show that, in addition to
the principal maxima, there are also maxima at angles given by the two ‘orders’
m + 1/q and m − 1/q. That is, each order m is flanked by two weak satellite
lines, with intensities proportional to u2ε2 (i.e. ε2 sin2θ ), at a separation of 1/q
of the principal orders (Fig. 9.7). These lines are called ghosts. Such errors in
line position do not result in ghosts around the zero order.

The idea that periodic displacements in position from the points of a regular
lattice leads to ghost orders of diffraction has applications in many areas of
physics, of which we shall mention three:

1. Thermal motion of the atoms of a crystal can be analyzed as a superpo-
sition of sinusoidal displacements to their periodic lattice positions, called
phonons, each of which results in ghost orders. These, together, give a
diffuse background and apparent broadening to the otherwise sharp X-ray
diffraction spots from the crystal; this is called the Debye–Waller effect.

2. In the study of alloys, superlattices arise when there is spatial ordering of
each component within the basic lattice, sometimes in quite a complicated
manner (e.g. Cu–Zn). Superlattices can also be created artificially in semi-
conductors by deposition of atoms in a calculated sequence. The existence
of a superlattice is indicated by the appearance of ghost orders of diffraction
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between the main X-ray diffraction spots. A particularly important example
occurs in antiferromagnetic materials (e.g. MnF2) where the atomic spins
are ordered on a lattice that is different from the crystal lattice, and ghost
orders are then evident in the diffraction pattern of slow neutrons, whose
spin causes them to interact with the atomic spins. The ghosts are absent
in an X-ray diffraction pattern of the same crystal because X-rays are not
spin-sensitive.

3. The one-dimensional analysis carried out in this section is equivalent to the
spectral analysis of a frequency modulated (FM) radio wave. The ghost
orders of diffraction, which contain the information on the frequency and
amplitude of the modulation, are called side-bands in telecommunications
(see §10.2.4).

9.2.4 Diffraction efficiency: influence of the slit profile

The discussion of gratings has so far concentrated on the interference function,
the Fourier transform of the set of δ-functions representing the positions of the
individual apertures. This transform has now to be multiplied by the diffraction
function, which is the transform of one aperture.

Let us first consider a simple amplitude transmission grating for which the
apertures are slits, each with width b (which obviously must be less than their
separation d). The diffraction function is then the transform of such a slit
(§8.3.1),

ψ(u) = b sinc(bu/2). (9.19)

At the order m, um = 2πm/d. For the first order, as b is varied, the maximum
value of ψ(u1) is easily shown to occur when b = d/2; thus the optimum slit
width is half the spacing. But even with this value the efficiency of the grating is
dismally small. The light power Pm reaching the various orders is proportional
to the values of |ψ(um)|2 namely,

P0 ∝ d2/4, P±1 ∝ d2/π2, P±2 = 0, P±3 ∝ d2/9π2, etc. (9.20)

Since b = d/2, this grating transmits exactly one half of the incident light, and
therefore the fraction of the light intensity diffracted into the first order is

η = 1
2

P1∑m(max)
m=m(min) Pm

≈ 10%. (9.21)

This factor η is called the diffraction efficiency and is defined in general as
the fraction of the incident light diffracted into the strongest non-zero order.
The figure of 10% can hardly be improved upon, within the limitations of real,
positive transmission functions; the way to higher efficiencies is through the
use of phase gratings.
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Figure 9.8

(a) Blazed transmission
grating. The value of θ

must satisfy the two
equations nλ = d sin θ and
θ ≈ (n − 1)α. (b) Blazed
reflection grating. The
value of θ must satisfy the
two equations nλ = d sin θ

and θ = 2α.

q
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d
q
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9.2.5 Blazed gratings

The discussion in the previous section shows us how inefficient an amplitude
transmission grating must necessarily be. Rayleigh originated the idea of com-
bining the effects of refraction or reflection with interference to make a phase
grating that could concentrate most of the intensity in one particular order. The
principle is illustrated by Fig. 9.8. Each element in the transmission grating
shown in Fig. 9.8(a) is made in the form of a prism, of which the angle is
such that the deviation produced is equal to the angle of one of the orders

A blazed grating
concentrates the
diffracted energy into a
particular order. It can be
very efficient, but only in
a given wavelength
region.

of diffraction; correspondingly, in Fig. 9.8(b) a reflection grating is shown in
which each element is a small mirror.

Such gratings are widely used. Instead of using any available sharp diamond
edge for ruling a grating, a special edge is selected that can make optically flat
cuts at any desired angle. Gratings so made are called blazed gratings. It will
be noted that a diffraction grating can be blazed only for one particular order
and wavelength, and the high efficiency applies only to a restricted wavelength
region.

The scalar-wave theory of the blazed grating is an elegant illustration of
the use of the convolution theorem. Suppose that a plane wavefront incident
normally on the grating is deviated by angle β on being reflected or transmitted
by an individual facet. For a reflection grating, β = 2α is determined by the
geometry only; for a transmission grating it may be wavelength dependent too,
but we shall restrict our interest to the former. Following the analysis in §8.4.1,
the individual facet is represented by a phase ramp of form exp(ik0x sinβ).
We now describe the individual facet, of width b, by the complex transmission
function g(x) = rect(x/b) exp(ik0x sinβ). The complete grating is therefore
represented by

f (x) = g(x)⊗
∑

δ(x− nd) (9.22)

= [rect(x/b) exp(ik0x sinβ)] ⊗
∑

δ(x− nd). (9.23)

The Fourier transform of (9.23) is

F(u) = [δ(u− k0 sinβ)⊗ sinc(ub/2)] ·
∑

δ(u− 2πm/d)

= sinc[b(u− k0 sinβ)/2] ·
∑

δ(u− 2πm/d). (9.24)
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Figure 9.9

Diffracted intensity in the
orders of a blazed grating;
(a) at the wavelength for
which the blazing was
designed (all energy goes,
theoretically, into the +1
order); (b) at a slightly
different wavelength (the
+1 order predominates,
but other orders appear
weakly).
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Figure 9.10

Zero order and first orders
of diffraction from a narrow
band source, measured
using a reflection grating
blazed for the first order.
(a) Photograph of the
spectrum (−1 order has
been enhanced); (b)
measured profile of (a).

Intensity

(a)

(b) Angle of diffraction (wavelength)

First
order

Zero
order

–1 order,
(enhanced)

One sees in Fig. 9.9(a) that the maximum of the envelope function (sinc),
which indicates the value of u giving the highest intensity, has moved from the
origin to k0 sinβ. If k0 sinβ = 2πm0/d, this coincides with order m0 (usually,
but not necessarily, the first order). This way, β can be chosen to maximize the
intensity in a specified order, for a given wavenumber k0. The corresponding
wavelength is called the blazing wavelength.

We can now calculate the diffraction efficiency. At the blazing wavelength
the intensity Im of the order m is given by |F(2πm/d)|2:

Im = sinc2
[

bπ
d

(m− m0)

]
; (9.25)

in the ideal case (complete transmission or reflection) where b = d, Im = 0
for all orders except m = m0. The diffraction efficiency in the m0th order is
therefore 100%! In practice, a grating with b = d is difficult to construct;
there are usually some obstructed regions at the edges of the facets. Then we
have b < d and the orders m �= m0 have small but non-zero intensities, with a
consequent reduction in the efficiency (see Fig. 9.10).
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At a wavenumber k1 �= k0 the phase ramp is exp(ik1x sinβ) and

F(u) = sinc[b(u− k1 sinβ)/2] ·
∑

δ(u− 2πm/d) (9.26)

Im = sinc2
[

bπ
d

(
m− m0

k1

k0

)]
, (9.27)

in which we used the blazing condition to write sinβ in terms of k0. This is
illustrated by Fig. 9.9(b); the diffraction efficiency is no longer 100%, but can
still be quite high if k1 ≈ k0. The modification for non-zero angle of incidence
is simple, and will be left as a problem to the reader (Problem 9.5). It should
be remarked that the blazing wavelength can be altered somewhat by changing
the angle of incidence.

In detail, the structure of a diffraction grating is comparable in scale with
the wavelength, and so the scalar theory of diffraction is not really adequate. In
particular, polarization-dependent effects are very much in evidence. A fuller
discussion is given by Hutley (1982).

9.3 Two-beam interferometry

As well as answering basic questions about the nature of light, the phenomenon
of interference also opened up vast possibilities of accurate measurement. As
we have seen, even Young’s fringes can give quite an accurate measure of the
wavelength of light, and with more carefully designed equipment optical inter-
ferometry has become the most accurate measurement technique in physics. In
this section we shall describe several interferometers based on the interference
of two separate waves, with examples of their applications. For measurement

With a strain sensitivity
δl/l of 10−22 achieved by
LIGO, interferometry is
now the most sensitive
measurement method in
physics.

purposes it is usual today to employ laser light sources, as indicated schemati-
cally in the figures; only when imaging is required as part of the interferometer
(such as in interference microscopy, §12.4.5) are quasi-monochromatic sources
preferred to avoid laser speckle.

9.3.1 Jamin and Mach–Zehnder interferometers

These interferometers use partial reflection at a beamsplitter to create two
separate coherent light waves, and recombine them at a second beamsplitter.
Note that in both cases there are two output beams. The optical path lengths
can be compared, and small differences detected. The Jamin form is very stable
to mechanical disturbances, but is less flexible in that the beams are relatively
close to one another (Fig. 9.11). In the Mach–Zehnder interferometer a greater
separation is possible (Fig. 9.12). Both interferometers can be adjusted, using
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Figure 9.11

Jamin interferometer used
for the measurement of
refractive index of a gas. At
R the glass plates are fully
reflecting, and at S they are
about 50% reflecting. The
interference is visible at
outputs A and B.

Gas

A

B

R

SR

S

Vacuum
Compensator plate

Figure 9.12

Mach–Zehnder
interferometer. In this
illustration we use cube
beamsplitters S with
reflectivity about 50%. The
output can be observed at
A or B.

A

B

S

S

Sample

Reference

a white light source, to have zero path difference under specified conditions. A
typical application of either is to the measurement of refractive index of gases.
In Fig. 9.11, one sees that the two beams go through closed glass tubes of length
L, one of which is evacuated and the other contains gas at a known pressure.
The difference in optical path δl then allows the refractive index of the gas to
be measured:

δl = (n− 1)L. (9.28)

In a measurement of this type one does not actually measure a fringe shift,
but uses a compensator (usually a parallel glass plate of known thickness and
refractive index inserted at a variable angle to one of the beams) to bring
the fringes back to the initial (null) position. Then, for example, electronic
detection might allow the null position to be sensed to about 10−3 fringes.
From (9.28), for L = 20 cm and λ = 0.5μm, an accuracy of measurement
δn = ±10−3λ/L = ±2.5× 10−9 would be achievable.

9.3.2 Michelson interferometer

The Michelson interferometer uses a single beamsplitter to produce two beams
that are not only widely separated but also propagate in directions at right
angles. These two features make it a very versatile instrument and it is the best
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Figure 9.13

Michelson interferometer.
The beamsplitter S is
coated on the upper surface
to reflect and transmit
about 50% of the light, and
P is the compensating
plate. The output can be
observed at A or B.

S

P

M1

M2

A: Symmetrical output

B: Asymmetrical output

Light source

known of all the interferometers. It should not be confused with the Michelson
stellar interferometer, which will be described in §11.8.1.

The principle is illustrated in essence in Fig. 9.13. Light enters from the left
and is partly reflected and partly transmitted by the beamsplitter S, which has
amplitude reflection and transmission coefficients R and T respectively. The

The Michelson
interferometer, which
compares waves
travelling in different
directions, has many
modifications such as the
Fourier transform
spectrometer (§11.5) and
the Twyman–Green
interferometer (Box 9.2);
it can be applied to many
different types of
measurement.

two beams are reflected from the mirrors M1 and M2, and return to the beam-
splitter. After a second reflection or transmission of each beam, the resultant
interference fringes are observed at A or B. Notice that the amplitudes of the
two waves interfering at A are RT and RT . Following the argument in §5.7,
these are equal in magnitude and have opposite signs for an ideal loss-less
beamsplitter, and so when the path lengths via M1 and M2 are equal, complete
destructive interference is observed; the zero-order fringe is black!1 The exit at
A, where complete destructive interference can be expected, at least in theory,
is often called the symmetric exit. On the other hand, at B the amplitudes are
R2 and T T , which both have the same sign but may not be equal, so that the
zero fringe is bright, but complete destructive interference is unlikely. This may
be called the asymmetric exit. Because the rays reflected from M2 have to pass
through three thicknesses of the beamsplitter S, whereas those reflected from
M1 have to pass through only one, Michelson inserted a compensating plate at
P to give equality between the two paths. This plate is needed because glass is
dispersive and so only by having the same amount of the same glass in both
beams can the optical paths be made equal at all wavelengths. This plate must
therefore be of the same thickness as S and placed at the same angle. Today, a
cube beamsplitter is often used in place of Michelson’s partially silvered plate
beamsplitter, and the compensator is unnecessary.

With the Michelson interferometer many different sorts of fringes can be
obtained – straight, curved, or completely circular, in monochromatic or white
light. These can all be understood in terms of a single theory if we regard the
problem as a three-dimensional one, the different sorts of fringes resulting from
looking at the same three-dimensional pattern from different directions.

Different geometries of
fringes can be created in
the Michelson
interferometer by
changing the angles and
positions of the mirrors.

1 With real-life beamsplitters, this may not be so.
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Figure 9.14

Principle of the Michelson
interferometer observing
an extended incoherent
source. The observer sees,
by reflection in the
beamsplitter and the two
mirrors, two virtual images
of the source point O, at
OS1 and O2S. These images
are coherent, and therefore
interfere. For simplicity, the
beamsplitter is assumed to
have no thickness and the
compensation plate has
therefore been omitted.
Note that M1 is slightly
tilted from the horizontal.

M1

M2

O2S

OS1

SPoint on source: O

OS: Image of O in S

Observer here sees
coherent images OS1 and O2S

O2: Image of O in M2

The source can be a broad one, but we can simplify the understanding of the
interferometer by considering one ‘ray’ at a time, coming from one point on the
source. Then two virtual images of this point, produced via the two routes to A
or to B, interfere to give the observed pattern. If we ignore the finite thickness
of the components, which does not affect the argument, we see from Fig. 9.14
that O has images at OS and O2 in S in M2 respectively; OS has an image OS1
in M1, and O2 has an image O2S in S. The images OS1 and O2S are the two
virtual coherent sources that give rise to interference.

It can easily be seen that OS1 and O2S can be brought as closely together
as we require. Small adjustments in the position and angles of M1 and M2 can
change their relative positions. The different sorts of fringes arise from various
relative positions of OS1 and O2S , and the scales of the fringes depend upon
their separation.

Consider an observer at A, from where the two virtual sources are seen to
radiate in antiphase. The same argument would follow at B, but there the two
virtual sources are seen in phase. If OS1 and O2S are side-by-side, the situation is
just like Young’s experiment, and we get a set of straight fringes, normal to the
vector OS1O2S . The fringes are actually hyperbolic, as in Fig. 9.17(b), but are
indistinguishable from straight fringes in most practical situations (§9.1.1). The
closer the points, the wider the fringe separation. Another situation is for O2S
to be behind or in front of OS1. The directions of constructive and destructive
interference then lie on cones around the line OS1O2S . From Fig. 9.15(a) we
see that, on a screen at distance L 
 O2SOS1 ≡ s the wave amplitude at P, the
point corresponding to an angle of observation θ , is

ψP = RT
[
exp(ik0O2SP)− exp(ik0OS1P)

]
(9.29)

= 2RT exp
[

1
2

ik0(O2SP+ OS1P)
]

sin
[

1
2

k0(O2SP− OS1P)
]

.

(9.30)
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Figure 9.15

(a) Path difference at P
between waves at angle θ

to the axis, when O2S lies
behind OS1. (b) Circular
fringes seen in a Michelson
interferometer.
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Figure 9.16

Schematic representation
of the Fourier transform of
two points – plane
sinusoidal fringes – cutting
the sphere of observation.
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For this large L, 1
2 (O2SP−OS1P) � 1

2 s cos θ , so the observed intensity can be
written

|ψP|2 = 4(RT)2 sin2
[

1
2

k0s cos θ
]
= 2(RT)2[1− cos(k0s cos θ)]. (9.31)

Notice that (RT)2 always has value less than 1
4 since R2+T 2 ≤ 1, so |ψP|2 is

never negative. This defines a set of circular fringes (of constant θ ) in the plane
containing P. The exact value of s determines whether the centre (θ = 0) will
be bright or dark, and the scale of the fringe pattern is determined by s. Suppose
that s is such that the centremost dark ring has order m0, i.e. k0s = (m0+ δ)2π ,
where 0 ≤ δ < 1. The succeeding dark rings have lower orders m = m0 − 1,
m0 − 2, etc. For small angles θ , dark ring m appears at θm where

cos(k0s cos θ) ≈ cos
[

k0s
(

1− 1
2
θ2
)]

= cos
[
(m0 + δ)2π − 1

2
k0sθ2

]
= cos 2mπ = 1, (9.32)

whence 1
2 k0sθ2 = (m0 + δ − m)2π . Notice the square-root dependence of the

angular radius on the order, just like the zone plate (§7.2.5), in Fig. 9.15(b).
Following the discussion of crystallography in §8.6.4, it is instructive to

consider this problem, and other interferometers, in terms of their Fourier
transforms. The three-dimensional Fourier transform of the two points is a
set of planar sinusoidal fringes, represented in Fig. 9.16. The different fringes
observed are different aspects of this Fourier transform.

To understand this statement we make use once again of the concept of the
sphere of observation (§8.6.4). Now, however, we are dealing with coherent
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Figure 9.17

Different types of fringes
from Michelson
interferometer: (a) and (b)
show how circular and
‘straight’ fringes are
produced as the result of
different dispositions of OS1

and O2S and (c) shows an
intermediate type of fringe
pattern; (d) shows how
broadened fringes are
produced if a range of
wavelengths, such as white
light, is used.

(b)(a)

(d )(c)

O 2SOS1

sources and not scatterers so that their phase difference is always zero and does
not depend upon an incident beam k0. Thus the factor exp(ik0 · r′) in (8.64)
must be replaced by unity; this can be done by putting k0 = 0, which results
in the observation sphere having radius 2π/λ and being centred on the origin
of reciprocal space. The sphere of observation therefore penetrates the Fourier
transform, and has its centre on a maximum (Fig. 9.16).

As the points OS1 and O2S become closer, the fringe separation 2π/OS1O2S
becomes larger, and as the disposition of the points changes the transform
rotates into different orientations. Figure 9.17 shows how different types of
fringes arise, when the intersection is projected onto the observation screen. If
white light is used, the sphere must be considered to have finite thickness and
only the zero-order fringe is sharp and the others are coloured and soon merge
together. Such coloured fringes are the best way of identifying the zero-order
interference.

The coloured fringes in a Michelson interferometer have another important
application. By studying their profile in detail, we can measure the spectrum of
the source. This method is called Fourier spectroscopy and will be discussed
in detail in §11.5.

9.3.3 Localization of fringes

So far we have considered the interference fringes orginating from a single
point source O. If the source is coherent, the beamsplitter divides the incident
light into two waves that are mutually coherent at all points in space, and
the fringes can be observed anywhere where they overlap after they exit the
interferometer. The fringes are then said to be delocalized. This is the case
when a laser is used as the source. On the other hand, if the source is extended
and incoherent, such as the sky, each point on it creates its own fringe pattern in
a different place; the various fringe patterns superimpose and generally cancel

Fringes are localized in
space when the light
source is spatially
incoherent. The concept
is particularly important
in interference
microscopy because
incoherent illumination
gives superior images.
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Figure 9.18 Construction based on Fig. 9.14 to show localization of fringes from an extended
incoherent source in the Michelson interferometer, when the path difference is zero.
An observer at A or B sees the two mirrors superimposed, intersecting at P, and the
two virtual images O1 and O2 of the source point O. These images are equidistant
from P and therefore the zero-order fringe, which bisects O1O2, must go through P.
Likewise for a second source point Q. The zero-order fringe is therefore localized at P,
which is on the mirrors.

Figure 9.19

Configuration of a
Twyman–Green
interferometer for testing
the quality of a lens. The
reference mirror position
can be moved in a
controlled manner
vertically, to get a series of
interferograms from which
the phase error can be
deduced.

F

Interferogram in
image of aperture stop

Spherical mirror
with centre at F

Aperture stop

Reference mirror

Beamsplitter

Coherent
monochromatic
plane wave

Lens under test, focus at F
Camera lens

one another. However, there may be a region where all the fringe patterns
coincide and, even with a broad incoherent source, a fringe pattern can be seen
localized in this region. In the Michelson interferometer, for example, we shall
see that the fringes are localized in the region of the mirrors M1 and M2, which
the observer sees as coincident.

Returning to the construction in Fig. 9.14, we can see that we get the same
result if we replace M1 by its image M ′

1 in S and locate the images of O in M ′
1

and M2 (Fig. 9.18). The observer sees these two images either directly (from
B) or through the beamsplitter (from A). When the distances of M1 and M2
from the beamsplitter are equal, but they have slightly different tilt angles, M2
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Box 9.2 Optical testing: the Twyman–Green interferometer

One of the practical uses of the Michelson interferometer is to test an
optical component. We saw that the simplest fringe pattern that can be
obtained is a set of straight-line fringes, called an interferogram, obtained
when a monochromatic plane wave is incident. By careful adjustment of
the mirror angles, the output light field at A or B can even be made to be
uniformly illuminated; however, this is difficult to do because the instrument
is very sensitive to optical (phase) defects in any of the components; just the
same, we shall assume that this is indeed possible. The Twyman–Green
is a Michelson interferometer which uses this sensitivity to test optical
components. The idea is shown in Fig. 9.19 for testing a lens. The lens is
mounted in a configuration where, if it is ideal, it will convert an incident
plane wave into an exiting plane wave, but any defects will affect the
planarity of the exiting wave. The same principle can easily be used to test
other optical components. In the configuration shown, this requires an extra
component – a high-quality spherical mirror with radius less than the focal
length of the lens; an optical workshop needs to have components of this
sort available.

At the exit from the interferometer we place a camera focused on the
aperture stop of the lens, so that deviations from the straight-line fringe
pattern at a particular point on the interferogram can be associated directly
with the corresponding point on the lens, so that if corrections are to be
made by polishing, we know exactly where to make them.

Other interferometers could also be used in a similar manner, but the
Michelson is very convenient because the two interfering paths are well
separated. Another advantage is that it is easy to measure the phase errors
quantitatively by modulating the position of the reference mirror in several
steps. The fringes then move transversely, and by comparing the inter-
ferograms obtained at each step, the phase error can easily be deduced.
This method is called phase-stepping interferometry and we leave it
as a problem (9.9) to write a formula that gives the phase (relative to a
fixed reference) from the interferograms at four mirror position separated
by λ/8.

and M ′
1 intersect at P. Then O1 and O2 lie on an arc with centre at P, and

therefore by simple geometry the zero-order fringe, which is equidistant from
both O1 and O2, must pass through the intersection. This is true for any other
source point such as Q. As a result, the zero-order fringe is localized along
the intersection line. The argument can easily be extended to show that the
higher-order fringes are also localized in the plane of the mirrors to a good
degree of approximation. The same argument applies to fringes in a thin film,
where the fringes are localized in the plane going through the geometrical
intersection between the two surfaces, which is approximately that of the film
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itself. Localization of fringes in incoherent light can be investigated in other
interferometer types by representing them as a pair of mirrors in the same way.

9.3.4 The Michelson–Morley experiment

One of the most important experiments leading to the modern era of physics
was carried out by Michelson and Morley around 1887, employing the superb
accuracy that Michelson’s genius enabled him to extract from his interferom-
eter. He was concerned by the fact that in order to explain the aberration of
light – the apparent change of the direction of light from a star that occurs

Michelson and Morley set
out to measure the
velocity of the Earth
relative to the supposed
‘aether’, but had no
success. The answer was,
of course, special
relativity.

because the Earth is in motion around the Sun – Fresnel had had to assume that
the ‘aether’ (the assumed medium in which electromagnetic waves propagate)
must be at rest as an opaque body moves through it. He therefore set himself
the task of measuring the velocity of the Earth with respect to the aether.

Starting with the assumption that the Earth’s velocity relative to the aether
was of the same order of magnitude as its orbital velocity, Michelson showed
that his interferometer could make the measurement with reasonable certainty.
The difficulty was that the effect to be measured is a second-order one. The
velocity of light could be found only by measuring the time taken for a light
signal to return to its starting point, and the difference between the time for a
journey up and down the path of the Earth and that across the path, to take the
two extremes, is a second-order quantity derived as follows.

According to classical physics, the time t1 for the up-and-down journey of a
path L is

t1 = L
c+ v

+ L
c− v

, (9.33)

where v is the velocity of the Earth. For the transverse passage the light would
effectively have to travel a longer path L′ = 2L[1+ (v2/c2)] 1

2 , the time taken
being t2 = L′/c. Expanded to second order in v/c we have

t1 ≈ 2L
c

(
1+ v2

c2

)
; t2 ≈ 2L

c

(
1+ 1

2
v2

c2

)
. (9.34)

The time difference t1 − t2 = (L/c)(v2/c2), which corresponds to a path
difference of Lv2/c2. If v is small compared with c, it would appear that the
measurement of this quantity would not be possible.

But was it too small? The orbital velocity of the Earth is about 10−4 of the
velocity of light. If L is 1 m the path difference is about 10−8 m, or about λ/50;
this was too small for measurement using visual techniques, but large enough
to suggest that with some modification a measurable effect might be expected.

The chief factor in producing a measurable path difference was an increase
in the path L; the interferometer was mounted on a stone slab of diagonal
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Figure 9.20

Interferometer used in
the Michelson–Morley
experiment. The output
was observed visually
through the telescope.
(After Michelson (1927))
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Figure 9.21

Typical diurnal variation of
the fringe shift. The broken
line shows 1

8 of the
displacement expected
from the orbital velocity of
the Earth. (After Michelson
(1927))
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about 2 m floating in a bath of mercury (Fig. 9.20) and the light was reflected
so that it traversed this diagonal several times, giving a total distance L of
11 m. Since there was no a-priori knowledge of what might be the direction of
the path of the Earth, the whole apparatus could be rotated and the maximum
difference in path should be 22 times that previously calculated – just under
half a fringe. Michelson and Morley were confident that they could measure
this to an accuracy of about 5%.

This experiment is described in some detail because it is one of the most
important experiments in optics. It illustrates the importance of developing
techniques to measure very small quantities, for which Michelson was awarded
the Nobel prize in 1907; the complete account of the care taken in avoiding
spurious effects is well worth reading in the original (Michelson (1927)). The
result was most surprising and disappointing; no certain shift greater than 0.01λ
was found (Fig. 9.21). The broken line in Fig. 9.21 shows 1

8 of the displacement
expected from the orbital velocity of the Earth. It appeared the velocity of the
Earth was zero!
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There was just the possibility that the orbital velocity of the Earth at the
time of the experiment happened to cancel out the drift velocity of the Solar
System. This could not happen at all seasons of the year and therefore more
measurements were made at intervals of several months. The result was always
zero. This result was one of the mysteries of nineteenth-century physics. It
was perplexing and disappointing to Michelson and Morley, whose skill and
patience seemed to have been completely wasted. But in 1905 Einstein came
forward with a new physical principle, relativity, the main assumption of
which is that the velocity of light is invariant whatever the velocity of the
observer, which was completely in accordance with the experiments. Thus,
out of an apparently abortive experiment, a new physical principle received its

Although Michelson
and Morley’s results
predated the theory
of relativity, Einstein
apparently did not
know about them.

confirmation and a new branch of physics had its beginning.

9.4 Common-path interferometers

In a common-path interferometer, which was first used in 1851 by Fizeau,
the two interfering beams traverse identical, or almost identical paths, but
propagate in opposite directions. As a result, with almost no trouble it can be
set up to give white-light fringes, since the two path lengths are automatically
equal. Small differences can be introduced by making offsets from the ideal
counter-propagating condition. Figure 9.22 shows the two simplest forms, but
other variants using more mirrors are possible. There are as usual two output

Because the two
counter-propagating
beams travel equal
paths, a common-path
interferometer can be
used with broad-band
light.

waves; one at A, which is easily accessible, and one at B, which returns in
the direction of the source. There is no need for the compensating plate of the
Michelson interferometer because both beams pass through the beamsplitter
plate an equal number of times. If the amplitude reflection coefficient of the
splitter is R and its transmission coefficient T , clearly one of the waves at A has
amplitude T 2 and the other RR. The waves therefore interfere destructively
when there is zero path distance at this exit (see §5.7), but cancel exactly
only if T 2 = R2; this requires a carefully chosen beamsplitter. On the other
hand, at B, we have two waves with amplitudes T R, which therefore interfere
constructively at zero path difference, with unit contrast for any values of T
and R.

If light passes through the interferometer at an angle as shown in Fig. 9.22(a),
a path difference is introduced because the two counter-propagating beams do
not coincide exactly. But the two emerging rays are always parallel, so if
an extended incoherent source is used it follows from §9.3.3 that the fringe
pattern is localized at infinity. In versions of the interferometer that have a
beamsplitter and an odd number of mirrors, e.g. Fig. 9.22(b), the two beams
can be separated by a controlled amount, while remaining equal in length, and
the B exit is more accessible.
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Figure 9.22 Two common-path interferometers: (a) constructed with a beamsplitter and two
mirrors (triangular interferometer) and (b) with a beamsplitter and three mirrors.
S is the beamsplitter plate. The first type can be used as a shearing interferometer
(Fig. 11.15) in which the two beams are offset by a thick plate, which can be rotated
about a vertical axis. The second type is more versatile, particularly for investigations
involving the Sagnac effect.

Figure 9.23

Conceptual diagram of
Fizeau’s experiment to
determine the velocity of
light in moving water. The
water tubes must be
several metres long in
order to get a measurable
effect.
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9.4.1 Velocity of light in a moving medium

The common-path interferometer is important for two reasons. The first is
historical; it provided the first way of measuring relativistic effects in light
propagation. In 1851, Fizeau constructed an interferometer of this type to
measure the velocity of light in moving water (Fig. 9.23). The water flows as
shown in the figure, and so one of the light beams propagates parallel to the
flow velocity, and the second one anti-parallel to it. The difference in velocity
between the two waves could thus be measured. Of course, the classical theory

Fizeau’s measurements
of the velocity of light in
moving water differed
from the expected result
by about 55%, an error
that could not be
explained classically.

of motion in a moving frame of reference that gave light velocities c+ = c/n+v
and c− = c/n−v for the two cases, did not explain the results, and Fizeau found
it necessary to employ an ‘aether drag’ coefficient (1 − n−2) to explain them
(this term had previously been introduced by Fresnel to explain anomalous
results of stellar aberration due to the motion of the Earth, §9.3.4). Einstein’s
theory of relativity explains the results correctly by showing c+ and c− to be

c± = c/n± v
1± v/nc

. (9.35)
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It is interesting that, unlike the Michelson–Morley experiment, the relativistic
correction to be measured is first order in v, and can therefore be observed
fairly easily even at low velocity.

9.4.2 The Sagnac effect and optical gyroscopes

An important modern application of the common-path interferometer pioneered
by Sagnac in 1913 is to make an optical gyroscope. Suppose that the whole
interferometer rotates in its plane at an angular velocity �. A phase difference
is produced between the two counter-propagating beams; this is called the
Sagnac effect. Because it involves light propagating in a non-inertial (rotating)
system it should properly be treated by general relativity (Chow et al. (1985));
however, since no gravitational field is involved, special and general relativity
give the same result, as follows.2

Since the interferometer used to investigate the Sagnac effect is usually
built with the light travelling in a coiled optical fibre, we can consider for
simplicity a circular interferometer of radius R, with path length L between

Measuring the small
phase shift introduced in
a common-path
interferometer in a
rotating frame of
reference allows its rate
of rotation to be
deduced.

the first and second passage of light through the beamsplitter. For a single
turn, L = 2πR, but several turns may be involved. The velocity is v = R�
and the light travels in a medium of refractive index n. Using the velocity-
addition formula for an inertial frame, in one sense (clockwise, the same as
�) the velocity of light is c+ and in the other sense (counter-clockwise) it
is c− (9.35). These velocities represent the two speeds of light as measured
in the laboratory frame. During the time t+ that the clockwise light takes to
traverse the length L of the interferometer, the beamsplitter moves a distance
R�t+, so that c+t+ = L + R�t+. Likewise, for the counter-clockwise sense,
c−t− = L− R�t−. Combining these two, we find

�t = t+ − t− = L
[

1
c+ − R�

− 1
c− + R�

]
. (9.36)

Substituting for c+ and c−, (9.35), we find

�t = 2LR�
c2 − R2�2 �

2LR�
c2 . (9.37)

Note that n does not appear in this equation. Since the length of one turn is
2πR, the result can also be written as 4NA�/c2, where A is the area of one turn
and N is the number of turns. It appears that this dependence on the area of

2 A classical approach says that in vacuum the light takes time �t = L/c to traverse the loop,
during which the beamsplitter moves a distance �tR� = LR�/c, which shortens one path and
lengthens the other. The phase difference introduced is therefore �φ0 = 2k0LR�/c. This result
is correct for vacuum, but suggests that in a medium k0 should be replaced by nk0 and �t by n�t,
resulting in n2�φ0, which is incorrect. Thus, confirmation that the Sagnac effect is independent
of n provides a confirmation of special relativity.
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the circuit is quite general when the Sagnac effect is calculated for polygonal
interferometers such as those shown in Fig. 9.22. The proof of this is left as a
problem for the reader (9.11).

This time difference can be translated to a phase difference or a frequency
difference, depending on the method of sensing it. In an interferometric optical
gyroscope, a light wave of frequency ω enters the interferometer, and the phase
difference ω�t is measured. The effect is very small, and it is usual to increase
it by making L very long by using a coil of optical fibre; the fact that the fibre
is made of glass does not affect the result because (9.37) does not involve n.
R is simply made as large as practically convenient (it determines the size of
the instrument). For example, if L = 100 m, R = 0.1 m, � = 1 rad s−1 and
λ = 0.5μm, the phase shift is

�φ = ω�t = 2πc
λ
· 2LR�

c2 � 0.8 rad. (9.38)

It is quite practical to measure such a phase shift, but a useful gyroscope must
be accurate to about 10−3 times the rate of rotation of the Earth, 15◦ hr−1,
so that phase shifts of order 10−7rad would have to be measured. Because of
attenuation, the longest practical value for L is a few kilometres.

We shall not go into the various sensitive detection techniques that have been
developed nor into the problems that have had to be solved in order to develop
this effect into a successful technology. Many of the problems centre around
non-reciprocal or non-linear processes in the fibre materials (§13.6.2), which
affect the propagation of the clockwise and counter-clockwise wave differently
and thus mimic the Sagnac effect.

If the refractive index
of the fibre depends on
the light intensity, and
the light is not equally
divided between the
two circulating beams,
a phase difference is
introduced which has to
be distinguished from
the Sagnac effect.

9.5 Interference by multiple reflections

Two-beam interference provided both an initial verification of the wave theory
of light and a method of measuring the wavelength a monochromatic wave.
Because, as we showed in §9.1.1, the intensity distribution in two-beam inter-
ference is sinusoidal, the maxima and minima are quite broad. In multiple-beam
interference we essentially maximize (9.12) by using both large m and N . The
conditions for reinforcement of N beams are then N/2 times more precise than
those for the reinforcement of two, and very sharp maxima can be obtained.

We have already discussed one way of using multiple-beam interferometry,
the diffraction grating, in which a set of accurately constructed periodic aper-
tures gave us a set of interfering waves with regularly incremented phases.

By using N multiple
reflections, we
essentially increase
the maximum phase
difference between the
beams by N− 1 and
therefore improve the
resolving power of an
interferometer.

Another way of producing such a set of waves uses multiple reflections from
a plane-parallel transparent plate, or between parallel mirrors. As the wave is
reflected backwards and forwards, a constant addition to its phase is made in
each cycle, and if a little of the wave is extracted at each reflection, the result is
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Figure 9.24

Ring laser gyroscope.
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Box 9.3 The ring laser gyroscope

The ring laser gyroscope (Fig. 9.24) represents another way of using the
Sagnac effect. A closed loop resonator is constructed with (at least) three
mirrors defining a cycle of length L assumed, for simplicity, to be filled with
a lasing material of refractive index n. The laser operates (see §14.6.1) at
a resonance frequency for which the cycle length is a whole number m of
wavelengths λ/n. When the resonator rotates, the light travelling clockwise
satisfies

L+ tR� = L
(

1+ n
c

R�
)
= mλ+/n, (9.39)

whereas the anti-clockwise wave satisfies

L− tR� = L
(

1− n
c

R�
)
= mλ−/n. (9.40)

The very small wavelength difference is

�λ = λ+ − λ− = 2LRn2�

cm
, (9.41)

assuming that the same mode number m is optimum in both senses. Then,
translating this small �λ into a frequency difference between the exiting
waves we have, using λ = nL/m from (9.39) and (9.40),

�f = �λ c
nλ2 = 2LRn�

mλ2 = 2R�
λ

. (9.42)

Measuring �f allows � to be determined. This approach has, of course,
assumed a ‘circular triangle’, but gives the result approximately. An estimate
of its value, for R = 0.1 m, � = 1 rad s−1 and λ = 0.5μm is 0.4 MHz.
In principle, measurement of such a frequency (or less when � is much
smaller) should not be difficult, but early efforts to implement laser ring
gyroscopes were bedevilled by frequency locking; as �f → 0, scattering
in the optics caused the two counter-propagating modes to become mixed,
therefore stimulating emission at the same frequency. Further details are
given by Lefèvre (1993).



305 9.5 Interference by multiple reflections

a set of waves with progressively increasing phase. We shall therefore consider
the problem of multiple reflections between two parallel surfaces each having
amplitude reflection coefficient R and transmission coefficient T ; if we assume
that no energy is lost, then by (5.91)

R2 + T T = 1. (9.43)

Let us first calculate the phase difference introduced in one cycle. Consider
the wave transmitted by a plate of thickness d and refractive index n, when
the wave travels at angle θ to the normal within the medium (Fig. 9.25). The
optical path lengths AE and DC are equal. Therefore the optical path difference
between the rays going to X and to Y is ABD = n(AB+ BD). By constructing
A′, which is the reflection of A in the lower surface, it is clear that

AB+ BD = A′D = 2d cos θ (9.44)

so that the phase difference between the interfering wavefronts AD is

2πABD/λ = k0ABD = 2k0nd cos θ ≡ g. (9.45)

It is important to emphasize that the path difference is not twice AB, the
projected thickness of the plate. Moreover, g decreases (like cos θ ) as the angle
of incidence increases. Both these points are somewhat counter-intuitive.
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Figure 9.25

Path differences for rays
reflected from top and
bottom of plane film.

Now let us look at the amplitudes of the multiply reflected waves (Fig. 9.26).
We should remember (§5.7) that R is defined for reflection from one side of
each reflector – let’s say the inside. So reflection from the outside will have
coefficient R = −R. The amplitudes of the waves are as shown in the figure.
An exiting wave, either in reflection or transmission, will combine the waves
having these amplitudes with phase increments g at each stage. The situation
is very similar to the diffraction grating except that the waves have steadily
decreasing amplitudes.

Let us consider the transmitted light. The series is

ψ(g) = T T
∞∑

p=0

R2p exp(ipg). (9.46)

This function can be evaluated by two methods:

• as a geometric series with factor R2 exp(ig) relating successive terms,
• as a Fourier series with coefficients ap = R2p.

First, we can evaluate (9.46) as a geometric series. This is the conventional
method of attacking the problem. We write

ψ(g) = T T
∞∑

p=0

[R2 exp(ig)]p, (9.47)
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Figure 9.26

Multiple internal reflections
in a transparent plate. R,
T and T refer to
amplitudes.
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which is a geometrical series having sum

ψ(g) = T T /[1−R2 exp(ig)]. (9.48)

The intensity

I(g) = |ψ(g)|2 = T 2T 2
/(1+R4 − 2R2 cos g)

= T 2T 2

(1−R2)2 + 4R2 sin2(g/2)

=
(

T T
1−R2

)2

· 1
1+ F sin2(g/2)

, (9.49)

where F ≡ 4R2/(1−R2)2 and F = (π/2)F1/2 is called the finesse.
Expression (9.49) has some interesting features. We notice that the function

has periodic maxima of value [T T /(1 − R2)]2 at g = 2mπ . If there is no
absorption, [T T /(1−R2)]2 = 1, and so we reach the apparently paradoxical
conclusion that, even if the transmission coefficient T is almost zero, at
g = 2mπ all the light is transmitted! Of course it is not really a paradox; the
strong transmitted wave results from constructive interference between many
multiply reflected weak waves. When F is large (R � 1) these maxima are very
narrow; between them the function has value of order 1/F  1 (Fig. 9.27).
The contrast, or visibility, of the fringes, which we shall define formally in
§11.3.2, is then F/(2+ F), approaching unity when F is large.
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Table 9.1. Values of half-peak width and finesse
for different values of R.

R 0.5 0.6 0.7 0.8 0.9 0.95 0.98

2gH/2π 0.54 0.36 0.24 0.15 0.07 0.03 0.01
Finesse F 1.9 2.8 4.2 6.7 14 33 100

Figure 9.28

(a) Fringes obtained with a
He-Ne laser using a 3 mm
thick parallel-sided glass
plate coated with
aluminium, giving
R2 ≈ 80% on both sides.
(Prepared by Sarit Feldman
and Shahar Hirshfeld) (b)
Multiple-reflection fringes
in birefringent mica.
Cleaved mica has
atomically flat surfaces.
(From Tolansky (1973))

(a) (b)

We can calculate the half-width of the peaks from (9.49). The intensity has
fallen to half its peak value when F sin2(g/2) = 1. Thus

gH = 2 sin−1
(

F−
1
2
)
≈ 2F−

1
2 . (9.50)

If R → 1, the width w = 2gH � 4(1 − R). Table 9.1 shows the values of
2gH/2π , the width of the peaks relative to their spacing, as a function of of R.
For comparison it should be noted that the corresponding value for Young’s
fringes is 0.50, so that unless R > 0.6 no improvement in sharpness is obtained
by multiple reflections.

A second way of treating the summation (9.46) is to consider it as a
Fourier series with coefficients R2p. The result is a periodic function with
period �g= 2π and the wave-form is the Fourier transform of the coeffi-
cients R2p, where p is considered as a continuous variable. This function
is an exponential and its Fourier transform is easily calculated; it is called
a Lorentzian function. We leave this approach as a problem for the reader
(Problem 9.12).

Evaluating (9.46) as a
Fourier series gives a
result that can be
expressed as a
convolution.

The reflected wave behaves in a complementary manner. Then there is almost
complete reflection for all values of g, except for narrow dark lines at g = 2mπ .
The inversion occurs because the first reflection is from outside the cavity and
has amplitude −R, which is in antiphase to all the other reflections.

Multiple-reflection interference effects can be seen when any of the parame-
ters in (9.45), g= 2k0nd cos θ , changes, namely k0 (or λ), n, d or θ . Fig. 9.28(a)
shows the ring pattern of sharp fringes that occur in convergent light through
a plane-parallel glass plate coated to make R→ 1, wherever g= 2nπ . The
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Figure 9.29

Schematic construction of a
Fabry–Perot étalon. The
outer surfaces are not quite
parallel to the inner ones.

d

Spacer

R�1

R ≈ 1

R�1

pattern is observed as a function of θ for constant n, d and k0 in the far
field (camera focused on infinity). Figure 9.28(b) shows a detail of the pattern
observed in a mica sheet where d occasionally changes at molecular steps on
the surface. Moreover, because mica is birefringent, there are two values of n
and the fringes appear double.

9.5.1 The Fabry–Perot interferometer or étalon

An important practical application of interference by multiple reflections is the
Fabry–Perot interferometer. Its basic construction is simplicity itself: it consists
of two flat glass plates, arranged in a mechanical support with spacers between
them so that they are parallel to one another. The two inner surfaces are coated
so as to have a high reflection coefficient, but to transmit a small amount
of light (Fig. 9.29). This simple description glosses over several important
qualifications that can make the Fabry–Perot an expensive instrument. First,
the plates must be flat to a very high degree of accuracy (better than λ/50).
Second, the inner surfaces (reflective) must be very accurately parallel to one
another. Third, the distance d, which can be very large (centimetres in laboratory
instruments, to kilometres in LIGO – §9.7) must not change with time, due to
temperature or other fluctuations. On the other hand, the outer surfaces of the
plates are largely irrelevant. They must be optically flat, but play no part in
the analysis. It is convenient if they are not quite parallel to the inner surfaces,
or are anti-reflection coated, so as not to give rise to reflections which could

A good adjustable
Fabry–Perot étalon is a
masterpiece of
opto-mechanical
engineering, demanding
glass surfaces with very
high quality polishing,
because of the repeated
reflections.

confuse the interference pattern.

9.5.2 Resolving power of the Fabry–Perot étalon

If an extended monochromatic source of light is observed through the interfer-
ometer, sharp bright rings are seen at angles θ given by 2k0nd cos θ = 2mπ ,
or nd cos θ = mλ/2. In this case, n is the refractive index of the air (or other
medium) between the plates. Just like the Michelson interferometer fringes,
these rings have radii basically depending on the square roots of the natural
numbers (see equation (9.32)).

The finesse F of a
Fabry–Perot tells you
how much better is its
resolving power than
that of a two-beam
interferometer.
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But the rings are now very sharp and so a high resolving power is obtained.
The form of I(g) (9.49) does not allow us to use the Rayleigh criterion to
determine this, because the function has no zeros, so we will use a differ-
ent estimate, the Sparrow criterion, which actually corresponds better to
visual or photographic acuity than does Rayleigh. This criterion expresses
the resolution limit in terms of the joint intensity curve when observing
two closely separated wavelengths of equal intensity. They are considered
resolved when the intensity at the midpoint between the peaks shows a min-
imum (Fig. 9.6(b)). Mathematically, the closest separation at which this
occurs is expressed by requiring that in (9.49), d2I/dg2 = 0 at the mid-
point. The differentiation easily shows that this occurs at g = 2mπ ± 2gH =
2mπ ± 2/

√
F. Thus the separation between the two wavelength peaks has

to be greater than 2gH for them to be resolved. As a result, the resolving
power is

g/2gH = 2πm
√

F/4 = m
(
π
√

F/2
)
= mF . (9.51)

Comparing this with the result for a diffraction grating g/δg = mN (9.12), we
see that the finesse F can be interpreted as the number of slits N in an ideal
diffraction grating which would have the same resolving power in the same
order as the Fabry–Perot. The great advantage of the Fabry–Perot arises from
large values of both F and the order m.

The resolving power (9.51) is equal to λ/δλ, d/δd or n/δn, depending
on what is being measured. For example, in a laboratory Fabry–Perot we
might have an intensity reflection coefficient R2 = 0.95 and plate separa-
tion d = 2.5 cm; then for λ = 0.5μm, m = 2d/λ = 105 at the centre
of the ring pattern and F = 1500, F = 61. Then g/δg = 1.2 × 107,
which is considerably better than the other interferometers considered so far.
However, in order to get such resolution, the phase after more than 2F reflec-
tions must be accurate to better than λ/4, so the plates must be flat and
parallel over the area used to λ/8F , in this example to λ/500, which is
about 10 Å! A much more extreme situation where d = 4 km is considered
in §9.7.

The Fabry–Perot interferometer is widely used for studying the fine structure
of spectral lines. If a source emits several lines, the overlapping ring patterns
may be confusing, and it is usual to separate out the line of interest by also
passing the light through a ‘lesser’ spectrometer, such as a prism or diffraction
grating (Fig. 9.30). The limited spectral region separated out by this spectrom-
eter must be such that all the rings observed as one group (satellite of the same
spectral line for example) do indeed have the same order m. This means that
the region must be smaller than δλ = λ/2m, which is called the free spectral
range of the interferometer.
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Figure 9.30

Use of Fabry–Perot étalon
for high-resolution
spectroscopy. The étalon is
adjusted so that the rings
cross the slit image as
shown on the left, and
each order m exhibits the
fine structure around that
wavelength.
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Spherical
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9.5.3 Multiple reflections in an amplifying medium

A subject that has become of great importance with the advent of the laser is
the effect of an amplifying medium on the behaviour of a multiple reflection
interferometer, since this is the basis of laser resonators (§3.9 and §14.6.1).
Suppose that the laser medium amplifies the wave-field by factor G during a
single round trip. Then (9.46) becomes

ψ(g) = T T
∞∑

p=0

(R2G)p exp(ipg). (9.52)

The result obtained would be similar to (9.49) if R2G were less than unity. For
large enough G, the value becomes unity and the sum is

ψ(g) = T T
∞∑

p=0
exp(ipg) (9.53)

= T T
∞∑

q=0

δ(g − 2πq). (9.54)

The spectrum is a series of ideally sharp lines; for this function gH = 0. This
is the basic reason that laser lines are so sharp. Now if one asks what happens
if R2G becomes greater than unity, one is asking a question that is unphysical
because the series diverges. In practice, in a continuous-wave laser the ampli-
fication factor G eventually settles down, at high enough intensity, to a value
equal to R−2, so that stability is achieved at that intensity. In a pulsed laser the
amplification is large as the pulse starts, and gradually gets smaller as the popu-
lation inversion is wiped out. The number of terms in the series for which R2G
is greater than unity remains finite; towards the end of the pulse G falls below
unity and the series terminates. This indicates that (9.53) should be summed to
a finite value of p, and a small but non-zero linewidth δg ∼ 1/pmax results.

One would expect from the above arguments that a continuous-wave laser
would emit a number of perfectly sharp lines (longitudinal modes) separated
by δk = π/nd (from (9.54)) indicating a wavelength separation δλ = λ2/2nd.
As will be discussed in §14.7, the lines are not ideally sharp because of noise
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Figure 9.31

Confocal resonator.

F

y

M1

M2
z

L = R

(spontaneous emission) and thermal fluctuations; in addition, the number of
frequencies emitted is rather small (sometimes only one) centred around the
wavelength for which the gain G is maximum.

9.5.4 The confocal resonator: transverse modes

One widely used example of a periodic system of the type discussed in §3.9 is
the confocal resonator, for which L = R1 = R2 (Fig. 9.31). This is marginally

The modes of a confocal
resonator are a set of
bounded self-Fourier
functions, of which the
Gaussian is the best
known.

stable in the geometrical sense, and the foci of the two mirrors coincide (hence
the name). If such a resonator contains an amplifying (lasing) medium, we
have a system that closely approximates that discussed in the previous section,
in that geometrical optics does not predict any light leakage, even for mirrors
of finite size. We shall not discuss the properties of this resonator in detail, but
use it to illustrate the idea of transverse mode patterns.

Consider the amplitude a(x, y) of light travelling to the right in the common
focal plane (Fig. 9.31). Since this is the light amplitude in the focal plane, the
amplitude at the other focal plane of the mirror M2 (which is coincident with it)
must be its Fourier transform A(u, v) (§8.2), but the light is travelling to the left.
However, this system is symmetrical about the focal plane and so the direction
of travel of the waves is unimportant, and a stable mode of operation is seen
when the Fraunhofer diffraction pattern is identical to the original function
a(x, y) in amplitude and phase at each point.

In §4.10 we discussed ‘self-Fourier functions’, which have the property
that the function and its Fourier transform are identical in form. The relevant
functions in the present context, limited to a small paraxial region, are the
Gaussian function in particular, and in addition the set of Gauss–Hermite
polynomials that should be familiar to any student of quantum mechanics as
the wave-functions of a harmonic oscillator.3 They are expressed as

an(x) = Hn(x/σ) exp(−x2/2σ 2), (9.55)

where the functions Hn(x) obey the recurrence relation:

2xHn = Hn+1 + 2nHn−1, H0 = 1, (9.56)

3 The wave-function in p-space is the Fourier transform of that in q-space, and the Hamiltonian
of the harmonic oscillator, which can be written H = 1

2 (p
2 + q2), is invariant on interchanging

p and q.
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Figure 9.32

(a) Examples of
Gauss–Hermite functions;
(b) photographs of (01)
and (11) transverse laser
modes.

f1(x)

x

f2(x)

x

(a)

(b)

which gives H1 = 2x, H2 = 4x2−2, etc. In Fig. 9.32(a) we show two examples
of these functions.

In two dimensions any product of the form

alm(x, y) = Hl(x/σ)Hm(y/σ) exp[−(x2 + y2)/2σ 2] (9.57)

satisfies our requirements. They can be seen as the intensity distribution across
the output beam of a slightly misaligned continuous-wave laser; two examples
are shown in Fig. 9.32(b). The various functions are known as transverse
modes and are referred to by the number pair (l, m). They should be compared
with the similar modes in optical fibres (§10.2), although their origin there is
rather different.

For the basic Gaussian mode, we recognize the beam within the resonator
as a Gaussian beam (§7.3) with a waist at the centre point. Thus, for the
symmetrical arrangement where R1 = R2 ≡ R0 in the terms of §3.9,

σ 2 = s2 = k0R0/σ
2,

σ = √R0/k0 =
√

R0λ/2π .
(9.58)

The waist has Gaussian parameter w, where from (7.40)

w2 = R2
0σ

2

R2
0 + k2

0σ
4
= σ 2

2
. (9.59)

This is the basis of a single-mode laser, which creates an output beam with a
Gaussian profile.

9.6 Advanced topic: Berry’s geometrical phase
in interferometry

Two waves with orthogonal polarizations cannot interfere directly. It is there-
fore important to ensure that the initial polarization of a wave entering
an interferometer is preserved or restored before the interference pattern is
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Figure 9.33

‘Cubical Mach–Zehnder’
interferometers, each with
zero path difference and
two routes between the
beamsplitters. In (a) the
routes labelled 1 and 2
have LH and RH helicities
respectively, whereas in
(b) they both have RH
helicity; (c) shows the
relationship between the
field vectors on reflection
at the special mirrors in this
example.
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observed. From a practical point of view, polarization changes within an inter-
ferometer often occur when light is reflected at oblique incidence from a mirror
or beamsplitter, and also when the light path does not lie in a single plane. Even
if interference occurs, the phase may be different from a naive expectation,
because of phase changes on reflection.

If the light path is not planar, further phase changes can arise for topolog-
ical reasons, depending on whether the light path describes a right-handed
or left-handed helical route; such phases are called geometrical or Berry
phases (Berry (1984, 1987)). We shall illustrate this phenomenon with a simple
example.

The discussion is considerably simplified if we build our interferometer with
polarization-preserving mirrors and beamsplitters. These are not conventional
laboratory components; in general, reflection at a mirror reverses the sense of a
circularly polarized wave, but this can be avoided if internal reflection occurs at
a dielectric–air interface so that the angle of incidence is between the Brewster
angle and the critical angle. In such a case the phase changes introduced
preserve the sense of circular polarization. Since the angle of incidence should
be 45◦ we can use a prism of, say, magnesium fluoride, (n <

√
2) as shown

in Fig. 9.33(c). We emphasize that the above mirrors have been introduced in
order to simplify the following discussion; they have no effect on the value of
the Berry phase.

With such polarization-preserving reflectors we can construct a three-
dimensional Mach–Zehnder interferometer in which the light beams traverse
the edges of a cube. The edges of the cube are exactly equal, so we expect,
a priori, that there will be constructive interference at exit A and destructive
interference at B. Two possible constructions for the interferometer using dif-
ferent cube edges, each having path difference zero, are shown in Fig. 9.33.
In each of the interferometers, we follow through the orientation of the E
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Figure 9.34

(a) Construction of a
general k-route on the
surface of a sphere;
(b) construction of locus
ENUE appropriate to the
cube interferometer in
Fig. 9.33(a). �/2 is the
spherical angle enclosed by
the three axes.
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vector of the incident wave after successive reflections; this is done for initially
‖ (↑) and ⊥ ( |◦) fields. What appears in Fig. 9.33 is that in version (a)
there is destructive interference at A (the exiting fields have opposite
orientations) while in (b) there is constructive interference.

The difference can be traced to the sense of rotation of the light beams.
Designating the three directions by North, East and Up as shown, in (a) beam 1
goes EUNE while beam 2 goes ENUE; the first is a rudimentary left-handed
helix, while the second is right-handed. In (b), both beams are ENUE, which is
right-handed. It is the different sequences of the finite rotations which introduce
the π phase difference between the two cases. This phase change is topological
in origin, and depends only on the geometry of the system; it is an example of
a wide range of such phase changes, in classical and quantum physics, which
were initially derived on general grounds by Berry (1984). They are identically
zero in two-dimensional arrangements.

For any chosen three-dimensional interferometer the geometrical phase can
be deduced by plotting the propagation vectors k of the waves as they traverse
the two arms of the interferometer as two loci on the surface of a sphere, as
in Fig. 9.34(a). Before the initial beamsplitter the k-vectors of the two waves
coincide, and likewise after the second one. Thus the two loci have common
end-points. If we define� as the solid angle subtended at the centre of the sphere
by the segment of the sphere enclosed between the two loci, we shall show that
the topological phase difference between the two is π−�/2. This construction

Berry’s phase provides a
method of creating
arbitrary and controllable
achromatic phase
differences between two
waves; compare this to
the Gouy effect (§7.3)
which can create an
achromatic π phase shift
only.

makes it easy to calculate the geometrical phase for any interferometer (Problem
9.16). Clearly, if the interferometer lies in a plane, � = 0.

This construction can be derived in the case of electromagnetic waves as
follows (Lipson (1990)). We shall assume that the changes in k are continuous
(so that the loci on the sphere are uniquely defined, although in the example
we quoted there are actually discontinuous changes in k at the mirrors!). We
postulate an observer of the electromagnetic wave who travels slowly along
each of the routes, measuring the vector field in his own frame of reference,
which changes continuously so that the local z-axis always coincides with k.
In order to maintain this situation, the observer has to rotate his frame, and we
define α(t) as his angular velocity with respect to the laboratory frame.
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In the frame rotating at α, we relate the time derivative of a general vector
V to that in the inertial frame by(

∂V
∂t

)
rotating frame

=
(
∂V
∂t

)
inertial frame

− α × V. (9.60)

We can apply this to Maxwell’s equations (5.9) and (5.10) which yield, in the
observer’s space,

∇ ×H = ε0

(
∂E
∂t
− α × E

)
; (9.61)

∇ × E = −n0

(
∂H
∂t
− α ×H

)
. (9.62)

The other two Maxwell equations ((5.7) and (5.8)) are unchanged. The wave
equation which replaces (5.12) then follows as

∂2E
∂t2 + α × ∂E

∂t
= c2∇2E. (9.63)

This equation is analogous to that obtained in classical mechanics for Foucault’s
pendulum swinging on a rotating Earth, in which the second term arises from
the Coriolis force.

In contrast to the usual wave equation (5.12), a linearly polarized plane wave
is not a solution of (9.63); however, left- and right-handed circularly polarized
waves are solutions. Substituting waves

E± = E0(1,±i, 0) exp[i(ωt − kz)], (9.64)

we immediately find the dispersion relation

c2k2 = ω2 ± αzω ⇒ ω± ≈ ck ± αz/2 (9.65)

when αω. The phase difference between the waves along the two routes
now results from the slight difference between the velocities that arises if αz is
positive for one and negative for the other, as a result of their opposite helicities.

The phase difference between beginning and end of a route is∫ z,t

0
(k dz− ω dt)± 1

2

∫ t

0
αz dt = ��0 ± 1

2

∫ t

0
αz dt ≡ ��0 + γ , (9.66)

��0 indicating the usual (kinetic) phase difference expected from the optical
path length of the route. The extra term γ can be easily interpreted by the
construction on the sphere. The direction of k has angular position (θ ,φ),
Fig. 9.34(a). Then the locus is the curve θ(φ) and α is the sum of the two
orthogonal components:

α(t) = dφ
dt

ı̂ + dθ
dt

ĵ , (9.67)
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where ı̂ is the unit vector to the pole and ĵ is the common normal to ı̂ and k.
Thus the projection of α on the z-axis in the rotating coordinates, defined as
being parallel to k, is

αz = dφ
dt

(ı̂ · ẑ) = dφ
dt

cos θ . (9.68)

Integrating this along the route gives

γ = 1
2

∫ t

0
αz dt = 1

2

∫ t

0

dφ
dt

cos θ dt = 1
2

∫
cos θ(φ)dφ. (9.69)

For a closed loop, the solid angle subtended at the centre of the sphere
is � = ∮ [1 − cos θ(φ)] dφ = 2(π − γ ). Thus, when we have drawn on
the sphere the k-routes corresponding to the two arms of the interferometer,
γ = π −�/2, where � is the solid angle subtended by the enclosed segment.
We recall that this γ corresponds to one of the circularly polarized waves. The
wave with opposite sense gives−γ , and the difference between the two, namely
2γ , is directly measurable since ��0 in (9.66) cancels out. Experiments on
variations of the cube interferometer carried out by Chaio et al. (1988) and on
propagation in helically coiled fibres by Tomita and Chaio (1986) confirm this
result. In the cube interferometer we described in Fig. 9.33, γ = π/2, and it
is the phase difference 2γ = π which results in the destructive interference
(Fig. 9.33(b)).

9.7 Advanced topic: The gravitational-wave
detector LIGO

The Laser Interferometer Gravitational-wave Observatory (LIGO) is based
on three interferometers with the highest resolution ever built (Smith (2009);
Abbott et al. (2009)). Here, we shall describe the optics of these interferometers
briefly because they incorporate many of the ideas discussed in this and other
chapters. They are designed as instruments for detecting the gravitational waves
emitted by dramatic astrophysical events such as coalescing black holes or
neutron stars and supernova explosions. Such a wave, as it passes the Earth,
should result in minute relative movements of massive bodies separated by a
vector distance normal to the wave propagation direction.

In order to detect such relative movement, and to estimate the direction of
the source, the idea is to compare the change in separation between two pairs of
suspended masses, one pair being oriented along the x-direction, and the other
along y. The sign of the change, i.e. elongation or shortening of the vector,
depends on the polarization of the gravitational wave; this is a quadrupole field
and not a dipole field as in an electromagnetic wave, and if the polarization
is in the most favourable orientation parallel to one of the interferometer axes
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it causes equal and opposite effects in the two orthogonal directions. On the
other hand, an unfavourable polarization at 45◦ to the axes would cause no
effect. The expected peak frequency of gravitational waves from such sources
is between 40 and 2000 Hz, so that in order to obtain sufficient sensitivity
the size of the separation between the masses must be several kilometres;
even this is many orders of magnitude less than the wavelength, since the
waves propagate at the velocity of light. As a result, the expected signal
amplitude is only about 10−9 nm. In order to eliminate noise arising from
man-made sources and seismic events, three interferometers have been built,
in Washington and Louisiana states in the USA, separated by more than 3000
km, and a third in northern Italy. Only events that are recorded simultaneously
at these observatories will be considered as true signals.

The structure of each LIGO interferometer is a Michelson interferome-
ter augmented by a 4 km spherical Fabry–Perot resonator in each arm. The
Michelson interferometer gives an output that measures the difference between
the path lengths in the two arms. The resonator mirrors are designed to
be in the middle of the stable region (§3.9), where the stability number
(1 − L/R1)(1 − L/R2) = 0.33 or 0.67. The light source is a highly stabi-
lized single-mode 10 W Nd-YAG laser, and interference is detected in the A
(symmetric) exit, light at the B exit being returned to the system by a ‘recycling
mirror’. From §9.5.2 the high resolving power achieved is 2mF = 4LF/λ,
since it behaves as a Michelson interferometer in which the path length in each
of the two arms is multiplied by the effective number of reflections, the finesse
F . Thus, for the experimental parameters L = 4 km, F = 20, λ = 1.0μm, we
expect a resolving power of about 3 × 1011. However, this formula is based
on the Sparrow criterion, and advanced techniques of fringe detection allow
much better detection than this by accurate curve fitting to a known line-shape.
Without entering into technical details, when a photon flux of p photons per
second is used, and results are integrated for T seconds, the resolving power
can be increased by a factor of order

√
pT , which has a value of about 1011 for

a 10 W laser and T = 1 s. Thus the expected resolving power is about 1022.
Currently, a frequency-dependent resolving power peaking at 1021 has been
measured for wave frequencies between about 100 Hz and 3 kHz. For the 4 km
separation between two test masses, this corresponds to a positional sensitivity
of about 4× 10−9 nm and is considered sufficient to detect astrophysical events
as far away as 107 parsecs.

One should notice that since the dynamic range of the photon detectors is
finite, and one wishes to detect with photon-limited sensitivity, it is essential
to work under conditions of almost destructive interference at the A exit of
the interferometer where a sufficiently small signal can be expected. Most
of the light therefore leaves through the B exit, where the recycling mirror,
essentially creating a new resonator in phase with both of the Fabry–Perots,
allows the reflected energy to be reused. Figure 9.35 shows the optical layout
of a LIGO schematically and Fig. 9.1 showed an aerial photograph of the LIGO
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Figure 9.35 The optical layout of the Michelson–Fabry–Perot interferometer of a Laser
Interferometry Gravitational-wave Observatory. It is powered by a 10 W near
infra-red frequency laser and has two 4 km long Fabry–Perot étalons in the arms of a
Michelson interferometer. Interference is observed at A and the light reflected to B is
mainly returned by a recycling mirror. The longitudinal mode cleaner selects a single
longitudinal mode of the laser output.

at Hanford, WA. From the optical point of view, the system works optimally,
but many improvements, including an increase of the input energy, are planned
for the near future.

Chapter summary

In this chapter we showed how optical interference can be used as an

accurate measurement tool.

• We saw that even a simple set-up like Young’s slits or a thin film of

material can make surprisingly accurate wavelength measurements.

• We studied diffraction gratings, as an extension of the idea of Young’s

slits, and saw how to optimize their resolving power and efficiency,

particularly by using blazed reflection gratings.

• We learnt how several types of two-beam interferometer work,

including the famous Michelson interferometer, and studied their

applications.

• We derived the Sagnac effect in a rotating frame of reference and saw

how it is used to construct an optical gyroscope.

• We saw how the use of multiple reflections in the Fabry–Perot

interferometer results in very high resolution, which makes it a useful

tool for atomic spectroscopy.
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• We studied the physical optics of laser resonators.

• We learnt about Berry’s geometrical phase in optical systems with

helical properties.

• We saw the principles of a LIGO interferometer, used by astronomers to

look for far-away cosmic catastrophes by detecting gravitational waves.

Problems

9.1. An amplitude diffraction grating has amplitude transmission function
of the form f (x)= 1

2 (1+cos Kx). What is its diffraction efficiency η(m)

in the various orders m?

9.2. An amplitude diffraction grating (i.e. one that does not affect the phase)
has a transmission function f (x) (∈ 0 < x < d) which is real and
positive. What function maximizes the diffraction efficiency in the first
order?

9.3. An echelon grating has construction like a staircase, with highly reflect-
ing treads of width b and height h. It has N steps (Fig. 9.36). Deduce its
Fraunhofer diffraction pattern, and the resolving power attainable for
high-resolution spectroscopy.

9.4. Find the resolving power of a diffraction grating according to the Spar-
row criterion, when the intensities of the two wavelengths to be resolved
are equal.

9.5. A reflection grating is blazed for λ= 700 nm in the first order at normal
incidence. The zero order is found to have intensity 0.09 compared to
the first order at that wavelength. Assuming the grating to be constructed
of flat mirrors, find the relative intensities of the other orders. Find also
the relative intensities at λ= 500 nm.

9.6. A grating constructed of flat mirrors is blazed for a certain wavelength
λ0 in the first order, when light is normally incident. Find how the
blazing wavelength depends on the angle of incidence.

9.7. Why does a soap film appear black in reflected light as its thickness
approaches zero? Light reflected from a certain film has a spectrum that
peaks at 666 nm, 545 nm and 462 nm. What is its thickness? Take the
refractive index as 1.4 and assume normal incidence.
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9.8. A Michelson interferometer is used in exactly parallel monochromatic
light, and is adjusted so that the two optical paths SM1 and SM2 differ
by exactly λ/2. The output intensity is therefore zero. Where has the
energy gone?

9.9. The phase-step method, which is used in many commercial interferom-
eters, works as follows. A Twyman–Green interferometer produces a
certain interferogram whose intensity is given by I0(x, y) on the camera
sensor. The reference mirror is moved by a distance λ/8 thereby chang-
ing the phase difference between the interfering waves by π/2. The
new interferogram is I1(x, y). Two further steps of the same size give
interferograms I2(x, y) and I3(x, y). Derive a formula for determining
the phase difference between any two points on the interferogram. For
example, if in I0 a certain point has locally minimum intensity and at
another point the intensity is locally maximum, the phase difference
(modulo π ) is presumably π/2, but this is a simple case, and in any
event your formula should not be limited to giving the phase only to
modulo π .

9.10. Where are fringes from a broad source localized in (a) interference from
a thin film, (b) a Mach–Zehnder interferometer? Can multiple-reflection
fringes be localized, and if so, under what conditions?

9.11. A Sagnac interferometer has polygonal form, not the circle assumed in
the approximation in §9.4.2. Show that the result �t = 4NA�/c2 is
true for this case.

9.12. In a Fabry–Perot interferometer with spacing d, the amplitude of each
reflected wave is attenuated by the factor R2 compared to the previ-
ous one. Consider the images of a source point (δ-function) multiply
reflected in the two parallel reflectors. Show that the diffraction pattern
of the array so produced is that of a diffraction grating with spacing 2d
and an exponentially decaying envelope. Thus find the profile of each
order and the resolving power of the interferometer. Relate your answer
to (9.50).
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9.13. A Fabry–Perot interferometer is constructed with plates that are not
quite parallel. Assuming the reflection coefficient of each plate to be
close to unity and the mean separation to be d, work out approximately
how the resolving power is affected by the small angle θ between the
plates. You may find it convenient to use the method described in the
previous problem.

9.14. A Lummer–Gherke plate is constructed as in Fig. 9.37. It uses multiple
reflection at internal angles just less than critical in a parallel-sided plate
of thickness d, length L and refractive index n to create a large number
of parallel output beams. Find the phase difference between them, as a
function of the output angle θ . What is the resolving power?

9.15. A Gaussian beam resonates in a stable resonator for which R1 �= R2.
Find the sizes of the waist and the beams at the two mirrors.

9.16. The interferometer constructed by Chaio et al. (1988) to investigate the
Berry phase is shown in Fig. 9.38. Draw the routes followed by the two
waves on the k-sphere and find the phase difference between the inter-
ference patterns observed for right- and left-handed circularly polarized
light traversing the interferometer, as a function of θ . (Answer in their
paper.)

9.17. Perform ray traces for the rays in the LIGO resonators, given their
stability numbers.
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10 Optical waveguides
and modulated media

In this chapter we shall meet examples of electromagnetic wave propagation

in systems containing fine dielectric structure on a scale of the order of the

wavelength, where the scalar-wave approximation is inadequate. Clearly, in these

cases we have to solve Maxwell’s equations directly. On writing the equations,

we shall discover that they bear a close similarity to those of quantum mechanics,

where the dielectric constant in Maxwell’s equations is analogous to the potential

in Schrödinger’s equation. This opens up a vast arsenal of methods, both analytical

and numerical, which have been developed for their solution.

We first discuss the optical waveguide, already familiar in everyday life as

the optical fibre, which has caused a revolution in the communications industry

(Agrawal (2002)). The second topic is the dielectric multilayer system which, in

its simplest form (the quarter-wave anti-reflection coating) has been with us for

more than a century, but can today be used to make optical filters of any degree

of complexity (MacLeod (2001)).

Following these examples, we shall briefly discuss their application to photonic

crystals, structures with periodic refractive index leading to optical band gaps,

whose behaviour can immediately be understood in terms of the quantum anal-

ogy ( Joannopoulos et al. (2008)). Photonic crystals have always existed. First,

many of the bright colours of insects, butterflies and bird feathers are the result

of diffraction by microscopic periodic structures (Fig. 10.1), and these can usually

be recognized by the tendency of the colours to change with direction of obser-

vation (as opposed to flowers, which have colours of chemical origin) (Zi et al.

(2003); Biró et al. (2007)). Second, opals are periodically ordered collections of

microscopic silica spheres, and their colours result from their periodicity. In recent

years, artificial photonic crystals have been widely researched and they are used

in commercial products such as photonic crystal fibres.

In this chapter we shall study:

• light propagation in a planar optical waveguide consisting of a layer of

higher n sandwiched between layers of lower n;

• solutions of Maxwell’s equations for this system, which are analogous to

bound states of a potential well in Schrödinger’s equation;

• propagation in optical waveguides and fibres;
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Figure 10.1

Scanning and transmission
electron micrographs of the
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butterfly C. remus: (a) and
(c) SEM pictures of dorsal
and ventral scales,
respectively; (b) and (d)
TEM micrograph of the
same. All scale bars
correspond to 5μm.
(Biró et al. (2007))
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• solutions of Maxwell’s equations in a medium consisting of many layers

with different values of n;

• multilayer mirrors made from periodic layer structures;

• filters resulting from defects in periodic structures;

• wave propagation in three-dimensional periodic structures, called photonic

crystals, where Maxwell’s equations become analogous to Schrödinger’s

equation for an electron in a periodic lattice;

• photonic crystal fibres.

10.1 Optical waveguides

Transmission of light along a rod of transparent material by means of repeated
total internal reflection at its walls must have been observed countless times
before it was put to practical use. In this section we shall describe the geo-
metrical and physical optical approaches to this phenomenon, and derive some
of the basic results for planar and cylindrical guides, the latter of which is a
model for the optical fibre. Optical fibres have many uses, two of which will be
described briefly at the end of the section; the first is for transmitting images,
either faithfully or in coded form, without the use of lenses; the second is
for optical communication. A further application in which the properties of
periodic multilayers are also involved will be discussed in §10.4.

10.1.1 Geometrical theory of wave guiding

The principle of the optical fibre can be illustrated by a two-dimensional model
(corresponding really to a very wide strip rather than a fibre) shown in Fig. 10.2.
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Figure 10.2
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the wavefront common to
rays AB and CD.
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The strip has thickness 2a and refractive index n2, and is immersed in a medium
of lower refractive index n1. A plane wave incident inside the strip at angle ı̂
to the x-axis is reflected completely at the wall (§5.5.1) if ı̂ is greater than the
critical angle ı̂c = sin−1(n1/n2). Since the two sides of the strip are parallel,
the wave is then reflected to and fro at the same angle repeatedly, ideally with
no losses (Fig. 10.2(a)). According to geometrical optics, any ray with ı̂ < ı̂c

The geometrical model is
simple, but, since it does
not take into account
phase differences on
reflection, gives
inaccurate answers.

can propagate in this way. However, physical optics requires us to look at the
sum of all the waves travelling in the same direction, and to ensure that they
interfere constructively. If we do this we naively calculate the phase difference
between adjacent waves travelling parallel to one another to be (Fig. 10.2(b))

�φ = k0(BC − EC) = n2k0 B′E = 4n2k0a cos ı̂ , (10.1)

where k0 is 2π divided by the wavelength in free space. The requirement for
constructive interference is then (as in §9.5)

�φ = 4n2k0a cos ı̂ = 2mπ . (10.2)

Each integer value of m defines an allowed mode of propagation. There will
always be at least one solution to (10.2) given by m = 0, ı̂ = π/2. As can be
seen from Fig. 10.3(a) the number of additional solutions having ı̂ > ı̂c is the
integer part of

2n2k0a
π

cos ı̂c = 2n2k0a
π

(
1− n2

1/n2
2

) 1
2 . (10.3)

Now unfortunately the calculation is not quite as simple as this, because we have
neglected to take into account the phase change α(ı̂) which occurs on reflection
at angles exceeding the critical (§5.5.2). We should then write instead of (10.2)

�φ = 4n2k0a cos ı̂ + 2α(ı̂) = 2mπ . (10.4)

The solution m = 1, ı̂ = π/2 is now the first solution because α(π/2) = π .
However, sinceα(ı̂c) = 0, there will usually be one mode less than suggested by
(10.3), as shown in Fig. 10.3(b). The modes for the two principal polarizations
will not be identical because of the difference between α‖ and α⊥.

The modes described above, with ı̂ > ı̂c, are theoretically loss-less modes,
and can propagate along an ideal fibre as far as the absorption coefficient of
the medium will permit. In addition there are lossy modes with ı̂ < ı̂c, which
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Figure 10.3
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die away after a certain number of reflections, and are important only for very
short fibres.

The above geometrical approach does in fact give a fairly complete picture
of propagation in the slab, including in particular the features of propagation
modes and differences between the⊥ and ‖ polarizations. In addition, it is easy
to see that the wave entering the slab (and fibres in general) must do so at an
angle sufficiently close to the axis that critical reflection occurs. This means a
restriction on possible angles of incidence in the exterior medium at the end
of the slab. From Fig. 10.4, it is easy to show that the angle of the entrance
cone corresponding to the critical angle for reflection at the interface is given

by sin−1
(√

n2
2 − n2

1

)
, which seriously influences the efficiency with which

incoherent light can be fed into it, particularly when n2 − n1  n1. The sine
of this angle, i.e.

√
n2

2 − n2
1, is then called the ‘numerical aperture’ (NA) of the

slab, in line with the use of the term in microscopy (§12.2.5). However, the
geometrical approach becomes clumsy to use quantitatively in any extension of
this simple model. Two cases are of great importance. First, there is the optical
fibre, which has a cylindrical cross-section, and supports some modes in which

Light collection systems
require large NA for
efficiency, whereas
communication systems
require small NA to
prevent dispersion.

the light rays spiral around the axis and are not confined to a single plane (skew
rays). Second, both slab waveguides and optical fibres can have continuously
varying refractive index, in which case there is no well-defined plane at which
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critical reflection occurs, but the angle ı̂ changes gradually along z, as in the
situation of a mirage, §2.6. These are called graded index systems and are
very important practically.

These problems are better treated by a more general approach in which
Maxwell’s equations are solved from scratch in the required environment. The
method is much more fruitful, and has the enormous advantage of highlighting
the similarity of the electromagnetic wave equation to Schrödinger’s equation
for matter waves (§2.2.1). Solutions to this latter equation, with which the reader
may well be familiar from studies of quantum mechanics (see, e.g., Cohen-
Tannoudji et al. (1977)) help us both to solve particular problems easily and
to develop a taste for possible useful configurations. In fact, many quantum-
mechanical concepts such as tunnelling and the band theory of solids have
found direct application to optical waveguides in analogous situations.

10.1.2 Maxwell’s wave equation for a planar waveguide

Continuing our two-dimensional planar model for a waveguide we shall now
construct and solve the wave equation for the same system as was shown
in Fig. 10.2. Specifically, we have propagation in the z-direction, while the
refractive index n(x) varies in the x-direction. There is no functional dependence
on y in this model, but we have ⊥ polarization (E = Ey only, also called

Maxwell’s equations for
the slab provide a much
richer set of solutions
than the geometrical
approach.

s or TE polarization) or ‖ polarization (E in (x, z) plane, also called p or TM
polarization) as two independent possibilities (cf. §5.4).

The wave equation begins with (5.11):

− ε

c2
∂2E
∂t2 = ∇ × (∇ × E) = ∇(∇ · E)−∇2E. (10.5)

As we saw in Chapter 6, Gauss’s law, ∇ · D = 0, does not imply ∇ · E = 0
unless ε is a homogeneous (i.e. spatially uniform) scalar number. In the present
situation this is not so. Recalling that ε(x) = n2(x),

0 = ∇ · D = ε0∇ · (εE) = ε0(ε∇ · E+∇ε · E)

= ε0ε∇ · E+ ε0Ex
∂ε

∂x
. (10.6)

Now the wave equation (10.5) becomes:

ε

c2
∂2E
∂t2

= ∇2E− ∇(∇ · E) = ∇2E+∇
(

Ex
1
ε

∂ε

∂x

)
, (10.7)

which reduces to the usual Maxwell wave equation (5.12) if the term

∇
(

Ex
1
ε

∂ε

∂x

)
(10.8)
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Figure 10.5

Refractive index profile
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equivalent Schrödinger
potential.
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is small enough with respect to ∇2E to be neglected. For the ⊥ mode, Ex = 0
and so (10.8) is identically zero. But for the ‖ mode Ex �= 0, although in
many examples ∂ε/∂x = 0 except for a limited number of discontinuities.
In what follows, we shall assume that the term (10.8) is negligible, in which
case there is no difference between the equations for ⊥ and ‖ (although the
boundary conditions they satisfy are not identical); this is called the weak
guiding approximation.

An optical fibre is the 3D
equivalent of a square
potential well in
quantum mechanics.

For the wave E = E(x) exp[i(kzz−ωt)] propagating in the z-direction, we can
substitute into (10.7) ∂/∂z = ikz, ∂/∂t = −iω and ∂/∂y ≡ 0 and get

∂2E
∂x2 − k2

z E = −1
c2 εω2E = −n2(x)

c2 ω2E, (10.9)

∂2E
∂x2 =

[
k2

z − n2(x)k2
0

]
E. (10.10)

For analogy’s sake we write Schrödinger’s time-independent wave equation
in the same way so that the similarity can be seen:

∂2ψ

∂x2 = 2m
�2 [−E + V(x)]ψ . (10.11)

One sees immediately that there will be corresponding solutions for refractive
index profile −n2(x) and potential well V(x). Then −k2

z corresponds to the
energy eigenvalue E . It is also clear that a propagating mode, for which kz is
real, corresponds to a bound state in quantum mechanics, for which E < V(∞).

The specific form of n(x) that represents the optical slab waveguide shown
in Fig. 10.5 is

n(x) = n2 (|x| < a, called the core), (10.12)

n(x) = n1 < n2 (|x| ≥ a, called the cladding) (10.13)

and is equivalent to a square-well potential. The guided wave solutions of this
problem therefore (using the quantum-mechanics analogy of a particle in a
potential well to guide us directly to the solution) lie in the region n2

1k2
0 < k2

z <

n2
2k2

0 . If we therefore define

n2
2k2

0 − k2
z ≡ α2, k2

z − n2
1k2

0 ≡ β2,

α2 + β2 =
(

n2
2 − n2

1

)
k2

0 ≡ V2, (10.14)
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we have, in the core region |x| < a,

∂2E
∂x2 = −α2E

⇒ E = E2s cosαx+ E2a sinαx, (10.15)

where the suffices ‘s’ and ‘a’ refer to ‘symmetrical’ and ‘antisymmetrical’
modes. In the cladding region, |x| > a, we have likewise:

∂2E
∂x2 = β2E

⇒ E = E1leβx + E1re−βx (β ≥ 0), (10.16)

where suffices l and r indicate ‘left’ and ‘right’. Within the core of the slab, the
function is wave-like (oscillatory); in the cladding it is evanescent, and for E
to remain finite it must decay as exp(−β|x|) at large |x|. The core and cladding
solutions join together in a continuous fashion, which will shortly be detailed.
The complete function is therefore ‘trapped’ or ‘localized’ in a region centred
on the core. This is the essence of the guided wave.1 The inherent symmetry
of the system about the plane x = 0 has suggested using symmetrical and
antisymmetrical solutions in (10.15). Considering just the region x > 0 (x < 0
follows by symmetry or antisymmetry), clearly only the solutions (10.16) with
E1l = 0 are acceptable. At x = a the field components Ey, Ez, Hy and Hz parallel
to the interface (see §5.4.1) must be continuous. For the ⊥ mode, Ez = 0 and
continuity of Ey then requires, for the cosine solution to (10.15),

E2s cosαa = E1re−βa. (10.17)

The field Hz can be calculated from Maxwell’s equation (5.4) for the ⊥ case
E = (0, Ey, 0):

− ∂B
∂t
= iω

c2ε0
H

= ∇ × E =
(
∂Ey

∂z
, 0,−∂Ey

∂x

)
, (10.18)

whence continuity of Hz implies continuity of ∂Ey/∂x. Thus the analogy with
Schrödinger’s equation is complete. For the cosine solution to (10.15) this gives

αE2s sinαa = βE1re−βa. (10.19)

Dividing (10.19) by (10.17):

αa tanαa = βa. (10.20)

1 We could extend the analogy by allowing β to be imaginary, and kz complex. Then we should
arrive at the lossy modes. This is left as an exercise to the reader.
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Figure 10.6 Graphical construction to find the ⊥ polarized modes in a waveguide slab according
to (10.20) and (10.21). The curves labelled ‘s’ and ‘a’ represent βa(αa) for the
symmetric and antisymmetric modes respectively. A circle (full line), radius aV,
represents (10.14), and is shown for several values of a. Intersection between a
circle and one of the curves represents a mode. Intersections with the ellipses
(broken lines) represent schematically the solutions for the ‖ modes, although in
practice the difference between the circles and corresponding ellipses would be very
small. The cut-off of each mode, being defined by β = 0 is the same for both ⊥ and
‖ polarizations.

Similarly, choosing the sine solution to (10.15) gives

−αa cotαa = βa. (10.21)

We can repeat the calculation for the ‖ polarization for which H = (0, Hy, 0).
The arguments analogous to (10.17)–(10.19) then lead to the equations,
equivalent to (10.20) and (10.21),

αa
n2

1
tanαa = βa

n2
2

, (10.22)

−αa
n2

1
cotαa = βa

n2
2

. (10.23)

In practice the difference between n1 and n2 is often extremely small, in which
case there is negligible difference between the two types of solution.

We shall limit our attention to the ⊥ mode, for which (10.20) and (10.21)
are eigenvalue equations whose solutions define particular values of α and β.
These must satisfy α2 + β2 = V 2, a constant, from (10.14). Only certain
values of kz result, and these correspond to propagation modes of the slab.
The equations cannot be solved analytically, but the solutions can be found
graphically by plotting βa as a function of αa according to (10.20) and (10.21)
and finding their intersections with the circle representing (10.14), Fig. 10.6.

The circle has radius Va, and as a increases, one finds more and more

No matter how small
the thickness of a
symmetrical slab, there is
always one propagation
mode.

intersections with the curves. Only the quadrant α,β > 0 is relevant since β

was defined as positive, and the figure is symmetrical about the β-axis. The
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Figure 10.7

E(x) for the modes
m = 0, 1 and 2 in a slab,
normalized to the same
maximum value. Note that,
as m increases, the size and
extent of the field outside
the slab also increases.
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‖ mode solution is obtained by replacing β by β ′, where β ′ = βn2
1/n2

2. The
circle α2 + β2 = V2 then becomes the ellipse α2 + β ′2

(
n2

2/n2
1
) = V2, as

shown schematically by dashed curves in Fig. 10.6. An important feature that
appears from Fig. 10.6 is that the number of propagating modes is finite. There
is always at least one mode (even as V → 0); in general, the number of modes
is 1+ p, where p is the integer part of 2aV/π (see §10.1.1).

Typical forms of E(x) are shown in Fig. 10.7. Alternate solutions are sym-
metric (cosine-like, with E2a = 0 in (10.15)) and antisymmetric (sine-like, with
E2s = 0). The lowest mode (m = 0) has a single peak in the centre of the slab;
higher modes have more and more peaks.

10.1.3 Dispersion

Another important feature of the propagation is the intra-mode dispersion
relation, which describes the way in which the phase velocity of propagation
depends on the frequency for a given mode. In general, the relationship will
differ from mode to mode, and is often described in terms of an effective
refractive index, defined as neff= kz(ω)/k0. The significance of dispersion
with regard to the transmission of information was discussed in §2.4 and §2.7.

The velocity of a mode is
determined mainly by
the refractive index of
the medium in which
most of the energy is
concentrated.

We have considered the frequency ω = k0c as a constant in the analysis so far.
In order to create a dispersion curve, we now have to look at the dependence
of k0 on kz (the propagation wave-vector along the slab). It is easiest to do this
by reading off from the intersections in Fig. 10.6 the values of α and β as a
function of V , which is proportional to k0. Then we calculate from (10.14)

kz =
(
β2 + n2

1k2
0

) 1
2 . (10.24)

The result is shown schematically in Fig. 10.8. It will be seen by following a
given mode m:

1. Propagation starts when β = 0, i.e. at k0 = mπ/2a
(
n2

2 − n2
1
) 1

2 .
2. When β is small, kz ≈ n1k0; the wave propagates as if in the cladding

medium, i.e. neff = n1.
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Figure 10.8

Dispersion curves for
different modes m for a
slab waveguide, calculated
for n2 = 2 and n1 = 1.
The graphs show the
relationship between
frequency ω and
propagation wavenumber
kz for the first few
modes. The effective
refractive index is
neff = kz/k0 = ckz/ω and
the group velocity for pulse
propagation is dω/dkz.
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3. As k0 increases, β → V , and so kz →
(
V 2 + n2

1k2
0
) 1

2 = n2k0; propagation
is then dominated by the core, i.e. neff → n2.

4. The mode group velocity is less than the asymptotic value c/n2 throughout
most of the curve.

From the physical point of view, when one looks at the distribution of energy
(E2 from Fig. 10.7), it is clear that the propagation velocity is dominated by
the medium in which most of the energy is located.

10.1.4 Single-mode waveguide

The slab with only a single propagating mode (n = 0) is particularly important
for communication purposes, and is called a single-mode waveguide. The
reason for its importance is that in a multi-mode guide the wave and group
velocities, ck0/kz and cdk0/dkz, which can be found from Fig. 10.8, differ from
mode to mode and as a result information sent along a fibre in wave-group form
will be distorted when several modes propagate simultaneously. Use of a single-
mode waveguide avoids this cause of distortion, although pulse spreading due
to the non-linear form of kz(k0) within the single mode still occurs.

In order to make a single-mode guide, we require Va < π/2. This implies

a < 0.25λ/
(

n2
2 − n2

1

) 1
2 , (10.25)

where λ is the free-space wavelength. Although a symmetrical waveguide
always has at least one mode, an asymmetrical one may have no modes at all
if its width is very small (Problem 10.4).

10.2 Optical fibres

The discussion has so far centred around the one-dimensional waveguide.
Although this configuration has many applications, by far the most common
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wave-guiding system is an optical fibre. The basic geometry is a cylindrical core
of glass with refractive index n2 embedded in a cladding medium of index n1.
Ideally the cladding is infinite in extent, but in practice it is cylindrical, coaxial
with the core, and has a large enough diameter to contain the evanescent waves
(10.16) out to many times their decay distance β−1.

We shall not repeat the slab calculation for the cylindrical case except to the

For the idea of using
optical fibres for
long-distance
communication, C. K. Kao
received the Nobel prize
in 2009.

extent that new features emerge. The equation that is to be solved is (10.7) with
ε≡ n2(r), in the weak-guiding approximation. Since the boundary between
the two media has axial symmetry, it is convenient to rewrite the equation for
scalar E in cylindrical polar coordinates (r, θ , z):

∂2E
∂x2 +

∂2E
∂y2 −

[
k2

z − n2(x, y)k2
0

]
E = 0 (10.26)

becomes

∂2E
∂r2 +

1
r
∂E
∂r
+ 1

r2
∂2E
∂θ2 −

[
k2

z − n2(r)k2
0

]
E = 0. (10.27)

Because of the axial symmetry, it is possible to write E(r, θ) as the product of
two functions, R(r)�(θ); (10.27) is then

� d2R
dr2 + �

r
dR
dr
+ R

r2
d2�

dθ2 −
[
k2

z − n2(r)k2
0

]
R� = 0. (10.28)

Dividing by R�, and multiplying by r2,

r2

R
d2R
dr2 +

r
R

dR
dr
+ 1

�

d2�

dθ2 − r2
[
k2

z − n2(r)k2
0

]
= 0, (10.29)

which contains terms which are either functions of r or of θ , but not both. Thus
the equation breaks up into two, one in r, the other in θ , each of which must be
independent and equal to a constant, which we denote by l2. They are

1
�

d2�

dθ2 = constant ≡ −l2 (10.30)

and
r2

R
d2R
dr2 +

r
R

dR
dr
− r2

[
k2

z − n2(r)k2
0

]
= l2. (10.31)

The sum of these two equations is (10.29). Equation (10.30) introduces a new
feature that did not appear in the planar waveguide and is related to the skew
rays of §10.1.1. Any solution of it must satisfy �(2π) = �(0), i.e.

�(θ) = A cos lθ + B sin lθ , (10.32)

where l is a non-negative integer and A and B are arbitrary constants. Looking
at this part of the solution alone, we see that the light intensity E2 is modulated
angularly with an even number of peaks in the full circle. These are called
azimuthal modes (Fig. 10.9). We have already met such modes in the confocal
resonator in §9.5.4.

The azimuthal modes are
a feature of fibres that
did not appear in the slab
waveguide, but they
have few uses.
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Figure 10.9

Intensity distribution
photographed for several
modes in a circular fibre,
compared to the theory.
The experiment was carried
out at 633 nm on a fibre
that has only a single mode
at 1550 nm. The first mode
number is azimuthal; the
second, radial. (Courtesy of
Nikolai Berkovitch and
Evgeny Orski)

Experiment

Theory

11 21 02 3100

10.2.1 Step-index fibres

The radial equation (10.31) is no easier to solve than was (10.10) and gives
radial modes that are oscillatory in the core and evanescent in the cladding. Note
that the l2 term can be included as if it were an additional dielectric constant
−l2/k2

0r2; because r−2 diverges at r = 0 the field of modes with l �= 0 must
vanish there. In the simplest case, a step-index fibre, n(r) = n2 (r < a) and
n(r) = n1 (r > a). The analysis is similar to that for the slab, with the cosine
and sine functions replaced by Bessel functions J0 and J1 (see Appendix A).
Some typical mode structures are shown in Fig. 10.9. Only one mode can
propagate if a < 0.383λ/

(
n2

2 − n2
1
) 1

2 , see (10.25), and single-mode fibres
with this property are very important for communication purposes because of
their relatively small dispersion. If n2 and n1 are very close, the maximum
core diameter 2a of a single-mode fibre can be considerably larger than λ. For
example, using n2 = 1.535 and n1 = 1.530, a fibre with 2a < 6.2λ will support
only a single mode.

10.2.2 Graded-index fibres

At this point we recall from §2.7 that one of the results of non-linear disper-
sion on the propagation of a wave-packet is to cause a progressive increase in
its width. This eventually poses a limit to the repetition rate at which pack-
ets can be propagated without their merging. It turns out that the step-index
fibre, even in the single-mode variety, has sufficient dispersion within a single
mode to stimulate a search for fibres with lower dispersion for long-distance
communication purposes. This has led to the development of graded-index
fibres, in which the refractive index n(r) is a continuous function of the radius.
A commonly found profile for n2(r) is parabolic. This has smaller dispersion
than the step-index fibre, although there is no proof that this profile has mini-
mum dispersion; indeed a slightly lower power than parabolic produces some

A different method of
combating dispersion is
to use alternating
sections of fibre with
positive and negative
dispersion.
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Figure 10.10

(a) Refractive index profile
of a parabolic graded-index
fibre (full line), and the
mathematical model
(broken line). (b) Radial
dependence of the
wave-field in the first four
modes (separated vertically
for clarity).

r r

E

(a) (b)

n(r)

improvement. However, the parabolic profile n2(r) = A−br2 reminds us of the
harmonic oscillator potential in quantum mechanics and since Schrödinger’s
equation has a simple solution for this model we shall pursue it briefly. In
practice, the parabolic profile is limited to the central region only and is merged
into a uniform cladding, as shown in Fig. 10.10(a), which represents a cladded
parabolic-index fibre, whose parameters can be adjusted so that it has a single
mode only, still preserving minimal dispersion. A full discussion is given by
Ghatak and Thyagarajan (1980).

The equation (10.29) can be taken as the starting point by substituting n2(r) =
n2

2−b2r2. Clearly, all that has been said already about azimuthal modes applies
in this case too, since the form of n2(r) was not involved in (10.30). The radial
equation (10.31) can be written

d2R
dr2 +

1
r

dR
dr
+ R

(
U − α2r2 − l2

r2

)
= 0, (10.33)

where U = n2
2k2

0 − k2
z and α = k0b. This makes it analogous to the two-

dimensional harmonic oscillator equation in quantum mechanics, where the
total energy is U and the potential energy is α2r2. It suggests to us a solution
of the form

R = e−αr2/2f (r), (10.34)

where f (r) = ∑p
j=p0

ajr j is a finite polynomial series; this is the classical
Sommerfeld solution of the quantum mechanical harmonic oscillator equation.

Substitution of (10.34) into (10.33) and comparison of coefficients of r p,
together with the requirement for p to be a finite integer (i.e. ak = 0 for all
k > p) leads us directly to the following conclusions:

1. There are independent symmetric and antisymmetric solutions for even and
odd l respectively. For l �= 0, R(0) must be zero.

2. The value of p0 = l. This means that the radial function can have at most
p− l+1 peaks, since it is a polynomial with this number of terms multiplied
by the Gaussian. Typical mode patterns look like Fig. 10.10(b).

3. The allowed values U = n2
2k2

0−k2
z = 2α(p+1). The value 2α is analogous

to hν in the quantum harmonic oscillator; the ‘ground-state energy’ (p = 0)
is hν, and not 1

2 hν, because it is a two-dimensional system.
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Figure 10.11

Ray equivalents of two
modes in a parabolic
graded-index fibre.

z
n(r)

So the dispersion equation for the lowest mode (using k0=ω/c and
α= k0b) is

n2
2k2

0 − 2bk0 = k2
z . (10.35)

This lowest mode has l = p = 0, so that the electric field has amplitude

E(r) = R(r) = e−k0br2/2; (10.36)

it is a simple Gaussian profile. The radius r = (k0b)− 1
2 is just the inflexion point

on this profile, so that (k0b)− 1
2 is essentially the radius of the equivalent core

(compare Fig. 10.10(b) with Fig. 10.7). But do not take this result too seriously;

Propagation of Gaussian
beams in free space is
discussed in §7.3.

it only applies to an infinite parabolic profile, and is altered significantly by the
presence of a cladding medium, which must necessarily exist since n can never
fall below about 1.5.

One can see qualitatively the origin of the lesser dispersion in a graded-index
fibre from Fig. 10.11. In the figure, the mode with the shorter path length is
confined to the region where n(x) is largest, while the mode with the longer
path length enters regions of smaller refractive index. The two parameters –
refractive index and path length – partially compensate, and give a dispersion
that is less than in a step-index fibre. The dispersion of the glass itself must
also be taken into account; in the normal dispersion region (§13.3.2), ∂2ω/∂k2

for glass conveniently has the opposite sign to that for the fibre dispersion, and
further compensation is possible.

10.2.3 Production of fibres

A few words about how fibres are produced will take the above discussion out
of the realm of pure theory. Fibres are made commercially in many-kilometre
lengths from specially prepared low absorption glasses. First, a short cylindrical
glass rod (preform), several centimetres in diameter, is prepared with a central
core of higher refractive index than the outer region. This is heated and drawn
through a small orifice with diameter equal to the outer diameter required of
the fibre (see Fig. 10.22). The inner structure all scales down in proportion.
A typical absorption spectrum for a fibre glass is shown in Fig. 10.12. Notice
that the units on the abscissa are dB/km, where one dB is a loss of intensity of
transmitted light by 100.1 (B is the ‘Bel’ which corresponds to one decade loss;
3 dB = 100.3 ≈ 0.5).

The problem of a slab
waveguide bent to a
radius can be solved
analytically, and is found
to be analogous to a
quantum-mechanical
system – the tunnel
diode!
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A similar method of production is used for graded-index fibres. In this
case, the original glass preform is constructed from axial layers of glass of
differing refractive indices, often deposited chemically by vapour deposition
from sources of gradually varying composition.
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Figure 10.12

Typical absorption
coefficient for a fibre glass,
as a function of
wavelength. The limits for
Rayleigh scattering and
far-infra-red OH− band
absorption are shown as
broken lines. (After Gloge
(1979))

Light losses from fibres come from several sources. Absorption in the glass,
as mentioned above, is one; tremendous development activity has resulted in
this factor becoming negligible at some wavelengths, even for hundreds of
kilometres. Rayleigh scattering (§13.2) is important at short wavelengths and
arises because glass is not a crystalline material and therefore has unavoidable
statistical density fluctuations. Losses because of incomplete total internal
reflection in a step-index fibre are effectively avoided by the interface between
n2 and n1 being buried well inside the cladding, so that it cannot be damaged or
dirtied; a fortiore in the graded-index system where the interface is undefined.
With practical dimensions, loss via the evanescent wave in the cladding can
also be made negligible, although when the fibre is bent losses from this source
can become noticeable.

10.2.4 Communication through optical fibres

Optical fibres have now become the standard transmission medium for tele-
phones and data, known as telecom and datacom. A typical system starts with a
light-emitting diode or semiconductor laser, emitting at the wavelength where
the fibre absorption and dispersion are least (1.3–1.5μm; see Fig. 10.12), whose
output intensity or phase is modulated according to the signals to be transmit-

A single-mode
waveguide for optical
communication typically
has a core diameter
8μm.

ted. The light is focused into a fibre. At the far end, the light is reconverted to an
electronic signal by a photo-detector. The maximum distance for transmission
is limited by losses in the fibre, which we discussed above. It may therefore
be necessary to amplify the signal at intervals on very long routes. This can be
done by terminating the fibre as with a photo-detector, amplifying the signal
electronically, removing noise that does not correspond to the transmission
code and then retransmitting. In the late 1980s, the invention of an erbium-
doped fibre amplifier (EDFA) (§14.5.3) revolutionized the field, as it became
no longer necessary to leave the optical domain in order to amplify the signal,
this being done internally within the fibre and with great uniformity. More-
over, the ability to modulate light at tremendous rates, superseding 100 Gbit/s
(1011 s−1), explains the ongoing drive towards an ‘all optical’ system; elec-
tronic circuits cannot work efficiently, if at all, at these rates. The invention
of the EDFA was the main reason for the communications industry to shift to
1.5μm dispersion-free fibres, as no equivalent could be efficiently produced
for other wavelength regions.
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The great attraction of optical fibres for data transmission lies in the potential
amount of data that can be transmitted simultaneously on a single fibre, com-
pared with about 24 ‘telephone conversations’ on conventional copper cable.
If we suppose that the light transmitted has frequency f , and that a single
conversation covers a band of frequencies of width f1 then, by mixing var-
ious conversations each with a different intermediate frequency, in principle
f /f1 conversations can all be used to modulate the light wave simultaneously.
For optical communication, f ≈ 1015 s−1. In practice systems are limited to
f1 > 10 Gbit/s (1010 s−1) as a result of fibre non-linearity, dispersion (§2.7 and
§10.1.3) and the speed of the electronics. While dispersion effects are com-
monly resolved by having alternating fibre segments of positive and negative
dispersion, non-linear effects are harder to overcome and are still a bottleneck to
higher modulations (Agrawal (2007)). It follows that f /f1 ≈ 105. Technology
is nowhere near capable of using this enormous potential; but the attraction
remains. This ability to interleave data channels in the wavelength domain
is known as wavelength-division multiplexing (WDM), the first products of
which became commercially available in 1996. Channel multiplexing can be
done in the time domain as well, leading to optical time-division multiplexing
(OTDM). In 2001, a record-breaking WDM system transmitted 273 channels,
each having f1 = 40 Gbit/s, for 117 km.

10.2.5 Imaging applications

For image transmission, the mode structure of light transmission in a fibre is
unimportant; we are only concerned that the light be transmitted from one end to
the other. A bundle of fibres is arranged in an organized array and the end is cut
across cleanly. At the other end the fibres are arranged in the same way. What
happens in-between is unimportant. An image projected on one end is then seen
at the other end. This type of device is invaluable as a method of transmitting
images from inaccessible regions; one important medical application is the
‘endoscope’ used for the internal examination of patients. The resolution of
the image is just determined by the diameter of each fibre, which is typically
20–50μm. By changing the ordering of the fibres at the far end, an image can
be coded, for example changed from a circular field of view to a slit-like field.
Or the reordering may be simply a rotation; inverting an image by means of a
fibre bundle is cheaper, is less bulky and introduces less aberration than would
a lens system although its resolution is limited (Fig. 10.13).

The subject of fibre optics is comprehensively covered by review articles
and books at all levels, for example Gloge (1979), Saleh and Teich (1991)
and Agrawal (2002). The book by Al-Azzawi (2007) describes many practical
details and experiments.

Another approach to the
transmission of images
through optical fibres
uses a phase-conjugate
mirror, which is described
in §13.6.3.
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Figure 10.13

Inversion of an image using
a coherent fibre bundle.
This device is part of a
night-vision image
intensifier.

Coherent
fibre
bundle

10.3 Propagation of waves in a
modulated medium

Another practically important electromagnetic wave propagation problem
arises when the refractive index of the medium is modulated periodically
(MacLeod (2001)). Continuing the vein of our analogy to solved quantum-
mechanical problems, we immediately seek guidance from the behaviour of an
electron in a periodic crystal potential. The solutions that emerge indeed have
many similarities to the well-known Bloch waves, and show band gaps that are
entirely analogous to those found in the electronic structure of crystals (see, for
example, Kittel (2005)). The treatment here is mainly limited to one dimension,
but can also be extended to three-dimensional periodic media (Yablonovitch
(1993)). In §10.5 the results derived here will be extended a little into such
systems. The analogy to quantum mechanics remains as the basic theme.

10.3.1 General method for multilayers

The refractive system that interests us, called a dielectric multilayer system,
consists of a series of layers of transparent media having various refractive
indices, deposited on top of each other on a substrate. A light wave is incident
from free space in a direction at angle ı̂ to the normal, and we calculate the
way in which it is reflected and transmitted. In this section, we shall set up the
general framework for solving such problems and then consider a particular
case, that of the periodic stack. The narrow-band interference filter will be
shown as an example of its application.

The multilayer
formulation here
describes each layer by a
matrix, and uses linear
algebra to get the
general results. It is very
convenient for numerical
computations.

Let us first consider the case of normal incidence. Waves entering the lay-
ered system along the x-axis (Fig. 10.14) are partially reflected at the various
interfaces. In any layer m there are in general two waves, one travelling in
each of the +x and −x directions. We shall assume E to be polarized in the
y-direction. We label their complex amplitudes E+m and E−m at the right-hand
side (interface with layer m + 1). The phase difference for either of them is
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Figure 10.14

Parameters for the
multilayer calculation.

gm = kmd, where km is the wavenumber in the medium, i.e. km = k0nm. Thus
the wave amplitudes at the left-hand side of the layer are

E+ml = E+m e+igm , (10.37)

E−ml = E−m e−igm . (10.38)

Now the total electric field must be continuous at the interface, so that

E+ml + E−ml = E+m−1 + E−m−1. (10.39)

Substituting:

E+m e+igm + E−m e−igm = E+m−1 + E−m−1. (10.40)

Likewise, we deal with the magnetic fields, which are in the z-direction. The
amplitude of the wave propagating in the +x-direction is H+ = nZ−1

0 E+, and
that in the −x-direction is H− = −nZ−1

0 E−. Thus, like (10.40),

H+
m e+igm + H−

m e−igm = H+
m−1 + H−

m−1. (10.41)

Rewrite (10.40) and (10.41) in terms of the total fields

Em = E+m + E−m (10.42)

and Z0Hm = um
(
E+m − E−m

) ≡ nm
(
E+m − E−m

)
. (10.43)

Here, nm has been replaced by um; the change in notation corresponds to that
in §5.4.1, and is discussed further in §10.3.2.2 We have two new equations:

Em−1 = Em cos gm + iZ0Hm
um

sin gm, (10.44)

Z0Hm−1 = iumEm sin gm + Z0Hm cos gm, (10.45)

which can be written in matrix form:(
Em−1

Z0Hm−1

)
=
(

cos gm iu−1
m sin gm

ium sin gm cos gm

)(
Em

Z0Hm

)
≡ Mm

(
Em

Z0Hm

)
.

(10.46)

2 It is common in many books to put Z0 = 1 at this stage because its value always cancels out.
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The behaviour of the complete system, defined by the set of parameters (gm, um)

for each layer, can now be found by matrix multiplication. As a result, we have
the relationship between (E0, Z0H0), which contains both the incident wave
and the reflected wave, and (EN , Z0HN ) representing the transmitted wave:

(E0, Z0H0) =
N∏

m=1

Mm · (EN , Z0HN ). (10.47)

Now the reflection and transmission coefficients R and T follow. Since E−0 =
RE+0 , Z0H+

0 = u0E+0 and Z0H−
0 = −u0E−0 ,

(E0, Z0H0) = [(1+R), u0(1−R)], (10.48)

where the incident field is assumed to have unit value. Obviously E−N = 0,
since there is no reflected wave in the −x-direction in the last layer, so that

(EN , Z0HN ) = (T , uNT ). (10.49)

The resulting matrix equation

(1+R, u0(1−R)) =
∏
m

Mm · (T , uNT ) (10.50)

is easily solved by equating coefficients as will be seen in the example which
follows. Notice, for future use, that the determinant det{M}= 1. This implies
conservation of energy; as a result, det{

∏
m Mm}= 1.

The approach used here
works also with complex
refractive indices (§13.3);
see surface plasmon
resonance (§13.7) as an
example. If n is complex,
det{M} �= 1.

10.3.2 Oblique incidence

The case of oblique incidence is easily dealt with, and will remind the reader
why u was introduced. Suppose that the incident wave in free space is at an
angle ı̂ to the x-axis. Then its angle r̂m in the mth layer is given by Snell’s law

sin ı̂ = nm sin r̂m. (10.51)

The phase difference gm now contains the x-component of k in the medium,
i.e. k0nm cos r̂m :3

gm = k0nmdm cos r̂m. (10.52)

As we saw in §5.4.1 it is now possible to express the boundary conditions for
‖ and ⊥ fields by introducing effective indices of refraction,

um = nm sec r̂m (‖ polarization), (10.53)

um = nm cos r̂m (⊥ polarization), (10.54)

3 It is a common error to assume, by erroneous intuition, that oblique incidence makes the layers
‘seem thicker’, and to write g = k0nd/cos r̂. A physical explanation, which underlies what
appears here, is given in §9.5.1 for the Fabry–Perot interferometer.
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into the Fresnel coefficients for normal incidence, giving (5.43) and (5.44). The
same argument applies here, where r̂m is the angle of refraction within each
medium.

10.3.3 Single-layer anti-reflection coating: lens blooming

Although the reflection coefficient at a single interface between air and a
transparent medium, of the order of 4% as calculated in §5.4.1, might seem
small, it represents a serious loss of light in optical systems such as compound
lenses and instruments which contain many surfaces. The reflection coefficient
can be greatly reduced by coating the surfaces with one or more thin layers of
materials with different refractive indices. Such anti-reflection coatings are
the most widespread use of dielectric multilayers. We shall illustrate the basic
idea with the simplest case, a single-layer coating, which by suitable design
can reduce the reflection coefficient to zero at a specific wavelength, and is
quite effective at neighbouring ones.

For one layer with parameters (g, u) between air (u0) and a substrate with
index us, we have (10.46) and (10.50),(

1+R
u0(1−R)

)
=
(

c iu−1s
ius c

)(
T

usT

)
, (10.55)

where c ≡ cos g and s ≡ sin g. We shall use u instead of the refractive index
n, so that the results will be generally applicable to any angle of incidence
and polarization. We now require R = 0, for which (10.55) gives the pair of
equations

1 = (c+ isus/u)T , (10.56)

u0 = (ius+ cus)T . (10.57)

Eliminating T by dividing (10.57) by (10.56) leads to the complex equation

u0 =
[
us + ics

(
u− u2

s/u
)]/(

c2 + s2u2
s/u2

)
. (10.58)

Clearly, the imaginary part must be zero. Since u �= us (otherwise the deposited
layer would simply be part of the substrate) c or s must be zero. If s = 0, it
follows that c = ±1, but the equation cannot be satisfied because u0 �= us.
Therefore c = 0, s = ±1 and

u0us = u2. (10.59)

The value s = ±1 implies g = (odd)π/2; the optical thickness of the layer
is an odd number of quarter-wavelengths. Usually, a single quarter-wave is
chosen. As an example, at normal incidence the refractive index needed to
provide an anti-reflection coating at an interface with air (u0 = 1) is the square
root of that of the substrate. On glass with us = ns � 1.6, the most common
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Figure 10.15

Reflection coefficient for a
quarter-wave
anti-reflection coating on
glass with n = 1.52,
calculated for minimum
reflectance at normal
incidence: (a) ideal,
u = √

1.52; (b) magnesium
fluoride, u = 1.38.
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coating material is magnesium fluoride, which can easily be deposited by
evaporation and has a refractive index of 1.38, which is approximately correct.
The reflection coefficient as a function of wavelength for this case is shown in
Fig. 10.15. It is always smaller than that of uncoated glass.

Glass coated with a single
λ/4 layer for green light
shows a slight purplish
reflection, because the
layer reflects rather more
in the blue and red.

The use of more than one layer allows broader-band anti-reflection coatings
to be designed, with better overall quality, but we shall not discuss them here
(see MacLeod (2001)).

It is easy to see the physical basis of the single-layer anti-reflection coating.
By choosing a layer with u equal to the geometric mean of the air and the
medium us, we have created two interfaces with equal reflection coefficients
(5.34). Separating them by an optical distance of λ/4 ensures that the waves
reflected from the two will be in antiphase and therefore interfere destructively.

10.3.4 Periodic multilayers: selective mirrors

We shall only solve one multilayer problem in any detail, although the reader
will realize that (10.47) and a small computer in fact allow calculation of the
properties of any combination of layers that are non-absorbing, if the various
(gm, um) are given.

In order to create a highly reflective multilayer, we want to do the opposite
to what we did with the anti-reflecting layer. So we need constructive interfer-
ence between the partially reflected waves. This can be achieved by making

An important and much
more challenging
problem is the inverse:
given the spectral
properties of a stack, to
calculate the values of
(gm, um) needed.

interfaces that have alternately positive and negative reflection coefficients
of equal value, and separating them by half-wavelength path differences (i.e.
quarter-wavelength thick layers again) as in Fig. 10.16. Let us try this idea out.

We construct a periodic system from two types of layer, which we call H
for ‘high’ refractive index and L for ‘low’. Their effective refractive indices
are uH and uL respectively, and we shall let their optical thicknesses be
equal, gH= gL= g. The system contains q pairs of these layers on a substrate
with refractive index us. Equation (10.47) then becomes (with c ≡ cos g and
s ≡ sin g)
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(
E0

Z0H0

)
=
[(

c iu−1
L s

iuLs c

)(
c iu−1

H s
iuHs c

)]q ( EN
Z0HN

)

=
(

c2 − uHu−1
L s2 ics

(
u−1

H + u−1
L

)
ics(uH + uL) c2 − uLu−1

H s2

)q (
EN

Z0HN

)

(10.60)

≡ (Mp)
q
(

EN
Z0HN

)
. (10.61)

It is easiest to evaluate (Mp)
q algebraically when it is first diagonalized by

nH

nL

nL

nL

nH

nH

AAAA BBBB

Figure 10.16

Arbitrary multiply reflected
waves in a multilayer.
Notice that any wave from
A has the same phase at B
(modulo 2π) if every layer
has optical thickness λ/4,
when phase changes on
reflection have been taken
into account.

rotating the vectors (E, Z0H), because if

M =
(

λ1 0
0 λ2

)
,

then Mq =
(

λ
q
1 0

0 λ
q
2

)
. (10.62)

The values of λ are given by

det{Mp − λI} = 0

= det{Mp} − λtrace{Mp} + λ2

= 1− λtrace{Mp} + λ2. (10.63)

Writing 2ξ for the trace (sum of diagonal components) (10.63) gives:

λ = ξ ±
√
ξ2 − 1. (10.64)

Now ξ has the value

ξ = c2 − 1
2

(
uH

uL
+ uL

uH

)
s2. (10.65)

Note that (uH/uL + uL/uH) ≥ 2 for any uH, uL. Then ξ can easily be seen to
have the following characteristics (remember that c2 + s2 = 1):

• its maximum value, obtained when c = ±1, s = 0, is 1.
• its minimum value, when c = 0, s = ±1 is − 1

2 (uH/uL + uL/uH) which is
always less than −1.

Therefore there exist regions of c and s for which λ is real (around
g= 0,π . . .) and complex (around g=π/2, 3π/2 . . .), as shown in Fig. 10.17.
In general we have

λ1λ2 = 1. (10.66)

The particular case where g = (odd)π/2 is particulary easy to treat, since
the matrix Mp is already diagonal in its unrotated form; i.e. (Em, Z0Hm) is an
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eigenvector. Here λ1 = uH/uL, λ2 = uL/uH and the optical thickness of each
layer is

ud = g/k0 = (odd)
π

2
× λ

2π
= (odd)

λ

4
. (10.67)

g
0

p

1

–1

x

a b

p/2

Figure 10.17

Eigenvalues of the matrix
for a periodic multilayer.

We have for (10.50)(
1+R

u0(1−R)

)
=
(

λ
q
1 0

0 λ
q
2

)(
T

usT

)
, (10.68)

which can be solved for R:

R = u0λ
q
1 − usλ

q
2

u0λ
q
1 + usλ

q
2

. (10.69)

Now from (10.66), one of |λ1|, |λ2|must be > 1, so that |R| → 1 as q →∞. In
other words, in the region of real λ, around g = (odd)π/2, the system behaves
as a mirror. In fact, it is quite easy to get a very good mirror. Suppose that
uH/uL = 2 (approximately the ratio for the commonly used pair zinc sulphide–
magnesium fluoride) at normal incidence; then for g = π/2, (10.67) gives
ξ = − 5

4 and λ1 = − 1
2 , λ2 = −2. Thus, for five periods, say, and us/u0 = 1.5,

R =
(
−1

2

)5 − 1.5(−2)5

(
− 1

2

)5 + 1.5(−2)5
= −0.9987. (10.70)

The intensity reflection coefficient is then R2 = 0.9974. This method allows us
to make highly reflecting mirrors for selected wavelengths, for which each layer
has optical thickness of an odd number (usually one) of quarter-wavelengths.
It is used routinely for making laser resonator mirrors since the losses achieved
(even under real conditions) are much less than in metal mirrors. The region
where λ1 and λ2 are real extends for a region around g = (odd)π/2. Its
boundaries are given by putting λ1 = λ2 = 1, whence ξ = 1 and (10.67)
leads to

−1 = c2 − 1
2

(
uH

uL
+ uL

uH

)
s2, (10.71)

which simplifies to

cos g = ±
(

uH − uL

uH + uL

)
. (10.72)

These two solutions define the points a and b in Fig. 10.18; the region of high
reflectivity around (odd)π/2 has width

�g = 2 sin−1
(

uH − uL

uH + uL

)
= 2 sin−1RHL, (10.73)
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Figure 10.18

Reflectivity of periodic
multilayers with 2 and
10 periods.
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where RHL is the Fresnel reflectivity of the interface from §5.4.1. Notice that
the width of the reflecting region does not depend on the number of periods, q.
However, q does affect the flatness of R within the band.

The effect on the shape
of the reflectance curve is
similar to that of adding
terms to a Fourier series
(Fig. 4.1).

In the region where λ1 and λ2 are complex, they take the form λ = exp(±iφ)
where ξ = cosφ. As an example, consider g= (even)π/2, where Mp is already
diagonal. Then φ = 0 and we find R = (u0 − us)/(u0 + us). This is the
reflectivity of the substrate as if the multilayer were not there; the multilayer has
no effect when the layer optical thicknesses are multiples of half a wavelength.

Calculation of R for values of g other than integer multiples of π/2 is
tiresome algebraically, and is best done numerically, directly from (10.60). The
example mentioned above, uH/uL = 2, q = 10 and us/u0 = 1.5 gives the
result shown in Fig. 10.18. The general features are high reflectivity around
g = (odd)π/2 and low reflectivity around (even)π/2, with the transition where
cos g = ±RHL.

Finally, we once again stress the analogy with the band theory of electrons in
crystals. When the period of the crystal is half the wavelength of the electrons,
we are exactly in the middle of the band gap. The band gap is then seen as
equivalent to the region of high reflectivity (zero transmission) of the multilayer.

10.3.5 Interference filters

An important application of dielectric multilayers is to the design of inter-
ference filters. In the preceding section we showed that highly reflective and
non-absorbing wavelength-selective mirrors can be made by using quarter-
wave-thick layers of different dielectric media. This idea can be extended to
the design of filters with transmission characteristics satisfying almost any
specification. We shall use symbols H, L to represent quarter-wave layers of
indices nH, nL respectively.

The most common filter is a narrow-band interference filter based on the
properties of the Fabry–Perot étalon (§9.5.1). Suppose that we make a pair of

Interference filters are
essential in high-power
applications, for example
Raman studies, because
the unwanted energy is
reflected rather than
absorbed, which would
damage the filter.

reflecting surfaces by using quarter-wave assemblies (HLHL. . .) and separate
them by a spacer corresponding to the first (or higher, m) order of the
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Figure 10.19

(a) Transmittance of
the interference filter
(HL)5H2(LH)5 on a glass
substrate, as a function of
2g/π ; (b) shows the region
0.995 < 2g/π < 1.005
expanded.
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Fabry–Perot. Ignoring the substrate for simplicity, the amplitude reflection
coefficient at normal incidence for a set of q pairs HL is, from (10.69),

R � n2q
H − n2q

L

n2q
H + n2q

L

. (10.74)

The thickness of the spacer, for order m = 1, is given by t = λ/2n, implying
a single half-wave layer. We then have a layer system that can be described
symbolically as (HL)qH2(LH)q in which the two consecutive H layers make
the half-wave layer. This has a pass band given by (9.56)

δλ

λ
= δg

g
= F− 1

2

2πm
= 1−R2

4πR

= n2q
H n2q

L

π
(

n4q
H − n4q

L

) . (10.75)

Very accurate coating techniques have been developed to produce such filters
(and many others of more intricate design) with many tens of layers. For
example, using zinc sulphide (nH = 2.32) and magnesium fluoride (nL = 1.38),
with q = 5 (21 layer filter)

δλ

λ
= 1.7× 10−3.

For λ= 500 nm, δλ= 0.9 nm. The filter is non-transmitting in the region of

The Fabry–Perot type of
filter has a transmission
band with a Lorentzian
bell-shaped profile,
which is not ideal. A
rectangular shape would
be preferable; see
Problem 10.8.

complete reflection of the quarter-wave periodic assembly, about 100 nm on
each side of the pass band. This is typical of what can be achieved with
multilayer filters (Fig. 10.19).

Since this book is intended to explain physical principles without going into
technical details, we will not continue with a discussion of more advanced
filter designs. Clearly, more than two different materials can be used, and layer
thicknesses do not need to be limited to integer multiples of λ/4n. Some ideas
that can be explored by the reader, with the aid of a simple computer program
written to evaluate R(g) and T (g), are included as problems at the end of the
chapter.
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Box 10.1 Thin-film solar cells

The first solar cell was created by Charles Fritts in the late nineteenth
century using selenium as the photosensitive material. Following this,
after the discovery of semiconductors, considerable work was done on
solar cells using p-n junctions in the 1950s. The intrinsic region, ‘i’ of a
p-i-n junction, absorbs photons and creates electron-hole pairs, which are
separated by the internal field; this uses the reverse of the mechanism
described in §14.5.5, where light-emitting and laser diodes are discussed.
However, the importance of sunlight as a renewable energy source has
highlighted this work and led to important new developments. Amongst
the many methods of producing these junctions, the thin-film solar cell
is a technique that exploits the optical properties of multilayer stacks in
conjunction with the semiconductor properties of the materials themselves
both to capture the light and to create electricity. The main benefits of
the thin-film technique lie in its low cost of production, the possibility of
making devices with large areas and the modestly high conversion effi-
ciency. An efficiency of over 20% can be achieved for copper indium
gallium selenide cells, although at the time of writing these are not in
widespread use.

Figure 10.20 shows schematically the cross-section of a tandem silicon
thin-film solar cell. A multilayer anti-reflection coating is first deposited
on one side of a glass substrate to maximize the transmitted light at all
wavelengths that can be absorbed. A transparent conductive (doped zinc
oxide or indium tin oxide) layer is next deposited on the other side of the
glass as the first solar cell layer, followed by an α-Si p-i-n layered solar cell
junction. The oxide layer is one electrical contact and must be transparent,
highly conductive and, more recently, structured in order to scatter the
shorter wavelengths transversely into the α-Si layer while letting the longer
wavelengths continue straight on. An intermediate multilayer reflector then
reflects back the shorter wavelength light into the junction layer again,
while transmitting the wavelengths too long to be absorbed. This has been
found to increase the efficiency dramatically, since wavelengths too long
to be absorbed by the first p-i-n junction pass through the reflector and can
then be absorbed by a second micro-crystalline silicon p-i-n junction layer,
which has a narrower band gap. Finally, a metallic layer serves as a back
contact and also reflects the longer wavelength light back into the second
absorbing layer. The two junction layers are in series and therefore their
currents have to be matched, which is not a trivial problem! At present,
much work is under way to create diffractive structures on the transparent
conducting layer that influence not only the optics but also the way the
micro-crystalline silicon layer grows.
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Figure 10.20

Design details of a
two-stage tandem solar
cell, using p-i-n junctions in
two types of silicon having
different band gaps. The
longer-wavelength light is
signified by arrows with
black heads, and the
shorter-wavelength by
white-headed arrows.

Incoming light

Broad-band anti-reflection coating
Transparent glass substrate

Roughened conducting transparent (ITO) electrode
Shorter-wavelength α-Si p-i-n junction layer

Conducting multilayer reflects shorter wavelengths only
Longer-wavelength micro-crystalline Si p-i-n junction 

Back contact metal electrode

10.4 Advanced topic: An omnidirectional reflector

Most of the discussion of propagation in one-dimensional periodic media above
has concentrated on the dependence of the propagation on wavelength. An inter-
esting question was asked by Fink et al. (1998) concerning the dependence on
angle: could a multilayer stack be designed that reflected efficiently at all angles
of incidence in both polarizations? The motive behind this question was the
possibility of constructing an efficient hollow (air-cored) circular waveguide for
transmitting light power, for use in laser surgery. This would require extremely
good reflection at all relevant angles to prevent damaging the waveguide. Now
of course, if the question refers to all angles of incidence, the answer must be
‘no’, since at the Brewster angle the reflection coefficient of the p-polarization
is zero. However, if the incident light enters from air, only angles in the media
less than the critical angle are relevant, and under these conditions, the answer is
‘yes’ when the right materials are chosen. If the multilayer stack is constructed
from two materials with refractive indices nL and nH, when the light enters
from air into the former, the condition for not exceeding the Brewster angle at
the interface between the two is sin−1(1/nL) < tan−1(nH/nL), which is always
obeyed if nL >

√
2, a condition easy to fulfil. However, more manipulation of

the refractive indices is necessary to ensure that at all angles of incidence from
0 to the critical, complete reflection is obtained at the same wavelength. The
calculation depends mainly on the refractive indices chosen, following which
the thicknesses of the layers can be tuned to achieve the highest reflection at
the wavelength of interest. It is useful to represent the band edges, at which
R = 1 (10.72), as a function of angle on a diagram where ‘positive’ angles
represent ‖ or p-polarization, and ‘negative’ angles⊥ or s-polarization. This is
done in Fig. 10.21, which shows two examples, one with nL <

√
2 illustrating

the zero band gap at the Brewster angle, and one with sufficiently high indices
for a band gap common to all angles of incidence and both polarizations to be
formed. In the figure, the ordinate nd/λ represents the wavelength, where the
product nd is assumed equal for both layers; then, clearly, the centre of the
band gap at normal incidence is at 0.25, the quarter-wave condition.
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Figure 10.21 Reflecting band gaps for multilayer stacks as a function of incidence angle in air for
s- and p-polarizations: (a) for the case nL <

√
2 where the gap for the p-polarization

closes at the Brewster angle; (b) for higher refractive indices, where there is a region
of frequencies for which complete reflection occurs at all angles of incidence. The
two curves in each figure show the values of g/2π at the edges of the reflection
band, as a function of angle of incidence from air.

Figure 10.22

Preform made from a rolled
polystyrene–As2Se3 sheet
and the extruded fibre. On
the right, SEM images of
the cross-section showing
multilayers surrounding the
hollow core. (Courtesy of
Yoel Fink; Abouraddy et al.
(2007))

This technique has been successfully applied to producing hollow optical
fibres for transmitting high-power carbon-dioxide laser light at 10μm wave-
length. The multilayer system is made by coating a polystyrene sheet (nL = 1.6)
with an arsenic selenide (As2Se3) (nH = 2.7) layer, the two having the opti-
mum thickness ratio. The sheet is then rolled into a multi-walled cylinder as a
preform and is then drawn down into a fibre with a size reduction calculated so
that the layers have the right thicknesses for the omnidirectional band gap to
contain the wavelength 10μm. An example of the rolled preform and extruded
fibre is shown in Fig. 10.22.
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10.5 Advanced topic: Photonic crystals

This chapter has emphasized the strong analogy between the properties of
light waves as described by Maxwell’s equations and those of matter waves
described by Schrödinger’s equation. In particular, the analogy between the
optical properties of periodic multilayers and the electronic structure of metal
and semiconductor crystals, where frequency bands appear in which propa-
gation is forbidden, suggests that two- and three-dimensional optical crystals
might be designed to have specifically interesting and useful properties. These
are called ‘photonic crystals’. Indeed, such structures, with optical properties
changing periodically on the scale of a fraction of an optical wavelength, exist
in nature. Michelson (Studies in Optics, Chapter 15) pointed out that the colours
of opals and peacock feathers, for example, might be explicable on the basis
of a microscopic periodicity in their structure, and more recently this has been
studied quantitatively (Zi et al. (2003)).

The original motivation for studying photonic crystals was to produce lasers
with essentially zero threshold for lasing, the threshold being the level at which
stimulated emission starts to dominate spontaneous emission (Chapter 14).
Spontaneous emission, as we shall see in §14.4.2, is initiated by zero-point
fluctuations in modes of the electromagnetic field in the laser cavity. By cre-
ating a cavity in surroundings in which waves cannot propagate at the lasing
frequency, the threshold could be reduced to zero. By analogy with an insula-
tor, such as diamond, which is a periodic crystal with an omnidirectional band
gap at a particular electron energy (the Fermi energy), the idea was to create a
photonic crystal with similar properties, within which a laser cavity could be
carved, essentially creating a defect in the crystal. The laser light in the defect
cavity would then be coupled to the outside world by tunnelling through a finite
barrier to a waveguide created by another defect in the crystal, designed so as to
form a low-loss waveguide. Only recently have there been some developments
in this direction, using two-dimensional photonic crystals.

The basic idea, and how it was developed first using microwaves in structures
that could be drilled and cast on the laboratory bench, is described dramatically
by Yablonovitch (1993). It quickly became clear that the face-centred-cubic
or diamond lattices held the most promise for photonic crystals with com-
pletely overlapping band gaps in all directions, or ‘optical insulators’. The
calculations involved in developing this idea in more than one dimension are
quite complicated, as are those for electronic band structures, and generally
need sophisticated computer programs for their implementation. It appears that
obtaining complete overlap of forbidden propagation bands for all polariza-
tions requires a refractive index ratio of at least 2 between the maximum and
minimum values in the diamond lattice and its derivatives, while in the simple
cubic lattice, for example, complete overlap cannot be achieved without a ratio
greater than about 3.
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To illustrate the basic ideas, we can look at a simple approximate model anal-
ogous to the ‘nearly-free electron model’ used in solid-state physics to derive
band structures (Kittel (2005)). The solid-state model allows analytical calcu-
lation of the electronic properties of a material with a weak sinusoidal potential
V (r) = V0 + 2V1 cos(g · r), where V1  V0. Being based on Schrödinger’s
scalar-wave equation for electrons, it clearly ignores the polarization properties
of electromagnetic waves. Here, we shall solve the equivalent optical problem
where ε(x) = εb + 2ε1 cos(g · r) and ε1  1. In fact, although many photonic
crystals that have been produced do not satisfy the condition that ε1  1, some
interesting experiments have been carried out with photonic crystals that have
been ‘written’ into a medium using non-linear optics (§13.6.2), in which case
ε1 ≈ 10−3 for which this model is entirely appropriate, and will be described
briefly in Box 10.2.

From (10.5)

− ε

c2
∂2E
∂t2

= ∇ × (∇ × E) = ∇(∇ · E)−∇2E = −∇2E. (10.76)

Since the variations in ε are assumed to be very small, we can put
∇ · E = 0.4 Now for a sinusoidal wave of frequency ω, (10.76) can then be
written:

∇2E+ εω2

c2 E = ∇2E+ k2
0[εb + ε1 exp(ig · r)+ ε1 exp(−ig · r)]E = 0.

(10.77)

Bloch’s theorem in solid-state physics showed that the general solution of
Schrodinger’s equation in a periodic potential is a modulated plane wave having
the general form ug(r) exp(ik · r), where ug(r) is a function with the same
wave-vector g as the potential. Inspired by this, we consider as a trial solution
the simplest periodically modulated function, which is the superposition of two
plane waves with wave-vectors k and k− q:

E = a exp[ik · r] + b exp[i(k− q) · r]. (10.78)

Substituting E into (10.76), we find

a[−k2 + εbk2
0] exp(ik · r)+ b[−|k− q|2 + εbk2

0] exp(i(k− q) · r)
+ k2

0ε1{a exp(i(k+ g) · r} + a{exp(i(k− g) · r}
+ k2

0ε1{b exp(i(k+ g− q) · r} + b{exp(i(k− g− q) · r} = 0. (10.79)

4 ∇ · D = ∇ · (εE) = ε∇ · E+ ∇ε · E, where the last term is negligible if the variations in ε are
small.
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Figure 10.23

ω(k) = ck0 for a weak
photonic crystal with lattice
vector g as a function of k
calculated from (10.86)
(a) along the axis k ‖ g, (b)
along an axis at 30◦ to g.
The broken line shows the
relationship for the
unmodulated medium,
ω = kc/

√
εb.
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In the same way as we derived Fourier coefficients in Chapter 4, we separate
this equation into parts by multiplying first by e−ik·r and integrating from−∞
to +∞, and then likewise by e−i(k−q) · r. We then get two equations:(

k2
0εb − k2

)
a− ε1k2

0b[δ((g− q) · r)+ δ((g+ q) · r)] = 0, (10.80)(
k2

0εb − |k− q|2
)

b− ε1k2
0a[δ((g− q) · r)+ δ((g+ q) · r)] = 0, (10.81)

in which the δ is unity when its argument is zero, otherwise zero. These δ-
functions are zero, unless (g− q) · r = 0 or (g+ q) · r = 0, i.e. g = ±q. This
is Bloch’s theorem. The case g = +q will be sufficient to illustrate the physics;
we then have

a
(

k2
0εb − k2

)
+ bk2

0ε1 = 0, (10.82)

ak2
0ε1 + b

(
k2

0εb − |k− g|2
)
= 0. (10.83)

The solution to these equations is given by the ‘secular determinant’∣∣∣∣ k2
0εb − k2 k2

0ε1
k2

0ε1 k2
0εb − |k− g|2

∣∣∣∣ = 0, (10.84)

which represents a quadratic equation with two solutions for k2
0 at each value

of k. We solve it for k2
0 because ck0 = ω, so that we can directly obtain the

dispersion relation ω(k):(
k2

0εb − k2
) (

k2
0εb − |k− g|2

)
− k4

0ε
2
1 = 0, (10.85)

k2
0 =

εb
(
k2 + |k− g|2)±√ε2

b
(
k2 − |k− g|2)2 + ε2

1k2|k− g|2
2
(
ε2

b − ε2
1
) . (10.86)

In particular, when |k− g|2 = k2, i.e. the projection of k on g is g/2, the
two values are ω2 = c2k2ε−1

b (1 ± ε1/εb). The form of the two solutions for
ω(k) along the axis k ‖ g is shown in Fig. 10.23. What is important is to see
that there is a band gap, of width proportional to ε1, within which region no
travelling wave can propagate inside the medium. As we saw in §10.3.4, the
propagation in the gap is evanescent (§5.5.2). In fact, the complete solution for
all k can be represented within the region |k · g| < g2/2, which is called the
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(a) (b)

(x), dielectric constant

|E|2, electric field 
density of wave

Figure 10.24 The wave energy density |E|2 related to the dielectric constant variations for the
two standing waves with k at the zone edge. The wave on the left has its maximum
field in the regions of highest ε and thus has lower frequency than the wave on the
right, where the maximum field samples regions of lowest ε.

‘Brillouin zone’, and lies between two planes normal to the vectors k = ±g/2.
It corresponds to the unit cell of the reciprocal lattice (§4.8) of the periodic
structure. The upper branch has generally b large and a small, and the lower
branch the opposite. But on the zone boundaries, where k · ĝ = ±g/2, the
two solutions correspond to a = ±b. Then the physical explanation for the
splitting is clear: the two solutions are standing waves, and one solution has its
maximum fields in the higher ε region, with consequently lower frequency, and
the other has its maximum fields in the lower ε region, and higher frequency
(Fig. 10.24).

So far, we have learnt nothing new, but have an analytical approach to
the multilayer problem. Admittedly, the solution is only approximate; the
assumed solution (10.78) is not exact, but is a good approximation provided
that ε1  εb.5

The reason for doing the calculation this way is that it shows how the solution
can be visualized if we know the free-space wave-vector k and the lattice
vector g. We can now see how a more complex material behaves. Supposing
the dielectric constant has a two- or three-dimensional periodic structure which
can be represented by superposition of several periodic functions with wave-
vectors gm and amplitude εm. Then the basic solution to the problem will be a
superposition of waves with vectors k± gm, and band gaps at the appropriate
boundaries of the Brillouin zones normal to ±gm/2. In two dimensions, for
example, we can derive the dispersion relation ω(k) for a dielectric constant
periodic in both x and y on a square lattice: ε(x, y) = εb+2ε1[cos(gx)+cos(gy)].
The problem then reduces to a 3× 3 secular determinant (10.84) and a surface
representing ω(k) would then look like the illustration in Fig. 10.25. It is
interesting to notice that there is no band gap at the corner of the Brillouin
zone; a band gap there would indicate an additional periodic potential of the
form cos[g(x+ y)].

Another way of representing the result is to draw the surface representing
the value of k as a function of its direction for a constant wave frequency
ω = ck0, i.e. the refractive-index surface (Chapter 6), since k = nω/c.6 In

5 The exact solution is the series
∑

am exp(ik1 + mg). See, for example, Kittel (2005).
6 This is analogous to the Fermi surface in a metal.
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Figure 10.25 (a) A sketch of ω(k) for a two-dimensional periodic dielectric constant
ε(x, y) = εb + 2ε1[cos(gx) + cos(gy)]. The shaded curves show contours of constant ω

on the lower branch. (b) The values of ω(k) along three sections of (a). The broken
lines in (b) show the result for a homogeneous medium, where ω = c|k|/√εb.
Notice that the band gap is zero at the diagonal corner B.
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Figure 10.26 Contours of constant ω corresponding to the lower band in Fig. 10.25. These contours
are, in a three-dimensional photonic crystal, the index surfaces of Chapter 6. At the
frequency of the contour emphasized, at the point shown near the zone edge, the
wave-vector k and Poynting vector S are not in the same direction; also, at that
frequency, waves with directions in the sector CC, for example, do not propagate in
this band.

the two-dimensional crystal the surface becomes a curve which is one of the
contours indicated in Fig. 10.25(a) and shown in Fig. 10.26. This representation
teaches us how waves propagate in a photonic crystal. In a photonic crystal the
symmetry of the index surface follows that of the reciprocal lattice, rather than
that of the dielectric tensor (Problem 10.9). Clearly, following the methods
described in §6.3.2, we find that there are directions near the zone boundaries,
i.e. when the wavelength of the light in the crystal is near to half the lattice
spacing, the ray-vector S can have a different direction from the wave-vector k,
and in certain directions no wave can propagate. In addition, one should note
that when this idea is applied to the upper band in Fig. 10.25, the direction of
S is opposite to that of k; this means that the crystal behaves as a left-handed
or negative refractive index material (§5.10).
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(a) (c)

S

(b)

k

Figure 10.27 Conical refraction by a honeycomb-lattice photonic crystal induced in a
photo-refractive crystal. (a) The illumination pattern, formed by interference of three
waves at 120◦; (b) the input beam (crystal switched off); (c) the conical diffraction
ring exiting the honeycomb lattice.

Box 10.2 Photonic crystals written into
a non-linear medium

A beautiful and fundamental investigation which brings together topics from
several chapters of this book uses a technique in which photonic crystals
are created in a photo-refractive crystal (§13.6.2) by illuminating it with
a light intensity pattern with the required periodicity. In such crystals, the
non-linear properties result in a refractive index variation controlled by the
illumination pattern. A weak probe beam with a wavelength longer than
that of the control illumination can then be used to investigate the optical
properties of the photonic crystal without destroying or modifying it. The
crystal that has been used (Peleg et al. (2007)) is SBN (Sr0.75Ba0.25Nb2O6),
with εb = 5.5, and changes ε1/εb ≈ 10−3.

In one of these experiments a photonic crystal with a two-dimensional
honeycomb-like lattice was written into the substrate material by using
the interference pattern between three waves at angles of 120◦, creating
a photonic crystal with six-fold symmetry (Fig. 10.27(a)). The forbidden
band for this structure (the ‘graphene’ structure) behaves in the same way
as the model photonic crystal described in §10.5 except that the structure is
hexagonal and there are six points at which the band gap is zero. The optical
behaviour of the crystal around these orientations is analogous to that around
the optic axis of a biaxial crystal (§6.5) where the inner and outer branches
of the refractive-index surface touch at a singular point. Now we saw in
§6.5.6 that one of the results of the point-like singularity is the phenomenon
of conical refraction. In these experiments, it was indeed observed that
when the photonic crystal was ‘switched on’, a conical distribution of
output energy was observed when light was incident along the optic axis
(Fig. 10.27(b) and (c)).
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Chapter summary

This chapter discussed the propagation of optical waves in materials whose

dielectric constant or refractive index is real but varies with position. Such

problems, when formulated in terms of Maxwell’s equations, were shown to

be analogous to problems in quantum mechanics, where the negative of the

refractive index plays the part of the potential in Schrödinger’s equation. The

wave propagation was then found to be defined by specific modes, which are

the analogies of quantum stationary states.

• In an optical waveguide the wave propagates in the z-direction, guided

by a local maximum in the refractive index. An example that has found

widespread applications is the optical fibre. Various propagation modes

were found, depending on the exact form of the index maximum; an

important case was ‘single-mode’ propagation, which has many

applications in optical communication.

• We developed the general theory of propagation in dielectric

multilayers, using Maxwell’s equations, which can be applied to a

wide variety of problems, several of which were discussed in detail. In

addition to solutions analogous to those of quantum mechanics, a new

feature appears that is not present in Schrödinger’s equation, the

dependence on polarization; this allows polarization-sensitive

structures to be devised.

• When the refractive index variation has periodic structure, solutions

analogous to electron waves in crystals appear, indicating band-gap

structure. In a one-dimensional periodic structure of dielectric

multilayers, certain wavelengths cannot propagate, providing an almost

perfect mirror. Defects in such periodic structures, such as a single

additional layer that breaks the symmetry, allow filters with designated

properties to be invented.

• Following the above discussion, we extended the treatment to

two- and three-dimensionally periodic structures. The concept of a

universally reflecting multilayer, similar in concept to an insulator in

band-structure theory, was developed, and allowed efficient optical

fibres to be designed.

• We developed an approximate method, based on the ‘nearly-free

electron’ model in the band theory of metals, to understand some of

the basic properties of multi-dimensional photonic crystals.
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Problems

10.1. Incoherent light is to be focused onto the plane end of a multi-mode
fibre, with core refractive index n2 and cladding n1. What is the largest
useful numerical aperture (NA) of the focusing optics? Can this be
increased by making the end of the fibre non-planar?

10.2. Show that the brightness (Problem 6.10) of light entering an optical
fibre cannot be increased by tapering the input end, so as to collect light
over a larger area and concentrate it (optical funnel).

10.3. Show that the numbers of⊥ and ‖modes in a slab waveguide are equal.
If the cladding has higher losses than the core, which type of mode
travels further?

10.4. An asymmetrical slab waveguide of thickness a and refractive index
n2 is made on a substrate of index n0 and is covered with cladding of
index n1. What is the smallest value of a/λ for which a single mode
propagates, assuming that n2 − n1  n2 − n0?

10.5. An interference filter has transmission wavelength λ and bandwidth δλ

when light is incident normally on it. How do λ and δλ change as the
filter is tilted with respect to the incident light? Take into account the
effect of polarization.

10.6. Design a multilayer cube beamsplitter operating at oblique incidence,
which transmits one polarization completely and reflects 99% of the
other.

10.7. Using physical ideas only, explain why the multilayer mirror
system ‘glass (HL)q+1 air’ has a lower reflection coefficient than
‘glass (HL)qH air’, despite the latter having one layer less. The sym-
metrical arrangement (HL)qH is called a quarter-wave stack and is
widely used in filter design.

10.8. Write a computer program to study multilayer systems built from two
materials H and L on a substrate. Use it to calculate R(g) and T (g), ∈
0 < g < 2π . Investigate the following ideas with it:
(a) broad-band, sharp-edged filters using the idea of coupled potential

wells – ‘glass (HL)qH(HL)pH(HL)q air’, where p is small;
(b) high- and low-pass filters based on a multilayer mirror in which the

layer thickness changes monotonically through the stack.
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10.9. The refractive index surface of a regular crystal (Fig. 6.14) has to be
orthorhombic, which is the symmetry of the dielectric tensor, indepen-
dent of the crystal symmetry. Why can that of a photonic crystal be
different?
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11 Coherence

The coherence of a wave describes the accuracy with which it can be represented

by a pure sine wave. So far we have discussed optical effects in terms of coherent

waves whose wave-vector k and frequency ω are known exactly; in this chapter

we intend to investigate the way in which uncertainties and small fluctuations in k

and ω can affect the observations in optical experiments. Waves that appear to be

pure sine waves only if they are observed in a limited space or for a limited period

of time are called partially coherent waves, and we shall see in this chapter how

we can measure deviations of such waves from their pure counterparts, and what

these measurements tell us about the source of the waves.

The classical measure of coherence was formulated by Zernike in 1938 but had

its roots in much earlier work by Fizeau and Michelson in the late nineteenth

century. Both of these scientists realized that the contrast of interference fringes

between waves travelling by two different paths from a source to an observer

would be affected by the size, shape and spectrum of the source. Fizeau suggested,

and Michelson carried out,1 experiments which showed that the angular diameter

of a star could indeed be measured by observing the degradation of the contrast

of interference fringes seen when using the star as a source of light (§11.8.1).

Michelson also used interference to measure the spectral quality of a light source

(§11.5), and both of these accomplishments are described in his book Studies in

Optics (Michelson (1927)). But this work was done without a formal theoretical

basis, which was later provided for classical light sources by Zernike in 1938 and

extended to quantized systems by Glauber in 1963. Once the formal basis of

coherence theory was understood and tested, it was possible to use it to make

detailed measurements of optical sources. This was first done in radio astronomy

by Ryle, who in 1958 developed ‘aperture synthesis’ (§11.8) as a method of

mapping radio stars, and in recent years the same methods have been realized in

optical astronomy, so that it is now possible not only to measure angular diameters

but also to image actual features on stellar surfaces. An aerial photograph of a

modern optical aperture synthesis array observatory is shown in Fig. 11.1. This

observatory can produce stellar images with resolution equivalent to that of a

1 Michelson makes no reference to Fizeau’s work, and probably developed the idea independently.
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Figure 11.1

Aerial photograph of the
Navy Prototype Optical
Interferometer (NPOI), at
the Lowell Observatory,
Flagstaff, AZ. (Courtesy of
M. Collier)

telescope having an aperture diameter equal to that of the maximum extent of

the array, which is about 450 m.

In this chapter we shall learn:

• about amplitude and phase fluctuations in real light waves;

• the concept of coherence, and how it is expressed quantitatively as a

complex coherence function;

• how the coherence function can be measured;

• about temporal coherence, and how it is related to the spectral linewidth

of the source by the Wiener–Khinchin theorem;

• about Fourier transform spectroscopy, which is a practical application of

temporal coherence measurements;

• about spatial coherence, and how it is related to the source geometry by

the van Cittert–Zernike theorem;

• how spatial coherence measurements made with large telescope arrays

are being used to make detailed images of distant stellar objects.

11.1 Coherence of waves in space and time

The coherence properties of the waves are in general functions of both time
and space. However, in order to make the concepts clear we shall consider
them as functions of time and spatial dimensions independently. In a very
schematic manner, Fig. 11.2 compares a completely coherent wave with one
that is partially coherent in time (it appears to be a perfect sine wave only when
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Figure 11.2

Schematic partially
coherent waves:
(a) perfectly coherent
wave; (b) wave with
spatial coherence only;
(c) wave with temporal
coherence only.

Direction of travel
of wave

(a)

(b) (c)

Figure 11.3

Simulation of a plane wave
that is partially coherent in
both position and time,
showing the coherence
distance xc and the
coherence time τc.
Coherence regions, within
which on average the wave
looks like a plane wave, are
indicated by ellipses.

xc

ctc

observed for a limited time – called the coherence time τc) and another that
is partially coherent in space (it appears to be a sinusoidal plane wave only
if observed over a limited region of its wavefront – the coherence distance,
xc). Figure 11.3 shows a simulation of a wave with partial coherence in both
temporal and spatial domains, and how this leads to a coherence region or
volume in three dimensions, within which the wave cannot be distinguished
from a simple plane wave. The simulation was carried out by the method
described in §11.1.1.

In this chapter we shall study fluctuations in phase and intensity of real light
waves only at a classical level. However, some of the most exciting areas
of modern optics have grown out of the application of coherence theory to
quantum systems and lasers, and in Chapter 14 we shall see how this leads to
new results, some of which are inconsistent with the classical description.
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11.1.1 Properties of real light waves

Let us try to describe clearly what we know about a real light wave, emitted by
a classical monochromatic light source. We know that the light we see at any
moment comes from a large number of atoms, each making a transition between
the same pair of energy levels, but that the emission from any one atom is no
way related to that from any other atom. In fact, a careful spectroscopic analysis
shows us that the light is not really monochromatic in the strict sense of the
word; it contains components of various wavelengths within a certain range,
called the linewidth. Typically, the ratio of linewidth to wavelength might be
10−6, and when the linewidth is much less than the average wavelength one
uses the term quasi-monochromatic for such radiation. The physical reasons
for a non-zero linewidth will be discussed in more detail in §11.2, but just as
an example we remark that at a finite temperature all the atoms in the emitting
material (a gas, for example) are moving randomly in various directions, and
so the emission from each atom is Doppler shifted by a different amount.

In a laser, which is a
non-classical source,
emission from the
various atoms is strongly
related, and the
discussion in this section
is not accurate.

We now ask exactly what such a light wave looks like. We can answer the
question by performing a Fourier synthesis based on the remarks in the previous
paragraph. We take a number of sine waves, having frequencies randomly
chosen within a specified range representing the linewidth of the radiation, and
add them together. We have done this in Fig. 11.4, where three examples of
continuous waves have each been generated from about 20 sine waves with
frequencies randomly chosen within a specified interval. What we see is a
complicated beat phenomenon; the amplitude of the wave is not a constant,
but fluctuates in a rather haphazard fashion. The average length of a beat is
related to the range of frequencies involved. If there is no rational relationship
between the frequencies themselves, the waveform never repeats itself and is
an example of chaotic light, §14.2.3. In the figure, we have also indicated
the phase of the wave relative to a coherent wave at the mid-frequency. One
observes that the phase is more-or-less constant within each group, but jumps –
often sharply – in the regions between wave-groups, particularly where the
amplitude is small.

The wave-trains in Fig. 11.4 can also be looked at in a different way. We
can consider each beat as an independent wave-group; the complete wave-

Real light waves have
intrinsic intensity and
phase fluctuations,
usually on a time-scale
of nanoseconds to
picoseconds.

train is then a series of such wave-groups emitted at random intervals. This
description turns out to be convenient for some purposes. However, we must
emphasize that the individual wave-groups must not be interpreted as pho-
tons, quantum units of light energy. Apart from the fact that the model has
been created by completely classical thinking, and therefore cannot produce
a quantized particle, the rate of repetition of the wave-group is determined
entirely by the spread of frequencies. If the wave-groups were photons, their
average rate of occurrence would depend on the intensity of the wave, and not
the linewidth.
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(a)

f

(b)

f

(c)

f

Figure 11.4 Three impure sine waves, showing the amplitude and phase fluctuations resulting
from a spread in component frequencies. Each wave is generated from 20
components with frequencies randomly distributed in the range ± 1

2 ε about ω0.
The phase fluctuations are shown relative to a perfect wave at ω0, and 2π phase
jumps have been eliminated (‘unwrapped’). The horizontal broken lines are
separated by 2π . Notice that within each wave-group the phase is fairly constant,
but changes randomly from group to group; the phase changes occur where the
wave amplitude is small. The values of ω0/ε are as follows: (a) 24, (b) 12, (c) 6.

11.1.2 The amplitude and phase of
quasi-monochromatic light

Let us try to develop the ideas of the previous section a little further with the
help of a simple model. It is important at this stage to recall the definition of
an average or mean value of a function g(t) during an interval of duration T
lasting from −T/2 to T/2:

〈g〉T = 1
T

∫ T/2

−T/2
g(t) dt. (11.1)

For mathematical convenience we shall work with the complex wave-field
f = f R + if I; one should remember, however, that observable physical fields
are real and are given by f R. However, in optics we can only measure the
intensity I(t)≡ |f (t)|2; for a pure sine wave, which is described by the complex
function f (t) = a exp(iωt), the intensity is constant.

Now picture a quasi-monochromatic light beam that is represented at a given
point in space by the superposition of a large number N of waves with equal
amplitude a. Each one has a random phase φn and a frequency ωn randomly
chosen within the range ω0 ± ε/2 where ε  ω0 (Fig. 11.4). The amplitude
and intensity of the combined wave are

We assume all the
component waves to
have the same
amplitude; this makes
the mathematics easier,
without affecting the
physics.
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f (t) = a
N∑

n=1

exp[i(ωnt + φn)], (11.2)

I(t) = |f (t)|2 = a2

∣∣∣∣∣
N∑

n=1
exp[i(ωnt + φn)]

∣∣∣∣∣
2

, (11.3)

which can be written as a double sum

I(t) = a2
∑

n

∑
m

exp{i[(ωn − ωm)t + φn − φm]}. (11.4)

The most noticeable features of the waves of Fig. 11.4, which are simulations
of (11.2) are the fluctuations in intensity (11.4) on a time-scale of 2π/ε. How-
ever, since the simulations were performed with a finite number N of waves,
we have to be sure that the fluctuations are not smoothed out by making N
very large. We can do this by calculating the variance in the intensity. If you
sample a variable x statistically, the variance describes how far away from its
mean a particular sample is likely to be. This is quantified by the mean square
deviation �x2 ≡ 〈(x− 〈x〉)2〉, which is easily shown2 to be equal to

〈
x2〉−〈x〉2.

The square root of the variance shows the range within which x varies about its
mean value. We can apply this to the intensity as described by (11.4).

First, the long-term average of (11.4) is the mean intensity 〈I〉. This is
given by

〈I(t)〉T = a2

T

∫ T/2

−T/2

∑
n

∑
m

exp{i[(ωn − ωm)t + φn − φm]} dt. (11.5)

When T is very large, the terms exp[i(ωn − ωm)t] perform many oscillations
within the integral and average to zero. But if n = m, this exponent is ei0 = 1
and the integral is equal to T . Thus, only the N terms for which n = m contribute
to the mean intensity, giving

〈I〉T = a2

T

∫ T/2

−T/2

N∑
n=1

1 dt = a2N . (11.6)

This confirms intuitive expectations that for an incoherent wave, the total
intensity is the sum of the intensities of the individual components. The
term

〈
I2〉 can be calculated similarly. Now there is a quadruple summation, but

we deal with it similarly:

〈
I2
〉
= a4

T

∫ T/2

−T/2

∑
n

∑
m

∑
p

∑
q

exp{i[(ωn − ωm + ωp − ωq)t + φn − φm + φp − φq]} dt. (11.7)

2 See any elementary book on statistics.
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This time, the terms that do not average to zero are the N2 terms for which
n = m and p = q, but also another N2 for which n = q and m = p. Thus

〈I2〉T = 2a4N2, (11.8)

from which the variance is

�I2 ≡ 〈I2〉T − 〈I〉2T = a4N2. (11.9)

This important result says that the magnitude of the fluctuations in intensity
�I of a quasi-monochromatic wave is equal to its mean intensity. The
fluctuations are macroscopic and result in an intensity that, when looked at on
a short enough time-scale of order 1/ε, fluctuates essentially between 0 and
twice the mean intensity, as we saw in the simulations.

Calculation of many other statistical properties of quasi-monochromatic
waves can be based on this model. It particular, it can be used to show, as
illustrated by the simulation, that there is no correlation between the phases
measured at times separated by much more than 2π/ε. This will be seen to be
the coherence time of the wave.

11.1.3 The spectrum of a random series of wave-groups

We remarked that the beat patterns in Fig. 11.4 can also be described visually
as a random succession of wave-groups of duration 2π/ε. Such a series does
indeed have similar spectral characteristics. Consider for example a wave-group
defined by the Gaussian of §4.4.3:

f (t) = A exp(−iω0t) exp(−t2/2σ 2), (11.10)

whose Fourier transform is

F(ω) = 2πA(2πσ 2)
1
2 exp[−(ω − ω0)

2σ 2/2]. (11.11)

A random series of such groups is

fr(t) =
N∑

n=1
f (t − tn), (11.12)

where tn is the random centre point of the nth wave-group. Now the transform
of (11.12) is

Fr(ω) = F(ω)
∑

n
exp(−iωtn), (11.13)

|Fr(ω)|2 = |F(ω)|2
N∑

n,m=1

exp[−iω(tm − tn)] = N |F(ω)|2 (11.14)
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by the same reasoning as (11.6). |Fr(ω)|2 ≡ J(ω) is called the spectral inten-
sity or power spectrum. The phase of Fr(ω) is indeterminate, so we can
conclude that the spectral intensity is like that of the single wave-group (11.10),
but has random phase. The series of wave-groups reproduces exactly the spec-
trum of Fig. 11.4 and is therefore a good physical representation of the wave.
One should compare this result to that obtained in §8.5.7 for the Fraunhofer
diffraction pattern of a random array of identical apertures.

11.2 Physical origin of linewidths

So far we have introduced the width of a spectral line, or the finiteness of a
wave-train, simply as a parameter to be reckoned with; now we shall enquire
briefly into the physical causes of line broadening in gases, where the emit-
ting atoms or molecules are almost independent. In this discussion, the word
‘molecule’ can be exchanged for ‘atom’ in all cases.

11.2.1 Natural linewidth

A spectral line has its origin in a quantum transition in which a molecule changes
its state from level A to level B, with energies EA and EB respectively; a wave of
frequency ω0 = (EA − EB)/� is emitted at the same time (§14.4.2). However,
no energy level except the ground state is an exact stationary state because of
fluctuations of the environmental electromagnetic field (§14.2.3), and therefore
has a finite lifetime. As a result a molecule in level A will decay to a lower
level after an average time TA. According to the uncertainty principle, the

White light is a limiting
case. When the
bandwidth becomes very
large, the wave-groups
become δ-functions, and
white light can be
considered as a series of
such δ-functions
occurring at random
intervals.

value of EA is therefore uncertain to the extent δE ≈ h/TA, where h is Planck’s
constant. The corresponding frequency width of the emitted wave is δω =
2π
(

T−1
A + T−1

B

)
. This is called the natural linewidth; it is generally smaller

than the Doppler and collision linewidths discussed in the following sections,
but can be achieved experimentally under conditions where the environmental
effects are neutralized (Haroche and Kleppner (1989); Foot (1991)).

11.2.2 Doppler broadening

Let us consider radiation from an isolated molecule in a gas at temperature
T . If the molecule, mass m, has velocity vx along the line of sight while the
transition is taking place, the spectral line will appear shifted by the Doppler
effect. The Maxwell distribution of velocities along a particular axis (x) in a
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perfect gas is Gaussian:

f (vx)dvx = C exp

(
−mv2

x
2kBT

)
dvx, (11.15)

and the Doppler shift in the observed frequency is

ω − ω0 = ω0vx/c, (11.16)

so that

F(ω) = C exp

[
−m(ω − ω0)

2c2

2ω2
0kBT

]
. (11.17)

This effect has broadened an ideally sharp spectral line into a line with a
Gaussian profile (see §4.4.3), where

σ = ω0(kBT/mc2)
1
2 . (11.18)

It is common to express spectral linewidths in terms of the half-width (§4.4.3)
which is 2.36σ for a Gaussian. In terms of wavelength, rather than frequency,
we find the half-width to be 2.36λ0(kBT/mc2)

1
2 .

As an example, we can take the Kr84 line for which λ0 = 5600 Å, m = 1.4×
10−22 g. At T = 80 K, (11.18) gives a half-width of 1.6× 10−11 m ≈ 0.002 Å,
which agrees reasonably with the observed value of 0.003 Å.

11.2.3 Pressure or collision broadening

Considering an isolated molecule does not give us the whole story. There will
always be collisions between the various molecules in a real gas. According
to the kinetic theory of gases (see, for example, Jeans (1982)), a particular
molecule will expect to be free for an average time

τ1 ∝ T
1
2 P−1 (11.19)

between collisions, where T is the absolute temperature and P is the gas
pressure.

Now consider what happens if an emitting molecule suffers a collision.
We may suppose that the shock of the collision will at the very least destroy
phase correlation between the emitted waves before and after the collision. The
emission from all the molecules in the gas will therefore appear like a series of
uncorrelated bursts of radiation each of average duration τ1. From the model
of §11.1.3, this suggests that τ1 plays the role of the coherence time. The actual
durations can be assumed to have a Poisson distribution of mean value τ1, from
which it can easily be shown that the spectral intensity J(ω) has a Lorentzian
form with shape
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Figure 11.5

Comparison between
Lorentzian and Gaussian
functions. The Lorentzian
has much longer ‘tails’
than the Gaussian.

w

I(w)

Gaussian

Lorentzian

J(ω) = 1
1+ (ω − ω0)2τ 2

1
. (11.20)

We have already met this function in our discussion of multiple-reflection
fringes (§9.5). From Fig. 11.5 we see that it is superficially similar to the
Gaussian but has a much slower decay in its wings.

In practice, temperature and pressure in a gas cause both Doppler and col-
lision broadening in various degrees, and observed spectral lines are rarely
exactly Gaussian or exactly Lorentzian. Moreover, many spectral lines are
multiplets with complicated fine structure, but from the point of view of optical
coherence theory they can often just be considered as having a single empir-
ical width, just like the effective width of a function defined in §8.3.5. In
condensed matter, linewidths are further complicated by interactions between
neighbouring molecules.

11.3 Quantification of the concept of coherence

In the previous sections we have described some of the characteristics of real
light waves. In order to understand how they affect optical experiments, it
is necessary to develop a quantitative framework to describe their properties
statistically. The coherence function γ which will be defined in this section
is a measure of coherence between two values of a wave-field, f (r1, t1) and
f (r2, t2). Coherence means that, given f (r1, t1), a recipe exists to estimate
the amplitude and phase of f (r2, t2). The better this recipe works on the

The coherence function
describes the correlation
between a wave-field at
two different points in
space or time.

average the better the coherence, and the closer the function γ is to unity. An
example of a recipe applying to a plane wave would be: ‘propagate the wave
by multiplying its complex amplitude by exp[i(ω(t2 − t1) − k · (r2 − r1))]’.
We shall find it simplest to talk about the two limiting cases mentioned in the
introduction.

• Temporal coherence, which measures the coherence between f (r, t1) and
f (r, t2), i.e. between two values of the wave-field at the same point r but dif-
ferent times. Temporal coherence allows us to define a coherence time τc, the
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maximum t2−t1 for which the recipe works well. As we have seen in §11.1.2,
τc is intimately connected with the bandwidth of a quasi-monochromatic
wave, and we shall show that the degree of temporal coherence is related
quantitatively to the spectrum of the wave-field.

• Spatial coherence, which is a measure of the coherence between f (r1, t)
and f (r2, t), i.e. between two values of the wave-field at different points
measured at the same time t. In analogy to τc one can define a coherence
region around r1 for which the recipe is valid. This region need not be
circular.

11.3.1 The mutual coherence function

We shall now make these concepts more quantitative by defining a mutual
coherence function based on the idea of correlation which was introduced in
§4.9. We shall write t1 = t and t2 = t + τ and assume that the coherence
properties do not change with time and therefore depend only on the difference
τ = t2 − t1 (this is called the ‘assumption of stationarity’). The complex
degree of mutual coherence, or briefly coherence function, is a normalized
correlation function defined as

γ (r1, r2, τ) = 〈 f (r1, t)f ∗(r2, t + τ)〉
(I1I2)

1
2

, (11.21)

where the Ij’s are the mean intensities at r1 and r2:

Ij ≡ 〈 f (rj, t)f ∗(rj, t)〉t. (11.22)

In view of the assumption of stationarity, γ does not depend on t; in the same
spirit, we shall assume stationarity in position as well as time, and assume that
γ only depends on the vector separation r = r2 − r1. Substituting r = 0 and
τ = 0 gives γ (0, 0) = 1, showing that γ is indeed normalized. To make the
physics clear, we shall only study the limiting cases of temporal and spatial
coherence defined above.

11.3.2 The visibility of interference fringes
and interferometric methods of measuring the

coherence function

Figure 11.6 shows a thought-experiment that helps us to clarify the concept of
coherence and shows how the coherence function can be measured. It is con-
structed from two loss-less single-mode optical fibres3 (§10.2) A1B1 and A2B2

3 The need for loss-less propagation is not necessary, but both fibres should attenuate by the same
amount. This is certainly the case in stellar interferometers, which are one of the embodiments
of the optical stethoscope.



371 11.3 Quantification of the concept of coherence

Figure 11.6

The idea of the ‘optical
stethoscope’. The
instrument would measure
in (a) the temporal
coherence and in (b) the
spatial coherence.
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of exactly equal length, whose ends B1 and B2 are supported close together,
a few wavelengths apart. We might call it an ‘optical stethoscope’, and it
can actually be constructed, although not perhaps in the flexible form envis-
aged here. In later sections, we shall discuss in detail two implementations:
the Fourier transform spectrometer (§11.5), which measures the temporal
coherence using a Michelson interferometer (§9.3.2), and the Michelson
stellar interferometer, and its modern derivatives (§11.8.1), which measures
the spatial coherence of light waves of cosmic origin.

The fibre ends A1 and A2 are placed in the quasi-monochromatic wave field,
whose coherence properties we want to analyze, and which originates in a
distant source of small angular size. A1 and A2 can sample this field at any
two points we choose, and because the fibres are loss-less we assume that the
light amplitudes emitted at B1 and B2 are the same as those sampled at A1
and A2, with equal time delays resulting from their equal lengths. B1 and B2
radiate as point sources and we observe the interference fringes on a screen a
few centimetres away. If B1 and B2 radiate coherently, the interference fringes
are clear; if B1 and B2 are incoherent, there will be no interference fringes.
There can also be an intermediate situation, in which poorly visible fringes
can be seen; this occurs when B1 and B2 are partially coherent. Figure 11.6
shows two basic configurations, which will be discussed in detail later. If
the two points A1 and A2 are situated one behind the other, as in (a), in the
direction of propagation of the light, they essentially sample the wave at the
same place, but at different times separated by τ = A1A2/c, and the contrast
of the fringes measures the temporal coherence. If the points are side-by-side,
in the same wavefront but separated by r, as in (b), the contrast measures the
spatial coherence.

The contrast of interference fringes formed by quasi-monochromatic light
can be quantified by defining the visibility V :

V ≡ Imax − Imin

Imax + Imin
, (11.23)
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where I is the local intensity of the fringe pattern. If the fringes are well-
developed, the minima have almost zero intensity compared to the maxima,
and so V ≈ 1. On the other hand, if the fringes are weak, and there is little
difference between the minimum and maximum values of intensity, V ∼ 0.
At a general point P on the screen the field is defined as g and the local intensity
is 〈|g2|〉. Now the field g measured at P is the sum of the fields g1 radiated by
B1 and g2 radiated by B2 at time t. We denote B1P by x1 and B2P by x2, and
their mean by x, whence:

g1(P, t) = 1
x

f
(

B1, t − x1

c

)
, (11.24)

g2(P, t) = 1
x

f
(

B2, t − x2

c

)
, (11.25)

in which the 1/x term arises because B1 and B2 are point-source-like radiators.
It is essentially a constant and will eventually cancel out in this argument. The
intensity at P is

I(P) = 〈(g1 + g2)
(
g∗1 + g∗2

)〉 = 〈g1g∗1
〉+ 〈g2g∗2

〉+ 〈g1g∗2
〉+ 〈g∗1 g2

〉
.

(11.26)

We shall now show that if the intensities 〈| f (B1)|2〉 and 〈| f (B2)|2〉 are equal,
the visibility is a direct measure of the degree of mutual coherence between
A1 and A2, i.e. V = |γA1A2(0)|.4 We have

g1g∗2 =
1
x2 f

(
B1, t − x1

c

)
f ∗
(

B2, t − x2

c

)

= 1
x2 f

(
B1, t − x1

c

)
f ∗
(

B2, t − x1

c
− τp

)
, (11.27)

where we have defined τp = (x2−x1)/c. Since B1 and B2 are only a few wave-
lengths apart, this τp is at most a few periods long and therefore much shorter
than the coherence time τc. We can now use the assumption of stationarity and
the fact that during τp f ∼ eiω0t to write

〈
g1g∗2

〉 = 1
x2 〈 f (B1, t)f ∗(B2, t)〉 exp(−iω0τp). (11.28)

Assume for simplicity that the optical stethoscope is constructed so that the
intensities incident on and exiting the two fibres are equal to I . We then have
from (11.26)

I(P) = 1
x2 [2I + 〈 f (A1)f ∗(A2)〉 exp(−iω0τp)

+ 〈 f ∗(A1)f (A2)〉 exp(iω0τp)]. (11.29)

4 The notation γA1A2 (0) is short for γ [r(A1), r(A2), 0]. In principle, an optical stethoscope could
be made for measuring γA1A2 (τ ) by using fibres differing in length by cτ .
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Since from (11.21) 〈 f (A1)f ∗(A2)〉 = IγA1A2(0), which can be written in the
form I|γA1A2(0)|ei�, we can put (11.29) in the form

x2 I(P) = 2I + 2I|γA1A2(0)| cos(ω0τp +�)

= 2I[1+ |γA1A2(0)| cos(ω0τp +�)]. (11.30)

From the definition (11.23) it now follows that the visibility of the fringes is

V = |γA1A2(0)|, (11.31)

when the intensities I1 = I2. The value of � in (11.31) can be read from the
shift of the fringe pattern from the symmetrical position (τp = 0) on the screen.
It is a measure of the actual mean phase difference between the wave-fields
at A1 and A2. The optical stethoscope thus provides us with direct means of
measuring the degree of coherence of a wave-field between any two points A1
and A2. We now show how it can be used specifically to measure temporal and
spatial coherence.

11.4 Temporal coherence

11.4.1 The temporal coherence function

We now return to the situation described in Fig. 11.6(a). Since the source
is distant, the wavefront changes insignificantly between A1 and A2, but the
latter sees the wave as it was at A1 a time τ earlier. It follows that the optical
stethoscope measures γ (τ) where τ = A1A2/c; in this section we can drop the
position variable r in γ (r, τ). The visibility of the fringes in the stethoscope is
then V = |γ (τ)| where

γ (τ) = 〈 f (t)f ∗(t + τ)〉
I

= 〈 f (t)f ∗(t + τ)〉
〈 f (t)f ∗(t)〉 . (11.32)

Now for a pure sine wave we have f (t) = a exp(iω0t), whence

γ (τ) = exp(−iω0τ). (11.33)

It is therefore common to refer to γ (τ) exp(+iω0τ), whose departure from
unity represents the departure of the wave-form from the pure sinusoid, as
the temporal coherence function. For a quasi-monochromatic source |γ (τ)|
has a typical form illustrated in Fig. 11.7. By definition γ (0) = 1, and as τ

increases |γ (τ)| falls monotonically to zero. For any wave with such a |γ (τ)|
we can define the coherence time τc as the value at which |γ (τc)| = 1/e; for
instance the random collection of Gaussian wave-groups mentioned in §11.1.3
has τc =

√
2σ . For quasi-monochromatic light, τc is of order of magnitude

10−9 s. The form shown in Fig. 11.7 is not typical of laser light (§14.7.1).

A multi-mode laser emits
frequencies ωn that are
equally spaced within the
linewidth ε. As a result,
the coherence function
has a periodic structure,
and is not monotonically
decreasing.
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11.4.2 Temporal coherence and auto-correlation

The form of γ (τ) in (11.32) is the same as the auto-correlation function dis-
cussed in §4.9.1, when we use (11.1) to express the average values by integrals.
Since f (t) is real and the average is taken over a long time T , the Wiener–
Khinchin theorem relates the power spectrum of f (t) to the Fourier transform
of γ (τ):

|F(ω)|2 = I
∫ ∞

−∞
γ (τ)e−iωτdτ ; (11.34)

and

|F(−ω)|2 = |F(ω)|2 ≡ J(ω). (11.35)

Equation (11.34) shows that if γ (τ) can be measured, the spectral intensity
J(ω) can be deduced by a Fourier transform; this leads to an important form of
spectroscopy, called Fourier transform spectroscopy, or Fourier transform
infra-red spectroscopy (FTIR) because it is mainly used in the infra-red part
of the spectrum.

g (t)

tt c

e−1

0

1

Figure 11.7

Coherence function
for a typical quasi-
monochromatic source.

11.5 Fourier transform spectroscopy

In 1898 Michelson showed that a two-beam interferometer could be used for
spectral analysis by recording fringes as the path difference is increased, which
essentially measures γ (τ). (Remember that the coherence theory being dis-
cussed here dates from the 1930s.) In Michelson’s time the idea was difficult to
implement because of the necessity for a Fourier transform in order to convert
the observations into a conventional spectrum, although Michelson made some
headway by intuitive methods and even constructed an analogue computer for
the purpose of reconstructing spectra. The advent of electronic computers has
of course changed the situation. Because of the basic simplicity of construction
of a Michelson interferometer and its efficiency in terms of signal-to-noise
ratio (§11.5.2) Fourier transform spectroscopy is widely employed in modern
physics and chemistry (see, e.g., Bell (1972)). It is mainly used in the infra-
red, both because good enough mechanical stability is difficult to achieve for
work in the visible, and also because it can make better use of background-
limited detectors typical of the IR region. Thus, the abbreviation FTIR (Fourier
Transform Infra-Red spectroscopy) is often used for this technique.

As shown in Fig. 11.8, the incident wave f (t) is split into two approximately
equal parts, which travel along different paths before recombining with equal
amplitudes at the detector. If the two paths have lengths differing by d it is
clear that the waves arriving at a given instant at D originated at the source
at times separated by τ = d/c. This is essentially the situation described by
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Figure 11.8

A Michelson interferometer
(Fig. 9.13) as used for
Fourier transform
spectroscopy. The
path difference is
d = 2(OM2 − OM1). For
studying the absorption
spectrum of a sample, it is
placed in the position
indicated, while the source
has a broad emission
spectrum; then the result is
compared to the spectrum
obtained without the
absorption cell.
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Fig. 11.6(a). The instrument is adjusted so that the interference fringes form a
circular pattern (like Fig. 9.15(b)), at whose centre D the detector is positioned.
Ideally, the detector can be as large as the central fringe when d has its maximum
value, dmax. It measures the intensity of the recombined wave in the A output
(§9.3.2):

IM(τ ) = RT〈|f (t)− f (t + τ)|2〉 (11.36)

= RT〈I(t)〉[2− γ (τ)− γ ∗(τ )]. (11.37)

By taking the Fourier transform of this equation, the symmetrized power spec-
trum J(ω) + J(−ω) can be calculated. Clearly, the signal IM is real and
symmetrical and so is J(ω) (11.35); however, the part of the spectrum forω < 0
has no practical physical significance. Writing the transform out explicitly and
replacing τ by d/c we have

J(ω) = 1
2c

∫ dmax

−dmax

[I − IM(d/c)/2RT] exp[−iωd/c] dd. (11.38)

Relying on the symmetry of IM, the interferogram only needs to be measured
for one sign of d (with a short excursion into the other to allow the zero of d to
be identified exactly). As a result the integral above can be written in terms of
wavenumber k = ω/c:

J(ck) = 1
c

∫ dmax

0
[I − IM(d/c)/2RT] cos(kd) dd. (11.39)

This equation is the basic algorithm for Fourier transform spectroscopy; the
measured data are IM(d/c) and the derived spectrum is J(ω).

In (11.38) we have introduced finite limits to the Fourier integral because
there are no data for d > dmax and so the best estimate for this region would
be IM = 2IRT . This sharp cut-off to the integral results in a spectrum with
limited resolution (§11.5.2). Furthermore, it introduces ‘false detail’ into the
spectrum, in the same way as will be discussed in §12.2.5, and the technique
of apodization (Problem 11.6) is often used mathematically to improve the
line-shape obtained.

The above treatment can be extended to the case where a material with
unknown index of refraction n(ω) is inserted in one arm of the interferometer.
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Figure 11.9

The Fourier interferogram
IM(τ ) when the source
spectrum is an
asymmetrical doublet, to
show how the asymmetry
is encoded in the fringes.
Between (a) and (b) the
relative intensities of the
two components have been
interchanged. The main
differences between the
two fringe patterns are in
the circled regions. The
visibility, which is the same
in both cases, is shown
in (c).
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(a) Interferogram from a
broad-band infra-red
source, and (b) the
calculated spectrum.

One then gets non-symmetrical functions IM(τ ) and γ (τ), and consequently
the Fourier transform will have an imaginary part. The value of n(ω) can
then be calculated from the ratio between the imaginary and the real parts of
the transform. This is called asymmetric Fourier transform spectroscopy
(Parker (1990); Problem 11.5).

11.5.1 Two examples of Fourier spectroscopy

In Figs. 11.9 and 11.10 we show two examples of Fourier spectroscopy. The
first illustrates Michelson’s original approach, via the visibility function, and
shows why measuring V (τ ) alone is insufficient to determine the spectrum
uniquely. The second example is typical of a modern commercial Fourier
spectrometer.

(a) Let us consider how to investigate a spectral line with fine structure
around frequency ω0. Its spectral intensity can be represented by a δ-function
δ(ω − ω0) convolved with a ‘fine-structure function’ s(ω) which, as its name
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suggests, is limited to a region of frequency ε  ω0. The function J(ω), which
is the spectrum repeated symmetrically about the origin, is

J(ω) = s(ω)⊗ δ(ω − ω0)+ s(−ω)⊗ δ(ω + ω0). (11.40)

The interferogram is its Fourier transform:

I − IM(τ ) = 1
2
[S(τ ) exp(−iω0τ)+ S∗(τ ) exp(iω0τ)]

= 1
2
|S(τ )|{exp[iφS(τ )] exp(−iω0τ)+ exp[−iφS(τ )] exp(iω0τ)}

= |S(τ )| cos[ω0τ − φS(τ )], (11.41)

where we expressed S(τ ) in terms of its magnitude and phase as
|S(τ )| exp[iφS(τ )].

Now since the fine structure is restricted to a small frequency region ε, the
transform of S varies on a time-scale ε−1, so that it is appropriate to describe
(11.41) as an oscillatory function (fringes) with a slowly varying envelope,
which gives the visibility as V = |S(τ )|. In order to obtain s(ω) uniquely,
we also need to measure the phase φS(τ ) which is recorded in the phase of
the fringes in (11.41). There is often no way of overcoming this problem by
phase retrieval (§8.8 and §8.9) because there are clearly at least two candidate
functions s(ω) and s(−ω) that have the same |S(τ )|, and in spectroscopy
the difference between them may be important; however, prior knowledge
may enable them to be distinguished. We learn from this that in order to get
reliable spectra, we have to record all the fringes in detail and perform a full
numerical Fourier transform, which was impossible in Michelson’s day without
computers.

An example that illustrates this is shown in Fig. 11.9. A source emits a
narrow asymmetrical doublet consisting of two waves with intensities a2 at
frequency (ω0 − ε/2) and b2 at (ω0 + ε/2). You can see from the figure that
the fringes are different (again, as in §11.1.1, particularly in the regions where
the amplitude is small) but the visibility of the fringes is the same for both. We
shall leave to the reader the details of the calculation, which are easy enough
to carry out either analytically or by computation.

(b) The second example (Fig. 11.10) is from an automated Fourier trans-
form spectrometer. Today, commercial Fourier transform spectrometers do not
give access to the interferogram itself, but compute the spectrum directly; the
spectrum shown in this figure was obtained on an old machine that had some
manual features! It measures γ R(τ ) by recording IM(d) as d scans the region
from−d1 to dmax. If the instrument is adjusted perfectly, IM(d) = IM(−d), and
it is only necessary to include a small negative region to allow the zero of d to
be determined accurately. The example shows a central part of an interferogram
and the spectrum deduced from it, using (11.39).
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11.5.2 Resolution and sensitivity

The resolution limit of a Fourier spectrometer can be estimated in the following
manner. Suppose that a monochromatic wave of wavelength λ is measured,
and as the path difference d changes from 0 to dmax we record m fringes, the
mth fringe having minimum intensity like the zero order. Now change λ to
λ1 = λ+ δλ. For a certain value of δλ, m− 1

2 fringes will be recorded between
0 and dmax, so that the fringe intensity at dmax is now a maximum, and not a
minimum. Clearly these can be resolved; if both wavelengths were incident
simultaneously, and had equal intensities, the fringes would be in antiphase
and cancel one another out at dmax, a clearly observable situation. Thus, δλ can
be resolved if

dmax = mλ =
(

m− 1
2

)
(λ+ δλ)

= mλ+ mδλ− 1
2
λ− 1

2
δλ. (11.42)

Neglecting the last term because δλ  λ, we have 1
2λ = mδλ or resolving

power:

λ

δλ
= 2m. (11.43)

Compare this with the resolving power of a diffraction grating (9.12), λ/δλ =
mN , where N is the number of slits, i.e. the number of interfering waves. In the
Michelson case, N = 2. In the case of the diffraction grating, we showed that
this is also equal to 2L/λ, where L is the length of the grating. In the present
case it is the same, where L is the length of travel of the mirror, i.e. dmax/2. The
difference is that with a diffraction grating this is a theoretical limit, requiring
perfect ruling, whereas in the Fourier spectrometer it can actually be realized.

When background radiation at the detector cannot be neglected, the Fourier
spectrometer has an advantage over conventional spectrometers that use diffrac-
tion gratings or prisms. If the output of a spectrometer is measured with a single
detector, the spectrum must be scanned in some way, and so for part of the time
(between spectral lines) very little light reaches the detector from the source,
although background radiation is always received. On the other hand, with
the Fourier spectrometer an average of half the input light reaches the detector
at the A exit at any instant. The other half leaves through the B exit where,
in principle, a second detector can be placed. The Fourier spectrometer then
has a distinct advantage (called the Fellgett advantage) in the signal-to-noise
attainable. This is the reason for the success of this type of spectrometer in
the infra-red region, where background radiation – thermal emission from the
instrument itself – is inevitable.

A Fourier spectrometer
for astronomy, where
every photon is
immensely valuable,
indeed uses two
detectors at A and B. The
interferometric signal is
then the difference
between the two
detector outputs. (Connes
and Connes (1966))

A further advantage, the Jacquinot advantage, over grating or prism
instruments arises in the throughput of radiation, which in a conventional
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spectrometer is limited by the input slit width. In the Fourier spectrometer, the
detector (which is the exit pupil) can be as large as the central interference ring
at dmax, and the resulting throughput may be an order of magnitude higher.
This applies to all spectral regions, including the visible.

11.6 Spatial coherence

We recall that the concept of temporal coherence was introduced as an attempt
to give a quantitative answer to the following question. At a certain instant
of time we measure the phase of a propagating light wave at a given point.
If the wave were a perfect sinusoidal plane wave, A exp(−iω0t), we should
then know the phase at any time in the future. But in a real situation, for how
long after that instant will an estimate made in the above way be reliable? The
gradual disappearance of our knowledge of the phase was seen to result from
uncertainty of the exact value of ω0, and could be related quantitatively to the
finite width of the spectral line representing the wave.

The second coherence concept, that of spatial coherence, is concerned with
the phase relationship at a given instant between waves at various points in a
plane normal to the direction of propagation. If the wave were a perfect plane
wave, whose propagation direction is known exactly, this plane would be a
wavefront, and definition of the phase at one point P in it provides the recipe to
determine the phase at every other point.5 This can be done for each component
wavelength if the wave is not monochromatic, so that a wave does not have to
be monochromatic in order to be spatially coherent. In practice, we can ask the
question: if we know the value of the phase at P, how far away from P can we
go and still make a correct estimate of the phase to within, say, π/2?

In a similar way that we found temporal incoherence to be related to uncer-
tainty in the frequency ω0 of the wave (and hence in the magnitude of the
wave-vector, |k|), we shall see that spatial incoherence is related to uncer-
tainty in the direction of the wave-vector, k̂. And uncertainty in the direction
of k arises when the source of the light is not a point source, but is extended.
Therefore the size of the source is important.

A spatially coherent
wave need not have
temporal coherence. But
a wave with temporal
coherence must arise
from one or more
phase-related sources,
and therefore must be
spatially coherent.

11.6.1 A qualitative investigation of spatial coherence

We saw in §11.3.2 that if we sample the wave-train with our optical stethoscope
at two points A1 and A2 situated one behind the other we see interference fringes
only if the distance A1A2 is less than cτc. Spatial coherence can be approached

5 This argument could be rephrased for a spherical wavefront emanating from a source at a finite
distance.



380 Coherence

Figure 11.11

Spatial coherence. The
figure shows on the right
the interference fringes
created by points S1 and S2

on an extended incoherent
source; when these fringes
are in antiphase, the
coherence is zero.
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in the same way, and can be illustrated by the following simple one-dimensional
experiment.

Suppose that an incoherent, quasi-monochromatic source, of linear dimen-
sions a, is used to illuminate a mask P containing a pair of pinholes P1 and P2
separated by x (Fig. 11.11). The appearance of a fringe pattern on a screen indi-
cates coherence between the wave amplitudes at the two pinholes. The source
is at distance L and the screen at distance H from the pinholes; for simplicity
we assume L, H 
 a, x, and all angles to be small.

Consider the point S1 at one end of the source. This point on its own
illuminates the pinholes coherently and therefore produces a fringe pattern on
the screen. The zero order of the fringe pattern appears at Z1, corresponding to
zero difference between the optical paths S1P1Z1 and S1P2Z1. Z1 lies on the line
S1O joining S1 to the point O half-way between the two pinholes. The period of
the interference fringes is given by Hλ/x. Now consider S2 at the other end of
the source, distant a from S1. This gives a fringe pattern with the same period,
with its zero order at the point Z2, on the line S2O. The two sets of fringes
overlap, and since S1 and S2 are mutually incoherent, their intensities must be
added. When Z1Z2 is equal to half the fringe spacing, the fringe patterns from
S1 and S2 will be spatially in antiphase, and so no fringes will be visible on
the screen. We can say that the spatial coherence between the two pinholes has
disappeared when

1
2

Hλ/x = Z1Z2 = aH/L; (11.44)

x = Lλ/2a. (11.45)

The result can be stated as follows. Because of the size of the source a, or
more usefully its angular size α = a/L, the fields at neighbouring points on
the mask are only coherent if the distance between the points is less than

xc = λ/2α. (11.46)

This maximum distance xc is called the coherence distance in the plane of the
pinholes. Notice in particular the reciprocal relationship between xc and α.

We have neglected, in this discussion, the effect of all points such as S3
in-between S1 and S2, and thereby introduced an error of about 2. This will be
corrected in §11.6.3 by a more complete analysis.

The coherence distance
xc is the largest distance
between the two
pinholes for which
fringes are visible.
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When the argument is extended to two dimensions, a source of limited angu-
lar dimensions defines a two-dimensional region within which both pinholes
must be situated in order to be coherently illuminated. This region is called the
coherence area or coherence region.

The relationship between the coherence area, or strictly the coherence func-
tion, and the source dimensions will be shown in §11.6.3 to be that between
Fourier transforms, at least when the source has a small angular diameter α.
This relationship can be very useful in practice, and is the basis of the technique
of aperture synthesis which will be discussed in §11.8.

11.6.2 The spatial coherence function

We return now to the idea of the optical stethoscope probing a quasi-
monochromatic wave-field and assume that A1 and A2 are approximately on
the same wavefront.6 To be specific we assume that τc is much longer than τ ,
which is the difference between the times of arrival of the wavefronts at A1
and A2. Equation (11.31) is again valid, but now |γA1A2(τ = 0)| depends only
on the lateral distance between A1 and A2 since the only effect of a change
in their longitudinal distance will be to multiply γA1A2(0) by eiω0τ . We then
call γA1A2(0) the complex spatial coherence function. Usually, stationarity
applies and γ depends only on the vector r connecting A1 and A2; it can then
be written γ (r).

An instrument that implements the above scheme almost exactly is the
Michelson stellar interferometer (§11.8.1) where A1,2 are the entrance mirrors
and B1,2 the second pair of mirrors.

11.6.3 The van Cittert–Zernike theorem

This theorem is the spatial equivalent of the Wiener–Khinchin theorem (§4.9.1)
and was proved independently by van Cittert and by Zernike. It relates γ (r)
by a Fourier transform to the intensity distribution I(θx, θy) in the source. We
consider a distant quasi-monochromatic incoherent source of angular extent α
(outside which its intensity is zero – Fig. 11.12) illuminating the observation
plane. All angles in the figure will be assumed to be small. The amplitude

Observe that the units in
the Fourier transform
relating f and F are a
transform pair: the
argument of the
exponent in the Fourier
transform is the product
ik0(xθx + yθy).

at point S on the source is described in terms of the wavenumber k0 and the
angular coordinates (θx, θy) as f (θx, θy), where | f |2 = I(θx, θy) is its intensity,
and the amplitude received at P(x = 0) is then its far-field diffraction pattern

6 The importance of A1 and A2 being within a coherence length of the same wavefront will be
emphasized in the discussion of aperture synthesis in §11.8.
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Figure 11.12

Illustrating the van
Cittert–Zernike theorem.
I(θx, θy) represents the
angular intensity profile of
the source (usually a star)
and γ (k0x, k0y) is
measured in the
observation plane.
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F(k0x, k0y). Now the spatial coherence function of this field F can be formulated
as a convolution:

γ (r) = F(k0x′, k0y′)F(k0x′ − k0x, k0y′ − k0y)
|F|2 = F(k0r)⊗ F∗(k0−r)

|F|2 .

(11.47)

The Fourier transform of the convolution is the product of f (θx, θy) with its
complex conjugate:

f (θx, θy) · f ∗(θx, θy)

|F|2 ∼ I(θx, θy). (11.48)

Thus γ (k0r) and I(θ ) are a Fourier transform pair (up to a normalization
prefactor):

γ (k0r) =
∫∫ α/2
−α/2 I(θx, θy) exp[ik0(xθx + yθy)] dθx dθy∫∫ α/2

−α/2 I(θx, θy) dθx dθy
. (11.49)

This relationship is called the van Cittert–Zernike theorem. Although we
assumed above that the source was small, this was only because angles θ

are only vectors when they are small. In fact, as should be obvious from
Fraunhofer diffraction theory, the true variables in the source are the direction
cosines (�, m) = (sin θx, sin θy).

We shall apply it to a circular star as an example. The source has unit
intensity within a circle of small angular diameter α and zero outside it, i.e.
I(θ) = circ

(
θ/ 1

2α
)

. The correlation function is therefore the Fourier transform
of I(θ) which is (§8.3.4)

γ (k0r) = 2J1(k0αr/2)
k0αr/2

, (11.50)

it has its first zero when r = 1.22λ/α.
For example, Betelgeuse has angular diameter 0.07 arcsec, = 3.4 × 10−7

radians, and coherence in green light extends throughout a circle of radius
about 1.9 m around a given point (Fig. 11.13). After the first zero, (11.50)
predicts there to be further regions of correlation, both negative and positive
which result from the sharp cut-off assumed at the edges of the star, but are
suppressed if the star is less intense around its edges; this phenomenon is called
‘limb-darkening’. Some experimental results for such measurements will be
shown in §11.8.
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Figure 11.13

Coherence function γ (r) for
a circular star of angular
diameter α. The abscissa
also shows actual distances
for Betelgeuse, with
angular diameter
0.07 arcsec, at λ = 550 nm.
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11.6.4 Partial coherence from an extended source

A particular case in which θ is not small is that of microscope illumina-
tion (§12.2.7) where the specimen receives light from all directions within
a strongly focused cone whose semi-angle α/2 can approach π/2. Continu-
ing from (11.49), and using u = k0 sin θ , du = k0 cos θ dθ , we write for a
one-dimensional source

γ (x) =
∫ km
−km
[I(θ)/ cos θ ] exp(−iux) du∫ km
−km
[I(θ)/ cos θ ] du

, (11.51)

where km= k0 sin(α/2). For a Lambertian source (a black body, §14.1.2 for
example) I(θ)∼ cos θ , whence (11.51) gives γ (x)= sinc(kmx). For the limiting
case of an infinite source, α=π and γ (x) = sinc(k0x). The coherence distance
xc is the first x for which γ (x) becomes zero, i.e. xc = λ/2. The same calculation
for a source infinitely extended in x and y follows from the equivalent result
for a circular source, γ (r) = 2J1(k0r)/k0r, and gives rc = 0.61λ.

11.6.5 Two laboratory demonstrations of spatial coherence

The van Cittert–Zernike theorem can be illustrated by the experiment of §11.6.1
in which the pair of pinholes P1 and P2 with a distance x between them is
illuminated by an incoherent source (Fig. 11.11). The visibility (§11.3.2) of
the interference fringes then measures the coherence between the fields at the
two pinholes. In a simple one-dimensional experiment, the source is a slit S of
width a, aligned perpendicularly to the line P1P2. The function describing the
coherence between P1 and P2 is therefore

γ (x) = sinc[k0x sin(a/2L)] ≈ sinc
[πax
λL

]
, (11.52)

this function being the Fourier transform in (11.51). As a is increased from
zero, the coherence between pinholes P1 and P2 begins at unity, becomes zero
when a = λL/x and has the usual series of weaker maxima and minima as a
is increased beyond this value. The interference patterns observed for several
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Figure 11.14

Young’s fringes with
different degrees of spatial
coherence: (a) γ = 0.97;
(b) γ = 0.50;
(c) γ = −0.07. Note
particularly the minimum
at the middle of (c),
indicating the negative
value of the coherence
function.
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Figure 11.15

Experimental results for
measurement of the
coherence function for an
incoherent rectangular
source imaged through a
shearing interferometer
(a), compared with the
calculated result (11.51),
(b). (We are grateful to
Yuval Shapira for
performing this
experiment.)
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values of a are illustrated in Fig. 11.14, in which the visibility clearly follows
the same pattern. Notice that the effect of negative values of γ is to shift the
pattern by half a fringe (φ = π ).

This experiment is the basis of several fundamentally important interferom-
eters that are used to determine the angular dimensions of inaccessible sources
such as stars. These will be described in §11.8.

A second laboratory experiment uses a shearing interferometer (§9.4) to
measure the coherence function directly. A shearing interferometer displays the
interference pattern between a field centred at r = 0 and the same field centred
at r. The contrast of the interference fringes is therefore a direct measure of
γ (r). Following the discussion in §11.6.4, some results are shown in Fig. 11.15
for an incoherent rectangular source.

11.7 Fluctuations in light beams, classical photon
statistics and their relationship to coherence

In §11.1.2 we showed that, however intense a light beam might be, its intensity
still appears to fluctuate when investigated with a fast enough detector. The
argument was completely classical, and the invention of the laser prompted a
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re-examination of the analysis. In particular, it was hoped to discover basic
differences in the statistics of light emitted by lasers and conventional sources,
a subject that we shall return to in Chapter 14. In this section we shall present
a simplified account of the classical theory, which has important applications;
the quantum theory of fluctuations will be discussed briefly in Chapter 14.
A remarkable feature of the classical results is in fact their similarity to the
quantum ones; it has only been since about 1977 that significant differences
between the two have been discovered experimentally (§14.3.1).

Before studying the light beam itself, we shall ask what exactly one measures
in an experiment to detect fluctuations. The answer, of course, is the electric
current from a photo-detector. Any treatment of the subject must take into
account the fact that we actually observe discrete electrons emitted by, say, a
photo-cathode (other methods of detection, such as semiconductor devices, can
be described similarly). In this experiment there are two uncorrelated sources
of fluctuation. The first arises because we are observing discrete electron
emissions whose average rate is proportional to the instantaneous intensity;
the second because the instantaneous intensity itself is fluctuating about
its long-term mean value. Recall from §11.1.2 that the term ‘instantaneous
intensity’ implies an average during a period T1 < τc.

The mean number of electrons emitted during a given interval δt  τc is
n̄ ≡ 〈n〉 = 〈I(t)〉η δt/�ω. Here 〈I(t)〉 is the mean intensity during δt and η is
the quantum efficiency, which is the probability of an electron being emitted
if a photon of energy �ω falls on the cathode. However, the exact number of
electrons emitted is statistical, being given by a Poisson distribution with the
above mean. The probability of n electrons being emitted in δt is then

p(n) = n̄n exp(−n̄) /n!. (11.53)

The variance or mean-square fluctuation for the Poisson distribution is well
known to be equal to its mean value:

〈(�n)2〉T1 ≡ 〈n2〉 − n̄2 = n̄. (11.54)

This is one source of fluctuation in the current. Since n̄ depends on the mean
intensity during the interval, which is itself a fluctuating variable, we can also
define ¯̄n = 〈I(t)〉T0η δt/�ω, the average of n̄ over a very long time T0 
 τc,
and then the expectation value of 〈(�n)2〉T1 will equal ¯̄n.

The second source of fluctuation is that of 〈I(t)〉 itself, which we have already
treated in §11.1.2. There we saw in (11.9) that the mean-square difference

〈(〈I(t)〉T1 − 〈I(t)〉T0)
2〉T0 = a4N2 = [〈I(t)〉T0 ]2 . (11.55)

In terms of electrons emitted in time δt this can be written

〈(�n̄)2〉T0 ≡ 〈(n̄− ¯̄n)2〉T0 = ¯̄n2. (11.56)
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Since �n̄ and �n are not correlated we find that the total variance in photo-
electron counts during T1 is the sum of the individual variances:

〈(n− ¯̄n)2〉T0 = 〈(�n̄)2〉T0 + 〈〈(�n)2〉T1〉T0 = ¯̄n2 + ¯̄n. (11.57)

What is remarkable about this equation is that it is identical to the variance
in the number of photons in a given state when they are considered as mass-
less Bose–Einstein particles (see, e.g., Landau and Lifshitz (1980)), which is
surely a quantum description. Some inklings of an explanation will be given in
Chapter 14.

The above argument, which is completely classical, shows that when a
photo-detector is illuminated by a quasi-monochromatic wave, the emission
of electrons is not a purely random process, governed by Poisson statistics.
Photo-emission events are therefore correlated in some way, this is called
photon bunching. For a high light intensity ¯̄n  ¯̄n2, so that n fluctuates in the
range 0 to 2 ¯̄n.

The concept of photon bunching, given by the ¯̄n2 term, can be understood via
the optical stethoscope. We now place two detectors at the exits B1 and B2 and
correlate their output currents i1 and i2 electronically instead of observing the
interference pattern. As we have pointed out, these currents are proportional
to the mean intensities, 〈I1(t)〉T1 and 〈I2(t)〉T1 . Using the model of §11.1.2 we
can calculate the correlation between these intensities. Recognizing that the
elementary wave j will arrive at A1 with phase φj and at A2 at a different time
and therefore with phase ψj related to its direction of propagation we can write
from (11.3)

〈I1(t)I2(t)〉 = a4

〈 N∑
j=1

exp[i(ωjt + φj)]
N∑

j=1
exp[−i(ωjt + φj)]

×
N∑

j=1
exp[i(ωjt + ψj)]

N∑
j=1

exp[−i(ωjt + ψj)]
〉

= a4

〈 N∑
j,k,l,m=1

exp{i[(ωj − ωk + ωl − ωm)t

+(φj − φk + ψl − ψm)]}
〉

. (11.58)

When the average is taken over a long time T0 
 1/ε, the only non-zero
terms arise from j = k and l = m, whence the average 〈I1(t)I2(t)〉T0 = a4N2.
However, if | φj − ψm |max, and | φk − ψl |max are  π/2, there is an
additional contribution a4N(N − 1) ≈ a4N2 from terms with j = m and k = l.
This condition is a function of the relative positions of A1 and A2.
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Figure 11.16

Temporal intensity
coherence function γ (2)(τ ),
showing excess correlation
of fluctuations when
τ < τc.
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One can see immediately that if, for example, A1 and A2 are one behind the
other, so that the phase difference is caused by a time delay τ , then φj = ωjτ

and the second contribution to the average of (11.58) comes in only if τ 
π/[2|ωl − ωm|max] = π/2ε ≈ τc, the coherence time. Then let I1 ≡ I(t),
I2 ≡ I(t + τ) and we can define the intensity coherence function or second-
order coherence function

γ (2)(τ ) = 〈I(t)I(t + τ)〉T0

〈I(t)〉2T0

. (11.59)

The function γ (2)(τ ) has the typical form shown in Fig. 11.16, with γ (2)(0) = 2
and γ (2) → 1 as t → ∞. Photon bunching appears as an excess correlation
for τ < τc. Interpreted in terms of photo-electron counts, this means that if one
observes an electron emission event, there is a higher probability of another one
within τc than would be expected if the events were completely random (see
Fig. 14.7(c and d)). We shall return to the subject in Chapter 14 as a quantum
phenomenon.

A similar calculation can be made for spatial coherence. In this case, φj−ψj
represents the difference in phase between the waves from a given point on the
source on their arrival at A1 and A2, so that the enhanced correlation now arises
when A1 and A2 are within a coherence region. Using this model to express
γ in terms of the phase differences, one can demonstrate (Problem 11.11) the
general relationship that

Photon bunching is
similar to traffic on a
single-lane road. Cars do
not arrive statistically, but
tend to arrive in groups,
each being led by a
slower-than-average car.

γ (2)(r, τ) = 1+ |γ (r, τ)|2. (11.60)

It follows that the degree of coherence, whether temporal or spatial, can
be measured by studying the correlation coefficient γ (2)(τ ) or γ (2)(r),
respectively.

Brown and Twiss developed these ideas in 1955–7 and confirmed them
experimentally. It is important to appreciate that the frequency spectrum of
the fluctuations is essentially flat from 0 to 1/τc, so that if the experimental
apparatus is capable of measuring only a limited bandwidth of, say, δf , the
observed fluctuations will be reduced by a factor of δf τc. For broad-band
(white) light, this factor is dismally small, and electronic detection in the 1950s
was limited to maybe δf ≈ 50 MHz. In their laboratory experiments, Brown and
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Figure 11.17

Measurement of temporal
and spatial coherence by
correlation of intensity
fluctuations. (Brown and
Twiss (1956))
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Twiss (1956) therefore used a monochromatic source with narrow bandwidth,
having a relatively long τc which maximized the fluctuation amplitude. They
recorded electronic correlation of the signals from two photocells (Fig. 11.17),
which agreed with the theory and paved the way to the astronomical technique
of intensity interferometry (§11.8.3).

It is clear from (11.60) that γ (2)(τ ) ≥ 1 for any classical wave. We shall
show in Chapter 14 that there also exist quantum forms of light for which
γ (2)(0) < 1, and which therefore have no classical equivalents.

11.8 The application of coherence theory to
astronomy: Aperture synthesis

Coherence studies have made a major contribution to astronomy, since mea-
surement of the spatial coherence function at the Earth’s surface in principle
allows the intensity distribution in a distance source to be deduced. The sce-
nario that we outlined above, where the source has small angular size and is
situated in a surrounding dark field is of course ideal for astronomy, but typical
coherence distances are of the order of metres, so that large-scale equipment is
needed.

The idea was proposed long before coherence theory was formalized, and can
be illustrated primitively by taking a photograph of a scene with many isolated
light sources through a pair of slits with separation d ≈ 1.5 mm (Fig. 11.18).
Each source produces Young’s fringes around its image, and the contrast of
the fringes depends on the size of the source via the spatial coherence function
γ (d). The photograph in the figure shows many sodium (λ = 600 nm) street
lights at different distances from the observer (indicated roughly in the margin);
the lights themselves have a size of about 20 cm, so that their angular diameter
is about (20 cm/distance). It is easy to see that the most distant lights (about
2.5 km away) give the highest contrast fringes. The coherence distance is about
1.5 mm when such a lamp is at a distance of about 450 m. Essentially, stellar
interferometry involves making such observations quantitative. For Betelgeuse,
which is one of the largest stars visible, we saw that the coherence distance at
λ = 500 nm is about 2 m, and this indicates a minimum scale for astronomical
observatories carrying out such measurements; but more distant sources have
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Figure 11.18

A night-time urban scene
with several sodium street
lights at different distances,
photographed through a
pair of horizontal slits
separated by about
1.5 mm. The fringe visibility
improves with distance.
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much smaller angular diameters, and so the scale needed may be tens or
hundreds of metres (see Fig. 11.1).

11.8.1 The Michelson stellar interferometer

The first successful attempt to measure a stellar diameter was made by
Michelson, who designed in 1890 a stellar interferometer that enabled dimen-
sional measurements on several large stars. This instrument can be regarded
as a practical realization of the optical stethoscope for the case discussed in
§11.6.1. In this interferometer (Fig. 11.19) the sizes of the exit apertures M2 and
M3 are of the order of the distance M2M3, therefore only a few fringes form and
the time difference τp in (11.29) is small. This obviates the need for a narrow
bandwidth of the illumination. We saw in the experiment described in §11.6.5
that the visibility of the fringes, measured as a function of the pinhole separation

Because of the presence
of atmospheric
turbulence, which is
discussed more fully in
§12.7, no astronomical
telescope can achieve
even approximately the
Rayleigh limit of
resolution (§12.2.1). The
turbulence only causes
the fringes to move
around, but does not
affect their visibility.

x = M1M4, was related quantitatively to the size of the source; the van Cittert–
Zernike theorem (§11.6.3) shows that γ (x), related to the fringe visibility, can
be Fourier transformed to yield the stellar intensity distribution in the direction
of P1P2. But really the fringe visibility measures only |γ (x)| and the phase is not
known, and so the Fourier transform cannot be performed completely. However,
Michelson assumed that the star has a centre of symmetry to make the problem
soluble. This point is discussed more fully in another connection in §12.7.1.

Michelson’s first ‘proof of concept’ stellar interferometer was constructed by
putting a screen over the objective of a telescope and making two holes in it in
such a way that their separation is variable. He used it to measure the diameter
of one of Jupiter’s moons. The point spread function of the telescope, modified
by the mask, is now a circular ring pattern crossed by interference fringes (like
the inset to Fig. 11.19). When a source of finite diameter α replaces the point
source the visibility of the fringes depends upon the coherence between the
illumination of the two circular holes. As the separation of the holes is increased,
the fringes become less and less clear, disappearing completely when the
separation is 1.22λ/α. Michelson used this property to measure the diameter.
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Figure 11.19

Layout of the Michelson
stellar interferometer.
Small corrections to the
relative path lengths could
be made while observing
the fringes by using a pair
of sliding prisms, and
overlap of the images by
rotating the compensator
plate. The circle shows a
simulation of the type of
fringes seen.
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If the angular diameter α of the star is very small, the separation of the holes
will need to be very large before the fringes disappear. We saw earlier that to
measure the diameter of Betelgeuse, the two apertures must be separated by
distances up to at least 2 m. Michelson solved this problem in an ingenious
manner by a mirror system (analogous to the optical stethoscope) mounted on
the Mount Wilson telescope in Pasadena, CA, as illustrated in Fig. 11.19. The
coherence measured is clearly that between the light at mirrors M1 and M4,
which were mounted on racks to vary their separation. The interference pattern
observed is that arising from the two apertures M2 and M3, and the scale of the
fringes can therefore be made conveniently large by putting the holes M2 and
M3 close together. Since the starlight is not monochromatic, it is very important
to ensure that the path lengths from the star to the image plane are equal to an
accuracy of about a wavelength, otherwise measurements of the visibility will
not be accurate. This was done by first pointing the telescope at the star (by
Fermat’s principle, the paths should then be equal), and then correcting small
residual path differences by tilted glass plates in the optical paths of the two
beams. Then only fringe jitter caused by atmospheric path differences had to
be overcome by the experimenter’s expertise.

The most successful Michelson stellar interferometer was built on a beam
6 m long mounted on the 2.5 m Mount Wilson telescope (Michelson (1927)).
The input mirrors M1 and M4 had diameters about 10 cm. Unfortunately, the
inefficient use of light by this instrument and the need to detect the fringes
dancing with the atmospheric scintillation limited its use as a visual instrument
to stars of exceptional brilliance; some 20 stars within its measurement capabil-
ity were measured by Michelson and his colleagues. But it proved that, using
coherence measurements, the atmospheric limitations to stellar resolution can
be overcome, and planted several seeds which later sprouted.

The length of the
interferometer beam
was chosen so as to be
sufficient to confirm a
theoretical estimate
of the diameter of
Betelgeuse, made by
Eddington. See Box 11.2.
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Box 11.1 Stellar images by phase closure
and aperture masking

In order to use the measured values of γ (r) = |γ (r)| exp[iφ(r)] to cre-
ate an image of the star, one needs to know φ as well as |γ |. If there
were no atmospheric jitter to the fringes, the phase could in principle be
determined by observing where the central fringe is situated with respect
to the optical axis. However, in practice this is not possible. What can be
done, however, is to compare the phases of different fringes when observed
simultaneously, and therefore suffering from the same atmospheric jitter.
Suppose that in Michelson’s ‘proof of concept’ experiment there are three
entrance apertures, A1, A2 and A3. Then there will be three simultaneous
sets of interference fringes, and if the vector distances A1A2, A2A3 and
A3A1 are all different these sets can be distinguished because they have
different periods. Now if the atmospherically induced phase shift at Ai is
ψi (i = 1, 2, 3), the fringes due to AiAj will be shifted from their correct
positions by phase ψi − ψj. Therefore, the measured phase of the fringes
will be φ(AiAj) + ψi − ψj. Now if all three sets of fringes are measured
simultaneously, the sum of the measured fringe phases is

�ijk=[φ(AiAj)+ψi−ψj]+ [φ(AjAk)+ψj−ψk]+ [φ(AkAi)+ψk −ψi]
=φ(AiAj)+ φ(AjAk)+ φ(AkAi), (11.61)

which is independent of the atmospheric phases (or, for that matter, of any
telescope figuring or other localized phase errors, too). Using this formula,
called phase closure, with three or more apertures Ai, the phase of γ can be
determined and real stellar images formed. It is somewhat reminiscent of the
direct method of phase determination in X-ray diffraction patterns (§8.8).

Michelson’s
‘aperture-masking’
experiment has been
revived, using phase
closure and an array of
apertures with distinctly
different separations,
called a ‘non-redundant
array’. This has led to
many beautiful images of
larger stars (Tuthill et al.
(2000)). For convenience,
the mask is situated on
the secondary mirror of a
Cassegrain telescope, and
not on the aperture.

11.8.2 Aperture synthesis in radio astronomy

Following Michelson’s pioneering experiments at optical frequencies, the sub-
ject of astronomical interferometry lay dormant till the discovery of radio
emission from stars by Jansky in 1932. This led to the field of radio astronomy.
An important difference between radio and optical detection is that at radio fre-
quencies it is possible to record the actual value (amplitude and phase) of the
electric field of the waves received from stellar objects, and not just their inten-
sity. One does this by mixing (heterodyning) the current from an antenna with
that from a very stable local oscillator of frequency close to that of interest,
thereby creating a low-frequency beat signal which can be recorded. The band-
width of the beat signal is limited by the frequency response of the recording
electronics. The beat signals from different antennae can either interfere in real
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time, or interference between the recorded signals can be performed at a later
time. This facilitates interferometry using well-separated antennae, and large
antenna arrays were constructed to simulate telescopes of a similar size, thus
obtaining high-resolution images of stellar sources at radio frequencies.

A breakthrough in radio astronomy occurred when it was realized by M. Ryle
that Michelson’s idea of measuring stellar images by using a pair of apertures
with adjustable separation r could be applied to radio antennae too, the inter-
ference signals from the various aperture pairs being correlated post factum to
generate γ (r). The technique is a direct application of the van Cittert–Zernike
theorem (§11.6.3) and is called aperture synthesis. This name arises because
essentially it allows us to build up the equivalent of a large aperture telescope
by sampling its area with point measurements at as many vectors r as possi-
ble. The geographical locations of the individual antennae are chosen so as to
sample the synthetic aperture area as uniformly as possible, and of course the
spatial resolution is determined by its outer dimension, which corresponds to
the largest value of the separation between the two antennae. Ryle received the
Nobel prize in 1974 for implementing aperture synthesis.

It is important to realise that the mixing technique makes the radiation
received essentially quasi-monochromatic, since the bandwidth of the low-
frequency signal is much smaller than the frequency of the local oscillator. For
example, if the wavelength chosen is 10 cm, and the bandwidth 100 MHz, the
ratio ε/ω0 is 0.03 (cf. Fig. 11.4). The techniques of aperture synthesis in radio
astronomy are described in detail by Rohlfs (1996) and by Thompson (2001).
More recently, the same techniques have been extended to the infra-red region,
using a stabilized laser as a local oscillator (Hale et al. (2000)).

The basis of the synthetic aperture method is as follows. Consider a
Michelson stellar interferometer, in which we observe the interference pat-
tern between the signals received at two apertures. At radio frequencies we
use two sensitive point-like receivers7 at positions r0 and r0 + r, separated by
vector r, the length of which can be changed by the observer. We record the
values of the two signals, E(r0, t) and E(r0 + r, t), for a period of time and
calculate γ (r) from them using (11.62).

Two geometrical considerations regarding the size and sampling of the syn-
thetic aperture are as follows.
1. As the Earth rotates, during one day the vector r traces out a cone in inertial
space (Fig. 11.20). When this trace is projected onto the (x, y) plane normal to
the direction of the star ŝ, we have the effective aperture associated with this
baseline in one day, which is shown in the figure for NS and EW baselines.
2. When we introduced the spatial coherence function γA1A2(τ = 0) in §11.6.2
and showed that its Fourier transform is the source image, we required for sim-
plicity that A1 and A2 be within a coherence length of the same wavefront. This

7 They are usually parabolic dishes focusing the radiation from the source onto the antennae, so as
to achieve maximum sensitivity in the direction of interest. The idea is analogous to the blazed
grating, §9.2.5.
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Figure 11.20

Aperture synthesis in radio
astronomy: (a) shows two
baseline vectors r1 (NS)
and r2 (EW) on the Earth;
(b) and (c) show diurnal
traces of r1 and r2 and
their projections on the
(x, y) plane normal to the
star axis.
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is clearly not the case in an aperture-synthesis system, because both antennae
are constrained to be on the Earth’s surface. However, we can relate the signal
at A2 to that at the equivalent point in the wavefront through A1 by introducing
a time delay r · ŝ/c (Fig. 11.20(b)). Thus the coherence function is

γ (r) = 〈E(r0, t)E∗(r0 + r, t − r · ŝ/c)〉
[〈|E(r0, t)|2〉〈|E(r0 + r, t)|2〉] 1

2
, (11.62)

where the complex conjugate E∗ is derived from E using a Hilbert transform.
Since γ (r) is the Fourier transform of the source intensity, which is a real
function and therefore γ (r)= γ ∗(−r), collection of data for a given |r| is
complete in 12 hours, although for part of the day a given source might be
obscured by the Earth. In successive half-days the spacing between the antennae
can be progressively changed up to some maximum depending on the length
of the observatory (which may be kilometres) and the astronomers’ patience.
Clearly, although the outer dimensions of the synthetic aperture are defined by
the longest baseline, values of γ (r) are not measured for every intermediate
value of r. One then uses the van Cittert–Zernike theorem to compute, from
the values of γ (r), the intensity picture of the stable radio universe at the
wavelength chosen. The point spread function of the synthetic telescope is the
diffraction pattern of an ‘aperture mask’ which has holes at those values of
r for which γ (r) has been measured, and the resulting raw image has to be
processed by deconvolution to achieve the best experimental picture.

Only stellar sources
that do not change
significantly within the
time of the experiment
can be investigated by
aperture synthesis.

The resolution is determined by the maximum dimension of the array. For
example, if this is 4 km, at 2 cm wavelength an angular resolution of 5 ×
10−6 rad, approximately 1 arcsec, is achieved, which is about the same as the
seeing limit of of an optical telescope. Practical aperture synthesis observatories
use more than two antennae simultaneously, but the same principle is involved.

Taking this to its extreme, observatories the world over now cooperate
in taking simultaneous measurements of the same sources synchronized to
very accurate atomic clocks. The results are then processed together at a cen-
tral laboratory. This is called very long baseline interferometry (Kellerman
and Thompson (1988)). With aperture synthesis, the radio universe can be
investigated to a resolution determined by a baseline of intercontinental dimen-
sions. Of course, in this case the aperture mask is quite dilute, because both
observatories have to observe the same source at the same time.
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Figure 11.21

Layout of the intensity
interferometric observatory
at Narrabri, Australia.
Notice that the telescopes
can be moved round the
track so that any baseline
up to the track diameter
can be achieved, with zero
path difference between
the star and the telescopes.
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11.8.3 Brown and Twiss’s intensity interferometer

The next major development in optical stellar interferometry was the work of
Brown and Twiss in 1956–72. They realized that the correlation of intensity
fluctuations (§11.7) could be used to measure |γ (r)| and that the frequency
band of the observation δf could be chosen so as to avoid the low frequencies
(<200 Hz) typical of atmospheric turbulence. Moreover, since no real wave
interferometry was involved, stability of path length differences was not criti-
cal. The story of this development is described delightfully by Brown (1974).
Brown and Twiss’s ‘proof of concept’ instrument consisted of two searchlight
mirrors with variable separation r and a photo-cell at the focus of each. The
two were focused on the star Sirius and the correlation between fluctuations in
the photo-currents was measured as a function of r. From the data, γ (2)(r) in
(11.60), the dimensions of the coherence region, and thus the stellar dimen-
sions, could be deduced. To improve the factor δf τc, it was necessary to use
an optical filter to increase τc as much as possible. Thus a lot of light was
thrown away, but this allowed large collectors to be used without saturating the
photo-cells.8

Following the success of the initial experiments, an observatory dedicated to
astrophysical measurements by fluctuation correlation, called intensity inter-
ferometry, was set up at Narrabri, Australia (Fig. 11.21), using collectors
with diameter 6.5 m and a maximum baseline of 188 m. These gave a res-
olution limit at 0.4μm of 5 × 10−4 arcsec. Many important measurements

8 It therefore turns out that τc cancels out when the signal-to-noise of the signal is calculated.
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Figure 11.22

Schematic diagram of
an optical stellar
interferometric observatory.
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were made with this system, and it was used to investigate some 200 stars,
which essentially exhausted the stellar objects of sufficient brilliance for its
application (Brown et al. (1974)). In 1972 the observatory was closed, and
the baton handed to the newly reborn technique of amplitude interferome-
try, which would later be shown experimentally (Davis and Tango (1986)) to
be some hundreds of times more sensitive, provided that the technical prob-
lems associated with baseline stability and atmospheric fluctuations could be
overcome.

11.8.4 Modern stellar interferometry

Since the 1970s the optical stellar interferometer based on Michelson’s instru-
ment has been revived as an astronomical instrument. Modern versions, of
which more than 12 have been built (see Labeyrie et al. (2006)) are constructed
with two or more telescopes, having apertures up to 10 m diameter, separated
by distances reaching as far as 600 m. They allow investigation of stars up to
about 9th magnitude. When an interferometer has three or more telescopes,
phase closure (Box 11.1) can be used to create stellar images. Figure 11.22
shows a schematic optical diagram indicating most of the important com-
ponents, and Fig. 11.1 shows an aerial view of one of the interferometric
observatories.
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The stellar interferometers that are currently operating at wavelengths shorter
than 5μm have the following features:9

• They are based on several telescopes with entrance pupils ranging from
14 cm to 10 m, which are pointed simultaneously to the star of interest. The
smaller telescopes are often moveable from site to site, so that different
baselines can be employed on different nights. The longest baseline built
is 640 m.

• The light leaving each telescope goes through a tip-tilt mirror system operat-
ing with about 1 ms response time to ensure that the telescope stays exactly
focused on the star, despite atmospheric effects.

• The larger telescopes use adaptive optics systems to correct the aperture
phase for atmospheric turbulence (Hardy (1998)).

• The telescopes are afocal (§3.5.2) and project the starlight as a parallel beam
to the beam-combining centre. Usually, these long paths are enclosed in
vacuum pipes to prevent further atmospheric turbulence since their routes
are close to the ground, where turbulence would be greatest. Where the paths
change direction, mirror groups are used rather than single mirrors in order
to preserve polarization.

• In contrast to the Michelson stellar interferometer, where the whole inter-
ferometer was pointed at the star and the path difference between the two
interfering waves was always close to zero, the telescopes are now fixed at
ground level, resulting in large path differences which change with time.
These have to be compensated by ‘path length equalizers’, which are long
optical benches with a moving retro-reflector that add a controlled and con-
tinuously changing path length to the beam from each telescope, so that the
total paths from star to interferometer via each telescope are equal. These
path-length equalizers need to be almost as long as the maximum baseline
(see Fig. 11.23).

• Interference between the beams from the telescopes is carried out by a system
that allows each beam to interfere with each other beam. This is either built
on an optical table, using conventional beamsplitters and mirrors, or uses
integrated-optics devices built on a chip (Fig. 11.24). The interference fringes
are measured either by sensitive point detectors or by imaging CCDs. The
optics may include filters or dispersive units which limit the bandwidth in
order to improve fringe contrast and to make simultaneous measurements
in different wavelength regions. When there are three or more telescopes
operating simultaneously, the phase of γ can be measured using phase
closure.

• Each optical path includes a length-modulating mirror which is used to
stabilize the fringe phase via a feed-back circuit, so that the fringes are stable

9 One interferometer, ISI, which works at 11μm, uses heterodyning with a CO2 laser and is more
similar in concept to a radio interferometer; see Box 11.2.



397 11.8 Aperture synthesis in astronomy

Figure 11.23

Photograph of the
path-length equalizer at
CHARA (Georgia Institute of
Technology).

Figure 11.24

An integrated-optics beam
combiner for three
telescope inputs (IONIC).
Contrast the size of this
item with the path-length
equalizer! (Photograph
courtesy of Alain
Delboulbe)

over long times and their contrast and phase can be accurately determined.
The modulator is often a component of the retro-reflector in the path-length
corrector. When the fringes are measured by point detectors, the modulating
mirror is used to sweep the path length through a few wavelengths in order
to measure the fringe profile.

The achievements of high-resolution stellar interferometry include accurate
measurements of stellar dimensions, images of the faces of distant stars and
measurements of their atmospheres, and studies of the dynamics of double
and triple star systems. The future hopes include visualization of extra-solar
planetary systems.



398 Coherence

Figure 11.25

Image of Betelgeuse made
by the Cambridge Optical
Aperture Synthesis
Telescope (COAST) at
782 nm. (Haniff et al.
(2004))
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Box 11.2 The diameter and face of Betelgeuse

The supergiant star Betelgeuse (α-Ori), the reddish left shoulder and bright-
est star in the Orion constellation, has been used as a ‘test case’ for stellar
interferometry of many types at several wavelengths. We only mention the
optics here, avoiding a discussion of the astrophysical consequences of the
observations! Betelgeuse is sufficiently close to us for its distance to be
determined by parallax as 430 light-years, so that angular coordinates can
be converted to linear coordinates on the star. The diameter of Betelgeuse
was originally measured by Michelson in 1921 as 0.047 arcsec at about
550 nm wavelength to confirm a theoretical estimate by Eddington, which
was 0.051 arcsec. Since that time, the star has been measured and imaged
by many instruments, at wavelengths from 7 mm down to 370 nm. There
are determinations made by five different interferometers, lunar occultation
(the time taken for the star to disappear when intersected by the Moon’s
edge) and aperture masking (Box 11.1). Moreover, images of its surface
have been created and indicate the existence of varying hot spots that would
bias the apparent diameter downwards (Fig. 11.25).

The measured diameters vary with wavelength in a fairly smooth manner,
as would be expected of a star with an atmosphere, where different wave-
lengths sample different atomic or molecular components. What is more
surprising is that the diameter at a constant infra-red wavelength appears to
be falling monotonically at quite a large rate amounting to 15% in the last
15 years. Detailed measurements were made by the Berkeley Infra-red Spa-
tial Interferometer (ISI) which works by combining the signals from three
1.65 m telescopes, whose positions can be changed, after their light has been
heterodyned with light from a stabilized carbon dioxide laser at 11.15 μm.
The diameter measured in 1993 at 11.15 μm was 0.0560 ± 0.0010 arcsec,
which had fallen significantly to 0.0530 ± 0.0003 arcsec in 2000 and to
0.0480± 0.0008 arcsec in 2009 (Townes et al. (2009)).
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Chapter summary

In this chapter we studied the classical theory of coherence, and saw some of

its applications to spectroscopy and astronomy. We learnt:

• About the difference between real waves and the ideal monochromatic

wave from a point source;

• How the spectral width of a quasi-monochromatic source results in

phase and intensity fluctuations in the emitted wave-form;

• How the angular size of the source results in phase and intensity

fluctuations in the wavefront;

• How to express these fluctuations in terms of a complex coherence

function which relates the signals at two points that are separated in

time or space;

• How to measure the coherence function by using interferometry;

• That the spectrum of the source is the Fourier transform of the temporal

coherence function (Wiener–Khinchin theorem), leading to the

technique of Fourier spectroscopy;

• That the source irradiance distribution is the Fourier transform of the

spatial coherence function (van Cittert–Zernike theorem);

• How this relationship is used in radio and optical aperture synthesis to

create very highly resolved astronomical images, using a small number

of widely distributed moveable telescopes.

Problems

11.1. Estimate the Doppler and collision linewidths of emission from H2O
molecules at λ = 0.5μm, at 300 K and atmospheric pressure. Assume
the collision cross-section to be the same as the geometrical size of the
molecule.

11.2. Monochromatic light is scattered at 90◦ from a cell containing 10−16 g
particles in suspension at 300 K. Estimate the coherence time and
linewidth of the scattered light.

11.3. A laser beam is spatially filtered by focusing it through a pinhole, to
give it a smooth intensity profile across the wavefront (spatial filter).
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Figure 11.26

Fourier interferogram.
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The laser beam has a Gaussian profile (with the addition of noise)
with σ = 1 mm, and is focused by a×50 microscope objective having
focal length 5 mm. What size of pinhole would be suitable to transmit
a homogeneous beam? What focal length lens will then convert it to
a parallel beam with diameter 10 mm? What would be the effect of
using too large or too small a pinhole?

11.4. A Fourier transform spectrometer gives an interferogram, the positive
half of which is shown in Fig. 11.26. What qualitative deduction can
you make about the source spectrum?

11.5. In asymmetric Fourier transform spectroscopy, one light beam alone
travels through a transparent dispersive medium, before returning
to the beamsplitter. From the full interferogram (both negative and
positive d), both the absorption spectrum and the dispersion can be
deduced. Write a general formula for the interferogram in such a case.
Consider the following examples, by deducing the interferogram and
then showing how its properties are related to those of the sample.
Assume quasi-monochromatic light with centre wavenumber k0.
(a) A transparent slab of material with thickness D and refractive

index n(k) = n0 + β(k − k0).
(b) A similar slab with refractive index n(k) = n0 + γ (k − k0)

2.

11.6. The spectrum of a light source is J(ω) = δ(ω − ω1) + δ(ω − ω2).
Discuss the output spectra obtained from a Fourier spectrometer as a
function of dmax, and the improvement obtained when the observed
interferogram I − IM(d/c) is multiplied by an ‘apodizing function’
of the form cos(dπ/2dmax) before being transformed. How is the
resolution limit affected by the apodization?

11.7. When two light waves of equal intensity interfere, the visibility of
the interference fringes is equal to the degree of coherence (11.31).
Derive an equivalent relationship when the two interfering waves have
differing intensities I1 and I2.
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Figure 11.27

Lloyd’s mirror with two
incoherent sources.
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11.8. Calculate the spatial coherence function in the plane of a table illu-
minated by a standard fluorescent tube at a height of 10 m. Assume
monochromatic light.

11.9. Two incoherently illuminated points sources A and B of the same
wavelength are situated on a vertical line at heights h1 and h2 above
the plane surface of a metal mirror M (Fig. 11.27). The interference
pattern is observed on a screen at distance L. What is seen? Use this
as a model to explain the idea of the coherence area resulting from an
extended source AB, which has an angular size α. (Assume all angles
to be small.)

11.10. A strange star consists of a laser with a long coherence time of the
order of seconds. Why would it not be possible to measure its diameter
with a Brown–Twiss interferometer, but only with a Michelson stellar
interferometer?

11.11. Prove (11.60), that the intensity correlation coefficient c(τ ) = 1 +
|γ (τ)|2, by evaluating γ (τ) in terms of the model of §11.1.2. (Take
care how you calculate averages!)

11.12. Show that the real quasi-monochromatic field E(t) of frequency ω0
can be represented, for the purpose of calculating γ , by the associated
complex field E(t)+ iE(t − π/2ω0).

11.13. An aperture-synthesis array consists of three telescopes at the corners
of a triangle of sides 30, 40 and 50 m, where the 40 m arm is N–S. It
works at a wavelength 1μm. It is situated at 60◦ latitude and observes
a star 30◦ from the Earth’s axis. Find the point spread function for this
system. Assume observations can be made for 24 hours each day.

11.14. A double star consists of two component stars with angular diameters
α and β, separated by angle θ . The stars have the same tempera-
ture. Determine γ (k0x) along an axis in the plane containing the two
stars. What information would be necessary in order to determine the
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orientation of the doublet, i.e. which star is at greater x, and how can
this information be obtained?

11.15. Show that the field of view of an aperture-synthesis system is deter-
mined by the shortest baseline used in the array. To do this, consider
the signal received from two point sources, when the angular dis-
tance between them becomes large. (This is essentially the reason that
aperture synthesis is not an effective tool for extended sources.)
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12 Image formation

Most optical systems are used to create images: eyes, cameras, microscopes,

telescopes, for example. These image-forming instruments use lenses or mirrors

whose properties, in terms of geometrical optics, have already been discussed

in Chapter 3. But geometrical optics gives us no idea of any limitations of the

capabilities of such instruments and indeed, until the work of Ernst Abbe in 1873,

microscopists thought that spatial resolution was only limited by their expertise

in grinding and polishing lenses. Abbe showed that the basic scale is the wave-

length of light, which now seems obvious. The relationship between geometrical

and physical optics is like that between classical and quantum (wave) mechanics;

although classical mechanics predicts no basic limitation to measurement accu-

racy, it arises in quantum mechanics in the form of the Heisenberg uncertainty

principle.

This chapter describes the way in which physical optics is used to describe

image formation by a single lens (and by extension, any optical system). The

theory is based on Fraunhofer diffraction (Chapter 8) and coherence (Chapter 11)

and leads naturally both to an understanding of the limits to image quality and

to ways of extending them. We shall learn:

• how Abbe described optical imaging in terms of wave interference;

• that imaging can be formulated as a double process of diffraction;

• what are the basic limits to spatial resolution;

• how microscopes are constructed to achieve these limits;

• how the resolution properties of an imaging system can be described

quantitatively;

• methods by which microscopes can be designed to show information, such

as phase changes, which are normally invisible;

• about holography, in which the two diffraction processes implicit in imaging

are separated in time, thereby allowing the storage and reconstruction of

three-dimensional images;

• how, today, Abbe’s resolution limit can be surpassed, and what is the price

that has to be paid for such ‘super-resolution’;

• how diffraction ideas have also been used to overcome the resolution limit

of astronomical telescopes imposed by the Earth’s atmosphere.

The statement of
unlimited resolution
cannot yet be extended
to non-fluorescent,
externally illuminated
objects.

You can see from this summary that there are two main directions to the

chapter, which we shall now briefly illustrate, before going on to the details. The
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Figure 12.1

A STORM image of
microtubules (§12.6.5):
(a) full-field (scale bar
3μm), (b) bright-field
image of the region of (a)
denoted by the square and
(c) STORM image of the
same region, scale bar
500 nm. (Images courtesy
of X. Zhuang; Zhuang
(2009))

Figure 12.2

Comparison of images of a
live cell taken by (a)
bright-field, (b) Zernike
phase-contrast and (c)
Nomarski DIC techniques,
in a Zeiss Axio-observer
microscope. (Images
courtesy of Kinneret Keren)

Bright field Zernike phase contrast Nomarski DIC

10 μm

first consideration is resolution; what is the smallest entity that we can see in a

microscope or telescope? The diffraction theory of imaging gives clear answers to

these questions; in the case of the microscope, half a wavelength of light – about

200 nm – is the limit. So, naturally, the challenge is to do better than this! In recent

years several imaging methods have been devised that achieve a resolution of a

small fraction of the wavelength, because of new ideas that have sprung from

our understanding of the physical optics of imaging. Today we can show that,

given sufficient light, images of fluorescent objects can now be made with

almost unlimited spatial resolution, and a recent example is shown in Fig. 12.1.

The second question raised in the chapter is how to visualize transparent objects

in which optical phase retardation, rather than absorption, is dominant, as in

many biological objects. This question has been answered elegantly by several

methods, each emphasizing a different aspect of the phase structure, and two

examples are shown in Fig. 12.2.

12.1 The diffraction theory of image formation

In 1873 Abbe proposed a rather intuitive method of describing the image of
a periodic object, which brought out clearly the limit to resolution and its
relationship to the wavelength. We shall first describe his physically intuitive
method, and later formalize it in terms of a double Fourier transform.
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Figure 12.3

Formation of the image of
a diffraction grating. Five
orders of diffraction j are
shown, producing five foci
Sj in the plane F . The
angular semi-aperture of
the lens is α.
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12.1.1 Abbe theory: the image of an infinite periodic object

We have seen in §8.5.4 that if parallel light falls normally upon a diffraction
grating several orders of diffraction are produced (Fig. 12.3). Let us place the

One outcome of this
theory is to suggest
various methods of
improving images, in
particular to create
contrast from phase
variations that are
normally invisible.

grating in plane O and form its image using the diffracted light. Each order m
is a plane wave, and the set of plane waves can be refracted by a lens so that
they converge individually to a set of points Sj in the focal plane F of the lens
and then continue so that they all overlap again in the plane I. Here they form
a complicated interference pattern; this pattern is the image.

The advantage of taking a diffraction grating as an object is that the process
of image formation can easily be seen to consist of two distinct stages. First,
we have the stage between O and F . In the latter plane we have produced the
Fraunhofer diffraction pattern of the object. Second, we have the stage between
F and I. The orders S2, S1,. . . , S−2 behave like a set of equally spaced point
sources and the image is their interference pattern. Thus the process of image
formation appears to consist of two diffraction processes, applied sequentially.

The process of image
formation can be
described as two
Fraunhofer diffraction
processes occurring
sequentially.

The second diffraction process in this example can also be analyzed without
difficulty. Each pair of orders Sj and S−j produces Young’s fringes in the plane
I. If the object grating has spacing d, the order Sj appears at angle θj given, for

Figure 12.5 shows an
imaging system where
the description as a
double diffraction process
is very clear.

small angles, by

θj ≈ sin θj = jλ/d. (12.1)

The small-angle approximation will be seen in §12.1.2 to be unnecessary. By
simple geometry one can see from Fig. 12.3 that

θj ≈ tan θj = hj/U, (12.2)

θ ′j ≈ tan θ ′j = hj/V, (12.3)
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and so

θ ′j ≈ Uθj/V. (12.4)

The waves from the first orders, S1 and S−1, converge on the image at angles
±θ ′1 and thus form periodic fringes with spacing

d′ = λ/ sin θ ′1 ≈ λV/θ1U = Vd/U. (12.5)

Thus a magnified image has been produced; the magnification is M = V/U .
Fringes from the higher orders produce harmonics of this periodic pat-
tern, with spacings d′/j, and contribute to determining the detailed structure
of the image. The finest detail observable in the image is determined
by the highest order of diffraction that is actually transmitted by the
lens.

But if even the first order is outside the cone of angles α transmitted by
the lens, i.e. θ1 >α, only the zero order contributes to the image and the

The greater the extent of
the Fraunhofer diffraction
accessed by the imaging
lens, the better the
resolution. This is
achieved by using as
large an angular aperture
as possible.

periodicity is absent. Thus the spacing d is not resolved if sin θ1= λ/d < sinα,
or, for resolution,

dmin = λ

sinα
. (12.6)

The zero order contributes a constant amplitude. This zero-order term is of
crucial importance. Without it, the interference pattern of the first orders would
appear to have half the period of the image, because we observe intensity, and
not amplitude; the function sin2x has half the period of sin x (see Fig. 12.6( f )).
However, the addition of the constant restores the correct periodicity to the
intensity, since (c + sin x)2 = c2 + 2c sin x + sin2 x, which has the period of
sin x.

The use of an infinite grating as an object has, of course, oversimplified
the problem. If we had used a finite grating, there would be subsidiary orders
(§8.5.3) which also transmit information. The simple result above therefore
needs some modification if the object is more complicated, but it expresses the
essence of the resolution limit.

Abbe’s argument applies
to an infinite periodic
object, and may not be
exact if the object is finite
in extent: see §12.6.7.

12.1.2 The Abbe sine condition

Although the last section might suggest that a faithful image would be built
up only if the angles of diffraction were kept small, Abbe realized that larger
angles could be employed if the ratio sin θ/ sin θ ′ rather than θ/θ ′ were the
same for all values of θ . If we had, instead of (12.4), the equation
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Figure 12.4

Ray diagram for the
demonstration of the
image–object relationship.
The coordinate ξ ≡ uF/k0.
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sin θj

sin θ ′j
= M , (12.7)

we should then have the period of the fringes in the image

d′j = λ/ sin θ ′j = Mλ/ sin θj = Mdj. (12.8)

The harmonics would then have exactly the right periods to fit the fundamental
d′1; and the image would be perfect. The important aplanatic lens obeying
(12.7) was described in §3.8, and forms the basis of high-power microscope
objectives.1 The Abbe sine condition does not state that sin θ/ sin θ ′ is a constant
in any particular imaging system, but requires that this condition be met if the
system is not to produce aberrations when large angles θ and θ ′ are used.

The Abbe sine condition
is not satisfied by a
symmetrical thin lens, for
which the tangents, not
the sines, of the angles
have a constant ratio.

12.1.3 Image formation formally described as a double
process of diffraction

In §12.1.1 we introduced, in a qualitative manner, the idea that image formation
can be considered as a double process of diffraction, and in §12.1.2 we saw the
Abbe sine condition to be necessary for its exact realization. In this section we
shall formalize the approach mathematically in one object dimension. There is
no particular difficulty in the extension to two dimensions.

The analysis is based on the scalar-wave theory of diffraction, and assumes
an object uniformly and coherently illuminated by a plane wave. The wave
leaving the object is represented by the complex function f (x) (multiplied, of
course, by e−iω0t, which is carried unchanged through all the equations, and
will be ignored). The object is imaged by a lens, such that the object and
image distances are U and V ; the object dimensions are small compared with
U (Fig. 12.4). The amplitude of the wave reaching point P in the focal plane F

In the back focal plane of
the imaging lens, the
amplitude is given by the
Fourier transform of the
object, multiplied by a
geometrical phase factor.

1 The requirement sin θ/ sin θ ′ = constant can be deduced from purely geometrical reasoning as
a requirement for the absence of spherical aberration and coma (see Kingslake (1978)) but the
above argument is more physically intuitive and emphasizes its importance.
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of the lens is, following the treatment and notation of §8.2 in one dimension,
the Fourier transform of f (x) with the phase delay appropriate to the path OAP:

ψ(u) = exp(ik0OAP)F(u) = exp(ik0OAP)
∫ ∞

−∞
f (x) exp(−iux) dx, (12.9)

where k0 = 2π/λ and u corresponds to the point P:

In §8.2.1 we said that the
phase difference OAP is
not important in
observing Fraunhofer
diffraction patterns. But
here it is crucial in
defining the conjugate
planes, through Fermat’s
principle.

u = k0 sin θ . (12.10)

Now the amplitude b(x′) at Q in the image plane can be calculated using
Huygens’ principle over the plane F .2 The optical distance from P to Q is

PQ = PQ = (PI2 + x′2 − 2x′PI sin θ ′)
1
2

≈ PI − x′ sin θ ′, (12.11)

when x′  PI . If the Abbe sine condition (12.7) is obeyed,

sin θ = M sin θ ′, (12.12)

where M is the magnification. We therefore write, from (12.10),

PQ = PI − x′u/Mk0, (12.13)

whence the amplitude at Q is

b(x′) =
∫ ∞

−∞
ψ(u) exp(ik0PQ) du

=
∫ ∞

−∞
exp(ik0PI) ψ(u) exp(−ix′u/M) du. (12.14)

This is the second Fourier transform in the problem. Inserting (12.9) into
(12.14) we write the relationship between the image b(x′) and the object f (x):

b(x′) =
∫ ∞

−∞

{
exp[ik0(OAP+ PI)]

∫ ∞

−∞
f (x) exp(−iux) dx

}

× exp(−iux′/M) du. (12.15)

The combined phase factor exp[ik0(OAP + PI)] appears at first sight to be a
function of the point P, and hence of the parameter u. This is indeed true if the
planes O and I are chosen arbitrarily. But if they are conjugate planes then by
Fermat’s principle (§2.6.3) the optical path from O to I is independent of
the point P, and the factor can be written as a constant, equal to exp(ik0OI),
and can be taken outside the integral. We are left with the integral

Although this proof that
imaging is an
implementation of the
Fourier inversion has
been demonstrated for a
single-element lens, it is
true for any imaging
system.

b(x′) = exp(ik0OI)
∫ ∞

−∞

[∫ ∞

−∞
f (x) exp(−iux) dx

]

× exp(−iux′/M) du. (12.16)

2 Since this involves interference of spherical waves a factor 1/r ought to be included, but this
has no effect on the physics.
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Figure 12.5 Optical imaging system to illustrate the Abbe theory of image formation. The object
O is illuminated by parallel coherent light from a laser source. It is imaged by the
lenses L1 and L2 onto a distant screen I. The beamsplitter M and lens L3 are used to
form at F ′ a separate image of the Fourier plane F . The various spatial filtering
masks are inserted in the plane F , and F ′ and I are observed simultaneously
(Fig. 12.6).

The integrals are the same as those involved in the Fourier inversion theorem.
From §4.6 we then have

b(x′) = exp(ik0OI)f (−x′/M). (12.17)

This equation represents the well-known fact that the image is an inverted
copy of the object, magnified by the factor M . The above result, first proved
by Zernike, can be stated simply: an optical image can be represented as the
Fourier transform of the Fourier transform of the object. It applies exactly only
if the lens is well corrected; i.e. it obeys the Abbe sine rule and the optical path
OPI is completely independent of the point P.

In the terms of §3.7, a
system that obeys Abbe’s
sine rule has no spherical
aberration and coma.

12.1.4 Illustrations of the diffraction theory
of image formation

In the previous section we have shown theoretically that, when the object is
illuminated coherently, the imaging process can be considered as a double
Fourier transform. We shall now describe some experiments originally carried
out by Porter in 1906 which confirm this result. They are done in an imaging
system, shown in Fig. 12.5, which allows the comparison of the intermediate
transform in plane F and the final image (see also Appendix B). A transparent
object mask is illuminated with a parallel coherent beam, and is imaged by a pair
of converging lenses. We observe the illumination in the focal plane to be the
Fraunhofer diffraction pattern of the object, and this is called the ‘Fourier plane’.
The image is the Fourier transform of that diffraction pattern. The first stage,

The imaging
configuration of Fig. 12.5
is often called a ‘4-f’
system, because the
object–image distance is
2f1 + 2f2.
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that of the formation of the Fraunhofer diffraction pattern, has been adequately
illustrated in Chapter 8. To confirm that the second stage is also a Fourier
transform, we can modify the transform in the focal plane by additional masks
or obstacles and observe the resultant changes in the final image. Such processes
are called spatial filtering by analogy with the corresponding process in the
time domain in electrical circuits. Spatial filtering has some very important
applications which will be discussed in detail in later sections.

Figure 12.6 shows experiments with an object consisting of a piece of gauze.
It is two-dimensional, and is basically periodic, although there are deviations
from exact periodicity as well as defects such as blocked holes. We image it in
the system of Fig. 12.5. The diffraction pattern in the Fourier plane is shown
in Fig. 12.6(a). It contains well-defined spots, corresponding to the periodic
component of the gauze, and an additional light distribution surrounding each
of the orders which expresses the non-periodic components. The complete
image of the gauze is shown in (b).

We now insert various masks into the plane F , and thereby cut out parts
of the diffraction pattern. For example, if the mask transmits only orders on
the horizontal axis (c) the image becomes a set of vertical lines (d); this is the
object that would have given (c) as its diffraction pattern. Similarly, a mask that
transmits only the orders (0,±1), (±1, 0), (e), gives us a different gauze ( f ).
But the irregularities are the same, because they contribute to the diffraction
pattern at all points. The zero order alone, together with the region half-way out
to the next orders, (g), gives us an image in which no gauze is visible, but only
the irregularities – particularly the blocked holes. Finally, a small region of the
diffraction pattern (i) remote from the centre emphasizes a different aspect of
the deviations from exact periodicity, ( j).

12.1.5 The phase problem

A question that is always asked at this point refers to the possibility of sep-
arating the two stages of the image-forming process. Suppose we were to
photograph the diffraction pattern in the focal plane and in a subsequent exper-
iment illuminate the photograph with coherent light and observe its diffraction
pattern. Should we not have produced the diffraction pattern of the diffraction
pattern and have reconstructed the image? The flaw in the argument concerns
the phases of the diffraction pattern. The illumination ψ(u) is a complex
quantity containing both amplitudes and phases. Photography records only the
intensity |ψ(u)|2 and the phase is lost. A second diffraction process as sug-
gested above would be carried out in ignorance of the phases, and therefore
would be unlikely to give the right answer. In fact, the second process would
assume all the phases to be zero, and would indeed give the correct image if
this were so.

The phase of the
transform is just as
important as its
amplitude in
representing the
characteristics of the
object, but cannot be
recorded as easily.
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Figure 12.6

Illustrating the Abbe theory
of image formation with
the aid of the apparatus of
Fig. 12.5. On the left are
the selected portions of the
diffraction pattern of a
piece of gauze, and on the
right the corresponding
images.

(a) (b)

(g) (h)

( i) ( j )

(c) (d )

(e) (f )

The above paragraph describes the situation in the crystallographic analysis
of materials using X-ray, neutron or electron waves. The diffraction pattern
intensity can be recorded, but in order to reconstruct the object, the phases of
the diffracted waves have to be determined. The problem is called the phase
problem. Several approaches to its solution are possible. One is to derive the
phases intelligently from information in the diffraction pattern, using some
prior knowledge of the object. Another, called ‘phase retrieval’ (§8.8), uses

Solving the phase
problem has been a
major goal since the
1930s. No complete
solution exists, but
solutions now exist in
many practical cases.
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analytical relationships between the amplitude and phase in the diffraction
patterns of objects with well-defined constraints, and is the basis of present-day
crystallography.

A third approach is to add an overwhelmingly strong coherent wave to all the
diffracted waves. The result is a diffraction pattern in which all the phases are
equal to, or very close to, that of the strong wave; then the diffraction pattern
can be retransformed to recover the object. Ways of doing this are various.
In optics, we add the wave via a beamsplitter, and the resulting technique
is called holography (§12.5), for which Gabor received the Nobel prize in
1971. In crystallography, a strongly scattering atom is added (or may naturally
exist) at the same position in each unit cell of the crystal, which enables
the crystal structure to be determined. This heavy-atom method has been
used to elucidate the structures of many proteins, including haemoglobin and
myoglobin by Perutz and Kendrew, for which they received the Nobel prize in
1962, and of vitamin B12 by Hodgkin for which she received the prize in 1964.

12.2 The resolution limit of optical instruments

The light that forms the image in an optical system is limited angularly by
the aperture stop (§3.3.2). In this section we shall use the Abbe theory of
image formation in order to understand how the size of the aperture stop and
the coherence of the illumination affect the characteristics of the image, and
in particular how they limit the resolution attainable. It will appear that the
limits of perfect coherence and perfect incoherence of the illumination can be
treated fairly clearly; the intermediate case of partially coherent illumination is
complicated and the results can only be indicated in rather general terms.

12.2.1 Rayleigh’s resolution criterion for
an incoherent object

The simplest and best-known resolution criterion is that due to Rayleigh and
applies to the case of a self-luminous or incoherently illuminated object; it is
usually applied to an astronomical telescope, because stars certainly fulfil the
requirements of self-luminosity and incoherence; but it applies equally well to
a microscope observing, for example, a fluorescent object (§12.2.4).

The Rayleigh criterion is
independent of the
relative brightness of the
neighbouring points.

If we consider a single point on a distant object, we have seen in §7.1.4 that
we observe in the image plane the Fraunhofer diffraction pattern of the aperture
stop, on a scale determined by the image distance. This diffraction pattern is
called the point spread function. An extended object can be considered as a
collection of such points, and each one produces a similar point spread function
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in the image plane; because the sources are incoherent we add intensities of the
various patterns to get the final image. The image is therefore the convolution
of the object intensity and the point spread function.

The Rayleigh resolution criterion arises when we consider two neigh-
bouring points on the object, separated by a small angle. If the aperture has
diameter D, its diffraction pattern, expressed as a function of the angle θ , has
normalized intensity (§8.3.4) with u = k0 sin θ :

I(θ) =
[

2J1

(
1
2

k0D sin θ

)/(
1
2

k0D sin θ

)]2
. (12.18)

Rayleigh considered two points on the object to be distinguishable if the central
maximum of one lies outside the first minimum of the other. Now the function
(12.18) has its first zero at that of J1(x), at x = 3.83. Then

1
2

k0D sin θ1 = πD sin θ1/λ = 3.83. (12.19)

The angle θ1 is the minimum angular separation of resolvable incoherent
sources; since θ1  1 the resolution limit is thus

θmin = θ1 = 3.83λ/πD = 1.22λ/D (Rayleigh). (12.20)

Notice that only the angular separation of the sources enters the result.3 When
an optical system can indeed resolve two points separated by this angle, it is
called diffraction-limited.

12.2.2 The Sparrow resolution criterion

Rayleigh’s is the best-known resolution criterion, but fails if the diffraction
pattern has no well-defined zeros, or these are far from the central maximum.
An alternative criterion, which corresponds well with what the human eye can
resolve because of its superb sensitivity to intensity differences, is the Sparrow
criterion, which we have already met in the context of spectral resolution in
§9.5.2. This considers two point images to be resolved if their joint intensity
function has a minimum on the line joining their centres. If the two points have
equal intensities, the Sparrow criterion then indicates θmin when

The Sparrow condition for
resolution does not
require the point spread
functions to have zeros,
but depends on the
relative intensity of the
points: see Problem
12.20.

(
d2I
dθ2

)
θ = θmin/2

= 0. (12.21)

3 When two equally intense points are separated by this angle, the intensity measured along
the line joining them has a minimum half-way between them of value 8/π2= 0.81 times the
maximum at each point. The Rayleigh criterion is often interpreted under other conditions as
the separation that gives a minimum with this value between the two maxima. We shall not use
this interpretation here, preferring that of Sparrow as an alternative.
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Figure 12.7

Addition of the images of
two incoherent point
sources. The broken lines
show the individual
intensity curves and the full
line is their sum. The
arrows show the positions
of the geometrical images:
(a) Rayleigh and
(b) Sparrow separations.
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Figure 12.8

Addition of the images of
two pinholes coherently
illuminated with the same
phase. The broken lines
show the amplitude curves
and the full line the square
of their sum. The arrows
show the positions of the
geometrical images:
(a) Rayleigh and
(b) Sparrow separations.
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Without entering into details of the differentiation of Bessel functions, this
gives

θmin = 0.95λ/D (Sparrow). (12.22)

12.2.3 Resolution of a coherently illuminated object

Next we consider the resolution problem when the sources are coherent. If the
object consists of two points emitting with the same phase, we must add the
amplitudes of their point spread functions:

A(θ) = J1

(
1
2

k0D sin θ

)/(
1
2

k0D sin θ

)
. (12.23)

The Rayleigh criterion gives the same result as (12.20) because the zeros of
the point spread functions have not changed; but the points are not resolved.
On the other hand, the Sparrow criterion gives θmin = 1.46λ/D. The reason
that the Sparrow criterion gives here a larger θmin is illustrated by Figs. 12.7
and 12.8. We show first the intensity as a function of position on a line through
the images of two incoherent sources at θ = 0 and θ = θmin for the two cases
(12.20) and (12.22). The function shown is I(θ) + I(θ − θmin). The Rayleigh
resolution is clearly more than adequate. We then look at the equivalent situation
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Figure 12.9

Addition of the images of
two pinholes coherently
illuminated with opposite
phases. The broken lines
show the amplitude curves
and the full line the square
of their difference. The
arrows show the positions
of the geometrical images;
(a) and (b) show two
different separations, both
of which appear to be
resolved, but the peaks
have little relation to the
geometrical positions of
the images, shown by
arrows.
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when the sources are coherent; we add amplitudes before squaring to find the
intensity, [A(θ) + A(θ − θmin)]2, which is illustrated in Fig. 12.8 for the two
criteria. Clearly the Rayleigh separation is inadequate.

12.2.4 Imaging resolution and coherence

The argument in the previous section would indicate that incoherent illumi-
nation results in better resolution. But this is not always true; we assumed
a particular phase relation between the sources in order to demonstrate the
result. If the two sources had phases differing by π , we should have written
the joint intensity as [A(θ) minus A(θ − θmin)]2, which always has minimum
intensity at the mid-point, however close the sources, as shown in Fig. 12.9.
One should notice in particular in this figure that the separation of the two
coherent antiphase images is quite different from their true separation; it is
actually determined by the aperture diameter! See Problem 12.6. Moreover,
as the sources become closer, the image gets weaker because of destructive
interference. An application of antiphase imaging is the use of phase-shift
masks in photo-lithography of microelectronic devices to improve the density
of closely separated units on a complex mask. Alternate units are covered with
a transparent film which introduces the necessary π phase change to ensure
that a dark line appears between their images (Levenson (1993)). However, in
general it can indeed be said that incoherent illumination results in the better
resolution. Figure 12.10, in which images of a pair of pinholes have been

Coherent illumination of
an object may introduce
serious artifacts into the
image. In most cases a
‘speckled’ image is
obtained because of
interference between
neighbouring parts.

formed under various coherence conditions, demonstrates the above argument.
An important example of incoherent imaging is fluorescence microscopy.

In such a microscope, a laser or other narrow-band light source serves to excite
atomic transitions in the atoms of the object, and the excited atom first decays
to a metastable state, from which it subsequently decays back to the ground
state with incoherent emission of light at a wavelength longer than that of the
excitation. Fluorescence microscopy is very important in analytical biological
imaging, because the fluorescing material (tag) can be attached selectively
to specific chemically defined parts of a complex body and thus provide a
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Weaker
exposures

Figure 12.10 Comparison between coherent and incoherent imaging of a pair of pinholes. In
(a)–(c) the aperture is chosen so that the pinhole separation corresponds to the
Rayleigh limit, with illumination (a) incoherent, (b) coherent (same phase),
(c) coherent (antiphase). In (d) and (e) the same pair of pinholes is imaged through
an aperture for which they are at the Sparrow limit: (d) incoherent and (e) coherent
(antiphase) illumination. The lower row shows weaker exposures of corresponding
images in the upper row.

functional image. For developing and understanding the most important of
these tags, green fluorescent protein, Shimomura, Chalfie and Tsien were
awarded the Nobel prize in 2008. Many fluorescent tags with specific binding
chemistry are now commercially available. The mechanism of fluorescence is
discussed in more detail in §14.8, but for the present discussion we emphasize
that the imaging mechanism is completely incoherent. As remarked earlier, in
this case we find that the concept of point spread function is the better way of
understanding the imaging properties of such systems. We shall discuss this
approach in §12.3. In addition, incoherent emission imaging allows the limits
of resolution to be extended significantly (§12.6).

12.2.5 Application of the Abbe theory
to coherent resolution

Most conventional transmission or reflection microscopes work with partially
coherent illumination, because of the small dimensions of the object and the
practical difficulties (§12.2.7) of producing truly spatially-incoherent light.
The Abbe theory discussed in §12.1.1 applies to coherent illumination and
is therefore fairly appropriate to a discussion of resolution by a conventional
microscope.

We therefore return to transmission or reflection microscopes and to the
model of a periodic coherently illuminated object. The resolution that can be
obtained with a given lens or imaging system is, as discussed in §12.1.1, limited
by the highest order of diffraction that the finite aperture of the lens will admit.
If the object has period d, the first order appears at angle θ given by

Abbe theory applies also
to transmission electron
microscopes. Electron
lenses use electric and
magnetic fields for
focusing, and the largest
NA is about 0.04.

sin θ1 = λ/d. (12.24)
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In order to image an object with such a period, the angular semi-aperture α of
the lens must be greater than θ1. Thus the smallest period that can be imaged is
given by (12.6)

dmin = λ/ sinα. (12.25)

We now recall from §3.8 the possible immersion of the object in a medium of
refractive index n, where the wavelength is λ/n, and to write dmin in terms of
the numerical aperture NA ≡ n sinα;

dmin = λ/n sinα = λ/NA (12.26)

is the coherent imaging resolution in this case.4

We have assumed in the above discussion that the illumination is parallel to
the axis, and acceptance of the zero and two first orders is necessary to form an
image with the correct period. In fact, the correct period will be imaged if the
zero order and one first order alone pass through the lens. So we can improve
the resolution by illuminating the object with light travelling at angle α to the
axis, so that the zero order just passes through; then the condition for the first
order on one side to pass through as well is that

dmin = λ

2n sinα
= λ

2 NA
, (12.27)

where we have used the result for Fraunhofer diffraction in oblique illumination
from §8.2.2. This result, called the ‘Abbe resolution limit’, represents the
best that can be achieved with a given lens, and is the best resolution that
can be achieved by conventional microscopy. In order to implement it one
needs to illuminate the object incoherently with a cone of light having semi-
angle at least α, as shown in Fig. 12.11. The resulting illumination is then an
incoherent superposition of plane waves inclined at the various angles and
the limit (12.27) is achieved in all orientations.

Objective

Specimen

Condenser

Aperture

To camera
or eyepiece

From 
light source

Tube lens

Figure 12.11

Conical illumination of a
specimen to get the highest
microscopic resolution.

12.2.6 Experimental illustration of coherent resolution

This theory may be illustrated by the apparatus described in Fig. 12.5. This
allows us to investigate the changes that occur in an image if the optical
transform is limited or modified in some way. For example, suppose that we
have a general object as shown in Fig. 12.12(b); its transform is shown in (a).
We then place a series of successively smaller holes over the transform, and we
can then see how the image is affected. The succession of images is explained
in the caption.

4 Microscope objectives are usually labelled with two numbers: one is the magnification at a
standard image distance of 200 or 250 mm, and the second is the NA. The thickness of cover
glass for which aberrations are corrected is also given on high magnification objectives.
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(a)

(f )

(d )

(h)

(c)

(e)

(g)

(b)

0 1 mm

Figure 12.12 Resolution according to the Abbe theory. (a) Diffraction pattern of the set of holes
shown in (b). The circles indicate the apertures used to limit the transform. (c)–(g)
Images of object shown in (b), with different numerical apertures. The apertures
used are shown as circles superimposed on the diffraction pattern shown in (a).
(h) The image formed by the part of the diffraction pattern between the second
and third circles from the centre. In this case, the image is sharper than the object,
but contains false detail.

The resolution limit imposed by a finite aperture can also be considered as
an application of the convolution theorem (§4.7). In a coherently illuminated
system, restriction of the optical transform by a finite aperture results in a point
spread function in the image plane whose amplitude (not intensity as in §12.2.1)
must be convolved with that of the object when the image is formed. The result
is, once again, a blurring of the image; but because amplitudes are involved,
neighbouring parts of the image can interfere. The result is more complicated
than in the incoherent case, and false detail or artifacts can be produced.

12.2.7 The importance of the condenser lens
and illuminator

As far as geometrical optics is concerned, the condenser in a microscope merely
serves to illuminate the specimen strongly. According to the wave theory,
however, the coherence of the incident light is important, and the condenser
therefore has as much importance as any other part of the optical system. The
reason for this can best be expressed in terms of coherence. Ideally, as we shall



420 Image formation

show below, the object should be illuminated in completely incoherent light,
which we could obtain by a general external illumination from a large source
such as the sky. But this would be very weak, and we increase the intensity
by using a lens to focus a source of light onto the object. An image, however,
cannot be perfect, and each point on the source gives an image of finite size on

In a reflecting
microscope, the light
enters through the
objective, which
therefore doubles as
condenser.

the object. In other words, neighbouring points on the object are illuminated
by partially coherent light. The poorer the quality of the condenser, the more
false detail is to be expected.

In practice, two forms of illumination are widely used. The first is called
critical illumination and is obtained by forming an image of the source in
Fig. 12.13(a) directly on the object by means of a condenser. This arrange-
ment, however, has the defect that irregularities of the source can affect the
image formed. An arrangement that does not have this defect is called Köhler
illumination and is shown in Fig. 12.13(b). An extended source is used, and
although any one point on the source gives parallel coherent illumination at

Uniform incoherent
illumination, typical of
the Köhler system, is
most important for
quantitative imaging,
such as in metrology
systems.

a certain angle, the total illumination from all points on the source is indeed
almost incoherent (§11.6.4). This is because the individual coherent plane
waves have random phases and various directions of propagation and therefore
add up with different relative phases at each point in the field. The position of
the object is such that the condenser approximately images the auxiliary lens
onto it. One would expect this lens to be reasonably uniformly illuminated if it
is not too close to the source, even if the latter is patchy. However, for a given
lamp Köhler illumination is much weaker than critical illumination, since the
light is spread over a larger area.

For either of the above condensing systems the illumination system results
in a field with spatial coherence distance rc = 0.61λ/NAc (§11.6.4), where
NAc is the numerical aperture of the condenser. Aberrations in the condenser
always increase rc above this value.

If NAc is larger than that of the objective, and its optical quality is good,
rc is smaller than the resolution limit, so that neighbouring resolvable points
are substantially uncorrelated. As a result, the resolution limit is given by the
Rayleigh or Sparrow criteria and false detail is avoided. Reducing NAc often
improves the contrast of an image, but increases false detail.

12.3 The optical transfer function: A quantitative
measure of the quality of an imaging system

The optical transfer function (OTF) and its absolute value the modulation
transfer function (MTF) are ways of expressing the quality of an imaging
system in a quantitative manner. We already know that the resolution limit is
defined by the wavelength and numerical aperture (λ/2NA) (12.26), but this
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Figure 12.13

Types of incoherent
illumination: (a) critical;
(b) Köhler.

(a)
Source

Auxiliary lens Condenser lens
(b)

Condenser lens Specimen

Figure 12.14

False detail produced by
imaging with a restricted
region of the diffraction
pattern, Fig. 12.6(a).

(a) (b)

Box 12.1 False detail and imaging artifacts

Coherent illumination can result in the production of false detail. In many
cases, this may be finer than the limit of resolution (examine Fig. 12.12(h)
carefully, for example). The use of an optical instrument near to its limit of
resolution is always liable to produce effects of this sort; when the Abbe
theory was first announced, many microscopists adduced such effects as
evidence that the theory was unacceptable (§1.5.3). Even today, when the
theory is fully accepted, it is sometimes forgotten in dealing with images
produced by, for example, the electron microscope.

The formation of false detail can be conveniently illustrated in the frame-
work of Fig. 12.6. Suppose that the focal plane stop of the instrument limits
the transform to the centre five orders only (Fig. 12.14(a)). The image is then
illustrated by (b). Notice the formation of bright spots on the crosses of the
gauze wires. One can easily see the origin of these spots by reconstructing a
square wave from its zero and first orders only, which is a reasonable model
for one dimension of the gauze. Terminating the Fourier series in this way
introduces the fine-scale oscillations, which would have been cancelled by
the next, omitted, terms in the series (Fig. 4.1).
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Figure 12.15

Optical transfer functions
(OTF) for (a) an ideal
diffraction-limited lens in
the geometrical image
plane, (b) the same lens
defocused by twice the
depth of focus (§2.6.4),
(c) the lens masked by an
annular aperture. The
images at the sides show
how images of sinusoidal
object masks of spatial
frequencies k1 and k2 have
different contrasts. Note
that when the OTF is < 0,
the image phase is
reversed.
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does not tell us how well we can distinguish details in an image even when
they are resolved. A key parameter that describes the quality of the system is
contrast, since two points are more easily distinguished when their contrast is
high. Two systems may have the same numerical aperture and hence a similar
resolution limit, but one may have fewer aberrations than the other resulting
in higher contrast and a superior image. This is the fundamental difference
between a simple lens and a multi-lens objective, the latter enabling us to
differentiate better small details near the resolution limit. An MTF graph will
tell us the contrast level, 0–100%, by which each spatial frequency (§4.1) in
the image is degraded, starting high for well-separated features and dropping
towards zero at the resolution limit, not necessarily in a monotonic manner; the
faster the drop the poorer the system (Fig. 12.15). Visually we can distinguish
a pattern with contrast greater than about 5%.

We generally evaluate an optical system through its point spread function
(PSF), which is the Fraunhofer diffraction pattern of the aperture stop in the
image plane, as seen around the image of a δ-function source in the object
plane. Increasing the size of the aperture decreases the extent of the PSF, which
in the case of an ideal lens is the Airy disc pattern (§8.3.4). A full object can
be viewed as the convolution of the single point and the object pattern, and
therefore its image is a convolution of the PSF and the same pattern, on a
scale determined by the magnification of the system. It is important to mention
that this linear relationship applies only when the PSF is independent of the
position of the point in the field of view, which will be assumed in the present
discussion, but is rarely exactly true. Convolution leads to multiplication in
the Fourier domain, and the transform of the image is then the transform of
the object multiplied by the transform of the PSF. The transform of the PSF is
called the optical transfer function. When the object is incoherently emitting,
the above formulation is carried out using the intensity at each point and the
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intensity PSF is the square of the Fourier transform of the aperture stop. This,
in turn, is the transform of the spatial auto-correlation of the aperture (§4.9.1).5

To understand how the OTF is related to the properties of the imaging system,
let us start by considering an incoherent sinusoidal object with spatial frequency
k1 = 2π/� in one dimension.6 Since the magnification of an optical system
depends on the object distance U , which is variable, it is convenient to define
k1 in image space at distance V from the principal plane H2; this is related
to the object frequency by the magnification V/U . An incoherent sinusoidal
object with period 2π/k1 and a unit contrast has an intensity s(x):

s0(x) = 1
2
(1+ cos k1x). (12.28)

The 1 is necessary to ensure that s0(x) has no negative values. The Fourier
transform of the object S(k) is therefore a central δ-function at k = 0 and two
δ-functions at ±k1:

S0(k) = 1
2
δ(k)+ 1

4
δ(k − k1)+ 1

4
δ(k + k1). (12.29)

The PSF is p(x) and its transform is P(k), therefore in the image plane its
transform is the same group of three delta functions multiplied by P(k):

S(k) = P(0)
2

δ(k)+ P(k1)

4
δ(k − k1)+ P(−k1)

4
δ(k + k1). (12.30)

We transform (12.30) back to the image coordinate x:

s(x) = P(0)
2

+ P(k1)

4
exp[ik1x] + P(−k1)

4
exp[−ik1x]. (12.31)

Since P(k) is the transform of a real function (intensity), P(−k1) = P∗(k1) and
then (12.31) can be written as

s(x) = P(0)
2

+ |P(k1)|
2

cos[k1x+�(k1)], (12.32)

where � is the phase of P. Its visibility, contrast or modulation M , which was
defined in (§11.3.2), is

M(k1) ≡
[

smax − smin

smax + smin

]
= |P(k1)|

P(0)
. (12.33)

We normalize P(0)= 1, whence M(k1)= |P(k1)|. Note that smin cannot be neg-
ative and therefore P(k1) ≤ P(0); convolution can only blur the image and not
enhance it. M(k) is called the modulation transfer function (MTF) because
an object of unit contrast appears in the image as having a contrast |P(k)|
(Fig. 12.15). The complex optical transfer function P(k) = |P(k)| exp i�(k)

5 Coherent imaging is dealt with using the amplitude of the PSF and results slightly differ. This is
a rarely used application.

6 The dimensions of k are rad/m. A more common notation uses k/2π = 1/�, with units of
line-pairs/mm, where a line-pair is one period of the sinusoid, of width �.
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Figure 12.16

(a) Construction for
calculating the
auto-correlation function of
a circular aperture. (b) The
OTF curve is the area
shaded in grey in (a) as a
function of kV/k0.
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k

MTF

(a) (b)

kV/k0

Resolution limit, 2k0R/V

also contains the phase information, and you can see from (12.32) that the
periodic image is shifted in phase by �. For example, in Fig. 12.15 curve (b)
at k2 has � = π . Now any object can be described by a superposition of sines
and cosines, and if the PSF is invariant over the field, knowing the OTF will
allow the complete image to be simulated.

How do we calculate P(k)? We shall do this in one dimension, the extension
to two dimensions being straightforward, using X for the position in the aperture
stop and x in the image plane. We know that p(x) is the Fraunhofer diffraction
pattern of the aperture, whose complex transmission function is defined as a(X ).
Its Fourier transform is A(u) = A(k0 sin θ) ≈ A(k0θ) for small angles and the
x-coordinate in image space is equal to Vθ . Therefore, p(x) is |A(k0x/V)|2, and
P(k) is its transform:

P(k) =
∫ ∞

−∞
p(x) exp(ikx) dx =

∫ ∞

−∞

∣∣∣∣A
(

k0x
V

)∣∣∣∣
2

exp(ikx) dx. (12.34)

Since we can write the inverse Fourier transform of an auto-correlation (§4.9.1)

C(k)⊗ C∗(−k) =
∫ ∞

−∞
|c(x)|2 exp(ikx) dx, (12.35)

we can deduce that (12.34) leads to

P(k) = a
(

kV
k0

)
⊗ a∗

(−kV
k0

)
. (12.36)

This provides a method of calculating M(k), given a(X ) which describes the
shape of the aperture and any phase errors (aberrations) relative to an ideal
spherical wavefront emerging from the lens.

The above development was in one dimension but goes directly to two. Let
us look at a basic example (Fig. 12.16(a)): an ideal circular lens with aperture
radius R. The lens aperture is defined by a(X , Y) = 1 when X 2+ Y2 < R2 and
zero otherwise. Then, using (12.36), the OTF P(k) is the auto-correlation of
a(X , Y), which is described by the overlap of two circles of radius R with their
centres separated by kV/k0. At the resolution limit the image contrast is zero
and therefore the OTF drops to zero too. Let us see how this arises from (12.36).
From the figure, we see that the overlap reaches zero when kV/k0 = 2R. Since
k = 2π/�, this limit is reached when� = λV/2R. This is the wavelength times
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the f/# (f-number), which emphasizes the importance of the angular aperture of
the lens in determining the resolution. The full calculation of the overlap area
(Fig. 12.16(b)) as a function of the separation describes the diffraction-limited
OTF, for a lens that has no aberrations (i.e. a(X , Y) is real and has unit value
within the aperture stop).

The full OTF of cascaded optical systems is not usually equal to the product
of each sub-system’s OTF, because one aberration may cancel another, such as
in the case of an achromatic doublet lens (§3.7.2); each singlet is worse than
their combination. However, there are some situations when the sub-systems
are incoherent, such as in the case of cascaded objective lenses and detectors,
where the MTFs can be multiplied.

When considering the resolution of a real system, a(X , Y) is a complex
function whose absolute value is less than or equal to one, because of aberrations
and obscurations. In that case, the MTF can depend not only on kx and ky
but also on the position x and y in the field of view and therefore on the
relationship between the two vectors (x, y) and k. For example, in the presence
of astigmatism (§3.7.1), which introduces a phase aberration to a proportional
to X 2 − Y 2, the MTF for vector k parallel to (x, y) (sagittal lines) is different
than for tangential or meridional lines (vector k normal to (x, y)). MTF targets,
which are used for measuring the MTF, include patterns that take this type of
distinction into account.

12.4 Applications of the Abbe theory:
Spatial filtering

Optical instruments can be used without more than a cursory knowledge of
how they work, but by understanding their physics we can fully appreciate
their limitations, find the conditions under which they can be best used and,
most important, find ways of extending their use to problems that cannot be
solved by conventional means. The procedures that will be described in this
section are known under the general name of spatial filtering techniques.
They can be expressed in terms of operations carried out by inserting masks
affecting the phase and amplitude of the light in the back focal plane F2 of
the lens, which is the plane in which the Fourier transform of a coherently
illuminated object would be observed. Because they essentially modify the
Fourier transform or spatial frequency spectrum of the image, the name ‘spatial
filtering’ arose by analogy with electronic filtering that is used to modify the
temporal frequency spectrum of a signal. When incoherent illumination is used,
the Fourier transform in the plane F2 cannot, of course, be recognized, but the
principles to be discussed below still apply. The methods used to achieve them
are usually only approximate.
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Below we shall discuss the following spatial filtering techniques, which we
illustrate by both simulations and laboratory experiments:

1. Bright-field imaging is the term used for regular imaging, in which all
the transmitted light is used without modification; it shows the relative
intensities of all parts of the image, and is insensitive to their phase;

2. Dark-field imaging, which can improve the visibility of images with poor
contrast, and can also make edges and phase detail visible;

3. Zernike phase-contrast imaging, which translates incoherent microscopic
phase images into intensity-contrast images;

4. Schlieren imaging, which visualizes phase gradients using coherent light;
5. Diffraction contrast imaging, which is used in electron microscopy to

emphasize inhomogeneities in ordered materials;
6. Nomarski differential interference contrast, which visualizes phase or

amplitude gradients in microscope images.

12.4.1 Dark-field imaging

Suppose that we wish to observe a very small non-luminous object. If we use
bright-field imaging, it is likely that the amount of light scattered by the object
will be so small that it will be negligible compared with that contained in the

Dark-field imaging
visualizes mainly
discontinuities in the
image, such as sharp
edges.

undeviated beam and the object will not be seen. We can avoid this difficulty
by arranging that the incident light is directed obliquely at the specimen so that
if it is not scattered it does not enter the objective; this method was originally
used for observation of Brownian motion, and was called an ‘ultramicroscope’.
It is adequate if we merely want to know the position of a scattering object, but
will not give much information about the nature of the object in general. To
create a reasonable image of the object we must use as much as possible of the
transform, and this is achieved in practice as shown in Fig. 12.17 by cutting out
directly transmitted (a) or reflected light (b) as completely as possible without
affecting the rest. However, if the object has parts that are both brighter and
weaker than the average, these can be distinguished by only attenuating the zero
order, and not eliminating it completely (Fig. 12.27). Dark-field imaging is also
useful for visualizing a phase object which has little absorption, (Fig. 12.18(d)
and §8.4.1).

A simple analytical model assuming φ(x)  1 illustrates how dark-field
imaging makes phase variations visible by eliminating the zero order. Suppose
the transmission function of an object is f (x) = exp[iφ(x)], i.e. it only changes
the phase of the incident light, but not its amplitude. The incident amplitude
A0 is then transmitted as

A(x) = A0 exp[iφ(x)] ≈ A0 + A0iφ(x). (12.37)
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Figure 12.17

Examples of practical
systems for dark-field
imaging: (a) in
transmission, where light
directly transmitted from
the condenser is blocked by
a baffle after the objective;
(b) in reflection, where the
specimen is illuminated by
a hollow cone of light
outside the objective.
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Figure 12.18

Comparison of dark-field
and schlieren imaging of a
phase object, which are
both carried out by
obscuring part of the
diffraction pattern.
(a) Diffraction pattern
of the pattern of holes in
cellophane sheet whose
bright-field image is shown
in (b); (c) diffraction
pattern with a small
opaque spot over its centre;
(d) dark-field image
formed from (c); (e)
diffraction pattern half
obscured by a knife-edge;
(f) schlieren image formed
from (e).

The term A0, being independent of x, is represented by the zero order of
diffraction. When it is eliminated, we have amplitude and intensity

ADF(x) = A0iφ(x), (12.38)

IDF(x) = |ADF|2 = A2
0φ

2(x), (12.39)

which visualizes the phase variation, but does not distinguish between positive
and negative signs.

The principle of the method can be illustrated quite simply in the apparatus of
Fig. 12.5 by placing a small black spot over the central peak of the transform.
We have chosen as object a pattern of holes punched in a thin transparent
film, whose diffraction pattern is shown in Fig. 12.18(a); since the film is not
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Figure 12.19

Vector diagrams illustrating
(a) bright-field imaging of
a phase object,
(b) dark-field, and
(c) phase-contrast. (d)–(f)
show the same for a weak
phase object. OP is the
average of the vectors OA
and therefore represents
the zero order. It can be
seen that the
phase-contrast technique is
sensitive to the sign of the
phase change relative to
the average, whereas
dark-field is not.
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optically uniform the transform is rather diffuse. The bright-field (unfiltered)
image is shown in (b). A small black spot on a piece of glass is then placed
over its centre, as shown in (c), and the final image (d) can be compared with
(b). Although the edges of the holes were visible in the unfiltered image, the
contrast is improved considerably by the dark-field filter.

12.4.2 Zernike phase-contrast microscopy

Phase-contrast microscopy is another spatial filtering method to create contrast
from a phase object. It was invented by Frits Zernike in 1930 and for the first
time allowed live biological entities to be observed in vivo without staining;
he was awarded the Nobel prize for this work in 1953. An example is shown in
Fig. 12.2(b). Large phase gradients at edges are usually visible in bright field,
as we saw in Fig. 12.18(b), because they result in refraction effects. But Zernike
microscopy is sensitive to the algebraic value of the phase change. It can be
explained as follows, in a way that compares it with the dark-field method.

Phase contrast is
particularly useful to
visualize very small
phase variations.

Suppose that we represent the light amplitude transmitted by an object by a
vector in the complex plane. In a phase object (§8.4.1) the vectors representing
the complex amplitude at various points on the object are all equal in length,
but have different phase angles. In Fig. 12.19(a), OA1, OA2, OA3 are typical
vectors. In a perfect imaging system, all the corresponding image points have
complex amplitudes with the same absolute values, and therefore their inten-
sities are equal; no contrast is observed. Let us picture each vector OA as the
sum of a constant OP, which is the mean of the various OAs, and the remain-
der PA, so that the vector sum of all the PAs is zero. The PAs may now have
different lengths. Now since the vector OP is the mean value, it corresponds
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Figure 12.20 Zernike phase-contrast imaging. (a) Fraunhofer diffraction pattern of a phase mask
similar to Fig. 12.18(a). A spatial filter, consisting of a transparent plate with a small
hole whose size is indicated by the white circle, is placed over the zero order,
resulting in image (b). Notice that because of its linear response to phase changes,
the sensitivity of this method to small phase changes is better than dark-field, and
non-uniformities in the thickness of the mask material are highlighted as well as the
holes. See Fig. 12.2 for an example of this technique in biology.

to the zero order of diffraction. In the dark-field method, we obstructed the
zero order, and therefore subtracted the vector OP from each of the vectors
OA. The remaining vectors PA have different lengths and therefore intensity
contrast is achieved as shown in Fig. 12.19(b). The Zernike phase-contrast
method involves changing the phase of the vector OP by π/2, and therefore
replacing it by the vector PP′. The new image-point vectors P′A once again
have different lengths, as in (c). This method has two advantages: all the light
transmitted by the object is used in forming the image, and the dependence
of intensity on the phase is linear for small phase changes (Fig. 12.19( f )), as
will be shown analytically in (12.41). It is also clear that the exact value of
the phase shift of the zero order is not very important, so that white light can
be used.

The phase-contrast method can be described analytically when φ(x) 1 in
the same way as dark field. In (12.37) we change the phase of the zero order
by π/2 instead of eliminating it, thereby getting amplitude and intensity of the
image

fPC(x) = iA0 + iA0φ(x) ≈ iA exp[φ(x)], (12.40)

IPC = | fPC(x)|2 = A2
0 exp[2φ(x)] ≈ A2

0[1+ 2φ(x)], (12.41)

which has intensity linearly dependent on φ (Fig. 12.19( f )). In contrast to
dark-field microscopy, which has quadratic dependence on φ, positive and
negative phase changes can therefore be distinguished, and the sensitivity to
small values of φ is much greater. Figure 12.20 shows a demonstration using
the apparatus of Fig. 12.5; the improved sensitivity to small changes in phase
is very obvious, when comparing this with Fig. 12.18(d).

In practice, the application to an object incoherently illuminated by conical
illumination is not so simple, since there is no precise transform whose zero
order can be identified. A compromise is necessary, and is effected as follows
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Figure 12.21

Optics of the
phase-contrast microscope.
The phase plate is
coincident with the image
of the annular ring formed
in the condenser–objective
lens system.
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(Fig. 12.21). The illuminating beam is limited by an annular opening in the
focal plane below the condenser, and a real image of this opening is formed
in the back focal plane of the objective, F2. The phase plate, inserted in F2,
is a thin transparent evaporated ring of optical thickness λ/4 whose dimen-
sions match those of the image of the annulus. All undeviated light from the
specimen must therefore pass through this plate. The final image is formed by
interference between the undeviated light passing through the phase plate and
the deviated light that passes by the side of it. The ideal conditions are only
approximately satisfied, for some of the deviated light will also pass through
the phase plate, giving rise to characteristic halos around phase steps. The phase
plate is constructed by the vacuum deposition of a dielectric material such as
cryolite (Na3AlF6) onto a glass support.

When φ is small, the zero order of its diffraction pattern is outstandingly
strong and changing its phase produces too great a difference in the image.
Therefore the phase plate is commonly made to transmit only 10–20% of the
light. It looks like a small dark ring on a clear background, and is clearly
producing a compromise between dark-field and phase-contrast images.

12.4.3 Schlieren method

Another method of creating contrast from a phase object is to cut off the
central peak by a knife-edge, thereby cutting off half the transform as well. In
practice the object to be studied is placed in a coherent parallel beam, which
is brought to a focus by a lens accurately corrected for spherical aberration.
A knife-edge is then translated in the focal plane of the lens until it just overlaps
the focus. A clear image of the object can then be seen (Fig. 12.18( f )). But
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Figure 12.22

(a) Schlieren system used
for visualizing a region with
inhomogeneous refractive
index. (b) The Foucault
knife-edge test, which is an
application of the schlieren
technique to optical
testing. (c) Appearance of a
lens suffering from
spherical aberration when
the knife-edge is between
the paraxial and marginal
focal planes. The effect can
easily be understood by
geometrical optics.
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Figure 12.23

(a) Schlieren pattern of
bullet-shaped object at
Mach number 3.62.
(From Binder (1985))
(b) Schlieren image
showing the temperature
distribution created in a
slightly absorbing fluid
when a laser beam is
launched through it from
right to left. Some
convection waves in the
fluid above the laser beam
are visible on the right.
(Courtesy of Elad
Greenfield)

(a) (b)

removing half of the diffraction pattern introduces some defects that will be
discussed later. Moreover, the need for coherent illumination makes this method
inappropriate for microscopy and it is mainly used to investigate macroscopic
phase objects.

The schlieren method has two important applications. A major use is in fluid
dynamics. A wind tunnel in which the density of air is uniform (and hence the
refractive index is uniform too) is an object with neither phase nor amplitude
variations. Waves or other disturbances in the tunnel will modify the density
and refractive index in a non-uniform way, and thus produce a phase object.
By using the schlieren technique, the phase variations can be visualized as
changes in intensity in the final image (Figs. 12.22(a) and 12.23).

Second, it can be used as a critical test of lens quality, for if a lens suffers
from aberrations there will not be a sharp focus and it will not be possible to
put the knife-edge in a position to cut off only half the light at every point in
the field. Thus, if we image the lens aperture itself as the knife-edge traverses
the focal plane, the intensity of illumination across the surface will appear
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Figure 12.24

Optical demonstration
of diffraction contrast,
using coherent optics.
(a) Diffraction pattern of a
mask representing a
‘polycrystal’; (b) image
formed using the whole
diffraction pattern; (c) and
(d) images formed using
selected areas of the
diffraction pattern.

(a) (b)

(c) (d )

Box 12.2 Diffraction contrast in the electron microscope

Spatial-filtering techniques are widely used in the electron microscope as
well as the optical microscope. In the former, the numerical aperture is very
small, less than 0.04, because of the difficulty of fully correcting electron
lens aberrations. When one looks at crystalline matter with an electron
microscope it is often possible to use only a very limited region of the
Fourier transform, which may contain just one order of diffraction and a
limited region around it. As we saw in Fig. 12.6(h) and (j), this is sufficient
to make visible structure on a scale larger than the unit cell. The technique
called diffraction contrast imaging uses a spatial filter consisting of an
aperture that selects the region of a single non-zero order of diffraction only.
If, for example, we have a polycrystalline sample, and image it through an
off-centre aperture, only those crystallites that have diffraction spots lying
within the aperture appear bright in the image; the rest are dark. This can be
seen as an optical demonstration in Fig. 12.24. In order to see the periodicity
(atomic structure) of the sample one needs to use an aperture that selects
several orders of diffraction. An image formed this way is called a lattice
image; there is great danger of getting misleading structures in such images
by an unwise choice of orders.

to change (Fig. 12.22(b)). This is called the Foucault knife-edge test; for
a high quality lens, it can also be used to locate the focal point extremely
accurately.

An important difference between phase-contrast and schlieren systems is that
the former is isotropic and indicates the value of the phase change, whereas the
latter depends on the phase gradient and measures its component normal to the
knife-edge. Schlieren systems are often adjusted to attenuate but not remove
the zero-order light; this practice increases the sensitivity substantially.
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12.4.4 An analytical example illustrating dark-field,
schlieren and Zernike phase-contrast systems

In this section we shall calculate the intensity distributions in the image of a sim-
ple one-dimensional phase object, when the filters discussed in §12.4.1–§12.4.3
are used. Although the examples treat the microscopic methods quantitatively, it
should be stressed that their use is mainly qualitative – to visualize phase objects
but rarely to analyze them quantitatively. We also show them as computer
simulations in Figs. 12.27 and 12.28.

The object we use can be called a phase slit; it is a transparent field containing
a narrow strip of different optical phase from its surroundings. In one dimension,
x, normal to the length of the strip, we describe such an object by

f (x) = exp[iφ(x)], (12.42)

where φ(x) = β when |x| ≤ a and is zero otherwise. This function can be
written as the sum of a uniform field and the difference in the region of the
strip:

f (x) = 1+ (eiβ − 1)g(x), (12.43)

where g(x) = rect(x/a) would represent a normal transmitting slit of width 2a.
The transform of the function written this way is

F(u) = δ(u)+ 2a(eiβ − 1) sinc(au). (12.44)

First, let us consider the effect of dark-field illumination (§12.4.1). In this
technique we eliminate the zero-order component; this is the δ(u) and a narrow
region of negligible width at the centre of the sinc function. After such filtering,
the transform is to a good approximation

F1(u) = 0+ 2a(eiβ − 1) sinc(au) (12.45)

and the resultant image, the transform of F1(u), is

f1(x) = (eiβ − 1) g(x). (12.46)

Recalling the definition of g(x) in (12.43) we see that the slit appears bright on
a dark background. In fact, its intensity is dependent on the phase β:

I1(x) = | f1(x)|2 = 2(1− cosβ)g(x). (12.47)
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Using the same example we can illustrate the schlieren method, §12.4.3. In
this case the filter cuts out the δ(u) and all the transform for u < 0, leaving us
with

F2(u) = 2a(eiβ − 1) sinc(au)D(u), (12.48)

where D(u) is the step function: D(u) = 1 when u > 0, otherwise 0. Using the
convolution theorem, the transform of (12.48) is

f2(x) = (eiβ − 1)g(x)⊗ d(x), (12.49)

where d(x) =
∫ ∞

−∞
D(u)e−iux du = 1

ix
(12.50)

is the transform of the step function.7 Evaluating the convolution (12.49)
directly for the slit function g(x) gives us

g(x)⊗ d(x) = −i
∫ ∞

−∞
g(x− x′)

x′
dx′

= −i
∫ x+a

x−a

dx′

x′
= −i ln

∣∣∣∣x+ a
x− a

∣∣∣∣ . (12.51)

The image intensity is then

I2(x) = | f2(x)|2 = 2(1− cosβ) [ ln|(x+ a)/(x− a)| ]2 , (12.52)

which is illustrated by Fig. 12.25. In this example, the schlieren method clearly
emphasizes the edges of the slit, which are discontinuities in object phase. In
general it can be shown to highlight phase gradients in the direction normal to
the knife-edge; this effect can be seen in the example in Fig. 12.18(f ) and in
the simulation Fig. 12.28.

x

b
0

I2(x)

Phase

Figure 12.25

Schlieren image of the
phase slit. Note that the
images of the edges are
not sharp.

Finally, this model can be used to illustrate the phase-contrast method
(§12.4.2). The transform (12.44)

F(u) = δ(u)+ 2a(eiβ − 1) sinc(au) (12.53)

is filtered by the phase plate, which changes the phase of the u = 0 component
by π/2 (i.e. multiplication by i):

F3(u) = i δ(u)+ 2a(eiβ − 1) sinc(au). (12.54)

The image amplitude is the transform of this:

f3(x) = i+ (eiβ − 1) g(x), (12.55)

which has value i in the region |x| > a and value

i− 1+ eiβ = (cosβ − 1)+ i(sinβ + 1) (12.56)

within the slit. The intensity contrast is maximum when β = 3π/4.

7 This transform will be discussed in more detail in §13.4.2.
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12.4.5 The interference microscope

When we want a quantitative complex analysis of a phase object, we use
an interference microscope. This form of microscope is constructed around
a two-beam interferometer, and if incoherent illumination is to be used, it
is clear that the interference fringes will be localized in the object (§9.3.3).
Many types of interferometer can be used, and we shall give just one example;
others are given in Chapter 9 and in textbooks on interferometry. Interfer-
ence microscopy is not a spatial-filtering technique, but we include it in this
section because of its complementary relationship to the techniques described
in §12.4.1–§12.4.2.

The interference microscope that we shall describe here uses a a shearing
interferometer, a version of which was described in §9.4, which produces
an interference pattern between an image field and the same field displaced
linearly by a known distance. The image therefore appears double, but the
translation may be so small that this does not detract from its sharpness. If,
in addition, there is a difference of π between the phases of the two images,
destructive interference occurs and the combined field is dark in the absence
of phase variations. Regions of the image that have differences of phase within
the displacement vector then appear bright on the dark background, and the
technique is appropriately called differential interference contrast (DIC).
It finds many applications ranging from microelectronic wafer inspection to
biology (Fig. 12.2(c)).

Because DIC empasizes
phase gradients along a
particular axis, the
images look
three-dimensional as if
they were illuminated
from one side.

In the form of the differential interference microscope due to Nomarski, the
small displacement is achieved using the differing optical properties of a crystal
for light of two orthogonal polarizations. We shall describe it as a transmission
microscope, although it is often used in a reflecting form. The illumination
at two points on the object corresponds, at the entrance to the condenser, to
two plane waves travelling in different directions. These are obtained from a
single linearly polarized plane wave by passing it through a thin crystal device
(Wollaston prism), made from a uniaxial crystal in the form of two opposed
thin wedges having orthogonal optic axes OA, Fig. 12.26(a). The initial plane
wave is polarized at 45◦ to these axes, so that the ordinary and extraordinary
waves have equal amplitudes. When the angle α of the wedge is small, the
angular deviation of the plane wave is (n− 1)α, where the appropriate n must
be used. The effect of the double wedge is therefore to produce a small angular
separation between the two orthogonally polarized waves of 2α(ne−no), which
corresponds to a distance 2Fα(ne− no) in the object plane where F is the focal
length of the condenser.

After transmission through the object and the objective, the two waves are
recombined by a second similar Wollaston prism. Since they are mutually
coherent (they originated from a single plane-wave component of the illumi-
nation), interference between them is produced by an analyzer crossed with
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Figure 12.26

Nomarski’s differential
interference contrast
microscope. (a) The
Wollaston prism with the
optic axes OA;
(b) schematic ray diagram
of the complete
microscope. W indicates a
Wollaston prism, P the
polarizer and A the
analyzer.
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the polarizer, thereby also introducing the required π phase shift, indepen-
dently of the wavelength (Fig. 12.26(b)). If the sample introduces no phase
difference between the two components, the recombined wave is a plane wave
with polarization orthogonal to the analyzer, and the field is dark. Any phase
difference introduced will make the light elliptically polarized; likewise, an
intensity difference will result in rotation of the plane of polarization. In both
cases some light will pass the analyzer.

What does the image represent? If the transmission function of the object
is f (x, y), which is assumed to be independent of polarization, the interference
image intensity is

I(x, y) = | f (x, y)− f (x+ δx, y)|2 ⊗ p(x, y), (12.57)

where δx is the translation vector between the two images and p(x, y) is the
point spread function (§12.2.1) of the microscope objective, the illumina-
tion being assumed to be incoherent. We can expand (12.57) for small δx
and get

f (x+ δx, y) ≈ f (x, y)+ δx
∂f
∂x

, (12.58)

I(x, y) = δx2
∣∣∣∣∂f
∂x

∣∣∣∣
2
⊗ p(x, y). (12.59)

For a phase object, we write f = | f0| exp[iφ(x, y)], where f0 is constant. Then

∂f
∂x
= if

∂φ

∂x
, (12.60)

I(x, y) = | f0|2δx2
∣∣∣∣∂φ∂x

∣∣∣∣
2
⊗ p(x, y). (12.61)

The image therefore highlights amplitude or phase gradients in the direction
of the displacement vector. The phase slit of §12.4.4 would therefore appear
as two bright lines along its edges unless δx is parallel to it. If the slit is very
narrow, the lines may merge; one is tempted to add their intensities to give a
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Dark-field Nomarski DICAttenuated
dark-field

Object with
5% contrast

Figure 12.27 Numerical simulation of contrast enhancement by spatial filtering. An object is
shown with 5% contrast, both positive and negative with respect to the background
field. Dark-field imaging, in which the zero order is removed completely, improves
the contrast but ignores its sign. Attenuated dark-field, in which the zero order is
only partially removed, is sign-sensitive. Nomarski differential interference contrast
(DIC) emphasizes gradients parallel to the image shift (horizontal), independent of
their sign.

Object

Dark-field Zernike

Schlieren Nomarski DIC
−0.1   0   +0.1

phase (rad)

Figure 12.28 Numerical simulations of visualizing a phase object. The object has regions with
phase ±0.1 radian with respect to the background. Only the Zernike method is
sensitive to the sign of the phase change. Schlieren and DIC are sensitive to
gradients; schlieren also spoils the resolution.

Box 12.3 Simulations of spatial filtering

Spatial filtering of an image can be simulated numerically by first calculating
its Fourier transform, then multiplying this by the appropriate filter function,
and finally performing an inverse transform. We now show some simulations
comparing the different methods described in this section. In Fig. 12.27, an
object was constructed that has small and large features having amplitude
contrast±0.05. It is shown imaged in dark field, which does not distinguish
between the two signs, and attenuated dark field, which does make the
distinction. Nomarski DIC shows the edges of the modulated regions in
the direction of the image displacement. In Fig. 12.28, the modulated
regions have phases±0.1rad, and one can see that only the Zernike method
visualizes the sign of the phase change. Also notice the smearing effect of
the convolution in (12.51), which is also observable in the experimental
demonstration in Fig. 12.18(e).
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single line in this case, but one should be wary of doing so because close to the
resolution limit the illumination may not be spatially incoherent. As we saw
in §12.4.3, the schlieren system also emphasizes phase gradients. However,
this microscopic technique uses incoherent illumination, and is therefore more
suitable for high-resolution work.

In Fig. 12.2 (at the start of the chapter) we compared images of a live
cell taken with three of the techniques described above – bright-field, Zernike
phase-contrast and Nomarski DIC. In a modern microscope, it is possible
to switch from one technique to the other in one objective by switching the
filters.

12.5 Holography

Since all the information concerning the image of an object is contained in
its diffraction pattern, it is natural to ask how to record this information on a
photographic plate and then use it to reconstruct the image. In other words,
can the phase problem (§12.1.5) be circumvented experimentally? The germ
of a solution was suggested in 1948 by Gabor and had some limited success at
that time; but the invention of the laser subsequently enabled the operation to
be carried through completely successfully, and Gabor was awarded the Nobel
prize for his work in 1971.

12.5.1 Gabor’s method

Gabor’s reason for trying to overcome this difficulty was to solve the problem
of aberrations in electron-microscope imaging. The resolution obtainable in
the electron microscope is not limited by the wavelength (∼0.1 Å) but by the
aberrations of the electron lenses. Gabor thought that a better image might be
reconstructed if the electron diffraction pattern amplitude could be recorded and
the image created optically. To illustrate this idea, he demonstrated his solution
optically in both stages. The phase problem was solved by using an object that
consisted of a small amount of opaque detail on a large transparent background;
the background would produce a strong zero order and the variations in phase
of the diffraction pattern would be recorded as variations in intensity. The
intensity would be greatest where the phase of the diffraction pattern was the
same as that of the background and least where there was a phase difference
of π . The idea was only much later applied to electron-microscope images
(Tonomura (1999)) but was developed successfully for optical imaging in the
1960s when lasers became available.
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Figure 12.29

Example of a simple
holographic recording
set-up. The path lengths
from the beamsplitter to
the plate via the object and
via the mirror are
approximately equal and
the angle between object
and reference waves at the
plate is fairly small.

Coherent light 
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Photographic
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12.5.2 Application of the laser

The idea of the hologram was implemented successfully, initially by Leith and
Upatnieks in 1960, using a laser.8 The experimental set-up is quite simple
(Fig. 12.29). A spatially coherent laser beam is divided, either in wavefront or
amplitude, so that one part falls directly on a photographic plate, and the other
falls on the object to be recorded, which scatters light onto the same plate.

A hologram records both
the amplitude and phase
of the incident wave-field
as the contrast and phase
of its interference fringes.

The two waves, called the reference wave and the object wave respectively,
interfere and the interference pattern is recorded by the plate. It is necessary
to reduce relative movements of the various components to amplitudes much
less than one wavelength during the exposure to avoid blurring the interference
fringes. Reconstruction of the image is carried out by illuminating the devel-
oped plate with a light wave that is identical, or at least very similar, to the
original reference wave. Two images are usually observed. We shall first give
a qualitative interpretation of the recording and reconstruction processes, and
afterwards discuss them in a more quantitative manner.

The process can be described in general terms by considering the hologram as
analogous to a diffraction grating (§8.5.3 and §9.2). Suppose that we photograph
the hologram of a point scatterer – Fig. 12.30(a). The point generates a spherical
object wave, and this interferes with the plane reference wave. The result is
a set of curved fringes (b), which look like an off-centre part of a zone plate
(§7.2.5), having a sinusoidal profile. The hologram is photographed and the
plate developed. To reconstruct the image we illuminate the hologram with
a plane wave identical to the original reference wave (Fig. 12.31). We can
consider each part of the hologram individually as a diffraction grating with
a certain local line spacing. Illumination by the plane reference wave gives

8 In fact, their first demonstration was with a spatially filtered quasi-monochromatic source of
light, but the laser made life much easier.
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Figure 12.30

Formation and
reconstruction of the
hologram of a point object:
(a) spherical wave from the
object interferes with plane
reference wave; (b) fringes
recorded on the
photographic plate.
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Figure 12.31

Reconstruction of the
hologram of a point object:
the first orders diffracted
from the various regions of
the plate intersect to form
the real reconstruction,
and the −1st orders appear
to diverge from the virtual
reconstruction.
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rise to a zero order and two first orders of diffraction, at angles θ1, θ−1 which
depend on the local spacing of the fringes. It is not difficult to see that the −1
orders intersect and form a real image of the point scatterer, and the +1 orders
form a virtual image at a position identical to the original point. The images
are localized in three dimensions because they are formed by the intersection
of waves coming from different directions.

Two other important points are brought out by this model. First, the recon-
structed point is more accurately defined in position if a large area of the plate
is used, causing the reconstruction orders to meet at a considerable angle; the
resolution is therefore a function of the size of the hologram. Second, the
fringes are sinusoidal, since only two waves interfere. If the plate records this
function faithfully, only zero and first orders will be produced on reconstruc-
tion, and only the above two images are produced. This approach is also useful
in understanding the effects of altering the angle of incidence, the wavelength
or the degree of convergence of the reference wave used for the reconstruction
(Problem 12.13).



441 12.5 Holography

12.5.3 An analytical model for holography

Now we shall develop an analytical model to show how both the amplitude
and the phase of the scattered light are recorded in the hologram and how
the reconstruction works. Suppose that at a general point (x, y) in the plate
the scattered light has amplitude a(x, y) and phase φ(x, y). Furthermore, we
shall assume that the reference wave is not necessarily a plane wave, but has
uniform amplitude A and phase φ0(x, y) at the general point. Then the total
wave amplitude at (x, y) is

ψ(x, y) = A exp[iφ0(x, y)] + a exp[iφ(x, y)], (12.62)

and the corresponding intensity

I(x, y) = |ψ(x, y)|2 = A2 + a2 + 2Aa cos[φ(x, y)− φ0(x, y)]. (12.63)

To make the holographic process linear, we assume a to be much smaller than
A, in which case the term a2 can be neglected and

I(x, y) ≈ A2 + 2Aa cos[φ(x, y)− φ0(x, y)]. (12.64)

The photograph of this is the hologram. It consists of a set of interference
fringes with sinusoidal profile and phase φ − φ0. The visibility of the fringes
is 2a/A. Since A is a constant and φ0 is known, both a(x, y) and φ(x, y) are
thus recorded in the hologram. The need for coherent light to record the
hologram should now be clear, since the phase difference φ − φ0 is recorded
in the interference pattern.

To deduce the form of the reconstruction, we assume that the interference
pattern (12.64) is photographed on a plate whose amplitude transmissionT (x, y)
after development is linearly related to the exposure intensity I(x, y):9

T (x, y) = 1− αI(x, y). (12.65)

The hologram is illuminated by a wave identical to the original reference wave
A exp[iφ0(x, y)] and so the transmitted amplitude is

AT (x, y) exp[iφ0(x, y)] = [1− αI(x, y)]A exp[iφ0(x, y)] (12.66)

= A(1− αA2) exp[iφ0(x, y)] (a)

− αA2a(x, y) exp[iφ(x, y)] (b)

− αA2a(x, y) exp{i[2φ0(x, y)− φ(x, y)]}. (c)

9 It is always possible to find a limited range of intensities for which this is true. This is another
reason for making a2  A2, so that the range of I is not too large.
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The three terms in the above equation are interpreted as follows:

(a) The zero order is an attenuated continuation of the reference wave.
(b) The first order is the virtual image. Apart from the constant multiplier

αA2, the reconstructed wave is exactly the same as the object wave and
so the light appears to come from a virtual object perfectly reconstructed.
Because the complete complex wave a(x, y) has been reconstructed, the
reconstruction looks exactly like the object from every direction, and so
appears three dimensional.

(c) The −1 order is the phase-conjugate image. This wave is the complex
conjugate of the object wave if φ0 is a constant, and then gives a real
(rather than virtual) mirror image of the object. Otherwise it is distorted.
An application of the conjugate image will be discussed in §13.6.3.

For practical details on the production of holograms, the reader is referred
to texts such as Collier et al. (1971) and Hariharan (1989); here, we shall only
mention a few points that arise directly from the above discussion.

The ability of a hologram
to record both the
amplitude and phase of
the incident wave-field
allows three-dimensional
images to be observed.

The intensity ratio between the object beam and the reference beam, a2/A2,
has been required to be small; in general a ratio of 1:5 is sufficient, although for
some purposes even 1:2 can be tolerated. Perfect reconstruction requires the
photographic plate to record the light intensity linearly. However, the condition
can be relaxed quite considerably for many purposes, since the main effect of
non-linearity in the plate is to create second- and higher-order reconstructions
which are usually separated in space from the main images. Another obvious
requirement is for high spatial resolution of the photographic plate. If the
reference beam and the object beam are separated by angle θ , the period of the
fringes in the hologram is approximately λ/ sin θ . For, say, θ = 30◦ this period
is only about 1μm with the common helium–neon laser. To record fringes
on this scale, the plate must be capable of resolving less than 0.5μm, a very
stringent requirement which needs special high-resolution photographic plates
or film to fulfil it. These plates are usually very insensitive.

12.5.4 Phase, volume and colour holograms

The reader will no doubt remember from the discussion of diffraction gratings
in §9.2.4 how poor is the efficiency of an amplitude grating. This is essentially
what we have created in a hologram, and the argument in §9.2.4 can be repeated
for a sinusoidal grating to show that the diffraction efficiency η ≈ a2/12A2,
which is very small. For example, if a2/A2 = 1/5, η ≈ 2%. The answer,
as with the diffraction grating, lies in the use of phase holograms. There
are several practical methods of replacing the amplitude transmission T (x, y)
by a proportional refractive index field n(x, y). These include bleaching a
developed absorption hologram (chemically replacing absorbing silver metal
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Figure 12.32
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by a transparent complex such as silver chloride whose density locally modifies
the refractive index of the emulsion) and the use of gels or polymers in which
the degree of cross-linking is modified by exposure to light.

Reflection holograms made by embossing the surface of a metal or metal-
coated plastic are very common today, and are widely used for increasing the
difficulty of forging devices such as credit cards. Since the surface profile
affects the phase of the reflected light, they can be designed to have very high
diffraction efficiency. Such holograms are usually made by projecting a real
image of the object onto the holographic plate, where it interferes with the
reference wave (Fig. 12.32). Reasonably clear reconstructions can be made
from such image plane holograms using white light, because the images at
various wavelengths substantially overlap.

Once we have techniques to make non-absorbing holograms, it is also pos-
sible to create volume holograms. These are usually polymers or crystals
that record the incident light intensity in three dimensions as a local modula-
tion to the refractive index (see §13.6.2, for example). This refractive index
distribution is then ‘fixed’ (i.e. made insensitive to further light exposure). The
volume holographic medium replaces the holographic plate in Fig. 12.30 and
records the complete spatial fringe pattern, which creates a three-dimensional
diffraction grating.

Reconstruction of the image occurs when a plane reference wave is diffracted
by this grating. Here we have the same problem as we met in the case of the
acousto-optic effect (§8.7) except that in this case the grating is stationary and
so the ‘acoustic’ frequency � is zero. We saw there that the volume grating
diffracted the wave only if it had exactly the right angle to obey Bragg’s law of
diffraction, as in Fig. 8.27. Suppose, for simplicity, that we form the hologram
of a plane wave such that the angle between it and the reference wave is 2β.
Then the fringes in the volume hologram are planar with spacing� = λ/2 sinβ.
Bragg’s law then tells us that diffraction occurs when the reference beam is at
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angle β, i.e. when it is in the same direction as it was when the hologram was
formed. Otherwise there is no reconstruction at all and the hologram appears
transparent to the wave. Contrast this with the two-dimensional situation, where
use of a reconstruction wave differing from the reference wave just gives rise
to a distorted image.

The complete absence of reconstruction when the reconstruction wave is not
in its original direction allows many holograms (each representing a different
image) to be recorded simultaneously in the same medium, each one with a
different reference wave, and the possibility of viewing each image separately
by choosing the appropriate individual reconstruction wave. This has led to the
idea of the holographic memory in which a great deal of information (in the
form of three-dimensional images) is stored in a crystal, with the possibility of
quick access via the appropriate reference beam. Another application of volume
holography is to record colour holograms. Three holograms of an object are
recorded in the medium with differently coloured lasers, using reference beams
in the same direction. When the developed hologram is viewed with white light
in that direction, only the same wavelengths reconstruct their corresponding
images, and therefore a true-colour reconstruction can be seen.

12.5.5 Holographic interferometry

Holographic reconstructions have two main advantages over ordinary pho-
tographs. They are three dimensional, and they contain phase information
(§12.4.2). The possibility of recording phase information in a hologram has
allowed the development of holographic interferometry in which an object
can be compared interferometrically with a holographic recording of itself at
an earlier time under different conditions. If any changes – of optical density
or dimensions, for example – have occurred since the recording was made, the
differences will be apparent as interference fringes. There are several ways of
doing this, based on the idea that the first hologram is recorded and then its
virtual image is reconstructed in the same position as the object, so that changes
appear as interference fringes between the two. In particular, details that have
not changed should interfere destructively so that they do not appear in the final
image. An example is shown in Fig. 12.33 in which the growth of a crystal of
transparent material within an optical cell is observed by recording the pattern
of changes in optical density. The hologram was recorded before the crystal
started to grow, so that the interferogram refers to the crystal alone. The details
of the exact shape of the experimental cell are irrelevant to an interpretation of
the photograph, since only changes in the optical density are observed. Other
applications of interferometric holography include vibration analysis and aero-
dynamic experiments (see the books on holography referenced earlier, and also
Jones and Wykes (1989)).

Holographic
interferometry between
an object and a
computer-generated
model of itself is a
method of testing the
accuracy of production of
an object.
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Figure 12.33

Holographic interferogram
showing a growing crystal
of solid helium at a
temperature of 0.5 K.

12.5.6 Computer-generated holograms

Given an object defined by a three-dimensional set of data points, the form of
its hologram can be calculated for a given reference wave. Such a hologram
can then be printed and recorded photographically on a permanent mate-
rial, to provide a hologram that can be reconstructed as described above.
In recent years programmable media with sufficient spatial resolution for this
purpose have also become available, thus allowing direct production of a
hologram by the computer. In particular, spatial light modulators with mil-
lions of pixels are manufactured from liquid crystals. In these devices, a
thin layer of electro-optic liquid crystal is subjected to a spatially address-
able electric field, so that its birefringence and its optical thickness for a
given polarization of light can be patterned in a predetermined way by a com-
puter. Amongst other things, it can then be used to record a phase hologram
and reconstruct an image of the object with high diffraction efficiency. When
the hologram is written into the spatial light modulator, illumination by the
reference wave reconstructs an optical image of the object. This of course
allows dynamic images to be reconstructed, and these can be coloured images
too if three holograms related to differently coloured reference beams are
superimposed.

12.6 Advanced topic: Surpassing the Abbe
resolution limit – super-resolution

None of the spatial filtering techniques described in §12.4 improves the spatial
resolution beyond Abbe’s λ/2NA limit; in fact some of them, by restrict-
ing in some way the region of the Fourier plane used to form the image,
actually spoil the resolution (schlieren, for example). The question there-
fore arises: is the limit of λ/2NA fundamental? We shall see that this is
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Figure 12.34

The γ -ray microscope
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not the case for incoherent imaging, and that due to advances made in the
last decades, optical resolution is now only limited by the amount of light
available.

Nevertheless the Abbe limit indeed has the aura of a fundamental limitation.
It was used by Heisenberg to illustrate the quantum-mechanical uncertainty
principle in his famous ‘γ -ray microscope’ thought-experiment as follows.
Suppose we wish to determine the position of a point particle in the field
of a microscope as accurately as possible. In order to do this, first choose
a microscope with a high NA, and use waves with the shortest wavelength
available (γ -rays). Then, to make the determination, we must scatter at least
one photon off the object, and that photon must enter the lens of the microscope.
But there is no way of knowing at which angle the photon entered the lens;
all we know is that, after scattering off the point object, the photon had some
direction within the cone of semi-angle α which determines the NA of the lens
(Fig. 12.34). If the photon has wavenumber k0, its x-component after scattering
must therefore lie in the range −k0 sinα ≤ kx ≤ k0 sinα. Thus the uncertainty
δkx= 2k0 sinα. Now from the theory of resolution of the microscope, (12.27)
gives an uncertainty in position of the image (the point spread function) δx =
λ/2NA = λ/2 sinα. Thus

δx δkx = 2π , (12.67)

which can be written, using p = h/λ = hk/2π , in the form

δx δpx = h. (12.68)

This is the usual form of the uncertainty principle (§14.2.2).
From the above approach, we can immediately see that maximizing δpx leads

to the best resolution, i.e. minimum δx. Since δpx is an average over the whole
lens aperture, it is clear that by using only the edges of the lens we can weight
the averaging to the maximum values that δpx can take. This suggests masking
the lens with an annular aperture at its maximum radius, which does indeed
give a smaller Airy disc (§8.3.4). Unfortunately this point spread function has
stronger diffraction rings than that of the full aperture, and other aberrations
are maximized, which often result in imaging artifacts, so it is not a practical
option. An example was shown in Fig. 12.12(h).

Now we can look for ways of ‘circumventing’ the uncertainty principle,
which might lead us to ways of improving the resolution in microscopy. One
obvious idea is to use many photons. Every observed photon must enter the
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Figure 12.35
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lens, so that δkx is unchanged. But a statistical assembly of N such photons
will have a total uncertainty of about 2N

1
2 k0 sinα, so that we might expect

δx ≈ λ/
(

2N
1
2 NA

)
. (12.69)

If N is very large, this can represent a substantial improvement in the resolution
of sparse images where the individual points do not overlap or have different
wavelengths so that they can be distinguished. This idea is behind one very
high resolution method that uses specialized photo-excitable fluorescent tags
and will be described in §12.6.5.

During the last 20 years several new super-resolving microscopes have
evolved for incoherent imaging, where the emphasis has been on fluores-
cent objects (§12.2.4), because of their importance in biological microscopy.
However, unless the object itself is fluorescent (auto-fluorescence), we must
always remember that attaching a fluorescent tag can change the way in which
a biological entity works. This is akin to staining in conventional microscopy,
which was avoided for the first time by the Zernike phase-contrast method
(§12.4.2). Fluorescence is a quantum phenomenon and will be discussed in
more detail in §14.8. For the purposes of this section, we need to know that
fluorescent emission occurs when an atom or molecule (‘fluorescent tag’) is
first excited from its ground state, or from a long-lived metastable state E1 to
an excited state E3. From there, it decays back to E1 by means of at least two
sequential stages, one of which emits the fluorescent light. This involves an
intermediate state E2, as shown in Fig. 12.35(a). Clearly, the excitation wave-
length is shorter than the fluorescence wavelength, and therefore there is no
constant phase relationship between the two waves, so that fluorescence can
be considered as completely incoherent emission. Figure 12.35(b) shows a
more common scheme involving four levels, but the principle is the same.

Another important concept in the field of super-resolution is scanning
microscopy. In a scanning microscope, a small brightly illuminated spot is
moved sequentially across the object, usually in a raster scan along a series
of closely spaced lines which together cover the field of view. The intensity of
the transmitted or reflected light is then measured as a function of time and the
image is built up sequentially and displayed on a screen. Scanning microscopy
is ipso facto incoherent microscopy; since one point is measured at a time,



448 Image formation

at a rate far slower than the bandwidth of even the most narrow-band source,
there is no opportunity for interference between light from neighbouring points
on the object. The question of the resolution limit then boils down to determin-
ing the point spread function (§12.2.1) of the scanning system; what is the size
of the ‘point’ that is measured at a given time? And how can we ‘tailor’ it to
be smaller?

In this section we shall discuss five practical techniques for super-resolution,
of which 1–3 use raster scanning. Techniques 1, 2 and 5 may employ fluorescent
tags, but do not necessarily require them as part of the basic mechanism:

1. The confocal scanning microscope (§12.6.2), which can achieve resolution
somewhat better than the diffraction limit in three dimensions and works by
multiplying the point spread functions of two optical systems;

2. The near-field scanning optical microscope (NSOM – §12.6.3), which
carries out surface imaging using an optical probe in very close physical
proximity to the sample;

3. Stimulated emission depletion microscopy (STED – §12.6.4), a scanning
technique that uses the fluorescent mechanism itself to create a very small
scanning spot;

4. Stochastic optical reconstruction microscopy (STORM – §12.6.5), which
achieves very high resolution by using optically switched fluorescent tags;

5. Structured illumination microscopy (SIM – §12.6.6), which uses image
multiplication to collect information in an extended region of Fourier space.

12.6.1 A proof that unlimited super-resolution is
possible in incoherent imaging

Sixty years ago, Toraldo di Francia (1952) proposed an idea that showed,
theoretically at least, that resolution of an incoherent image is unlimited
according to the Rayleigh criterion, provided that enough light is available.
He showed how to create an axially symmetric point spread function with its first
zero arbitrarily close to the origin by using a complex non-periodic apodization
mask consisting of concentric ring apertures with alternating phases of 0 and π .

The idea is as follows. Consider first an annular ring with zero phase and
area a1 at the maximum aperture radius of the imaging lens, R1. This creates
a point spread function (§12.2.1) with amplitude a1J0(uR1), which has its first
zero at u = 2.38/R1 (Appendix A). Add to this a second ring with phase
π , area a2 and radius R2 < R1, leading to a combined point spread function
f (u) = a1J0(uR1) − a2J0(uR2). This has a central maximum of amplitude
a1 − a2 and a2 is chosen so that the combined function has zero value at some
value u = u1, which is smaller than u = 2.38/R1, so that the Rayleigh limit of
the original aperture has been exceeded. But the central spot is very weak,
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Figure 12.36 Super-resolution using five annular apertures of alternating phase. (a) The amplitude
of the point spread function (PSF) f(u), as a function of radius u in the Fourier plane.
(b) Upper half: the intensity of the PSF shown on an enhanced scale – notice the
weak central peak and the very bright peripheral rings. (c) Lower half: the intensity
of the PSF J20(uR1) for the outermost annular aperture alone also shown on an
enhanced scale. Notice that the first zero in (b) is closer to the centre than that in (c).
(Toraldo di Francia (1952))

since it is the difference between a1 and a2, and a calculation shows that outside
the first zero, the diffraction patterns of the two rings add to give a bright ring
with amplitude proportional to a1 + a2. One now repeats the process with a
second pair of antiphased annuli at radii R3 and R4, both smaller than R2, and
amplitudes a3 and a4 calculated to give a first zero at the same value u1 as
before and a bright ring in about the same place as before, but of opposite sign
so as to cancel the first bright ring. The outcome is the same Rayleigh limit but
a weaker central spot surrounded by a relatively dark region and a bright ring
at larger u than before. An example of a typical calculated result is shown in
Fig. 12.36(a, b); the improvement over the annular aperture is not very great,
but the problem of the bright ring is very prominent. This exercise showed for
the first time that resolution better than the Rayleigh limit is indeed possible,
but very bright illumination is needed and that the field of view, the dark region
around the central peak within which a second resolvable incoherent source
might be situated, is limited. In principle, the process can be continued with
more rings, thereby creating a very weak central peak surrounded by a virtually
dark field, and the choice of u1 determines how narrow the central peak is.

Because of its poor light efficiency, this idea was only recently implemented,
but illustrates the fact that with enough photons available, we can circumvent
the Abbe criterion.

12.6.2 Confocal scanning microscopy

The widely used confocal scanning microscope (Wilson and Sheppard (1984))
is based on a conventional microscope and is illustrated schematically in
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Figure 12.37 (a) Optical layout of a confocal scanning microscope. The object is in the plane F .
(b) Diagram showing why the confocal image is almost unaffected by scattering
from details outside the focal plane, F ; only the light from an out-of-focus
scatterer within the shaded cone gets through the pinhole H. (c) Confocal and
(d) conventional bright-field fluorescence images of a spore of Dawsonia superba.
The scale bars show 1μm. (Photograph courtesy of V. Sarafis and C. Thoni, made at
Leica Lasertechnik, Heidelberg)

Fig. 12.37(a). This shows a transmitted light imaging system (it can also
be implemented in reflected light) in which the object is illuminated by the
diffraction-limited image of a point source. The light transmitted by the object
is focused by a second lens onto a small aperture or pinhole H , after which
lies a detector that measures the power received. The object is then translated
through the system in a raster scan and its image is displayed electronically
from the detector output.

The approach to understanding the resolution is to calculate the point spread
function, as it appears on the display. We therefore picture a point object
having a transmission function δ(x) δ(y). The illumination system produces an
amplitude point spread function s1(x) in the object plane, so that the amplitude
at distance x from the axis is

A(x) = A0s1(x). (12.70)

As the object point scans through this, it behaves as a point source itself which
is situated at x and has amplitude A0s1(x). This is imaged by the objective
lens, with magnification M , onto the plane of H so that it appears with its
centre at x′ = −Mx. The objective has amplitude point spread function in the
pinhole plane s2(x′/M). The amplitude in this plane is therefore A0s1(x)s2[(x′−
Mx)/M], and that at H situated at x′ = 0 is A0s1(x)s2(−x). If the two lenses
are identical, s1 = s2 ≡ s and the amplitude point spread function is s2(x)
and that for intensity is s4(x). Putting in the form for a diffraction-limited lens
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of numerical aperture NA, s(x) = 2J1(k0x NA)/(k0x NA), we find a narrower
point image than the best the equivalent microscope can do; this is not shown by
the Rayleigh criterion (see footnote to §12.2.1) because the zeros are unchanged,
but the Sparrow criterion gives

dmin = λ/3.1 NA (12.71)

since the second derivative of [J1(x)/x]4 is zero at x = 1.08. Figure 12.37(c)
and (d) show the small improvement in resolution attainable. Note that the
aperture H collects only a fraction of the light transmitted by the object, so the
improvement of resolution occurs at the price of a reduction in efficiency.

The confocal microscope has exceptional axial (z) resolution as well as
improved lateral resolution, and this is in fact a more important feature than
the modest improvement in in-plane resolution. If the object is moved axially
out of the focal plane of the scanner (Fig. 12.37(b)), it becomes illuminated
by a patch of light and not a point, and the second imaging stage is no longer
conjugate to it. In addition, the only light reaching the detector from the object
is that within the bundle shown shaded in the figure, which is limited by the
diameter of H . So, for both these reasons, very little light reaches the detector
unless the object is very close to the focal plane. This results in very high axial
resolution, which is employed to build up images of three-dimensional objects
by using three-dimensional scanning.

12.6.3 The near-field scanning optical microscope (NSOM)

The near-field microscope uses a tiny probe in close proximity to the sample
surface to create an image as it scans the sample in a raster. The probe can either
emit light or collect light emitted from a self-luminous object. We shall consider
the former situation, in which we create a very small point spread function
by confining light in an aluminium-coated optical fibre which is tapered to
sub-wavelength dimensions at its termination (Fig. 12.38(a)).

Consider such a light source with very small dimensions a  λ. What
does the wave emitted by such a light source look like? If we describe it by a
superposition of plane waves of the form ψ = ψ0 exp[i(ωt− kxx− kyy− kzz)]
it is clear that, in order to represent a source that has a non-zero amplitude only
within the region |x|, |y| < a/2, we must use components with kx and ky at least
as large as π/a. For such a wave, we have

k2
0 = k2

x + k2
y + k2

z = 2π2/a2 + k2
z , (12.72)

which, since a  λ, implies that kz must be imaginary:

kz = 2π i
√

1
2a2 −

1
λ2 ≈ 2π i

√
1

2a2 . (12.73)
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Figure 12.38

(a) Schematic optics of the
near-field microscope,
showing the extruded fibre
tip as inset; and (b) images
recorded with
probe-to-object distances
d < 0.005, d = 0.005,
0.010, 0.025, 0.10, and
0.40μm. (Photograph
courtesy of E. Betzig)

The implication of an imaginary wave-vector kz is, from §2.3.2, that the
wave propagates evanescently in the z-direction, and decays in amplitude like
exp(−|kz|z). For this reason, the probe has to be extremely close, not much
more than distance a, from the sample surface.

High resolution using evanescent propagation was first demonstrated using
microwaves, but it was achieved with light waves by Lewis et al. (1984) and
Pohl et al. (1984). Images showing the dependence of resolution on the distance
between the probe and object are shown in Fig. 12.38(b). The book by Paesler
and Moyer (1996) discusses this field in depth, including several different
modes by which the probe and light source can be combined.

12.6.4 Stimulated emission depletion microscopy (STED)

Another approach to improving the resolution limit in fluorescence microscopy,
STED (Hell and Wichmann (1994)), uses the fluorescence mechanism itself
to create a super-resolved scanning spot, with point spread function (PSF)
smaller than the diffraction limit λ/2NA. In the first stage, a pulse from a laser
at the excitation wavelength creates a diffraction-limited PSF, which excites
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Figure 12.39

Images of fluorescent tags
on mitochondria with
sub-wavelength detail by
(a) confocal imaging and
(b) STED. The scale bar is
500 nm. (Schmidt et al.
(2009))

any fluorescent atoms within its volume to an excited fluorescing level. Now
a second laser pulse at the emission wavelength, with its wavefront phase-
modulated so as to produce an annular PSF having a dark centre, de-excites
the atoms from this level within the annular region by stimulated emission
(§14.4.2). This leaves excited atoms to be detected by their fluorescence only
in the dark region at the centre of the annulus, which is necessarily smaller than
the diffraction limit. The actual size of the region that remains excited after the
two pulses depends on the relative strengths of the two pulses, and requires
extremely good co-alignment of the optics and the focal points of the optical
trains providing the two spots. One mechanism by which the annular spot is
obtained uses a spiral phase plate, which was discussed in §5.9; the depletion
PSF is similar to J2

1 (k0θR) which has zero value at θ = 0 (Appendix A). Here
the

√
N factor in (12.69) comes into play in determining the region of the

annular PSF that is too weak to stimulate emission (see Problem 12.19). A
comparison of images obtained with a confocal microscope and by STED is
shown in Fig. 12.39 (Schmidt et al. (2009)).

12.6.5 Stochastic optical reconstruction microscopy (STORM)

Earlier in §12.6 we remarked that by using N photons emitted from a point
object, its position can be determined to an accuracy

√
N better than the

diffraction limit (12.69). This idea can be used directly for imaging a sparse
object, consisting of several points separated by distances greater than a few
wavelengths, each one emitting randomly a stream of photons by fluorescence.
The centre of gravity of each point image is then determined accurately by
calculation. By the use of switchable fluorescent tags, this has now been
extended to dense objects, which are imaged statistically by switching on a
series of sparse random samples of the tags. The images are then combined,
after the position of each tag has been determined accurately. The technique is
called STORM (Rust et al. (2006)).

The basic concept of a switchable fluorescent molecule is shown in
Fig. 12.40(a). It has a ground state E0, which is not fluorescent, and can
be switched to the long-lived metastable fluorescent state E1 of Fig. 12.35 by
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Figure 12.40 STORM: (a) An energy-level scheme that allows switchable fluorescence. (b, c)
Stochastically excited fluorescent tags on a dense object. The circle represents the
point spread function in the image and the dot at its centre is its centre of gravity.
Photons within the two overlapping circles in (c) cannot be assigned definitely to a
particular tag and will be eliminated in the data processing. An image created by
STORM is shown in Fig. 12.1 at the beginning of the chapter.

applying a pump of frequency ωp = (E1 − E0)/�. The return from E1 to the
ground state E0 (switching off) via an indirect route can be achieved by a wave
of another frequency. Several fluorescent tags have been developed that have
these properties.

In the fluorescence microscope, the object is illuminated by a weak pump
wave at ωp, which excites a sparse sample of the tags to the metastable level.
These tags are then observed fluorescently, using a series of N excitation pulses
from a laser at ωe, and the N fluorescent images are individually recorded
(Fig. 12.40(b)). Then the level E1 is switched off, and the process repeated
to excite a new sparse sample of tags. Each series of N images is processed
so that the position of each tag is determined with accuracy λ/(2NA

√
N),

and any suspicious events are eliminated (for example, the two close tags in
Fig. 12.40(c) that were both excited, and therefore give rise to a queerly shaped
distribution of photon images). The images obtained after each excitation by ωp
are then combined to give a complete image of the dense object; an example is
shown in Fig. 12.1 at the beginning of the chapter. The resolution is determined
by the value of N , which can be several thousands, but is eventually limited by
the size of the fluorescent tag itself.

12.6.6 Structured illumination microscopy (SIM)

Structured illumination microscopy provides wide-field super-resolution by
manipulations in Fourier space. For this reason we shall discuss it in greater
detail because of its close affinity to other topics in this chapter. The basic idea
is to illuminate the object with a non-uniform field of light which multiplies the
image information and is designed to move high spatial frequencies to lower
ones by convolution in the Fourier plane. Since the highest spatial frequency
that can be imaged is 2NAk0, the method can therefore make frequencies higher
than this visible. The idea was first discussed by Lukosz (1966), but it has only
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Figure 12.41

(a) Image multiplied by a
sinusoidal illumination
pattern and (b) the
resulting Fourier spectrum.
(c) The region of the object
Fourier spectrum recorded
within the imaging circle.
(d) The region of the
spectrum recorded when
three grating orientations,
at 0, ±60◦ are used.

(a)  Image space

FT

(b)  Fourier space

radius kp

(c)  Sampled region of image Fourier space

(d )  Region of image Fourier space sampled
when using three gratings at 60° angles 

recently been developed into a practical technique for super-resolved biological
imaging by Gustafsson (2000).

In this method, the excitation laser field illuminating a fluorescent specimen
is patterned in a sinusoidal manner. The result is that the fluorescent emission
image of the specimen is multiplied by an all-positive sinusoid 1

2 [1+cos(kpx)].
The incoherent image is recorded and its Fourier transform calculated. This is
clearly the transform of the required image, convolved with the transform of the
illumination, the three δ-functions at−kp, 0 and kp. The result of the convolution
is to superimpose, on the transform of the image, repeats of itself shifted by
both ±kp. Now, according to the Abbe theory, the incoherent image is built up
from Fourier components with spatial frequencies out to ±2NAk0 ≡ ±km. In
that case, because of the convolution, the image will now include information
about the spectrum of the image including frequencies in the range between
±(km + kp). The idea is illustrated in Fig. 12.41 for kp = 2k0.

What has been done here is well known to us in the form of the moiré
pattern, the optical analogue of beats in acoustics (Fig. 12.42(a)). When
we put two gratings with similar frequencies on top of one another, we see
coarse fringes that correspond to the vector difference in spatial frequency
between the two gratings. To determine which grating has the higher fre-
quency, it is necessary to translate one of them; the moiré pattern moves in
the same direction as the lower-frequency grating. Then, if one frequency is
known, the other can be deduced, even if both are out of the range of resolu-
tion, Fig. 12.42(b). The translation is also required for another reason; clearly
image information that falls on zeros of the illumination pattern is lost, and
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Figure 12.42

(a) A periodic object with
two spatial frequencies is
multiplied by a reference
grating having an
intermediate spatial
frequency f0. The moiré
frequency equals the
difference between the
object and reference
frequencies. (b) When the
reference grating is
translated, the moiré
pattern moves the same
way if the object frequency
is lower than the reference,
and the opposite way if it is
higher.

Reference, spatial frequency f0Image, spatial frequency f

f >f0

f f0<

+3 0 −3

Mask movement

Movement of moiré
fringes in opposite 
direction to reference

Movement of moiré
fringes in same 
direction as reference

(a)

(b)

so to include full information, at least three different pattern positions are
required.

The processing steps needed to reconstruct the high-resolution image are now
clear. The excitation pattern is projected onto the object and the image recorded.
The recording must then be repeated with linear shifts of the pattern. For full
two-dimensional imaging, the process must also be repeated with fringes in
different directions. All the images are Fourier transformed and the resultant
sampling of the Fourier plane as used in practice is shown in Fig. 12.41(d).

The resolution attainable depends on the value of kp, which should therefore
be as large as possible. Illumination is provided by interfering the first orders
from a diffraction grating so as to produce interference fringes on the specimen
(Fig. 12.43). The grating period and condenser lens are chosen so that the first
orders of diffraction are at the edges of the angular aperture of the objective,
which leads to a fringe pattern with spatial frequency NAck0e (12.26), where
NAc is the NA of the condenser, and k0e is the wavenumber of the excitation
laser. The zero order is then blocked so as to double the spatial frequency of the
illumination pattern to kp = 2NAck0e (§12.1.1). Linear translation of the grating
allows the phase φ of the fringe pattern to be controlled. In practice, kp ≈ km.

An immediate problem arises: how do we separate the spatial frequency
components that have been transposed by the convolution from those that were
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Figure 12.43

The optics of the structured
illumination microscope.

Excitation
laser

Diffraction
grating on
translation
stage

0-order
stop

Fluorescence 
imaging microscope

Camera

High contrast
interference 
fringes

Object with
fluorescent labelling

there in the first place? This is done by comparing the transforms of the images
with various illumination pattern phases φ. In one dimension, the structured
illumination has the form s(x) = 1

2 [1+ cos(kpx+φ)]. The object’s fluorescent
strength has form f (x). The emitted intensity s × f can be represented by its
Fourier transform

F(s)(k) = F(k)⊗ 1
2

[
1
2

e−iφδ(k − kp)+ δ(k)+ 1
2

eiφδ(k + kp)

]

= 1
4

e−iφF(k − kp)+ 1
2

F(k)+ 1
4

eiφF(k + kp). (12.74)

In order to exploit the fact that (12.74) contains information in the range
|k| ≥ 4k0N , we have to separate the individual terms. There are three unknowns
on the right of (12.74) and so we have to generate three independent equations
with different values of φ by shifting the grating in Fig. 12.43. Then, the
equations can be solved to find F(k) in the full range |k| ≤ 4k0N .10 We then
have, for j = 1, 2, 3,

F(s)(φj, k) = 1
2

e−iφjF(k − kp)+ F(k)+ 1
2

eiφjF(k + kp). (12.75)

Practical application of this method for two-dimensional images requires
at least three orientations of the grating and at least three phases φ for each
orientation. The sampling of the larger region of k-space is then shown in
Fig. 12.41(c). Figure 12.44(c) shows an image reconstructed using this
method, compared to the same image obtained with a bright-field fluorescence
microscope and a confocal microscope.

Recently, the resolution of structured illumination microscopy has been
increased three-fold by using a non-linear fluorescent response (Gustafsson
(2005)). Under conditions of very bright illumination, which saturates the
fluorescence at the peaks of the sinusoid, the function s(x) becomes closer to a
square wave whose Fourier transform also includes δ-functions at±3kp,±5kp,

10 In calculating the image, the OTF(k) of the imaging lens should really multiply the values of
F(k), but we omit this to simplify the analysis.
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Figure 12.44

Image reconstructed by
structured illumination. (a)
Conventional bright-field,
(b) confocal, (c) linear
structured illumination and
(d) non-linear structured
illumination images of the
part of the image (e) of a
two-dimensional array of
100 nm fluorescent glass
balls. (Gustafsson (2005))

(a) (b)

(c) (d )

(e)

etc. Under these circumstances a resolution of λ/12NA has been demonstrated
(Fig. 12.44(d)).

12.6.7 Can super-resolution be reconciled with
Abbe’s theory, and at what cost?

Now that we have seen several methods of high-resolution imaging that have
been demonstrated to exceed the diffraction limit by significant factors, can
we understand the limitations of Abbe’s theory? The answer is really in the
assumption of an infinite periodic object (§12.1.1). Then, the orders of diffrac-
tion of a coherent component of the illumination wave were exactly defined
and we could determine whether they were, or were not, accepted by the aper-
ture of the imaging lens. If the order was accepted by the aperture, then all
its energy would contribute to the image; otherwise none. The optical transfer
function (OTF: §12.3) tells us, in fact, for what fraction of the possible coherent
illumination components this is true for any particular object period.

But if the instantaneous field of view is modulated, as in SIM (§12.6.6), the
diffraction orders have side-bands. Likewise, if it is limited, as in complex phase
masking (§12.6.1) and all forms of scanning microscopy, they are diffuse. Then,
even if the first order is centred outside the imaging lens aperture, a side-band
or part of the diffuse spread may be within the aperture, and the information in
this part can be used to reconstruct the image.

Obviously, in such cases only part of the diffracted light contributes to
the image, and much of it misses the aperture, so that inefficient use of the
illuminating light is inevitable. In fact, only when imaging an object whose
diffraction pattern is completely within the aperture of the lens can full use
be made of the incident light. A general way of looking at the efficiency
problem has been formulated in terms of information entropy (Mendlovic
et al. (2001)). ‘Turning on’ a super-resolution process increases the amount
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of information in the image and therefore decreases its information entropy.
However, we know from thermodynamics that any process applied to a closed
system can only increase its total entropy, so this entropy decrease must be
accompanied by an increase somewhere else in the system; it must be the result
of destructive interference or reflection or some other process in which photons
are extracted randomly from the system. This approach also explains why it
is often possible to use image processing to find small changes in an image,
well below the diffraction limit, when there is considerable prior information
about what the object is likely to be, because then the initial entropy is much
smaller.

12.7 Advanced topic: Astronomical imaging
by speckle interferometry

The theoretical resolution limit of a telescope, θmin= 1.22λ/D (§12.2.1), cannot
be achieved by any Earth-based instrument because of the presence of non-
uniformities in the atmosphere. Local pressure and temperature variations result
in the atmosphere having a rather poor optical quality and its properties vary
widely as a function of the weather, the time and the azimuth angle. Just to get
some idea of the parameters involved, we can quote some typical deviations
from the mean optical thickness of the whole atmosphere. The r.m.s. fluctuation
amplitude is between two and three wavelengths of visible light, and it changes
randomly in a time of the order of 10 ms. In the spatial dimension, fluctuations
are correlated within transverse distances of about 0.1 m and are responsible
for the twinkling of small stars. The general smearing effect of atmospheric
fluctuations on a stellar image is called by the astronomer the seeing, and might
be 3 arcsec on a poor night and 0.5 arcsec on an exceptionally good, still night.
The telescope therefore acts as if it were a collection of small independent
telescopes, each of which has diameter (of order 0.1 m) such that θmin is the
seeing. This should be compared with the Rayleigh resolution limit for, say,
a 2 m telescope, which is about 0.05 arcsec. The resolution that can be achieved
with a very large telescope therefore seems to be no better than that from a
telescope of diameter 10 cm; only the brightness of the image is greater with
the larger telescope.

Two major inventions attempted to overcome the resolution limit set by the
atmosphere by using multiple telescopes: the Michelson stellar interferometer
(§11.8.1) and the Brown–Twiss interferometer (§11.8.3). Recently two new
techniques have been introduced in an attempt to overcome the problem of
atmospheric degradation of single-telescope images – speckle interferometry,
described below, and adaptive optics (wavefront correction by a flexible mirror:
see Hardy (1998); Tyson (1998)).
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Figure 12.45

Speckle images (above)
and corresponding spatial
power spectra (12.80)
(below). From left to right:
(a, d) Betelgeuse (resolved
disc), (b, e) Capella
(resolved binary) and
(c, f) an unresolved
reference star. (Labeyrie
(1976))

α Ori

(a) (b) (c)
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12.7.1 Speckle interferometry

The idea of speckle interferometry (Labeyrie (1976); Labeyrie et al. (2006))
arose from careful observation of ‘instantaneous’ photographs of stellar images.
With the introduction of image-intensifier tubes it had become possible to pho-
tograph images through a narrow-band filter at a high magnification using an
exposure time less than the 10 ms stability time of the atmospheric fluctua-
tions. This is sufficient to see detail at the Rayleigh resolution limit including
instantaneous atmospheric fluctuations without further blurring by atmospheric
motion. Such images have an overall size of the order of the seeing, but con-
tain a wealth of fine detail. Three examples of ‘instantaneous’ photographs are
shown in Fig. 12.45. There are obvious differences in their detailed structure
and these differences represent real differences in the objects. The method
of speckle interferometry separates the atmospheric and object contributions
to these images by using a series of exposures during which the atmosphere
changes from exposure to exposure, but the star remains invariant.

Suppose, first, that the telescope was used to observe an ideal point star at
time t. The image, photographed through the atmosphere, has an intensity dis-
tribution p(r, t), (where r ≡ (x, y)), which is the instantaneous atmospherically
degraded point spread function of the telescope. This is actually illustrated by
Fig. 12.45(c), in which one can see that it is like a random collection of sharp
spots. If the atmosphere had been homogeneous, the extended star would have
given an ideal image of intensity o(r) with resolution limited only by the finite
aperture of the telescope. In the presence of the real atmosphere, the composite
image is the convolution of o(r) with the point spread function p(r):

i(r, t) = o(r)⊗ p(r, t). (12.76)

In the basic technique, this image is photographed at time tj under conditions
such that the photographic film has amplitude transmission proportional to
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the exposure intensity (as in holography, §12.5). Subsequently the developed
photograph is used as a mask in a diffractometer (§8.1.1). One records on
a second film the intensity of its Fraunhofer diffraction pattern, the Fourier
transform of i(r, tj). The process is repeated for a series of exposures at times tj,
the transforms being superimposed on one another on the second film. Today,
video-recording and digital analysis have replaced the photography and the
diffraction, but the result is the same.

Now the transform of i(r, tj), (12.76), is

I(u, tj) = O(u)P(u, tj), (12.77)

where u is the vector (u, v), and its intensity is

|I(u, tj)|2 = |O(u)|2|P(u, tj)|2. (12.78)

The summation for a long series of tjs gives

∑
j
|I(u, tj)|2 = |O(u)|2

∑
j
|P(u, tj)|2. (12.79)

Since |P(u, tj)|2 is a random function of u in which the detail changes sig-
nificantly from tj to tj+1, the summation becomes smoother and smoother as
more terms are added (§8.5.7). Finally, we have, when enough terms have been
added to make

∑ |P(u, tj)|2 smooth enough,

∑
j
|I(u, tj)|2 = |O(u)|2 × (a smooth function). (12.80)

The smooth function can be determined by observing an unresolvable star.
In this way the intensity of the Fourier transform |O(u)|2 can be measured.
If this function is retransformed, we get the spatial auto-correlation function
of the stellar image, which reveals simple structural features (such as stellar
diameters or separation of binary components); but a true stellar image cannot
be deduced.

In Fig. 12.45 we show three examples of speckle transforms obtained by
this technique. The upper row shows examples of single exposures from the
series of some hundred speckle patterns, and the lower row the summed spatial
transforms (12.80). The ‘smooth function’ is shown in ( f ), which corresponds
to an unresolvable point star with angular diameter less than 0.02 arcsec, the
Rayleigh limit of the telescope. The other examples are resolvable stars; trans-
form (e) in particular exhibits Young’s fringes which reveal the star to be a
binary.

The basic technique of speckle interferometry suffers from the phase prob-
lem, but the loss of phase information occurred in this case after the speckle
images were recorded and it can therefore be retrieved. Several techniques have
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Figure 12.46 Illustrating the principle of speckle masking. (a) A single speckle image of Capella
(see Fig. 12.45(b)), which is drawn schematically as (b). This is represented as a
convolution of the star image (c) with the atmospheric speckle pattern (d). (e) and
(f) show that the product of the speckle pattern I(r) with itself shifted by the vector
r1 retrieves the atmospheric speckle pattern (d). Note that r1 can be derived using
speckle interferometry on the same data. Finally, (g) shows the correlation between
(f) and the speckle image (b) to have an image of the star (c) at the origin,
surrounded by noise, which averages to a smooth background when many samples
are taken.

been devised for this purpose and today are highly developed. We shall briefly
describe one method that creates outstanding images.

12.7.2 Speckle masking

Images can be created from a series of speckle patterns by a technique called
speckle masking (Weigelt (1991)). First we note that, if there were another
single isolated and unresolvable star in the field of view, one contribution to the
spatial auto-correlation would be an image of the original star field (convolved
with the unresolvable star, which is essentially a δ-function). Speckle masking
creates such a ‘reference star’ artificially by the process illustrated in Fig. 12.46.

Suppose, as an example, the object o(r) is a binary star (a) whose separation
r1 has been determined by speckle interferometry (Fig. 12.46(b)–(d)). Then
the product i(r) · i(r+ r1) contains one overlapping point for each speckle
and therefore corresponds to p(r) (Fig. 12.46(e), ( f )). There will be other
accidental overlaps in a complex speckle field, which introduce an error that
can be corrected statistically. This is treated in the further development of
the technique, but we shall ignore it in this discussion. It is now easy to see
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Figure 12.47

An example of a
diffraction-limited image
retrieved by speckle
masking: (a) the
long-exposure image of
R136 in the 30 Doradus
Nebula; (b) a single speckle
image; (c) high-resolution
reconstruction of the
source. The scale bars show
1 arcsec. (Courtesy of
G. Weigelt; Pehlemann
et al. (1992))

(a) (b) (c)

that, statistically, the correlation between the point spread function ( f ) and its
speckle image (b) is the object function; one sample is shown in (g). Using
(12.76) we write this as c3(r):

c3(r, tj) = i(r, tj)⊗ p(−r, t)

= [o(r)⊗ p(r, tj)] ⊗ p(−r, tj)

= o(r)⊗ [p(r, tj)⊗ p(−r, tj)]. (12.81)

When the term in square brackets (the auto-correlation of p) is averaged over
many frames at times tj, the sharp peak at the origin dominates (see §8.5.7, and
Fig. 8.25(c)); this is essentially a δ-function, so that∑

j
c3(r, tj) = C o(r), (12.82)

where C is a constant. Thus speckle masking retrieves the image. The tricky
point in the technique is the choice of r1 to get the best approximation to p
when we are dealing with an object more complicated than a double star, and
often several possibilities are used, the results being averaged. Examples of
recent results using this and other techniques can be found in Labeyrie et al.
(2006), and one is illustrated by Fig. 12.47.

Chapter summary

In this chapter we saw how the imaging process is described by physical

optics, and how this leads naturally to an understanding of the limitations

and capabilities of imaging systems. We learnt:

• That the image of a coherently illuminated object is the diffraction

pattern of its diffraction pattern;

• That this is equivalent to a repeated Fourier transform, which is why the

image is basically similar to the object but inverted;
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• That resolution is limited because the extent of the Fourier integrals

involved is limited by the wavelength, which leads to the Abbe

resolution limit;

• About the Rayleigh and Sparrow resolution limits of imaging

instruments;

• How modification of the second Fourier transform by spatial filters can

emphasize features of the image, leading to the techniques of

dark-field, phase-contrast, schlieren and differential interference

contrast imaging;

• How the imaging properties of a system are described in Fourier space

by the optical transfer function;

• About holography and interferometric holography;

• How spatial resolution in incoherent imaging has recently been

improved well past the Abbe limit by several super-resolution

techniques;

• How Fourier image processing is used to achieve diffraction-limited

astronomical images with ground-based telescopes, despite

atmospheric aberrations.

Problems

12.1. A diffraction-limited astronomical telescope is used in conjunction
with a camera to produce a highly magnified image. The imaging
sensor used has pixels with dimension 25μm. If the primary mirror
has diameter 1 m and focal length 12 m, what extra magnification
should be provided by the camera optics?

12.2. An object consists of two white points on a dark background. Their
separation is 3λ. Describe the image that is obtained when the object is
viewed in a microscope under the following illumination conditions:
(a) axial coherent illumination, objective with NA= 0.5;
(b) axial coherent illumination, objective with NA= 0.2;
(c) incoherent illumination, objective with NA= 0.2.
Treat the problem as one-dimensional.

12.3. A telescope has a square aperture of side 2a, with edges horizontal
and vertical. Qualitatively, would you expect better resolution along
the horizontal/vertical axes, or along the diagonals?
Calculate the Rayleigh and Sparrow resolutions for these axes, and see
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if your expectations are justified. Finally, calculate the optical transfer
function for these axes. Discuss the significance of your results.

12.4. A photographic transparency shows a monkey behind a fence con-
sisting of equally spaced narrow vertical bars. How would you use a
spatial filtering technique to remove the fence, hurting the monkey’s
image as little as possible?

12.5. For certain types of grey-scale object (with no phase structure)
the dark-field image is the negative of the normal image, in the
photographic sense. What condition is necessary for this to be true?

12.6. Two close point objects are illuminated coherently in antiphase, so that
they are resolved by a microscope however close they may be. What
is the apparent separation between them, as a function of the NA of
the microscope, when the separation is less than the Abbe limit?

12.7. The Sparrow limit for resolving two point images depends on their
relative brightness, but the Rayleigh limit does not. For what value of
the brightness ratio are the two limits equal? (To solve this problem
analytically, assume the aperture to be square.)

12.8. A phase object consists of many identical small transparent discs on a
uniformly illuminated field. The discs are randomly arranged without
overlapping, and together they cover half the field of view. The discs
change the phase of the transmitted light by angle φ. What spatial filter
will give maximum contrast between the discs and their surroundings?

12.9. A black-and-white slide has transmitting regions where its value is
unity, and opaque regions where it is zero. Suggest a spatial filter that
will outline the edges of the transmitting regions with sharp bright
lines, whichever way they are oriented.

12.10. Calculate the dimensions of a Wollaston prism from calcite for use
in a Nomarski DIC microscope, with objective of focal length 5 mm,
NA = 0.6. It should be designed so that doubling of the image is not
observable. The birefringent properties of calcite are given in §6.6.

12.11. A popular form of phase-contrast imaging consists of simply defocus-
ing the microscope a little. Express this in terms of a complex spatial
filter, and apply it to the phase slit of §12.4.4.

12.12. A telescope lens is apodized in order to reduce the prominence of
the diffraction rings in the point spread function. If the radius of the
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objective is R and the amplitude transmission is reduced by a mask
having Gaussian transmission function with parameter σ , find the
value of σ that reduces the intensity of the first diffraction ring to 1%
of its original value. How is the resolving power affected, according
to Rayleigh and Sparrow?

12.13. A hologram of a certain object is made using light of wavelength λ1.
The reconstruction is made using a similar reference beam having
wavelength λ2. How is the reconstruction distorted, and where is it
observed? (Assume all angles involved in the problem to be small.)

12.14. Calculate the longitudinal and transverse resolution of a holographic
reconstruction, in terms of the wavelength, the dimensions of the
illuminated part of the hologram and the image position. (Use Fermat’s
principle.)

12.15. What is the relationship between the reconstructions produced by an
amplitude hologram and its negative?

12.16. Write a computer program using (12.36) to calculate the optical trans-
fer function of a circular optical imaging system with aberrations.
Investigate, for example, spherical aberration, coma and astigmatism
of various degrees (the forms of the phase errors are given in §3.7).
Show that, theoretically, the resolution limit is unaffected by aberra-
tions. However, assuming that detail at spatial frequencies where the
MTF< 5% is not observable, find the relationship between resolution
and degree of aberration (in waves at the edge of the aperture stop) for
these three aberrations.

12.17. Calculate the resolution limit of a confocal microscope whose two
lenses are masked by annular apertures, of radii equal to those of the
lenses.

12.18. Write a computer code to describe in two dimensions a monochromatic
wave exiting a sub-wavelength aperture, using superposition of plane
waves with complex wavenumbers. Use it to show how the resolution
of a near-field scanning microscope depends on the distance between
the aperture and the sample.

12.19. Formulate a model for a STED microscope with Gaussian point spread
function Ie = Im exp(−r2/2σ 2) for excitation of the fluorescent tags,
where σ ≈ λ/2. The depletion beam can be modelled as having inten-
sity profile Id = I0r2σ−2 exp(−r2/2σ 2). If the fluorescent excitation
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is quenched by factor exp(−Id/Im), find the r.m.s. width of the point
spread function after depletion, as a function of σ and I0/Im, and thus
deduce the improvement in resolution.

12.20. In a structured-illumination microscope, an object consisting of two
points separated by π/km is observed. What is the image observed
without structured illumination? Three images are recorded using
structured illumination with period 2π/km, the illumination fringes
having phases φ1 = −π/2, in which the right-hand point is obscured
by a dark fringe, φ2= 0 and φ3= + π/2, in which the left-hand point
is obscured. Describe the images recorded in each stage, and show
how they are processed so as to create a single image in which the
points are resolved.
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13 The classical theory of dispersion

Many aspects of the interaction between radiation and matter can be described

quite accurately by a classical theory in which the medium is represented by

model atoms consisting of positive and negative parts bound by an attraction that

depends linearly on their separation. Although quantum theory is necessary to

calculate from first principles the magnitude of the parameters involved, in this

chapter we shall show that many optical effects can be interpreted physically

in terms of this model by the use of classical mechanics. Some of the quantum-

mechanical ideas behind dispersion will be discussed later in Chapter 14, but most

are outside the scope of this book.

In this chapter we shall learn:

• about the way in which a classical dipole atom responds to an oscillating

electromagnetic field;

• about Rayleigh scattering, and why sky light is blue and polarized;

• how refractive index, absorption and scattering are related;

• that dispersion, the dependence of refractive properties on frequency,

results from atomic resonances;

• about anomalous dispersion near to absorption lines;

• analytical relationships between refractive index and absorption;

• about plasma absorption and magneto-optical effects;

• whether signals can be propagated faster than the speed of light in

anomalous-dispersion regions;

• a little about non-linear optical properties, which arise when the wave-

fields are very intense;

• about harmonic generation, the photo-refractive effect and soliton propa-

gation;

• about optics at interfaces between conventional dielectrics and materials

with negative permittivity;

• about surface plasmon resonance.
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Figure 13.1

The classical atom.
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13.1 Classical dispersion theory

The term dispersion means the dependence of dielectric response (dielectric
constant, refractive index and absorption) on the frequency of the wave-field.
This will be the topic of the present section. We can get a surprisingly accurate
picture of many dispersive effects simply by postulating a model classical atom,
and asking how it responds to an applied wave-field and radiates as a dipole,
exactly as we learnt in Chapter 5. We then put many atoms together to discover
the properties of bulk optical materials.

13.1.1 The classical atom

Our classical picture of an atom consists of a massive positive nucleus sur-
rounded by a light spherically symmetrical cloud of electrons with an equal
negative charge. We imagine the two as bound together as in Fig. 13.1, so that
in equilibrium the centres of mass and charge of the core and electron charge
coincide. As a result the static atom has zero dipole moment. When it is dis-
turbed, the electron cloud oscillates about the centre of mass with frequency η

determined by the reduced mass m of the atom and the spring constant defined

The basic description of
an atom as an electron
cloud oscillating about a
massive nucleus is a
starting point for
understanding many
optical phenomena.

as mη2.
This model can be applied to individual atoms and simple molecules; more

complicated molecules may have internal dynamics and static dipole moments,
but still the model gives considerable physical understanding. In addition it can
be used for very small particles. But it only predicts a single resonant frequency,
whereas atoms really respond resonantly to a number of discrete frequencies;
this fact is usually introduced phenomenologically, as in §13.3.2. However,
our main concern is with the interaction between the atom and a wave-field
having a well-defined frequency ω, and the interaction is strong only if ω ≈ η;
so usually one resonance alone is dominant and the others can be ignored.

We shall show the atom to behave as an oscillating dipole, which therefore
loses energy by electromagnetic radiation. In this chapter, we introduce energy
loss phenomenologically into the equation of motion of the atom through a
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damping constant mκ . This is one of the parameters whose microscopic origin
has to be explained by quantum theory.

Having said all of this, we can write down the equation of motion for
the displacement x between the centres of mass of the positive nucleus and the
electron charge, when F is a force acting equally and oppositely on each of them:

m
d2x
dt2

+ mκ
dx
dt
+ mη2x = F. (13.1)

If F = qE is the force due to a constant electric field, (13.1) has the solu-
tion x=F/mη2. Remembering that x is the separation between positive and
negative charges, this corresponds to an induced dipole moment

p = qx = q2E/mη2. (13.2)

As a result the electrical polarizability of the atom at zero frequency is

α(0) = p
ε0E

= q2

ε0mη2 . (13.3)

In the same way, we can calculate the effect of an electric field
E=E0 exp(−iωt), using d/dt ≡ −iω, to be

α(ω) = q2

ε0m(η2 − ω2 − iκω)
. (13.4)

Notice that α is complex. This indicates that there is a phase difference
between the applied field and the induced dipole moment, which is particularly
prominent in the frequency interval of about 2κ around η.

We shall now look at some of the applications of this model. We start with a
discussion of the scattering by particles sufficiently well separated that there is
no interference between the waves they scatter (§13.2). Following this, we shall
see the application of the model to dense matter (§13.3) where considerations
of interference are crucial.

13.2 Rayleigh scattering

When an electromagnetic wave falls on an isolated particle, it is either absorbed
or scattered. If the wave frequency ω is well removed from any resonant fre-
quency η, the absorption of the wave is negligible, and only scattering need
be considered. Rayleigh scattering occurs when the particle size is much
smaller than the wavelength, so the wave-field it experiences is essentially
uniform. The result will be seen to be particularly useful for scattering by
isolated atoms or molecules, although it is also applicable to very fine par-
ticulate matter and density fluctuations. We write the instantaneous dipole
moment (13.2)
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p(t) = αε0E(t). (13.5)

If E(t) = E0 exp(−iωt), p(t) behaves as an oscillating dipole. This, we know,
radiates energy at a rate given by (5.33):

W = ω4p2
0

12πε0c3 =
ω4E2

0α
2ε0

12πc3 . (13.6)

If there are N independent scattering particles in a cube of unit volume, the
total power scattered is just N times the result (13.6). Now the radiant power
incident on a face of the cube is the Poynting vector S (§5.2.1) which has
average magnitude 1

2 E2
0ε0c. Therefore the loss of power per unit distance of

propagation is

dS
dz
= −NW = −Nω4α2S

6πc4 . (13.7)

This equation has the solution

S = S0 exp

(
−Nω4α2z

6πc4

)
= π0 exp(−z/z0), (13.8)

where z0 = 6πc4/Nω4α2 is a decay distance, telling us that the intensity of
light travelling through the scattering region falls to e−1 of its initial value in
a distance z0. Before proceeding with an estimate of z0 for systems such as
gases, where N and α are known, it is important to recall that the calculation
has assumed the scattering from the individual particles to be independent, so
that the scattered waves are incoherent and the intensities of the scattered waves
are simply added. This assumption is very often untrue, and will be examined
in more detail in §13.2.3.

13.2.1 Wavelength dependence of scattered radiation

A most striking part of equation (13.8) is the fourth-power dependence on
frequency; blue light is scattered about ten times more intensely than red light.
This is the reason for the common observation that the sky is blue (weather
permitting) during most of the day, but can appear red when one looks directly
towards the Sun at dawn or sunset. The sky is blue because we see sunlight
scattered by air molecules at all heights and the spectrum is therefore biased
strongly to short wavelengths. The redness occurs at daybreak and sundown
because at those times the Sun’s light, and that reflected from clouds near the

Scattering by air
molecules and dust
particles is very
wavelength dependent
and is responsible for
many atmospheric
effects, such as the blue
sky and red sunset.

horizon, passes horizontally through the atmosphere, and the very long air
passage results in the scattering away of a much greater fraction of the blue
light than the red. Rayleigh scattering is also responsible for other everyday
effects, such as the colours of diluted milk and cigarette smoke, and the glorious
sunsets induced by air pollution.
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Figure 13.2
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13.2.2 Polarization of scattered radiation

The dipole moment produced in the atom is parallel to the electric vector of
the incident light and will reradiate with a radiation polar diagram as described
in §5.3.2 (Fig. 5.2(b)). The intensity radiated along the axis of the dipole is
zero. It therefore follows that scattered radiation along a line perpendicular
to the incident light is linearly polarized normal to the plane containing the
incident and scattered light. In other directions the light will appear partially
polarized. With the aid of a single polaroid sheet (§6.2.2), these conclusions
can easily be tested using ordinary sunlight (Fig. 13.2), although polarization
is far from complete because of multiple scattering. This effect is commonly
used in photography to reduce the effects of haze (Problem 13.1).

13.2.3 Incoherent and coherent scattering

Next we should like to use (13.8) to calculate the decay distance for clean
air at atmospheric pressure, but first we should check whether the assumption
of independent scattering by individual molecules applies. It turns out that
the mean distance between air molecules under atmospheric conditions is two
orders of magnitude less than a wavelength of light, so that almost completely

Fluctuations in the
density of the
atmosphere are
responsible for
incoherent scattering.

coherent scattering would be expected. If the medium has uniform density, we
shall see in §13.3 that there is no net scattering at all. It is only the deviations
from uniform density that give rise to scattering. The subject of scattering by
density fluctuations can be treated fully by thermodynamics (see, e.g., Landau
and Lifshitz (1980)) but we can get an idea of the results by a simple argument.
One would expect incoherent Rayleigh scattering to result from independent
‘blocks’ of material of dimensions of order λ, each one therefore having volume
V ≈ λ3. Larger blocks are not small compared with the wavelength, and
smaller ones will not scatter incoherently. Now, in such a volume there are on
average NV molecules. In a perfect gas the molecules do not interact with one
another and the exact number of molecules in the volume V will be governed
by Poisson statistics (§11.7). For such statistics, the r.m.s. fluctuation in this
number is (NV )

1
2 , and it is these fluctuations that should be considered as

the scattering ‘particles’. We should therefore consider Rayleigh scattering



474 The classical theory of dispersion

by ‘particles’ containing (NV )
1
2 molecules, which would have polarizability

α(NV )
1
2 and number density 1/V . Returning to (13.8) we find

z0 = 6πc4

V−1ω4
[
α(NV )

1
2

]2 =
6πc4

Nω4α2 , (13.9)

which is exactly the same result as we obtained for incoherent scattering, (13.8)!
Thus the scattering by density fluctuations in a perfect gas is just the same as
if all the molecules were to scatter incoherently.

To estimate the value of z0 for scattering by a clean atmosphere we relate
the atomic polarizability α to the dielectric constant ε of the gas and thus to its
refractive index (§5.1.2):

n = ε
1
2 = (1+ Nα)

1
2 ≈ 1+ Nα/2. (13.10)

Thus z0 can be written, substituting the wavelength λ = 2πc/ω into (13.8),

z0 = 3Nλ4

32π3(n− 1)2 . (13.11)

Using the values at atmospheric pressure n− 1= 3× 10−4 and N =
3 × 1025 m−3 we find for green light z0 ≈ 65 km. At first sight this figure
seems surprisingly low, particularly as molecular scattering is often not the
only factor that limits visibility through the atmosphere. One indeed frequently
finds situations where the meteorological visibility exceeds 100 km and even
reaches 200 km. However, one should remember that z0 corresponds to an atten-
uation factor of e−1 = 0.37, and factors of e−2 (at 2z0) or even e−3 = 0.05 (at
3z0) can be tolerated before a distant view of snow-capped mountains against
an azure sky merges into the haze.

Under what conditions might we expect scattering to differ from the inco-
herent case? We look for situations where Poisson statistics do not describe
the fluctuations satisfactorily. If the medium is relatively incompressible, as
is a liquid, the motions of the particles are correlated in such a way that they
avoid one another. Density fluctuations are then suppressed and the scattering
is less than in the incoherent case, approaching zero in the uniform density limit
(§13.3). On the other hand, near the critical point in a fluid, for example, the
compressibility diverges and there is a tendency towards local condensation
which enhances density fluctuations. We then see excess scattering and the
phenomenon of critical opalescence (Fig. 13.3).

13.3 Coherent scattering and dispersion

We shall now consider the problem of scattering by a uniformly dense incom-
pressible medium, where the molecules are much closer than one wavelength
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Figure 13.3
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and therefore the scattered waves are correlated in phase. In this problem we
have to sum the amplitudes of the scattered waves. It turns out that a real
polarizability α results in no net scattering whatsoever; the material simply
refracts the incident wave. But when α is complex, absorption of the incident
light occurs.

There is a strong
relationship between
molecular scattering and
refractive index.

13.3.1 Refraction as a problem in coherent scattering

Consider scattering by a thin slab of thickness δz  λ in the plane z= 0, where
z is the axis of propagation of the radiation (Fig. 13.4). In this slab there are N
molecules per unit volume, each having polarizability α. Now the oscillating
dipoles in the slab will all be excited with the same phase by an incident plane
wave E = E0 exp[i(kz− ωt)] and we can calculate their combined radiation at
the point Q ≡ (0, 0, z). A molecule in the slab at point P, (x, y, 0), responds to
the incident wave with an oscillating dipole moment of magnitude

p(t) = αε0E0 exp(−iωt). (13.12)
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Figure 13.5
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From (5.30) its transverse radiation field at Q, (0, 0, z), is

e(t) = αε0ω
2E0 exp[i(kr − ωt)] cos θ

4πε0c2r
, (13.13)

where r2 = x2 + y2 + z2 ≡ ρ2 + z2 and θ is the angle between the vector r
and the z-axis. The total field from all the molecules in an elementary volume
dx dy δz at this point is (13.13) multiplied by Ndx dy δz. We can therefore write
down the total scattered field δEQ at Q as the integral of (13.13) over the
whole slab:

δEQ = Nαω2E0 δz exp(−iωt)
4πc2

∫ ∫ ∞

−∞
z exp(ikr)

r2 dx dy, (13.14)

where cos θ has been replaced by z/r. In terms of ρ,

δEQ = 2πz
Nαω2E0 δz exp(−iωt)

4πc2

∫ ∞

0

exp
[
ik(z2 + ρ2)

1
2
]

ρ2 + z2 ρ dρ. (13.15)

The integral in (13.15) can be rewritten simply as∫ ∞

z

exp(ikr)
r

dr, (13.16)

which can easily be evaluated by parts or by the amplitude–phase diagram
shown in Fig. 13.5 (see §7.2.1 for details of a similar integral) to be −i/kz.
Thus

δEQ = Nαω2E0δz
2c2k

exp[i(kz− ωt + π/2)]

= 1
2

ikNαE0δz exp[i(kz− ωt)]. (13.17)

This scattered wave must be added to the unscattered wave that has reached Q;
since δz is small, the unscattered wave is negligibly different from the incident
wave EQ0 = E0 exp[i(kz− ωt)] whence

δEQ = 1
2

ikNαδz EQ0. (13.18)

If α is real, the scattered amplitude is in phase quadrature with the direct wave
and therefore does not alter its magnitude, but only its phase; in other words,
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Figure 13.6
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the velocity of the wave is modified, but there is no attenuation (Fig. 13.6(a)).
Then

EQ = EQ0 + δEQ =
(

1+ 1
2

ikNαδz
)

EQ0

≈ exp
(

1
2

ikNαδz
)

EQ0. (13.19)

If we had inserted a transparent plate with refractive index n and thickness δz
into the beam, we should have increased the optical path by (n − 1)δz and
modified the wave EQ0 to

EQ = EQ0 exp[ikδz(n− 1)]. (13.20)

So coherent scattering by the slab has resulted in an effective refractive index

n = 1+ 1
2

Nα. (13.21)

This is just the refractive index we have used, for example in (13.10). Thus,
coherent scattering results in refraction, but not absorption. It might seem
that we have discovered nothing new. The importance of this calculation is
that it links refraction and scattering, and can be used to derive an effective
refractive index for other types of wave, whose scattering behaviour is known –
for example, neutrons or atomic vapours.

If the medium is dense, so that n is not close to unity, we must consider
the field that polarizes the molecules as the local field, and not simply the
applied field. This makes the treatment more complicated but does not introduce
absorption.

13.3.2 Resonance and anomalous dispersion

At frequencies near the resonance η, (13.4) shows α to be complex, and as
a result the statement that the scattered wave is in quadrature with the direct
wave is no longer correct. The refractive index is still modified, but absorption
may also occur as can be seen from Fig. 13.6(b). In (13.4) we had polarizability
α(ω) = q2/[ε0m(η2 − ω2 − iκω)] and thus the refractive index (13.21) is
approximately
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Figure 13.7
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n = 1+ 1
2

Nα = 1+ 1
2
�2(η2 − ω2 − iκω)−1 (13.22)

when Nα 1. � is called the plasma frequency (Nq2/ε0m)
1
2 , whose

significance will be discussed in §13.7. Then the real and imaginary parts
of n are

nr = 1+ �2(η2 − ω2)

2[(η2 − ω2)2 + κ2ω2] , (13.23)

ni = �2κω

2[(η2 − ω2)2 + κ2ω2] . (13.24)

The typical shape of the
curve nr(ω) around an
absorption line
(Fig. 13.7(a)) is reversed
if the absorption line
becomes a transmission
line; this is the origin of
‘slow light’ (Box 13.1).

Figure 13.7 shows the two quantities, nr(ω) and ni(ω) schematically. The
curves show several important features.

1. Outside the frequency region η ± κ , dnr/dω is positive and ni  1. This is
called normal dispersion and is typical of all transparent media.

2. The refractive index becomes large at frequencies just below resonance,
and sharply drops to a value less than unity just above the resonance. In
the region of sharp change, dnr/dω is negative; this is called anomalous
dispersion.

3. In the anomalous dispersion region ni cannot be neglected and there is
absorption. We shall show in §13.4 that this is necessary from very gen-
eral considerations. This is, of course, the absorption corresponding to an
emission line in the atomic spectrum.

A real atom or molecule has a series of spectral lines at various frequencies,
and anomalous dispersion takes place in the region of each one of them. As
we presented it here, the model atom has only a single resonance; the multi-
plicity is taken into account by assuming that it has several resonant states, the
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jth state having frequency ηj and relative strength Nj. Then, writing the complex
dielectric constant index as a superposition of the effects of all of them,

ε = 1+ q2

ε0m
∑

j

Nj(
η2

j − ω2
)+ iκjω

. (13.25)

The Njs are called oscillator strengths and are related to the matrix elements
that appear in the quantum-mechanical description (§14.4). Figure 13.7(b)
shows a typical refractive index curve for sea-water in the infra-red region,
where there are several resonances.

13.3.3 Dispersion remote from an absorption band:
X-ray refractive index

In the normal dispersion region, remote from a resonance frequency η, we can
neglect the absorption and (13.23) becomes

n ≈ 1+ �2

2(η2 − ω2)
. (13.26)

In particular, if ω is well above that of the highest resonance in (13.25) we have

n ≈ 1− �2

2ω2 , (13.27)

which shows that the refractive index in the X-ray region is less than unity, but
only just so. Substitution of typical values gives n− 1 ≈ −10−7. This allows
the use of total external reflection as a method of handling X-rays. Although
v = c/n is greater than c, the theory of relativity is not contradicted because it
is the group velocity, not the phase velocity, at which information and energy
are transported (Problem 2.3).

13.3.4 Plasma absorption edge in a free-electron gas

If the electrons in a medium are unbound, for example as a plasma in the
ionosphere or as conduction electrons in a simple metal, we can calculate the
dispersion by substituting η = 0. We obtain from (13.22):

ε = n2 = 1+ Nα = 1− �2

iκω + ω2 . (13.28)

The model for a
free-electron gas gives a
good approximation for
the complex refractive
index of a metal in the
infra-red region.

When the electrons are free, κ  ω, and

n ≈ (1−�2/ω2)
1
2 , (13.29)



480 The classical theory of dispersion

Figure 13.8

Refractive indices near the
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for a free-electron gas
with zero damping.
Experimental data points
for sodium are shown, and
the broken lines show the
corrections to the theory
resulting from adding an
appropriate relaxation
time.
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which shows that forω < � the wave is evanescent and the medium is therefore
opaque. At frequency � there is a transition to a transparent state. This is called
the plasma absorption edge and is shown in Fig. 13.8. It is particularly sharp
in the alkali metals, where it occurs in the near ultra-violet. At the plasma edge,
n = 0 and the wavelength is infinite; the whole plasma oscillates in phase,
creating a collective oscillation.

13.3.5 Refractive index of a free-electron gas
in a magnetic field

A similar calculation to the above can be made in the presence of a constant
magnetic field B0 and shows one origin of the magneto-optic effect discussed
in §6.9.3. Returning to the basic mechanical equation (13.1) we can add a
term qB× v representing the Lorentz force, but it is now necessary to work
in three dimensions because of the vector product. With B0 and the incident
wave-vector in the z-direction, the dynamic equation for the displacement (x, y)
of the charge is

The refractive index of a
free-electron gas is
modified by a magnetic
field, which is the origin
of the Faraday
magneto-optic effect
(see §6.9.3).

m
d2(x, y)

dt2 + mκ
d(x, y)

dt
+ mη2(x, y)+ qB0

d( y,−x)
dt

= qE0 exp(−iωt).
(13.30)

We shall illustrate the effects in the high-frequency region ω 
 κ , η only.
Clearly the steady-state solution is (x, y) = (x0, y0) exp(−iωt), and so we can
replace d/dt by −iω whence

−mω2(x0, y0)− iqωB0( y0,−x0) = qE0. (13.31)

These equations are analogous to those for the Foucault pendulum in classical
mechanics. The result is particularly simple for circularly polarized radiation
(§6.1.2) for which E0y = ±iE0x, the upper and lower signs representing left-
and right-handed senses. Eliminating y0 we have
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−
(
ω2m− q2B2

0
m

)
x0 = E0q

(
1± qB0

mω

)
. (13.32)

Then

x0 = ±iy0 = −E0q
ω2m(1∓ ωc/ω)

, (13.33)

where ωc= qB0/m is the electron cyclotron frequency. From the charge
displacement we calculate the polarization of the medium, P0 = Nq(x0, y0),
and hence the dielectric constant ε = 1+ P0/ε0E0:

ε = n2 = 1− �2

ω2(1∓ ωc/ω)
(13.34)

for the two circularly polarized waves, in which the effect of the magnetic field
is represented by ωc. When ω is large the corresponding refractive indices are
real and the medium therefore shows a magnetically induced optical activity,
which is the Faraday effect.

We can also represent (13.30) by a matrix equation, which will bring us into
line with the formalism of Chapter 6. From (13.31), we calculate in the above
manner the dielectric tensor ε:

ε = I− �2

ω2 − ω2
c

⎛
⎝ 1 iωc/ω 0
−iωc/ω 1 0

0 0 1− ω2
c/ω

2

⎞
⎠, (13.35)

where I is the unit tensor. This can be compared directly to (6.39) for a uniaxial
optically active medium, and its principal values can easily be shown to be
given by (13.34).

13.4 Dispersion relations

This section will discuss some very general relationships between the real
and imaginary parts of response functions such as ε(ω) that arise because
of causality, which expresses the self-evident fact that no event can cause
observable consequences that precede it in time.

13.4.1 Relationship between the impulse
and frequency responses

A convenient way to understand the dynamic response of a system to an external
field is to start by investigating the effect of a single impulse of the field.

The idea of the impulse
response is by no means
modern; Newton used it
in his analysis of the
Moon’s motion in the
Earth’s gravitational field.
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Provided the response of the system is linear, the effect of a more complicated
time-varying field can then be built up by superposing the response to impulses.

Suppose we apply an electric field E to a dielectric for a short time dt.
The field impulse is then E dt, and it causes a polarization E X (t)dt, which is
initiated by the field impulse but may die away more slowly. X (t) is called
the impulse response, and is the temporal polarization response to a unit field
impulse applied at t = 0. Causality requires that X (t) be zero at negative t. Now
let us calculate the polarization caused by a field E(t) by linear superposition
of the effects of pulses E(t′)dt′ at time t′:

P(t) =
∫ t

−∞
E(t′)X (t − t′)dt′. (13.36)

Since X (t) is zero for negative t, the upper limit of the integral can be replaced
by ∞. In the particular case of the oscillatory field E = E0 exp(iωt), (13.36)
becomes, with t′′ ≡ t − t′,

P(t) = E0

∫ ∞

−∞
exp(iωt′)X (t − t′)dt′ (13.37)

= E0 exp(iωt)
∫ ∞

−∞
exp(−iωt′′)X (t′′)dt′′ = E χ(ω), (13.38)

whereχ(ω) is the Fourier transform of X (t) and, being the relationship between
P and E, is the polarizability (≡ Nα(ω)). The dielectric constant at ω is then

ε0ε(ω)E = ε0E + P, (13.39)

whence ε0[ε(ω)− 1] = χ(ω). (13.40)

This relationship shows that the frequency response is the Fourier transform
of the impulse response in the dielectric case.

13.4.2 The Kramers–Kronig relations

By introducing the requirement that the response of any system must be causal,
we can now deduce relationships between the real and imaginary frequency
response functions, of which (13.23) and (13.24) are examples. We shall define
a unit step function d(t) as follows:

d(t) =
{

lims→0 exp(st) (∼1), when t < 0;
0, when t ≥ 0.

(13.41)

The refractive index is
a complex function of
frequency, and its real
and imaginary parts are
related by the theory
of complex functions.
The relationship can
also be found using
complex-plane integrals.

As pointed out in §12.4.4, the step function obtained by putting s = 0 does
not really have a Fourier transform, but this problem is avoided by letting s be
infinitesimal but not zero. Then the transform is
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D(ω) = lim
s→0

(s− iω)−1. (13.42)

Now since X (t) only starts at t = 0, and d(t) finishes at the same time, we can
write1

X (t) d(t) = 0. (13.43)

Taking the Fourier transform of this equation

0 = χ(ω)⊗ D(ω) = lim
s→0

∫ ∞

−∞
χ(ω′)

s− i(ω − ω′)
dω′

= ε0 lim
s→0

∫ ∞

−∞
ε(ω′)− 1

s− i(ω − ω′)
dω′. (13.44)

As s → 0 there is a singularity at ω′ = ω. We therefore divide the integral
into two parts, that from ω − s to ω + s and the rest. The first integral can
be evaluated straightforwardly since when s is small enough ε(ω′) is constant
throughout the range of integration:

lim
s→0

∫ ω+s

ω−s

ε(ω′)− 1
s− i(ω − ω′)

dω′ = [ε(ω)− 1]
∫ ω+s

ω−s

dω′

s− i(ω − ω′)
= π [ε(ω)− 1] ; (13.45)

the integral is independent of s. The rest is called the principal part of the
integral and is denoted by P

∫
:

lim
s→0

(∫ ω−s

−∞
+
∫ ∞

ω+s

)
ε(ω′)− 1

s− i(ω − ω′)
dω′ ≡ P

∫ ∞

−∞
ε(ω′)− 1
−i(ω − ω′)

dω′. (13.46)

Since (13.44) is the sum of (13.45) and (13.46),

ε(ω) = 1+ 1
π
P
∫ ∞

−∞
ε(ω′)− 1
i(ω − ω′)

dω′. (13.47)

We can equate real and imaginary parts of (13.47) separately and obtain two
integral relationships between εr(ω) and εi(ω):

εr(ω) = 1+ 1
π
P
∫ ∞

−∞
εi(ω

′)
(ω − ω′)

dω′

[
= 1+ 2

π
P
∫ ∞

0

ω′εi(ω
′)

(ω2 − ω′2)
dω′
]

; (13.48)

εi(ω) = − 1
π
P
∫ ∞

−∞
εr(ω

′)− 1
(ω − ω′)

dω′

[
= − 2

π
P
∫ ∞

0

ω[εr(ω
′)− 1]

(ω2 − ω′2)
dω′
]

. (13.49)

1 We ignore a possible δ-function response as part of X (t) which might not give 0 when multiplied
by d(t) at t > 0.
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In the bracketed forms of (13.48) and (13.49) we have used the property
ε(ω) = ε∗(−ω) of the Fourier transform of a real response to an applied
electric field. Equations (13.48) and (13.49) (in either form) are known as the
Kramers–Kronig relations.

13.5 Group velocity in dispersive media:
Superluminal velocities and slow light

Although the theory of relativity precludes transmission of information at veloc-
ities greater than c, the speed of light in vacuum, in this chapter we have come
across some situations where the refractive index is less than unity and therefore
‘superluminal’ velocities greater than c might be implied. We have to show
that this is not really the case in any practical sense.

First, we emphasize again the difference between phase velocity and group

It appears that signals
cannot propagate faster
than light because, when
the group velocity
exceeds c, there is
always absorption.

velocity. Information is transmitted by modulating a continuous wave, for
example shaping it as a pulse or a series of pulses. As we saw in §2.4, the
relevant velocity is that at which the envelope of a wave-group propagates, and
that is the group velocity, vg = dω/dk.

In general, the group velocity for a pulse centred at ω0 can be expressed in
terms of the refractive index as

vg = c
n+ ω dn

dω
(13.50)

evaluated at ω0. One interesting situation, which we shall meet in §13.7, where
the refractive index of a plasma at ω > � is smaller than unity might seem to
indicate superluminal propagation; but the dispersion relationship (13.24) for
this case is

n(ω) = (1−�2/ω2) < 1, (13.51)

and the group velocity is then easily shown to be c(1 − �2/ω2), which is
less than c in that region of frequency. However, when ω < �, which should
result in vg > c according to this result, electromagnetic waves in a plasma are
strongly attenuated; and this, it turns out, is not a coincidence.

13.5.1 Superluminal propagation in the anomalous
dispersion region?

Clearly, we should be looking for superluminal velocities in a region where
dn/dω< 0. This characterizes the anomalous dispersion region. However, here
we have to take into account the inevitable presence of absorption which,
as we saw in §13.3.2, is an analytical consequence of anomalous dispersion.
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The order-of-magnitude calculation below will show that, if a wave-group is
constructed entirely from frequencies in the anomalous dispersion band, it must
be sufficiently long that its superluminal velocity is not evident within the decay
distance resulting from the absorption. From (13.23) and (13.24), around the
resonance frequency ω = η, where the anomalous dispersion curve is steepest,
we have

nr = 1+ �2(η2 − ω2)

2κ2η2 , (13.52)

ni = �2

2κη
. (13.53)

The anomalous dispersion region as described by these equations occurs in a
band of frequencies with the half-width defined by

|η2 − ω2| < κη⇒ |η − ω| < κ/2. (13.54)

Differentiating (13.52), we find the group velocity at ω = η to be

vg = c

(
1− �2

κ2

)−1

. (13.55)

Now let a pulse of waves at frequency around η propagate for distance D.
The time it takes is D/vg. This pulse will arrive ahead of the same pulse
travelling in vacuum by time

�t = D
(

1
c
− 1

vg

)
= D�2

cκ2 . (13.56)

Now as a result of the absorption resulting from ni (13.53), this pulse is also
attenuated by factor 1/e in distance D0 = 1/(nik0) = c/(niη) and the pulse
advance within D0 is

�t = D0�
2

cκ2 = �2

κ2ηni
= 2

κ
. (13.57)

On the other hand, a pulse built from a spectrum of half-width κ/2 (13.54) has
duration at least 2/κ ,2 so that the superluminal advance of the pulse is never
more than the length of the pulse itself!

This approximate argument was made rigorous by Brillouin (1960) who
used an analytical method to show that, based on the concept of causality alone
(§13.4), the signal velocity of a sharp-edged pulse could under no circum-
stances exceed the phase velocity at infinite frequency, i.e. c/[limω→∞ n(ω)].
Since an electromagnetic wave of infinite frequency cannot influence the motion
of charged particles, limω→∞ n(ω) = 1 and the signal velocity is always
equal to c.

2 The minimum duration occurs if the spectrum is Gaussian. Otherwise it is longer.
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Figure 13.9

Experiment using
entangled photons to
investigate possible
superluminal propagation
velocity in a quarter-wave
stack. If the photons arrive
at BS simultaneously,
either both go to D1 or both
go to D2; otherwise they
arrive randomly at either
detector. This effect is used
to detect tiny differences in
arrival times at BS. (After
Chaio and Steinberg
(1997))
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13.5.2 Superluminal propagation in a resonant
quarter-wave stack?

Another scenario that has been tested experimentally for superluminal prop-
agation is propagation in the stop band of a multilayer reflector (§10.3.4).
In this case, the wave-form in the multilayer is evanescent (§2.3.2); there
is no absorption mechanism, but the wave propagates with an exponential
decay in its amplitude without a phase change (see Fig. 2.5). The phase and
group velocities are therefore both infinite, and a signal entering one side of

The experiments show
that the photons do
arrive earlier than in free
space, but not by as
much as the length of
the pulse itself.

the stack should appear instantaneously at the other side! Evidence for this
behaviour was found using the time delay between pairs of simultaneously
emitted entangled photons (§14.3.3) travelling different routes, one through
the stack and one outside it (Fig. 13.9) (Chaio and Steinberg (1997)). Once
again, the solution to the information propagation paradox lies in the minimum
duration of a wave-group made up from frequencies entirely within the stop
band.

In §10.3.4, we found that a quarter-wave stack with alternating layers
of effective refractive indices uH and uL had a stop band with half-width
(10.73) δk = k0 sin−1[(u − 1)/(u + 1)], where u ≡ uH/uL. On the other
hand, at the centre of the stop band (g = π ) the transmitted wave decays
by factor u−1 per half-wavelength period of the stack. The former leads to a
minimal half-length 1/δk for a pulse consisting only of evanescently decay-
ing waves, while the latter gives a decay distance of 1/ ln u periods of the
stack, i.e. 1/(2 ln u) wavelengths. Maybe now not so surprisingly, these two
distances are about equal! In other words, the propagation of information
at superluminal velocity is again not practical because the wave-group has
decayed before the time advance has become longer than the duration of the
pulse.
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Figure 13.10

Slow light: (a) dispersion
in the region between the
absorption lines of a very
close spectroscopic doublet,
calculated from (13.23) and
(13.24); (b) dispersion in
the region of a narrow
transmission line in an
opaque band.
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Box 13.1 Slow light

At the other end of the scale, when the dispersion curve is normal and
very steep, the group velocity can be very small. This would not be very
surprising, except that recently systems have been created with such large
dispersions (see §14.9) that group velocities of the order of metres per
second have been attained, and light has even been stopped completely.

The general idea can be appreciated if we look first at a pair of closely
spaced absorption lines such as the D-lines in alkali metals. The lines
in sodium at 589.0 and 589.6 nm are well known; a closer pair of lines
is found in rubidium, which has two D2 hyperfine resonances at about
780 nm separated by 3 GHz in frequency (0.006 nm in wavelength). If the
Doppler broadening of the lines is reduced to less than their separation,
the transparent region between them, where dispersion is normal, has a
very large positive gradient dn/dω, leading to a very small group velocity
(Fig. 13.10(a)). However, this ‘slow light region’ is a naturally occurring
spectral phenomenon and is not susceptible to control.

Really low group velocities for light pulses have been achieved by using
electromagnetically induced transparency (EIT) in atomic gases such as
strontium, calcium and sodium. The idea of EIT is described in more detail
in §14.9. Briefly, in a three-level atomic system (Fig. 14.23), in which the
intermediate level and a particular energy sub-level in the rather broad upper
band are coupled by a very stable laser, absorption of a probe laser linking
the lowest level to the upper band is suppressed when its frequency links it
exactly to the same sub-level. This results in a very sharp transmission line,
whose width is determined by the strength of the coupling laser. Now we
have the opposite situation to an absorption line: a narrow transmission line
in the midst of an absorbing region (Fig. 13.10(b)). The resulting gradient
dn/dω is large and positive, and vg = c/[n+ω · dn/dω] is very small. Since
the width of the transmission line is controlled by the strength of the coupling
laser, this group velocity can be made almost as slow as one desires, and
values of the order of 20 m s−1 have been measured (Hau et al. (1999)).
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13.6 Advanced topic: Non-linear optics

Up to this stage, we have only regarded the polarization of a material by an
external field as a linear process. For small enough fields this can be seen as
the leading term in the Taylor expansion of P(E):

P(E) = P(0)+ E
(

dP
dE

)
0
+ 1

2
E2

(
d2P
dE2

)
0

+ 1
6

E3

(
d3P
dE3

)
0

+ · · ·. (13.58)

For a material with no static dipole moment P(0) = 0; and we write (13.58) as

P(E) ≈ χE + χ2E2 + χ3E3 + · · ·, (13.59)

in which χn is the nth-order non-linear polarizability or susceptibility. Since the
invention of the laser, a wealth of fascinating phenomena have been discovered
which use light beams intense enough to require the expansion (13.59) to be
carried beyond the linear term (Yariv (1991)). In the following sections we shall
briefly describe two of them: harmonic generation, which involves expansion
up to the second order, and four-wave mixing, which involves the next order.

13.6.1 Harmonic generation

We now consider the effect of a wave with time-dependent field E = E0 cosωt
on the medium.3 From (13.59), expanding as far as the second-order term,

P(E) = χE0 cosωt + 1
4

E2
0χ2(cos 2ωt + 1)+ · · ·. (13.60)

One can see that the harmonic frequency 2ω has been induced, and this will be
radiated by the oscillating dipole. This is called second harmonic generation.
In terms of photons, two photons of frequency ω have combined to form one
of frequency 2ω, and so the process belongs to the wider category of three-
wave mixing. In general, higher terms in the expansion will also occur, giving
frequencies nω, but the principle of harmonic generation can be adequately
illustrated by considering the case n = 2 alone.

What governs the intensity of the observed harmonic waves? First of all
the amplitude of the 2ω component in P is proportional to E2

0 so that the high
intensity is necessary to produce observable effects. Second, since the value
of χ2 is identically zero in materials whose molecular structure has a centre

3 It is not appropriate to use the complex exponential representation here because E will be
squared and cubed in what follows.
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Figure 13.11

Matching refractive indices
at ω and 2ω in a uniaxial
crystal. The outer branch at
ω intersects the inner
branch at 2ω in the
directions shown, so that
phase-velocity matching is
achieved at angles θ to the
optic axis.
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of symmetry, for the same reasons as discussed in §6.9.1, a medium with
sufficiently low crystal symmetry must be chosen.

Given large enough E0 and non-zero χ2, second harmonic generation will
occur in a small volume of the dielectric. For the effect to increase in proportion
to the volume of a sample, we also require the harmonic waves generated
in different volume elements to add coherently. Now at its point of origin,
the 2ω wave is created with a well-defined phase relation to the ω wave
that generated it. To maintain this relationship at all other points, which is
a requirement for constructive interference, the two waves must propagate
in the same direction at the same phase velocity, i.e. v(ω) = v(2ω). This is
called phase matching, and when it is satisfied it becomes quite easy to observe
harmonic generation. Commonly available green laser-pointers usually contain
frequency-doubled infra-red laser diode sources. Most of the crystals used for
second harmonic generation are anisotropic, and the anisotropy of n (§6.5.4)
can then be used to find directions of propagation in which the refractive indices,
and hence velocities, for orthogonal polarizations at the two frequencies are
equal, i.e. n1(ω) = n2(2ω). This is shown geometrically in Fig. 13.11 for
a uniaxial crystal. The same mechanism can be used to mix light waves of
different frequencies (Problem 13.6).

Phase matching can best be appreciated by representing the condition of
equal velocities as a requirement for conservation of both energy and linear
momentum when the two photons combine in the crystal to create a single
one. Clearly, energy is conserved because 2�ω = �ω + �ω. Conservation
of momentum for two photons travelling in the same direction then requires
k(2ω) = 2k(ω), which implies equal refractive indices at the two frequencies.
We could possibly consider the interaction of two waves of the same frequency
but different directions, with wave-vectors k1(ω) and k2(ω), and combine the
vectors as in Fig. 13.12(a) so that the resultant has the right magnitude k(2ω).
However, this does not work in transparent media having normal dispersion
since n(2ω) > n(ω) implies that k(2ω) ≥ 2k(ω). On the other hand, if we
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k1(w) k2(w)

k(2w) k(2w)
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Figure 13.12 Vector diagrams for conservation of wave-vector in second harmonic generation.
(a) Hypothetical situation with two input waves in different directions, when
dispersion is anomalous; (b) interaction of two parallel waves in a medium
periodically modulated with wave-vector K.

can look for a way of adding a fixed vector K, it is possible to satisfy the
vector equation as shown in Fig. 13.12(b). This can be done by modulating the
medium periodically, with wave-vector K = (k(2ω)− 2k(ω)), and provides a
commonly used method of phase matching; it is called quasi phase-matching
(Bloembergen (1996)).

13.6.2 The photo-refractive effect

One result of the third-order term in (13.59) is to make the refractive index of
the medium depend on the intensity of the light. We can write the displacement
field D in terms of the electric field as

D = ε0E + P = (ε0 + χ)E + χ2E2 + χ3E3 + · · · (13.61)

and the instantaneous dielectric constant is

ε̃ = D/ε0E = (1+ χ/ε0)+ χ2E + χ3E2. (13.62)

The actual refractive index nnl sensed by a wave is the square root of the average
of this instantaneous ε̃ over many wave periods, and so the term linear in E
averages to zero and we have

n2
nl = 〈ε̃〉 = 1+ χ/ε0 + χ3I , (13.63)

nnl = n0 + αI , (13.64)

where I = 〈
E2〉 is the intensity of the wave. The sign of α reflects the sign of

χ3, and a typical magnitude is 10−2 (watt/cm2)−1. This is called the photo-
refractive effect (Pepper et al. (1990)). Now suppose that a powerful light
beam has been used to modulate the refractive index in a photo-refractive
crystal. The effect can be measured (or ‘read out’) by a weak probe beam,
but the relevant dielectric constant is now εprobe given by ∂D/∂E. The refrac-
tive index nprobe is then easily shown to be n0 + 3αI . Some experiments on
photonic crystals created using the photo-refractive effect were discussed in
Box 10.2.
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Figure 13.13

Vector diagrams for wave
interactions in four-wave
mixing: (a) the general
case; (b) the situation for a
phase-conjugate mirror.
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13.6.3 Four-wave mixing and phase-conjugate mirrors

When a non-linear material is illuminated by a pair of coherent waves trav-
elling in different directions, their combined fields result in a phase grating
within the material, which in turn can diffract a third wave (not necessarily
coherent with the first two) into a fourth one. This process is called four-
wave mixing and has been demonstrated in several crystals, notably barium
titanate (BaTiO3). The effect can be understood in terms of the photo-refractive
effect.

Consider the case where two coherent pump beams, with wave-vectors k1
and k2, and amplitudes 1

2 E0, are incident on a non-linear crystal. The total
field is E = E0 exp[i(ωt − k̄ · r)] cos

[ 1
2 (k1 − k2) · r

]
. The intensity is I =

E2
0 cos2 [ 1

2(k1−k2) ·r
] = E2

0(1−cos K ·r), where K = k1−k2. This intensity
distribution modulates the refractive index in a sinusoidal manner through
the photo-refractive effect. It therefore makes the crystal behave as a three-
dimensional grating with wave-vector±K (because cos(K ·r) = 1

2 [exp(iK · r)
+ exp(−iK · r)]). Clearly, the geometry of Bragg reflection by this grating is
identical to the case of the acousto-optic effect (§8.7), where we saw that an
incident weaker probe beam with wave-vector k3 undergoes reflection at the
Bragg angle. This effect allows direct modulation of one light beam by another,
but the time that is often taken for the photo-refractive effect to build up makes
it slow compared to other modulation methods. The result can be described
simply by a vector diagram (Fig. 13.13(a)) showing that the reflected wave k4
is related to k3 by k3 − k4 = ±K = ±[k1 − k2].

A more interesting situation arises when k3 is coherent with k1 and k2.
Then, other interference terms can also give rise to gratings within the crys-
tal. We consider a particular case called a phase-conjugate mirror, in which
k1= −k3 (Fig. 13.13(b)), i.e. two pump beams are counter-propagating so
that each is the complex conjugate of the other (their phases are k1 · r and
k3 · r = −k1 · r). Now suppose that the wavefront of k2, which we shall call
the ‘object beam’ contains phase and amplitude information a(x, y), so that
we write its spatial variation as a2(x, y) exp(ik2 · r). Then, the interference
between the object beam k2 and the pump beam k1 forms a three-dimensional
hologram of the object beam (§12.5.4), written into the crystal refractive
index.
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Figure 13.14

Comparison between
phase-conjugate and
conventional mirrors. In
both figures, the incident
wavefronts are indicated
by continuous arcs, the
reflected wavefronts
by broken arcs.
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Figure 13.15 (a) Experiment to show compensation of distorting optics by a phase-conjugate
mirror. The object is a transparency, and the light transmitted by it enters one
end of a multi-mode fibre. At the far end of the fibre the light (2) is concentrated
onto the phase-conjugate mirror crystal from which it is returned (4) to the fibre.
The concentric mirror forms an optical cavity with the crystal, in which the
counter-propagating pump waves (1 and 3) build up. The image on the screen,
observed with the aid of the beamsplitter, is shown in (b). (From Fischer and
Sternklar (1985), courtesy of B. Fischer)

What happens when this hologram is reconstructed by the second pump
beam k3? In §12.5.3 we considered the case of reconstruction of a hologram
by a wave identical to the original reference wave, which resulted in recon-
struction of a wavefront a(x, y) identical to that from the original object. Now,
replacing A exp[iφ0(x, y)] in (12.66) by its conjugate A exp[−iφ0(x, y)], we
find that the reconstruction k4 becomes the conjugate of the original wave-
front, i.e. a4(x, y) exp(ik4 · r) = a∗2 (x, y) exp(−ik2 · r). This phase-conjugate
wave propagates exactly back to the source of the probe beam (Pepper (1986)).
For example, if the object beam k2 is a diverging spherical wave, the system
reflects the wave back as a spherical wave converging onto the source. This is
quite different from a regular mirror where the wave would continue to diverge
after reflection, and the comparison is made in Fig. 13.14. These ideas can be
applied to imaging through distorting media, where the effect of the distortion
can be cancelled out by a phase-conjugate mirror. An example is shown in
Box 13.2.
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Box 13.2 Demonstration of a phase-conjugate mirror

A phase-conjugate mirror produced in barium titanate was used by Fischer
and Sternklar (1985) to show that a complete image could be transmitted
through a single multi-mode optical fibre. A plane wave was modulated
by a transparency with image information (Fig. 13.15) and the transmitted
light focused on the end of a fibre 0.75 m long. At the far end of the fibre
the crystal was situated, and the light returned to the input end of the fibre
was projected onto a screen. The crystal was made to behave as a phase-
conjugate mirror by refocusing the light it transmitted back on to it by
means of a concentric spherical mirror. This mirror, together with a Bragg
grating which is set up in the crystal, form an optical resonator in which the
two counter-propagating modes play the roles of k1 and k2. After a time, a
good quality image of the original transparency was formed (Fig. 13.15(b)).
Clearly, when the light passes through the fibre all spatial information in
the wavefront becomes completely scrambled, since it is carried on many
different modes. However, the phase-conjugate mirror, by exactly reversing
the phase at each point on the returning wavefront, could compensate the
distortions.

13.6.4 Solitons in a non-linear medium

Suppose that an intense beam of light impinges on a non-linear medium with a
positive constantχ3 (a Kerr medium). In the centre of the beam, where it is most
intense, the refractive index of the medium becomes a little larger. We saw ear-
lier that a region of higher refractive index behaves like a GRIN lens (Box 3.4)
or an optical waveguide (§10.1) and focuses or confines the incident wave. The
optical beam therefore induces such a waveguide and when it is also a guided
mode of that waveguide, it no longer becomes broader by diffraction (Fig.
13.16). Such a wave is called a spatial soliton (Stegeman and Segev (1999)).

If we look a little closer, we can see that a beam with an approximately
Gaussian profile (§7.3) can create a self-consistent scenario. First of all, wave
amplitude at the tip of a Gaussian, where it is most intense, can be approximated
by an inverted parabola, exp(−r2/2σ 2) ≈ 1−r2/2σ 2+· · · . In a medium with a
positive Kerr non-linearity, this results in an inverted parabolic refractive index
profile (Fig. 13.17(a)). Then, the analysis in §10.2.2 showed that the basic
propagation mode in such a waveguide has a Gaussian-shaped amplitude. So
all we have to do is to determine under what conditions the parameters match.
But there is a catch; even without doing a detailed calculation it is easy to
see that the solution is unstable. Suppose that for some reason (absorption,
scattering) the wave becomes a little less intense as it propagates. Then, the
refractive index profile becomes weaker, which leads to a less confined wave.



494 The classical theory of dispersion

Figure 13.16

Observation of a spatial
soliton. (a) A laser beam
propagates in a linear
medium; because the
beam is limited in extent,
it becomes broader by
diffraction. (b) The same
situation in a Kerr medium.
The beam width now
remains constant; this is a
spatial soliton.
(Photographs courtesy of
M. Segev; Stegeman and
Segev (1999))
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Thus the wave will broaden and become even less intense. The opposite would
be true if the wave becomes stronger, by focusing for example. Then, the
waveguide confines better and the wave intensity increases further, leading to a
catastrophic scenario. Actually, what saves the situation is a higher-order non-
linearity which would cause the increase in refractive index to saturate at high
enough intensity, so that the waveguide does not continue to be more confining
as a result of the intensity increase. Then the propagation can be stable.

Quantitatively, we can continue the discussion in §10.2.2 as follows. We saw
there that a parabolic profile of the dielectric constant in an axially symmetric
system ε(r) = n2 = A− α2r2 leads to a lowest mode with electric field

E = E0 exp(−r2/2σ 2), where 1/σ 2 = k0α. (13.65)

Since the change in refractive index χE2
0 is small, we write

ε(r) = n2 =
[
n0 + χ3E2

0(1− r2/σ 2)
]2 ≈ n2

0 + 2n0χ3E2
0(1− r2/σ 2),

(13.66)
from which we see that the coefficients of r2 in the two expressions for ε(r) are
equal if α2 = 2n0χ3E2

0/σ
2. Since from (13.65) α2 = 1/

(
k2

0σ
4),

2n0χ3E2
0σ
−2k2

0 = σ−4, (13.67)

σ 2 =
[
2n0E2

0χ3k2
0

]−1
. (13.68)

This is the unstable equilibrium condition, at which the wave is just intense
enough to create a waveguide that supports itself, and confirms that the beam
width σ is inversely proportional to √χ3E0. Then, saturation of the non-
linearity, represented by a reduction of χ3 as E2

0 increases, stabilizes the soliton
intensity and width.

This is the basic soliton, which is a self-trapped wave whose propagation
is quite different from the normal diverging Gaussian beam (§7.3). Soliton
interactions can also be very interesting. Consider two solitons that are mutually
incoherent, such as those produced by two different laser beams with relative
phase that fluctuates faster than the response time of the non-linearity. When
they come close enough to one another, their intensity fields can overlap,
producing a coupled refractive index profile with two peaks slightly closer than
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Figure 13.17 Solitons and soliton interactions. (a) The light intensity causes a maximum in the
refractive index through the photo-refractive effect, and this maximum acts as a
waveguide which traps the light. (b) Two neighbouring incoherent solitons produce
an overlapping intensity field which guides the solitons closer to one another. (c)
Two mutually coherent solitons of opposite phases result in an intensity field that is
weak in the region between them, and causes them to repel. (d) Interaction of two
incoherent solitons A and B travelling along initial paths that are slightly skew. If
there were no interaction between them, the solitons would diverge to A′ and B′ as
shown at z = 6.5 and 13 mm. However the solitons attract and rotate around one
another. (Stegeman and Segev (1999))

the centres of the beams. This encourages the beams to attract one another,
and if they are skew (not lying in the same plane) they may spiral around one
another (Fig. 13.17(b, d)). On the other hand, if the two solitons are mutually
coherent, and have opposite phases, the field between them is weaker because
of destructive interference and the peaks in refractive index move away from the
centres of the beams, which are then seen to repel one another (Fig. 13.17(c)).

13.7 Advanced topic: Surface plasmons

In §10.1.2 we saw the solution of the electromagnetic wave equation for a
planar waveguide constructed from a slab of material with a higher refractive
index immersed in a lower index material on both sides. In that case, the
wave was confined to the high-index region and decayed evanescently in the
lower-index regions. Is it possible to reach such confinement on the interface
between two layers alone? It turns out that when one of the media has a negative
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Figure 13.18

(a) An electromagnetic
wave is confined in a slab
of high refractive index n2

immersed in a surrounding
lower index n1. (b) A wave
confined to the interface
between slabs with
dielectric constants
εd and εm.
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dielectric constant, it is indeed possible for a wave to be confined evanescently
on both sides of the interface, thus propagating as a surface wave. Such a wave
is called a surface plasmon polariton, or surface plasmon. The names are
suggestive of a quantum phenomenon, although in fact the waves are purely
classical in origin, as we shall see below. The first evidence of such waves was
found by Wood (1902), although they were only understood half a century later
(Raether (1988)). The propagation properties of surface plasmons will clearly
be influenced strongly by changes in the properties of the materials within the
evanescent regions, while being largely unaffected by more distant changes,
and the phenomenon has thus found many applications as an optical sensor of
surface interactions, particularly as a means of studying biological interactions
(Box 13.3). An up-to-date discussion of surface plasmons and their applications
is given by Maier (2007).

In Fig. 13.18, we define the propagation geometry when the waves propagate
in the z-direction and the variation in ε is only in the x-direction. On the left, for
comparison, is the waveguide structure discussed in Chapter 10, where ε is real
and positive in each layer and was written as n2. On the right is an alternative
structure made of two layers only, which will be discussed below.

The master equation remains the same as (10.10), though to make it more
general we replace n2 by ε:

∂2E
∂x2 =

(
k2

z − εk2
0

)
E. (13.69)

One layer has dielectric constant εd and the other εm. We shall assume that εd
is real and positive, as for all common dielectric materials. We now recall the
boundary conditions at the interface, discussed in §10.1.2, where we showed
that Ey and ∂Ey/∂x were continuous (10.18). In like manner, we can show that
Hy and 1/ε · ∂Hy/∂x are continuous.

The solution in the dielectric layer remains the same as with the waveguide,
(10.16),

∂2E
∂x2 = k2

x1E

→ E = E0 exp(−kx1x), (13.70)
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where

k2
x1 ≡ k2

x − εdk2
0 . (13.71)

A similar equation can also be written for the magnetic field H. We consider
the two cases, the ‖, p- or TM polarization, where the field is H = (0, Hy, 0),
and the⊥, s- or TE polarization where E = (0, Ey, 0). We take the former case
first, because it leads to a practical solution. In the first dielectric medium we
have, analogously to (13.70),

Hy = H0 exp(−kx1x), (13.72)

∂Hy

∂x
= −kx1 exp(−kx1x); (13.73)

in the second medium (x < 0) we have k2
x2 ≡ k2

x − ε2k2
0 as in (13.70), and

Hy = H0 exp(+kx2x), (13.74)

∂Hy

∂x
= +kx2 exp(+kx2x). (13.75)

Here, kx1 and kx2 are both defined as positive, and we emphasized the signs in
the equations. The boundary condition for Hy is already included, in that the
amplitudes of both waves at x = 0 are H0. Now the second boundary condition
on ∂Hy/∂x at x = 0 implies that on the two sides of the boundary

1
εd

∂Hy

∂x
= −kx1

εd
H0, (13.76)

1
εm

∂Hy

∂x
= +kx2

εm
H0, (13.77)

which can only be equal if εm < 0 because kx1 and kx2 were both defined
to be positive. Since some metals have complex dielectric constants with
negative real parts (§5.6), the surface plasmon waves can indeed propagate
on a metal–dielectric interface under suitable conditions.

Repeating the same argument for the ⊥ polarization, comparing the field
gradients for ∂Ey/∂x on the two sides of the boundary gives us

∂Ey

∂x
= −kx1E0, (13.78)

∂Ey

∂x
= +kx2E0, (13.79)

which can never be equal because kx1 and kx2 have the same sign. The surface
plasmon waves therefore have to be polarized with their electric field in the
(x, z) plane of incidence.
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To find the dispersion relation for the propagating waves we have to solve
consistently the three equations

kx1

εd
= −kx2

εm
, (13.80)

k2
x1 = k2

z − k2
0εd, (13.81)

k2
x2 = k2

z − k2
0εm, (13.82)

which leads directly to

kz = k0

√
εdεm

εd + εm
. (13.83)

Since εd and εm have opposite signs, it follows that for kz to be real, εm < −εd.
A value of εm less than zero means that one side of the interface must be a
conductor (§5.6) and the requirement that εm <−εd in practice further limits the
conductors on which surface plasmons propagate. For example, at λ = 632 nm,
gold has εm = −8.9 + 1.2i, but molybdenum has εm = 1.17 + 27i. We also
notice that for values of εm and εd that have opposite signs, it follows that
kz > k0, so that surface plasmons have wavelengths shorter than free-space
waves of the same frequency.

In general, εm is complex, and complex kz results. The imaginary part
of kz indicates that surface plasmons are attenuated waves. This is really
not surprising, since the finite conductivity of a metal inevitably results in
energy dissipation (§5.6). As a practical example, we can consider the interface
between gold and water (εd = 1.332 = 1.77) at λ = 632 nm. We find that
kz = k0(1.48 + 0.024i). This corresponds to a surface plasmon wavelength
426 nm and decay distance 26μm.

13.7.1 Excitation of surface plasmons and surface
plasmon resonance

Now that we know that a surface plasmon exists when the index of refrac-
tion is negative, such as in simple metals, we recall the free-electron gas
model, described in §13.3.4, where for simple metals the frequency-dependent
dielectric constant, as equation (13.29), is

ε(ω) = 1− �2

ω2 , (13.84)

where � is the plasma frequency defined in §13.3.2.
Substituting this into (13.83) gives the result shown in Fig. 13.19. As ω

approaches zero, the curve is tangent to the ‘light line’ in the dielectric, ω/kz =
c/nd. This may be shown by inserting (13.84) for εm in (13.83) and examining
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Figure 13.19 Dispersion of surface plasmons at the interface between a dielectric (εd = n2
d
) and an

ideal metal with dielectric constant given by (13.29). The shaded region, left of the
light line kz < k0/ng, corresponds to travelling waves in glass, refractive index ng, at
incident angle θ = sin−1(kz/k0). Between the broken line and the full line, these
waves are totally reflected at a glass–dielectric interface. In this region, surface
plasmons can resonate (same ω and kz) with travelling waves incident in
the glass.

the result as ω → 0, yielding k = k0nd. There is also a band gap between
the surface plasmon region and the bulk plasmon region (ω>�). Surface
plasmon resonance (SPR) occurs when an electromagnetic wave is incident
on the interface with both kz and ω equal to those of the plasmon. Clearly
this cannot happen by simply illuminating from air since, as we pointed out
above, the surface plasmon wavelength is always less than that of a wave in air
having the same frequency. This means that there is no intersection between
the light line in air and the SPR dispersion curve. The ‘Kretschmann’ method
(Fig. 13.20(a)), probably the most widely used, gets round this problem by
introducing the light through a glass prism with higher ng > nd, which allows
large enough values of kz to be achieved. A thin metal film is deposited on
the prism surface, thin enough to transmit the incident wave with relatively
little absorption. The surface plasmon is excited on its far surface, where
it is in contact with the dielectric medium. Another way to achieve larger
values of kz uses evanescent waves (§2.3.2 and §5.5); by making kx imaginary,
kz =

√
k2

0 − k2
x can be made larger than k0. This technique, actually the first

to be tried, was invented by Otto in 1958 (Fig. 13.20(b)). A third method uses
a grating structure, period �, which adds an additional 2π/� to the kz by
diffraction and is the equivalent of quasi phase-matching (§13.6.1).

The reflected intensity as a function of angle or wavelength can be calculated
using the technique developed in Chapter 10 for thin films. We consider the
Kretschmann case, glass–metal–dielectric, where the metal film has a complex
refractive index. A typical result, as a function of incident angle is shown in
Fig. 13.21.
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Figure 13.20 Two methods of exciting surface plasmons by using waves incident from a glass
prism at angles above the critical angle: (a) the Kretschmann configuration where a
film of metal is deposited on the prism surface; (b) the Otto configuration, where the
surface of a bulk metal sample is situated within the evanescent wave outside the
hypotenuse of the prism. The form of the evanescent wave is shown schematically in
both cases.

Box 13.3 An application of SPR to detecting interactions
between biomolecules

The resonance frequency θp is a strong function of the dielectric constant
εd = n2

d of the dielectric medium within the region sampled by the evanes-
cent wave, which is of the order of λ/2 deep. This has been developed
as a very sensitive method of detecting either small changes of nd or
the thickness of a dielectric film of known properties deposited on the
metal surface, which perturbs the measured value of nd. Sensitivity of the
order of 10−6 in refractive index has been achieved, which requires opti-
mization of the sharpness of the resonance curve (Fig. 13.21(a)), both
with respect to the material (gold, silver) and its thickness. Although
silver has a sharper dip in the reflectivity curve, gold is favoured due
to its superior film quality and chemical resistance. In biodetection, the
dielectric medium is usually a water-based solution containing adsorbent
molecules. The angle of incidence is scanned to create the resonant reflec-
tivity curve, which has a minimum at an angle related to the amount
of material adsorbed on the gold surface. Based on a typical refractive
index of about 1.5 for polymers, which replace water (n = 1.33) in the
adsorbed layer, one can estimate that a change of 10−5 in the average nd
within the λ/2 evanescent layer corresponds to a layer of average thickness
0.015 nm, which is much less than one monolayer coverage. As further
molecules are adsorbed on the surface, the resonance frequency changes
and the observed dip at θp shifts sideways. Monitoring the position of the
minimum over time allows a thorough understanding of the biomolecular
interactions. Figure 13.22 shows a typical experimental result demonstrating
both attachment and detachment of molecules to a substrate film adsorbed
on gold.
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Figure 13.21

The calculated intensity
reflection coefficient (a)
and phase (b) for a 45 nm
thick gold film between
the glass prism and water,
as a function of the angle
of incidence θ in a
Kretschmann device. The
critical angle is θc. A dip in
the intensity is observed at
the resonance angle θp,
which coincides with the
maximum gradient in the
phase change. (After Ran
and Lipson (2006))
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Figure 13.22 A typical SPR biosensor response curve showing the attachment of a biochemical
layer to a substrate on a gold film and its subsequent detachment when it is washed
off. The ordinate shows changes of equivalent refractive index in units of 10−5, as a
function of time. The equilibrium signal reached after about one minute corresponds
to less than one monolayer of adsorbate. (Data courtesy of Bio-rad (Haifa) Inc.)

Chapter summary

In this chapter we discussed how the refraction and dispersion of waves are

related to the properties of optical materials. We saw that:

1. Many refractive and dispersive properties can be understood in terms of

the response of a classical induced dipole atom to an applied oscillating

wave-field;

2. Scattering by individual atoms preserves the polarization of the light and

has a λ−4 wavelength dependence;

3. Refraction can be described in terms of coherent scattering by many atoms;

4. Refraction has anomalous behaviour near a resonance frequency, where

the atom absorbs light;
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5. Dispersion and absorption are related analytically as a result of causality;

6. Anomalous and evanescent propagation of light suggest scenarios where

signals might propagate faster than light, but these do not stand up to

detailed scrutiny;

7. When the electric wave-field becomes comparable to internal atomic

fields, refraction becomes non-linear, and we studied some examples of

applications of non-linear optics;

8. When the dielectric constant of a material becomes negative, surface

plasmon propagation on its surface becomes possible.

Problems

13.1. In what direction, relative to the Sun, should a photograph be taken so
that a polarizing filter will be most effective in reducing scattering by
dust in the atmosphere?

13.2. The refractive index of a medium as a function of frequency increases
smoothly and monotonically from n1 to n2 in a small frequency range
of �ω. What can you deduce qualitatively about the absorption of the
medium in this frequency region?

13.3. A material has a spectral absorption line at wavelength ω0, which can
be represented as a δ-function of strength a0. Use the Kramers–Kronig
relations to deduce n(ω).

13.4. A uniaxial non-linear crystal has no = 1.40 and ne = 1.45. Its dispersion
in both polarizations is λdn/dλ = −2.5 × 10−2. At what angle to the
optic axis would phase matching be observed for second harmonic
generation? If the crystal is 1 mm thick, how accurately must the
incident beam be aligned to this direction for the second harmonic
wave to be observed?

13.5. Explain why a polycrystalline non-linear material can be used for second
harmonic generation. Compare the efficiency of such a polycrystal
to that of a single crystal at the optimum orientation? Under what
conditions might the polycrystal be better?

13.6. Derive the phase-matching condition required for mixing two frequen-
cies ω1 and ω2 to obtain their sum ω1 + ω2.
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13.7. What interference pattern would you expect to see when one mirror in
a Michelson interferometer is replaced by a phase-conjugate mirror?

13.8. You look at yourself in a phase-conjugate mirror. What do you see?

13.9. What properties would be required for a material to support propagation
of a dark soliton, which is a black spot on a bright background? The
dark spot could be created by a spiral phase plate with m = 1 (§5.9), so
that the wave amplitude is antisymmetric about the dark origin (changes
sign from (x, y) to (−x,−y)).
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14 Quantum optics and lasers

This book is intended to explain the physical basis of classical optics and to intro-

duce the reader to a variety of wave phenomena and their applications. However,

it was discovered at the end of the nineteenth century that the description of light

in terms of Maxwell’s classical electromagnetic waves was incomplete, and the

notion of quantization had to be added. Since then, in parallel to the development

of wave optics, there has been an explosive growth of quantum optics, much of it

fuelled by the invention of the laser at the end of the 1950s, which also provided

a great incentive to reconsider many topics of classical optics, such as interference

and coherence theory. It would be inappropriate that this book should ignore

these developments; on the other hand, the subject of quantum optics is now

so wide that a single chapter can do no justice to the field. In this chapter, we

therefore set out modestly to explain the way in which quantum optics is different

from classical optics, and give a qualitative introduction to lasers, followed by a

taste of some of the new phenomena that have developed in recent years and

are currently at the forefront of optics research.

In this chapter we shall discuss:

• how the electromagnetic field can be quantized, by creating an analogy

between an electromagnetic wave and a simple harmonic oscillator;

• the concept of the photon, and some of its properties;

• uncertainty or fluctuations in the electromagnetic field, and how they lead

to zero-point field energy;

• some of the statistical properties of non-classical light;

• interaction of light with matter, and stimulated and spontaneous emission

of light;

• how lasers work, with some representative examples using different

physical principles;

• fluorescent emission and its properties, which we have seen to be

particularly important in high-resolution microscopy;

• some recent experiments on electromagnetically induced transparency and

their implications.
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14.1 Quantization of the electromagnetic field

At the end of the nineteenth century it began to be clear that classical ideas
could not explain all physical phenomena (§1.4). Two of the most notable
problems were the ultra-violet catastrophe and the photo-electric effect,
whose analysis and understanding by Planck and Einstein led to the foundation
of quantum theory.

14.1.1 The ‘ultra-violet catastrophe’

We begin by considering the electromagnetic wave spectrum in an ideal cavity
according to classical statistical mechanics. Suppose that we have a cubic
reflecting cavity, with side L, made out of a highly conducting metal. (The
cubic shape is chosen for simplicity only; it is not critical.) Any electromagnetic
wave that satisfies the boundary conditions E‖ = 0 on the inner surface of the
cavity is one of its normal modes. We can find such normal modes easily; for
example, the standing wave

Ey = cos zkz cos xkx e−iωt (14.1)

has zero value on the planes x = ±L/2, z = ±L/2 provided that Lkx = lπ ,
Lkz = nπ , where l and n are odd integers. There are also sine solutions leading
to even integers. Since the field is in the y-direction, its component parallel to
the planes y = ±L/2 is always zero. Now (14.1) is the superposition of four
plane waves; it can be written

Ey = 1
2

e−iωt[cos(xkx + zkz)+ cos(xkx − zkz)]

= 1
4
{exp[i(xkx + zkz − ωt)] + exp[i(−xkx − zkz − ωt)]

+ exp[i(xkx − zkz − ωt)] + exp[i(−xkx + zkz − ωt)]}, (14.2)

which all have dispersion relations ω2 = k2c2, i.e.

ω2 =
(

k2
x + k2

z

)
c2 = π2c2L−2(l2 + n2). (14.3)

The allowed frequencies of electromagnetic waves in this cavity, when
polarizations Ex and Ez are added, are

ω2 = π2c2L−2(l2 + m2 + n2), (14.4)
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Figure 14.1

Black-body spectrum,
compared to the classical
Rayleigh–Jeans
approximation.
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in which l, m and n are positive integers,1 at least two of which must be non-
zero. There are two independent polarizations that give the same values of l,
m and n. There is no upper limit to l, m and n. The number of modes is
infinite, and their density (number of modes possible in a given interval of ω)
increases with ω. Now, according to the classical equipartition theorem of
Boltzmann, every normal mode in thermal equilibrium has energy kBT ( 1

2 kBT
for each degree of freedom, of which an oscillator mode has two; see §14.2)
and so the total energy inside the cavity must be infinite, its density increasing
without limit at higher frequencies, towards the ultra-violet. This was an absurd
conclusion, and was called the ultra-violet catastrophe. Rayleigh and Jeans,
amongst others, tried hard to find a solution. Experimental data (Fig. 14.1) on
the spectrum of a black body (a cavity with a small inspection hole in it) showed
a radiation density increasing with frequency at the red end of the spectrum, in
accordance with (14.4), which leads to a density that increases like ω2 as we
shall see in (14.6). But then the energy density peaked at a certain frequency
(the ‘red’ of a red-hot body) and fell off rapidly at higher frequencies. Planck
found the solution, empirically at first, in terms of the quantization of the
radiation modes, and his discovery heralded quantum theory, which has since
been applied so successfully to a description of matter through atomic scales
and down, at least, to the size of the nucleus.

m

l

wL
cp

Figure 14.2

Distribution of modes in
the (l, m) plane for a
cubical cavity.

14.1.2 Quantization of the electromagnetic
modes in a cavity

The Rayleigh–Jeans argument, modified by Planck, continues as follows. The
numbers (l, m, n) can be represented as integer points in a phase space in which
l is counted in the x-direction, m in y and n in z (Fig. 14.2). From (14.4), the
frequency ω corresponding to (l, m, n) is πc/L times the distance of (l, m, n)
from the origin. So the number of states with frequencies betweenω andω+�ω

1 Negative integers do not give us new states, but just interchange terms in (14.2).
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is the number within the positive quadrant of an onion-layer of radius ωL/cπ ,
thickness �ωL/cπ , which has volume

1
8
· 4π

(
ωL
cπ

)2
· �ωL

cπ
(14.5)

and contains on average the same number of states, since there is one inte-
ger point per unit volume. This number, times two for the two independent
polarizations, gives the density of states per unit interval �ω:

D(ω) = L3ω2

c3π2 . (14.6)

Planck’s idea was that the electromagnetic energy was quantized in units of
�ω. Each mode could then have any whole number of quanta of energy. The
average number of such quanta would then be given by Boltzmann statistics,
and he showed this average number to be

〈n〉 =
[

exp
(

�ω

kBT

)
− 1

]−1
(14.7)

at temperature T .2 If the quantum �ω is small compared with the classical
average energy of a mode, kBT , a large number of quanta is probable, and the
classical result 〈n〉 ≈ �ω/kBT holds. But if the quantum is large compared
with kBT , there is little probability of there being even one quantum per mode
in a cavity in thermal equilibrium. This is how we understand 〈n〉 in (14.7).
For example, when we are in the region of the maximum of the black-body
spectrum, where �ω ≈ kBT , the probable number of photons per mode is
(e − 1)−1 ≈ 0.6. Only at frequencies much lower than kBT/� is there a
reasonable probability of finding more than one photon in a mode. From (14.7),
the total energy in the cavity between frequencies ω and ω + dω is u(ω) dω
where

u(ω) = 〈n〉�ωD(ω) = �L3

c3π2 ·
ω3

e�ω/kBT − 1
. (14.8)

This fits the observed black-body spectrum very well (Fig. 14.1), and can be
integrated to find the total black-body radiation energy density in the cavity at
temperature T (Stefan’s law):

U(T) =
∫ ∞

0
u(ω) dω = L3π2k4

BT4

15�3c3 . (14.9)

The quanta of radiation have been given the name photons, and can be consid-
ered in many ways like particles. This is because the distribution (14.7) is the
same as that obtained for identical particles, which have integer spin and zero

2 See any text on statistical mechanics for the details.
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chemical potential, so it is tempting to consider photons as having these proper-
ties. But it is also dangerous, because photons cannot be localized in the way that
massive particles can. We shall discuss some of the consequences in §14.1.3.

Another oscillator that has the same statistics is the quantum-mechanical
simple-harmonic oscillator, and it turns out very fruitful to establish the
analogy between this and the electromagnetic wave, because we can then
lift the solutions directly from quantum mechanics. In particular, it is usual
nowadays to express the concepts of quantum electromagnetic fields in the
language of second quantization, i.e. in terms of operators that create and
annihilate photons and change the wave-functions appropriately. We shall not
develop this approach to the mathematical formulation of the theory (see, for
example, Loudon (2000); Mandel and Wolf (1995)); we shall only describe
enough of it to see the physical basis of some of the newest ideas which
lead to experimental results that cannot be explained on the basis of classical
electromagnetic theory. But first we shall go back to one of the oldest and still
most puzzling phenomena in photon optics.

14.1.3 Interference in the limit of very weak light

Can we observe interference in the limit of very weak intensity when, statisti-
cally, there may occasionally be a single photon within an interferometer, but
very rarely more than one? Experiments done by G. I. Taylor in 1909 showed
that an interference pattern could be recorded under such circumstances, given
a long enough photographic exposure. Naively, we might expect that two pho-
tons must travel simultaneously through the system, one along each of the
alternative paths in order to interfere when they are recombined. But from
the experiment it is clear that one photon is sufficient. In fact the photon
is not a localized particle, and any attempt to discover along which of the
routes the photon travelled destroys the interference pattern. This appar-
ently paradoxical situation has many implications in basic quantum theory,
and has been discussed exhaustively, without any generally accepted under-
standing having emerged. Because of the controversiality of the subject it is
difficult to summarize it here without ending up with more questions than
answers!

In general, the electromagnetic wave approach that characterizes this book
gives the right average light intensity distribution in any given situation when
large numbers of photons are involved. When the numbers are small, the
average expectation is still correct, but the result in any particular experiment
is modified by the statistics of arrival of the photons, whether the detector is a
single unit or an array such as a photographic film. The statistics may be Poisson
if the photons are uncorrelated, but may be modified by various techniques to
be discussed below (§14.3.1). In many cases the statistics can be adequately
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Figure 14.3

Thought-experiment to
determine which mirror in
a Michelson interferometer
reflected the photon.
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described by analysis of the detector itself, for example §14.4.1. It is as if the
classical electromagnetic field guides the individual photons, in the same way
as Schrödinger’s wave-field gives the probability density for matter particles,
without telling us exactly what happens to each one.

To show what happens if we try to trace a photon (as if it were a localized
particle) through an interferometer, we shall consider the following thought-
experiment as an example on which many variations are possible. The apparatus
is a Michelson interferometer (Fig. 14.3), and we shall show that an attempt
to find out which of the two mirrors reflected a single photon traversing the
instrument must result in destruction of the interference pattern. Imagine that
all the components of the interferometer are infinitely massive, apart from the
mirror M2, which has finite mass. According to de Broglie’s hypothesis, a

A non-mathematical
discussion that covers
several different
approaches to ‘which
way?’ experiments is
given in the book
by Rae (1986).

photon with wavenumber k0 has momentum p = �k0. When the photon is
reflected, the mirror will recoil with momentum 2�k0, which can be measured
after the reflection has occurred, and the measurement can therefore not affect
the interference pattern. But in order to detect the recoil, we must know the
initial momentum of M2 to an accuracy δp considerably better than 2�k0, which
is the quantity we want to measure. So, before the reflection, δp must be smaller
than �k0. Now the Heisenberg uncertainty principle relates the uncertainties of
momentum and position in the form δp δx ≥ h; this means that the positional
uncertainty δx of M2 is at least 2π/k0 = λ. This much uncertainty in the mirror
position makes the fringes unobservable!

Although this is only an example, any attempt to determine a photon’s
route through an interferometer is doomed to destroy the interference pattern
that could be observed. We reach the inevitable conclusion that the photon
must travel both routes at once, and interferes with itself. In particular, as
food for thought, we suggest consideration of two experiments among the
many that have been instrumental in focusing the conceptual problems. One
involves interference between photons from independent lasers (Pfleegor and
Mandel (1968)), and the second, interference between photons emitted by
down-converting crystals, in which a single input photon causes ejection of
two coherently related photons (Zou et al. (1991)), a technique that has already
been mentioned in §13.5.3.
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14.2 Plane wave modes in a linear cavity

We shall now return to the analogy between the photon and a simple-harmonic
oscillator (§14.1.2). It will be sufficient to consider a one-dimensional cavity
of length L, in which the plane wave mode has an electric field

E = E0 cos(kx− ωt − φ), (14.10)

where the values of k and therefore ω are defined by L. The magnetic field is
not independent, and is always related to E by the impedance. Note that k and E
will now be written as scalars, since the choice of a particular mode (including
its polarization) allows us to consider a single component of the field only. It
is the magnitude of E0 that will be shown to be quantized.

First we define two new quantities:

q(t) = E0

ω
cos(ωt + φ), (14.11)

p(t) = −E0 sin(ωt + φ), (14.12)

noting that dq(t)/dt = p(t), and write the field

E = E0[cos(ωt + φ) cos kx+ sin(ωt + φ) sin kx]
= ωq(t) cos kx− p(t) sin kx. (14.13)

The total energy per unit cross-sectional area of the cavity (including both E
and B fields) is then

U =
∫ L

0
ε0E2 dx

=
∫ L

0
ε0(ωq cos kx− p sin kx)2 dx

= 1
2
ε0L(ω2q2 + p2). (14.14)

Using new variables

Q(t) = (ε0L)
1
2 q, (14.15)

P(t) = (ε0L)
1
2 p , (14.16)

U = 1
2
(ω2Q2 + P2). (14.17)

This has the same form as the energy of a mechanical simple-harmonic
oscillator, for which

U = 1
2
(Kx2 + mv2), (14.18)
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where K is the force constant and m the mass. This can also be written in the
same way as (14.17), in whichω = (K/m)

1
2 is the classical vibration frequency,

m
1
2 x = Q and m

1
2 v = dQ/dt = P.

14.2.1 Energy quantization and zero-point energy

The quantized energy of a simple-harmonic oscillator is well known to be
Un = �ω

(
n+ 1

2

)
where n can be any non-negative integer. We thus deduce

that the energy of a given mode of the electromagnetic field is quantized in
the same way. An important non-classical feature is the existence of zero-point
energy

U0 = 1
2�ω, (14.19)

which is the lowest allowed energy level for that mode; it is not possible to
eliminate field oscillations in any mode completely. Even the vacuum field
(lowest energy in every mode of a cavity) contains this much energy in every
mode. The actual electric field resulting from the zero-point contributions of
all the modes is their superposition. Since their phase relations are unspecified,
they can be assumed for the moment to be random and give rise to an inevitable
fluctuating background field that adds noise to any physical measurement,
which we shall presently study in more detail. However, the last decade has seen
development of methods to order the phases of these zero-point fluctuations,
with the consequent possibility of noise reduction. This is called squeezed
light and will be discussed in more detail in §14.3.1.

When all modes are
taken into account this
adds up to an infinite
total amount of energy
since the cavity has an
infinite number of
possible modes; however
this energy is inaccessible
because it corresponds to
the lowest possible
energy state.

14.2.2 Uncertainty relation

The uncertainty principle is one feature of quantum mechanics that can directly
be applied to the electromagnetic field through the analogy with the harmonic
oscillator. As we saw in §14.1.3, it can be written δp δx ≥ �. Now the conjugate
variables we used in the harmonic oscillator above are Q = m

1
2 x and P =

m
1
2 v = p/m

1
2 , so

δP δQ ≥ �, (14.20)

which relates, by analogy, the degree of accuracy with which we can specify
the amplitudes of the cos kx and sin kx parts of the electromagnetic field.

It is illustrative to express the uncertainties on a (P,ωQ) diagram. In quantum
mechanics, this is called a Wigner diagram. We plot P horizontally and ωQ
vertically, as in Fig. 14.4. The energy (14.17) is then proportional to the square
of the radius vector A from the origin to (P,ωQ). Moreover, from (14.11) and
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(14.15), (ε0L)− 1
2 ωQ is the instantaneous amplitude of the cos kx term, and

likewise (ε0L)− 1
2 P is the amplitude of sin kx. Thus the phase (ωt + φ) of the

field (14.13) is given by the angle θ , and the amplitude by the radius vector.
However, we know that the point (P,ωQ) cannot be defined exactly because of
the uncertainty principle. All we know is the average position of the point, and
the product of the uncertainty δP δQ. From here on we shall ignore the ωt in the
phase, so that the (P,ωQ) diagrams will be drawn as if in a frame of reference
rotating at angular velocity −ω. Then the angle θ represents φ directly.

P

wQ dP

w dQ

dA

df

A

q

Figure 14.4

Wigner diagram showing
(P, ωQ) for light with
minimum uncertainty
(chaotic light).

Since P and ωQ appear symmetrically in (14.17), we expect the values of
δP and ω δQ to be equal, so that the defined region in Fig. 14.4 is a circle. This
is the situation that would normally be found, and to which any other situation
will naturally revert; light in a single mode with this property is called chaotic
light, to be discussed further in §14.2.3. But all that quantum theory limits
is the area of the region of uncertainty, and any experiment we propose that
distorts its shape while retaining the area is allowed from the theoretical point
of view. Let us look at some examples.

When we define an uncertainty region in the (P,ωQ) plane, the construction
of a wave is quite elementary. We choose, randomly, a number of points within
the uncertainty region and draw, one on top of the other, the waves that they
represent. Each wave has amplitude and phase (A,φ), which are the polar
coordinates of (P,ωQ) as in Fig. 14.4, in which A2 = P2 + ω2Q2 = 2U . The
width covered by the resulting lines represents the uncertainty in the wave-
field. Figure 14.5(a) shows what we get for five randomly chosen waves in the
equilibrium form δP = ω δQ = √�ω.

Various techniques have been designed to manipulate the shape of the uncer-
tainty region (§14.3.1). For example, it has been shown to be possible to control
the amplitude of a wave emitted by a diode laser (§14.5.5) by very careful sta-
bilization of the excitation current. Then δA is very small, and the uncertainty
region is distorted as in Fig. 14.5(b). This gives rise to a wave whose phase is
very unstable, which means that it has a large frequency spread. In fact, one
can see an alternative form of the uncertainty principle here; the uncertainty
areas in Fig. 14.5 are

ω δP δQ = A δA δφ = 1
2
δ(A2) δφ ≥ �ω. (14.21)

But 1
2δ(A

2) is the uncertainty δU = δn �ω in the energy per unit area
(intensity× time), where n is the number of photons observed in an experiment.
Thus

δn δφ ≥ 1. (14.22)

A second example is just the opposite to the above. We stabilize the phase
of the light by making δφ very small, in which case the amplitude fluctuates
wildly (Fig. 14.5(c)). This form of squeezed light has applications to accurate
interferometry, because the points of zero amplitude are very well defined.
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Figure 14.5

Waves represented by
various Wigner diagrams.
Their uncertainty is
illustrated by the range of
the five superimposed
wave-forms in each case:
(a) chaotic light, (b)
amplitude-squeezed light,
(c) phase-squeezed light.
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14.2.3 Fluctuations in chaotic light

Chaotic light has the equilibrium form δP = ω δQ = √�ω. Then, from (14.17),
putting φ = 0 to simplify things,

δU = ω2Q δQ+ P δP

= (ε0L)
1
2

[
ω2 E0

ω
cosωt(�/ω)

1
2 + E0 sinωt(�ω)

1
2

]

= (ε0L�ω)
1
2 (E0 cosωt + E0 sinωt). (14.23)

This shows that the contributions to δU from the cosωt and sinωt phases are
equal. The root-mean-square fluctuation �U in each phase is

�U = 〈δU2〉 1
2 = (ε0L�ω)

1
2 E0〈cos2ωt〉 1

2 = E0

(
ε0L�ω

2

) 1
2

. (14.24)
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It is most illustrative to compare this fluctuation with the mean intensity, when
both are measured as numbers n of photons per unit area in a given time. Then
we have

δn = �U
�ω

= E0

(
ε0L
2�ω

) 1
2

; (14.25)

〈n〉 = U
�ω

= 1
2
〈ω2Q2 + P2〉 1

�ω

= 1
2

〈
ω2 E2

0
ω2 cos2ωt + E2

0 sin2ωt

〉
ε0L
�ω

= E2
0
ε0L
2�ω

. (14.26)

So for each phase (δn)2 = 〈n〉. (14.27)

In §11.8 we used the same result for the detection probability of photoelectrons
when observing a source of constant intensity, as a consequence of the Poisson
statistics of uncorrelated events; the present result therefore indicates that
Poisson statistics apply to chaotic light. In that discussion, we continued by
adding the resultant classical intensity fluctuations arising from the partially
coherent nature of a thermal source, and showed that the result was photon
bunching, which can be described loosely as super-Poisson in that there is a
positive correlation between the times of detection of photons. The fluctuations
result eventually in a limitation of the accuracy with which measurements can
be made optically. On the other hand, any means of distributing them unequally
between the sinωt and cosωt terms, and using the quieter one for measurement,
acquire practical implications; this is called squeezing the light and we have
sub-Poisson statistics.

The ‘darkest’ state, which has the minimum number of photons, has 〈n〉 = 0
in each mode, and is called the vacuum field. It still has energy 1

2�ω, which is
evident as a fluctuating wave-field. Then the picture looks like Fig. 14.6(a, b),
in which phase is completely indeterminate. The vacuum field is important in
understanding spontaneous emission (§14.4.2).

However, the vacuum state can be squeezed, which means distorting the
shape of the uncertainty region on the Wigner diagram, as in Fig. 14.6(c, d).
This essentially decreases the uncertainty in one phase at the expense of the
other phase. This can be employed in interferometry to improve measurement
signal-to-noise, since in interferometry measurements are made in one phase,
that of the reference wave, and that phase can be chosen to be the one where
the fluctuations are sub-Poisson (the Q phase in Fig. 14.6(d)). To distort the
shape of the uncertainty region, one uses a phase-sensitive amplifier, which
amplifies signals that are in phase with a reference, and attenuates by the same
factor waves that are in quadrature with it.

An example of an optical
phase-sensitive
amplifier: a Fabry–Perot
cavity whose optical
length oscillates
synchronously with the
reference, using
non-linear optics, so that
it is mλ/2 long at certain
points in each cycle.
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Figure 14.6 Representation of the vacuum field. (a) and (b) The natural chaotic vacuum state
where fluctuations are equally distributed between the P and Q phases: (a) Wigner
diagram in P, Q space and (b) typical samples of E(t); (c) and (d) show the squeezed
vacuum state where most fluctuations are in the P phase. Notice from the magnified
zero-crossing region in (d) that all the samples of E(t) have approximately the
same phase.

14.3 Are photons real?

Although the picture of particle-like excitations of light with quantized energy
produced a simple and appealing explanation of the photo-electric effect, for
which Einstein was awarded the Nobel prize in 1921, that effect can, in retro-
spect, be explained by a semi-classical theory in which the light is described as
a classical electromagnetic wave that interacts with a quantized photo-cathode.
On the other hand, later experiments produced results that cannot be explained
without the concept of a photon as a non-localized entity with zero mass, energy
�ω and unit spin, travelling in free space at velocity c. In this section we shall
discuss some of these experiments at an elementary level, to give a taste of what
has become a very active area of optics research during the last few decades.

The theory behind these
experiments is usually
treated in terms of
quantum operators, but
since these have not
been discussed in this
book, the discussion will
avoid their use. After all,
they are only a
mathematical tool.

14.3.1 Sub-Poisson light

We have already met two illustrations of fluctuations in light intensities.
In §14.2.3 we showed that chaotic light, which is best exemplified by a
monochromatic laser beam, obeys Poisson statistics. This means that the root-
mean-square fluctuations in the intensity are proportional to the square root of
the intensity itself. In addition, we saw in §11.8.3 that the experiments of Brown
and Twiss (1956) demonstrated increased fluctuations in quasi-monochromatic
light resulting from beats between neighbouring frequencies. These are known
as ‘super-Poisson’ fluctuations. Both of these phenomena can be explained
by the semi-classical theory in terms of the statistics of interactions between
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Figure 14.7

Simulation of (a) Poisson,
(b) sub-Poisson and (c)
super-Poisson events along
a time axis. (c) corresponds
to the fluctuating intensity
I(t) shown in (d), typical of
incoherent light.
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classical light waves and a photo-detector. In that approach, an electromag-
netic wave of given intensity provides a perturbation to the electrons in the
photo-detector, which are thereby excited statistically to a higher level which
is then detected. However, there is no way that such a semi-classical model
can explain ‘sub-Poisson’ fluctuations – light that has smaller fluctuations than
Poisson statistics predict. In fact, the Poisson statistics derive from §14.2.3
where we assumed that δP = ω δQ. Figure 14.5(b) shows an example where
the shape of the uncertainty region has been distorted so as to reduce amplitude
fluctuations, at the expense of phase fluctuations. This can only be carried out
if the statistical emission of electrons from a photo-cathode is moderated by a
regularized stream of photons.

Several ways of doing this have been invented, for example:

1. The operation of a semiconductor laser or light emitting diode (§14.5.5)
from a stabilized constant current (pumping) source (Machida et al. (1987);
Tapster et al. (1987)). The electrons, being fermions, tend to anti-bunch
and result in a more ordered flow of electrons which, because of the very
short lifetime T2 of electron–hole pairs in the junction, regulates the photon
output.

2. The emission of resonance fluorescence (§14.8) from a single atom or ion,
which has to be re-excited after every emission. The re-excitation creates
a ‘dead-time’ after each emission, which smooths the flow of photons by
creating a dependence of each on the previous one (Kimble et al. (1977);
Teich and Saleh (1985)).

These methods are only possible when light is emitted as individual quanta,
and therefore cannot be described classically. Figure 14.7 shows a simulation of
Poisson, sub-Poisson and super-Poisson light. In (a) we see a series of uncorre-
lated photon events at rate r. In (b) we have taken the sequence (a), doubled the
rate to 2r and then introduced after every registered event a detection dead-time
with average value equal to 1/r, during which any event occurring is erased, so
that the mean rate is once again r. It is easy to see that a steadier sub-Poisson
stream of photons has been achieved, and is equivalent to method (2) above.
In (c), we first generated a classical chaotic wave (shown in (d)) by the method
described in §11.1, and then used Poisson statistics to generate the appropriate
super-Poisson photon sequence.
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Figure 14.8

(a) Experiment to measure
correlation between photon
arrivals at two detectors,
when the source is
sub-Poisson. (b) The
second-order coherence
function between photon
arrivals at the two
detectors separated by
time τ , showing anti-
correlation. (Courtesy
of D. Gershoni)
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14.3.2 Photon anti-correlations

The experiment of Brown and Twiss (1956) investigated intensity correlations
between the two light beams created by dividing a quasi-monochromatic beam
into two by a beamsplitter. In §11.8.3 we saw that the correlations can be
described by a second-order coherence function γ (2)(τ ), which is a function of
the delay τ between the detection times; for the classical wave model γ (2)(τ )

was related to the temporal coherence function γ (τ) by

γ (2)(τ ) = 1+ |γ (τ)|2. (14.28)

Therefore, classically, the value of γ (2)(τ ) can never be less than unity
and experimental proof of γ (2)(τ )< 1 indicates the need for a quantum
description. Replacing Brown and Twiss’s intensity correlation method by
photo-electron coincidence counting is a technical improvement (which, histor-
ically, had many interpretational problems; Brown (1974)); here one measures
the probability of receiving a photo-electron at detector D2 in the window
between t = τ and t = τ + δτ after receiving one at t = 0. When normal-
ized correctly, this is a measure of γ (2)(τ ). For sources of the types listed
above, experiments have shown conclusively that γ (2)(τ ) < 1 is possible; this
essentially establishes the reality of the photon as a quantum particle (Fig. 14.8).

It is quite easy to see why this happens. Consider first a beam with Poisson
statistics (Fig. 14.7(a)), which has a constant probability p δτ of a photon
arriving in any interval of time δτ . If the beam is divided into two, as in
Fig. 14.8(a), and the photons go randomly to each of D1 and D2, each detector
now has probability pδτ/2 of a photon arrival, but the distribution of events at
D1 is not dependent on those at D2, and so γ (2)(τ ) = 1 at all τ . If the beam is
classically super-Poisson (Fig. 14.7(c)), the probability of arrival of a photon
at D1 in a given window of time is larger when at the peak of a fluctuation, and
then the probability of a photon detection at D2 is also greater if τ < τc; hence
γ (2)(|τ | < τc) > 1. However, if the photons are sub-Poisson, and therefore
more ordered, the fact that a photon arrived at D1 means that another is less
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likely to arrive at D2 within a short time. In case (2) γ (2)(τ ) = 0 if τ is within
the dead-time (Fig. 14.7(b)).

The earliest demonstrations of these anti-correlations (i.e. γ (2)(τ ) < 1) in
1977 were essentially the first unequivocal confirmation of the photon concept.
These were followed by exceptionally clear results from resonance fluorescence
(§14.8) of single and small clusters of atoms and more recently from quantum
dots (Fig. 14.8). The latter are tiny quantum wells which essentially behave
like single designer atoms that can supply not only ‘photons on demand’, but
also groups of correlated or ‘entangled’ photons, which are our next topic.

14.3.3 Entangled photons and the Bell inequality

In 1935 Einstein, Podolsky and Rosen (EPR) described a ‘gedankenexperi-
ment’ (thought-experiment) that they considered to result in counter-intuitive
results and therefore raised the question of whether quantum mechanics could
provide a complete description of a system in terms of measurable quantities.
In a quantum system, a parameter only has a certain value when it is actually
measured. For example, the weak wave in Taylor’s experiment (§14.1.3) will
probably cause an event on the photographic film at one point in a certain
time interval, but it is not possible in advance to say where that point is going
to be. The experiment EPR described consisted of the emission of two par-
ticles from a source as the result of a spontaneous decay. Then the sums of
the momenta and of the positions of the two particles must remain zero at all
times (p2 = −p1, x2 = −x1) since the centre of gravity remains stationary.
As a result, by measuring x1 and p2 it is possible to determine both x2 and
p1; thus both the positions and momenta of both particles are known simul-
taneously. Heisenberg’s uncertainty principle does not allow this! In addition,
the parameters are measured when the distance between the two particles is
very great, so that they cannot influence one another. This is known as the
EPR paradox.

In the optical regime, such experiments have been carried out with pairs of
photons, created by a single event and therefore having correlated polarizations.
They show the surprising result that measurement of the polarization of one
photon does indeed predict correctly the polarization of the other, even when
they are a long way apart. There are two possible explanations for this. The first,
implying a ‘hidden variable’, is that the photons were imbued with intrinsic
polarizations at the time of the emission, but we only learnt what they are
when the measurement was performed. The second reason could be that one
photon’s polarization was created by its measurement, and the second then
had to fulfil the correlation. But how did it know what the first measurement
was, because the first measurement was made when the photons were too far
apart to communicate? Such questions have played a great role in studies of

Discussions of this
question usually employ
a model in which two
spontaneously emitted
particles have opposite
spins, ± 1

2 , whose
components in the
direction of a
measurement axis have
also to be ± 1

2 . However,
experiments done on
such systems have
proved very difficult to
perform.



519 14.3 Are photons real?

S
n1 n2

a

Coincidences

Db

Db

Da

Da

n1

n2

Pumps

Ca

Figure 14.9 Experimental set-up for investigating polarization correlations in entangled photon
pairs. The level scheme on the left shows two simultaneously emitted photons with
correlated polarizations. In the experimental system, the polarization correlations
are recorded as a function of α and β; the configuration is shown for β = 0. The
elements ⊗ reject multiple photon events. (After Aspect et al. (1982))

fundamental quantum mechanics and their implications are discussed at length
in books such as Peres (1993). The first explanation assumes that there is a
hidden variable whose value we do not know until the first measurement is
made. The second explanation requires that the two photons share a common
wave-function, which cannot be factorized into the product of two independent
functions, and the parameters of which are only chosen when measured for one
particle; but the result then applies to both particles! Such particles are called
entangled. The question is, can we distinguish experimentally between the two
explanations, and which is correct?

We shall discuss the paradox in terms that have been discussed earlier in
this book, i.e. as direct polarization measurements on photons, for which there
are clear and decisive experimental results (Aspect et al. (1982)). In these
experiments (Fig. 14.9) a 40Ca source emits pairs of photons with correlated
polarizations in a single decay event, and we shall assume that the atomic wave-
functions require the polarization directions to be parallel.3 Pairs of photons
(i = a, b) emitted in opposite directions enter two polarization-measuring
devices each consisting of a polarizing beamsplitter which reflects the
⊥-polarized wave to detector Di⊥ and transmits the ‖ one to detector Di‖. The
planes of incidence of the two devices are fixed at angles α and β respectively
to the vertical. Here, we assume the detectors to have 100% efficiency; in the
experiments, of course, corrections were made to take account of the real values.

Let us first consider the classical ‘hidden variable’ explanation. Suppose first
that α = β = 0 and the photons are emitted with polarizations at angle θ to the
vertical. Then the probabilities of detection at the four detectors are

Pa⊥ = Pb⊥ = cos2θ , Pa‖ = Pb‖ = sin2θ . (14.29)

Even if a photon is detected at Da⊥ this only means that its polarization is not
exactly ‖, and therefore there is a non-zero probability that its twin be detected

3 It would make no difference to the argument if the two photons were required to have orthogonal
polarizations.
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by Db‖, i.e. two photons might be detected simultaneously at orthogonally
oriented detectors on the two sides; this would be most likely if θ = 45◦.

Now consider the same conditions for the quantum explanation. When the
first photon (say a) reaches its device, it might appear at Da⊥, in which case the
two photons acquire⊥ polarization (θ = 0). Then there is zero probability that
photon b will have ‖ polarization, and it cannot appear at Db‖. If, on the other
hand, a appears at Da‖, then Pb⊥ = 0. The correlations between the signals at
the different detectors are much higher in this case.

It seems therefore that there is a basis for experimental determination
of which explanation is correct, but the experiment must be analyzed
quantitatively. For the classical model, with general α,β, the detection
probabilities are

Pa⊥ = cos2(θ − α), Pa‖ = sin2(θ − α), (14.30)

Pb⊥ = cos2(θ − β), Pb‖ = sin2(θ − β). (14.31)

Now we look at correlations between the various detectors, and get joint
probabilities

P⊥,⊥ = cos2(θ − α) cos2(θ − β) = 1
4
[cos(α + β − 2θ)+ cos(α − β)]2,

P‖,‖ = sin2(θ − α) sin2(θ − β) = 1
4
[cos(α + β − 2θ)− cos(α − β)]2,

P⊥,‖ = cos2(θ − α) sin2(θ − β) = 1
4
[cos(α + β − 2θ)− sin(α − β)]2,

P‖,⊥ = sin2(θ − α) cos2(θ − β) = 1
4
[cos(α + β − 2θ)+ sin(α − β)]2.

(14.32)

In a long experiment, θ might be uniformly distributed in (0, 2π) and the
average values observed will be

〈
P⊥,⊥

〉 = 1
4

[
1
2
+ cos2(α − β)

]
= 〈P‖,‖〉 , (14.33)

〈
P⊥,‖

〉 = 1
4

[
1
2
+ sin2(α − β)

]
= 〈P‖,⊥〉 . (14.34)

Finally we construct a normalized correlation function for the whole experi-
ment which can lie in the range from +1 (perfect correlation) to −1 (perfect
anti-correlation):

E(α,β) ≡ P⊥,⊥ + P‖,‖ − P⊥,‖ − P‖,⊥
P⊥,⊥ + P‖,‖ + P⊥,‖ + P‖,⊥

= 1
2

cos[2(α − β)]. (14.35)

The correlation function
is analogous in structure
to the visibility of
interference fringes,
§11.3.2, except that it
can also take on negative
values.

This never has absolute value greater than 1
2 , and so in the classical case the

correlation is never perfect.
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According to the quantum theory, the calculation is much simpler. If photon
a reaches Da⊥, then photon b has the same polarization. Then the probability of
its detection at Db⊥ is P⊥,⊥ = cos2(α−β) and that at Da‖ is P⊥,‖ = sin2(α−β).
Similarly, P‖,‖ = cos2(α−β) and P‖,⊥ = sin2(α−β). Whence the correlation
function E(α,β) = cos[2(α−β)]. This is twice as large as the classical case,
and leads to perfect correlation when α = β.

However, before deciding how to carry out the decisive experiment, we
should take into account the fact that we assumed the value of θ to be a uniform
random variable in (14.33) and (14.34); could it be possible that the actual
distribution of θ is non-uniform in some way, so as to mimic the quantum case?
Maybe this could be the result of crystalline anisotropy or local magnetic fields
in the source. A very clever and elegant way round this obstacle was invented
by Bell (1966). Every individual observation is described by a binary number
qi, where qi = 1 if the photon is received at Di⊥, or q = −1 if at Di‖. For a
given event, the correlation E(α,β) = qa.qb then has the value ±1, since one
photon is detected in each channel on each side. Consider four measurement
angles, α,β,α′ and β ′. Four experiments can be done, each using one α and
one β, giving qα , qβ , qα′ and qβ ′ . The results of these four experiments are
combined as

Bell’s inequality applies
in general to any system
with hidden variables.
Experiments that violate
Bell’s inequality show
that there are no hidden
variables, and the two
particles have a common
wave-function.

S = E(α,β)+ E(α′,β ′)− E(α,β ′)+ E(α′,β). (14.36)

It is easy to confirm by considering each of the 16 combinations of +1’s and
−1’s for the q’s, S always has a value 2 or −2, and so when S is averaged for
a large number of events, the mean must be between−2 and 2.4 The result
that |S| ≤ 2 is known as Bell’s inequality.

However, for the quantum case we have E(α,β) = cos[2(α − β)]. One
can easily find a set of values for the angles such that S > 2; for example
α = 0,β = 22.5◦,α′ = 45◦ and β ′ = 67.5◦. Then, S = 2

√
2. A series of

experiments (Aspect et al. (1982)), which took more than six years to develop
and complete, justified the quantum interpretation by showing S = 2.70±0.05.
This result justifies our contention that the value of a parameter of a physical
system only exists when it has been measured.

Aspect et al. (1982) even
verified that their result
was not changed if the
polarization of one
photon was changed
electronically by a
random amount after it
had been emitted.

14.4 Interaction of light with matter

A detailed discussion of the interaction of light with matter is quite outside the
scope of this book, but we must understand some of the essentials in order to

4 If you consider this development to smack of mathematical juggling, you can use (14.32) directly
to show that E(α,β) = cos[2(α − θ)] cos[2(β − θ)]. Then, you can check numerically that for
any given α and β in (0, 2π), S as defined in (14.36) lies between −2 and 2. It follows that this
will also be true for any statistically weighted combination of θ ’s.
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Figure 14.10

Sketches of the
x-dependencies of a
symmetric function f1(r)
and an antisymmetric
function f2(r) for electron
density in an atom. The
functions ψ1 = f1(r)+f2(r)
and ψ2 = f1(r)−f2(r)
represent the combined
wave-functions at a time
interval of π/(ω2 − ω1).
The electron densities of
the latter functions have
centres of gravity at
off-centre points on the
x-axis labelled Q, showing
that the atom in the mixed
state acquires an oscillating
dipole moment.
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appreciate the principle of the laser, which is a necessity for every student of
optics. For a much deeper discussion of this subject see, for example, Loudon
(2000).

We shall restrict our discussion to a pictorial description of the effect of
an oscillating electromagnetic field on a single isolated one-electron atom
with just two levels L1 and L2. This is about the simplest relevant problem
we can imagine. The atom in state j (= 1, 2) is described by an electronic
eigenfunction

ψj(r, t) = fj(r)e−iωjt (14.37)

in which the spatial wave-functions f (r) are separated from the temporal oscil-
lations. These functions are assumed to be real and are shown in Fig. 14.10(a)
and (b). The eigenvalues of the two wave-functions are�ω1 and�ω2 (ω2 > ω1),
and ψ is in each case a solution of the Schrödinger equation for the atomic
potential V (r). Each wave-function corresponds to an exact solution of the
Schrödinger equation and therefore an electron in either of the states will stay
there for ever. All the time-dependence is in the exp(−iωt). Any other pos-
sible electron wave-function can always be written as a superposition of the
eigenfunctions ψj(r, t), since these form a complete set (like the sine and cosine
functions in Fourier theory).

Now suppose an oscillating electric field is applied to the atom. The potential
field is modified from V (r) to V (r) + e�(r, t) where �(r, t) is the electric
potential of the oscillating field. The stationary-state wave-functions ψ(r, t),
corresponding to the new potential, are no longer the same solutions ψj(r, t)
of Schrödinger’s equation. But we can express ψ(r, t) as a linear superposition
of the eigenfunctions ψj(r, t). What does the resulting electron probability
distribution look like? We write the superposition as

When an atom is in a
state described by the
superposition of two
atomic eigenfunctions,
its charge density
oscillates as a result of
beats between the
two eigenfunctions. The
oscillating charge can
couple to an
electromagnetic wave at
the beat frequency.

ψ(r, t) = aψ1(r, t)+ bψ2(r, t), (14.38)



523 14.4 Interaction of light with matter

where a2+b2 = 1. Remember that ψj(r, t) contains the factor e−iωjt. When we
now calculate the electron density |ψ(r, t)|2, we find a cross term (underlined)
which oscillates with frequency (ω2 − ω1):

|ψ(r, t)|2 = |af1(r)e−iω1t + bf2(r)e−iω2t|2
= a2f 2

1 (r)+ 2abf1(r)f2(r) cos[(ω2 − ω1)t] + b2f 2
2 (r). (14.39)

Pictorially, the situation is shown in Fig. 14.10(c)–( f ). At times t = 0 or
2mπ/(ω2−ω1), where m is an integer, ψ = af1+bf2 as shown in (c) for a = b.
The corresponding electron density function (e) is asymmetric with respect to
the origin: on the right side, where f1 and f2 have the same sign, the charge
density |ψ |2 is larger than on the left, where f1 and f2 have opposite signs. Now,
at times t = π(2m+ 1)/(ω2−ω1) we have ψ = af1− bf2, (d), and the charge
density shown in ( f ) is larger on the left. In other words, the charge alternates
between the two halves: we have an oscillating dipole. We know, from §5.3.2,
that an oscillating dipole is a good radiator or absorber, so the atom absorbs
or radiates at frequency ω = (ω2 − ω1); in general the atom couples to a
radiation field tuned to the frequency difference between energy levels.

The strength of the oscillating dipole represented by (e) and ( f ) corresponds
to the underlined term in (14.39), which leads to a dipole moment of amplitude

2ab
∫ ∫ ∫

all space
erf1(r)f2(r) d3r ≡ 2ab eM12. (14.40)

M12 is called the interaction matrix element, or the oscillator strength, which
was introduced empirically in §13.3.2. Because of the antisymmetric factor r in
the integrand, the functions shown in (a) and (b) must have opposite symmetry
for M to be large; this corresponds to a selection rule �l = ±1 in quantum
mechanics (where l is defined in the same way as in §10.2).

The above description might suggest that emission and absorption only occur
when ω = (ω2 − ω1) exactly. But this is not quite true. The result of energy
transfer from the field is that a and b change with time, and so the interaction
continues only for a time T during which both a and b are non-zero. So ω only
needs to lie within ω2 − ω1 ± π/T ; 2π/T is the natural linewidth (§11.2.1).
The larger the values of the matrix element and �, the faster a and b change
and the wider the frequency range.

Although we have not carried out any detailed mathematics and have used an
oversimplified model, the physics should be clear. Now we can make several
very important observations:

1. The situation is quite symmetric between the two levels. If the atom starts
in level 1, initially a = 1 and b = 0, and the electromagnetic field causes a
transition from the lower level to the upper. If the atom were initially in the
upper level, with a = 0 and b = 1, the same electromagnetic field would
cause a transition to the lower level.
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2. Because the interaction is essentially that between an oscillating dipole
and an electromagnetic field at the same frequency, the direction of energy
transfer is determined by the phase relation between the two. In the first
case in (1), energy �(ω2−ω1) is absorbed from the field by the atom. In the
second case, the dipole radiates the same energy coherently into the field.

3. We have seen in §14.2 that the electromagnetic field is never zero. There
are always the vacuum fluctuations at least. So an atom cannot stay in the
upper level for ever. One might be tempted to say the same about the lower
level, but the atom has to absorb energy to ascend to the upper level. The
field cannot provide this energy because it is already in its lowest energy
state, so there is no available source for an upward transition.

14.4.1 The photo-electric effect

Quantization of energy in a light wave was demonstrated by Einstein in his
interpretation of the photo-electric effect, which applies to almost any sensitive
photo-detector. The argument in terms of quantized photons should be familiar
to the reader, but here we shall describe it in terms of the above interaction
picture, in which the electromagnetic field is classical.

Detection of light requires an interaction between the incident wave field and
the electrons in a sensitive element, the photo-cathode, in which the electrons
have many states. The lowest-lying ones refer to electrons bound within the
cathode, but above a certain energy εw, called the work function, the states
refer to free electrons having some amount of kinetic energy. The light wave
with frequency ω causes a mixing, like (14.38), between the ground state ω1
and a certain upper state ω2 which satisfies ω = ω2−ω1. If �ω2 < εw, the final
state is bound and no free electrons are observed. When �ω2 > εw, the final
state is a free electron with kinetic energy �ω2 − εw. The rate of transition to
unbound states, and thus the rate of creation of free electrons, is proportional to
the size of the perturbation, the intensity of the light wave. This, in a nutshell, is
a description of the photo-electric effect; notice that the quantization has been
introduced through the electron states in the photo-cathode, and not through
the wave-field. In fact, the photo-electric effect does not really prove that light
energy is quantized!

14.4.2 Spontaneous and stimulated emission

The description earlier in §14.4 leads us directly to the most important concepts
involved in the laser. We have seen that in the presence of an electromagnetic
wave, no atomic-electron wave-function is completely stationary, except for
the ground state in the presence of the vacuum field only. Otherwise, transitions
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occur in which energy is transferred backwards and forwards between the atom
and the electromagnetic field. We emphasize that the atom behaves like an
oscillating dipole antenna during a transition and the phase relation between
this dipole and the electromagnetic field determines whether the atom absorbs
or emits.

Spontaneous emission occurs when an atom is in the upper state L2 and
is influenced by the vacuum field. As we saw in §14.2.3, this generally has
random phase and therefore the emitted waves have random phase. How-
ever, in principle the random vacuum field fluctuations can be ordered, and
this possibility was shown in Fig. 14.6(c) and (d). The dependence of spon-
taneous emission on the presence of a vacuum field has been beautifully
demonstrated by experiments on radiation from atoms in microcavities. If
the cavity dimensions are reduced until its first mode has frequency above
that of the transition from level L2 to the ground state, there are no vacuum
fluctuations at the right frequency to stimulate that transition, and the life-
time of L2 becomes infinite. The experiments are described in more detail by
Haroche and Raimond (1993).

Stimulated emission occurs when an atom is in the same state L2, but is
influenced by an electromagnetic field larger than the vacuum field. The atom,
perturbed at frequency ω, transits to state L1 and the phase of the emitted wave
is that of the oscillating dipole, which itself is that of the perturbing wave. Thus
a second wave, coherent with the first, is emitted.

Stimulated absorption occurs when the atom is initially in state L1. Then, the
same description as the previous paragraph applies, but the phase is reversed
and the atom absorbs the radiation.

14.4.3 Einstein’s A and B coefficients for spontaneous
and stimulated emission

The relationship between the stimulated and spontaneous emission rates can be
compared by a simple argument due to Einstein. He considered the equilibrium
of a large ensemble of atoms in the presence of equilibrium isotropic black-
body radiation u(ω) at temperature T (14.8). From Boltzmann statistics we
know the equilibrium ratio between the numbers of atoms n1 in L1 and n2 in
L2 to be

Einstein’s work, which
predicted the possibility
of stimulated emission,
was done in 1917, but
was only realized
experimentally 40 years
later.

n2

n1
= exp

(
−�(ω2 − ω1)

kBT

)
. (14.41)

The spontaneous transitions from L2 to L1 are dependent on the vacuum field,
which is not included in u(ω). The stimulated transition rate is proportional to
u(ω). Thus the rate of transition from L2 to L1 is

r21 = An2 + Bu(ω)n2, (14.42)
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where A and B are constants. For transitions from L1 to L2, the spontaneous
contribution is absent:

r12 = Bu(ω)n1. (14.43)

Putting (14.42) and (14.43) equal at equilibrium, and substituting (14.8) for
u(ω), we find

A
B
= �ω3L3

c3π2 . (14.44)

For the stimulated component to be dominant, we require the energy density
u(ω) to satisfy

Bu(ω)
 A, (14.45)

which, on substituting (14.44) for A/B, gives

u(ω)
 �ω3L3/π2c3. (14.46)

On referring to (14.8), this implies that the mean number of photons in the
mode of frequency ω, 〈n〉 
 1.

It is of interest to see the order of magnitude of the threshold energy den-
sity (14.46), which is related to the intensity by I = cu(ω). At a microwave
frequency, ω = 1011 s−1 (λ = 2 cm), the threshold is 3× 10−20 J m−3, corre-
sponding to about 10−11 W m−2, an extremely small intensity. At microwave
frequencies, it therefore appears that spontaneous emission is quite negligible.
At an optical frequency, ω = 3 × 1015 s−1 (λ = 0.5μm), the threshold is
7 × 10−7 J m−3, corresponding to 20 W m−2. This is very intense, and led to
considerable problems in constructing the first optical lasers (§14.5.3). Those
facing the designer of an X-ray laser are even more formidable.

The key to attaining
sufficient energy density
to cross the lasing
threshold in the optical
region is the use of a
resonator, which
concentrates the
available radiation and
restricts it to a very small
solid angle.

14.5 Lasers

The acronym ‘LASER’ means ‘Light Amplification by Stimulated Emission
of Radiation’. Today it is understood to refer to a light source from which the
stimulated emission is dominant, although the initial stimulus that triggers the
emission is usually spontaneous.

The important difference between stimulated and spontaneously emitted
waves is in their phase coherence. Each stimulated photon is exactly in phase
with the photon that provided the stimulation, and so the wave grows as a
continuous wave with complete temporal coherence; if we know the phase
at one time we can, in principle, predict the phase of the wave at any later
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time because all its components are exactly in phase. This idyll is spoilt by
the spontaneous emission, which is caused by the randomly phased vacuum
fluctuations. These provide a noisy background which results in a degradation
of the complete phase coherence. It will be convenient in what follows to
ignore spontaneous emission; to create the large energy density u(ω) that this
demands, one must usually put the lasing material in a cavity that is resonant
at the frequency ω (§9.5.4).

A system with population
inversion, corresponding
to a negative
thermodynamic
temperature, is needed
for laser action.

Returning to equations (14.42) and (14.43), without the spontaneous term,
we have the rate of stimulated emission of light from (14.42):

Ie = �ωr21 = Bu(ω)n2 (14.47)

and that for absorption of the same frequency (14.43):

Ia = �ωr12 = Bu(ω)n1. (14.48)

For (14.47) to be larger than (14.48) it is necessary for n2 to be larger than n1,
which from (14.41) is clearly impossible in an assembly of atoms in equilibrium
at any (positive) temperature. The laser therefore requires that the atoms be
excited to a non-equilibrium distribution, in which there are more atoms in the
upper level L2 than in the lower one L1. This is called population inversion.
As long as this situation is maintained, stimulated emission dominates over
absorption.

14.5.1 Population inversion in a chemical laser

Conceptually, the simplest process to achieve population inversion is probably
the chemical laser. A chemical reaction takes place that generates large amounts
of energy and the resultant molecules are formed in an excited state (signified
by a star after the molecular formula). Then at the time of formation, there are
no molecules in the ground state, only the new ones in the excited state, and so
population inversion is achieved. The reaction takes place within a cavity that
resonates at the frequency of the transition from the excited state to the ground
state. For example, fluorine and hydrogen react in the required manner:

H2 + F2 → 2HF�. (14.49)

Stimulated emission occurs when a photon of frequency ω in the cavity excites
the transition from HF� to HF, with the emission of a second photon of the
same frequency and phase as the first one:

�ω + HF� → 2�ω + HF. (14.50)

Laser action continues as long as H2 and F2 are burnt to provide the excited
molecules and the ground-state HF is swept out of the cavity. However, this
type of laser is not convenient or safe for everyday use!
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Figure 14.11

Level schemes typical of
lasing materials. (a)
Thermal equilibrium
occupation of energy
levels; (b) and (d) show
three-level lasers, and (c)
a four-level laser based on
the same levels. Optical
pumping is indicated by
the upward arrow on the
left. The lengths of the
level lines represent their
relative populations during
lasing; their thicknesses
indicate their decay rates,
1/Ti . Fast transitions are
indicated by broad arrows.
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14.5.2 Population inversion based on atomic fluorescence

Suppose that we flash a short burst of light onto an atom with a number of levels,
and the light is absorbed. This means that we have induced transitions from the
ground state to an excited state. If the atom subsequently reradiates radiation at
a longer wavelength, it is clear that there must exist a radiative route back to the
ground state via at least one intermediate level. Such a fluorescent system pro-
vides us with a means of achieving population inversion. A more detailed dis-
cussion of fluorescence under resonant conditions will be given later in §14.8.

Suppose that just one intermediate level is involved. We call the ground state
L0, the uppermost state L3 (to which we excite the atoms by the flash), and
the intermediate one L2, as in Fig. 14.11(a). Denote the lifetime of the atom
in level Li by Ti; this is the average time for which it stays excited before
spontaneously emitting (T0 is of course infinite). If the system is fluorescent as
described above, a fraction of the atoms in L2 decay to L0 via L1.

First suppose that T3 < T2. The short lifetime T3 indicates that the matrix ele-
ment M03 is large and means that the pump radiation can be absorbed efficiently
by the atom. Then L0 can be substantially emptied by atoms being excited to L3,
from where they rapidly decay to L2. In L2 they remain for the longer T2, and
population inversion between L2 and L0 arises, provided that the occupation of
L0 is at least half depleted by the pumping, as in Fig. 14.11(b). The ruby and
erbium-doped fibre lasers (§14.5.3) operate essentially with this scheme.

Of course real life is never quite so simple. Usually, more levels are involved,
but some cases are close to the ideal. For example, using a fourth level L1
as in Fig. 14.11(c) makes it much easier to maintain the inverted popula-
tion since the ground state does not have to be substantially depopulated; the
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Figure 14.12

Schematic ruby and erbium
laser level schemes.
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neodymium-YAG laser is an important example. In addition, the lifetime of an
atom in the upper state of the lasing pair is shortened once stimulated emission
begins, and the balance may be upset. This can lead to pulsed behaviour.

Another possible situation is T3 > T2, as in Fig. 14.11(d). In this case, level
L2 empties faster than L3 can fill it, so that there are always more atoms in L3
than L2 and population inversion occurs between them. Laser action between
L3 and L2 is then possible while ‘pumping’ atoms from L0 to L3. Because T3
is long in this scheme, M03 is small and optical pumping is inefficient; the
argon ion, carbon dioxide and helium-neon lasers (§14.5.4) use this idea, but
are pumped by electrical discharge.

14.5.3 Optically pumped ruby and erbium lasers

Ruby is an aluminium oxide (Al2O3) crystal with a small amount of Cr3+
impurity, which gives it its red colour. The ruby laser constructed by Maiman
in 1960 was the first laser working at an optical frequency and employed the
energy levels of dilute Cr3+ shown schematically in Fig. 14.12(a). This is
similar to the three-level laser in Fig. 14.11(b). Because the three-level scheme
requires depopulation of the ground state by at least one-half, this laser is
relatively inefficient and needs a very intense pump, provided by a xenon flash
tube whose output is focused onto the ruby crystal.

The erbium-doped silica (SiO2) laser and amplifier, which are now widely
used in optical communication systems at 1.5μm, are also examples of optically
pumped three-level lasers, Fig. 14.11(b). They are constructed from silica glass
fibres containing about 35 ppm of Er3+ ions and are pumped by light from
diode laser sources (§14.5.5) at either 1.48μm or 0.98μm. The level scheme
of Er3+ is shown in Fig. 14.12(b), which includes the two pumping possibilities.
Because the wavelengths involved are relatively long and the fibre construction
concentrates both the pumping light and the emitted radiation in the core region,
a high degree of population inversion can easily be achieved and the emission
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Figure 14.13

Level scheme in a
helium-neon laser.
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is stimulated very efficiently. As a result, in the absence of a resonator (§14.6.1)
the system behaves as an optical amplifier, while the addition of a resonator
makes it into a laser.

14.5.4 Discharge pumped gas lasers

These lasers employ mixed gases to create the population inversion. In the
helium-neon (He-Ne) laser, He is electrically excited by a discharge to an
excited state, He�. During collision between He and Ne atoms, the excitation
energy can be transferred to the Ne, some of whose energy levels are shown
in Fig. 14.13. Thus population inversion is achieved between L3 and L2. The
figure shows the levels involved in only one of the many possible transitions
of Ne, that at 632.8 nm.

The carbon dioxide (CO2) laser has a generally similar scheme, with nitrogen
as the excitation gas instead of helium. Several wavelengths between 9.6 and
10.6 μm can be radiated, depending on the resonator tuning.

14.5.5 Population inversion in semiconductor p-n junctions

Semiconductor lasers based on a reverse-biased p-n junction are of great
importance in everyday life – in optical communication, bar-code scanners
and CD players, just to give a few examples. The energy levels involved here
are not those of individual atoms or ions, but those of free carriers in a heavily
doped semiconductor crystal: electrons at the bottom of the conduction band
and holes at the top of the valence band. The concepts are described in any
book on solid-state or semiconductor physics. Their exact energy values are
a function of the position in the junction because of its structure (p-type on
one side and n-type on the other). As a result of heavy doping, there are free
electrons in the conduction band of the n-type side, and free holes in the valence
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Figure 14.14

Diagram of a helium-neon
laser: E, electrodes to
excite discharge in the gas;
B, Brewster-angle
windows; M1 and M2

confocal resonator mirrors;
M2 is partially transmitting.
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Semiconductor diode laser.
(a) Equilibrium state, with
no voltage applied. (b)
With applied voltage �V;
recombination of electrons
and holes in the junction
region results in emission
of light.
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Box 14.1 Structure of the helium-neon laser

The helium-neon laser is the commonest laser to be found in elementary
laboratories, and its structure will be familiar to many students. In §14.5.4
we described the type of level scheme it uses. It is constructed from a sealed
discharge tube containing a mixture of helium and neon with about 10:1
ratio in pressure, which is situated within a confocal resonator (§9.5.4), one
of whose mirrors transmits a small percentage of the radiation to produce
the output beam. The laser transition of choice is encouraged by using mul-
tilayer dielectric mirrors, with peak reflectivity at the required wavelength
(§10.3.4). The windows used to seal the discharge tube must have the small-
est possible reflection losses and may be anti-reflection coated (§10.3.3),
uncoated but mounted at the Brewster angle (§5.4.2) as in Fig. 14.14, or may
be the confocal resonator reflectors themselves. Since the laser amplifica-
tion in this system is weak, it is important to reduce the losses to a minimum
by these means; if Brewster-angle windows are used, one polarization will
have less reflection losses than the other, so the output beam is polarized.

band of the p-type side. In thermal equilibrium, the energies of the bands are as
in Fig. 14.15(a). There is no point in space where there are both free electrons
and holes in more than negligible densities. When a reverse bias �V is applied,
the bands are moved energy-wise as shown in Fig. 14.15(b). Now it is energeti-
cally favourable for the electrons to drift towards the positive side and the holes
towards the negative side, and in doing so, both move into the junction region.
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When they reach the same place, we have a population inversion, in that there
are substantial densities of free electrons and holes in the same place, which is a
higher-energy situation than the recombined one in which the electron has filled
the hole and both are annihilated. Laser emission can then occur provided the
recombination process results in the emission of a photon alone, which occurs
in a class called direct gap semiconductors including many III-V materials
such as gallium arsenide (GaAs), indium phosphide (InP) and indium anti-
monide (InSb), but not silicon or germanium. The corresponding fluorescent
device is the LED (light emitting diode) which works on the same principle
but radiates spontaneous and not stimulated emission. The wavelength of the
radiation emitted corresponds closely to the band gap of the semiconductor; for
GaAs this is about 870 nm; for a member of the quaternary system InGaAsP
it can be designed to be about 1.5μm, which is most attractive for optical
communication because this is about the wavelength of minimum attenuation
that has been attained in glass fibres (§10.2.4).

14.6 Laser hardware

Lasers are discussed in detail in many books, such as Yariv and Yeh (2007),
Saleh and Teich (1991), Svelto (1989), and in the limited space available to us
it is impossible to do justice to the many facets of laser technology that have
developed since the 1960s. All we shall do in this section is to point out how
some of the physical ideas that we met in this and other chapters of the book
have been applied to the design of lasers of various types.

14.6.1 The optical resonator

The gain provided by one of the mechanisms of population inversion exem-
plified in the previous section must now be harnessed to provide a source
of coherent radiation. This can be done by incorporating it in a positive-
feedback amplifier system; a familiar acoustic example is a public address
system that starts to whistle when the microphone ‘hears’ the loudspeaker’s
output (Fig. 14.16(a)). Starting from random noise, this creates a coherent
sound wave, whose frequency is near that of the amplifier’s maximum gain, but
is determined exactly by the acoustic delay (distance/sound velocity) between
loudspeaker and microphone. The delay must be such that the phase of the input
to the amplifier is 2Nπ different from the output (N is an integer), so that the
two reinforce exactly. When the amplifier gain is sufficiently large to overcome
the losses in a single round trip of the wave, a sustained oscillation occurs.
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Figure 14.16
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It is easy to see the analogy with the laser (Fig. 14.16(b)). The laser medium
is the amplifier, in which an incident photon creates new photons with the same
phase by stimulated emission. Its bandwidth is determined by the linewidth of
the emission, which involves the lifetimes of the levels and processes such as
Doppler broadening (§11.2.2). Feedback is provided by an optical resonator,
often of the type described in §3.9. The actual selection of the frequencies that
can be radiated is determined by the optical length of the resonator, and there are
sometimes several such frequencies within the linewidth of the transition. These
are called the modes of the laser. In a semiconductor or fibre laser, the radiation
may also be confined laterally by waveguide modes (§10.1.2), which enhance
the energy density. Usually the radiation chooses the fundamental mode m= 0,
and devices are engineered so that the peak of the radiation density in this mode
coincides spatially with the peak of the population inversion. When the laser
has a slab structure, the radiation is confined in one dimension only; this results
in the output beam having a very anisotropic shape, which makes it difficult to
focus the output light efficiently.

Quantitatively, the laser gain is determined by the pump power and atomic
parameters. It has to overcome the losses occurring in the resonator due to
imperfect reflection as well as providing the useful output of the laser (which,
from the point of view of the laser itself, is also a loss). Spontaneous emission
is also undesirable, as it uses the inverted population to create waves with the
wrong phases, although it was necessary as the original stimulus that started
the oscillations.

The longitudinal lasing modes correspond to the condition that the optical
length L̄ of a complete trip back and forth through the resonator is an integral
number N of wavelengths: L̄ = 2n̄l = Nλ, where n̄ is an average refractive
index (which may change with intensity). The frequencies of the modes are
separated by 2πc/L̄. The length l also depends on the direction the ray takes
along the resonator, and sometimes several transverse modes are possible with
the same N , but with the rays at different angles to the optical axis. This aspect
is best treated as a diffraction problem (§9.5.4).

A frequency analysis of the output from a typical laser is shown in Fig. 14.17,
when several longitudinal modes are excited.
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Figure 14.17
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Many modern experiments require lasers whose output wavelength can be
varied. If a small range of variation is required, this can be done by adjusting
the properties of the resonator. A method that is commonly used involves
replacing one mirror by a reflective blazed diffraction grating (§9.2.5). As
shown in Fig. 14.18, the grating is placed at an angle to the axis so that the first
order of diffraction returns exactly along its axis of incidence; in terms of the
diffraction grating equation for non-normal incidence in reflection,

mλ = d[sin θ − sin(−θ)] = 2d sin θ (m = 1). (14.51)

The grating is of course blazed at angle θ for maximum efficiency in the
first order. As the angle is changed, the wavelength at which the resonator
peaks varies in accordance to (14.51), since only waves travelling to and fro
exactly along the axis are amplified. The exact length of the resonator can be
adjusted synchronously by choosing the point about which the grating rotates.
All that is left is to assure that the laser gain always peaks at the resonant
frequency chosen by the resonator, otherwise there may be mode jumps to a
more favoured longitudinal mode (the highest peak in Fig. 14.17); this can be
done in diode lasers (§14.5.5) by synchronously adjusting the temperature of
the lasing material. This method of scanning was developed for investigating
the spectra of lasers such as the CO2 laser (§14.5.4), as has more recently
been applied to diode lasers for very high resolution spectroscopy, such as that
involved in electromagnetically induced transparency (§14.9) and Doppler-free
saturated absorption spectroscopy.
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14.6.2 Continuous-wave versus pulsed lasers

The lifetime Tj of a level depends on the way it can decay. Many lasers can
be pumped sufficiently strongly that population inversion is maintained in the
presence of stimulated emission and continuous-wave emission occurs. On
the other hand, an excited level will generally have a shorter lifetime when
its emission is stimulated than it had naturally. Then, when laser action starts,
it is also possible that the condition for a population inversion (T2 > T3 in
Fig. 14.11(c), for example) is destroyed, and so lasing stops. As a result, we
have a pulsed laser. Some lasers can be operated in either way.

There are various ways of controlling and ordering pulses, by changing
factors coming into the gain. An example is described in Box 14.2. Another
situation, which allows regular giant pulses to be created, is called mode-
locking. When a laser operates in several longitudinal modes, as we saw in
§14.6.1, the wave-form obtained is the superposition of the waves correspond-
ing to the individual modes. If these have random phases, the result is similar to
the waves we constructed in §11.1.1, except that because the modes are equally
spaced in frequency by 2πc/L̄, the wave-form repeats itself at intervals of L̄/c.
But if the modes have the same phase, their combined wave-form is a series
of well-defined wave-groups (Problem 14.8); if more modes are involved, the
shorter and more intense are the individual groups. This situation can be forced
on the laser by including within the resonator a variable attenuator, which is
transparent once in every cycle time of L̄/c.

14.7 Laser light

Consider a laser in which only one longitudinal mode of the cavity is excited.
Stimulated emission results in a very large number 〈n〉 of photons in this one
mode (14.46). This is what distinguishes laser light from thermal light for
which, as we pointed out in §14.1.2, there is on average much less than one
photon per mode. The fluctuation δn is given by (14.27) because even laser
light has to fulfil the uncertainty relation. Thus δn = 〈n〉 1

2 and so, according to
(14.22), δφ = 〈n〉− 1

2 , which is very small.
Laser light is therefore characterized by having very well-defined phase.

This is not necessarily true of any bright light. The large number of photons has
to be concentrated in a single mode. In addition, when only a few longitudinal
modes are excited the light is very well defined in its direction, the angular
spread of the beam being determined by diffraction as if it were restricted
by an aperture corresponding to its actual physical extent (§7.3). These three
properties – phase coherence, high intensity and directionality – are the most
characteristic properties of laser light.
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Figure 14.19
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Box 14.2 A fibre-based pulsed laser

In many lasers the resonator is an optical fibre, such as an optically pumped
erbium-doped fibre (§14.5.3). In order to get a pulsed output, it is necessary
to include a non-linear effect that allows the optical cavity to resonate
only when the intensity of the radiation is very large. Then, energy is
stored in the excited state until the cavity becomes resonant, and then
a large amount of energy is emitted as a very short pulse. One way of
creating such a cavity uses the fact that the polarization of a wave in a fibre
mode tends to rotate with propagation because of internal stresses (§6.9)
and the non-linear photo-refractive effect, which depends on the intensity
(§13.6.2).

The laser is constructed from a fibre loop (Fig. 14.19), which consists
of three different fibres in series; one is the Er3+ laser and the other two
are conventional fibres with opposite dispersion so as to prevent pulse
broadening (§10.2.4). The loop is closed through an air gap. In the gap there
is a polarizing beamsplitter, which transmits one polarization and reflects
the other. There is also a mechanism to introduce additional controlled
polarization rotation. A pulse, initiated by random noise, will resonate
when the losses are minimum, i.e. when it is transmitted by the beamsplitter
and the total polarization rotation in the loop is zero (or an integer number
of 2π ). The rotation mechanism is used to control the power level at which
this happens. On the other hand, since a low-power continuous-wave mode
does not satisfy the resonance condition, the same consideration prevents
amplification of the weak wings of the circulating pulse. This contributes
further to shortening the pulse duration (Tamura et al. (1993)).



537 14.8 Advanced topic: Resonant fluorescence and Rabi oscillations

14.7.1 Coherence function|g (t)|

t
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Figure 14.20

Coherence functions for a
single-mode laser and a
laser emitting a few
longitudinal modes.

As described in §11.4.2, the temporal coherence function is the normalized
Fourier transform of the spectral intensity. If a laser were to operate in a single
longitudinal mode, ideally the spectrum would be a single spike. It is not
quite a delta-function because there are phase fluctuations; the time-scale of
these fluctuations must be at least the lifetime of the lasing transition, and so
the coherence time τc is at least equal to this lifetime (for example, 10−7 s
for T2 in Fig. 14.13). The corresponding coherence length is cτc (30 m). In
practice, the coherence time may be shortened by mechanical fluctuations (due
to temperature etc.) in the optical round-trip length L̄ of the cavity.

Many lasers operate in more than one longitudinal mode simultaneously
(Fig. 14.17). If the modes have random phases, the coherence function, the
Fourier transform of a few spectral lines separated by δω = 2πc/L̄, has the
form of Fig. 14.20, in which the coherence disappears and reappears at intervals
of L̄/c. There is no simply defined coherence length when the coherence func-
tion behaves in this manner, but for many practical purposes, since coherence
disappears first after time L̄/2c, the effective coherence length is L̄/2, the opti-
cal length of the cavity. If the laser is pulsed or mode-locked, §14.6.2, the
coherence time equals the duration of an individual pulse.

The coherence area of a single or multi-longitudinal mode laser is just the
beam area, since the light distribution comes from a single coherent mode or a
superposition of such modes.

14.8 Advanced topic: Resonant fluorescence
and Rabi oscillations

Continuing our discussion of the interaction between a two-level atom and an
electromagnetic wave, we might imagine that an atom starts at time t = 0 in
the lower state (a = 1, b = 0) but absorbs radiation and transfers to the upper
state (a = 0, b = 1) during a certain time, which depends on the intensity of
the wave. After that, stimulated emission takes place and the atom returns to
the lower state in the same time, and so on. Of course, if the electromagnetic
wave is not exactly monochromatic, every atom will carry this out a little
differently and then the ensemble average will quickly become an equilibrium
with about half the atoms in each state. This is what is employed in population
inversion in optically pumped lasers (§14.5.2). However, if the wave frequency
and phase are very stable, all the atoms synchronize in this periodic behaviour,
and oscillations are observed.
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Figure 14.21 Magnetic spin analogue to explain Rabi oscillations. (a) Spin precesses around the
applied magnetic field B0 at the cyclotron frequency ωc. (b) Addition of a circularly
polarized wave at ω along ẑ, as seen in the frame of reference rotating at ω with the
wave-field. (c) As (b) when ω is almost equal to ωc. (d) As (b) when ω = ωc. In this
case the spin component along ẑ oscillates with the Rabi frequency � = γ B1.

This type of oscillation was initially discovered by Rabi in 1937 in classical
magnetic resonance, which in the simplest case is equivalent in quantum lan-
guage to a two-level system in which the atomic magnetic dipole moment
μa may be parallel or anti-parallel to an applied uniform magnetic field
B0ẑ. Because it describes a two-level system interacting with an oscilla-
tory field, the model applies equally well to a two-level atom in a radiation
field. The magnetic model is easy to understand geometrically, so we shall
describe it here; the same physical results apply to both cases. It is illustrated
by Fig. 14.21.

The two magnetic levels are separated by energy 2μaB0. In the classical pic-
ture the magnetic dipole, whatever its orientation, precesses around the applied
magnetic field at the cyclotron frequency ωc= γB0, where γ is the gyromag-
netic ratio (Fig. 14.21(a)). We now add a circularly polarized electromagnetic
wave with magnetic field amplitude B1B0 at frequency ω, rotating in the
same sense as the precession. The wave travels along ẑ and therefore B1 is
in the (x, y) plane. Now observe the system in a frame of reference (x′, y′, z)
rotating about z at the wave frequency. In this frame, the dipole precesses
at frequency ωc − ω and therefore the value of B0 appears to be reduced to
B′0 = B0−ω/γ = (ωc−ω)/γ . In addition, B1 is stationary in this frame and is
in a direction normal to z, say x′. The resultant magnetic field, which is there-
fore also fixed in this frame, is thus

√(
B′20 + B2

1
)

at angle tan−1 (B1/B′0
)

to z in
the (x′, z) plane. The magnetic dipole precesses about this resultant field at the
appropriate cyclotron frequency γ

√(
B′20 + B2

1
)

(Fig. 14.21(b)). As ω → ωc,
B′0 → 0 and the resultant field approaches the x′-axis (c). Then the precession
approaches its minimum frequency which is � = γB1 at ω = ωc. This pre-
cession about x′ results in oscillations of the moment with a component along
the z-axis, i.e. between the two states that are parallel and anti-parallel to the
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Figure 14.22
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applied field, the two basic energy states (d). � is called the Rabi frequency
and is often used as a measure of the strength of the wave–atom interaction.
Finally, we go back to the lab frame of reference. Since the z-axis was unaf-
fected by the rotation, the oscillation between the two states remains, although
all other components of the precessing dipole average to zero.

In the optical case, when time-dependent Schrödinger equations are written
down for each level of the two-level atom in the presence of the radiation field
they are called the ‘optical Bloch equations’ (see, for example, Mandel and
Wolf (1995); Loudon (2000)). The equations are basically identical to those
describing the above magnetic problem, and so the solutions are analogous
(Problem 14.10).

In the presence of the monochromatic radiation field at the resonant fre-
quency, it therefore follows that the wave-function for the two-level atom can be
written as (14.38) with a = cos(�t) and b = sin(�t) (satisfying a2 + b2 = 1):

ψ(r, t) = cos(�t) ψ1(r, t)+ sin(�t) ψ2(r, t). (14.52)

Fourier analysis of this function then shows that the energy levels E1 and E2 are
now split into doublets at E1,2 ± ��. Transitions between the two levels now
occur at the three frequencies ω12 and ω12 ± 2�, which has been confirmed
experimentally by very high resolution spectroscopy (Grove et al. (1977))
(Fig. 14.22).

The model suggests
one way of inverting a
complete population, by
‘adiabatic fast passage’
in which the applied
frequency ω is swept
continuously from a
value below resonance
to above resonance.
The sweep must be
completed within the
relaxation time of the
system. This method was
used in some early
masers.

The magnetic model also clarifies some other aspects of fluorescence
observed in atomic systems. If the wave is not exactly on resonance, the effec-
tive field B′0 is larger than B1 and the oscillations are faster. In addition, the
component of their amplitude along ẑ is smaller, meaning that the resonance is
weaker. When the excitation wave is only quasi-monochromatic, and includes
a range of frequencies around the resonance, what is seen is a superposition of
many Rabi oscillations at different frequencies (all above �) which essentially
smears out observation of oscillatory behaviour.
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Figure 14.23
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14.9 Advanced topic: Electromagnetically
induced transparency

The process of stimulated emission can be used to produce artificial and con-
trollable spectral characteristics in materials such as atomic vapours. One such
process, discovered by Boller et al. (1991), has several interesting applications.
In the simplest case we can consider a three-level atomic system (Fig. 14.23)
with two closely spaced ground states 1 and 2 at energies E1 and E2. The
equilibrium population of the lower state E1 will be greater than that of E2 by
an amount depending on their separation and on the temperature. The system
also has a broad excited state 3 with energy E3; by ‘broad’ we mean the lifetime
τ3 of an excitation to that state is very short, there being many possible decay
paths from it, and so from the uncertainty principle E3 is not well defined. It
is useful to think of this level as being made up from a dense array of sub-
levels. In this particular material, the two ground states cannot be coupled
directly by an electromagnetic wave because their coupling dipole matrix ele-
ment (§14.4) M12 = 0, meaning that their overlap integral has a quadrupole or
higher moment. As a result, these levels are very sharply defined.

Suppose we now shine into this material a ‘probe’ laser beam whose fre-
quency ωprobe can be varied in the range of somewhat more than 1/τ3 around
(E3 − E1)/�. This beam is generally absorbed strongly, resulting in a wide
absorption band (Fig. 14.24(a)) resulting from excitation of atoms from E1 to
E3. In terms of the model discussed in §14.4, the probe beam has interacted with
the oscillating dipole moment created by the beats between the wave-functions
ψ1 exp(iE1t/�) and ψ3 exp(iE3t/�). In a second experiment, we now add a
‘coupling’ beam at a specific frequency in the range 1/τ3 around (E3 − E2)/�.
This is also absorbed (provided there are some atoms in the state E2), thereby
stimulating the superposition dipole betweenψ3 andψ2 which oscillates at their
beat frequency. Experimentally, it is found (Fig. 14.24(b)) that the probe beam
is now transmitted by the medium when the difference between the frequencies
of the two waves is equal to (E2 − E1)/�:
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Figure 14.24

Optical absorption in
strontium vapour. (a)
Transmission versus probe
laser detuning with the
coupling laser absent
(�23 = 0). The minimum
transmission in this figure
is exp(−20). (b) With the
coupling laser present
(�23 = 1.5 cm−1) the ratio
of the transmitted to the
incident light at zero
detuning is now about
40%. (After Boller et al.
(1991))
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ωprobe − ωcoupling = (E2 − E1)/�. (14.53)

Notice that this only involves E2 and E1 and therefore the transmission band
is extremely narrow. This is called ‘electromagnetically induced transparency’
(EIT).

Maybe the simplest explanation of the transparency can be given in terms
of the Rabi oscillations (§14.8). Let us suppose that the coupling wave excites
atoms from level 2 to a particular sub-level in the level 3 defined by its frequency
ωcoupling. The result is Rabi oscillations between the two states, which splits
each of them into a doublet separated by 2��, proportional to the amplitude
of the coupling wave. In particular, the level at E3 has become a doublet with
components at E3 ± ��. Now the weak probe wave, which in the absence of
the coupling wave excited atoms from E1 exactly to E3, is no longer absorbed
at the frequency ω13 because E3 has been split, giving rise to the transparency.
Its frequency has to be changed by � before absorption occurs. In the exper-
iments, this is exactly what is observed; the width of the transmission line
depends directly on the intensity of the coupling laser beam, and becomes
increasingly narrow as the latter is weakened.

In terms of the atomic dipoles, the superposition of the three atomic wave-
functions, with the right phase relation between them, results in a dipole
moment oscillating at (E2 − E1)/�. As a result, this oscillating dipole absorbs
energy from the coupling and probe beams together at their beat frequency and
transfers atoms directly from level 1 to 2, without going through 3. The transfer
of atoms from level 1 to 2 results in an increasing population in level 2, so that
even if initially its population was negligible, when equilibrium is reached in
the presence of the pump and probe beams there is sufficient population in level
2 to maintain the process. This means that the requirement for levels 1 and 2
to be closely separated ground states is not really necessary, and the difference
between them can be quite substantial without affecting the phenomenon.

One fascinating application of EIT is that it can be used to create incredibly
slow group velocities, of the order of m s−1, for narrow-band pulses lying
within the transparency band. This topic was discussed in §13.5. Pulses have
even been stopped by reducing the coupling intensity almost to zero, which
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means that a signal, or even a picture, written into the medium by means of a
spatially modulated pump beam, can be stored there for a relatively long time by
reducing the coupling intensity, and then can be released by increasing it again.

Chapter summary

This chapter was intended as an introduction to quantum optics, based on

material discussed in earlier chapters. We saw:

• Why classical optics cannot explain experimental observations such as

black-body radiation and interference in very weak light;

• How to quantize the electromagnetic field, using an analogy between a

cavity mode and a simple-harmonic oscillator, and how this leads to

zero-point energy and fluctuations in the field;

• The concept of squeezed light, in which fluctuations can be tamed;

• Proof that photons exist, based on observations of anti-correlation

between detection events at different detectors;

• The concept of entangled photons, which share a common

wave-function, and how they are recognized by their ability to violate

Bell’s inequality;

• The basic ideas behind the quantum theory of interaction between light

and matter, using a two-state model;

• The difference between spontaneous and stimulated emission, and

how they are related by Einstein’s A and B coefficients;

• How lasers work, with examples using several different physical

mechanisms;

• Some properties of laser light;

• How resonance fluorescence can be described by a simple model,

resulting in Rabi-type oscillations between two states;

• That interaction of two lasers simultaneously with a three-level

medium can lead to electromagnetically induced transparency (EIT) and

the phenomenon of slow light.

Problems

14.1. A weak source emits N photons per second. The light goes to an
ideal beamsplitter so that half goes to each of two fast, ideal (η = 1)
detectors. The correlation between the outputs from the detectors is
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recorded, a positive correlation meaning that both detectors emitted
an electron within a given period T  N−1. Analyze this experiment
classically (i.e. each detector sees a wave of half the incident intensity)
and from a quantum point of view (the incident photon goes to one
detector or the other), taking into account the Poisson statistics of the
source. Show that the results in the two cases are identical; but not so
if the source is not Poisson.

14.2. A Young’s slit experiment working with individual photons is con-
structed with a very light transparent plate of thickness d and refractive
index n suspended in front of one slit. The position of the plate is mon-
itored. If a photon goes through the plate it temporarily exchanges
momentum with it, and the motion can be detected. Show that this
experiment destroys the interference pattern if it is used to determine
through which slit the photon passed.

14.3. An atomic nucleus contains an approximately uniform charge distri-
bution throughout a sphere of radius of order 10−14 m. It undergoes
a transition in which it emits a γ -ray of energy about 1000 keV.
Explain why the selection rule �l = ±1 may not be obeyed in this
transition.

14.4. In a semiconductor laser, the energy of the photons emitted is approx-
imately equal to the band gap of the semiconductor. Would you expect
the photon energy to be slightly larger or slightly smaller than the
band gap?

14.5. Several output modes of a laser, indicated by the small integer m that
lies between, say, +5 and –5, are represented by the waves

Em = a exp{−i[(ω0 + mω1)t + φm]}, (14.54)

where ω1 is the mode-spacing frequency. To illustrate mode-locking,
calculate the wave resulting from superposition of these modes when
(a) φm is a random variable and (b) all φm = 0.

14.6. An atom has a transition from its first excited state to the ground state
with wavelength λ. It is situated in a cubical metal cavity with side l.
How would you expect the lifetime of the excited state to depend on
the exact value of l within the range 0 < l < 3λ/2?

14.7. A material has six energy levels A to F at 2, 1.9, 1.7, 1.6, 1.1 and
0.4 eV above the ground state, G. The time constants for the various
possible transitions in nanoseconds are shown in Fig. 14.25. Suggest
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Figure 14.25

Energy scheme for lasing
medium. The arrows show
the allowed transitions and
their decay times in
nanoseconds.
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possible optically pumped lasers working with this material, and give
the pump and output wavelengths of each one.

14.8. Describe some of the problems involved in building an X-ray laser
working at λ = 500 Å. Consider in particular the threshold intensity
required and design of the resonator.

14.9. What is the coherence function corresponding to the spectrum of the
laser shown in Fig. 14.17? Compare your answer with Fig. 14.20.

14.10. Write down the Schrödinger equations to show the evolution of two
states coupled by an oscillating field at the frequency ω1 − ω2, where
the wave-function for each state has the form ψj(t) = aj(t) exp(iωjt)
and a2

1 + a2
2 = 1. Show that the equations have the same form as

those for a magnetic spin vector (a1, a2) precessing in a magnetic field
whose value is given by the coupling constant. (If you are not too
pedantic, this can be done shortly; the full solution is given by Loudon
(2000) or Mandel and Wolf (1995).)

14.11. A possible (but incorrect) explanation for observations of EIT (§14.9)
is that the coupling laser causes the sub-level in the upper band to be
occupied, and so the probe laser cannot be absorbed by a transition to
the same level. What evidence (in the text or elsewhere) indicates that
this explanation is incorrect?
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A Appendix A Bessel functions in
wave optics

Bessel functions come into wave optics because many optical elements – lenses,
apertures, mirrors – are circular. We have met Bessel functions in several places
(§8.3.4, §8.7, §12.2, §12.6.4 for example), although since most students are
not very familiar with them (and probably becoming less so with the ubiquity
of computers) we have restricted our use of them as far as possible. The one
unavoidable meeting is the Fraunhofer diffraction pattern of a circular aperture,
the Airy pattern, which is the diffraction-limited point spread function of an
aberration-free optical system (§12.2). Another topic that involves the use of
Bessel functions is the Fourier analysis of phase functions, in which the function
being transformed contains the phase in an exponent. We met such a situation
when we studied the acousto-optic effect, where a sinusoidal pressure wave
affects directly the phase of the optical transmission function.

In this appendix we simply intend to acquaint the reader with the results
that are necessary for elementary wave optics. The proofs can be found in the
treatise by Watson (1958) and other places.

A.1 Mathematical formulations
of Bessel functions

It is most convenient to start with Bessel’s integral formulation of the function
Jn(x):

Jn(x) = 1
2π

∫ 2π

0
exp[i(x cosφ + nφ)] dφ. (A.1)

The functions have the forms shown in Fig. A.1. Typically, Jn(x) starts from
x = 0 like xn, but when x > nπ/2 it develops damped oscillations ∼ x− 1

2

cos
[
x − (n − 1

2
)
π/2

]
. Thus alternate functions behave roughly as cosine and

sine at large x, with a π/4 shift.
For proving differential and integral properties of the functions, it is often

convenient to express them as power series:

Jn(x) =
( x

2

)n ∞∑
j=0

(−1) j

j!( j+ n)!
( x

2

)2j
(A.2)

from which it is easy to see the ∼ xn behaviour at x  1.
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Figure A.1

J0(x), J1(x) and J2(x).
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A.2 Fraunhofer diffraction by circular systems

A.2.1 An annular aperture

The zero-order Bessel function arises as the diffraction pattern of an annular
aperture. It has radius a and width δa  a. The Fourier transform is, following
(8.30),

F0(ζ ,φ) =
∫ a+δa

a

∫ 2π

0
exp[−iζρ cos(φ − θ)] ρ dρ dθ . (A.3)

By symmetry, this is not a function of φ and so, putting φ = 0,

F0(ζ ) = a δa
∫ 2π

0
exp[iζa cos θ ] dθ = 2πa δa J0(ζa). (A.4)

This is the diffraction pattern you will find for (c) in Problem 8.7 and can see
in the central region of Fig. A.2(b). It is also beautifully illustrated in Harburn
et al. (1975).

A.2.2 A circular aperture

The diffraction pattern of a circular aperture is obtained by integrating (A.4)
from a = 0 to a = R:

F1(ζ ) = 2π
∫ R

0
J0(ζa)a da = 2π

ζ 2

∫ Rζ

0
J0(ζa)ζa d(ζa) . (A.5)

From (A.2) one can prove easily that∫ ζ

0
xn+1Jn(x) dx = ζ n+1Jn+1(ζ ) (A.6)
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Figure A.2

Fraunhofer diffraction
patterns of (a) 18, (b) 47
and (c) 72 pinholes equally
spaced around a circle.
In (b) and (c), the
contributions of J0(ζa) and
Jm(ζa) are clearly
separated.

(a) (b) (c)

from which, putting n = 0,

F1(ζ ) = 2π
R
ζ

J1(ζR) = 2πR2 J1(ζR)
ζR

. (A.7)

Let us stress the similarity between the transforms of equivalent linear and
circular systems:

• A slit of width 2R has transform 2R sin(uR)/uR.
• A hole of radius R and area A = πR2 has transform 2A J1(ζR)/ζR.
• Two narrow slits of width w at x = ±R have transform 2w cos(uR).
• A narrow annular ring of width w and radius R has transform 2πwRJ0(ζR).

One can see that, roughly, J1(x) replaces sin x, J0(x) replaces cos x.

A.2.3 A ring of equally spaced holes

An illustration of the use of higher Bessel functions is worth presenting because
of the beauty of the diffraction patterns. A ring of m pinholes can be represented
roughly by the function

f (ρ, θ) = [1+ cos(mθ/2π)]δ(ρ − a), (A.8)

which has m peaks equally spaced around a circle of radius a. The transform is

Fm(ζ ,φ)

=
∫ 2π

0

[
1+ 1

2
exp(im θ/2π)+ 1

2
exp(−im θ/2π)

]
× exp[iζa cos(φ − θ)] dθ

= J0(ζa)+ 1
2

∫
exp{i[−ζa cos(φ − θ)+ mθ/2π ]} dθ

+ 1
2

∫
exp{i[−ζa cos(φ − θ)− mθ/2π ]} dθ

= J0(ζa)+ 1
2
[eimφ/2π + e−imφ/2π ]Jm(ζa)

= J0(ζa)+ cos(mφ/2π)Jm(ζa). (A.9)
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The intensity |Fm(ζ ,φ)|2 has two contributions which overlap very little when
m is large. At the centre (ζa ∼ 1) there is the usual J0(ζa) pattern from the
ring at ρ = a; the individual holes are not resolved at small ζ . On the other
hand, the function J 2

m(ζa) is very weak when ζa<mπ/2 but develops decaying
oscillations at larger ζ . This function is modulated by cos2(mφ/2π) which has
2m peaks around the full circle. Figure A.2 shows the diffraction patterns for
m = 18, 47 and 72.

A.3 Fourier transform of a periodic
phase function

The examples discussed so far involved Fourier transforms of real functions,
where the Bessel function arose from the coordinate transformation necessary
to deal with the axial geometry. In this section we shall discuss an example in
which the Bessel function arises because the function is complex with periodic
phase. A particular feature of such functions is that the zero order may be small
or even vanish because parts of the integral with different phase may cancel
out. This would apply to a sinusoidal phase grating, such as that induced by a
sound wave in the acousto-optic effect (§8.7).

Consider the Fourier transform of the sinusoidal phase function f (x)=
exp[ia cos(qx)]. This is

F(k) =
∫ ∞

−∞
exp[i(a cos(qx)− kx)] dx. (A.10)

This is a periodic function, with period 2π/q, so we know that its transform
consists of diffraction orders that are δ-function peaks at the values k = mq.
The mth order has value

F(mq) =
∫ ∞

−∞
exp[i(a cos(qx)− mqx)] dx. (A.11)

We see that the integrand is periodic, with period 2π/q, and so instead of
integrating between −∞ and ∞ we can just integrate over a single period.
Then, replacing qx by φ, we have, up to a constant multiplier,

F(mq) = 1
q

∫ 2π

0
exp[i(a cos(φ)− mφ)] dφ = 1

2πq
Jm(a). (A.12)

The mth diffraction order therefore has amplitude proportional to the mth order
Bessel function of the phase amplitude a. For example, if we want to find
the phase amplitude for which the zero order disappears, we need to solve
J0(a) = 0, giving the values of a shown in Table A.1. On the other hand, the
first order is maximized at the first value of a where J ′1(a) = 0.
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Table A.1. Zeros of the first three Bessel functions
and their derivatives

Positions of Positions of
Order n first three zeros of Jn(x) first three zeros of J ′n(x)

0 2.40 5.52 8.65 3.83 7.02 10.17
1 3.83 7.02 10.17 1.84 5.33 8.54
2 5.14 8.42 11.62 3.05 6.70 9.97

A.4 Fraunhofer diffraction pattern
of a phase spiral

In §5.9 we introduced the idea of a wave with a spiral wavefront, with a
screw dislocation along the axis z = 0, which transports angular momentum.
Amongst other things, such waves are being employed to create a ring-like spot
of light, with a zero on the axis, for purposes such as dark solitons (§13.6.4)
or stimulated emission depletion microscopy (STED, §12.6.4) where the ring
causes fluorescence to be quelled everywhere except for a small spot at the
centre. The Fourier transform F(ζ ,φ) of the wavefront f (r, θ) = g(r) exp(imθ),
where g(r) is an arbitrary but bounded function, is calculated using a Bessel
function, following (A.3):

F(ζ ,φ) =
∫ ∞

0

∫ 2π

0
g(r) exp(imθ) exp[iζ r cos(θ − φ)] r dr dθ (A.13)

= exp(imφ)

∫ ∞

0

∫ 2π

0
g(r) exp[iζ r cos(θ − φ)+ im(θ − φ)] r dr dθ

= exp(imφ)

∫ ∞

0
Jm(ζ r)g(r) dr. (A.14)

Near the origin x = 0 we can expand the Bessel function Jm(x) as (x/2)m and
so the value of F(ζ ,φ) is given by

F(ζ ,φ) ∼ exp(imφ)

∫ ∞

0
(ζ r)mg(r) dr ∼ ζm, (A.15)

when the integral converges. If we put, for example, the exponent g(r)=
exp(−ar) or a Gaussian g(r)= exp(−ar2), the integrals can easily be per-
formed by parts and be shown to be finite. In STED, where the narrowest
central zero is required, one chooses m= 1 to get a parabolic form for the
intensity F2(ζ ) ∼ ζ 2.
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B Appendix B Lecture demonstrations in
Fourier optics

Optics is the ideal subject for lecture demonstrations. Not only is the output of
an optical experiment usually visible (and today, with the aid of closed circuit
video, can be projected for the benefit of large audiences), but often the type
of idea being put across can be made clear pictorially, without measurement
and analysis being required. Recently, several institutes have cashed in on this,
and offer for sale video films of optical experiments carried out under ideal
conditions, done with equipment considerably better than that available to the
average lecturer. Although such films have some place in the lecture room, we
firmly believe that students learn far more from seeing real experiments carried
out by a live lecturer, with whom they can interact personally, and from whom
they can sense the difficulty and limitations of what may otherwise seem to be
trivial experiments. Even the lecturer’s failure in a demonstration, followed by
advice and help from the audience which result in ultimate success, is bound
to imprint on the student’s memory far more than any video film can do.

The purpose of this appendix is to transmit a few ideas that we have, during
the years, found particularly valuable in demonstrating the material covered
in this book, and can be prepared with relatively cheap and easily available
equipment. Need we say that we also enjoyed developing and performing these
experiments?

B.1 Correlation and convolution
by a pinhole camera

According to geometrical optics, a pinhole camera with a δ-function pinhole
produces on a screen an exact image of the object. If the pinhole is not a
δ-function, but has a shape, then the point spread function is a projection of the
pinhole shape on the screen, and the image is the correlation of this with the
exact image. We use this idea to demonstrate correlation and convolution.

The geometrical analysis of this idea is shown schematically for one dimen-
sion in Fig. B.1. The apparatus shown in Fig. B.2, which carries this out on the
lecture bench, produces an image h(x, y) which is the correlation between two
real positive functions, f (x, y) and g(x, y), and was used to create Fig. 4.11.
A projector incoherently illuminates a mask f (x, y) in contact with a translucent
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Figure B.1

Geometry of the correlation
apparatus. AB = BC.
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Figure B.2

The correlation apparatus.

h(x,y)

g(x,y)
f(x,y)

screen in plane A. In plane B there is a second screen with cutouts representing
the function g(x, y). A third translucent screen is placed in plane C positioned
so that the distances AB and BC are equal. We shall show that the illumination
h(x, y) on plane C is the correlation function of f (x, y) and g(x/2, y/2), or the
convolution of f (x, y) and g(−x/2,−y/2). It is viewed from its reverse side
and can conveniently be projected with the video camera.

In one dimension, it can easily be seen from the figure that if f (x) = δ(x−a)
and g(x) = δ(x−b) then h(x) = δ(x+a−2b), i.e. a point on C at x = 2b−a is
illuminated. The correlation function of f (x)= δ(x−a) and g(x/2) = δ(x/2−b)
is indeed h(x) = δ(x + a − 2b). Moreover, the intensity of the point on C is
proportional to the product of the source intensity f and the transmission of the
point g. Since a general function can be described as a sum of δ-functions and
since the operation of correlation is associative, the following equation is then
generally valid:

h(x) =
∫

f (x′ + x) g(x′/2) d x′. (B.1)

The function h(x) therefore describes the correlation function of f (x) and g1(x),
where g1(x) = g(x/2).

Some particular cases can be emphasized. If the masks are similar but g(x)
is half the size of f (x), i.e. g(x/2) = f (x), then h(x) describes the auto-
correlation function of f (x). This can be shown for sets of holes – note the
very strong central peak in Fig. 4.11( f ) – and for continuous functions such as
the square hole – Fig. 4.11(g). Showing the gradation of intensity in the image
in the latter case (its section has a roof-top profile) needs careful adjustment of
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the video camera. By rotating the second function 180◦ about its origin, so that
the axes of g(x, y) are now down and to the left, we get the convolution of the
two functions. An important demonstration shows the periodic function to be
the convolution of the unit with a periodic lattice of small holes (δ-functions)
either in one dimension (diffraction grating) or two (crystal).

In constructing this apparatus it is important to use translucent screens that
diffuse as uniformly as possible in all directions, because a convenient-sized
apparatus involves quite large angles, otherwise there are angular effects that
complicate the analysis. Tracing paper or drafting film work well, although
one can see from Fig. 4.11 that the edges of the images are weaker than their
centres.

B.2 Fraunhofer diffraction

The demonstration of Fraunhofer diffraction was developed initially for crys-
tallographic analysis (Taylor and Lipson (1964)) using a mercury arc source.
The use of a helium-neon laser, λ= 0.633μm, makes the demonstration of
diffraction and spatial filtering effects in a classroom quite easy, and with video
projection the output is clearly visible.

B.2.1 Optical bench

We describe here an optical bench that was developed for this purpose and is
shown schematically in Fig. B.3. A low-power (1 mW) laser is used. This is
safe for classroom use; there is almost no danger of damage to the eye at this
power, unless one looks for a long time directly into the unexpanded beam.
The laser beam is expanded with the help of lenses L1 (F ≈ −50 mm) and L2
(F ≈ 250 mm) to about 8 mm diameter; one can then use diffraction masks of a
reasonable size. For demonstrations, we found it unnecessary to use a pinhole
spatial filter to ‘clean up’ the laser beam; this makes the apparatus very delicate,
and means frequent readjustment. With a typical mask constructed with round
0.5 mm holes, at a mask–screen distance of 5 m, the radius of the first dark ring
of the Airy disc of the envelope is only about 7 mm, which is rather small. Two
lenses L3 and L4 acting as a telephoto combination (§3.6.4) are therefore used
to magnify the image by a factor of three or more, depending on the mask and
the details one wants to see. This way, the effective focal length is multiplied,
but the apparatus can be made even shorter. To focus the system properly, we
use a coarse periodic object such as a Ronchi ruling (square-wave grating) for
a mask, and focus on one of the δ-function orders.

The video camera makes the diffraction patterns visible to the audience even
without turning off the room lights. If the pattern, now about 20 mm in diameter,
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Figure B.3

Demonstration
diffractometer using
telephoto combinations.

Laser L1 L2 L3 L4

Mask

Screen Camera

is projected onto a semi-transparent screen shaded from the room lights, it can
easily be shown using a video camera with a close-up lens focused on the
screen. The latter also minimizes speckle effects.

You may want to show an image of the mask on the same screen as the
diffraction pattern. This can be done as shown in Fig. B.5 by inserting a cube
beamsplitter after the mask; a simple lens L5 is then used to generate the
required image of the mask. The same set-up will be used in §B.2.3 to show
spatial filtering.

B.2.2 Objects for Fraunhofer diffraction

Diffracting masks with outside dimensions up to about 8 mm must be con-
structed. The best masks are made from unexposed photographic film (X-ray
film is ideal – it is somewhat thicker than optical photographic film), thin black
cardboard, or phosphor-bronze foil (about 0.1 mm). Taylor and Lipson (1964)
described a pantograph for producing the masks, which is easily modified to a
simplified form. The rectangular holes in punched computer cards (can you still
find any?) are useful for showing single and multiple apertures. Other shapes
such as triangle, square, ellipse etc. can be drilled and filed in foil (Fig. B.4(a)).
The patterns of multiple apertures are very beautiful, particularly if the latter
are symmetrical – for example rings of pinholes (Fig. A.2). Note in particular
the symmetry relations when the numbers of holes in the ring are odd and even
(Figs. 8.20 and B.4(b)). However, the drilling has to be quite accurate for the
symmetry to be complete.

Dynamic demonstrations are particularly impressive, and some objects are
illustrated in Fig. B.4(c)–(h):

(c) The effect of changing the separation of a pair of apertures can be shown
with the aid of a double slit having variable separation. This can be constructed
from a pair of long narrow slits that are not quite parallel, a region of their
length being selected for use by a sliding cursor.

(d) Likewise, a pair of parallel wedge slits allows one to show the effect of
changing the individual aperture dimension with constant separation.

(e) The sequence of diffraction patterns produced by 1, 2 . . . n parallel aper-
tures can be shown by superposition of a coarse periodic square-wave grating
(Ronchi ruling) and a slit of variable width, which selects the required number
of periods (Fig. 8.17). This demonstration is particularly valuable because the
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Figure B.4 Some useful diffraction masks. The beam size is indicated approximately by the
white circle in each case. (a) A set of holes illustrating various examples. (b) Masks
used in Fig. 8.20 to illustrate even and odd axial symmetries. (c) B slides across A to
show the effect of changing the separation between slits of given width. (d) B slides
across A to show the effect of changing the width of slits of given separation.
(e) Changing the width of slit B exposes a varying number of slits of the ruling A.
( f) The reciprocal lattice: two crossed gratings provide a two-dimensional array of
apertures, and the angle between them can be varied. (g) An iris diaphragm is
actually a polygon, but this can be used as a round hole to demonstrate scaling
between real and reciprocal space. (h) A microscope cover slip covers one of a pair of
slits, to show the effect of phase changes.

mask is obviously a product, and the two diffraction patterns that are convo-
luted are clearly visible (particularly when the variable slit is accidentally not
quite parallel to the lines of the grating).

( f ) The reciprocal lattice can be demonstrated by using two superimposed
coarse Ronchi rulings with different periods. Since the mask is in a region where
the light is parallel, the rulings do not need to be in contact. First, you show
the diffraction pattern of one ruling, and then add the second one and show the
convolution described in §4.8. The effect of changing the angle between A and
B is easy to show, and you can change the dimension of one grating by tilting
it about a transverse axis.

(g) A set of holes with different diameters can be used to show the inverse
relationship between reciprocal and real space dimensions, but if you use an
iris diaphragm the demonstration is more vivid. An iris is actually a polygon,
but this is not really noticeable.
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(h) The effect of changing the phase difference between two slits can be
shown by covering one of them with a thin piece of glass (microscope cover
slip). If the glass is rotated about a transverse axis, the phase difference can be
changed continuously.

A demonstration of Babinet’s principle can be done simply by comparing
the patterns produced by a thick wire (say 1.5 mm diameter) and a slit of the
same width. However, this is not as convincing as a more complicated object
such as that used for Fig. 8.11.

Phase masks can be produced in various ways. Of course, photography
can be used, together with bleaching, but this is quite time consuming. More
simply, cleaved mica and thin glass cover slips can be used to construct phase
masks, for which the actual magnitude of the phase differences can be changed
by tilting the plane of the mask with respect to the z-axis. Phase objects with
much detail (to show phase-contrast imaging, for example) can be made by
smearing transparent glue on a microscope slide. Fingerprints are also good
phase objects. We should also mention blazed gratings, which are quite easily
available. The hot air field around a candle flame gives a dynamical phase
object, particularly useful for showing schlieren filtering.

B.2.3 Spatial filtering

We can use a variation of the above apparatus to demonstrate the Abbe theory
and effects of spatial filtering in the Fourier plane (Fig. B.5). The laser beam
expanded by L1 and L2 illuminates the object slide and is focused to point P in
the Fourier plane, where the diffraction pattern (optical transform) appears and
filters can be inserted. The beamsplitter BS comes directly after P and the lens
L5 in one of its outputs is used to image the filtered optical transform onto the
screen. Meanwhile, the other output from the beamsplitter is used to create the
filtered image. This has to be formed with a telephoto combination, otherwise
it is too small to be visible. There is actually a conflict of requirements here,
which only a telephoto combination can solve. On the one hand, a large object
would be required to give a large image. But then the diffraction pattern is
small, and spatial filtering becomes a delicate operation. On the other hand,
a small object with fine detail would solve this problem, but the re-imaging
lens cannot be put close enough to it in order to get a highly magnified image
because it can only be placed after P. The telephoto combination, with one
principal plane close to the object mask, provides the answer.

Figure 12.6 shows Porter’s experiments demonstrating spatial filtering of
the image of a piece of gauze, carried out with this apparatus. The spatial
filters that are inserted into the Fourier plane include first of all a variable
iris diaphragm to demonstrate resolution and then a series of wires, slits and
other apertures to select the combinations of diffraction spots. Since these need
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Figure B.5

Diffractometer used to
illustrate spatial filtering.
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to be positioned quite accurately with respect to the diffraction pattern, it is
convenient to mount the filters on frames the size of a standard microscope
slide and to use a microscope specimen stage to get fine x–y control of their
positions.

Using the same apparatus, we can demonstrate phase-contrast techniques,
using a phase object. It is easy to show dark-field imaging using a filter consist-
ing of a black dot on a microscope slide to obstruct the zero order, and schlieren
imaging using a razor blade to cut out half of the optical transform. In principle,
a filter consisting of a small hole in a transparent celluloid sheet should show
phase-contrast filtering but, demonstrated this way, the results never seem very
convincing!

B.3 Fresnel diffraction

Fresnel diffraction patterns can be shown just by defocusing the Fraunhofer
apparatus (Fig. B.3), although pedagogically it is better to take out the diffrac-
tion lenses L3 and L4 completely since they are not part of the theory. Then we
put the diffraction obstacle in the expanded laser beam and project its shadow
on the screen. It is important that the incident wave be a plane wave (z1 = ∞)
so that the effect of changing z alone is obtained by sliding the object along
the optical bench. To avoid scattering at the edges of the apertures, it is best to
make them from film and not from metal foil, and to paint them matt black.

Various simple objects can be used, such as a round hole, a sharp edge, slits
and an opaque strip. The last of these was Young’s original experiment, and is
shown in Fig. 1.2. Particularly impressive is the Fresnel–Arago bright spot at
the centre of the shadow of the disc, which is easily shown with the aid of a
disc about 5 mm in diameter. It can be glued to a microscope slide or supported
on a wire, which affects the spot very little, as can be seen from Fig. 1.3. The
use of a video camera is important here, because its non-linear response can be
used to boost the intensity of the very small spot by letting the outer parts of
the diffraction pattern be saturated.

You can also demonstrate focusing by a Fresnel zone plate with this appara-
tus. A zone plate can be made by photographing a picture such as Fig. 7.6 on
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high-contrast film, with magnification such as to give a focal length of order
20 cm. Usually the first- and third-order foci can be located.

B.4 Interferometry

B.4.1 Thin-film interference and Newton’s rings

A simple projection apparatus for thin-film interference effects consists of a
strong white-light source (a quartz-halogen bulb) followed by a condenser lens
to concentrate it on the object. Light reflected from the object is focused onto a
screen using an imaging lens (Fig. B.6(a)). According to §3.3.3, to maximize
the field of view the condenser lens should focus the light source, after reflection
from the object, onto the projection lens. The object can be a soap film in order
to demonstrate interference in a thin film (note that the imaging lens creates
an inverted image of the film, so that it appears to drain by flowing upwards!).
Newton’s rings between a glass plate and a long focal length lens can also be
shown using the same system. The white source is important here because the
colour effects are vivid.

B.4.2 Michelson’s interferometer

A simple Michelson interferometer (Fig. B.6(b)) can easily be constructed to
show the different types of fringes and the complementary patterns at the A and
B outputs. We made this with all the elements, including a 0.5 mW helium-neon
laser, screwed rigidly to a thick piece of plywood about 30 cm square. A small
diverging lens is mounted directly on the laser output to give a diverging beam.
This construction gives stable enough fringes for demonstration. The mirrors
need to have angular degrees of freedom and one of then must allow linear
translation.

B.5 Aperture synthesis

A lecture demonstration of aperture synthesis, devised by D. Wilson and
J. Baldwin of Cambridge University works as follows (Lawson et al. (2002)).
An incoherent light source (small lamp bulb) illuminates an object mask con-
sisting of, say, two small holes representing a double star. This is projected to
infinity by a converging lens at the focal distance (Fig. B.7). It is imaged by
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Figure B.6

Interferometry: (a)
apparatus for
demonstrating thin-film
interference or Newton’s
rings; (b) Michelson’s
interferometer, visualizing
the complementary
outputs at A and B.
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Figure B.7

Demonstration of aperture
synthesis. (Top) The mask
simulates a pair of
receivers whose outputs
are combined coherently.
Its rotation simulates the
Earth’s diurnal rotation,
and must be fast enough
for the screen or observer’s
eye to integrate the
images. The images below
from a laboratory
experiment show: (a) and
(b) fringes from single and
double stars, (c) and (d)
synthesis images of the
single and double stars,
and (e) the deconvolved
image of the latter.
(Labeyrie et al. (2006))
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a telescope, consisting of a second lens and a CCD camera, which shows the
image on a monitor screen.

Now a mask is placed in front of the telescope lens. The mask has two holes,
corresponding to two coherently combined antennae or telescopes separated
by a baseline. If the coherence radius rc of the waves from each of the ‘stars’
individually is greater than the distance between the mask holes, the image of
the source becomes two sets of overlapping Young’s fringes (Fig. B.6(b)). The
mask now rotates in its plane, corresponding to collection of data as the Earth
rotates. The monitor screen integrates the fringes, which is approximately the
same as Fourier synthesis, and lo and behold!, an image of the double star
appears on the screen.

When we first saw this demonstration, it was done without the lenses; it
worked because the interference pattern of two sources is still a set of Young’s
fringes even in the near field. However, without the lenses, the image of
the source is obtained only if the mask rotates exactly about the centre-point
between the two holes, because the near-field fringes are not invariant to
translation. With the lenses, the need for accurate alignment is avoided.

If the images are stored electronically as a video-clip, this can be made into
a laboratory experiment. Results for various baselines can be accumulated, and
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the DC offset of the fringes can be removed; then true aperture synthesis can
be demonstrated (Labeyrie et al. (2006)) and deconvolution with the image of
a point source can also be carried out (Fig. B.7(c)–(e)).
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Abbe, E., 11, 404
Abbe

number (dispersion index), 79
sine rule, 82, 407–410
resolution limit, see resolution limit
theory of imaging, see diffraction theory

aberrations, 49, 51, 76–82, 156, 266–268,
283, 422–425

absorption spectrum of glass, 336
achromatic doublet (achromat), 9, 49, 77,

80, 425
acousto-optic effect, 258, 443, 491, 546,

549
adaptive optics, 9, 396, 459
‘aether drag’ coefficient, 301
afocal (telescopic) system, 68
Airy function and disc, 237, 422, 446,

546
algorithm for phase retrieval,

267–268
Ampère, A.-M., 6
Ampère’s law, 130, 151
amplifier, optical, 530
amplitude, 20

of Fourier coefficient, 95
of spherical and cylindrical waves, 32

amplitude–phase diagram, 206, 215–216,
217, 225, 476

angular momentum of electromagnetic
wave, 153–154, 160

angular diameter of source, 380
anisotropic material, 155, 161

wave propagation in, 168ff
annular aperture, diffraction by, 236–237,

446, 449, 547
anomalous dispersion, 477–479, 484–485
antiferromagnetic order, 287
anti-reflection coating, 308, 342–343,

348, 531
antisymmetric (odd) function, 97, 329

Fourier transform of, 108
aperture masking, 391
aperture stop, 59, 262, 266, 297, 413,

422–425
aperture synthesis, 14, 360, 381, 388–393,

401–402, 559–561

aplanatic lens system, 50, 79, 82–85, 91,
160, 408

apodization, 375, 400, 465
Arago, F., 5
argon-ion laser, 529
array, periodic, 105–106, 122, 282
arsenic selenide (As2Se3), 350
aspherical lens, 51
associated complex function, 108
astigmatism, 76, 77, 425
asymmetric exit of interferometer, 292
atmospheric turbulence, 9, 389, 394–396,

459
attenuation, 146
auto-collimator, 75
auto-correlation function, 114–115,

120–121, 126, 127, 373, 423–424,
461–462, 553

axially symmetric functions, diffraction by,
206–210, 235–237

Fourier transform of, 109–110,
547–549

azimuthal modes, in fibre, 333–335

Babinet’s theorem (complementary
screens), 240–241, 246

band theory of electronic structure, 346,
352

barium titanate (BaTiO3), 491, 493
Bartolinius, 3
Basov, N., 14
beamsplitter, 290–291, 358, 413
Bell’s inequality, 518, 521
bending of lens, 79
Berry phase, 312–316, 321
Bessel beam, 226
Bessel functions, 235–238, 260, 334,

546–550
Betelgeuse (α-Orionis), angular diameter,

382–383, 388, 398, 460
biaxial crystal, 173, 176, 356

interference figure, 185
birefringence (double refraction), 3, 4, 6,

7, 161, 172, 445
black-body spectrum, 506–507, 525
black light sandwich, 185
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blazed diffraction grating, 210, 288, 289,
534, 557

blazing wavelength, 289–290
Bloch equations, optical, 539
Bloch’s theorem, 352–353
Bloembergen, N., 15
blue sky, 136, 162, 472
blurring, 112–113, 238
Bose–Einstein particles, 164, 386
Bradley, J., 5
Bragg, W. L., 255
Bragg equation (crystal diffraction), 256,

260, 443, 491
Brewster angle, 139–141, 159, 166–167,

313, 349–350, 531
quasi, for conductor, 147–148

bright-field imaging, 426–428
brightness of image, 459
Brillouin zone, 354
Broglie, L. de, 8, 26
Brown, R. Hanbury, 387
Brown–Twiss experiment, see intensity

interferometry
butterflies, colours of, 323–324

calcite (Iceland spar, CaCO3), 187–188
camera lens, 59
Capella (α-Aurigae), double star,

460, 462
cardinal points (of lens system), 68–75
cat’s-eye reflector, 90
causality, 481–482, 485
cavity, optical, 527–537

modes in, 505–507, 510–512, 533–537
centro-symmetric function, 109–110, 235,

239–240, 248, 264–266
chaotic light, 363, 512–514

phase jumps in, 363
CHARA stellar interferometer, 397
characteristic wave, in crystal, 171–176,

182, 186
chemical laser, 53
chirp, 40
chromatic aberration, 77, 210
circular disc, Fresnel diffraction by,

207–208
circular hole

Fraunhofer diffraction by, 237–238,
546–547

pair of, 242
Fresnel diffraction by, 207

cladding (of waveguide), 328–331, 333
CO2 laser, 398, 529, 534
coaxial optical systems, 50ff
coherence, 14, 119, 278, 360ff

partial, 360, 362, 371ff, 417

spatial, 204, 229, 379, 413
effect of source size, 379

temporal, 201, 362, 369
coherence function, 369ff

intensity (second order), 387, 517
spatial, 381–384, 388ff
temporal, 373, 374, 537

effect of source bandwidth, 379
coherence length, 362

region or area, 370, 380–381
superconducting, 191

coherence time, 362, 366, 368, 537
coma, 76, 77, 82, 85, 408
‘comb’ function, 105
common-path interferometer, 301–302
communication, optical, 15, 40, 337,

530–532
compensation plate, 292, 390
complementary screens, 240
complex degree of mutual coherence,

see coherence function
complex functions, Fourier transform of,

108
compound lens, 49
compound parabolic concentrator,

80–81
Compton, A. H., 8
condenser lens, microscope, 419

projector, 55
conductivity, electrical, 145
conductor, electrical, 145
confocal scanning microscope, 448,

449–451
confocal resonator, see resonator
conical propagation, 179–180, 356
conical reflector, 81
conjugate points, 36

planes, 67, 205, 229, 409
conoscopic figure, see interference figure
contrast of fringes, see visibility
convolution, 112, 252ff, 262, 288, 414,

422, 454, 552–554
copper sulphate (CuSO4), 13
core (of waveguide), 328–331, 333
corn syrup, 182
Cornu spiral, 217, 225
corpuscular theory of light, 3
correlation function, 119, 370, 552–553
COSTAR (Hubble Space Telescope

corrector), 266–270
critical angle, 140–142, 144, 148, 187,

313, 325–327
critical opalescence, 474–475
cryolite (Na3AlF6), 430
crystal, 100, 113, 114, 252
crystal lattice, 254
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crystal optics, 172ff
crystal polarizers, 167
current density, 130, 145, 149
curvature of field, 76
cyclotron frequency, 481

dark-field imaging, 426–430, 433, 558
Davisson, C., 8
Debye–Waller effect, 286
decay length, characteristic, 26, 28, 146,

472, 498
deconvolution, 561
defocus, axial, 77, 267–268, 422
δ-function, Dirac, 104–106, 111

array of, 105–106, 113
periodic array of, 105–106, 122

density of states (of cavity modes), 507
depth of field, 38
depth of focus, 38, 62
derivative, Fourier transform of,

104, 122
Descartes, R., 3
dichroism, 167
dielectric constant, 130

complex, 146–148, 497
principal, 173

dielectric multilayer system, see multilayer
dielectric system

dielectric tensor, 172, 355
differential interference contrast (DIC)

microscope, 405, 426, 436–438,
465

diffraction, see types: Fraunhofer,
Fresnel etc.

order of, 244, 282
diffraction contrast imaging, 426, 432
diffraction efficiency, 210, 287–290, 442
diffraction function, 242, 258, 287
diffraction grating, 13, 114, 200, 233,

245–247, 282, 303, 406
blazed, 288–299, 534, 557
holographic, 283
model for hologram, 439, 442–443
phase, 283, 287, 549
production of, 283
reflection, 283, 534
resolving power, 284–285, 378
two-dimensional, 250

diffraction-limited optics, 60, 76, 414, 464
diffraction (Abbe) theory of imaging,

11–13, 405–411, 417–419,
425–557

diffractive optics, 205, 209–210
diffractometer, optical, 205, 229, 461
diffusion constant, 27

equation, 27, 94
direct-gap semiconductor, 532

direct methods in crystallography,
262–265, 391

discrete Fourier transform (DFT), 110
dispersion, 470, 478

anomalous, 477–479, 484–485
in fibre, 337–338
intra-mode, in waveguide, 331
of glass, 336

dispersion equation, 22, 45, 505
dispersion relations (Kramers–Kronig),

481–484
dispersive medium, 28, 37, 155, 484–487
dispersive power, 79
displacement field D, electric, 130, 161,

171–175
distortion, 62, 76, 82, 91
DNA, X-ray diffraction by, 253
Doppler effect, 261, 363

broadening of spectral line, 367, 487,
533

Doppler-free spectroscopy, 534
down-converting crystal, 486, 509
duality, wave–particle, 8
duty-cycle of square wave, 127

echelon grating, 319
Eddington, A. S., 40, 390, 398
edge wave, 219
effective width of mask, 234, 238, 369
Einstein, A., 1, 8, 14, 15, 40
Einstein A and B coefficients, 525
Einstein ring, 18, 43
Einstein–Podolsky–Rosen (EPR) paradox,

15, 518
electromagnetic field, 7, 130ff

quantization f, 505–511
electromagnetically induced transparency

(EIT), 487, 534, 540–541, 544
electron density, 261–264
electron diffraction, 227, 252
electron microscope, 11–14, 267, 432, 438
electro-optic effect, 188
ellipsometry, 167
emission line, atomic, 478
endoscope, fibre-optic, 338
energy density of wave, 22, 144
entangled photons, 1, 486, 518–519
entrance pupil, 59
entropy of information in image, 458
erbium-doped fibre amplifier and laser,

337, 528, 529, 536
erector lens, 58
errors, periodic, in grating, 285–287
europium selenide, EuSe, 190–191
evanescent wave, 26–28, 192, 337, 480

energy flow in, 133
infinite velocity of, 27, 486
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in negative index material, 156
in NSOM, 452
in optical waveguides, 329, 333
in surface plasmon resonance, 495,

499–500
in total internal reflection, 140–144

Ewald sphere, 252–259, 275
exit pupil, 59, 62, 89
experimental conditions for diffraction,

203–204
extinction ratio, 167
extraordinary index of refraction, 179, 193
eye, 58
eyepiece, compound, 58, 60

f-number (f/#), 60, 425
Fabry–Perot interferometer (étalon),

85–88, 126, 149, 308–309, 317,
341, 346–347

free spectral range, 309
resolving power, 309, 317

false detail, in image, 375, 419–421
far-field (Fraunhofer) diffraction, 202–204
Faraday, M., 6, 8
Faraday’s law of induction, 130
Faraday magneto-optic effect, 481
fast Fourier transform (FFT), 110
Fellget advantage of Fourier transform

spectrometry, 378
Fermat, P. de, 32

principle, 34–38, 40, 42, 46, 60, 230,
390, 409

Fermi surface (of metal), 169, 354
fibre, optical, 15, 324, 332–338, 451, 529,

532
graded-index, 36, 334–337
multi-mode, 493
non-linear, 338
production of, 336
single-mode, 332, 334, 370

field glasses, 50, 142
field lens, 59, 62
field of view, 59, 62, 422
field stop, 59
finesse, 306–309, 317
Fizeau, A. H. L., 5–6, 300, 301, 360
fluctuations, amplitude and phase,

513–517
density, 473–474
intensity, 366, 384–388, 394

fluorescence, 417, 447–448, 450, 453–455,
457, 528, 550

resonant, 537–539
switchable, 453

fluorescence microscopy, 416
focal length, 54

effective, 69

focal plane, 54, 70
points, 70

forward Fourier transform, 111
Foucault, L., 5–6
four-wave mixing, 491
Fourier, J.-B. J., 93
Fourier

analysis, 95
coefficients, 95, 113, 353

complex, 95–96
inversion theorem, 110–112, 121, 122,

211, 410
plane, 410, 454
series, 27, 94–101, 115
theorem, 94–95

Fourier transform, 100–122
algorithms, 110
double, 405, 410
in higher dimensions, 109
of periodic phase function, 549
relation to diffraction, 230ff, 461

Fourier transform spectrometry, 281, 292,
295, 371, 374–379, 400

asymmetric, 376, 400
resolution of, 378
sensitivity, 378

Franklin, R., 253
Fraunhofer, J. von, 4
Fraunhofer diffraction, 75, 77, 225, 227ff,

311, 406
by circular systems, 213, 547–549
demonstrations, 554
experimental conditions for, 202–204,

228, 233
and Fourier transform, 120, 230ff, 410
intensity, 231–232, 251
phase of, 232
by phase spiral, 550
with oblique incidence, 232, 245
by three-dimensional obstacle, 252

free-electron gas (plasma), 479–481, 498
frequency, 20

angular, 20
complex, 26
modulation, 287
spatial, see spatial frequency

Fresnel, A., 4, 55, 198, 298
Fresnel

approximation, 206
coefficients (reflection and

transmission), 136–138, 342, 346
diffraction, 3, 202–208, 239, 558
integral, 217
lens, 55, 81
rhomb, 143
zone plate, 13, 135, 558
zones, 207
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Fresnel–Arago bright spot, 5, 558
Fritts, C., 348
FTIR (Fourier transform infra-red), see

Fourier transform spectrometry
Foucault knife-edge test, 431
Foucault pendulum, 315, 480

Gabor, D., 14, 438
GaAs laser, 532
Galileo, G., 5, 9
Gauss, C. F., 107
Gauss’s law (electro- and magneto-static),

130, 327
Gaussian

approximation (paraxial), 48–49, 75
beam propagation, 207, 312, 336
function, 366–369

Fourier transform of, 107, 112,
235

integral of, 40
mask, diffraction by, 238

geometrical optics, 48ff
Germer, L., 8
ghost diffraction orders, 283, 285–287
glancing incidence, reflection at, 147
Gouy phase shift, 211–215, 314
gravitational field, 40–41

lenses, 17, 40–42, 46
micro-lensing, 43–44
wave detection, 277–278

Green’s theorem, 223
Grimaldi, F. M., 3
GRIN (graded-index) lens, 78
group velocity, 28–29, 40, 45, 155, 169,

332, 541
in dispersive media, 484–487
in slow light, 486, 487

gyromagnetic ratio, 538
gyroscope, optical, 302–304

haemoglobin, X-ray diffraction by,
227–228

half-peak width of function, 107, 214, 307,
368

half-wave plate, 186
harmonics, 23, 94, 407–408, 488
harmonic oscillator, 122, 311, 335, 508,

510–511
Hartley transform, 126
Hauptmann, H. A., 13
He–Ne laser, 530
heavy-atom method (crystallography),

262, 413
helical structure of interferometer, 314
helix, diffraction by, 253
Helmholtz equation, 211, 222
herapathite (iodoquinine sulphate), 168

Hermite–Gauss functions, 122, 311
Hermitian tensor, 173, 181
heterodyne, 396, 398
Hewish, A., 14
hidden variable theory, 518–520
Hilbert transform, 108–109, 165, 393
holographic interferometry, 444–445
holographic memory, 444
holographic reconstruction, 440, 492

phase conjugate, 442
real and virtual, 440, 442

holography, 14, 205, 232, 245, 413,
438–445, 491

colour, phase and volume, 442
computer-generated, 444–445
image-plane, 443
reflection, 443
white light, 444

honeycomb lattice, 356
Hooke, R., 3, 10
Hubble Space Telescope, 17–18, 73, 261,

266–270
Huygens, C., 4–6, 198
Huygens’ construction or principle, 17, 25,

32–35, 40, 46, 199, 252, 279, 409
in anisotropic medium, 168, 169
scattering strength, 206, 224

Huygens–Kirchhoff diffraction integral,
222ff, 252

Huygens’ wavelets, 33, 169, 201
hyperbolic propagation, 192
hyperlens, 194

illumination, microscope, 419
annular, 430
conical, 418
critical, 420–421
Köhler, 420

image, virtual, 52, 66
image space, 66
imaging, 66–75, 245, 404ff

by coherent fibre bundle, 338
using Fermat’s principle, 36
incoherent, 233, 447
by thin lens, 52ff

immersion objective, 83–84, 418
immersion of lens system, 71
impact parameter, 41
impedance, electromagnetic, 132, 137
impulse and frequency response, 481–482
inclination factor (Huygens), 202, 206,

222, 224
indicatrix

hyperboloidal, 193
optical, or index ellipsoid, 173, 189

inhomogeneous medium, 32
of diffraction pattern, 231–232, 251, 412
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intensity (Brown–Twiss) interferometry,
388, 394, 401, 459, 515–517

intensity of wave, 22, 32, 133
intensity transport equation, 44, 46, 213
interference

constructive and destructive, 279, 282,
313

filter, 339, 346–358
fringes, 4, 281
function, 242, 249, 258, 287
microscope, 290, 295
thin film, 282, 559

interference figure, of crystal, 182–185,
196

interferogram, 297
interferometry, 277ff

stellar, 370, 389–398
inverse Fourier transform, 111
inverse square law, 32
inverse surface of wave-normals

(n-surface), 170
IONIC beam combiner, 397
ionosphere, 192
ISI stellar interferometer, 398
isolator, light valve, 191
isotropic medium, 130, 161, 162
iterative methods, 265–269

Jacquinot advantage of Fourier transform
spectrometry, 378

Jamin interferometer, 290
Jupiter, moons, 5, 389

Kao, C., 15, 333
Karle, J., 13
Kelvin, Lord (W. Thomson), 7
Kerr electro-optic effect, 188–189
Kramers–Kronig relations, 482–484, 502
Kretschmann configuration (SPR),

499–501

Labeyrie, A., 9
Lambertian source, 383
laser (see also specific types), 14–15, 229,

362, 384, 439, 504, 522, 526
continuous wave (CW), 310–312, 535
mode-locked, 535, 535
multi-mode, 373
pulsed, 310, 529, 535–537
single-mode, 312

laser beam propagation, 211
laser modes, 122, 154, 311, 312
lasing threshold, 351
lattice (of points), 125, 244, 247, 249

Fourier transform of, 117–119
reciprocal, see reciprocal lattice

lattice image, 432
Laue, M. von, 12
Laue photograph, 256–257
left-handed material, 131, 154, 355
lens

converging, 54
diverging, 54

lens-maker’s equation, 53, 67
lifetime of atomic level, 528
light-emitting diode (LED), 532
light–matter interaction, 521–524
LIGO (gravitational-wave interferometer),

278, 290, 316–317
limb-darkening of star, 382
linear medium, 131
linewidth, of spectral line, 363, 367–369

collision or pressure, 368
Doppler, 367
natural, 367, 523

Lippershey, H., 9
liquid crystal, 445
Lloyd’s mirror, 279
local oscillator, 391–392, 398
localization of interference fringes,

295–298, 300
localization of photon, 508
Lorenz force, 151, 480
Lorentzian function, 307, 368–369
Lummer–Gherke plate interferometer,

321

Mach–Zehnder interferometer, 290–291
magnetic flux vortices, 191
magnetic permeability, 130, 131, 155, 157
magneto-optic effect, 190–191, 196, 480
magnification, 50

angular, 58, 67, 69
linear, 57, 61, 62, 67, 69, 407–410

magnifying glass, 57–58
magnifying power, 57
Maiman, T., 15
magnesium fluoride (MgF2), 159, 343
maser, ammonia, 15
matrix

diagonalizing of, 86, 173, 344
multilayer propagation, 340–341
paraxial ray, 52, 63–74, 83, 85
refraction, 64
translation, 64

matrix element for light–matter
interaction, 523, 528, 540

Maxwell, J. C., 1, 6, 130, 189
Maxwell’s equations, 148, 153, 199, 351

in anisotropic medium, 170ff
in isotropic medium, 129, 162
in optical waveguides, 327–329
in rotating frame, 315



568 Index

meniscus lens, 72, 73, 79
meta-materials, 156–157, 192
mica, 195, 307–308
Michelson, A. A., 5, 9, 14, 360, 374, 389
Michelson interferometer, 291–299, 317,

509, 559–560
stellar, 292, 371, 381, 390, 459

Michelson–Morley experiment, 298–300
microwave optics, 157, 351, 452, 526
Mie scattering, 199
mirage, 35
mirror

parabolic, 50
spherical, 50, 85

microscope (see also named types), 9–11,
57, 61–62, 89

electron, see electron microscope
optical, 406ff
X-ray, 13

microscope illuminator, 383
Mills cross, 275
modulated medium, propagation in, 339ff
modulation transfer function, 420–425
moiré pattern, 455–456
momentum of electromagnetic wave,

150–152, 153
Mount Wilson telescope, 390
Müller matrix, 165
multilayer dielectric system, 139, 144,

149, 339–350, 487
periodic, 343ff, 531

multiple-beam interference, 303–310, 369
in amplifying medium, 303–310

multiple scattering, 255, 258
multiplexing, in fibre communication, 338

n-surface, 169–172, 176–186, 193,
354–355

Navy Prototype Optical Interferometer
(NPOI), 361

Nd-YAG laser, 529
near-field diffraction, see Fresnel

diffraction
near-field scanning optical microscope

(NSOM), 13, 134, 448, 451–452
near-point (visual), 57
nearly-free electron model, 352
neutron diffraction, 227, 252, 275, 287,

477
Newton, I., 3–6, 9–10, 16, 40, 46
Newton’s equation, 67–69, 72
Newton’s rings, 3, 144, 281–282, 559
nitrobenzene, 188
nodal points, 70, 72
Nomarski microscope, see differential

interference contrast
non-absorbing medium, 148, 150, 173

non-diffracting beam, 226
non-imaging optics, 49, 80
non-linear optics, 8, 15, 352, 488–495
normal modes (of cavity), see cavity modes
numerical aperture (NA), 12, 326, 358,

418, 420–422

object space, 66
objective

microscope, 49, 61–62, 84, 408
telescope, 58, 74

Oersted, H. C., 6
oil film, interference in, 282
omnidirectional reflector, 349–350
opal, 323, 351
optic axis (of crystal), 176–185
optical activity, 180–182, 190, 196, 481
optical axis, 50–51
optical design, 50
optical fibre, see fibre
optical path, 36

difference, in plate or film, 305
optical transfer function (OTF), 420–425,

457–458, 465–466
diffraction-limited, 425

optical tweezers, 152, 159
ordinary index of refraction (crystal), 179
oscillating dipole, radiation by, 134, 470,

472, 523–525
oscillator strength (matrix element), 479,

523
Otto configuration (SPR), 499–500

parallax, 44
Parseval’s theorem, 120–121
path-length equalizer, 397
pattern recognition, 120, 232
Patterson function, 120
periodic function, Fourier transform of,

113
periscope, 89
Perspex (PMMA, Lucite), 189
phase closure, 391, 395
phase-conjugate mirror, 338, 491–493, 503
phase-contrast microscopy, 405, 426,

428–434, 437–438, 447, 558
phase gradient, 434–438
phase matching, 489

quasi, 490
phase object, 239, 266, 426–433
phase of Fourier coefficient, 95
phase of wave, 19

change on reflection, 147, 279–280, 325
phase problem, 261, 411, 438
phase retrieval, 13, 135, 377, 412

in crystallography, 261–266
in Hubble Space Telescope, 266–269
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in speckle interferometry, 461
in X-ray microscopy, 270

phase-sensitive amplifier, optical, 514
phase-shift mask, 416
phase-stepping interferometry, 297, 320
phase velocity, 20, 155

of electromagnetic waves, 131, 169
phased array, 274
phonon, 286
photo-elastic effect, 162, 189–190, 197
photo-electric effect, 8, 505, 515, 524
photo-lithography, 209–210, 283, 416
photon, 7–8, 507–510, 512ff

bunching, 386–387, 514
circularly polarized, 164, 197
entangled, 1, 15
spin, 153, 164, 507
statistics

classical, 384
quantum, 508

photonic crystals, 179, 192, 323, 351–356,
359

photo-refractive effect, 356, 490
pinhole camera, 113, 225, 552–554
Planck, M., 7, 26, 506
plane wave, 30

electromagnetic, 132
plasma refractive index, 484

resonance, 147, 157, 478
absorption, 480

Pockels effect, 189, 195
Podolsky, B., 15
point spread function, 267, 393, 413,

422–424, 552
atmospherically degraded, 460
super-resolved, 448, 452

Poisson, S. D., 5
distribution (statistics), 385, 473–474,

508, 514–517
polarizability, atomic, 471

complex, 471
polarization, 3, 20, 161–167, 200,

518–521
by absorption, 167
change on reflection, 396
circular, 143, 153, 159, 163–164, 181

right- and left-handed, 164, 480
elliptical, 164, 166, 195
linear (or plane), 163
orthogonal states of, 165
parallel, p or TM, 137, 327–331, 341,

349, 497
partial, 165
perpendicular, s or TE, 137, 327–330,

341, 349, 497
plane of, 132, 163
by reflection, 166

polarizer, crystal, 187
Glan, 187, 195
Glan–Thompson, 188
Nicol, 188

polarizing film, 162
‘Polaroid’, 168, 200, 473

population inversion, 527–535, 537–539
Pound R.V., 14
Pöverlein construction, 187, 195
power of lens, 54, 79
power spectrum, 120, 367, 374
Poynting vector, 33, 133–137, 151, 163,

472
in anisotropic medium, 169, 170, 355
in evanescent wave, 145

preform, for fibre drawing, 336–337
principal part of integral, 483
principal planes, 69, 72
principal points, 70, 91
prism, thin, 240, 288
probability amplitude, 25
projector

overhead, 55, 185
slide, 91

Prokhorov, A. M., 14
pseudo-vector, 190
pumping, optical, 528–529
Purcell, E. M., 14

quantum dot, 518
quantum efficiency, 385
quantum theory, 7, 48, 142, 504ff

bound states in, 328
quarter-wave plate, 186, 189
quarter-wave stack, 358, 486
quartz (SiO2), 181–182
quasi-monochromatic light, 363–366, 371,

381, 392

Rabi oscillations, 537–541
frequency of, 539

radiation, electromagnetic, 133
polar diagram, 134–136
power, 136, 472
pressure, 150–153

radiative transport equation, 46
radio astronomy, 14, 391
rainbow, 91

polarization of, 91
supernumerary, 91

Raman–Nath (acousto-optic) limit, 260
random array of apertures, 250, 367
raster scan, 447
ray, extraordinary and ordinary, 177, 435
ray-tracing, 50, 56–62, 70
ray vector, see Poynting vector
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Rayleigh, Lord (J. W. Strutt), 9
Rayleigh resolution limit, see resolution

limit
Rayleigh scattering, 166, 337, 471–474

polarization of, 473
wavelength dependence, 472

real functions, Fourier transform of, 108
reciprocal lattice, 118–119, 248–250, 262,

354–355
three-dimensional, 124–125, 255–259
vector, 119

reciprocal relationship in Fourier
transforms, 107

reciprocal space, 99
‘rect’ function, 102
rectangular aperture, diffraction by, 235
reference wave in holography, 439–444
reflecting sphere, see Ewald sphere
reflection at an interface, 136

oblique, 313
(Fresnel) coefficient of, 138–141, 166,

282, 305–308
refraction, double, see birefringence

law of, see Snell’s law
refractive index, 6, 34, 89, 131–132, 169ff

complex, 146–148, 478–481
effective, in waveguide, 331–332
negative, 131, 154–155, 192
of gas, measurement, 291
relationship to scattering, 475–479
X-ray, 218

refractive index surface, see n-surface
relativity theory, 6, 40–42, 135, 298–302
resolution limit (resolving power), 11, 38,

48, 317, 405
Abbe limit, 418, 445, 449
axial, 451
with coherent illumination, 415–419
Rayleigh criterion, 284, 285, 389,

413–417, 448, 451, 459–461,
464–465

Sparrow criterion, 285, 309, 317,
414–417, 464–465

spectroscopic, 280, 284–285, 378
of zone-plate, 219

resonance fluorescence, 516–518
resonance frequency, atomic, 470,

477–479
resonator, optical, 85–88, 317, 527

confocal, 87, 122, 311–312, 333, 531
laser, 310
marginally stable, 87
stable and unstable, 87–88, 317

retarded fields, 134
Römer, O. C., 5
Ronchi ruling, 247, 554–556
Rosen, N., 15

ruby laser, 528, 529
ruling engine, 283
Ryle, M., 14, 392

Sagnac effect, 302–304
sampling, 105, 110, 250, 262,

392
Sayre’s equation, 264
scalar-wave theory of diffraction,

199, 222, 283, 290, 323, 408
scale of diffraction pattern, 238
scaling of Fourier transform, 103
scanning microscopy, 447, 448, 458
scattering

coherent, 473–477
Rayleigh, see Rayleigh scattering

Scheimpflug construction, 90
schlieren imaging, 426–427, 430–434,

437, 438, 557–558
Schrödinger, E., 8
Schrödinger’s equation, 25, 122, 327–329,

335, 351, 522
analogy to Maxwell’s equations, 323,

339
second harmonic generation, 488, 502
secular determinant, 353
seeing, astronomical, 459
Seidel, P. L. von, 76
selective mirror, 343ff
self-convolution, 114–115
self-Fourier functions, 121–123, 311
semiconducting diode laser, 512, 516,

530–532, 543
III (‘sha’) function, 105
shape function, 254, 260
shearing interferometer, 384, 435
shift of origin, effect on Fourier transform,

103
sidebands, 285–287, 458
signal velocity, 485
silver (Ag), 148, 157–158, 192–193
sinc(x) function, 102, 233–235, 246
single-mode waveguide or fibre, 332, 334,

370
Sirius (α-CMa), 394
skew rays, 63, 81, 326, 333
skin depth, 146–147
slit, diffraction by, 216–218, 233–235
slow light, 30, 484, 487
Snell, W., 3
Snell’s law of refraction, 33–34, 45, 48,

138, 140, 147, 186
at negative-refraction material, 155

soap bubbles, interference in, 282
sodium nitrate (NaNO3), 172
solar cell, 348–349
solar energy concentration, 49, 80
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soliton (in non-linear medium), 494–495,
550

interactions, 494
sound wave, 21
sparse image, 447, 453
spatial filtering, 11, 61, 399, 410–411, 425,

558
spatial frequency, 20, 94, 99, 423
spatial light modulator, 445
speckle, 251, 555
speckle interferometry, astronomical, 9,

252, 459–461
speckle masking, 462–463
spectral intensity, see power spectrum
spectrum analysis, 258
sphere of observation, 255, 258
spherical aberration, 51, 76, 77, 82–85,

155, 431
correction of, 79, 82, 408

spin, 153, 164, 507, 518
spiral wave, 153–154, 160, 453, 503
spontaneous emission, 311, 351, 514,

525–527, 533
square pulse (‘rect’ function), 102–103
square wave, 98–99, 117, 247
squeezed light, 511–514
standing waves, 505
star, coherence function due to,

382–383
stationary phase integral, 216
stellar amplitude interferometry, 395
step function, 482
stimulated emissision, 351, 524–533, 537,

540
stimulated emission depletion microscope

(STED), 153, 448, 452, 466, 550
stochastic reconstruction microscope

(STORM), 13, 405, 448, 453
Stokes relationships, 148–150
Stokes vector, partial polarization, 165
stops, 57, 59
straight edge, diffraction by, 218–219
structured illumination microscope, (SIM),

448, 454–457, 467
sub-Poisson distribution, 514–517
sugar solution, 181–182
superconductor, 13, 191
superlattice, 286
superlens, 155–157
superluminal velocity of light, 484–486
super-Poisson distribution, 514–517
superposition, 21, 199, 231, 482

of coherent waves, 278
of incoherent waves, 278, 418

super-resolution, 13, 157, 194,
445–458

surface diffraction, 258

surface plasmon resonance (SPR), 341,
495–500

polariton, 496
symmetric exit of interferometer, 292
symmetric (even) function, 97, 329

Fourier transform of, 108
symmetry of diffraction patterns, 248
synchrotron radiation, 134–135, 158,

219–220

Taylor, G. I., 508
telecentric optical system, 62
telephoto lens combination, 73–75, 271,

554–555, 557
telescope, 9, 50, 57, 68

Cassegrain, 46, 68, 73–74, 391
Galilean, 68, 89
Gregorian, 46, 68
Hubble, 9
reflecting, 9
Ritchey–Chrétien, 73

tensor, dielectric, see dielectric tensor
thin (simple) lens, 49, 52, 65–67
Thomson, G. P., 8
threshold for lasing, 526
time-reversal, of Maxwell’s equations,

148–149
Tonamura, A., 14
Toraldo di Francia, G., 13, 448
total external reflection, 218, 479
total internal reflection, 140, 148, 150,

167, 324
frustrated, 142–144, 159

Townes, C. H., 14
transmission coefficient at an interface, 136
transmission function of diffraction mask,

201, 230ff, 267
transparent conducting oxide, 348
tube lens, 61
tunnelling

electron, 142
optical, 142–144, 159

Twiss, J. Q., 387
two-beam interferometry, 290
two-level (model for) atom, 522–523,

538
Twyman–Green interferometer, 292, 297

ultramicroscope, 426
ultraviolet catastrophe, 505–506
uncertainty principle, 367, 404, 509,

511–513, 518, 540
applied to γ -ray microscope, 446

uniaxial crystal, 173, 179–181, 435
positive and negative, 179
interference figure, 184
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unit cell, 118, 249, 250, 254, 258, 262
unpolarized light, 165

vacuum field fluctuations, 511, 515,
524–525

van Cittert–Zernike theorem, 381–382,
389, 393

variance, statistical, 365
Verdet constant (magneto-optic), 190
velocity

complex, 26
group, see group velocity
wave, see phase velocity

velocity of light, 5
in moving medium, 301

vertical-cavity surface-emitting laser
(VCSEL), 122–123

very long baseline interferometry (VLBI),
393

video projection, use in demonstrations,
552, 554, 558

vignetting, 50, 56, 57–59
visibility (contrast) of fringes, 306,

370–373, 389, 400, 422, 439, 520
visibility, meteorological, 474

waist of Gaussian beam, 212–214
Watson, J. D., 253
wave equation, 17, 95

non-dispersive, 18–24, 31
dispersive, 21, 22

wavefront, 30–31
curvature of, 212

wave-group, 29, 116, 535
distortion by dispersion, 37–39, 334
Gaussian, 37–40, 116
random series, spectrum of, 366, 373

waveguide, optical, 324ff, 495
propagation modes in, 330–336

lossy, 329
refractive index profile of, 328

wavelet transform, 127
wavenumber, 20, 99

complex, 26
wave–particle duality, 8
wave-vector, 33
waves

attenuated, 26, 28
compressional, 21
cylindrical, 31–32

electromagnetic, 7, 22, 129ff
energy flow, 133

evanescent, 26–28
flexural, 45
guided, 329ff
harmonic, 20
longitudinal, 6, 20, 25
Love, 25
plane, see plane wave
Rayleigh, 25
seismic, 25
sound, 21
spherical, 31–32, 201
standing, 23
three-dimensional, 30–32
transverse, 6, 20, 25, 161, 171
water surface, 30, 45

weak guiding approximation (waveguide),
328, 333

white light
fringes, 295, 300
spectrum, 367

Wiener–Khinchin theorem, 120, 374, 381
Wigner diagram, 511–515
wind-tunnel optics, 431
Wollaston prism, 465
work function, 524

X-rays
diffraction and crystallography, 12–13,

135, 227, 229, 252
dispersion, 45
laser, 526, 544
microscope, 11, 135, 209–210, 218–220
white (broad-band), 256

Young, T., 4–5, 198
Young’s fringes, 4, 105, 243, 278–280,

293, 384, 388, 406, 543

Zernike, F., 10, 11, 14, 360, 410, 428
Zernike phase contrast microscope, see

phase-contrast microscopy
Zernike polynomials, 76
zero-point energy, 511
zone plate, Fresnel, 13, 207–210, 218–220,

225
focal points of, 209–210

zoom lens, 48–49, 73
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