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PREFACE

In an age of ubiquitous information; where any question can instantly be answered at
the click of a mouse, it is important to remember that some questions require book-
length answers. This book answers the question, “What are the design principles of
computational optical sensors?” This book is not a homage to old ideas, in fact it
celebrates the death of the photochemically recorded image. But it does honor the
ancient concept of the book.

A book-length idea requires a narrative, with protagonists (such as the intrepid
photon, speeding information from object to data), antagonists (such as the
fickle photon, arriving when it pleases with no consideration to resulting signal fluc-
tuations), and a satisfying denouement. Careful contemplative research is necessary
to develop such a narrative. For nearly a century, the Optical Society of America
has fostered the research that provides the basis for this book’s story. Books and pro-
fessional societies are as alive and essential to advanced science and engineering in
this century as in the last.

With this in mind, it is particularly satisfying that this book is produced under the
joint Wiley-OSA imprint. I knew from the moment the series was announced that this
would be the perfect venue for “Optical Imaging and Spectroscopy.” While there
have been many twists and turns in the text’s plot over the intervening years, includ-
ing numerous delays as I struggled to resolve the narrative, these have been the natural
struggles of an author. OSA’s reviewers provided essential early feedback to the
structure and thrust of the text and Wiley has been a consistent and solid supporter
of its editorial development.

I know that there are excellent books coming in this series and I look forward to
reading those stories. For my part, given a year or two to recover I may have yet
another story to tell. Try googling “What are the design methods for optical
components?”

DAVID J. BRADY

Durham, North Carolina
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1
PAST, PRESENT, AND FUTURE

I believe that if more effort is directed into the No-Man’s land between raw sensory
data and the distinguishable signals which are the starting point of statistical theory,
the second decade of information theory will be as rich in practical improvements in
communications techniques as the first was in intellectual clarifications.

—D. Gabor [84]

1.1 THREE REVOLUTIONS

Sensing is the interface between the physical and digital worlds. This text focuses on
computational optical sensing, by which we mean the creation of digital information
from electromagnetic radiation with wavelengths ranging from 200 to 20,000
nanometers (nm). Optical sensors are incorporated in imagers, spectrometers, com-
munication transceivers, and optical information processing devices. This text
focuses on imaging and spectroscopy. Imagers include microscopes, telescopes,
video- and still cameras, and machine vision systems. Spectrometers are sensor
engines for molecular detection and imaging, chemical analysis, environmental
monitoring, and manufacturing process control.

Computational sensing is revolutionizing the design and utility of optical imagers
and spectrometers. In emerging applications, optical sensors are the backbone of
robotics; transit control systems; security systems; medical diagnostics and genomics;
and physical, chemical, and biological research. This text does not specifically con-
sider these applications, but it does provide the reader with a solid foundation to
design systems for any of them. The text focuses on

† The relationship between continuous object and optical field parameters and
digital image data

† The use of coherence functions, most commonly the cross-spectral density and
the power spectral density, to analyze optical systems

Optical Imaging and Spectroscopy. By David J. Brady
Copyright # 2009 John Wiley & Sons, Inc.
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† Coding strategies in the design of computational sensors
† The limits of specific spectrometer and imager design strategies

Readers active in physical, chemical, or biological research or nonoptical sensor
design should find these topics helpful in understanding the limits of modern
sensors. Readers seeking to become expert in optical imaging system design and
development will need to supplement this text with courses in digital image proces-
sing, lens system design, and optoelectronics. Optical systems is a field of stunning
complexity and beauty, and we hope that the basics of system analysis presented
here will draw the reader into continuing research and study.

The optical sensing problem is illustrated in Fig. 1.1. The goal is to sense a remote
object using signals communicated through the optical field. The sensor consists of
optical elements, optoelectronic detectors, and digital processing. In some cases,
we consider the remote object to be ambiently illuminated or to be self-luminous.
In other cases we may consider temporally or spatially structured illumination as
part of the sensor system. The system forms an image of the object consisting of a
spatial map of the object radiance or density or of spatially resolved object features
such as spectral density, polarization, or even chemical composition.

Figure 1.1 illustrates the culmination of several milliennia of optical sensor system
development. The history of optical sensors is punctuated by three revolutions:

1. Optical Elements. Optical instruments capable of extending natural vision
emerged approximately 700 years ago. Early instruments included spectacles
to correct natural vision and the camera obscura for convenient image tracing.
Over several hundred years these instruments evolved into microscopes and
telescopes. These systems used human vision to transduce light into images.
Image storage and communication occurred through handmade copies or
traces or through written descriptions.

2. Automatic Image Recording. Photochemical recording began to replace
handmade images approximately 200 years ago. The first true photographic
processes emerged in 1839 from Daguerre’s work in France and Talbot’s
work in England. Each inventor worked over a decade to perfect his process.
At first, long exposure times limited photographs to static scenes. Early portraits

Figure 1.1 Computational optical sensor system.
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required the subject to remain stationary for several minutes. Daguerre’s famous
image shot in 1838 from his laboratory overlooking the Boulevard du Temple in
Paris is generally considered the first photograph of a human subject, a man
standing still to have his shoes shined. Photographs of dynamic scenes
emerged over succeeding decades with the development of flash photography,
faster optical elements, and faster photochemistry. Consider, however, the
revolutionary impact of the introduction of photography. Images recorded
prior to 1839 have been “retouched” by the human hand. Kings are taller and
cleaner-looking than they really were. Commoners are not recorded at all.
Only since 1839 can one observe true snapshots of history.

3. Computational Imaging. Electronic imaging began about 80 years ago with
the development of video capture systems for television. As with early
optics, the first systems enabled people to see the previously unseen, in this
case images of remote places, but did not record images for prosperity. True
computational imaging requires three twentieth-century inventions: (a) opto-
electronic signal transduction; (b) signal recording, communication, and digi-
tization; and (c) digital signal processing. Signal transduction began with
television, but the first electronic recording system, the Ampex VR-1000 mag-
netic tape deck, was not introduced until 1956. Digital signal processing
emerged during World War II. Initial computational imaging applications
emerged from radio detecting and ranging (radar) applications. Electronic
systems continued to emerge through the 1970s with the development of
deep-space imaging and facsimile transmission. The period from 1950
through 1980 was also rich in the development of medical imaging based on
x-ray and magnetic resonance tomography. The most important inventions
for optical imaging during this period included semiconductor focal planes,
microprocessors, and memories. These developments resulted in the first
digital optical imaging systems by the mid-1980s. These systems have contin-
ued to evolve as computational hardware has gone from 1970s-style building-
scale data centers, to 1980s-style desktop personal computers, to 1990s-style
microprocessors in embedded microcameras.

At the moment of this writing the displacement of photochemical recording by
optoelectronics is nearly complete, but the true implications of the third revolution
are only just emerging. Just as the transition from an image that one could see
through a telescope to an image that one could hold in one’s hand was profound,
the transition from analog photography to digital imaging is not about making old
technology better, but about creating new technology. One hopes that this text will
advance the continuing process of invention and discovery.

1.2 COMPUTATIONAL IMAGING

The transition from imaging by photochemistry to imaging by computer is compar-
able to the transition from accounting by abacus to accounting by computer. Just as
computational accounting enables finance on a scale unimaginable in the paper era,

1.2 COMPUTATIONAL IMAGING 3



computational imaging has drastically expanded the number of imaging systems, the
number of images captured, and the utility of images—and yet, what has really
changed? Isn’t a picture recorded on film or on an electronic focal plane basically
the same thing? The electronic version can be stored and recalled automatically,
but the film version generally has comparable or better resolution, dynamic range,
and sensitivity. How is being digital different or better?

In contrast to a physical object consisting of patterns on paper or film, a digital
object is a mathematical entity. The digital object is independent of its physical instan-
tiation in silicon, magnetic dipoles, or dimples on a disk. With proper care in coding
and transmission, the digital object may be copied infinitely many times without
loss of fidelity. A physical image, in contrast, looses resolution when copied and
degrades with time. The primary difference between an analog image and a compu-
tational image is that the former is a tangible thing while the latter is an algebraic object.

Early applications exploited the mathematical nature of electronic images by
enabling nearly instantaneous image transmission and storage, by creating images
of multidimensional objects or invisible fields and by creating automated image
analysis and enhancement systems. New disciplines of computer vision and digital
image processing emerged to computationally analyze and enhance image data.

Excellent texts and a strong literature exist in support of computer vision and
digital image processing. This text focuses on the tools and methods of an emerging
community at the interface between digital and physical imaging and sensing system
design. Computational sensing does not replace computer vision or digital image pro-
cessing. Rather, by providing a more powerful and efficient physical layer, compu-
tational sensing provides new tools and options to the digital image processing and
interpretation communities.

The basic issue addressed by this text is that the revolutionary opportunity
represented by electronic detection and digital signal processing has yet to be
fully exploited in sensor system design. The only difference between analog and
digital cameras in many cases is that an electronic focal plane as replaced film.
The differences between conventional design and computational sensor design are
delineated as follows:

† The goal of conventional optical systems, even current electronic cameras and
spectrometers, is to create an isomorphism. These systems rely on analog pro-
cessing by lenses or gratings to form the image. The image is digitized after
analog processing. Only modest improvements are made to the digitized image.

† The goal of computational sensor design, in contrast, is to jointly design analog
preprocessing, analog-to-digital conversion, and digital postprocessing to opti-
mize image quality or utility metrics.

Computational imaging systems may not have a “focal plane” or may deliberately
distort focal plane data to enhance postprocessing capacity.

The central question, of course, is: How might computational optical sensing improve
the performance and utility of optical systems? The short answer to this question
is in every way! Computational design improves conventional image metrics, the
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utility of images for machine vision and the amenity of images for digital processing.
Specific opportunities include the following:

1. Image Metrics. Computational sensing can improve depth of field, field of
view, spatial resolution, spectral resolution, signal fidelity, sensitivity, and
dynamic range. Digital systems to the time of this writing often compromised
image quality to obtain the utility of digital signals, but over time digital images
will increasingly exceed analog performance on all metrics.

2. Multidimensional Imaging. The goal of a multidimensional imaging system is
to reconstruct a digital model of objects in their native embedding spaces.
Conventional two-dimensional (2D) images of three-dimensional (3D)
objects originate in the capacity of lens and mirror systems to form physical iso-
morphisms between the fields on two planes. With the development of digital
processing, tomographic algorithms have been developed to transform arrays of
2D images into digital 3D object models. Integrated physical and digital design
can improve on these methods by eliminating dimensional tradeoffs (such as
the need to scan in time for tomographic data acquisition) and by enabling
reconstruction of increasingly abstract object dimensions (space–time, space–
spectrum, space–polarization, etc.).

3. Object Analysis and Feature Detection. The goal of object analysis is to abstract
nonimage data from a scene. In emerging applications, sensors enable completely
automated tasks, such as robotic positioning and control, biometric recognition,
and human–computer interface management. Current systems emphasize heuri-
stic analysis of images. Integrated design allows direct measurement of low-
level physical primitives, such as basic object size, shape, position, polarization,
and spectral radiance. Direct measurement of significant primitives can dramati-
cally reduce the computational cost of object analysis. On a deeper level, one
can consider object abstraction as measurement on generalized object basis states.

4. Image Compression and Analysis. The goal of image compression is to rep-
resent the digital model of an object as compactly as possible. One can regard
the possibility of digital compression as a failure of sensor design. If it is possible
to compress measured data, one might argue that too many measurements were
taken. As with multidimensional imaging and object analysis, current
compression algorithms assume a 2D focal model for objects. Current techno-
logy seeks a compressed linear basis or a nonlinear feature map capable of effi-
ciently representing a picture. Integrated physical and digital design implements
generalized bases and adaptive maps directly in the optical layer. One has less
freedom to implement algorithms in the physical layer than in the digital
system, but early data reduction enables both simpler and lower-power
acquisition platforms and more efficient data processing.

5. Sensor Array Data Fusion and Analysis. Multiaperture imaging is common in
biological systems but was alien to artificial imaging prior to the computational
age. Modern computational systems will dramatically surpass the multiaperture
capabilities of biology by fusing data from many subapertures spanning broad
spectral ranges.
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1.3 OVERVIEW

An optical sensor estimates the state of a physical object by measuring the optical
field. The state of the object may be encoded in a variety of optical parameters,
including both spatial and spectral features or functions of these features.

Referring again to Fig. 1.1, note that an optical sensing system includes

1. An embedding space populated by target objects

2. A radiation model mapping object properties onto the optical signal

3. A propagation model describing the transmission of optical signals across the
embedding space

4. A modulation model describing the coding of optical signals by optical
elements

5. A detection model describing transduction of optical signals at electronic
interfaces

6. An image model describing the relationship of transduced and processed digital
data to object parameters

Considerable analytical and physical complexity is possible in each of these system
components. The radiation model may range from simple scattering or fluorescence
up to sophisticated quantum mechanical field–matter interactions. As this is an optics
text, we generally ignore the potential complexity of the object–field relationship and
simply assume that we wish to image the field itself.

This text considers three propagation models:

† Geometric fields propagate along rays. A ray is a line between a point on
a radiating object and a measurement sensor. In geometric analysis, light
propagates in straight lines until it is reflected, refracted, or detected.
Geometric fields are discussed in Chapter 2.

† Wave fields propagate according to physical wave equations. Wave fields add
diffractive effects to the geometric description and enable physical description
of the state of the field at any point in space. After review of basic mathematical
tools in Chapter 3, we analyze wave fields in Chapter 4.

† Correlation fields propagate according to models derived from wave fields, but
focus on transformations of optical observables rather than the generally
unobservable electric fields. Correlation field analysis combines wave analysis
with a simple model of the quantum process of optical detection. After review-
ing detection processes in Chapter 5, we develop correlation field analysis in
Chapter 6.

The progression from geometric to wave to correlation descriptions involves increasing
attention to the physical details of the object-measurement mapping system. The geo-
metric description shows how one might form isomorphic and encoded image capture
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devices, but cannot account for diffractive, spectral, or interferometric artifacts in these
systems. The wave model describes diffraction, but cannot explain interferometry,
noise, or spectroscopy. The correlation model accounts for these effects, but would
need augmentation in analysis of quantum coherence and nonlinear optical effects.
We develop optical modulation and detection models for optical sensors consistent
with each propagation model in the corresponding chapters.

After establishing basic physical models for field propagation, modulation, and
detection, we turn to the object model in Chapter 7, which focuses on the transform-
ation from continuous fields to digital data, and Chapter 8, which focuses on object
data coding and estimation. Discrete representation is the hallmark of digital optical
sensors. In discrete analysis, the object state is represented by a vector of coefficients
f and the measurement state is represented by a vector of coefficients g. We consider
three different relationships between f and g.

† Isomorphic mappings form a one-to-one correspondence between components
of g and components of f. Examples include focal imaging systems and disper-
sive spectrometers. As discussed in Chapter 7, computational design and analy-
sis is helpful even for isomorphic systems.

† Dimension preserving mappings capture measurements g embedded in a space
of similar dimension with the object embedding space. One normally considers
objects distributed over a 2D or 3D embedding space. Sensors based on convo-
lutions, radon transformations, or Fourier transformations do not capture iso-
morphic data, but simple inversions are available to restore isomorphism.

† Discrete mappings assume no underlying embedding space for the measure-
ments g. Measurements under discrete mappings consist of linear or nonlinear
projections of the object state.

The inversion algorithm applied in any specific context is determined by both the
nature of the object parameters of interest and the physical mapping implemented
by the sensor system.

Having completed a survey of the tools needed to analyze and design computational
optical sensors in Chapters 2–8, we put the tools to use in Chapters 9 and 10 in describ-
ing specific design strategies and opportunities.

In offering the text as a one-semester course, a quick survey of Chapter 2 intro-
duces the basic concepts of optical imaging (using ray tracing) and of computational
imaging (using coded aperture imaging). Coded aperture imaging is not of great prac-
tical importance, but it provides an instructive and accessible introduction to issues
that recur throughout the text. Chapters 3 and 4 present a straightforward course in
Fourier optics augmented by wavelet analysis and linear spaces. While we make rela-
tively modest direct use of wavelets in the rest of the book, the student will find wave-
lets of high utility for system modeling in Chapters 7–10 and will find the general
concepts of vector spaces and multiscale analysis essential. Students with prior
experience in signal processing may find Chapter 3 unnecessary, I hope that optics
students will find the presentation of wavelets more accessible here than in the
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signal processing literature. Similarly, optics students with previous Fourier optics
experience may find Chapter 4 unnecessary. Chapter 5 is a brief overview of
optical detectors sufficient for a discussion of system design. This chapter is left
for self-study in the one-semester course. Overall, the author hopes that upper-level
engineering, physics, mathematics, and computer science undergraduates will find
Chapters 2–5 an accessible introduction to basic optical systems. While familiarity
with the material in Chapters 2–5 is essential to understanding what comes later,
the reader leaving the course after Chapter 5 would be missing the most critical
concepts in optical sensing.

The core of the course begins in Chapter 6, where the text considers statistical
fields created by natural sources. A course that hurries through the early chapters
should arrive with time to spend on this chapter and the remainder of the text.
Optical coherence theory is wonderfully developed by Wolf [252], Mandel and
Wolf [165], and Goodman [99], but I hope that the reader will find the focus on
imaging system analysis and coherence measurement presented in Chapter 6
unique and useful. Similarly, the discussion on sampling in Chapter 7 covers
issues that are also covered elsewhere, but I hope that the simple and direct treatment
of isomorphic sampling is clearer than other treatments. The discussion of general-
ized sampling in Section 7.5 covers emerging concepts.

Chapter 8 covers algorithms and coding issues covered elsewhere, although coding
strategies are uniquely colored by the understanding of optical fields and generalized
sampling developed to this point. If nothing else, the reader should leave Chapter 8
with reduced faith in least-square estimators and mean-square error metrics.

Many texts conclude with an optional chapter or two on advanced topics. That is
not the case here. I cannot imagine that a reader would learn the tools in Chapters 2–8
without experiencing the joy of applying them in Chapters 9 and 10.

1.4 THE FOURTH REVOLUTION

The first revolution in optical sensing, the development of optical elements, was
based on glass, skilled artisans, and markets for consumer goods. This required a civi-
lized society with advanced materials and manufacturing capabilities. The transition
from spectacles to telescopes and microscopes required the existence of a sophisti-
cated scientific community. These developments took many generations of human
activity. Could early optical scientists foresee the next revolution? I expect that
they could, and how often they must have wished for an automated mechanism for
recording images observed by the unaided eye.

The next revolution, photochemistry, emerged nearly simultaneously with the
birth of electronic communications. The inventor of electronic communications,
Samuel Morse, visited Daguerre’s laboratory shortly after the Boulevard du
Temple was recorded and described the image in an April 20, 1839 article in the
New York Observer. Both inventors knew well the tortured process of invention
and the faith of the inventor in the previously impossible. The idea of automated
image transmission was not far behind the idea of automated recording. In the
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grand scheme of history, the 75 years between the first photochemical images to
television were brief.

The revolutionary transition from photochemistry to computational imaging is
nearing completion. The necessary devices first emerged about 25 years ago (i.e.,
in the early 1980s); one expects that another quarter century will complete this revo-
lution. Optical scientists and engineers now wonder, is there a fourth revolution? As
an author one may hope for stasis, such that the words and analysis herein may live
forever. Being more scientist and engineer than author, however, I am happy to report
that a fourth revolution has already begun.

The fourth revolution will be the age of optical circuits and antennas. As discussed
in Chapter 5, the bedrock assumption of modern optics is that electronic detectors
measure the time-averaged irradiance of the optical field. The fourth revolution
will discard this assumption. Optical design is currently profoundly influenced by
the incoherent interface between optical signals and digital data. Within the next
decade (i.e., by 2018), coherent coupling between optical and electronic states in
nanostructured and plasmonic devices will be combined with quantum interference
in electronic states to produce optical coherence sensors. These systems will be com-
bined with complex 3D optics to produce integrated transducers. 3D optics is rep-
resented in nascent form by photonic crystal materials, but advanced modeling, 3D
fabrication techniques and materials will produce imaging systems and spectrometers
with very different noise characteristics and form factors.

A new revolution sometimes kills the old, as digital imaging has killed photoche-
mical imaging, and sometimes feeds the old, as digital imaging has increased demand
for optical elements. Happily, I believe that the fourth revolution will only increase
the need to understand the content of this book. The basic approaches to sampling,
field analysis, and signal analysis outlined herein are necessary to both the present
and the future. Most significantly, limits on the bandwidth of the optical system,
the significance of these limits for image metrics, and strategies to surpass the
naive limits will remain the same even as the physical nature of the optical analog-
to-digital interface evolves. With an eye on both the present and the future, therefore,
read on, dear reader.

PROBLEMS

1.1 Imaging and Processing. Estimate the number of calculations performed per
person worldwide in 50-year increments from 1800 to the present. Estimate
the number of images photochemically and electronically recorded per person
over the same time period.

1.2 Digital Data. Estimate the worldwide fraction of stored digital data that is
image data.

1.3 Digital Images. Estimate the ratio of the number of images stored
photochemically to the number of images stored electronically in 1960, 1980,
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2000, and 2020. Explain your reasoning. What if only still or only moving
pictures are considered?

1.4 Persistence. Estimate the lifetime of a film image and of a digital image.
Discuss factors that might, over time, lead to the degradation of such images.

1.5 Weighing Design. Suppose that you are given 12 gold coins. Exactly one of the
coins is counterfeit and weighs more or less than the rest. You have a sensitive
two-pan balance, which reports only which pan is heavier. How many measure-
ments do you need on the balance to find the counterfeit coin and determine
whether it is lighter or heavier? Describe your measurement strategy. How
might this problem be relevant to optical sensor design?

1.6 Boulevard du Temple. Consider Nicholas Jenkins’ analysis of the number of
people in Daguerre’s Boulevard du Temple presented online at http://
www.stanford.edu/~njenkins/archives/2007/08/traces.
html. How many people do you observe in the image? What is your estimate
of the exposure time?
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2
GEOMETRIC IMAGING

The study of imaging now embraces many major areas of modern technology, especially
the several disciplines within electrical engineering, and will be both the stimulus for
and the recipient of, new advances in information science, computer science, environ-
mental science, device and materials science, and just plain high-speed computing. It
can be confidently recommended as a fertile subject area for students entering upon a
career in engineering.

—R. N. Bracewell [26]

2.1 VISIBILITY

This chapter introduces the radiation field as a relationship between luminous objects
and optical detectors. Visibility and the modulation of visibility using optical
elements are the most important concepts of the chapter. Visibility is a relationship
between points in a space. Two points are visible to each other if light radiated
from one illuminates the other. In three dimensions, visibility is a six-dimensional
relationship between each pair of points. The concept of visibility in the present
chapter anticipates the impulse response function in Chapter 3, the point spread func-
tion in Chapter 4, and coherence response kernels in Chapter 6.

We consider systems consisting of objects, object spaces, radiation fields, optical
elements, and detectors, as illustrated in Fig. 2.1. The goal of the system is to estimate
object parameters from the detector state. Most commonly, the object parameters of
interest consist of an image of the object. An image is an object density function f (x),
defined at points on the object embedding space; f (x) may represent the luminence,
spectral density, or scattering density of an object. Quite often we are interested
only in the object distribution over a subspace of a higher-dimensional embedding
space. For example, in typical imaging systems the image is a distribution over a
2D plane projected from 3D Euclidean space.

Optical Imaging and Spectroscopy. By David J. Brady
Copyright # 2009 John Wiley & Sons, Inc.
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Spaces, spatial distributions, spatial transformations, and mappings between
continuous distributions and discrete states are fundamental to the analysis of
modern optical sensor systems. In optical sensing we are most often interested in
objects embedded in the n-dimensional Euclidean space Rn. Images are typically
2D or 3D; spectra are often one-dimensional. We are sometimes interested in
3D or 4D spectral images or even 5D spatial temporal spectral images. We will
also find opportunities to consider much higher-dimensional function spaces.
For example, an image with N � N pixels may be considered a point in (N � N )-
dimensional space.

An object density function is mapped onto an optical field and propagates through
the embedding space to a detector array. The field is also a function over the embed-
ding space, but the field at diverse points is related by propagation rules. The radiation
field associates points in the embedding space. Two points in the object space are said
to be visible to each other if light from an omnidirectional point source at one of
the points illuminates the other point. The visibility v(A, B) is a commutative
function, meaning that if point A is visible to B, then point B is visible to A, for
example, v(A, B) ¼ v(B, A). Visibility in unmodulated free space is illustrated in
Fig. 2.2, which shows the field radiating from A as a set of rays in all directions.
The ray AB is drawn between the points.

In uniform free space, all points are mutually visible, meaning that v(A, B) ¼ 1 for
all A and B. Universal visibility may sound useful, but from a sensor perspective it is
hopeless. As illustrated in Fig. 2.1, sensing is achieved by placing discrete detectors
in the object space. A detector at point B integrates the field incident on B from all
visible points. The detector measurement at B can be modeled as

g(B) ¼
ð

v(A, B)f (A)dA (2:1)

where f (A) is the density of the object at A and the integral is over all points in the
object space. With no optical elements in the embedding space, g(B) ¼

Ð
f (A)dA is

Figure 2.1 Sensor system environment.

12 GEOMETRIC IMAGING



equal to the integrated object density independent of the position of the detector.
Since all detectors measure the same quantity, only the presense or absense of the
object can be determined; no object features or parameters may be estimated.

The simplest modulation is an absorbing reference object, as illustrated in Fig. 2.3.
The figure shows two detectors and a single obscurant. We assume that the obscurant
perfectly absorbs all the radiation that strikes it. The obscurant divides the object
space into four regions:

1. BC, the region visible to the detectors at both points B and C

2. BC, the region visible to the detector at B but not to the detector at C

3. BC, the region visible to the detector at C but not to the detector at B

4. B C, the region invisible to both detectors

Figure 2.2 Visibility in free space.

Figure 2.3 Visibility modulated by an obscurant.
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The detector measurements are

g(B) ¼ fBC þ fBC (2:2)

g(C) ¼ fBC þ f BC (2:3)

where, for example, fBC ¼
Ð

BC f (A)dA. Equations (2.2) and (2.3) reflect a transform-
ation of the continuous object distribution f (A) onto discrete descriptors fBC. The
tranformation between the discrete descriptors and the discrete measurements g are
often written as a single equation of the form

g ¼ Hf (2:4)

where the vector g consists of the set of measurements made on the field and the
vector f is a set of discrete descriptors of the object. H is a matrix mapping the
object state onto the measurement state.

The vector f cannot completely specify the continuous distribution f (A). Although
the goal is often to describe the continuous field, all computational sensor systems
ultimately are based on discrete measurements. Primary challenges of system
design include inverting Eqn. (2.4) to estimate the vector f and relating the discrete
object features to the continuous object distribution f (x).

One difficulty associated with estimation of f is that Eqn. (2.4) is generally ill-
conditioned for inversion. Such is the case, for example, in Eqn. (2.2), which
obtains only two measurements for three unknown object parameters. One may
attempt to overcome this barrier by increasing the number of measurements, but for
the particular sensor geometry sketched in Fig. 2.3 the number of distinct source
regions may grow faster than the number of measurements as additional measurement
points are introduced. Solution to this problem involves the introduction of discrete
object parameterizations independent of the measurement system.

We repeatedly return to linear mappings from the object state represented by f to the
measurement state represented by g over the course of this text. Critical questions in
the design of this mapping focus on the range of mappings H that one can physically
implement, how to choose from among the realizable mappings the one yielding the
“best” measured data, and how to invert the mapping to estimate f or features of f. In
the current example, H consists of binary visibility values over regions identified by
physical obscurants. The nature of the object parameterization and of the mappings
H that one can implement with such obscurants are considered in Section 2.7.

More generally, the visibility is modulated by diverse optical elements (lenses,
prisms, mirrors, etc.). Visibility operations implemented by these elements are con-
sidered in the next section.

2.2 OPTICAL ELEMENTS

Optical elements that redirect and combine ray bundles are substantially more
useful than the simple obscurant of Fig. 2.3. Useful devices include refractive
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elements, such as lenses and prisms; reflective elements, such as mirrors; diffractive
elements, such as holograms and gratings; and interferometric devices, such as
thin film filters and micro cavities. Much of this text focuses on the capacity of
these elements for visibility modulation. Our ability to analyze and design these
elements will grow with the sophistication of our field model. In anticipation of
more advanced models, we delay discussion of interferometry and diffraction until
later chapters.

Reflection and refraction may be considered using geometric redirection of rays at
interfaces, as shown in Fig. 2.4. The interface is a boundary between a dielectric
medium with index of refraction n1 and a dielectric with index n2. A line normal
to the plane of incidence is shown in the figure. An incident ray makes an angle ui

with respect to the surface normal. As shown in the figure, the reflected ray also
makes an angle ur ¼ ui with respect to the surface normal. The refracted ray satisfies
Snell’s law:

n1 sin u1 ¼ n2 sin u2 (2:5)

A planar dielectric interface bends the rays that join each pair of points and introduces
a second, reflected, path between points on the same side of the interface. With a
single interface or a stack of parallel interface planes, however, all points in a
space remain mutually visible (see Problem 2.1).

A prism is a wedge of dielectric material. A prism redirects the propagation direc-
tion of incident rays. As illustrated in Fig. 2.5, a prism bifurcates the object space such

Figure 2.4 Reflection and refraction at a planar interface.
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that a region to the left of the prism is invisible to an observation point. All points
above line 1, connecting point C and the vertex, are visible at C. Rays incident on
point C from points in the half-space below line 1 are refracted by the prism. Rays
from points on line 4 strike the prism so as to be refracted toward point C. All rays
striking the prism from points above line 4 are refracted to pass below point C.
This region is invisible at point C and is labeled C. Similar analysis applies to
lines 2 and 5 for point B and lines 3 and 6 for point A. With respect to the observation
points A, B, and C, region ABC is visible to all three points. ABC is visible to points B
and C but not point A. The prism produces a linear mapping between the object
density integrated over the six distinct regions of Fig. 2.5 similar to the mapping
of Eqn. (2.4).

Prisms are often used in optical systems to redirect, fold, or rotate ray bundles. For
example, prism assemblies enable compact binocular designs. Prism assemblies are
also used in interferometers, such as the rotational shear interferometer described
in Section 6.3.3. Prisms are also commonly used as spectral dispersion elements.
Spectral dispersion consists of refraction of rays corresponding to different colors
in different directions. Dispersion occurs in prisms because of the dependence of
the index of refraction on wavelength. Prisms are also sometimes used as evanescent
wave couplers for waveguides or biosensors. Evanescent waves arise because some
incident rays are trapped within the prism as a result of total internal reflection at
the second interface.

To understand the action of a prism more quantitatively, consider the wedge illus-
trated in Fig. 2.6. Our goal is to find the relationship between the direction of incident
rays and refracted rays. For simplicity, we limit our consideration to rays confined to a
plane perpendicular to the prism surfaces. We also assume that surface normals of the
prism lie in a single plane. ua is the angle the incident ray makes with the horizontal in
plane of incidence, ub is the angle the transmitted ray makes with the horizontal; u?1

Figure 2.5 Segmentation of the object space by three points refracted through a prism.
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is the angle that the normal to the first interface makes with respect to the horizontal,
and u?2 is the corresponding angle for the second interface. The angle of incidence
referred to in Snell’s law is then

ui1 ¼ ua � u?1 (2:6)

Relative to the horizontal, the angle of transmittance through the first interface is

ut1 ¼ arcsin
n1

n2
sin ua � u?1ð Þ

� �
þ u?1 (2:7)

where ut1 is the incidence angle, relative to the horizontal for the second interface.
The final transmittance angle is thus

ub ¼ u?2 þ arcsin
n2

n1
sin arcsin

n1

n2
sin ua � u?1ð Þ

� �
þ u?1 � u?2

� �� �
(2:8)

Figure 2.7 shows ub as a function of ua for various values of n2/n1. Notice that while
ub is a monotonic function of ua, the function is somewhat nonlinear.

As an example of spectral dispersion using a prism, Fig. 2.8 plots ub as a function
of wavelength for fixed ua. Notice that the angular dispersion is quite small. Prisms
are useful for highly efficient but small-angle dispersion. Less efficient but much
faster dispersion is obtained using diffractive elements.

Parallel rays (i.e., rays with identical values of ua) are refracted into parallel rays by
a prism. A lens refracts parallel rays such that they cross at a focal point. As illustrated

Figure 2.6 Geometry for prism refraction as described by Eqn. (2.8).
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in Fig. 2.9, a lens may be regarded as a prism with curved surfaces. At the center
of the lens, opposite faces are parallel and a normally incident ray is undeflected.
As one moves above the center axis of the lens in the figure, opposite faces tilt up
such that a ray incident along the horizontal axis is refracted down (under the assump-
tion that the index of refraction of the lens is greater than the index of the surrounding
medium). If the tilt of the lens surface increases linearly away from the axis, the
refraction angle increases linearly such that all the refracted rays cross at a point.
Similarly, the lens surface tilts down below the axis such that rays are refracted up
through the focal point.

Figure 2.7 Transmission angle ub as a function of the incidence angle ua for u?1 ¼ p/10,
u?2 ¼ 2p/10 for n1 ¼ 1, and various values of n2.

Figure 2.8 Transmission angle ub as a function of the wavelength of the incident light for
ua ¼ 0 and u?1 ¼ p/10, u?2 ¼ 2p/10. The index of refraction and dispersion parameters
are those of flint glass F2.
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We analyze refraction through a lens using the geometry of Fig. 2.10. The z axis is
a line through the center of the lens (the optical axis). Lens surfaces are generally sec-
tions of a sphere because it is easier to polish a surface into spherical shape. For radius
of curvature R1, the first surface is described by

x2 þ y2 þ (z� d1)2 ¼ R2
1 (2:9)

Under the assumption that x, y � z, R1, this surface reduces to the paraboloid

z1 ¼
x2 þ y2

2R1
� d1 (2:10)

Figure 2.9 A lens as a prism with spatially varying interface orientation.

Figure 2.10 Lens surfaces and surface normals.
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Similarly, we suppose that the second interface is z2 ¼ (x2 þ y2)/2R2 þ d2. The
surface normals are described by the vectors

in1¼
x

R1
ix þ

y

R1
iy � iz

¼ r

R1
ir � iz

in2¼
r

R2
ir � iz

(2:11)

where ir ¼ (xix þ yiy)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Suppose that the lens is illuminated by parallel rays

incident along i z. The refracted wave at each point on the lens lies in the plane of the
surface normal and the z axis. Noting that the surface normal of both surfaces lies in
the plane spanned by ir and i z, a vector along the direction of propagation for
the refracted wave after the first interface is it1(r) ¼ a iz þ b (r=R1)ir for some a

and b and for r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
. Application of Snell’s law tells us that n1iz � in1 ¼

n2it1 � in1 or

n1r

R1
iz � ir ¼

n2r

R1
(aþ b)iz � ir (2:12)

which reduces to a þ b ¼ n1/n2. We solve for a and b using the normalization
condition jit1j ¼ 1, which yields

b ¼
n1=n2ð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ (r=R1)2� (r=R1)2 (n1=n2)2

q

1þ (r=R1)2 (2:13)

Under the approximation that r/R1�1, the solutions to a and b reduce to lowest
order as b � (n1/n2) 2 1 and a � 1.

Under this approximation, the rate of refraction varies linearly as a function of r
and, as illustrated in Fig. 2.11, the refracted rays cross at a focal point in the
higher-index material at a distance F1 from the surface of the lens. Under the approxi-
mation that the lens surface is at z ¼ 0, a vector from a point on the surface of the lens
to the focal point is F1i z 2 rir. This vector is parallel to i t1 if F1/a ¼ 2R1/b, which
yields

F1 ¼
n2R1

n2 � n1
(2:14)

Similar analysis allows us to discover the focus and focal length for the two
surface lenses. Assuming that each lens is thin enough that there is no displacement
between the position in x and y of the ray through the first interface and the ray
through the second interface, a vector along the transmitted ray is i t2 ¼ gi z þ d(r/
R2)ir for constants g and d. Application of Snell’s law at this interface yields
n2it1 � in2 ¼ n1it2 � in2 or n2(a� bR2=R1) ¼ n1(g� d). Projecting the transmitted
ray it2 to the focus yields the overall focal length F ¼ �R2g=d. Assuming, as with
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a, that g � 1, we obtain

n2 � (n1 � n2)
R2

R1
¼ n1 � n1

R2

F
(2:15)

or

1
F
¼ n2

n1
� 1

� �
1
R1
� 1

R2

� �
(2:16)

Figure 2.11 Refraction by a parabolic surface.

Figure 2.12 Focusing by a parabolic mirror.
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Equation (2.16) is the lensmaker’s formula, describing the relationship between
material composition, surface curvature, and focal length. The radii of curvature R1

and R2 may be positive or negative. For the convex lens of Fig. 2.10, R1 is
positive and R2 is negative. For n2 . n1, this produces a positive focal length lens.
It is possible, of course, for the focal length F to be negative, which corresponds
to a virtual focus to the left of the lens for an incident parallel ray bundle. Ray
analysis can also be used to find the focus of a curved mirror, as illustrated in
Fig. 2.12. A parabolic mirror with radius of curvature R focuses parallel rays at a dis-
tance R/2 in front of the mirror. A negative curvature produces a virtual focus behind
the mirror.

2.3 FOCAL IMAGING

The focal properties of a thin lens for rays incident along the optical axis may be used
for ray tracing in arbitrary imaging systems based on three simple rules:

1. A ray parallel to the optical axis is refracted through the back (front) focal point
of a converging (diverging) lens. This rule was derived in Section 2.2 and is
illustrated in Fig. 2.13.

2. A ray through the front (back) focal point of a converging (diverging) lens is
refracted parallel to the optical axis. This rule is based on reprocity. A light
ray propagates along the same path both backward and forward. This rule is
illustrated in Fig. 2.14.

Figure 2.13 A ray parallel to the axis is refracted through the focal point.
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3. A ray through the center of the lens is undeflected. A ray going through the
center hits both interfaces at the same angle and is refracted out parallel to
itself. This rule is illustrated in Fig. 2.15.

Let’s use these rules to analyze some example systems. Consider an object at dis-
tance do from a lens at point (xo, 0) in the transverse plane, as illustrated in Fig. 2.16.

Figure 2.14 A ray through the focal point is refracted parallel to the axis.

Figure 2.15 A ray through the center of the lens is undeflected.
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The lines associated with the three rules are drawn in the figure. The three rays from
the source point cross in an image point. Our goal here is to show that there is in fact
such an image point and to discover where it is. Let the distance from the lens to the
image point be di and assume that the transverse position of the image point is (xi, 0).
By comparing congruent triangles, we can see from rule 1 that xi/(di 2 F ) ¼ xo/F,
from rule 2 that xi/F ¼ xo/(do 2 F ), and from rule 3 that xo/do ¼ 2(xi/di). Any
two of these conditions can be used to produce the thin-lens imaging law

1
do
þ 1

di
¼ 1

F
(2:17)

The magnification from the object to the image is M ¼ xi/xo ¼ 2di/do, where the
minus sign indicates that the image is inverted.

Virtual images and objects are important to system analysis. A virtual image has a
negative image distance relative to a lens. The lens produces a ray pattern from a
virtual image as though the image were present to the left of the lens. Similarly, an
object with negative range illuminates the lens with rays converging toward an
object to the right. The virtual image concept is illustrated in Fig. 2.17, which
shows a real object with do , F illuminating a positive focal length lens.
Following our ray tracing rules, a ray parallel to the axis is refracted through the
back focal point and a ray through the center is undiverted. These rays do not
cross to the right of the lens, but if we extend them to the left of the object, they
do cross at a virtual image point. A ray emanating from the object point as though
it came from the front focal point is refracted parallel to the optical axis. This ray

Figure 2.16 Imaging a point through a thin lens.
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intersects the first two rays when extended to the left. Our ray trace di , 0 for
0 , do , F is consistent with the thin-lens image law result:

di ¼
doF

do � F
(2:18)

Since di is opposite in sign to do, the magnification is positive for this system
and the image is erect.

Figure 2.18 illustrates ray tracing with a negative focal length lens. The concave
element forms an erect virtual image of an object to the left of the focal point. A hori-
zontal ray for this system refracts as though coming from the negative focal point.
A ray through the center passes through the center, and a ray incident on the negative
front focal point refracts horizontal to the axis. These rays do not meet to the right of
the lens, but do meet in the virtual image when extended to the left. An observer
looking through the lens would see the virtual image.

Focal reflective optics are analyzed using very similar ray propagation rules.
A mirror of radius R has a focal length of F ¼ 2/R, where R is considered positive
for a concave mirror and negative for a convex mirror. A ray striking the mirror par-
allel to the optical axis is reflected through the focal point. A ray striking the center of
the mirror is reflected at an angle equal to the angle of incidence. A ray passing
through the focal point is reflected back parallel to the optical axis. As illustrated
in Fig. 2.19, image formation using a parabolic mirror may be analyzed using
these simple ray tracing rules or the thin-lens imaging law.

Ray tracing may be extended to analyze multiple element optical systems. For
example, Fig. 2.20 illustrates image formation using a two-lens system. To ray

Figure 2.17 A positive focal length lens forms an erect virtual image of an object inside its
focal length.
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trace this system, one first traces the rays for the first lens as though the second
element were not present. The image for the first lens forms to the right of the
second lens. Treating the intermediate image as a virtual object with do , 0, ray
tracing bends the ray incident on the virtual object along the optical axis through
the back focal point, the incident ray through the center of the second lens is unde-
flected and the ray incident from the front focal point is refracted parallel to the

Figure 2.19 Image formation by a parabolic mirror.

Figure 2.18 A negative focal length lens forms an erect virtual image for do . jFj.
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optical axis. These rays meet in a real inverted image. The magnification of the com-
pound system is the product of the magnifications of the individual systems, M ¼ di1

di2/do1do2.
We made a number of approximations to derive the lensmakers formula for para-

bolic surfaces. With modern numerical methods, these approximations are unnecess-
ary. Ray tracing software to map focal patterns (spot diagrams) for thick and
compound optical elements is commonly used in optical design. As an introduction
to ray tracing, Problem 2.7 considers exact analysis of the lens of Fig. 2.10. Problem
2.8 requires the student to write a graphical program to plot rays through an arbitrary
sequence of surfaces.

Computational ray tracing using digital computers is the foundation of modern
lens design. Ray tracing programs project discrete rays from surface to surface.
Simple ray tracing for thin elements, on the other hand, may be analyzed using
“ABCD” matrices, which implement simple plane-to-plane optical transformations,
as illustrated in Fig. 2.21. Plane-to-plane, or “paraxial,” system analysis is a consistent
theme in this text. We describe the ray version of this approach here, followed by
wave field versions in Section 4.4 and the statistical field version in Section 6.2.

Figure 2.20 Image formation by a lens system.

Figure 2.21 Paraxial ray tracing using ABCD matrices. The dashed line represents a ray path.
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The state of a ray for planar analysis is described by the position x at which the ray
strikes a given plane and the slope u ¼ dx/dz of the incident ray. The state of the ray
is represented by a vector

x
u

� �
(2:19)

The slope of the ray is invariant as it propagates through homogeneous space; the
transformation of the ray on propagating a distance d through free space is

x 0

u 0

� �
¼ 1 d

0 1

� �
x
u

� �
(2:20)

On striking a thin lens, the slope of a ray is transformed to u 0 ¼ u 2 x/F, but the
position of the ray is left unchanged. The ABCD matrix for a thin lens is accordingly

A B
C D

� �
¼

1 0

� 1
F

1

" #
(2:21)

One may use these matrices to construct simple models of the action of lens
systems. For example, the ray transfer matrix from an object plane a distance do in
front of a lens to the image plane a distance di behind the lens is

1 di

0 1

� �
1 0
�1=F 1

� �
1 do

0 1

� �
¼

1� di

F
do þ di �

dido

F

� 1
F

1� do

F

2
64

3
75 (2:22)

If B ¼ do þ di 2 (dido/F ) ¼ 0 then the thin-lens imaging law is satisfied and, as
expected, the output ray position x0 is independent of the slope of the input ray. In
this case, A ¼ 1 2 di/F ¼ 2di/do and x0 ¼ Ax is magnified as expected.

Paraxial ray tracing is often used to roughly analyze optical systems. ABCD ray
tracing is also used to model the transformation of Gaussian beams (Section 3.5)
and to propagate radiance (Section 6.7).

2.4 IMAGING SYSTEMS

Most imaging systems consist of sequences of optical elements. While details of such
systems are most conveniently analyzed using modern ray tracing and design soft-
ware, it is helpful to have a basic concept of the design philosophy of common instru-
ments, such as cameras, microscopes, and telescopes. A camera records images on
film or electronic focal planes. We have much to say about camera and spectrometer
design in Chapters 9 and 10. A microscopes makes small close objects appear larger
to the eye and may be combined with a camera to record magnified images. A
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telescope makes large distant objects appear larger and may be combined with a
camera to record enlarged, if still demagnified, images.

As sketched in Fig. 2.22, a basic microscope consists of an objective lens and an
eyepiece. The object is placed just outside the objective focal point, yielding a highly
magnified real image just in front of the eyepiece. The distance from the objective to
the eyepiece is typically enclosed in the microscope body and is called the tube
length. In the most common convention, the tube length is 160 mm. This enables
one to swap objective lenses and eyepieces within standard microscope bodies. A
10� objective has a focal length of 16 mm, producing a real image magnified by
10 at the eyepiece focal point. A 40� objective has a focal length of 4 mm. From
the eyepiece focal plane one may choose to relay the magnified image onto a record-
ing focal plane and/or through the eyepiece for visual inspection. The eye focuses
most naturally on objects essentially at infinity. Thus the eyepiece is situated to
form a virtual image at infinity. The virtual image is greatly magnified.

As a basic measure of the performance of a microscope, one may compare the
angular size of the object as observed through the eyepiece to the angular size of
the object viewed without the microscope. One observing the object without the
microscope would hold it at one’s near point (the closet point to the eye on which
one can focus). While the near point varies substantially with age, 254 mm is
often given as a standard value. An object of extent xo thus subsumes an angle of
xo/254 when observed without the microscope. This object is magnified to a real
image of size xi ¼2160xo/fo by the objective lens. The angular extent of the
object at infinity viewed through the eyepiece is xi/fe. Thus the magnifying power
(MP) of the microscope is

MP ¼ � 160
fo

� �
254

fe

� �
(2:23)

for fo and fe in mm.

Figure 2.22 Ray diagram for a compound microscope.
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Modern microscopes incorporate many optical components and multiple beam-
paths within the system body, rendering a standard tube length and fixed objective
and eyepiece positions archaic. These systems use “infinity corrected” objectives to
project parallel rays from the objective lens for processing by optical components
within the tube. In many cases, of course, the goal is to form an enlarged real
image on an electronic focal plane rather than a virtual image for human
consumption.

A telescope demagnifies an object but increases the angular range that the object
subsumes at the eye. (In this sense the telescope is the reverse of a microscope. The
microscope reduces the angular range of rays from the object but increases its scale.)
A refractive telescope design is sketched in Fig. 2.23.

The angular extent subsumed by a distant object without a telescope is xo/R,
where xo is the transverse extent of the object and R is the object range. The real
image formed by the objective lens is of extent fo xo/R. The angular extent of the
image after passing through the telescope is thus ( fo xo/Rfe). The angular extent
has thus been magnified by the factor ( fo/fe).

Reflective elements are commonly used for telescopes because one can build
much larger apertures at much less cost with mirrors. (A mirror only needs a high-
quality surface; a lens needs high-quality volume.) As an example, a Cassegrain
reflecting telescope is illustrated in Fig. 2.24. A large concave primary mirror

Figure 2.23 Ray diagram for a refractive telescope.

Figure 2.24 A Cassegrain telescope.
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focuses light on a convex secondary mirror. The combination of the primary and
the secondary form a real image through a hole in the center of the primary. The tele-
scope is designed to produce a virtual image at infinity through the eyepiece and to
magnify the angular size of the object. The fact that reflective optics are dispersion-
free is an additional benefit in telescope design.

2.5 PINHOLE AND CODED APERTURE IMAGING

In a focal imaging system, all rays passing through point xo in the object plane pass
through point xi in the image plane. The visibility between points in the object plane
and points in the image plane is v(xo, yo, xi, yi) ¼ d(xi 2 Mxo, yi 2 MYo), where M is
the magnification. We refer to systems implementing such point-to-point visibilities
as isomorphic systems. In general, imaging based on isomorphisms is extremely
attractive. However, we find throughout this text that substantial design power is
released by relaxing the isomorphic mapping. Motivations for considering noniso-
morphic, or multiplex, imaging include

† Isomorphisms are often physically impossible. The isomorphism of focal
imaging applies only between planes in 3D space. Real objects are distributed
over 3D space and may be described by spectral and polarization features over
higher-dimensional spaces. One must not let the elegance of the focal mapping
distract one from the fact that objects span 3D.

† Details of physical optics and optoelectronic sampling interfaces may make
multiplex systems attractive or essential. For example, lenses are not available
in all frequency ranges.

† Multiplex systems may enable higher system performance relative to data
efficiency, resolution, depth of field, and other parameters.

The next three sections present an introduction to multiplex imaging systems
using examples drawn from geometric analysis. The first example, coded aperture
imaging, is illustrative of the significance of the continuous-to-discrete mapping in
digital sensor systems and of the role of code design in multiplex measurement.
The second example, computed tomography, introduces multidimensional imaging.
The third example, reference structure tomography, introduces representation spaces
and projection sampling.

Coded aperture imaging was developed as a means of imaging fields of high-
energy photons. Refractive and reflective imaging elements are unavailable at high
energies, so focal imaging is not an option for these systems. Pinhole imaging,
which dates back over 500 years in the form of camera obscura and related instru-
ments, is the precursor to coded aperture imaging.

A pinhole imaging system is illustrated in Fig. 2.25. The pinhole is a small hole
of diameter d in an otherwise opaque screen. The light observed on a measurement
screen a distance l behind the pinhole consists of projections of the incident
light through the pinhole. The pinhole is described by the function circ(x/d, y/d ),
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where

circ(x, y) ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
� 0:5

0 otherwise

�
(2:24)

A point source at position (xo, yo, zo) in front of the pinhole is visible at position (xi, yi)
on the measurement plane if the ray from (xo, yo, zo) to (xi, yi) passes through the
pinhole without obscuration. A bit of geometry convinces one that the visibility
for the pinhole camera is

h(xi, yi) ¼ circ
xi þ (l=zo)xo

d þ (ld=zo)
,

yi þ (l=zo)yo

d þ (ld=zo)

� �
(2:25)

Refering to Eqn. (2.1), the mapping between the measurement field and the object
field for this visibility is

g(xi, yi) ¼
ð ð ð

f (xo, yo, zo)circ
xi þ (l=zo)xo

d þ (ld=zo)
,

yi þ (l=zo)yo

d þ (ld=zo)

� �
dxo dyo dzo (2:26)

Equation (2.26) is a convolution and one might attempt decovolution to recover the
original source distribution. In practice, however, one is more apt to consider g(xi, yi)
as the image of the source projected in two dimensions or to use the tomographic
methods discussed in the next section to recover an estimate of the 3D distribution.
g(xi, yi) is inverted with respect to the object and the magnification for an object at
range zo is M ¼ 2l/zo. The resolution of the reconstructed source in isomorphic
imaging systems is defined by the spatial extent of the point visibility, which in
this case is d þ (ld/zo).

A smaller pinhole improves resolution, but decreases the optical energy reaching
the focal plane from the object. The primary motivation in developing coded aperture

Figure 2.25 A pinhole camera.
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imaging is to achieve the imaging functionality and resolution of a pinhole system
without sacrificing photon throughput. Diffraction also plays a role in determining
optimal pinhole size. We discuss diffraction in detail in Chapter 4, but it is helpful
to note here that the size of the projected pinhole will increase because of diffraction
by approximately ll/d, where l is the wavelength of the optical field. On the basis of
this estimate, the actual resolution of the pinhole camera is

Dx ¼ d þ ld

zo
þ ll

d
(2:27)

Dx is minimized by the selection dopt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lzol=(zo þ l)

p
. Assuming that zo� l,

dopt �
ffiffiffiffi
ll
p

and

Dxmin � 2
ffiffiffiffi
ll
p

(2:28)

As an example, the optimal pinhole size is approximately 100 mm for l equal to 1 cm
and l equal to one micrometer. The angular resolution of this system is approximately
20 milliradians (mrad).

Coded aperture imaging consists of replacing the pinhole mask with a more
complex pattern, t(x, y). Increasing the optical throughput without reducing the
system resolution is the primary motivation for coded aperture imaging. As illustrated
in Fig. 2.26, each object point projects the shadow of the coded aperture. The over-
lapping projections from all of the object points are integrated pixel by pixel on the
sensor plane. The visibility for the coded aperture system is

h(xi, yi) ¼ t
xi þ (l=zo)xo

1þ (l=zo)
,

yi þ (l=zo)yo

1þ (l=zo)

� �
(2:29)

Figure 2.26 Coded aperture imaging geometry.
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and the input-output transformation is

g(xi, yi) ¼
ð ð ð

f (xo, yo, zo)t
xi þ (l=zo)xo

1þ (l=zo)
,

yi þ (l=zo)yo

1þ (l=zo)

� �
dxo dyo dzo (2:30)

In contrast with Eqn. (2.26), g(xi, yi) in Eqn. (2.30) is not isomorphic to f (xo, yo, zo).
The coded aperture system is illustrative of several important themes in multiplex

imaging, including the following:

† Sampling. Computational processing is required to produce an image from g(xi,
yi). Computation operates on discrete measurement values rather than continu-
ous fields. The process of turning continuous distributions into discrete samples
is a central focus of imaging system design and analysis.

† Coding. While some constraints exist on the nature of the coded aperture visi-
bility and resolution, the system designer has great freedom in the selection of
t(x, y). Design of the aperture pattern is a coding problem. One seeks a code to
maximize information transfer between object features and the detection system.

† Inversion. Even after t(x, y) is specified, many different algorithms may be con-
sidered for estimation of f (xo, yo, zo) from g(xi, yi). Algorithm design for this
situation is an inverse problem.

For simplicity, we initially limit our analysis to 2D imaging. Equation (2.30) is
reduced to a 2D imaging transformation under the assumption l/zo� 1 using the
definitions ux ¼ xo/zo, uy ¼ yo/zo, and

f̂ (ux, uy) ¼
ð

f (zoux, zouy, zo)dzo (2:31)

In this case

g(xi, yi) ¼
ð ð

f̂ (ux, uy)t xi þ lux, yi þ luy

� 	
dux duy (2:32)

The continuous distribution g(xi, yi) is reduced to discrete samples under the assump-
tion that one measures the output plane with an array of optoelectronic detectors. The
spatial response of the (ij)th detector is modeled by the function pij(x, y) and the dis-
crete output data array is

gij ¼
ð

g(xi, yi)pij(xi, yi)dxi dyi (2:33)

Sampling is typically implemented on a rectangular grid using the same pixel func-
tion for all samples, such that

pij(x, y) ¼ p(x� iD, y� jD) (2:34)

where D is the pixel pitch.
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Code design consists of the selection of a set of discrete features describing t(x, y).
We represent t discretely as

t(x, y) ¼
X

ij

tijt(x� iD, y� jD) (2:35)

As with the sampling system, we will limit our consideration to rectangularly spaced
functions as the expansion basis. But, again as with the sampling system, it is import-
ant to note for future consideration that this is not the only possible choice.

Substituting Eqns. (2.33) and (2.35) into Eqn. (2.32), we find

gi0j0 ¼
X

ij

tij

ð ð
f̂ (ux, uy)t x0 þ lux � iDt , y0 þ luy � jDt

� 	

� p(x0 � i0D, y0 � j0D)dux duy dx0dy0 (2:36)

Assuming that the sampling rate on the coded aperture is the same as the sampling
rate on the sensor plane, we define

p̂i�i0, j�j0 (ux, uy)¼
ð
t x0 þ lux� iD, y0 þ luy� jDt

� 	
h(x0 � i0D, y0 � j0D)dx0 dy0 (2:37)

and

f̂i, j¼
ð

f̂ (ux, uy)p̂i, j(ux, uy)dux duy (2:38)

such that

gi0j0 ¼
X

ij

tij f̂i�i0, j�j0 (2:39)

where f̂ i, j is interpreted as a discrete estimate for f̂ (ux, uy): p̂i�i0,j�j0 (ux, uy) is the
sampling function that determines the accuracy of the assumed correspondence. As
an example, we might assume that

t (x, y)¼ p(x, y)¼ rect
x

D


 �
rect

y

D


 �
(2:40)

where

rect(x)¼ 1 jxj � 0:5
0 otherwise

�
(2:41)

Evaluating Eqn. (2.37) for this aperture and sensor plane sampling function, we find
that p̂i�i0, j�j0 (ux, uy) is the product of triangle functions in ux and uy, as illustrated in
Fig. 2.27. The extent of the sampling function is D/l along the ux and uy directions,
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meaning that the angular resolution of the imaging system is approximately D/l. The
center of the sampling function is at ux ¼ (i 2 i0)D/l, uy ¼ ( j 2 j0)D/l.

The challenge of coding and inversion consists of selecting coefficients tij and an
algorithm for estimating f̂ i,j from Eqn. (2.39). Equation (2.39) is a correlation between
the object and the coded aperture and may be compactly expressed as

g ¼ tØ f (2:42)

This linear transformation of f may be inverted by linear or nonlinear methods. In
general, one seeks an inversion method optimizing some system measure, such as
the mean-square error kf e 2 fk between the estimated object f e and the actual
object f. In the case of coded aperture imaging, one may attempt to optimize esti-
mation over both code design (i.e., selection of t) and image recovery algorithms.

Circulant linear transformations such as correlation and convolution are inverted
by circulant transformations, meaning that the linear inverse of Eqn. (2.42) is also a
correlation. Representing the inverting matrix as t̂, the linear estimation algorithm
takes the form

fe ¼ �tØG

¼ �tØ (tØ f)þ�tØ b (2:43)

Figure 2.27 Sampling function p̂iþi0¼0, jþj0¼0(ux, uy) for rect pattern coded aperture and
sensor plane functions. p̂i, j(ux, uy) is a weighting function for producing the discrete measure-

ment f̂ i, j from the continuous object distribution.
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where we have accounted for noise in the measurement by adding a noise com-
ponent b to g. The goals of system design for linear inversion are to select �t and t
such that

† t is physically allowed.
† �tØ tØ is an identity operator.
† The effect of �tØb in signal ranges of interest is minimized.

The physical implementation of the coded mask is usually taken to be a pinhole array,
in which case the components tij of t are either 0, for opaque regions of the mask; or 1,
for the pinholes. Somewhat better noise rejection would be achieved if tij could be
selected from 1 and 21. In some systems this is achieved by subtracting images
gathered from complementary coded apertures. Using such bipolar codes it is poss-
ible to design delta-correlated tij. Codes satisfying �tØT ¼ d are termed perfect
sequences [130] or nonredundant arrays.

A particularly effective approach to coded aperture design based on uniformly
redundant arrays was proposed by Fenimore and Cannon [73]. The URAs of
Fenimore and Cannon and Gottesman and Fenimore [73,102] are based on quadratic
residue codes. An integer q is a quadratic residue modulo an integer p if there exists
an integer x such that

x2 ¼ q(mod p) (2:44)

If p is a prime number such that p(mod 4) ¼ 1, then a uniformly redundant array is
generated by letting

tij ¼

0 if i ¼ 0
1 if j ¼ 0, i = 0
1 if i AND j are quadratic residues modulo p
1 if neither i nor j are quadratic residues modulo p
0 otherwise

8>>>><
>>>>:

(2:45)

The decoding matrix �t is defined according to

t̂ij ¼
þ1 if i ¼ j ¼ 0
þ1 if tij ¼ 1
�1 if tij ¼ 0, (i, j = 0)

8<
: (2:46)

This choice of t and �t is referred to as the modified uniformly redundant array
(MURA) by Gottesman and Fenimore [102]. �t and t are delta-correlated, with a
peak correlation value for zero shift equal to the number of holes in the aperture
and with zero correlation for other shifts. To preserve the shift-invariant assumption
that a shadow of the mask pattern is cast on the detector array from all angles of
incidence, it is necessary to periodically tile the input aperture with the code t.
Figures 2.28, 2.29, and 2.30 show the transmission codes for p ¼ 5, 11, and 59,
respectively. The cross-correlation �tØ t is also shown. The cross-correlation is
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Figure 2.28 Base transmission pattern, tiled mask, and inversion deconvolution for p ¼ 5.

Figure 2.29 Base transmission pattern, tiled mask, and inversion deconvolution for p ¼ 11.
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implemented under cyclic boundary conditions rather than using zero padding. In
contrast with a pinhole system, the number of pixels in the reconstructed coded aper-
ture image is equal to the number of pixels in the base transmission pattern.
Figures 2.31–2.33 are simulations of coded aperture imaging with the 59 � 59-element
MURA code. As illustrated in the figure, the measured 59 � 59-element data are
strongly positive. For this image the maximum noise-free measurement value is
100, and the minimum value is 58, for a measurement dynamic range of ,2. We
will discuss noise and entropic measures of sensor system performance at various
points in this text, in our first encounter with a multiplex measurement system we
simply note that isomorphic measurement of the image would produce a much
higher measurement dynamic range for this image.

In practice, noise sensitivity is a primary concern in coded aperture and other mul-
tiplex sensor systems. For the MURA-based coded aperture system, Gottesman and
Fenimore [102] argue that the pixel signal-to-noise ratio is

SNRij ¼
Nfijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nfij þ N
P

kl fkl þ
P

kl Bkl

p (2:47)

where N is the number of holes in the coded aperture and Bkl is the noise in the (kl)th
pixel. The form of the SNR in this case is determined by signal-dependent, or “shot,”
noise. We discuss the noise sources in electronic optical detectors in Chapter 5 and

Figure 2.30 Base transmission pattern, tiled mask, and inversion deconvolution for p ¼ 59.

2.5 PINHOLE AND CODED APERTURE IMAGING 39



Figure 2.31 Coded aperture imaging simulation with no noise for the 59 � 59-element code
of Fig. 2.30.

Figure 2.32 Coded aperture imaging simulation with shot noise for the 59 � 59-element
code of Fig. 2.30.
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derive the square-root characteristic form of shot noise in particular. For the 59 � 59
MURA aperture, N ¼ 1749. If we assume that the object consists of binary values 1
and 0, the maximum pixel SNR falls from 41 for a point object to 3 for an object with
200 points active. The smiley face object of Fig. 2.31 consists of 155 points.

Dependence of the SNR on object complexity is a unique feature of multiplex
sensor systems. The equivalent of Eqn. (2.47) for a focal imaging system is

SNRij ¼
Nfijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nfij þ Bij
p (2:48)

This system produces an SNR of approximately
ffiffiffiffi
N
p

independent of the number of
points in the object.

As with the canonical wave and correlation field multiplex systems presented
in Sections 10.2 and 6.4.2, coded aperture imaging provides a very high depth
field image but also suffers from the same SNR deterioration in proportion to
source complexity.

2.6 PROJECTION TOMOGRAPHY

To this point we have considered images as two-dimensional distributions, despite
the fact that target objects and the space in which they are embedded are typically

Figure 2.33 Coded aperture imaging simulation with additive noise for the 59 � 59-element
code of Fig. 2.30.
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three-dimensional. Historically, images were two-dimensional because focal imaging
is a plane-to-plane transformation and because photochemical and electronic detector
arrays are typically 2D films or focal planes. Using computational image synthesis,
however, it is now common to form 3D images from multiplex measurements. Of
course, visualization and display of 3D images then presents new and different
challenges.

A variety of methods have been applied to 3D imaging, including techniques
derived from analogy with biological stereo vision systems and actively illuminated
acoustic and optical ranging systems. Each approach has advantages specific to tar-
geted object classes and applications. Ranging and stereo vision are best adapted
to opaque objects where the goal is to estimate a surface topology embedded in
three dimensions.

The present section and the next briefly overview tomographic methods for multi-
dimensional imaging. These sections rely on analytical techniques and concepts, such
as linear transform theory, the Fourier transform and vector spaces, which are not for-
mally introduced until Chapter 3. The reader unfamiliar with these concepts may find
it useful to read the first few sections of that chapter before proceeding. Our survey of
computed tomography is necessarily brief; detailed surveys are presented by Kak and
Slaney [131] and Buzug [37].

Tomography relies on a simple 3D extension of the density-based object model
that we have applied in this chapter. The word tomography is derived from the
Greek tomos, meaning slice or section, and graphia, meaning describing. The
word predates computational methods and originally referred to an analog technique
for imaging a cross section of a moving object. While tomography is sometimes used
to refer to any method for measuring 3D distributions (i.e., optical coherence
tomography; Section 6.5), computed tomography (CT) generally refers to the projec-
tion methods described in this section.

Despite our focus on 3D imaging, we begin by considering tomography of 2D
objects using a one-dimensional detector array. 2D analysis is mathematically
simpler and is relevant to common X-ray illumination and measurement hardware.
2D slice tomography systems are illustrated in Fig. 2.34. In parallel beam systems,
a collimated beam of X rays illuminates the object. The object is rotated in front of
the X-ray source and one-dimensional detector opposite the source measures the inte-
grated absoption along a line through the object for each ray component.

As always, the object is described by a density function f (x, y). Defining, as
illustrated in Fig. 2.35, l to be the distance of a particular ray from the origin, u to
be the angle between a normal to the ray and the x axis, and a to be the distance
along the ray, measurements collected by a parallel beam tomography system take
the form

g l, uð Þ ¼
ð

f l cos u� a sin u, l sin uþ a cos uð Þda (2:49)

where g(l, u) is the Radon transform of f (x, y). The Radon transform is defined
for f [ L2(Rn) as the integral of f over all hyperplanes of dimension n 2 1. Each
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Figure 2.34 Tomographic sampling geometries.

Figure 2.35 Projection tomography geometry.
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hyperplane is defined by a surface normal vector in [in Eqn. (2.49) in ¼ cosu ix þ sinu iy].
The equation of the hyperplane is x . in ¼ l. The Radon transform in Rn may be expressed

R{f }(l, in) ¼
ð

Rn�1

f (lin þ a)(da)n�1 (2:50)

where a is a vector in the hyperplane orthogonal to in. With reference to the definition
given in Eqn. (3.10), the Fourier transform with respect to l ofR{ f }(l, in) is

F l R{ f }(l, in)f g¼
ð ð

. . .

ð
f̂ (u)e2pu� linþað Þe�2p iull(da)n�1(du)ndl

¼ f̂ (u ¼ ulin) (2:51)

Equation (2.51), relating the 1D Fourier transform of the Radon transform to the Fourier
transform sampled on a line parallel to in, is called the projection slice theorem.

In the case of the Radon transform on R2, the Fourier transform with respect to l of
Eqn. (2.49) yields

ĝ ul, uð Þ ¼
ð ð ð ð

g(l, u)e�j2pulldu dv dl da (2:52)

¼ f̂ u ¼ ul cos u, v ¼ ul sin uð Þ (2:53)

where f̂ is the Fourier transform of f. If we sample uniformly in l space along an aper-
ture of length Rs, then Dul ¼ 2p/Rs. The sample period along l determines the spatial
extent of the sample.

In principle, one could use Eqn. (2.52) to sample the Fourier space of the object
and then inverse-transform to estimate the object density. In practice, difficulties in
interpolation and sampling in the Fourier space make an alternative algorithm
more attractive. The alternative approach is termed convolution–backprojection.
The algorithm is as follows:

1. Measure the projections g(l, u).

2. Fourier-transform to obtain ĝ(ul, u).

3. Multiply ĝ(ul, u) by the filter julj and inverse-transform. This step consists of
convolving g(l, u) with the inverse transformation of julj (the range of ul is
limited to the maximum frequency sampled). This step produces the filtered
function Q(l, u) ¼

Ð
juljĝ ul, uð Þ exp (i2pull)dul.

4. Sum the filtered functions Q(l, u) interpolated at points l ¼ x cos uþ y sin u to
produce the reconstructed estimate of f. This constitutes the backprojection step.

To understand the filtered backprojection approach, we express the inverse Fourier
transform relationship

f (x, y) ¼
ð ð

f̂ u, vð Þei2p(uxþvy)du dv (2:54)
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in cylindrical coordinates as

f (x, y) ¼
ð2p

0

ð1

0

f̂ w, uð Þei2pw(x cos uþy sin u)w dw du (2:55)

where w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

. Equation (2.55) can be rearranged to yield

f (x, y) ¼
ðp

0

ð1

0

f̂ w, uð Þei2pw(x cos uþy sin u)
�

þ f̂ w, uþ pð Þe�i2pw(x cos uþy sin u)
	
w dw du (2:56)

¼
ðp

0

ð1

�1

f̂ w, uð Þei2pw(x cos uþy sin u)jwjdw du (2:57)

where we use the fact that for real-valued f (x, y), f̂ (w, u ) ¼ f̂ (�w, uþ p). This
means that

f (x, y) ¼
ðp

0

Q(l ¼ x cos uþ y sin u, u)du (2:58)

The convolution–backprojection algorithm is illustrated in Fig. 2.36, which
shows the Radon transform, the Fourier transform ĝ(ul, u), the Fourier transform
f̂ (u, v), Q(l, u), and the reconstructed object estimate. Note, as expected from the pro-

jection slice theorem, that ĝ(ul, u) corresponds to slices of f̂ (u, v) “unrolled” around
the origin. Edges of the Radon transform are enhanced in Q(l, u), which is a “high-
pass” version of g(l, u).

We turn finally to 3D tomography, where we choose to focus on projections
measured by a camera. A camera measures a bundle of rays passing through a prin-
cipal point, (xo, yo, zo). For example, we saw in Section 2.5 that a pinhole or coded

aperture imaging captures f̂ (ux, uy), where, repeating Eqn. (2.31)

f̂ (ux, uy) ¼
ð

f (zoux, zouy, zo)dzo (2:59)

f̂(ux, uy) is the integral of f (x, y, z) along a line through the origin of the (xo, yo, zo)
coordinate system. (ux, uy) are angles describing the direction of the line on the
unit sphere. In two dimensions, a system that collects rays through series of principal
points implements fan beam tomography. Fan beam systems often combine a point
x-ray source with a distributed array of detectors, as illustrated in Fig. 2.34.

In 3D, tomographic imaging using projections through a sequence of principal
points is cone beam tomography. Note that Eqn. (2.59) over a range of vertex
points is not the 3D Radon transform. We refer to the transformation based on projec-
tions along ray bundles as the X-ray transform. The X-ray transform is closely related
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to the Radon transform, however, and can be inverted by similar means. The 4D
X-ray transform of 3D objects, consisting of projections through all principal points
on a sphere surrounding an object, overconstrains the object. Tuy [233] des-
cribes reduced vertex paths that produce well-conditioned 3D X-ray transforms of
3D objects.

A discussion of cone beam tomography using optical imagers is presented
by Marks et al. [168], who apply the circular vertex path inversion algorithm

Figure 2.36 Tomographic imaging with the convolution–backprojection algorithm.
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developed by Feldkamp et al. [68]. The algorithm uses 3D convolution–
backprojection based on the vertex path geometry and parameters illustrated
in Fig. 2.37. Projection data fF(ux, uy) are weighted and convolved with the separable
filters

hy(uy) ¼
ðvyo

�vyo

dvjvj exp
ivuy � 2jvj

vyo

hx(ux) ¼ sin(uxvzo)
puz

(2:60)

where vyo and vzo are the angular sampling frequencies of the camera. These filters
produce the intermediate function

QF(ux, uy) ¼
ð ð

du 0x du 0y hx(ux � u 0x)hy(uy � u 0y)
fF(u 0x, u 0y)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u 0x

2
u 0y

2
q (2:61)

and the reconstructed 3D object density is

fE(x, y, z) ¼ 1
4p2

ð
d2

(d þ x cosf)2 Qf

y

d þ x cosf
,

z sinf
d þ x cosf

� �
df (2:62)

2.7 REFERENCE STRUCTURE TOMOGRAPHY

Optical sensor design boils down to compromises between mathematically attractive
and physically attainable visibilities. In most cases, physical mappings are the starting
point of design. So far in this chapter we have encountered two approaches driven

Figure 2.37 Cone beam geometry.
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primarily by ease of physical implementation (focal and tomographic imaging) and
one attempt to introduce artificial coding (coded aperture imaging). The tension
between physical and mathematical/coding constraints continues to develop in the
remainder of the text.

The ultimate challenge of optical sensor design is to build a system such that the
visibility v(A, B) is optimal for the sensor task. 3D optical design, specifying the
structure and composition of optical elements in a volume between the object and
detector elements, is the ultimate toolkit for visibility coding. Most current optical
design, however, is based on sequences of quasiplanar surfaces. In view of the ele-
gance of focal imaging and the computational challenge of 3D design, the planar/
ray-based approach is generally appropriate and productive. 3D design will,
however, ultimately yield superior system performance.

As a first introduction to the challenges and opportunities of 3D optics, we con-
sider reference structure tomography (RST) as an extension of coded aperture
imaging to multiple dimensions [30]. Ironically, to ease explanation and analysis,
our discussion of RST is limited to the 2D plane. The basic concept of a reference
structure is illustrated in Fig. 2.38. A set of detectors at fixed points observes a
radiant object through a set of reference obscurants. A ray through the object is
visible at a detector if it does not intersect an obscurant; rays that intersect obscurants
are not visible. The reference structure/detector geometry segments the object space
into discrete visibility cells. The visibility cells in Fig. 2.38 are indexed by signatures
xi ¼ . . . 1101001 . . . , where xij is one if the ith cell is visible to the jth detector and
zero otherwise.

Figure 2.38 Reference structure geometry.
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As discussed in Section 2.1, the object signal may be decomposed into com-
ponents fi such that

fj ¼
ð

cellj

f (A)dA (2:63)

Measurements on the system are then of the form

gi ¼
X

j

xij fj (2:64)

As is Eqn. (2.4), Eqn. (2.64) may be expressed in discrete form as g ¼ Hf . In contrast
with coded aperture imaging, the RST mapping is shift variant and the measurements
are not embedded in a natural continuous space.

Interesting scaling laws arise from the consideration of RST systems consisting of
m detectors and n obscurants in a d-dimensional embedding space. The number of
possible signatures (2m) is much larger than the number of distinct visibility cells
(O(mdnd)). Agarwal et al. prove a lower bound of order (mn=log(n))d exists on the
minimum number of distinct signatures [2]. This means that despite the fact that
different cells have the same signature in Fig. 2.38, as the scale of the system
grows, each cell tends to have a unique signature.

The RST system might thus be useful as a point source location system, since a
point source hidden in (mn)d cells would be located in m measurements. Since an effi-
cient system for point source location on N cells requires log N measurements, RST is
efficient for this purpose only if m� n. Point source localization may be regarded as
an extreme example of compressive sampling or combinatorial group testing. The
nature of the object is constrained, in this case by extreme sparsity, such that recon-
struction is possible with many fewer measurements than the number of resolution
cells. More generally, reference structures may be combined with compressive esti-
mation [38,58] to image multipoint sparse distributions on the object space.

Since the number of signature cells is always greater than m, the linear mapping
g ¼ Hf is always ill-conditioned. H is a m� p matrix, where p is the number of sig-
natures realized by a given reference structure. H may be factored into the product
H ¼ USVy by singular value decomposition (SVD). U and V are m� m and
p� p unitary matrices and S is a m� p matrix with nonnegative singular values
along the diagonal and zeros off the diagonal.

Depending on the design of the reference structure and the statistics of the object,
one may find that the pseudoinverse

fe ¼ VS
�1Uyg (2:65)

is a good estimate of f. We refer to this approach in Section 7.5 as projection of f onto
the range of H. The range of H is an m-dimensional subspace of the p-dimensional
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space spanned by the state of the signature cells. The complement of this subspace in Rp

is the null space of H. The use of prior information, such as the fact that f consists of a
point source, may allow one to infer the null space structure of f from measurements in
the range of H. Brady et al. [30] take this approach a step further by assuming that f is
described by a continuous basis rather than the visibility cell mosaic.

Analysis of the measurement, representation, and analysis spaces requires more
mathematical tools than we have yet utilized. We develop such tools in the next
chapter and revisit abstract measurement strategies in Section 7.5.

PROBLEMS

2.1 Visibility

(a) Suppose that the half space x . 0 is filled with water while the half-space
x , 0 is filled with air. Show that the visibility v(A, B) ¼ 1 for all points
A and B [ R3.

(b) Suppose that the subspace l . x . 21 is filled with glass (e.g., a window)
while the remainder of space is filled with air. Show that the visibility
v(A, B) ¼ 1 for all points A and B [ R3.

(c) According to Eqn. (2.5), the transmission angle u2 becomes complex for
(n1/n2)sin u1 . 1. In this case, termed total internal reflection, there is no
transmitted ray from region 1 into region 2. How do you reconcile the fact
that if n1 . n2 some rays from region 1 never penetrate region 2 with the
claim that all points in region 1 are visible to all points in region 2?

2.2 Materials Dispersion. The dispersive properties of a refractive medium are
often modeled using the Sellmeier equation

n2(l) ¼ 1þ B1l
2

l2 � C1
þ B2l

2

l2 � C2
þ B3l

2

l2 � C3
(2:66)

The Sellmeier coefficients for Schott glass type SF14 are given in Table 2.1.

(a) Plot n(l) for SF14 for l ¼ 400–800 nm.

(b) For u?1 ¼ p=8, u?2 ¼ �p=8, and ua ¼ �p=16, plot ub as a function of l
over the range 400–800 nm for an SF14 prism.

TABLE 2.1 Dispersion Coefficients of SF14 Glass

B1 1.69182538
B2 0.285919934
B3 1.12595145
C1 0.0133151542
C2 0.0612647445
C3 118.405242
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2.3 Microscopy. A modern microscope using an infinity-corrected objective
forms an intermediate image at a distance termed the reference focal length.
What is the magnification of the objective in terms of the reference focal
length and the objective focal length?

2.4 Telescopy. Estimate the mass of a 1-m aperture 1-m focal length glass refrac-
tive lens. Compare your answer with the mass of a 1-m aperture mirror.

2.5 Ray Tracing. Consider an object placed 75 cm in front a 50-cm focal length
lens. A second 50-cm focal length lens is placed 10 cm behind the first.
Sketch a ray diagram for this system, showing the intermediate and final
image planes. Is the image erect or inverted, real or virtual? Estimate the
magnification.

2.6 Paraxial Ray Tracing. What is the ABCD matrix for a parabolic mirror? What
is the ray transfer matrix for a Cassegrain telescope? How does the magnifi-
cation of the telescope appear in the ray transfer matrix?

2.7 Spot Diagrams. Consider a convex lens in the geometry of Fig. 2.10.
Assuming that R1 ¼ R2 ¼ 20 cm and n ¼ 1.5, write a computer program to
generate a spot diagram in the nominal thin lens focal plane for parallel rays
incident along the z axis. A spot diagram is a distribution of ray crossing
points. For example, use numerical analysis to find the point that a ray incident
on the lens at point (x, y) crosses the focal plane. Such a ray hits the first
surface of the lens at point z ¼ (x2 þ y2)/2R1 2 d1 and is refracted onto a
new ray direction. The refracted ray hits the second surface at the point such
that (x, y, z) þ Ci t1 satisfies z ¼ d2 � (x2 þ y2)=2R1. The ray is refracted
from this point toward the focal plane. Plot spot diagrams for the refracted
rays for diverse input points at various planes near the focal plane to
attempt to find the plane of best focus. Is the best focal distance the same as
predicted by Eqn. (2.16)? What is the area covered by your tightest spot
diagram? (Hint: Since the lens is rotationally symmetric and the rays are inci-
dent along the axis, it is sufficient to solve the ray tracing problem in the xz
plane and rotate the 1D spot diagram to generate a 2D diagram.)

2.8 Computational Ray Tracing. Automated ray tracing software is the workhorse
of modern optical design. The goal of this problem is to write a ray tracing
program using a mathematical programming environment (e.g., Matlab or
Mathematica). For simplicity, work with rays confined to the xz plane. In a
2D ray tracing program, each ray has a current position in the plane and a
current unit vector. To move to the next position, one must solve for the inter-
cept at which the ray hits the next surface in the optical system. One draws a
line from the current position to the next position along the current direction
and solves for the new unit vector using Snell’s law. Snell’s law at any
surface in the plane is

n1ii � in ¼ n2it � in (2:67)
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where i i is a unit vector along the incident ray, i t is a unit vector along the
refracted ray and i n is a unit vector parallel to the surface normal. Given i i

and in, one solves for i t using Snell’s law and the normalization condition.
The nth surface is defined by the curve Fn(x, z) ¼ 0 and the normal at
points on the surface is

@Fn

@x
ix þ

@Fn

@z
iz (2:68)

which one must normalize to obtain in. As an example, Fig. 2.39 is a ray
tracing plot for 20 rays normally incident on a sequence of lenses. The
index of refraction of each lens is 1.3. The nth surface is described by

z ¼ nDþ k(x� a)(xþ a)x2 (2:69)

for n even and

z ¼ (n� 1)Dþ d� k(x� a)(xþ a)x2 (2:70)

for n odd. In Fig. 2.39, k ¼ 1/2500, a ¼ 10, D ¼ 4, and d ¼ 1. (Notice
that ray tracing does not require specification of spatial scale. See Section
10.4.1 for a discussion of scale and ray tracing.) Write a program to trace
rays through an arbitrary sequence of surfaces in the 2D plane. Demonstrate
the utility of your program by showing ray traces through three to five

Figure 2.39 Ray tracing through arbitrary lenses.
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lenses satisfying the general form of Eqn. (2.69) for various values of a, k, d,
and D.

2.9 Pinhole Visibility. Derive the geometric visibility for a pinhole camera [Eqn.
(2.25)].

2.10 Coded Aperture Imaging. Design and simulate a coded aperture imaging
system using a MURA mask. Use a mask with 50 or more resolution cells
along each axis.

(a) Plot the transmission mask, the decoding matrix, and the cross-correlation
of the two.

(b) Simulate reconstruction of an image of your choice, showing both the
measured data and its reconstruction using the MURA decoding matrix.

(c) Add noise to your simulated data in the form of normal and Poisson
distributed values at various levels and show reconstruction using the
decoding matrix.

(d) Use inverse Fourier filtering to reconstruct the image (using the FFT of the
mask as an inverse filter). Plot the FFT of the mask.

(e) Submit your code, images and a written description of your results.

2.11 Computed Tomography

(a) Plot the functions f1(x, y)¼ rect(x)rect( y) and f2(x, y)¼ rect(x)rect( y)(1 2

rect(x þ y)rect(x 2 y)).

(b) Compute the Radon transforms of f1(x, y) and f2(x, y) numerically.

(c) Use a numerical implementation of the convolution–backprojection tech-
nique described in Section 2.6 to estimate f1(x, y) and f2(x, y) from their
Radon transforms.

2.12 Reference Structure Tomography. A 2D reference structure tomography
system as sketched in Fig. 2.38 modulates the visibility of an object embed-
ding space using n obscuring disks. The visibility is observed by m detectors.

(a) Present an argument justifying the claim that the number of signature cells
is of order m2n2.

(b) Assuming prior knowledge that the object is a point source, estimate the
number of measurements necessary to find the signature cell occupied by
the object.

(c) For what values of m and n would one expect a set of measurements to
uniquely identify the signature cell occupied by a point object?
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3
ANALYSIS

. . .the electric forces can disentangle themselves from material bodies and can continue
to subsist as conditions or changes in the state of space.

—H. Hertz [118]

3.1 ANALYTICAL TOOLS

Chapter 2 developed a geometric model for optical propagation and detection and
described algorithms for object estimation on the basis of this model. While
geometric analysis is of enormous utility in analysis of patterns formed on image
or projection planes, it is less useful in analysis of optical signals at arbitrary
points in the space between objects and sensors. Analysis of the optical system at
all points in space requires the concept of “the optical field.” The field describes
the state of optical phenomena, such as spectra, coherence, and polarization par-
ameters, independent of sources and detectors.

Representation, analysis, transformation, and measurement of optical fields are the
focus of the next four chapters. The present chapter develops a mathematical frame-
work for analysis of the field from the perspective of sensor systems. A distinction
may be drawn between optical systems, such as laser resonators and fiber waveguides,
involving relatively few spatial channels and systems, such as imagers and spec-
trometers, involving a large number of degrees of freedom. The degrees of freedom
are typically typically expressed as pixel values, modal amplitudes or Fourier com-
ponents. It is not uncommon for a sensor system to involve 10621012 parameters.
To work with such complex fields, this chapter explores mathematical tools
drawn from harmonic analysis. We begin to apply these tools to physical field analysis
in Chapter 4.

Optical Imaging and Spectroscopy. By David J. Brady
Copyright # 2009 John Wiley & Sons, Inc.
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We develop two distinct sets of mathematical tools:

1. Transformation tools, which enable us to analyze propagation of fields from
one space to another

2. Sampling tools, which enable us to represent continuous field distributions
using discrete sets of numbers

A third set of mathematical tools, signal encoding and estimation from sample data, is
considered in Chapters 7 and 8.

This chapter initially considers transformation and sampling in the context of
conventional Fourier analysis, meaning that transformations are based on Fourier
transfer functions and impulse response kernels and sampling is based on the
Whittaker–Shannon sampling theorem. Since the mid-1980s, however, dramatic dis-
coveries have revolutionized harmonic signal analysis. New tools drawn from
wavelet theory allow us to compare various mathematical models for fields, includ-
ing different classes of functions (plane waves, modes, and wavelets) that can be
used to represent fields. Different mathematical bases enable us to flexibly distribute
discrete components to optimize computational processing efficiency in field
analysis.

Section 3.2 broadly describes the nature of fields and field transformations.
Sections 3.3–3.5 focus on basic properties of Fourier and Fresnel transformations.
We consider conventional Shannon sampling in Section 3.6. Section 3.7 discusses
discrete numerical analysis of linear transformations. Sections 3.8–3.10 briefly
extend sampling and discrete transformation analysis to include wavelet analysis.

3.2 FIELDS AND TRANSFORMATIONS

A field is a distribution function defined over a space, meaning that a field value is
associated with every point in the space. The optical field is a radiation field,
meaning that it propagates through space as a wave. Propagation induces relationships
between the field at different points in space and constrains the range of distribution
functions that describe physically realizable fields.

Optical phenomena produce a variety of observables at each point in the
radiation space. The “data cube” of all possible observables at all points is a
naive representation of the information encoded on the optical signal. Well-
informed characterization of the optical signal in terms of signal values at discrete
points, modal applitudes, or boundary conditions greatly reduces the complexity of
representing and analyzing the field. Our goal in this chapter is to develop the
mathematical tools that enable efficient analysis. While our discussion is often
abstract, it is important to remember that the mathematical distributions are tied
to physical observables. On the other hand, this association need not be parti-
cularly direct. We often find it useful to use field distributions that describe func-
tions that are not directly observable in order to develop system models for
ultimately observable phenomena.
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The state of the optical field is described using distributions defined over various
spaces. The most obvious space is Euclidean space–time, R3 � T, and the most
obvious field distribution is the electric field E(r, t). The optical field cannot be an
arbitrary distribution because physical propagation rules induce correlations
between points in space–time. For the field independent of sources and detectors,
these relationships are embodied in the Maxwell equations discussed in Chapter 4.
The quantum statistical nature of optical field generation and detection is most
easily incorporated in these relationships using the coherence theory developed in
Chapter 6.

System analysis using field theory consists of the use of physical relationships
to determine the field in a region of space on the basis of the specification of the
field in a different region. The basic problem is illustrated in Fig. 3.1. The field is
specified in one region, such as the (x, y) plane illustrated in the figure. This
plane may correspond to the surface of an object or to an aperture through which
object fields propagate. Given the field on an input boundary, we combine mathemat-
ical tools from this chapter with physical models from Chapter 4 to estimate the
field elsewhere. In Fig. 3.1, the particular goal is to find the field on the output
(x0, y0) plane.

Mathematically, propagation of the field from the input boundary to an output
boundary may be regarded as a transformation from a distribution f (x, y, t) on the
input plane to a distribution g(x0, y0, t) on the output plane. For optical fields this trans-
formation is linear.

We represent propagation of the field from one boundary to another by the
transformation g(x0, y0) ¼ Tf f(x, y)g. The transformation Tf.g is linear over its
functional domain if for all functions f1(x, y) and f2(x, y) in the domain and for all
scalars a and b

T {af1(x)þ bf2(x)} ¼ aT {f1(x)}þ bT{ f2(x)} (3:1)

Figure 3.1 Plane-to-plane transformation of optical fields.
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Linearity allows transformations to be analyzed using superpositions of basis functions.
A function f (x, y) in the range of a discrete basis ffn(x, y)g may be expressed

f (x, y) ¼
X

n

fnfn(x, y) (3:2)

This chapter explores several potential basis functions fn. The advantage of this
approach is the effect of a linear transformation on the basis functions is easily
mapped onto transformations of arbitrary input distributions by algebraic methods.
Linearity implies that

T{ f (x, y)} ¼
X

n

fnT{fn(x, y)} (3:3)

For the discrete representation of Eqn. (3.2), the range of the transformation is also
spanned by a discrete basis cm(x, y) such that

T{fn(x, y)} ¼
X

m

hnmcm(x, y) (3:4)

Representing the input function f (x, y) by a vector of discrete coefficients f ¼ f fng and
the output function g(x0, y0) by a vector of discrete coefficients g ¼ fgmg such that

g(x0, y0) ¼
X

m

gmcm(x, y) (3:5)

linearity allows us to express the transformation algebrically as g ¼ Hf, where the
coefficients of H are hnm.

Similar representations of a linear transformation may be developed for functions
represented on continuously indexed bases. The simplest example builds on the Dirac
d function. The input distribution is represented on the d function basis as

f (x, y) ¼
ð ð

f (x0, y0)d(x� x0, y� y0)dx0 dy0 (3:6)

Using the d function basis an arbitrary linear transformation may be expressed in
integral form by noting

T{ f (x, y)} ¼ T

ð ð
f (x0, y0)d (x� x0, y� y0) dx0dy0

� �

¼
ð ð

f (x0, y0)T{d(x� x0, y� y0)}dx0dy0

¼
ð ð

f (x0, y0)h(x00, x0, y00, y0) dx0dy0 (3:7)

where h(x00, x0, y00, y0) ¼ Tfd(x 2 x0, y 2 y0)g is the impulse response associated with
the transformation Tf.g.
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Harmonic bases are particularly useful in the analysis of shift-invariant linear
transformations. Letting g(x0, y0) ¼ Tf f (x, y)g, Tf.g is shift-invariant if

T{ f (x� xo, y� yo)} ¼ g(x0 � xo, y0 � yo) (3:8)

The impulse response of a shift-invariant transformation takes the form h(x0, x0,
y0, y0) ¼ h(x0 2 x, y0 2 y) and the integral representation of the transformation is
the convolution

g(x0, y0) ¼ T{ f (x, y)} ¼
ð ð

f (x, y)h(x0 � x, y0 � y)dx dy (3:9)

Shift invariance means that shifts in the input distribution produce identical shifts in
the output distribution. Imaging systems are often approximately shift-invariant after
accounting for magnification, distortion, and discrete sampling.

Optical field propagation can usually be modeled as a linear transformation and
can sometimes be modeled as a shift-invariant linear transformation. Shift invariance
applies in imaging and diffraction in homogeneous media, where a shift in the input
object produces a corresponding shift in the output image or diffraction pattern. Shift
invariance does not apply to diffraction or refraction through structured optical scat-
terers or devices. Recalling, for example, field propagation through reference struc-
tures from Section 2.7, one easily sees that shift in the object field produces a
complex shift-variant recoding of the object shadow.

3.3 FOURIER ANALYSIS

Fourier analysis is a powerful tool for analysis of shift-invariant systems. Since shift-
invariant imaging and field propagation are central to optical systems, Fourier analy-
sis is ubiquitous in this text. The attraction is that Fourier analysis allows the response
of a linear shift-invariant system to be modeled by a multiplicative transfer function
( filter). Fourier analysis also arises naturally as an explanation of resonance and color
in optical cavities and quantum mechanical interactions. One might say that Fourier
analysis is attractive because optical propagation is linear and because field–matter
interactions are nonlinear.

Fourier transforms take slightly different forms in different texts; here we represent
the Fourier transform f̂(u) of a function f (x) [ L2(R) as

f̂ (u) ¼
ð1

�1

f (x)e�2pixudx (3:10)

with inverse transformation

f (x) ¼
ð1

�1

f̂ (u)e2pixudu (3:11)
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In optical system analysis one often has recourse to multidimensional Fourier trans-
forms, which one defines for f [ L2(Rn) as

f̂ (u1, u2, u3 � � � ) ¼
ð1

�1

ð1

�1

ð1

�1

. . . f (x1, x2, x3 . . .)Pje
�2pixjudxj (3:12)

Useful identities associated with the one-dimensional Fourier transformation include

1. Differentiation

F
df (x)

dx

� �
¼ 2piuf̂ (u) (3:13)

and

F�1 df̂ (u)
du

( )
¼ �2pixf (x) (3:14)

2. Translation

F{ f (x� xo)} ¼ e�2pixou f̂ (u) (3:15)

3. Dilation. For real a = 0

F{f (ax)} ¼ 1
jaj f̂

� u

a

�
(3:16)

4. Convolution

F f (x)g(x)f g ¼
ð1

�1

f̂ (u0)ĝ(u� u0)du0 (3:17)

and

F

ð1

�1

f (x0)g(x� x0)dx0

8<
:

9=
; ¼ f̂ (u)ĝ(u) (3:18)

5. Plancherel’s theorem. k f (x)k ¼ k f̂ (u)k, for example

ð1

�1

j f̂ (u)j2du ¼
ð1

�1

j f (x)j2dx (3:19)
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Plancherel’s theorem is easily extended to show that for functions f (x) [ L2(R)
and g(x) [ L2(R)

ð1

�1

f̂
�
(u)ĝ(u) du ¼

ð1

�1

f �(x)g(x)dx (3:20)

6. Localization. Defining

mf ¼
1

jj f jj2
ð1

�1

xj f (x)j2dx (3:21)

s2
f ¼

1

jj f jj2
ð1

�1

(x� mf )
2j f (x)j2dx (3:22)

mf̂ ¼
1

jj f̂ jj2
ð1

�1

uj f̂ (u)j2 du (3:23)

and

s2
f̂
¼ 1

jj f̂ jj2
ð1

�1

(u� m f̂ )
2j f̂ (u)j2du (3:24)

we find

s 2
f s

2
f̂
� 1

16p 2
(3:25)

Equation (3.25) is often referred to as the uncertainty relationship, is the basis for the
Heisenberg uncertainty relationship of quantum mechanics. It describes the impossi-
bility of simultaneous signal localization in both the spatial and spectral regimes.

Proof of Eqn. (3.25) begins by noting that we can set m f ¼ 0 without loss of gen-
erality because by Eqn. (3.15) we know j f̂ (u)j to be invariant under translation of the
x axis. We then find that

s 2
f s

2
f̂
¼ 1

jj f jj2jj f̂ jj2
ð1

�1

ð1

�1

x2j f (x)j2(u� mf̂ )
2j f̂ (u)j2dx du (3:26)
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Combining Eqns. (3.14) and (3.19), we note that

ð1

�1

j2pixf (x)j2dx ¼
ð1

�1

���� d f̂ (u)
du

����
2

du (3:27)

and

s 2
f s

2
f̂
¼ 1

4p 2

1

jj f jj2 jj f̂ jj2
ð1

�1

ð1

�1

u2

���� d f̂ (u0)
du

����
2

j f̂ (uþ mf̂ )j
2du0du (3:28)

To simplify Eqn. (3.28), we note that an inner product ka j bl, where a and b
are functions in L2fRg may be defined

hajbi ¼
ð1

�1

a�(x)b(x)dx (3:29)

In terms of this inner product, Eqn. (3.28) takes the form

s 2
f s

2
f̂
¼ 1

4p 2

(d f̂ =du)j(d f̂ =du)
� �

huf̂ juf̂ i
h f j f ih f̂ j f̂ i

(3:30)

Proof of the inner product identity [ka j al kb j bl] � jka j blj2 is straightforward.
Applying this identity to Eqn. (3.30) yields

s 2
f s

2
f̂
� 1

4p 2

d f̂

du
juf̂

* +�����
�����
2

h f j f ih f̂ j f̂ i
(3:31)

For a function f̂ (u) in L2fRg integration of

d uf̂
2

� �

du
¼ f̂

2 þ uf̂
� d f̂

du
þ uf̂

d f̂
�

du
(3:32)

yields

2<
d f̂

du
juf̂

* +( )
¼ �h f̂ j f̂ i (3:33)
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Noting that

d f̂

du
juf̂

* +�����
�����
2

� < d f̂

du
juf̂

* +( )�����
�����
2

¼ h f̂ j f̂ i
4

(3:34)

we find

s 2
f s

2
f̂
� 1

16p 2
(3:35)

Proof that Eqn. (3.35) is an equality for

f (x) ¼ ae�b(x�xo)2
(3:36)

is left as an exercise.
Properties 1–6 extend trivially to multidimensional Fourier transforms. Properties

related to coordinate transformations are unique to multidimensional systems,
however. In two dimensions, we may consider the effect of rotation as an example.

Rotation in Two Dimensions The two-dimensional Fourier transform is

f̂ (u, v) ¼
ð1

�1

ð1

�1

f (x, y)e�2pi(xuþyv)dx dy (3:37)

Under the rotation

x0

y0

	 

¼ cos u sin u
�sin u cos u

	 

x
y

	 

(3:38)

we find that

F{ f (x0, y0)} ¼ f̂ (u cos uþ v sin u, v cos u� u sin u) (3:39)

Cylindrical Coordinates Analysis of the Fourier transform in other coordinate
systems is also of interest. In optical systems with a well-defined axis of propagation,
cylindrical coordinates are of particular interest. In cylindrical coordinates the two-
dimensional Fourier transformation is

f̂ (u, û ) ¼
ð1

0

ðp

�p

f (r, u)e�2piru cos (u�û )r dr du (3:40)
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If the input distribution is circularly symmetric f (r, u) ¼ f (r) and the Fourier
transformation reduces to the Hankel transformation

f̂ (u) ¼ 2p
ð1

0

f (r)J0(2pru)r dr (3:41)

where J0(x) is the zeroth-order Bessel function of the first kind and we use the identity

2pJ0(2px) ¼
ðp

�p

e�2pix cos(u)du (3:42)

The inverse transform is the same as the forward transform:

f (r) ¼ 2p
ð1

0

f̂ (u)J0(2pru)u du (3:43)

3.4 TRANSFER FUNCTIONS AND FILTERS

As mentioned previously, Fourier analysis is particularly attractive when considering
linear shift-invariant (LSI) transformations arising in imaging and diffraction. The
basis of this attraction arises from the convolution theorem [Eqn. (3.18)]. Recall
the integral form of an LSI transformation from Eqn. (3.9):

g(x0, y0) ¼ T{ f (x, y)} ¼
ð ð

f (x, y)h(x0 � x, y0 � y)dx dy (3:44)

Applying the 2D form of the convolution theorem to Eqn. (3.44) yields

F T{ f (x, y)}f g ¼ F T

ð ð
f (x, y)h(x0 � x, y0 � y)dx dy

� �� �

¼ f̂ (u, v)ĥ(u, v)

(3:45)

where f̂ (u, v) is the 2D Fourier transform of f (x, y) and ĥ(u, v) is the Fourier trans-

form of the impulse response. ĥ(u, v) is called the transfer function and is a complete
descriptor of the linear transformation. The advantage of using the transfer function
rather than the impulse response in analysis is that the transformation in Fourier space
is a simple product of the input function and the transfer function, rather than an inte-
gral transformation. Transfer functions are used extensively in the analysis of optical
imaging systems, as discussed in Sections 4.7 and 6.4.

The transfer function plays the role of a filter, meaning that it modulates the spec-
trum of the input signal, attenuating some spatial frequencies while allowing others to
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pass. In a system without gain, the filter cannot increase the strength of any spectral
component. In this case we require j ĥ(u, v) j , 1. As we do not consider systems with
optical gain in this text, this requirement will be enforced for all the systems that we
consider. The transfer function may shift the phase of the signal spectrum, however,
meaning that ĥ(u, v) is generally complex.

We consider several simple examples of transfer functions in two dimensions.
A square aperture lowpass filter, for example, may be defined using rect(u), as
defined in Eqn. (2.41)

ĥ(u, v) ¼ rect(uD) rect(vD) (3:46)

where D is a constant. The Fourier transform of rect(x) is

sinc(x) ¼ sin(px)
px

(3:47)

so the impulse response corresponding to the square filter is

h(x, y) ¼ 1
D2

sinc
x

D
sinc

y

D
(3:48)

The circular filter defined by

ĥ(u, v) ¼ circ D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p� �
(3:49)

where

circ(r) ¼ 1 jrj � 0:5
0 otherwise

�
(3:50)

is also common in imaging and optical system analysis. Since the circ(r) is radially
symmetric, the inverse Fourier transform of ĥ(u, v) reduces to the Fourier–Bessel
transform described with a Hankel transformation in Eqn. (3.41). We use the identity

ðx

0

uJ0(u)du ¼ x J1(x) (3:51)

to define jinc(r) as

jinc(r) ¼ 2p
ð0:5

0

J0(2pru)u du

¼ J1(pr)
2r

(3:52)
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and the impulse response corresponding to the circular filter

h(x, y) ¼ 1
D2

jinc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
D

 !
(3:53)

As a third example, consider the Gaussian filter

ĥ(u, v) ¼ e�pD2(u2þv2) (3:54)

The Gaussian is the fundamental order of the family of Hermite–Gaussian functions

fn(x) ¼ e�px2
Hn

ffiffiffiffiffiffi
2p
p

x
� �

(3:55)

where Hn(x) is the nth-order Hermite polynomial. These functions have the useful
property of being eigenfunctions of the Fourier transformation such that

F fn(x)f g ¼ infn(u) (3:56)

Because of the close relationships between the Fourier and Fresnel transformations,
this property is central to the utility of Hermite–Gaussian functions in the description
of optical beams in laser resonators under Fresnel propagation assumptions. The
Hermite–Gaussian functions are the basis functions of choice in analyzing shift-
variant paraxial modes in laser systems. They are of less utility in imaging
systems, where shift-invariant modes are needed.

For the present purpose it is sufficient to note that in the n ¼ 0 case the Gaussian
function is itself an eigenfunction of the Fourier transformation, specifically

F fo(u)f g ¼ e�px2
(3:57)

so the impulse response corresponding to the Gaussian filter is

h(x, y) ¼ 1
D2

e�(p=D2)(x2þy2) (3:58)

Square, circular, and Gaussian filters are illustrated in Fig. 3.2. Characteristic features
include the strong sidelobes of the rectangular and circular impulse responses in com-
parison to the monotonic rise and fall of the Gaussian impulse. The sidelobes are
characteristic of filters with discontinuities, which introduce high-frequency features
in the transform space.

The anisotropic structure of the separable rectangular filter and impulse as com-
pared to the radially symmetric structure of the other patterns is also noticeable. The
impulse corresponding to the circular filter is called the Airy pattern and is somewhat
broader in distance to the first zero than the sinc impulse. (The first zero occurs at r ¼
1.22D, as compared to x ¼ 1 for the sinc pattern.) One can overemphasize the
significance of the first zero, however; the Gaussian pattern has no zeros at all.
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3.5 THE FRESNEL TRANSFORMATION

The Fresnel transformation is the most common linear shift-invariant transformation
in optical system analysis. As discussed in Section 4.7, the Fresnel transformation is
descriptive of optical propagation in free space or homogeneous materials. The one-
dimensional Fresnel transformation with real parameter t . 0 is defined as

~ft (x) ¼ 1
t

ð1

�1

f (x0)eip((x�x0)2=t2) dx0

¼ ( f � ht)(x) (3:59)

where � is the convolution operator and ht(x) ¼ eip x=tð Þ2=t is the Fresnel kernel. The
Fresnel transformation has the inverse kernel

h�1
t (x) ¼ e�ip x=tð Þ2

t
(3:60)

Figure 3.2 2D filters and impulse responses.
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such that

(~ft � h�1
t )(x) ¼ (( f � ht) � h�1

t )(x) ¼ f (x) (3:61)

Since the Fresnel transformation is linear and shift-invariant, it is described by a
transfer function in the Fourier domain:

ĥt(u) ¼ ei(p=4)e�ipt2u2
(3:62)

Note that if we rescale the output variable (e.g., by selecting u0 ¼ u/t2), the
Fresnel kernel is an eigenfunction of the Fourier transformation. The close associ-
ation between the Fresnel and Fourier transformations leads to several interesting
and useful identities, such as

f̂ u ¼ x

t 2

� �
¼ ei(p=4)ht(x) � h�1

t (x) ( f � ht)(x)ð Þ
� 

(3:63)

and

~f t(x ¼ ut 2) ¼ tht(x ¼ ut 2)F tht(x)f (x)f g (3:64)

where F f.g represents the Fourier transform.
A localization theorem may be derived for the Fresnel transform in analogy with

the localization theorem presented as Eqn. (3.25) for the Fourier transform. Defining

m~f ¼
1

jj~f jj2
ð1

�1

xj~f (x)j2dx (3:65)

and

s 2
~f
¼ 1

jj~f jj2
ð1

�1

(x� m~f )
2j~f (x)j2dx (3:66)

we find with sf defined as in Eqn. (3.22)

s 2
f s

2
~f
� t4

16p 2
(3:67)

with equality for

f (x) ¼ ae�b(x�xo)2
e�ip x=tð Þ2 (3:68)

Proof of Eqn. (3.67) combines the Fourier uncertainty relationship [Eqn. (3.35)]
with the Fourier–Fresnel relationship expressed in Eqn. (3.64). According to
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Eqn. (3.64), ĝ(u) ¼ f̃(x ¼ ut2) exp(ipu2t2)/t and g(x) ¼ t exp(ipx2/t2) f (x) form a
Fourier transform pair, meaning that s 2

gs
2
ĝ � 1=16p2. But sg ¼ tsf and, assuming

zero means

s 2
ĝ¼

ð1

�1

u2jĝ(u)j2du

¼ 1
t 2

ð1

�1

u2j~f (x ¼ ut 2) exp (ipu2t 2)j2du

¼ 1
t 6

ð1

�1

x2j~f (x)j2dx

¼
s2

~f

t6
(3:69)

Multiplying Eqn. (3.69) by s2
g ¼ t2s2

f yields Eqn. (3.67).
The Fresnel transformation is particularly interesting in Fourier analysis of optical

systems because (1) the Fresnel transform is the basis of a reasonable model for
optical diffraction and (2) the Fourier transform kernel is an eigenfunction of the
Fresnel transform. We demonstrate point 1 in Section 4.4. We can prove point 2
now. In one dimension, the Fourier transform kernel is

hu(x) ¼ e�2piux (3:70)

The Fresnel transform of hu (x) is

~hu(x)¼ 1
t

ð1

�1

e�2pixueip((x�x0)2=t2)dx0

¼ ei(p=4)e�ipu2t2
e�i2pux

¼ ei(p=4)e�ipu2t2
hu(x) (3:71)

Thus, we see that hu (x) is an eigenfunction of the Fresnel transform with eigenvalue

ei(p=4)e�ipu2t2
. We apply this property in analyzing electromagnetic diffraction in

Section 4.4.
The Fresnel transform of the Hermite–Gaussian functions is also useful in optical

system analysis. For example, the Fresnel transform of the fundamental Gaussian

3.5 THE FRESNEL TRANSFORMATION 69



fo(x) ¼ exp(2px2) is

~f0t(x)¼ 1
t

ð1

�1

e�px02 eip((x�x0)2=t2)dx0

¼ F�1 ei(p=4)e�pu2
e�ipt2u2

n o

¼ ei(p=4)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ it2
p e�p(x2=(1þit2))

¼ ei(p=4)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ it2
p eip(x2t2=(1þt4))fo

xffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t4
p
	 


(3:72)

where we use the identity for a . 0

F e�p(aþib)x2
n o

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
aþ ib
p e�p (u2=(aþib)) (3:73)

The Gaussian distribution is thus also an eigenfunction of the Fresnel transform-
ation with a complex change in scale. This result can be extended to the full range of
Hermite–Gaussian functions using the identity

ffiffiffiffiffiffi
2p
p

fn(x) ¼ 2pxfn�1(x)� d

dx
fn�1(x) (3:74)

which is proved in Problem 3.4. Using Eqn. (3.74), we find the Fresnel transform of
the nth-order Hermite–Gaussian function is

~fnt(x) ¼ 1
t

ð1

�1

fn(x)eip((x�x0)2=t 2)dx0

¼ F�1 inei(p=4)e�ipt 2u2
fn(u)

n o

¼ 1ffiffiffiffiffiffi
2p
p F�1 inei(p=4)e�ipt 2u2

2pufn�1(u)� d

du
fn�1(u)

� �� �

¼ 1ffiffiffiffiffiffi
2p
p F�1 2piu(1� it 2)F ~f(n�1)t

� �
� i

d

du
F ~f(n�1)t

� �� �

¼ 1ffiffiffiffiffiffi
2p
p 2px ~f(n�1)t(x)� (1� it 2)

d

dx
~f(n�1)t(x)

� �
(3:75)

where we apply the Fourier differentiation identities Eqns. (3.13) and (3.14).
The hypothesis that

~fnt(x) ¼ ei(p=4) (1� it 2)
n=2

(1þ it 2)(nþ1)=2
eip(x2t2=(1þt 4))fn

xffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ t 4
p
	 


(3:76)
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is immediately proved from Eqn. (3.75) by induction on Eqn. (3.72). The family of
functions fn(x) form a complete orthogonal system on L2 (R), meaning that an
arbitrary function f (x) [ L2(R) may be expressed as

f (x) ¼
X1

n¼�1

fnfn(x) (3:77)

This expansion is most useful in laser cavity analysis, where the number of modes
in the expansion is often quite small. Of course, once f (x) is expanded in the
Hermite–Gaussian basis, the expansion coefficients are invariant under propagation,
meaning that

~f t(x) ¼
X1

n¼�1

fn ~fnt(x) (3:78)

Since f̃nt(x) is known from Eqn. (3.76), Eqn. (3.78) converts the integral Fresnel
transform into an algebraic transform if the expansion coefficients fn are known.
Since the Hermite–Gaussian functions are orthogonal, the expansion coefficients are

fn ¼
ð

f (x)fn(x)dx (3:79)

Before leaving our initial discussion of the Fresnel transform, note that the trans-
form extends trivially to two dimensions. The 2D Fresnel transformation is

~ft (x, y) ¼ 1
t 2

ð ð1

�1

f (x0, y0)eip((x�x0)2=t2)eip(( y�y0)2=t2)dx0dy0 (3:80)

Since many cavities have a well-defined axis of symmetry, it is sometimes useful to
consider the Fresnel transform in cylindrical coordinates:

~ft (r, f) ¼ eip (r 2=t 2)

t2

ðp

�p

ð1

0

f (r0, f0)ei2p (rr0 cos (f�f0)=t2)eip (r02=t2)r0 dr0 df (3:81)

The Laguerre–Gaussian functions

cmn(r, f) ¼ (
ffiffiffiffi
p
p

r)
n
e�pr

2
e�infLn

m(2pr2) (3:82)

where Ln
m(2r2) is a generalized Laguerre polynomial, play a similar role in cylindrical

coordinates to the Hermite–Gaussian functions in Cartesian coordinates.
Specifically, the Fresnel transform of cmn(r, f) is [65]

~cmnt(r, f) ¼ ei(p=4)e�infe�i(nþmþ1)arctan(t2) ffiffiffiffi
p
p

rð Þn

(1þ t4)
nþ1

2

e�p(r2=(1þit2))Ln
m

2pr2

1þ t4

	 

(3:83)
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3.6 THE WHITTAKER–SHANNON SAMPLING THEOREM

The idea of representing continuous functions using discrete values, as in Eqn. (3.77),
dates back to Fourier. The basic concept is to describe the continuous function f (x) as
a superposition of basis functions ffn(x)g such that

f (x) ¼
X1

n¼�1

anfn(x): (3:84)

The coefficients an form a discrete vector a that represents f (x). The harmonic
functions sin(2pnx/X ) and cos(2pnx/X ) or exp(2pinx/X ) are canonical examples
of basis functions. A Fourier series represents any periodic continuous function
f (x) of period X on the basis of harmonic functions as

f (x) ¼
X1

n¼�1

anei2p(nx=X) (3:85)

where

an ¼
1
X

ðX=2

�X=2

f (x)e�2pi(nx=X)dx (3:86)

The Fourier series illustrates two concepts common to the process of representing
continuous functions. The first point is that the represented functions lie in a specific
vector space. For the Fourier series, the vector space is the space of square integrable
periodic functions. A function f (x) is periodic with period X if 8x [ R f (x þ X ) ¼
f (x). A periodic function f (x) is square integrable if the integral of j f (x)j2 over one
period is finite. The vector space associated with a given basis is represented by V.
A vector space is a set that is closed under vector addition and scalar multiplication.
For a set of functions, these properties may be stated

If f1(x) [ V and f2(x) [ V

then f1(x)þ f2(x) [ V (3:87)

and

If f (x) [ V

then af (x) [ V 8a [ C (3:88)

Both of these properties trivially hold for V equal to the set of periodic functions
of period X.

The second point illustrated in Fourier series decomposition is that an inner
product, k f jgl, between vectors in V is needed to determine the representation
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coefficients. For periodic functions a suitable inner product is

f jgh i ¼
ðX=2

�X=2

f �(x)g(x)dx (3:89)

Referring to Eqn. (3.86), we see that an ¼ kexp(2pinx/X )j f (x)l. The requirement that
f (x) be square integrable ensures that an is well defined and finite. The requirement
means that the vector norm k fk ¼ k f j f l is well defined. A vector space with a
norm suitably measuring “distance” between vectors is called a Hilbert space. The
space of square integrable periodic functions using the inner product of Eqn.
(3.89) is a Hilbert space.

Many families of basis functions have been developed to represent continuous
functions. In addition to the harmonic functions, the Hermite–Gaussian functions men-
tioned in previous sections have been particularly popular in optics. Families of special
functions, such as Legendre polynomials and spherical harmonics, are popular in repre-
senting distributions in electromagnetic and quantum theory. Since the mid-1980s, the
generation of functional bases has become an advanced science in its own right in
the context of wavelet theory. We consider wavelet representations in Section 3.8.

This section describes a startling approach to discrete representation developed by
Shannon [219] in 1949. Under the Whittaker–Shannon sampling theorem, a continu-
ous function is represented on a basis such that the representation coefficients are
equal to periodically spaced values of the function itself. The core idea of the
sampling theorem is that a signal may be fully represented by capturing a discrete
sequence of signal values.

Detailed consideration of the relationship between sampling in measurement,
analysis, and display is critical to understanding optical sensors. It is not possible
in practice to actually measure the field at specific points in space or time. (Real detec-
tors integrate field values over finite space–time windows.) In Chapter 7 we examine
the tension between measurement sampling and analytic sampling in more detail and
consider the process of measurement itself as an inner product with the field. For the
present purpose of exploring the mathematical tools needed to analyze the field,
however, it is important to understand the classical sampling theorem.

Figure 3.3 f̂ (u, v) is limited to a band area bounded by (+Bx,+By).
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In deriving the sampling theorem, Shannon limited his attention to bandlimited
functions. As we are interested in images, our discussion of Shannon’s result
will focus on the 2D function f (x, y). By bandlimited, we mean that the Fourier
transform of f, f̂ (u, v), vanishes outside a certain range. Specifically, we assume
that j f̂ (u, v) j ¼ 0 for juj . Bx or jvj . By. Since f̂ (u, v) exists, we may also say
that f [ L2(R2), the space of 2D functions that are square integrable in Lebesgue’s
sense. The Hilbert space VB associated with the Shannon basis is thus the space of
bandlimited functions in L2(R2).

The function f̂ (u, v) within the bandlimit is sketched in Fig. 3.3. Consider a func-

tion f̂t(u, v), which is a periodic tiling of the Fourier plane with copies of f̂ (u, v), as
sketched in Fig. 3.4. Since f̂t(u, v) is a periodic function, it can be expressed as the
Fourier series

f̂ t(u, v) ¼
X1

n¼�1

X1
m¼�1

anm exp �ip
nu

Bx
þ nv

By

	 
� �
(3:90)

Over the range of f̂ (u, v), f̂ (u, v) ¼ f̂t(u, v). This means that

f (x, y) ¼
ðBx

�Bx

ðBy

�By

f̂ t(u, v)e2pi(uxþvy)du dv

¼
X1

n¼�1

X1
m¼�1

anm

ðBx

�Bx

ðBy

�By

exp �ip
nu

Bx
þ nv

By

	 
� �
du dv

¼
X1

n¼�1

X1
m¼�1

4BxByanmsinc(2Bxx� n)sinc(2Byy� m) (3:91)

Figure 3.4 Tiling of the Fourier plane with copies of f̂ (u, v).
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Evaluating Eqn. (3.91), at x ¼ n/2Bx and y ¼ m/2By, we find anm ¼ f ((n/2Bx),
(m/2By))/4BxBy, which yields the Whittaker–Shannon sampling theorem:

f (x, y) ¼
X1

n¼�1

X1
m¼�1

f
n

2Bx
,

m

2By

	 

sinc(2Bxx� n)sinc(2Byy� m) (3:92)

The sampling theorem implies that the continuous function f (x, y) can be fully rep-
resented by the discrete samples f (n/2Bx, m/2By). The sampling rates 2Bx and 2By

are necessary in x and y to accurately reconstruct f (x, y) from discrete measurements.
Sampling at these rates is called “Nyquist” sampling, the corresponding periods
between samples are Dx ¼ 1

2 Bx and Dy ¼ 1
2 By.

In cases of particular interest, we focus on the value of f (x, y) only over some finite
aperture. If we leave f (x, y) unconstrained outside this aperture, only a finite number
of samples are needed to characterize the function. If the extent of the aperture of
interest is (2X, X ) and (2Y, Y ), the number of samples needed is 16BxByXY.

3.7 DISCRETE ANALYSIS OF LINEAR TRANSFORMATIONS

The discrete Fourier transform (DFT) of a two-dimensional array of samples is
defined as

f̂n0m0 ¼
1ffiffiffiffiffiffiffiffi
NM
p

X(N=2)�1

n¼�(N=2)

X(M=2)�1

m¼�(M=2)

fnmei2p(nn0=N)ei2p(mm0=M) (3:93)

This transformation can be inverted to yield

fnm ¼
1ffiffiffiffiffiffiffiffi
NM
p

X(N=2)�1

n0¼�(N=2)

X(M=2)�1

m0¼�(M=2)

f̂ n0m0e
�i2p(nn0=N)e�i2p(mm0=M) (3:94)

The discrete Fourier transform is often used to approximate the Fourier transform in
considering continuous functions. From Eqn. (3.90), we know that

f̂ (u, v) ¼ 1
4BxBy

rect
u

2Bx

	 

rect

v

2By

	 
 X1
n¼�1

�
X1

m¼�1

f
n

2Bx
,

m

2By

	 

exp �ip

nu

Bx
þ mv

By

	 
� �
(3:95)

While Eqn. (3.95) represents an exact model of f̂ (u, v), it also involves a sum over
an infinite number of samples. An approximate numerical analysis uses a finite
number of samples fnm ¼ f (n/2Bx, m/2By) based on truncating the series at
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some approximate maximum spatial extent N/2Bx ¼ 2X. The approximate Fourier
transform is

f̂approx(u, v) ¼ 1
4BxBy

rect
u

2Bx

	 

rect

v

2By

	 
 X(N=2)�1

n¼�(N=2)

�
X(N=2)�1

m¼�(N=2)

fnm exp �ip
nu

Bx
þ mv

By

	 
� �
(3:96)

The DFT of the truncated set of samples f fnmg is

f̂ n0m0 ¼
1
N

X(N=2)�1

n¼�(N=2)

X(N=2)�1

m¼�(N=2)

fnm exp �i2p
nn0

N
þ mm0

N

	 
� �
(3:97)

where N ¼ 4BX and, for simplicity, we set B ¼ Bx ¼ By, X ¼ Y. The DFT samples
approximate the Fourier transform of f (x,y) at sample points such that

f̂ n0m0 ¼ 4B2Nf̂ approx(u ¼ n0=2X, v ¼ m0=2X). While truncation of nonzero terms

means that f̂n0m0 is not exactly equal to f̂ (u ¼ n0=2X, v ¼ m0=2X), the inverse DFT
of f̂n0m0 does produce exact values of the sampled function at sample points within
the truncation window.

Consider, as an example, the bandlimited one-dimensional function f (x) ¼
sinc(x 2 d), for d � 1. In this case f̂ (u) ¼ e�2pidurect(u). For this pair of functions,
B ¼ 1

2, f0 ¼ sinc(d) and, for n = 0, fn ¼ f (n) 	 (21)nd/n. Sampling this function
over the window from x ¼2N/2 to x ¼ N/2 21 produces N samples spaced by 1
in the spatial domain. The DFT produces N samples in Fourier space between
u ¼ �1

2 and u ¼ 1
2� 1=N spaced by 1/N. The error between the samples f̂n and

f̂(u) for various sampling ranges X for this function is shown in Fig. 3.5. Note that
the error does not decrease at the edges of the sampling band, a phenomenum
common in Fourier analysis of discontinuous functions. However, the error
between the numerical spectrum and the actual spectrum does decrease as the
sampling window increases over much of the Fourier passband.

Despite our assumption that f (x) is bandlimited in deriving the sampling theorem, it
is not uncommon to attempt numerical Fourier analysis of functions with infinite
support in both x and u. In numerically analyzing the Fourier transform of such a
function, one selects a window size X and a sampling period D to obtain N ¼ 2X/D
samples fn ¼ f (nD). The DFT of the samples fn produces N discrete samples f̂n0 nomin-
ally corresponding to values of f̂ (u ¼ n0/2X ) covering the frequency range (1/2X 2

1/D) � u � 1/D. The sampling period over the range of u is 1/2X. As an example
of these scaling laws, the DFT of the Gaussian function f (x) ¼ exp(2px2), for
which f̂(u) ¼ exp(2pu2), is illustrated in Fig. 3.6.

Discrete Fourier analysis is attractive in considering linear transformations because
shift-invariant transformations are modeled by simple multiplicative filter functions
in Fourier transform space and because fast numerical algorithms for modeling
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Figure 3.6 DFT of e�px2
sampled uniformly over the window 22 � x � 2 for various values of

N. As we increase the number of samples while keeping X constant, the sample period in Fourier
space stays constant and the number of samples within the significant region of the signal remains
fixed. Increasing the sampling window would increase the Fourier resolution. Both the sampling
window and the sampling rate must be increased to maintain resolution in both spaces.

Figure 3.5 Magnitude of the difference between f̂(u) and f̂n¼uX over the bandpass of f (x) ¼
sinc(x 2 d) for various values of N ¼ 4XB and d ¼ 0.01.
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Fourier transforms are readily available. As we briefly consider through wavelet
theory in the second half of this chapter, Fourier analysis is not a unique or univer-
sally attractive technique for modeling linear transformations.

As an example of the first attraction of Fourier analysis, consider again the Fresnel
transform. As described in Eqn. (3.62), the transfer function for the Fresnel transform
is ĥt(u) ¼ exp (i(p=4)) exp (�ipt2u2). We may model the Fresnel transform on a
function f (x) by modulating the DFT of a sampled version of f (x) by this transfer
function and then applying an inverse DFT. Returning to the example of a
Gaussian signal, the analytic form of the Fresnel transform is given in Eqn. (3.72).
As illustrated in Fig. 3.7, a numerical estimate of the Fresnel transform is obtained
by multiplying the DFT of the sampled function by the transfer function and
inverse transforming. The spatial window spans jxj , 20. In total, 4096 samples
were used with a sample spacing of 0.0098. Each plot shows the absolute value of
the transformed signal as well as the real and imaginary components. Values of t

are 0 at top running through 0.5, 1, 2, 4, and 8 at the bottom. As t increases, the trans-
formed signal becomes increasingly diffuse. For t ¼ 8, the numerically estimated
transform encounters large errors as the transformed signal extends beyond the
range of the window.

Numerical estimation of the transform is reasonably correct up to values of t

such that the transformed signal extends beyond the input window. Note that both
fnm and f̂n0m0 act as Fourier series components when reconstructing the approximate

Figure 3.7 Numerically estimated Fresnel transform of the fundamental Hermite–Gaussian
mode.
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continuous functions. The series reconstructions are periodic, when the reconstruc-
tion extends beyond the transform window periodicity produces interference, or alias-
ing, between bandpass or spatial windows.

The second motivation for Fourier methods in linear systems analysis focuses on
the computational efficiency of computing the Fourier transform. Nominally, the
DFT of a one-dimensional N element dataset is represented by a N � N transform-
ation matrix multiplying a length N dataset. This transformation would require
O(N2) operations. In practical systems, the fast Fourier transform (FFT) is used to
greatly reduce the number of computational operations required. Hierarchical deci-
mation is the heart of the FFT algorithm. The one-dimensional DFT of length N,
defined as

f̂ (n0) ¼ 1ffiffiffiffi
N
p

X(N=2)�1

n¼�(N=2)

fnei2p(nn0=N) (3:98)

is decimated into two DFTs of length N/2 by the arrangement

f̂ n0 ¼
1ffiffiffi

2
p ffiffiffiffiffiffiffiffiffi

N=2
p X(N=4)�1

n¼�(N=4)

f2nei2p(nn0=(N=2)) þ e(i2pn0=N)ffiffiffi
2
p ffiffiffiffiffiffiffiffiffi

N=2
p X(N=4)�1

n¼�(N=4)

f(2nþ1)e
i2p(nn0=(N=2))

¼ f̂ en0ffiffiffi
2
p þ e(i2pn0)=N f̂ on0ffiffiffi

2
p (3:99)

where f̂en0 and f̂on0 are the length N/2 DFTs of the even and odd coefficients of fn.
Since the two shorter transformations each require O(N2/4) operations, decimation
reduces the number of operations required by a factor of 2. If N is a power of 2,
recursive decimation reduces the number of operations required from O(N2) to
O(N log2 N ).

For two-dimensional Fourier transforms, FFT algorithms are separably applied
along rows or columns of data. For an N � N dataset, the FFT reduces the compu-
tational order from O(N4) to O(N2 log2

2 N). For images with N ¼1024, the FFT algor-
ithm reduces computational complexity by four orders of magnitude.

3.8 MULTISCALE SAMPLING

Concepts of discrete representation and sampling have evolved considerably in the
half-century since Shannon presented the sampling theorem [234]. The evolution
of sampling theory has accelerated in the past quarter-century with the development
of a generalized methodology for developing bases and representation spaces.
Wavelet theory is the most elegant means of understanding emerging strategies.

The primary goal of this text is to develop a framework for analysis and design of
physical/digital interfaces in optical sensor systems. Since more sophisticated models
of signal sampling and analysis are enabling in pursuit of this goal, we present a brief
introduction to wavelets and generalized sampling in this chapter. Our hope is to be
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accessible to the optical engineer without unnecessarily insulting the mathematician.
We refer the mathematically inclined reader to the mathematics and signal processing
literature [53,164].

As discussed in Chapter 7, modern sampling theory must distinguish between
sampling in the sense of measurement and in the sense of signal analysis and rep-
resentation. Sampling theory is applied to

1. Signal Analysis. In the sampling theorem we have shown that the signal space
VB is spanned by the function sinc(Bx). We can easily analyze linear transform-
ations of signals on this space by analyzing transformations of the basis
function.

2. Signal Estimation. Equation (3.100) is a recipe for estimating the signal value
of f (x) at any point x from discrete samples.

3. Sensor System Design. If we measure a signal at discrete points in space or
time, the sampling theorem informs the rate at which the signal must be
measured for accurate representation.

In practice, challenges arise to the application of the Shannon sampling approach to
each of these uses. In cases 1 and 2, the fact that the function sinc(x) does not have
compact support makes computation and analysis expensive. In the third case, one
must account for the fact that it is not generally possible to measure functions to infi-
nite spatial or temporal resolution, meaning that true measurements of f (x) are not
generally available. We discuss details of actual measurements in optical systems
in Chapters 5 and 7. For present purposes, it is helpful to simply consider the possi-
bility that while expansion coefficients are somehow related to local features of the
signal, they need not correspond to actual signal values. As a first step to resolving
all three of these challenges, it is helpful to consider sampling strategies that are
not based on sinc(x).

For simplicity, we consider wavelet representations of one-dimensional functions.
The 1D version of Eqn. (3.92) is

f (x) ¼
X1

n¼�1

f
n

2B

� �
sinc(2Bx� n) (3:100)

where we assume f (x) [ VB and VB is the subspace of bandlimited functions in
L2(R). To address the challenges described above, we maintain the concept of rep-
resentation of f (x) by a discretely shift-invariant localized function, but we replace
sinc(x) with a scaling function f(x). We imagine representing f (x) in terms of the
scaling function as

ff(x) ¼
X1

n¼�1

cnf(x� n) (3:101)

f(x) is the generating function for the vector space V(f) is spanned by
{f(x� n)}[ Z.
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As an example, we consider a scaling function and decomposition discovered
in 1910 by Haar [108]. The Haar scaling function is b0(x) ¼ rect(x 2 1

2).
Decomposition on this function takes the form

f0(x) ¼
X1

n¼�1

cnb
0(x� n) (3:102)

With the restriction that
P

n[Z jcnj2 is finite, f0 (x) [ L2(R) and the family of func-
tions {fn(x) ¼ b0(x� n)} forms an orthonormal basis of a subspace V0 , L2(R).
Evaluating the inner product b0(x� m)j f0

� �
using the orthogonality relationship

b0(x� m)jb0(x� n)
� �

¼ dnm we see from Eqn. (3.102) that

cn ¼
ð1

�1

b0(x� n)f0(x)dx (3:103)

The function f (x) may be decomposed into two components, f0 [ V0 and f? � V0,
such that f (x) ¼ f0(x)þ f?(x). For all functions g(x) [ V0, gj f?h i ¼ 0. Thus for
the orthonormal basis {b0(x� n)}, we obtain

b0(x� n)j f
� �

¼ b0(x� n)j( f0 þ f?)
� �

¼ b0(x� n)j f0
� �

(3:104)

and cn ¼ b0(x� n)j f
� �

. f0(x) is the projection of f (x) onto V0, PV0 f . An example of
PV0 f for f (x) ¼ x2=10 is shown in Fig. 3.8.

Figure 3.8 Projection of f (x) ¼ x2/10 onto the Haar basis.
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Less fidelity is observed in the projection of a more complex function onto V0 in
Fig. 3.9(a). To improve the fidelity of the representation, we are tempted to use a
narrower generating function, for example, f�1,n(x) ¼

ffiffiffi
2
p

b0 2x� nð Þ. As illustrated
in Fig. 3.9(b), this rescaled generating function does, in fact, improve the represen-
tation fidelity. Continuing on this train of thought, we choose to define families of
sampling functions on scales j such that

f j,n(x) ¼ 1ffiffiffiffi
2j
p b0 x

2 j
� n

� �
(3:105)

Each rescaled generating function corresponds to a new Hilbert space of functions
Vj [ L2(R). Note that the basis functions for the space Vj can be expressed in the
space Vj�1 as

f j,n(x) ¼ 1ffiffiffi
2
p f j�1,2n(x)þ f j�1,2nþ1(x)
� 

(3:106)

This means that V jþ1 , Vj. We observe, of course, that estimation of f (x) is more
accurate on Vj than on Vjþ1. For the Haar scaling function this refinement process
continues indefinitely until in the limit

lim
j7!�1

Vj ¼ L2(R) (3:107)

Figure 3.9 Projection of f (x) onto the Haar basis on scales 0, 21, and 23: (a) f (x) and PV0 f ;
(b) f (x) and PV�1 f ; and (c) f (x) and PV�3 f .
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Nonredundant representation of f (x) on multiple scales is a goal of wavelet theory.
We achieve this goal in considering the subspace Wj, the orthogonal complement of Vj

in Vj�1. By “orthogonal” we mean Vj > Wj ¼ {0}. By design, Vj and Wj span V j�1,
for example

Vj�1 ¼ Vj 
Wj (3:108)

The wavelet corresponding to the scaling function f(x) is the generating function
for the basis of W0. For example, the wavelet corresponding to the Haar scaling
function is

c(x) ¼ b0(2x)� b0(2x� 1)

¼ f�1,0(x)� f�1,1(x) (3:109)

The scaling function can also be expressed in the basis V�1 as

f(x)¼ b0(x)

¼ f�1,0(x)þ f�1,1(x) (3:110)

The wavelet and scaling functions for this case are shown in Fig. 3.10. Since the basis
functions for the V�1 can be expressed in terms of the scaling and wavelet functions as

f�1,n(x) ¼

1ffiffiffi
2
p [f(x� n)þ c(x� n)] for n even

1ffiffiffi
2
p [f(x� n)� c(x� n)] for n odd

8>><
>>:

(3:111)

we see that the linear combination of the bases f0,n(x) and c(x� n) span the space
V�1. Since c(x) is orthogonal to all of the basis vectors f0,n(x), c(x) [ V0.
c(x� n) is also orthogonal to c(x� m) for m = n. Thus, c(x� m) is an orthonormal
basis for W0.

By scaling the wavelet function, one arrives at a basis for Wj. In exact correspon-
dence to Eqn. (3.105) the basis for Wj is

c j,n(x) ¼ 1ffiffiffiffiffi
2 j
p c

x

2 j
� n

� �
(3:112)

There is a substantial difference between the subspaces generated by the scaling func-
tion and the subspaces generated by the wavelet, however. While

{0} , � � � , V2 , V1 , Vo , V�1 , V�2 , � � � , L2(R) (3:113)

the wavelet subspaces are not similarly nested. Specifically, Wj , V j�1 but
Wj å Wj�1. In fact, all of the wavelet subspaces are orthogonal. This means that
>1

j¼�1Wj ¼ {0} and <1
j¼�1Wj ¼ L2(R). This distinction is illustrated in Fig. 3.11,

3.8 MULTISCALE SAMPLING 83



which shows the scaling function and the wavelet on the j ¼ 0, 21, 22, 23 scales.
Note that while the scaling functions on various scales are not orthogonal, the wave-
lets on each scale are orthogonal with regard to both shift and change in scale. This
orthogonality among the wavelets may be expressed

c j,njc j0,n0
� �

¼ d jj0dnn0 (3:114)

Since the wavelet subspaces are mutually orthogonal and since their union covers
L2(R), for f (x) [ L2(R) we find that the wavelet analog to Eqn. (3.92) is

f (x) ¼
X
j[Z

X
n[Z

f j,nc j,n(x) (3:115)

where f j,n ¼ h f jc j,ni. Differences with the sampling theorem include the facts that f j,n

is no longer a sample value of f (x) and that there is no longer any constraint on the
bandwidth of f (x). Since the wavelet function has compact support, however, f j,n is
similar to a sample because it is related to signal values at a specific region in
space. Of course, the wavelet decomposition is a “multiscale” decomposition, and
the localization of f j,n varies from one scale to the next.

Figure 3.10 Scaling, wavelet, and f21,0(x) functions for the Haar basis: (a) f(x) ¼ b0(x); (b)
c(x) ¼ b0(2x)� b0(2x� 1); (c) f�1,0(x) ¼ 20:5b0(2x).
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It is often convenient to represent f (x) [ L2(R) in terms of a scaling function at
one resolution with finer details represented in wavelet components. For example,
one may represent f (x) on V0 
<0

j¼�1W j ¼ L2(R) as

f (x) ¼
X
n[Z

fa0f0,n(x)þ
X0

j¼�1

X
n[Z

f j,nc j,n(x) (3:116)

The coefficients fa0 are called the “averages,” and the terms f j,n are called the “differ-
ences” in this expansion. The averages provide a coarse representation of f (x) on
the scaling function basis; this representation is nonredundantly refined by adding
differences (wavelet coefficients) in each successive order.

Expansion coefficients for the function of Fig. 3.9 the spaces V0, W0 through V�3,
W�3 are plotted in Fig. 3.12. The upper trace in each plot is the expansion coefficients
on Vj (shifted up by 1 to separate the averages and differences). Since
Vj�1 ¼ Vj þWj, coefficients on Vj�1 can be calculated from the coefficients on Vj

and Wj. Accordingly, the coefficients on V0 in Fig. 3.12 would be saved in a
decomposition of f (x) as the averages and the wavelet coefficients at each level
would be saved as the differences.

In this case the range of the function over (�8, 8) produces 16 average values and
16 difference values on the zeroth order, 32 21 order differences, 64 22 order

Figure 3.11 Scaling and wavelet function for the Haar wavelet on scales j ¼ 0, 21, 22, 23:
(a) f(x), f�1,0(x), f�2,0(x), and f�3,0(x); (b) c(x), c�1,0(x), c�2,0(x), and c�3,0(x).
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differences, and 128 23 order differences. These values may be combined to produce
256 average values in a 23 order estimate as shown in Fig. 3.9. Multiscale sampling
is particularly useful in communication systems where one may like to send coarse
signal representations first and fill in finer data as further signals arrive.

Wavelet analysis may be extended to multidimensional signal analysis by various
mechanisms. The simplest approach uses spatially separable 2D functions based on
1D scaling functions and wavelets. The scaling function f(x, y) ¼ f(x)f(y) generates
a vector space V2

0 [ L2(R2). The wavelet space W2
0 [ V2

�1 for the 2D function is gen-
erated from three wavelets:

c1(x, y) ¼ f(x)c(y)

c2(x, y) ¼ c(x)f(y)

c3(x, y) ¼ c(x)c(y)

(3:117)

Figure 3.12 Representation of f (x) from Fig. 3.9 onto the averages and differences of the
Haar scaling function and wavelets to order 23.
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The wavelet family

ck
j,nm(x) ¼ 1ffiffiffiffiffi

2 j
p ck x

2 j
� n,

y

2 j
� m

� �
(3:118)

for n, m [ integers is an orthonormal basis of W2
j and

c1
j,nm(x, y), c 2

j,nm(x, y), c 3
j,nm(x, y)

n o
( j,n,m)[Z3

(3:119)

is an orthonormal basis of L2(R) [164]. The 2D analog of Eqn. (3.116) is

f (x) ¼
X

n,m[Z

fa0f0,n(x)f0,m(y)þ
X3

k¼1

X0

j¼�1

X
n[R

f j,nmc
k
j,nm(x, y) (3:120)

Wavelet decomposition may operate from either coarse to fine, as in Eqn. (3.120),
or from fine to coarse. One might assume, for example, that a given image consists
of wavelet coefficients on V2

0 and project onto spaces V2
j and W2

j for j . 0.
Figure 3.13(b) shows the averages on V2

3 for the V0 image shown in Fig. 3.13(a).
For the Haar wavelet, the averages image is a simple lower resolution version of
the original image. Figure 3.14 shows the wavelet coefficients on levels 1, 2, and
3. The original image in this case consists of 1024� 768 coefficients. The level 3

Figure 3.13 (a) Original image and (b) wavelet averages on V2
3 .
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averages image is reduced by 23 ¼ 8 in each dimension to a 128� 96 array. The level
3 wavelet coefficients consist of three arrays of horizontal, vertical, and diagonal
differences corresponding to c1

j,nm, c2
j,nm, c3

j,nm. Figure 3.14(a) conjoins the differ-
ence arrays in a single 128� 288 array. The level 2 difference arrays shown in
Fig. 3.14(b) consist of 3 256� 192 arrays, and the level 1 wavelet coefficients in
Fig. 3.14(c) consist of 3 512� 384 arrays. Since the total number of coefficients
in the arrays shown in Figs. 3.13(b) and 3.14 is 4� 128� 96þ 3� 256�
192þ 3� 512� 384 ¼ 1024 � 768, a communication system that sent averages in
Fig. 3.13(b) first followed by the differences in Fig. 3.14 would send a coarse
image much faster than a system that simply transmitted a raster version of
Fig. 3.13(a). In practice, compression and communication algorithms extend this
concept by identifying and discarding low value differences.

Figure 3.14 Wavelet coefficients for the Fig. 3.13(a) image on (a) W2
3 , (b) W2

2 , and (c) W2
1 .
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There are many families of scaling functions in addition to the Haar function that
produce orthogonal wavelets. The sinc function, in particular, is an appropriate
orthogonal scaling function and generates a corresponding Shannon wavelet. Using
the Shannon wavelet, the space of bandlimited functions may be considered as V0

and Eqn. (3.92) may be extended to represent nonbandlimited functions by including
wavelet expansions of higher order. The Shannon basis is little used in practice
however, because practical sampling systems do not directly measure on this basis
and because of challenges in using the sinc as a scaling function.

3.9 B-SPLINES

The Haar scaling function is the lowest order of the set of polynomial basis functions
known as B-splines. B-spline functions of higher order are recursive convolutions of
b0(x) defined according to

bm(x) ¼ b0 xþ 1�(�1)m

2

	 

�bm�1(x) (3:121)

where m � 1 [236, 237]. Spatial shifts are included in the b0 functions to ensure that
the B-splines of even order are centered at x ¼ 1

2 and those of odd order are centered at
x ¼ 0. The first six orders of the B-splines are shown in Fig. 3.15. Note that while
each order covers finite support, the size of the support grows by 1 from each
order to the next. The support of the zeroth-order B-spline is (0, 1), the first order
is B-spline (21, 1), and the second-order B-spline is (�1, 2). The support for the
nth order is of magnitude nþ 1. The mth-order spline traces out a piecewise continu-
ous polynomial curve of order m.

In contrast to the Haar scaling function, B-splines of higher order do not generate
an orthogonal basis for unit shifts on a regular grid. It is nevertheless useful to rep-
resent f (x) discretely on these functions. Each order of B-splines does generate an
independent basis for unit shifts and the B-splines appear frequently in physical

models of optical sensor systems. For example, the sampling function ĥi,j(ux, uy)
derived in Chapter 2 for coded aperture imaging is the separable product of B-splines

ĥi, j(ux, uy) ¼ b1 ux � i
D

zo

	 

b1 uy � j

D

zo

	 

(3:122)

This sampling function is depicted in Fig. 2.27. In Chapter 2 we considered a discrete
array of inner products of this sampling function with the continuous field as the
“image” of the field. This section describes a method for generating an estimate of
the continuous field consistent with the discrete measurements generated from the
sampling function.

In a typical measurement system, discrete measurements of the form
fn ¼ bm(x� n)j f (x)h i are recorded. This discretization is described by Eqn. (2.38)
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in the coded aperture system. In the following we represent bm(x� n) by the generic
sampling function fn(x). Our goal in this section is to describe how to estimate f (x)
given the discrete measurements. Since at this point we know nothing about the
nature of f (x) besides the measurements, all continuous signals that would result in
the same measurements are equally likely.

In general, there exist infinitely many continuous functions that are consistent with
the measured data. Choosing which of these functions to use as the estimated signal is
challenging, but as a general rule we might like to start by choosing an estimate that
is at least consistent with the measurements. Consistency determines the part of the
estimated signal, fest(x), that is, in the Hilbert space V(f) generated by f(x). For
each subspace V(f) , L2(R) there exists a complementary subspace V?(f) such that

V?(f) , L2(R)

V?(f) > V(f) ¼ {0}

V?(f) < V(f) ¼ L2(R) (3:123)

A function f (x) may be divided into components ff(x) [ V(f) and f?(x) [ V?(f)
such that f (x) ¼ ff(x)þ f?(x). The discrete measurements fn completely determine
ff(x) but tell us nothing about f?(x).

Figure 3.15 B-splines of orders 0–5.
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A function ff(x) [ V(f) may be represented as

ff(x) ¼
X
n[Z

cnfn(x) (3:124)

In contrast with the sampling theorem and with the Haar wavelet expansion, the
expansion coefficients are not samples of ff or inner products between ff and the
basis vectors. For the B-splines it turns out that we can derive complementary
functions �fn(x) for each fn(x) ¼ bm(x� n) such that h�fnjfn0 i ¼ dnn0 . The comp-
lementary functions can be used to produce a continuous estimate for f (x) that is
completely consistent with the discrete measurements. This interpolated function is

fest(x) ¼
X
n[Z

hfnj f i�fn(x) (3:125)

Given the orthogonality relationship between the sampling functions and the comp-
lementary functions, fest is by design consistent with the measurements. We can
further state that fest ¼ ff if the complementary functions are such that �f [ V(f),
in which case there exist discrete coefficients p(k) such that

�f (x) ¼
X
k[Z

p(k)f(x� k) (3:126)

Using the convolution theorem, the Fourier transform of �f (x) is

�̂f(u) ¼ f̂(u)
X
k[Z

p(k)e�i2pku

" #
(3:127)

The orthogonality between the dual bases may be expressed as

h �fnjfn0 i ¼ dnn0

¼
X
k[Z

p(k)a(n0 � k � n) (3:128)

where a(n) ¼ hf(x)jf(x� n)i. Without loss of generality, we set n ¼ 0 and sum both
sides of Eqn. (128) against the discrete kernel e�i2pn0u to obtain

X
n0[Z

d0n0e
i2pn0u ¼ 1

¼
X
k[Z

X
n0[Z

p(k)a(n0 � k)e�i2pn0u

¼
X
k[Z

p(k)e�i2pku

" # X
n00[Z

a(n00)e�i2pn00u

" #
(3:129)

where we use the substitution of variables n00 ¼ n0 � k.
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Poisson’s summation formula is helpful in analyzing the sums in Eqn. (3.129).
The summation formula states that for g(x) [ L1(R)

X
n[Z

g(n)e�i2pnu ¼
X
k[Z

ĝ(uþ k) (3:130)

where ĝ(u) is the Fourier transform of g(x). To prove the summation formula,
note that

h(u) ¼
X
k[Z

ĝ(uþ k) (3:131)

is periodic in u with period 1. The Fourier series coefficients for h(u) are

ĥn ¼
ð1

0

h(u)e2pinudu

¼
X
k[Z

ð1

0

ĝ(uþ k)e2pinudu

¼
X
k[Z

ðkþ1

k

ĝ(u)e2pinudu

¼
ð1

�1

ĝ(u)e2pinudu

¼ g(n) (3:132)

Since a(x) is the autocorrelation of f, its Fourier transform is jf̂(u)j2. Thus by the
Poisson summation formula

X
n[Z

a(n)e�i2pnu ¼
X
k[Z

jf̂(uþ k)j2 (3:133)

Reconsidering Eqn. (3.129), we find

X
k[Z

p(k)e�i2pku ¼ 1P
n[Z a(n)e�i2pnu

¼ 1P
k[Z jf̂(uþ k)j2

(3:134)
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Substitution in Eqn. (3.127) yields

�̂f(u) ¼ f̂(u)P
k[Z

jf̂(uþ k)j2
(3:135)

We can evaluate Eqn. (3.135) to determine �̂f(u) and �f(x) if
P

k[Z jf̂(uþ k)j2 is
finite. The requirement that there exist positive constants A and B such that

A �
X
k[Z

jf̂(uþ k)j2 � B (3:136)

is the defining feature of a Riesz basis. A Riesz basis may be considered as a gener-

alization of an orthonormal basis. In the case that
P

k[Z jf̂(uþ k)j2 ¼ 1, Eqn. (135)

reduces to �̂f(u) ¼ f̂(u) and an orthonormal basis may be obtained.
The Fourier transform of the mth-order B-spline is

b̂
m

(u) ¼ [sinc(u)](mþ1)e�ipju

¼ b̂
0
(u)

h i(mþ1)
eip(mþ1�j)u (3:137)

where j ¼ 0 if m is odd and j ¼ 1 if m is even. For the B-spline basis, we obtain

Qm(u) ¼
X
k[Z

jf̂(uþ k)j2 ¼
X
k[Z

jsinc(uþ k)j2(mþ1) (3:138)

Since the zeroth-order B-spline produces an orthogonal basis, we know that

Q0(u) ¼ 1. For higher orders we note that jsinc(uþ k)j2(mþ1) � jsinc(uþ k)j2,
meaning that Qm(u) � Qo(u). Thus, 0 , Qm(u) , 1 and the B-spline functions of
all orders satisfy the Riesz basis condition.

In contrast with the B-splines themselves, the complementary functions �f(x) do
not have finite support. It is possible, nevertheless, to estimate �f(x) over a finite
interval for each B-spline order by numerical methods. Estimation of Qm(u) from
Eqn. (3.138) is the first step in numerical analysis. This objective is relatively
easily achieved because Qm(u) is periodic with period 1 in u. Evaluation of the
sum over the first several thousand orders for closely spaced values of 0 � u � 1
takes a few seconds on a digital computer.

Given Qm(u), we may estimate �f(x) by using a numerical inverse Fourier trans-
form of Eqn. (3.135) or by calculating p(k) from Eqn. (3.134). Since p(k) must be
real and since Qm(u) is periodic, we obtain

p(k) ¼
ð1

0

cos (2pku)
Qm(u)

du (3:139)

Estimation of p(k) was the approach taken to calculate �f (x) for Fig. 3.16.
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Given f(x) ¼ bm(x� n) and f(x), we can calculate ff(x) for target functions. For
example, Fig. 3.17 shows the signals of Figs. 3.8 and 3.9 projected onto the V(f) sub-
spaces for B-splines of orders 0–3. Higher-order splines smoothly represent signals
with higher-order local polynomial curvature. Note that higher-order splines are not
more localized than the lower-order functions, however, and thus do not immediately
translate into higher signal resolution. Notice also the errors at the edges of the signal
windows in Fig. 3.17. These arise from the boundary conditions used to truncate the
infinite time signal f (x). In the case of these figures, f (x) was assumed to be periodic
in the window width, such that sampling and interpolation functions extending
beyond the window could be wrapped around the window.

The interpolated signals plotted in Fig. 3.17 are the projections ff(x) [ V(f) of
f (x) onto the corresponding subspaces V(f). The consistency requirement designed
into the interpolation strategy means that these functions, despite their obvious discre-
pancies relative to the actual signals, would yield the same sample projections.
Corrections that map the interpolated signals back onto the actual signal lie in
V?(f). Strategies for sampling and interpolation to take advantage of known
constraints on f (x) to so as to infer correction components f?(x) are discussed in
Chapter 7.

Figure 3.16 Complementary interpolation functions �f(x) for the B-splines of orders 0–3.
The zeroth-order B-spline is orthonormal such that �f(x) ¼ b0(x).

94 ANALYSIS



Use of Eqn. (3.125) to estimate f (x) is somewhat unfortunate given that �fn(x) does
not have finite support. A primary objection to the use of the original sampling
theorem [Eqn. (3.92)] for signal estimation is that sinc(x) has infinite support and
decays relatively slowly in amplitude. While f(x) is better behaved for low-order
B-splines, it is is still true that accurate estimation of f (x) may be computationally
expensive if a large window is used for the support of �f. As the order of the
B-spline tends to infinity, �f(x) converges on sinc(x) [235]. If we remove the require-
ment that �f(x) [ V(f), it is possible to generate a biorthogonal dual basis for bm(x)
with compact support [49]. The compactly supported biorthogonal wavelets in this
case introduce a complementary subspace �V spanned by �f(x).

The goal of the current section has been to consider how one might use a set of
discrete B-spline inner products to estimate a continuous signal. This problem is
central to imaging and optical signal analysis. We have already encountered it in
the coded aperture and tomographic systems considered in Chapter 2, and we will
encounter it again in the remaining chapters of the text. We leave this problem for
now, however, to consider the use of sampling functions and multiscale represen-
tations in signal and system analysis. One may increase the resolution and fidelity

Figure 3.17 Projection of f (x) ¼ x2=10 and the signal of Fig. 3.9 onto the V(f) subspace for
B-splines of orders 0–3.

3.9 B-SPLINES 95



of the reconstructions in Fig. 3.17 by increasing the resolution of the sampling func-
tion in a manner similar to the wavelet approach taken in Section 3.8.

3.10 WAVELETS

As predicted in the Section 3.1, this chapter has developed three distinct classes of
mathematics: transformation tools, sampling tools, and analysis tools. In the first
several sections we considered fields and field transformations. We have just com-
pleted three sections focusing on sampling. Section 3.9 describes a method for
representing a function f (x) on the space V(f) spanned by the scaling function
f(x) ¼ bm(x). This section extends our consideration of B-splines to wavelets,
similar to our extension of Haar analysis in Section 3.8. We have already considered
mathematical bases suitable for field analysis in terms of the Fourier transform and
Hermite–Gaussian functions. In fact, many functional families could be used to
analyze fields. The choice of which family to use depends on which family arises
naturally in the physical specification of the problem (e.g., Laguerre–Gaussian func-
tions arise naturally in the specification of cylindrically symmetric fields), which
family arises at sampling interfaces, and which family enables the most computation-
ally efficient and robust analysis of field transformations.

Wavelet theory is a broad and powerful branch of mathematics, and the student is
well advised to consult standard courses and texts for deeper understanding [53,164].
Wavelets often describe images and other natural signals well. The intuitive match
between wavelets and images arises from the assumption that “features” in natural
signals tend to cluster, meaning that higher resolution is desirable in the vicinity of
a feature than elsewhere in the signal. Multiscale clustering enables wavelet represen-
tations to estimate signals with fewer samples than might be used with uniform
regular sampling. Under the Whittaker–Shannon sampling strategy, functional
samples are distributed uniformly in space even in regions with no significant
image features. Wavelets enable samples to be dynamically assigned to regions
with interesting features. This dynamic resource allocation is the basis of natural
signal compression.

B-splines may be used to generate semiorthogonal bases as in Section 3.9, biortho-
gonal spaces and orthogonal wavelet bases. As before, we imagine a hierarchy
of spaces

{0} , � � � , V2 , V1 , Vo , V�1 , V�2 , � � � , L2(R) (3:140)

Semiorthogonal bases are spanned by sets of functions that are not themselves
orthogonal but are orthogonal to a complementary set of functions. Biorthogonal
bases generate complementary spaces spanned by complementary sets of functions.
Orthogonal bases generate a single hierarchy of spaces spanned by a single set of
orthogonal functions. We have already encountered an orthogonal wavelet basis in
the form of the Haar wavelets of Section 3.8. In this section we extend the Haar analy-
sis to orthogonal bases based on higher-order B-splines.
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The orthonormal basis for spaces spanned by discretely shifted B-splines was
introduced by Battle [15] and Lemarie [150]. For the Battle–Lemarie basis, f(x) is
a scaling function on the space V(bm(x)) spanned by the mth-order B-spline. Since
f(x) [ V(bm(x)) there exist expansion coefficients p[n] such that

f(x) ¼
X

p[n]bm(x� n) (3:141)

The Fourier transform of Eqn. (3.141) yields

f̂ (u) ¼ p̂(u)b̂
m

(u) (3:142)

Our goal is to select f(x) to be an orthonormal scaling function such that

f(x� n), f(x� m)h i ¼
ð1

�1

f�(x� n)f(x� m)dx

¼ dnm (3:143)

We may apply the Poisson summation formula as in Section 3.9 to derive a simple
identity from Eqn. (3.143). Again letting a(x) ¼ f(x0), f(x0 � x)h i, we note from
Eqn. (3.130) that

X
n[Z

a(n)e�i2pnu ¼
X
k[Z

â(uþ k) (3:144)

For an orthonormal scaling function, however,
P

n[Z a(n)e�i2pnu ¼ 1 and

â(u) ¼ jf̂ (u)j2, which yields the identity for orthonormal scaling functions

X
k

jf̂ (uþ k)j2 ¼ 1 (3:145)

Referring to Eqn. (142), we see that f̂ (u) satisfies Eqn. (145) if we select

p̂(u) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k jb̂

m
(uþ k)j2

q (3:146)

where p̂(u) is finite and well defined because the B-splines form a Riesz basis, as
discussed in Section 3.9. Since p̂(u) is periodic with period 1 in u, it generates a

discrete series p[n] for use in Eqn. (3.141). Substituting b̂
m

(u) from Eqn. (3.137)
in Eqns. (3.146) and (3.142) yields

f̂ (u) ¼ e�ipju

umþ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 mþ2(u)
p (3:147)
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where

Sn(u) ¼
X
k[Z

1
(uþ k)n (3:148)

We know that the m ¼ 0 spline produces the Haar scaling function

f̂
0
(u) ¼ e�ipu sin (pu)

pu
(3:149)

Comparing Eqns. (3.147) and (3.149), we see that

S2(u) ¼ p2

sin2(pu)
(3:150)

Higher orders of Sn(u) are obtained by noting that Snþ1(u) ¼ �S0n(u)=n. This yields

S4(u) ¼ p4(2þ cos (2pu))

6 sin4(pu)
(3:151)

S6(u) ¼ p6(33þ 26 cos (2pu)þ cos (4pu))

180 sin6(pu)
(3:152)

and

S8(u) ¼ p8(1208þ 1191 cos (2pu)þ 120 cos (4pu)þ cos(6pu))

10,080 sin8(pu)
(3:153)

To satisfy the requirement that Vj , V j�1, we require that f j,n(x) [ V j�1, which
means that there exist expansion coefficients h[n] such that

1ffiffiffiffi
2j
p f

x

2j
� n

� �
¼
X

n0

1ffiffiffiffiffiffiffiffiffi
2 j�1
p h[n0 � n]f

x

2 j�1
� n0

� �
(3:154)

Equation (3.154) reduces without loss of generality to

1ffiffiffi
2
p f

x

2
¼
X

n

h[n]f x� nð Þ (3:155)

The Fourier transform of Eqn. (155) yields

ffiffiffi
2
p

f̂ (2u) ¼ ĥ(u)f̂ (u) (3:156)
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where

ĥ(u) ¼
X
n[Z

h[n]e�2pinu (3:157)

For the Battle–Lemarie scaling functions

ĥ(u)¼
ffiffiffi
2
p f̂ (2u)

f̂ (u)

¼ e�ipju

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 mþ2(u)

22 mþ1S2 mþ2(2u)

s
(3:158)

As with the Haar scaling function, we are interested in obtaining orthogonal wave-
lets spanning the spaces Wj such that Vj�1 ¼ Vj 
Wj. Such wavelets are immediately

obtained using the conjugate mirror filter ĥ(u). The wavelet corresponding to the
scaling function f(x) has the Fourier transform

ĉ(u) ¼ 1ffiffiffi
2
p e�ipuĥ

� uþ 1
2

	 

f̂

u

2

� �
(3:159)

The Battle–Lemarie scaling function and wavelet can be reconstructed by inverse
Fourier transforming Eqns. (3.147) and (3.159). These functions satisfy the same
orthogonality and scaling rules as the Haar wavelets discussed earlier; specifically

f j,n(x) ¼ 1ffiffiffiffiffi
2 j
p f

x

2 j
� n

� �
(3:160)

c j,n(x) ¼ 1ffiffiffiffiffi
2 j
p c

x

2 j
� n

� �
(3:161)

hf j,njf j0,n0 i ¼ d jj0dnn0 (3:162)

c j,njc j0,n0
� �

¼ d jj0dnn0 (3:163)

c j,njf j0,n0
� �

¼ 0 (3:164)

As with the Haar wavelets, the Battle–Lemarie functions span L2(R2) in the hier-
archy of spaces described by Eqn. (3.140). The Battle–Lemarie wavelets are pre-
sented here to provide an accessible introduction to wavelet theory. Many other
wavelet families have been developed [164]; the selection of which family to use
for a particular class of signals is application-specific. Some wavelets are attractive
because they have compact support, which the Shannon wavelet famously does
not. Other wavelets, such as the Haar and B-splines, arise naturally from physical
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or system design considerations. In still other cases, a particular basis may prove more
amenable to compact support of a particular signal class.

PROBLEMS

3.1 Fourier Uncertainty. Show that for f (x) ¼ ae�b(x�xo)2

s 2
f s

2
f̂
¼ 1

16p 2
(3:165)

3.2 Fourier Rotation. Derive Eqn. (3.39).

3.3 Fresnel Identities:

(a) Derive Eqn. (3.63).

(b) Derive Eqn. (3.64).

3.4 Hermite–Gaussian Eigenfunctions. The Hermite polynomial Hn(x) is
defined as

Hn(x) ¼ (�1)nex2 dn

dxn
e�x2

(3:166)

Defining

fn(x) ¼ e�px2
Hn(

ffiffiffiffiffiffi
2p
p

x) (3:167)

show that for n . 0

ffiffiffiffiffiffi
2p
p

fn(x) ¼ 2pxfn�1(x)� d

dx
fn�1(x) (3:168)

Combine this relationship with Eqns. (3.13) and (3.57) to show by recursion
that

F{fn(x)} ¼ infn(u) (3:169)

3.5 One-dimensional Numerical Analysis:

(a) Plot sin (2pux) on [0, 1] using 1024 uniformly spaced samples for
u ¼ 16,32,64,128,256. At what point does aliasing become significant?
Can you describe the structure of the aliased signal?

(b) Plot the discrete Fourier transform of sin (2pux) on [0, 1] using 1024 uni-
formly spaced samples for u ¼ 16, 32, 64. Label the plot in frequency
units. What is the width of the Fourier features that you observe? What
causes this width?

(c) Plot the discrete Fourier transform of b0(x) sin (2p ux) on [�1:5, 2:5]
using 4096 uniformly spaced samples for u ¼ 16, 32, 64. Label the plot
in frequency units and explain the plot.
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3.6 Fourier Analysis of a Hermite–Gaussian:

(a) Plot the Hermite–Gaussian f5(x) over the range of the function.

(b) Plot ~f5t(x) over a representative range of t.

3.7 Transformations:

(a) Plot the Fourier transform of the function e�2(x�:1)2
circ(x/0.3) cos(20px).

Mark units on your plot.

(b) Plot the Fresnel transform for t ¼ 1, 3, 10 for the function from part (a).

3.8 Fresnel Transformation of the Hermite–Gaussian Functions. Prove
Eqn. (3.76).

3.9 Fresnel Transformation of the Laguerre–Gaussian Functions. Use the con-
volution theorem and the fast Fourier transformation to numerically calculate
the Fresnel transformation of the Laguerre–Gaussian modes for m, n equal to
0,0, 1,0, 1,1, 2,0, 2,1, and 4,3 for t ¼ 0:5, t ¼ 1, and t ¼ 2. Use your com-
putational result and the analytic result given by Eqn. (3.83) to plot the absol-
ute value and phase of the mode distribution at t ¼ 0 and for the transform
values of t in each case. Submit your code, plots, and comments regarding
features of the modes or discrepancies between the computational methods.

3.10 Haar Analysis:

(a) Generate and plot a function of similar complexity to f (x) in Fig. 3.9.

(b) Replicate Figs. 3.9, 3.12, and 3.17 for your function.

3.11 2D Wavelet Analysis. Replicate Figs. 3.13 and 3.14 for an image of your
choosing.

3.12 Spline Interpolation:

(a) Show that a one-dimensional pinhole imaging system produces
measurements

gn ¼ fn ¼
ð

f (x)b1 x� nD

D

	 

dx (3:170)

(b) Plot the values of fn for

f (x) ¼ cos 2p
x

5D

� �
e�(x=30D)2

(3:171)

(c) Use Eqn. (3.125) to estimate f (x) from fn. Plot f (x) at a sampling period of
D=10. Compare your plots.

3.13 Wavelets. For the Battle–Lemarie bases, plot the scaling function f(x) and
wavelet c(x) for orders 0, 1, 2, and 3.
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4
WAVE IMAGING

The physical phenomenon called diffraction is of the utmost importance in the theory of
optical imaging systems.

—J. W. Goodman [100]

4.1 WAVES AND FIELDS

The optical field is an electromagnetic field. The physical nature of the field is deter-
mined by the laws of electromagnetic propagation and by quantum mechanical and
thermal laws describing the interaction between the field and materials. In the
design and analysis of optical systems we consider

† How the field is generated. Common mechanisms include

Thermal radiation generated, for example, by the Sun, a flame, or an incan-
descent lightbulb

Electrical discharge by gases such as neon or mercury vapor

Fluorescence

Electrical recombination in semiconductors

While we do not consider light generation in detail in this text, differences in the
coherence properties of the source are central to our discussion. Coherence theory,
which relates the electromagnetic nature of the field to statistical properties of
quantum (e.g., photonic) processes, is the focus of Chapter 6.

† How the field is detected. The field may be detected by optically induced
chemical, physical, thermal, and electronic effects. Optoelectronic detection
interfaces for imaging and spectroscopy are the focus of Chapter 5.

Optical Imaging and Spectroscopy. By David J. Brady
Copyright # 2009 John Wiley & Sons, Inc.
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† How the field propagates and how propagating fields are modulated by
materials. Field propagation is described by the Maxwell equations for electro-
magnetic waves, and field–matter interactions are described by materials
equations. The electromagnetic description of optical waves and optical inter-
actions is the focus of this chapter.

In view of the peculiarly quantum mechanical nature of optical field generation and
detection, it is important to understand that the conventional electromagnetic field of
the Maxwell equations is not a sufficient description of optical fields. The description
derived in this chapter provides a basis for optical analysis, but complete understand-
ing of optical field propagation and field properties must incorporate the detection
and coherence processes discussed in Chapters 5 and 6. In short, the student must
understand the next three chapters as a group to have a vision for the peculiar and
beautiful nature of optical fields.

4.2 WAVE MODEL FOR OPTICAL FIELDS

The Maxwell equations for electromagnetic propagation are

r� E ¼ �
@

@t
B (4:1)

r �H ¼ Jþ
@

@t
D (4:2)

r � D ¼ r (4:3)

r � B ¼ 0 (4:4)

where E is the electric field, D is the electric displacement, B is the magnetic
induction, H is the magnetic field, J is the current density, and r is the charge density.
Equation (4.1), which expresses the tendency of a moving magnet to generate an
electromotive force, is called Faraday’s law. Equation (4.2), which expresses the
tendency of an electric current to generate a magnetic flux, is called Ampere’s
law. The electric displacement current @D/@t in Ampere’s law was added by Maxwell
as a means of explaining electrodynamics. Equation (4.3), which expresses the
Coulomb attraction of electromagnetic charge, is called Gauss’ law. Equation (4.4), is
called Gauss’ law for magnetism and expresses the absence of magnetic monopoles.

The fields are further related by the material equations

D ¼ 10Eþ P (4:5)

B ¼ m0HþM (4:6)

where P is the polarization of the material and M is the magnetization. In most optical
materials, M ¼ 0 and P is a function of E. The simplest and most common case is the
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linear dielectric relationship

P ¼ 10xeE (4:7)

such that

D ¼ 1E (4:8)

where

1 ¼ (1þ xe)10 (4:9)

Since charge dynamics at optical frequencies are described by quantum mechanical
processes that cannot be accurately analyzed by continuous models, the space charge
density r and the current density J are generally neglected in optical analysis. A
nonzero current density is sometimes applied to formally account for optical absorp-
tion. We also note that E and D need not be collinear, meaning that 1 is in general
tensor-valued. Materials in which 1 is a scalar are called isotropic. Optical glasses
are isotropic, but optical crystals are often anisotropic. While most of the optical
systems discussed in this text utilize isotropic materials, we consider the application
of anisotropic materials to tunable filters in Section 9.7.

Using the material relations to eliminate B and D from the Faraday and Ampere
relationships yields

r� E ¼ �m0
@

@t
H (4:10)

r �H ¼ 1
@

@t
E (4:11)

Operating on Eqns. (4.10) and (4.11) with the curl yields the wave equations

r � r� E ¼ �m01
@2

@t2
E (4:12)

r� r�H ¼ �m01
@2

@t2
H (4:13)

The equations are reduced to a simpler form by the vector identity

r � r� A ¼ r r � Að Þ � r2A (4:14)

From Gauss’ law we know that

r � 1Eð Þ ¼ E � r1þ 1r � E ¼ 0 (4:15)

where we have assumed for the moment that 1 is a scalar. We can reexpress
Eqn. (4.15) as

r � E ¼ �E � r log 1ð Þ (4:16)
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Substituting Eqn. (4.16) in the wave equation yields

r2E� r E � r log 1ð Þð Þ ¼ m01
@2

@t2
E (4:17)

A medium in which r1 ¼ 0 is termed homogeneous. Most optical dielectrics (i.e.,
transparent glasses and crystals and liquids) are homogeneous. Optically interesting
inhomogeneous media include photonic crystals, optical fiber, graded-index lenses,
and volume holograms.

In isotropic homogeneous media, the wave equations reduce to

r2E� m01
@2

@t2
E ¼ 0 (4:18)

r2H� m01
@2

@t2
H ¼ 0 (4:19)

4.3 WAVE PROPAGATION

Solutions to Eqn. (4.12) take many forms, but the linearity of the equations and the
natural harmonic nature of optical sources make harmonic solutions particularly
attractive. The basic harmonic solution is the plane wave described by

E ¼ E0ei2p(nt�u�r) (4:20)

Substituting this solution into Eqn. (4.13) yields

u� u� E0 ¼ �m01n
2E0 (4:21)

If 1 is a scalar, this equation has solutions E0 only if juj2 ¼ m01n
2. Allowing for the

possibility that 1 is a tensor, solutions correspond to values of u such that

u� u�þm01n
2

�
�

�
� ¼ 0 (4:22)

Equation (4.22) reduces the range of u from three dimensions to two. The surface
defined by this equation is called the wave normal surface. In isotropic materials,
the wave normal surface is a sphere in u space of radius n

ffiffiffiffiffiffiffiffi
m01
p

, as sketched in
Fig. 4.1. In anisotropic materials (crystals), the wave normal surface splits into two
sheets, so that there are two solutions for u in almost every direction. The relationship
between u and n (or radial coordinates k ¼ 2pu and v ¼ 2pn) expressed by the wave
normal surface is called the dispersion relationship, which reduces the four-
dimensional u, n space to a three-dimensional manifold of allowed solutions for
wave propagation. Each solution for u corresponds to an eigenvector E0. The direc-
tion of E0 is the polarization. For the isotropic case, two possible polarizations exist
for each u. In the general case, each eigenvector corresponds to a different value of u.
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The primary attraction of plane wave analysis is that more general solutions can be
expressed as superpositions of plane waves. In the remainder of this chapter we
restrict our attention to isotropic materials, in which case 1 is a scalar and juj2 ¼
m01n

2. A general solution to Eqn. (4.18) in this case is

E(r, t) ¼
ð ð ð

F(u, v, n)p(u, v, n)e�i2p nt�ux�vy�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1n2�u2�v2z
p� �

du dv dn (4:23)

where (u, v, w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m1n2 � u2 � v2
p

) corresponds to u, p(u, v, n) � u ¼ 0 and
jp(u, v, n)j ¼ 1.

As discussed in some detail in subsequent chapters, the space–time field E(r,t) is
not generally measurable at optical frequencies. It will take us a while to introduce
functions that are measurable over the optical band; for the present purposes we
prefer to analyze the field using the temporal Fourier transform of E(r, t):

E(r, n) ¼
ð

E(r, t)ei2pntdt (4:24)

In this chapter n is treated as an implicit variable in the function E(r) ¼ E(r, n).
We according drop the harmonic time dependence e2i2pnt from Eqn. (4.23) and
describe spatial distribution of the field amplitude according to

E(r) ¼
ð ð

F(u, v)p(u, v)ei2p uxþvyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1n2�u2�v2z
p� �

du dv (4:25)

In the remainder of this chapter we also assume that the field propagates paraxially.
The paraxial approximation consists of the assumption that values of u and v for
which jF(u, v)j is nonzero lie on a compact window on the wave normal sphere

Figure 4.1 The wave normal surface in free space.
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centered on the w axis, as illustrated in Fig. 4.1. This window is centered on the z axis,
such that w� u, v over the full spatial bandwidth. This means that the polarization
vector p(u, v) is nearly parallel to the (x, y) plane over the entire spatial bandwidth.

In an isotropic material p(u, v) may be represented on any basis orthogonal to u.
We select as an example a basis in which one of the polarization vectors is also
orthogonal to the y axis. The resulting orthonormal basis for p(u, v) is

px ¼ �k uix þ viy þ wiz
� �

� iy

¼
lwix � luiz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2v2
p

py ¼ � luix þ lviy þ lwiz
� �

� px

¼
(1� l2v2)iy þ l2uvix þ l2iz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� l2v2
p

(4:26)

where k is a normalization constant and l ¼ 1/n
ffiffiffiffiffiffi
m1
p

. Substituting the polarization
into Eqn. (4.25) separates the field into polarized components

fx(r) ¼
ð ð

Fx(u, v)pxei2p uxþvyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l2�u2�v2z
p� �

du dv

fy(r) ¼
ð ð

Fy(u, v)pyei2p uxþvyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l2�u2�v2z
p� �

du dv

(4:27)

Equation (4.27) is an exact vector model relating the Fourier distribution of the field
in linear polarizations to the spatial field distribution in three dimensions. The inverse
relationship is

Fx(u, v)pxei2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l2�u2�v2z
p

¼

ð ð

fx(x, y, z)e�i2p(uxþvy)dx dy

Fy(u, v)pyei2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l2�u2�v2z
p

¼

ð ð

fy(x, y, z)e�i2p(uxþvy)dx dy

(4:28)

From Eqn. (4.28) we see that knowledge of fx(x, y, z) and fy(x, y, z) as functions
of (x, y) for any specific value of z is sufficient to calculate Fx(u, v) and Fy(u, v).
In particular, if we know f (x, y, z ¼ 0), we can then calculate

Fx(u, v)px ¼

ð ð

fx(x, y, z ¼ 0)e�i2p(uxþvy)dx dy

Fy(u, v)py ¼

ð ð

fy(x, y, z ¼ 0)e�i2p(uxþvy)dx dy

(4:29)

Once we have determined Fx(u, v) and Fy(u, v), the field at all (x, y, z) may be
calculated from Eqn. (4.27). Specification of the field on a surface, such as the
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plane z ¼ 0, is called a boundary condition and the evolution of the field distribution
from one boundary to another is called diffraction. Equations (4.27) and (4.28) enable
us to computationally model diffraction in homogeneous media.

4.4 DIFFRACTION

Diffraction is the process of wave propagation from one boundary to another. A
canonical example of optical diffraction, propagation of a monochromatic field
from the plane (x, y, z ¼ 0) to the plane (x0, y0, z ¼ d ), is illustrated in Fig. 4.2.
Given the electric field distribution on the input plane, we seek to estimate the
field distribution on the output plane. Viewed as a transformation between a function
f (x, y) over the input plane and a function g(x0, y0) over the output plane, diffraction is
linear and shift-invariant. Our goal in this section is to describe the transfer function
and impulse response corresponding to diffraction from one plane to another.

An arbitrary vector field f(x, y) in the plane z ¼ 0 corresponds to the Fourier space
distribution

F(u, v) ¼
ð ð

f(x, y)e�i2p(uxþvy)dx dy (4:30)

where F(u, v) may be separated into x, y and z components Fx(u, v) ¼ F(u, v) �
px(u, v), Fy(u, v) ¼ F(u, v) � py(u, v), and Fz(u, v) ¼ F(u, v) � lu. The Fz component
does not produce a propagating field.

Let Gx (u, v) and Gy (u, v) be the Fourier distributions of the field in the x0, y0 plane
at z ¼ d. From Eqn. (4.28) we see that

Gx(u, v) ¼ ei2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l2�u2�v2d
p

Fx(u, v)

Gy(u, v) ¼ ei2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l2�u2�v2d
p

Fy(u, v)
(4:31)

Figure 4.2 Diffraction between two planes.
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the factor T(u, v) ¼ ei2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l2�u2�v2d
p

is the transfer function for diffraction from the
z ¼ 0 plane to the z ¼ d plane.

Nominally, the impulse response for diffraction is the inverse Fourier transform of
the transfer function. We continue along this line with care, however, by briefly
accounting for the vector nature of the field. Using the transfer function and
Eqn. (4.27), we obtain

g(x0, y0) ¼
ð ð

F(u, v) � pxpx þ F(u, v) � pypy

� �

� ei2p ux0þvy0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l2�u2�v2z
p� �

du dv (4:32)

If there are no longitudinal (nonpropagating) field components on the input boundary
then F(u, v) � lu ¼ 0, and

F(u, v) � pxpx þ F(u, v) � pypy ¼ F(u, v) (4:33)

In this case Eqn. (4.32) simplifies considerably to yield

g(x0, y0) ¼
ð ð

F(u, v)ei2p ux0þvy0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l2�u2�v2z
p� �

du dv

¼

ð ð

f(x, y)h(x0 � x, y0 � y)dx dy (4:34)

where

h(x, y) ¼
ð ð

ei2p uxþvyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l2�u2�v2z
p� �

du dv (4:35)

Equation (4.35) integrates in closed form to yield [21]

h(x, y) ¼
d

l

�i

(d2 þ x2 þ y2)
þ

l

2p(d2 þ x2 þ y2)3=2

� 	

ei(2p=l)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2þx2þy2
p

(4:36)

Given f(x, y), it is not difficult to numerically apply Eqns. (4.30) and (4.34) to cal-
culate the diffracted field. In paraxial systems such that u, v� w over the spatial
bandwidth of the field, we assume that px � ix and py � iy. Under this assumption
the polarization components are independent of u and v and Eqn. (4.34) reduces to
independent scalar equations for each polarization. Accordingly, we base our model
for diffraction in the remainder of the text on the scalar transformation

g(x0, y0) ¼
ð ð

f (x, y)h(x0 � x, y0 � y)dx dy (4:37)

Integration of Eqn. (4.37) using h(x, y) as given by Eqn. (4.36) is a bit tricky, but
one can numerically model diffraction by applying the transfer function using the
methods described in Section 3.7. In analytic work, however, one generally
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chooses to work with a simplified approximate impulse response. As an example,
l � d in essentially all optical systems, meaning that the 1/ld term in Eqn. (4.36)
dominates the 1/d2 term. In imaging system analysis, the impulse response is
often simplified by the Fresnel (near-field) approximation or the more restrictive
Fraunhofer (far-field) approximation. Both approximations are paraxial, meaning
that we restrict our attention to field distributions over the space close to the axis
of optical propagation (the z axis in Fig. 4.2).

The Fresnel approximation is just the paraxial approximation that d � jx� x0j,
jy� y0j for all x, y and x0, y0 of interest. In this case

h(x, y) �
1

ild
ei(2pd=l)ei(p=ld) x2þy2ð Þ (4:38)

Under the Fresnel approximation, diffraction in homogeneous isotropic space is
described by a 2D version of the Fresnel transform discussed in Section 3.5 evaluated
at t ¼

ffiffiffiffiffiffi

ld
p

. Noting from Fig. 3.7 that the Fresnel transformation produces significant
blurring for Gaussian features of width D when t/D . 1, one might expect features
of size D to blur on propagation at distances greater than d ¼ D2/l. This suggests
that wavelength scale features will blur quite rapidly on diffraction. Features with
an initial scale of 10 wavelengths blur in 100 wavelengths, while features on a
scale of 100 wavelengths blur in 10,000 wavelengths. This effect is illustrated
in Fig. 4.3, which shows diffraction of Gaussian spots of various sizes. Notice,
however, that high-frequency features reappear at 10 mm as a result of interference
between the diffracting spots. Such interference appears in the diffraction of coherent
laser fields, but is not observed in the diffraction of incoherent fields.

Figure 4.3 was generated using numerical analysis in Matlab. The figure used a
2 � 2-mm spatial window sampled with 1024 � 1024 pixels. The Fresnel transfer
function multiplied the DFT of the input field and an inverse DFT was used to gen-
erate the diffracted field. Of course, numerical analysis is not necessary for analysis of
diffraction of these particular sources because, as discussed in Section 3.5, Hermite–
Gaussian distributions are eigenfunctions of the Fresnel transform. According to
Eqns. (3.76) and (4.38), if the input field f (x, y) ¼ fn(x=w0)fm( y=w0) for real w0,
then the diffracted field is

g(x, y) ¼
ei(p=4)ei(2pd=l)e�i(nþmþ1)arctan ld=w2

0ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w4
0 þ l2d2

q eip½(x2þy2)ld=(w4
0þl

2d2)�

�fn
xw0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w4
o þ l2d2

q

0

B
@

1

C
Afm

xw0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w4
0 þ l2d2

q

0

B
@

1

C
A (4:39)

With specific reference to the Gaussian input spots of Fig. 4.3, the diffracted field for
the input distribution f (x, y) ¼ exp (�p(x2 þ y2)=w2

0) is

g(x, y) ¼
e�i(p=4)

w2
0 þ ild

ei(2pd=l)e�p ½(x
2þy2)=(w2

0þild)� (4:40)
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Additional interesting Fresnel diffraction effects are observed in Figs. 4.4 and 4.5.
These figures were generated from the same spatial window and sampling as above,
but the images are zoomed to focus on features of interest. Figure 4.4 is a harmonic
field modulated by a Gaussian envelope. Note that the harmonic features do not blur
(features with the same frequency are present at all diffraction lengths). At d ¼ 10 mm,
the diffracted field has begun to separate horizontally into multiple images of the
Gaussian envelope and harmonic modulation is observed only in the interference
between the separating spots, not within individual spots.

Figure 4.5 is a chirped harmonic field modulated by a Gaussian envelope. For this
input, the diffracting field sharpens to a focus at d ¼ 2 mm rather than blurring on
propagation. After the focus, the field blurs. In both Figs. 4.4 and 4.5 it is interesting
to note that blur is not a fundamental process of diffraction for coherent fields. In fact,
a diffracting coherent field maintains its spatial frequency bandwidth on propagation.

Figure 4.3 Absolute values of the diffracted field for the Gaussian spots e�p ½(x
2þy2)=202 �,

e�p f½(x�100)2þy2�=502g, e�p f½(xþ200)2þy2 �=1002g, and e�p f½x
2þ(y�200)2�=2502g under the Fresnel approxi-

mation for various diffraction distances. All units are in microns and l ¼ 1 mm.
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Blur in the normally observed sense of optical fields is a property of partially coherent
or incoherent fields, as discussed in Chapter 6.

As illustrated in Fig. 4.4, however, Fourier components of diffracting fields tend to
separate on propagation. This effect is easily explained in the context of Fraunhofer
diffraction theory. Fraunhofer diffraction is most easily derived from the integral form
of Fresnel diffraction

g(x0, y0) ¼
ei(2pd=l)

ild

ð ð

ei(p=ld)[(x� x0)2
þ ( y� y0)2] f (x, y)dx dy

¼
ei(2pd=l)ei(p=ld)(x02 þ y02)

ild

ð ð

exp �i2p
xx0 þ yy0

ld


 �

� exp i
p

ld
(x2 þ y2)

h i

f (x, y)dx dy (4:41)

Figure 4.4 Absolute value of the diffracted field for f (x, y) ¼ e�p [(x2þy2)=2502� ½1þ
cos (0:05px)]. All units are in micrometers; l ¼ 1 mm.
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Assuming that x2
� ld and y2

� ld over the support of f (x, y), we may drop the
second exponential in the integrand to obtain

g(x0, y0) �
ei(2pd=l)ei(p=ld) x02þy02ð Þ

ild
f̂ u ¼

x0

ld
, v ¼

y0

ld


 �

(4:42)

meaning that the diffracted field is proportional to the Fourier transform of the input
field. Note that the Fraunhofer assumption is quite restrictive, however. For example,
a 100 wavelength scale input must diffract for well over 10,000 wavelengths to reach
the Fraunhofer regime and a 1000 wavelength feature, for well over 1,000,000 wave-
lengths. Fraunhofer diffraction is nevertheless often useful in determining the rough
size and spatial frequency structure of objects. The Fraunhofer assumption is com-
monly applied at opposite ends of the electromagnetic imaging frequency scale,
such as in X-ray crystallography and radio astronomy.

Figure 4.5 Absolute value of the diffracted field for f (x, y) ¼ e�p ½(x
2þy2)=2502� ½1þ cos

(5p10�4x2)�. All units are in micrometers; l ¼ 1 mm.
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4.5 WAVE ANALYSIS OF OPTICAL ELEMENTS

Chapter 2 considered the use of optical elements to shape the mutual visibility of
source points and detection points. The visibility function, renamed the impulse
response or point spread function, remains of central interest under the wave model.
The goal of optical sensor design is to use optical elements to program the impulse
response, within physical constraints, to usefully encode target object features into
detected data.

This section presents wave models for the optical elements that we described using
geometric models in Section 2.2. In addition, we consider diffractive optical
elements, which cannot be described by ray models. As in Section 2.2, analysis of
refraction and reflection at dielectric interfaces is a good starting point for optical
element analysis. In analogy with Fig. 2.4, the effect of a dielectric interface on a
plane wave is illustrated Fig. 4.6. A plane wave is incident on the interface in a
medium of index of refraction n1. The incident field is Ei(r) ¼ Eiexp(2piui . r).
The incident wave is refracted at the interface into the second medium of index of
refraction n2, and a reflected wave is returned into the first medium. The refracted
and reflected fields are Et(r) ¼ Etexp(2piut . r) and Er (r) ¼ Erexp(2piur . r).

Boundary conditions derived from the Maxwell equations determine the relative
amplitudes of these waves. The boundary conditions may be stated as follows:

† Vector components of E and H that lie in the plane of the interface are
continuous.

† Vector components of D and B normal to the plane of the interface are
continuous.

In both cases we assume that there are no surface charges or currents, which is always
the case at optical frequencies. These boundary conditions are used in standard texts

Figure 4.6 Refraction of a plane wave at a planar interface.
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on optics and electromagnetics to relate the amplitudes of the refracted and reflected
waves to the amplitude of the incident wave. Typically, the power in the reflected
wave at a dielectric interface is a few percent of the incident power, and most of
the power is transmitted. Thin film layers are often used to encode the impedance
at the interface to suppress or enhance reflection.

It is not necessary to model reflection and refraction in detail to understand the
functional utility of optical elements in shaping the impulse response. The most
important features from a wave perspective are obtained simply by noting that the
functional form of the wave distribution must be maintained on both sides of the
interface for the boundary conditions to be satisfied. To satisfy the boundary
conditions in the plane of the interface, we require that [Ei(r)þ Er(r)]� is ¼
Et(r)� is, for all r on the interface. is is the surface normal for the interface. To
satisfy this condition, one must require that

ui � ui � isis ¼ ut � ut � isis (4:43)

In combination with the requirement that jutj ¼ n2/l, we find that

ut ¼ ui � ui � isis þ is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2
2

l2 �
n2

1

l2 þ ui � isð Þ
2

s

(4:44)

If we use angles relative to the surface normal to decompose ui and ut into trans-
verse and longitudinal components, Eqn. (4.44) immediately reduces to Snell’s law
[Eqn. (2.5)]. In the the paraxial case is and ui are nearly collinear and Eqns. (4.44)
can be approximated by

ut � ui þ is
Dn�n

l2ui � is
(4:45)

where Dn ¼ n2 2 n1 and n̄ ¼ (n1 þ n2)/2.
As in Section 2.2, we first apply Snell’s law to the analysis of prism refraction.

As illustrated in Fig. 4.7, a prism consists of a series of two tilted planar interfaces.
The prism of Fig. 4.7 consists of a dielectric of index n2 embedded in a dielectric of
index n1. If i1 is the surface normal at the first interface of a prism and i2 the surface
normal at the second interface, recursive application Eqn. (4.45) produces an estimate
of the output wavevector u3

u3 � u2 � i2
Dn�n

l2u2 � i2

� u1 þ
Dn�n

l
(i1 � i2) (4:46)
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We find, therefore, that the plane wave Ei(r) ¼ Ei exp (2piui � r) incident on a prism
is refracted under the paraxial approximation into the plane wave

Et(r) ¼ Ei exp (2piui � r)eifp

� exp 2pi
Dn(n1 þ n2)

l
i1 � i2½ � � r


 �

(4:47)

where the phase fp is the phase shift the wave experiences in propagating through
the prism.

Equation (4.47) has the form

Et(r) ¼ t(r)Ei(r) (4:48)

Because t(x, y) is independent of ui in the plane z ¼ 0, one can imagine taking an
inverse Fourier transform of Eqn. (4.47) with respect to x and y to show that
Eqn. (4.48) holds for any input wave, not just plane waves. t(x, y) is the “transmit-
tance” of the prism. Transmittance functions are commonly used to approximate
the action of thin optical elements, such as prisms, lenses, aperture stops, gratings,
and mirrors. We made use of the transmittance concept in Section 2.5 in the
context of coded aperture imaging and again apply this concept in Chapter 9 in con-
sidering coded aperture spectroscopy. In the present chapter, we find transmittance
extremely useful in describing prisms, lenses, gratings, and holograms.

The basic idea of a transmittance function is illustrated in Fig. 4.8. The wave field,
Ei (x00, y00), is incident on an optical element. The field to the immediate right of the
element is t(x00, y00)Ei (x00, y00). One models a system involving the optical element by
first propagating the field f (x, y) to the input of the element using the Fourier methods
described in Section 4.4, then modulating the field by the transmittance, and finally
propagatating the modulated field to the output plane to determine g(x0, y0).

Figure 4.7 Refraction of a plane wave by a prism. For n2� n1, the incident wavevector
refracts to move u2 closer to the surface normal i1 than the incident wavevector u1. Refraction
at the output interface moves u3 away from the surface normal i2 in comparison with u2.
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The transmittance for the prism of Fig. 4.7 is

t(r) ¼ eifp e2pi((n2�1)=l) i1�i2½ ��r (4:49)

where we assume no reflective loss, n1 ¼ 1 and n2 ¼ n. The effect of the prism is to
introduce a linear phase shift in the modulation plane. This linear phase shift is con-
sistent with the idea that the variable thickness of a wedge will shift the phase of the
field in proportion to the local thickness of the wedge. In the case i12 i2 ¼ 2sinc ix,
the transmittance of a prism is

t(x) ¼ eif0 e2pi(n2�1)(x=l) sinc (4:50)

If this prism is illuminated by a plane wave with wavevector

ui ¼
1
l

sin u ix þ cos u iz½ � (4:51)

The refracted wave vector is approximately

us ¼
1
l

sin u0ix þ cos u0iz½ � (4:52)

where sin u 0 ¼ sin u þ (n2 2 1)sin c. Note that u 0 is independent of l. In practice,
of course, spectral dispersion is observed in prism refraction. As discussed in
Section 2.2, this dispersion is due to the wavelength dependence of n.

Transmittance functions may also be used to model diffractive optical elements.
Consider, for example, the diffraction grating sketched in Fig. 4.9. The surfaces
are curved such that i12i2 varies harmonically. If we assume, for example, that
i12i2 ¼ a sin(Kx)ix, then, for some constant a, we find in analogy with Eqn.
(4.49) that transmittance is

t(x, y) ¼ eif0 e2pi(g=l) sin (Kx) (4:53)

where we have absorbed materials constants into the grating amplitude g and f0 is a
phase constant. We neglect the constant f0 phase factor in the following analysis.

Figure 4.8 Transmittance of a thin optical element.
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Since the transmittance of the grating is periodic, it may be expanded in a Fourier
series. In the case of Eqn. (4.53) the series is obtained from the Jacobi–Anger
expansion [246]

eim sin(x) ¼
X1

q¼�1

Jq(m)eiqx (4:54)

where Jq(m) is a Bessel function of the first kind. Substituting in Eqn. (4.53) yields

t(x, y) ¼
X1

q¼�1

Jq
2pa
l


 �

eiqKx (4:55)

If the grating described by Eqn. (4.55) is illuminated by the incident plane wave
Ei(r) ¼ Ei exp(2piui . r), then the field in the plane immediately after the grating is

Ed(x, y) ¼ Ep

X1

q¼�1

EiJq
2pa
l


 �

eiqKxe2piuixxe2piuiyy (4:56)

This field consists of an infinite series of harmonic components, or diffraction
orders. The qth component is of amplitude EiJq(2pgl) and produces a plane wave

Figure 4.9 A phase modulating diffraction grating.
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with wavevector

uq ¼ uix þ qKð Þix þ uiyiy þ iz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

l2 � uix þ qKð Þ
2
þu2

iy

r

(4:57)

The effect of both the grating and the prism is to redirect an incident wave.
Neglecting reflections, however, a prism produces only one refracted order while a
grating tends to produce many diffraction orders. An even more fundamental differ-
ence between the effect of prisms and gratings is observed in the spectral domain. For
a prism, us 2 ui is inversely proportional to l and, as expressed in Eqn. (4.52), the
shift in angle between the incident and refracted beams depends on wavelength
only through the materials dispersion. For a grating, in contrast, the shift in the inci-
dent wavevector, (uq 2 ui) . ix ¼ qK, is independent of l. A wavelength independent
shift in the wavevector produces strong wavelength dependence (dispersion) in the
direction of the scattered field. In the paraxial approximation, a plane wave with
angle of incidence u is diffracted in the qth order to the transmission angle

sin u 0 ¼ sin uþ q
l

L
(4:58)

where L ¼ 2p/K is the period of the grating.
The optical element illustrated in Fig. 4.9 is called a surface relief grating. Since

the optical element is nonabsorbing, it is called a phase element. It is also possible to
produce phase elements by spatially varying the index of refraction rather than the
surface relief. This approach produces a transmittance function substantially similar
in functional form and diffraction properties to the surface relief grating. It is also
possible to produce diffraction gratings by modulating absorption properties of a
material or both phase and absorption. The transmittance of an absorption grating
might be t(x, y) ¼ 1=(1þ m)½1þ m cos(2px=L)], where m is a constant between
zero and one. For the normally incident plane U(r) ¼ A0e jk0z, the field transmitted
by the absorption grating is f (x, y) ¼ A0=(1þ m)½1þ m cos(2px=L)�. This field

Figure 4.10 Diffraction by an amplitude grating.
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corresponds to a plane wave of amplitude A0/(1 þ m) propagating along the z axis,
a plane wave of amplitude mA0=2(1þ m) propagating with wavevector Kixþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
0 � K2

p

iz, and a plane wave of amplitude mA0=2(1þ m) propagating with wave-

vector �Kix þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
0 � K2

p

iz. As illustrated in Fig. 4.10, the angular spacing between
diffraction orders is l/L.

4.6 WAVE PROPAGATION THROUGH THIN LENSES

As illustrated in Fig. 2.9, a lens may be considered as an array of prisms with the
direction of the surface normal varying across the transverse plane. The difference
in the surface normal directions varies linearly with radial position on a lens such that

i1 � i2 ¼ �arir (4:59)

where r is the radial coordinate in the plane of the lens and a is a constant.
Substituting Eqn. (4.59) in Eqn. (4.49), we obtain the transmittance of a lens as

t(r) ¼ eif0 e�pi(Dnar2=l) (4:60)

To understand the action of the lens, recall that a lens transforms light radiated by a
point source at the front focal point into a plane wave. Figure 4.11 illustrates a point
source illuminating a lens from the front focal point. The field striking the lens is the
impulse response for propagating over a distance F:

h(x, y) ¼
eik0z

lz
exp ip

x2 þ y2

lF


 �

The lens transforms this field into a plane wave by modulating it by a transmittance
function t(x, y). Since the field of a plane wave propagating along the z axis is

Figure 4.11 Collimation by a thin lens.
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constant across the transverse plane, the lens transmittance must be

t(x, y) ¼ exp �ip
x2 þ y2

lF


 �

We find, therefore, that the constant a in Eqn. (4.59) is related to the focal length
according to F ¼ 1/Dna. Note that, neglecting material dispersion, F is independent
of l.

If the incident point source is not on the optical axis, but is rather at point (x0, y0) in
the plane a distance F in front of the lens, the field striking the lens is

h(x, y) ¼
eik0z

lz
exp ip

(x� x0)2 þ ( y� y0)2

lF


 �

Modulation of this field by the lens transmittance produces the field

t(x, y)h(x, y) ¼ exp i2p
xx0 þ yy0

lF

� 

exp ip
x2

0 þ y2
0

lF


 �

(4:61)

which corresponds to a plane wave with wavevector

x0

lF
ix þ

y0

lF
iy þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
0 � 4p2

x2
0 þ y2

0

l2F2

s

iz

An alternative derivation of the transmittance considers the phase modulation
placed on the field by propagation through the lens. Since the lens is nonabsorbing,
the transmittance is of the form t(x, y) ¼ exp½if(x, y)�, where f(x, y) is the phase
delay that the field encounters in passing through the lens at (x, y). This phase
delay is f(x, y) ¼ (2p=l)(D0 � D(x, y))þ (2pn=l)D(x, y), where D(x, y) is the thick-
ness of the lens at (x, y), D0 ¼ D(0, 0) and n is the index of refraction of the lens.

As sketched in Fig. 4.12, a lens consists of a dielectric with curved surfaces. The
front surface of the lens is a section of a sphere of radius R1, and the back surface is
a section of a sphere of radius R2. The thickness of the lens at its center is D0. The
front surface is described by the equation x2 þ y2 þ ½z� (R1 � D0=2)�2 ¼ R2

1. The
back surface is described by surface is described by the equation x2 þ y2þ

½z� (R2 þ D0=2)�2 ¼ R2
2. The thickness of the lens is the difference between z on

the front surface and z on the back surface at (x, y):

D(x, y) ¼ D0 � R1 þ R2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
1 � x2 � y2

q

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
2 � x2 � y2

q

� D0 �
x2 þ y2

R1
þ

x2 þ y2

R2
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The phase delay propagating through the lens is thus approximately

f(x, y) ¼
2p
l
D0 �

2p (n� 1)
l

1
R1
�

1
R2


 �

(x2 þ y2)

Comparing with the transmittance derived above from focal collimation, we see that
1=F ¼ (n� 1)½ 1=R1Þ � ð1=R2Þ�ð , which is the lensmaker’s equation that we pre-
viously encountered in Eqn. (2.16). R1 and R2 are accounted negative if the center
of curvature is to the right of the lens and positive if it is to the left. Thus for a
lens convex on both surfaces, R1 is positive and R2 is negative. Depending on the
values of R1 and R2, F may be positive or negative. A negative focal length converts
an incident plane wave into a diverging wave.

Since the front and back surfaces of convex lenses meet at edges of zero thickness in
essentially all our lens drawings, we are, of course, aware that the lens transmittance
described by Eqn. (4.60) cannot hold over an infinite aperture. We account for the
finite transverse aperture and lens shape aberrations of real lenses by introducing the
pupil function, P(x, y). With the pupil function the lens transmittance is modeled as

t(x, y) ¼ exp �ip
x2 þ y2

lF


 �

P(x, y) (4:62)

For a round lens of diameter D, for example,

P(x, y) ¼ circ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

D

 !

While we have introduced the pupil function with an innocuous comment, P(x, y)
is central to our discussion for much of the remainder of the text. We have, in fact,
gone to some lengths to introduce it. The small-angle approximations that we used

Figure 4.12 Lens geometry.
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to derive the transmittance of the prism and lens are, in fact, routinely violated in
optical systems. We find it more convenient, however, to account for these violations
in aberration and coding terms in secondary analysis. As we see in the next section,
the simple elegance of the pupil function is intoxicating.

4.7 FOURIER ANALYSIS OF WAVE IMAGING

Consider the system sketched in Fig. 4.13. The field at the (x, y) plane diffracts along
the iz axis a distance z1 to the (x0, y0) plane, which contains a lens. The field at this
plane is modulated by the transmittance of the lens before diffracting along the iz
axis a distance z2 to the (x00, y00) plane. Our goal is to determine the field g(x00, y00)
on the plane (x00, y00) given the field f (x, y) on the (x, y) plane. Because all transform-
ations in this process are linear, the overall process may be viewed as a linear
transformation and characterized by an impulse response. An impulse at (x0, y0) in
the (x, y) plane generates the field

U(x0, y0) ¼
eik0z1

lz1
exp ip

(x0 � x0)2 þ ( y0 � y0)2

lz1


 �

(4:63)

on the left side of the lens. After passing through the lens, the modulated field is

t(x0, y0)U(x0, y0) ¼
eik0z1

lz1
exp �ip

x02þ y02

lF


 �

� exp ip
(x0 � x0)2 þ ( y0 � y0)2

lz1


 �

P(x0, y0) (4:64)

Figure 4.13 Lens system geometry.
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We find the impulse response h(x00, y00, x0, y0) by convolving the field on the right
side of the lens with the Fresnel kernel. This yields

h(x00, y00, xo, yo) ¼
eik0(z1þz2)

l2z1z2

ð ð

exp �ip
x02þ y02

lF


 �

P(x0, y0)

� exp ip
(x0 � x0)2 þ ( y0 � y0)2

lz1


 �

� exp ip
(x00 � x0)2 þ ( y00 � y0)2

lz2


 �

dx0 dy0 (4:65)

or

h(x00, y00, x0, y0) ¼
eik0(z1þz2)

l2z1z2
exp ip

x002þ y002

lz2


 �

exp ip
x0

2þ y0
2

lz1


 �

�

ð ð

P(x0, y0) exp i
p

l
x02þ y02
�  1

z1
þ

1
z2
�

1
F


 �� 	

� exp �i
2p
l

x0
xo

z1
þ

x00

z2


 �� 	

þ y0
y0

z1
þ

y00

z2


 �� 	� �

dx0dy0 (4:66)

We consider two cases. Suppose first that z1 ¼ z2 ¼ F. Then

h(x00, y00, x0, y0) ¼
eið4pF=lÞ

l2z1z2
exp ip

x002þ y002

lz2


 �

exp ip
x2

0 þ y2
0

lz1


 �

�

ð ð

P(x0, y0) exp �i
p

lF
x02þ y02
� h i

� exp i
2p
l

x0
x0

z1
þ

x00

z2


 �� 	

þ y0
y0

z1
þ

y00

z2


 �� 	� �

dx0dy0 (4:67)

If we neglect the effect of the aperture, for instance, if we assume that P(x, y) ¼ 1,
then this integral is the Fourier transform of the complex Gaussian, which is also a
complex Gaussian. Applying the similarity theorem, we find

h(x00, y00, x0, y0) ¼
ei2 k0F

ilF
exp �ip

x002þ y002

lF


 �

exp �ip
x0

2þ y0
2

lF


 �

� exp �iplF
x0

lF
þ

x00

lF


 �2

þ
y0

lF
þ

y00

F


 �2
" #

¼
ei2 k0F

ilF
exp �i

2p
lF

x0x00 þ y0y00ð Þ

� 	

(4:68)
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where h(x00, y00, x0, y0) is the impulse response for propagation from the front focal
plane of a lens to the back focal plane. Putting this impulse response into the trans-
formation for an arbitrary input field, we find the transformation from the front focal
plane to the back focal plane to be

g(x00, y00) ¼
ei2 k0F

ilF

ð

f (x, y) exp �i
2p
lF

xx00 þ yy00ð Þ

� 	

dx dy (4:69)

The output field is the Fourier transform of the incident field evaluated at
u ¼ x00=lF, v ¼ y00=lF. Note that diffraction from the front focal plane to the back
focal plane has the same form as Fraunhofer diffraction. In this sense, the field dis-
tribution at the back focal plane of a lens is the far-field diffraction pattern of an
object in the front focal plane.

Equation (4.67) can be evaluated for a finite aperture using the method of station-
ary phase [23], which yields

g(x00, y00) ¼
ei2 k0F

ilF

ð

f (x, y) exp �i
2p
lF

xx00 þ yy00ð Þ

� 	

P(xþ x00, yþ y00)dx dy (4:70)

g(x00, y00) is proportional to the Fourier transform of f (x, y) windowed (vignetted) by
P(xþ x00, yþ y00).

As a second example, suppose that (1=z1)þ (1=z2) ¼ (1=F), which is the familiar
thin lens imaging rule. For consistency with Chapter 2, let di ¼ z2 be the image
distance and do ¼ z1 be the object distance. The imaging condition eliminates
quadratic terms in Eqn. (4.66) so that the impulse response becomes

h(x00, y00, x0, y0) ¼
e2pi½(diþdo)=l�

l2dido
exp ip

x002 þ y002

ldi


 �

exp ip
x2

0 þ y2
0

ldo


 �

ð ð

P(x0, y0) exp �i
2p
l

x0
x0

do
þ

x00

di


 �� 	

þ y0
y0

do
þ

y00

di


 �� 	� �

dx0dy0

(4:71)

Equation (4.71) is simplified with the substitution xr ¼ Mx, yr ¼ My where, as in
Chapter 2, the magnification is M ¼ �di=do. This yields

h(x00, y00, xr, yr) ¼
jMj

l2d2
i

e2pi½(diþdo)=l� exp ip
x002þ y002

ldi


 �

exp ip
xr

2þ yr
2

ldi


 �

�

ð ð

P(x0, y0) exp �i
2p
ldi

x0 x00 � xrð Þ½ � þ y0 y00 � yrð Þ½ �

� �

dx0 dy0

¼ jMje2pi½(diþdo)=l� exp ip
x002þ y002

ldi


 �

� exp ip
xr

2þ yr
2

ldi


 �

hr(x
00 � xr, y00 � yr) (4:72)
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where the shift-invariant component of the impulse response hr(x, y) is

hr(x, y) ¼
1

l2d2
i

ð ð

P(x0, y0)e�i(2p=ldi)(x0xþy0y)dx0 dy0 (4:73)

Ideally, the imaging impulse response would consist of a Dirac delta function
centered on x00 ¼ Mx0 and y00 ¼ My0. We find in practice that the impulse response
is proportional to the Fourier transform of the pupil function. hr(x, y) would be a
delta function if the pupil function were constant and of infinite extent; the finite
extent of the pupil function thus acts as a bandpass filter on the imaged field.
P(x, y) must have finite support to be consistent with the paraxial and Fresnel approxi-
mations used to derive Eqn. (4.74).

For the most common case of a circular lens aperture of diameter A, P(x, y) ¼

circ(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

=A) and

hr(x, y) ¼
A2

l2d2
i

jinc
A

ldi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p


 �

(4:74)

The term jinc½(A=ldi)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

� is a delta-like distribution around the point x ¼ 0,

y ¼ 0. As we saw in Chapter 2, the first zero occurs at
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

� 1:22ldi=A. For
a system imaging an object at infinity, di ¼ F. The ratio f/# ¼ F/A is the f number
of the imaging system. In discussing the f number, f/# is treated as a unified
symbol, with # replaced by numerical values in reference to specific systems. To
avoid severe violations of the paraxial approximation, the f number must be greater
than 1. An f/2 system, for example, produces a diffraction-limited impulse response
that is 4.88 wavelengths in diameter from first zero to first zero.

The phase terms in Equation (4.72) are troubling both as a phase modulation in the
output x00, y00 space and as a distortion in the input space. The fact that the shift invar-
iant component of the impulse response is highly localized at x00 ¼ xr and y00 ¼ yr

leads us to wonder whether we might approximate expfip ½( xr
2þ yr

2 )=ldi�g as

expfip ½(x002þ y002 )=ldi�g. Approximating the support of jinc((1=(lf =#))
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

)

by lf =#, the maximum difference between x2 and x002 over the support is approxi-
mately xl f =#. This corresponds to a maximum phase difference between
expfip ½(x2

r þ y2
r )=ldi�g and expfip ½(x002 þ y002)=ldi�g of approximately pf =#x=di,

meaning that the phase of the input quadratic changes by p across the focal spot
at the edge of the field with linearly reduced phase distortion toward the center of
the field.

The phase terms have significant impact on the imaging of coherent fields, but are
eliminated in the consideration of incoherent systems. As a prelude to later discussion
of the incoherent impulse response, it is helpful to consider the effect of dropping the
quadratic phase terms. This assumption is reasonable near the center of the field
where x=di � 1. Under this assumption, the mapping from object field to the
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image field is

g(x0, y0) ¼
1
jMj

ð ð

f
x

M
,

y

M

� 

hr(x
0 � x, y0 � y)dx dy (4:75)

The imaging transformation is a shift-invariant linear transformation of the magnified
input distribution. The transfer function is the Fourier transformation of hr(x, y):

ĥ(u, v) ¼ P(�ldiu, �ldiv) (4:76)

The imaging transformation is expressed in Fourier space as the product

ĝ(u, v) ¼ jMjP(�ldiu, �ldiv) f̂ (Mu, Mv) (4:77)

As illustrated in Fig. 4.14, P(x, y) is typically constant and centered on the origin
of the (x, y) plane. P(x, y) acts as a lowpass filter on most imaging systems, passing
image frequencies such that juj 	 A=(2ldi) and blocking higher frequencies. On the
basis of our analysis of bandlimited sampling in Chapter 3, this suggests that the

Figure 4.14 Transfer function and impulse response for an f/1 optical system imaging an
object at infinity. The distance between the first two zeros of the impulse response is 2.44 wave-
lengths, the full-width half-maximum is 1.4 wavelengths.
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image should be sampled with a sampling period less than lf =#, where we have sub-
stituted f =# for di=A. Of course, the coherent field is complex-valued, so sampling is
nontrivial. Measurement and sampling of coherent fields requires holography or inter-
ferometery, which are the subject of the next section. We discuss image sampling
rates in more detail in Chapter 7.

One may select pupil transmittance functions other than the circular aperture. For
example, for coherent imaging systems one may block the center of the pupil and
create a “highpass” imaging system. An example pupil–impulse response for an
annular aperture appropriate to highpass imaging is shown in Fig. 4.15. The effect
of imaging through the lowpass system of Fig. 4.14 and the highpass system of
Fig. 4.15 is illustrated in Fig. 4.16. It is important to note that very different
imaging behavior is observed for these imaging systems under incoherent illumina-
tion. In this regard, compare Fig. 4.16 with Fig. 6.19 Alternative pupil functions,
useful for even incoherent systems, are discussed in Chapter 10. For example,
Section 10.2 discusses the use of deliberate phase modulation in the pupil function
to extend the imaging system depth of field. Nonuniform pupil functions may also
be used to describe aberrations and other artifacts of optical systems.

Figure 4.15 Transfer function and impulse response for an f/1 optical system imaging an
object at infinity with an annular pupil. The radius of the blocked center disk is 20% of the
radius of the full aperture.
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4.8 HOLOGRAPHY

Following the present section, the remainder of this text focuses exclusively on
sensing of naturally occuring “incoherent” fields (with the notable exception of our
discussion of optical coherence tomography in Section 6.5). Prior to turning our
attention away from coherent fields, however, we briefly turn our attention to holo-
graphy. Holography is a form of optical interferometry invented by Gabor in 1948
[83] and substantially extended by many investigators after the invention of the

Figure 4.16 Effect of pupil filtering on in the imaging system corresponding to Figs. 4.14
and 4.15. The lower left image is filtered by exactly the transfer function of Fig. 4.15,
which corresponds to a lens with the center 0.2 radius component obscured. The lower right
image is filtered by a lens with the center 0.9 radius component obscured. Knowledge of the
f/# and the spatial scale of the image is sufficient to accurately model the system scaled in
wavelengths.
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laser. Interferometric imaging based on the van Cittert–Zernike theorem, as dis-
cussed in Section 6.4.2, predates Gabor’s work, but holography is fundamentally
different from classical interferometry in that it provides a mechanism for imaging
the coherent field itself, rather than just the object irradiance or spectral density.

Given the revolutionary nature of holography, as evidenced by Gabor’s Nobel
prize and the many associated Nobel prizes in laser technology, nonlinear optics,
and optical interferometry, the reader may be surprised that holography was not
included among the revolutions discussed in Chapter 1. The author’s response is to
note that while the invention of the laser may be the most revolutionary event in
the history of optical science, the impact of coherent light and holography on
optical sensing to date is relatively modest. The vast majority of images and
spectra recorded are generated by incoherent processes, although in the case of spec-
troscopy these processes are often driven by laser excitation. I believe, however, that
the full impact of coherent excitation and interferometric detection are yet to come.
As noted in Section 1.4, a fourth revolution is emerging in interferometric optical pro-
cessing and coherence detection. Although it is now 60 years old, holography may be
regarded as the first salvo in this fourth revolution.

While hope for mass market applications of holographic displays and memories
continues, the principal modern applications of holography are spatiospectral filters
for liquid crystal displays, dispersive spectrometers, and laser line stabilization.
Holograms are also used as transmittance filters in imaging and in illumination and
optical interconnection systems. Analog holograms, which are recorded using laser
illumination and photochemical materials, are used for most display and filter appli-
cations. Digital holograms, which use optical lithography to create mathematically
derived transmission functions, are used in imaging and interconnection applications.

This section covers three useful aspects of modern holography:

1. We review the basic nature of off-axis analog holography. A basic under-
standing of how holography can be used to record and reconstruct a coherent
field is intrinsically interesting and is illuminating in considering the spatial
band structure of images.

2. We describe volume holography, which is essential both to explaining how
diffraction gratings for spectroscopic and filtering applications achieve
80–90% diffraction efficiencies and how static display holograms function
with white-light illumination.

3. We discuss modal analysis of volume holograms, which is helpful in under-
standing the band structure of photonic and electronic crystals.

An analog hologram is formed when a coherent field is used to produce an optical
element with transmittance proportional to the product of the field and a reference
wave. The recording signal field is then recovered by illuminating the holographically
recorded transmittance with a reference field. A typical recording geometry is illus-
trated in Fig. 4.17. The hologram is recorded on a plate or film coated with a photo-
chemical layer. Optical properties of the photochemical layer are changed on

4.8 HOLOGRAPHY 131



absorption of light. The creation of grains of metallic silver from silver halide micro-
crystals is the classical photographic process. The metal particles darken the film to
modulate the optical transmission. Absorption modulation visible to the human eye is
desirable for photographic processes, but phase modulation by varying the thickness,
surface relief, or index of refraction of the developed film is more popular for holo-
graphy. Phase modulation is commonly achieved by photoinitiated polymerization.

A hologram is recorded through interference of a signal field U(x, y, z) and a refer-
ence field. To reconstruct the signal field with high fidelity, the reference field must
have uniform intensity over the exposure plane. The simplest field satisfying this
constraint is the plane wave Aeik�r. As discussed in Chapter 5, optical absorption is
proportional to the irradiance I. The irradiance is proportional to the square of the
electromagnetic field. Supposing that the signal field and the reference field record
a hologram in the plane z ¼ 0, the recording irradiance is

I(x, y) ¼ jU(x, y, 0)þ Aeikxxj2 (4:78)

A photochemical process records a transmittance feature in proportion to the
recording irradiance. For simplicity, we initially assume here that the recording irra-
diance modulates the real transmission such that t(x, y)/ I(x, y). In this case

t(x, y)/ jAj2 þ jU(x, y, 0)j2 þ U(x, y, 0)A
e�ikxx þ U
(x, y, 0)Aeikxx (4:79)

As illustrated in Fig. 4.18, a hologram is reconstructed by illuminating it with the
original recording field. Under illumination by the original reference plane, the field

Figure 4.17 Hologram recording geometry.

132 WAVE IMAGING



after modulation by the developed hologram is

t(x, y)Aeikxx / jAj2Aeikxx þ jU(x, y, 0)j2Aeikxx þ U(x, y, 0)jAj2

þ U
(x, y, 0)A2ei2kxx (4:80)

The reconstructed field is a linear superposition of four field components. The
term jAj2Aeikxx is the zeroth-order or undiffracted reference field. The term
jU(x, y, 0)j2Aeikxx propagates along the same optical axis as the undiffracted field.
The term U
(x, y, 0)A2ei2kxx is called the pseudoscopic field and propagates in
some ways like the object field projected back on itself (e.g., if U is a diverging
spherical wave, U
 is a converging wave).

The component U(x, y, 0)jAj2 is proportional to the original signal field and dif-
fracts exactly as though the original object were present. An observer of this diffract-
ing component sees the object as if the object were present. It is interesting to note at
this point that holography is not a multidimensional imaging system in the same sense
as projection tomography. A tomographic imaging system estimates the density of an
object at every point in a volume. A hologram records the 2D boundary conditions
necessary to describe the field scattered off the object. Monochromatic holographic
data cannot be inverted to reconstruct a 3D image, but polychromatic or multiangle
holograms can be computationally inverted to form volume images (as can polychro-
matic and multiangle photographs). A hologram provides greater functionality than
does a conventional photograph in that the hologram is essentially a window through
which one can observe the object. In contrast with a normal photograph, one can
look through a holographic window from any direction and see different perspectives
on the object.

Since a hologram can be used to reconstruct the original signal, one may say that
holography provides a mechanism for measuring the electromagnetic field using

Figure 4.18 Hologram reconstruction geometry.
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materials that can measure only the irradiance. The signal field may, in fact, be esti-
mated by digital analysis of the recorded holographic pattern. This strategy is particu-
larly effective if the hologram is recorded on an electronic detector array, but for
reasons discussed momentarily, holographic recording systems generally require sub-
stantially higher spatial resolution than do those obtained by normal photography.
Electronic detector arrays with resolution and pixel count consistent with holographic
recording are just now becoming available.

The holographic recording strategy described here differs from Gabor’s original
proposal in that the reference is on a carrier frequency of wavenumber kx. This
approach is called off-axis or Leith–Upatnieks holography [149]. The carrier fre-
quency is essential in isolating the signal field from the undiffracted and pseudo-
scopic components. It was not possible to generate a reasonable intensity reference
wave for off-axis holography at the time of Gabor’s original invention, but the inter-
vening invention of the laser made this approach straightforward.

The utility of off-axis holography is illustrated by considering the Fourier trans-
form of the reconstructed field:

jAj2Ad u�
kx

2p


 �

þÛ
(u, v) 
 Û u�
kx

2p
, v


 �

AþÛ(u, v)jAj2

þÛ
 u�
kx

p
, v


 �

A2 (4:81)

A cross section of this spatial spectrum along the u axis is sketched in Fig. 4.19. If

U(x, y) is bandlimited such that jÛ(u, v)j ¼ 0 for u . B, then the cross-correlation

Û
(u, v) 
 Û(u, v) will have bandwidth 2B. The signal U(x, y, z) can be spatially
filtered from the reconstructed hologram if the various terms cover distinct regions
of the u axis. Refering again to Fig. 4.19, we see that spatial spectrum of the recon-
structed signal may be separated from other components if kx . 6pB. Interpreting this

Figure 4.19 Holographic spatial spectrum.

134 WAVE IMAGING



result, one sees that off axis holography uses a high-spatial-frequency “carrier” to
separate the holographic signal from background terms. Since the carrier frequency
must be a factor of 3 greater than the maximum frequency in the holographically
recorded image, much of the spatial bandwidth available in an off-axis holographic
recording system is dedicated to separating components rather than the holographic
signal. This carrier frequency explains the need for higher resolution in holographic
media as compared to photographic media. In practice, especially for recording on
electronic focal planes, signal disambiguation strategies other than spatial filtering
may be considered and may yield substantially improved bandpass utilization.

A hologram recorded at one wavelength or orientation may be reconstructed using
a reference wave at a different wavelength or angle of incidence. Changing the angle
of incidence of the reference wave redirects the reconstructed hologram, changing the
reconstruction wavelength changes the scale of the reconstruction. A hologram recon-
structed at at a longer wavelength than the recording wavelength magnifies the object
field. Gabor’s original proposal focused on the potential of holography to magnify an
object. Holograms may also be reconstructed by more complex probe fields; the use
of holograms to correlate a coherent probe and a fixed signal is a core technique of
optical signal processing [240].

To this point we have focused on “thin” and “transmission” holograms. The simple
model of a multiplicative transmittance applies to such holograms. Several potential
drawbacks must be considered for this technique, however. First, the signal conversion
efficiency from the reference field to the reconstructed signal field is limited for thin
holograms to at best 25% of the reference signal power. Also, thin holograms are not
visible under white-light illumination. Since all angles and colors are diffracted by a
thin hologram, white light remains white and no clear diffraction pattern emerges.

These drawbacks are resolved in volume holograms. For display holograms, the
primary advantage of volume holograms are that they spatially and spectrally filter
the reconstruction beam. Thus, a volume display hologram illuminated by white
light produces a color image. The reconstruction color is not the natural color of
the object; rather, it is determined by the recording and reconstruction geometries
and wavelengths for the hologram. Display holograms generally use reflection geo-
metries to maximize spectral filtering. We focus here on properties of transmission
volume holograms, however, in anticipation of our discussion of spectroscopy in
Chapter 9. The advantages of transmission holograms in spectroscopy are that near
100% diffraction efficiency can be achieved with very high spectral dispersion
rates and that holograms may be used as spectral filters.

We limit our discussion to volume holograms recorded between two plane waves
as illustrated in Fig. 4.20. Recording beam 1 is described by the plane wave
A exp½i(�Kx=2þ kzz)� and recording beam 2 by the plane wave A exp½i(Kx=2þ kzz)�.
The recording irradiance in the holographic emulsion is

I(x) ¼ jAj2½1þ cos(Kx)� (4:82)

We assume that the emulsion is of infinite extent in x and y and of thickness d along
the z axis.
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Volume holograms are generally recorded in phase modulating materials, such as
photopolymers, gelatins, or photorefractives. We assume that the permittivity of the
recording material is modulated in proportion to the recording field, that is, that

1 ¼ 1m þ aI(x) (4:83)

where 1m is the material permittivity prior to holographic modulation. The holo-
graphic change in permittivity is typically very weak, ranging from a factor of
10�5 to 10�1 of the unperturbed value.

Since the medium is of finite thickness, analysis of volume holographic recon-
struction is a wave propogation problem. We begin by considering the wave equation
in the hologram. For simplicity, we consider the “transverse electric field” solution
such that E � r log(1) ¼ 0, which allows us to neglect the corresponding term in
Eqn. (4.17). The wave equation with this term included is considered in Problem
4.11. For a scalar field U(x, y, z), the wave equation for a monochromatic field in a
hologram recorded with the irradiance of Eqn. (4.82) takes the form

r2U þ mv2½1þ D1 cos(Kx)�U ¼ 0 (4:84)

Figure 4.20 Volume hologram recording geometry.
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This equation is often considered using “coupled wave” analysis [137,179]. We
assume that a plane wave R exp½i(krxxþ krzz)� is incident on the hologram. Both krx

and krz may be changed relative to the recording beams, and the reconstruction wave-
length may also be different from the recording wavelength. Scattering from the holo-
gram generates a signal plane wave S exp½i(ksxxþ kszz)�. The transfer of light from the
reconstruction wave to the signal wave is often modeled using the slowly varying
envelope approximation, under which the amplitudes R and S are assumed to be
slowly varying functions of z. “Slow” in this case means that S00 � k2

szS.
Substituting U ¼ R exp½i(krxxþ krzz)� þ S exp½i(ksxxþ kszz)� in Eqn. (4.84), we

note first that consistency with respect to x requires that ksx ¼ krx � K. Separating
terms of similar spatial frequency with respect to z produces the coupled wave
equations

ikrz
dR

dz
þ

k2

2
D1

1
Sei(ksz�krz)z

¼ 0 (4:85)

iksz
dS

dz
þ

k2

2
D1

1
Rei(krz�ksz)z ¼ 0 (4:86)

where ksz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � (krz � K)2
p

, k ¼
ffiffiffiffiffiffi
m1
p

v, and we neglect terms in S00 and R00.

Equation (4.85) is simplified by defining ~S ¼ S(z)ei(ksz�krz)z such that

dS

dz
¼ ei(krz�ksz)z d ~S

dz
þ i(krz � ksz)e

i(krz�ksz)z ~S (4:87)

Substituting in Eqns. (4.85) and (4.86) yields

ikrz
dR

dz
þ

k2

2
D1

1
~S ¼ 0 (4:88)

iksz
d ~S

dz
� ksz(krz � ksz) ~Sþ

k2

2
D1

1
R ¼ 0 (4:89)

Assuming that the input plane of the hologram is z ¼ 0 and the output plane is z ¼ d ,
the solution to Eqn. (4.88) consistent with the boundary conditions that S(0) ¼ 0 and
R(0) ¼ R0 is

R(z) ¼ ei(Dkzz=2)R0 cos(g z)� i
Dkz

2g
sin(g z)

� 	

S(z) ¼
i

2
k2

kszg

D1

1
e�i(Dkzz=2)R0 sin(gz)

(4:90)

where Dkz ¼ krz � ksz and g ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dk2
z þ k4D12=(krzksz12)

p

.
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Equations (4.90) simplify enormously under the condition that krz ¼ ksz, in which
case Dkz ¼ 0. In this case

R(z) ¼ R0 cos(g z)

S(z) ¼ iR0 sin(g z)
(4:91)

Defining the diffraction efficiency of a hologram to be the ratio of the diffracted signal
irradiance to the incident reconstruction irradiance, for example

h ¼
jSj2

jR0j
2 (4:92)

we see from Eqns. (4.91) that the diffraction efficiency reaches 1 at z ¼ p=2g ¼
l cos(u)1=(2D1), where u is the angle between the reconstruction and signal wavevec-
tors and the z axis. As an example, 1=D1 ¼ 100 achieves 100% diffraction efficiency
in a hologram that is approximately 50 wavelengths thick.

The condition that krz ¼ ksz is known as the Bragg condition, in honor of pioneer-
ing work on x-ray scattering from crystals by W. H. Bragg and W. L. Bragg [32]. The
condition is most easily understood by returning to the wave normal surface of
Fig. 4.1. A harmonic holographic modulation at spatial frequency K probed by a
reconstruction plane wave with spatial frequency kr is Bragg-matched for scattering
if either of the two waves with spatial frequency kr þK or kr �K lies on the wave
normal surface in the holographic material. The basic geometry for Bragg matching
is illustrated in Fig. 4.21, which shows probe and reconstruction wavevectors.
As illustrated in the figure, Bragg matching requires that the reconstruction wavevec-
tor kr and the signal wavevector ks ¼ kr + K lie on the the wave normal sphere. The

Figure 4.21 Bragg matching condition on the wave normal sphere.
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circles illustrated on the wave normal surface illustrate the degeneracy of the Bragg
condition. Given K, any matched pair of probe and signal waves on the degeneracy
curves will be Bragg-matched.

As illustrated in Fig. 4.22, a Bragg mismatch occurs when the probe beam is incident
at an angle such that kr þK does not lie on the wave normal surface. The mismatch
parameter Dkz from Eqn. (4.90) is also illustrated in the figure. Under mismatch
conditions, the maximum power transfer efficiency from the probe to the signal is

jSj2max

jR0j
2 ¼

k4

k2
szg

2

D12

12
(4:93)

The peak diffraction efficiency as a function of angular mismatch of the probe beam
for an example geometry is illustrated in Fig. 4.23. For the particular geometry
chosen, the angular bandwidth of the hologram is approximately 1.78. As discussed
in Section 9.6, Bragg limitations on the angular and spectral sensitivity of volume
holograms are important in spectrograph design.

As a final comment on holographic systems, we briefly consider rigorous scalar
solutions of Eqn. (4.84) [35]. We assume solutions of the form U(x, y, z) ¼
eikyyeikzzc(x), which reduces Eqn. (4.84) to the Mathieu equation [183]

d2c

dx2
þ ½aþ b cos (Kx)�c ¼ 0 (4:94)

where a ¼ k2 � k2
y � k2

z and b ¼ k2D1=1. Equation (4.94) has solutions of the form

c(x) ¼ eiqx
X1

n¼�1

aneinKx (4:95)

Figure 4.22 Reconstruction with a mismatched probe beam.
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Substitution of Eqn. (4.95) in Eqn. (4.94) yields a recursion relationship:

(a� (qþ nK)2)an þ
b

2
anþ1 þ

b

2
an�1 ¼ 0 (4:96)

The determinant of this infinite-order relationship can be transformed into the Hill
determinant and evaluated in closed form [182]. The determinant produces an eigen-
value relationship for q in terms of kz and ky.

Without the holographic modulation, q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2
z � k2

y

q

with a0 ¼ 1 and an ¼ 0
for n= 0. However, the holographic grating produces the multiharmonic solution of
Eqn. (4.95). Figure 4.24 is a plot of the eigenvalue q as a function of kz for ky ¼ 0. In

Figure 4.23 Maximum diffraction efficiency as a function angular mismatch for
K ¼ k0 sin (p=6) and D1=1 ¼ 10�2.

Figure 4.24 Dispersion relationship q versus kz for K ¼ 2k sin(p=6) in Eqn. (4.94). The plot
is in units of k along both axes. In this example D1 ¼ 0:051. The imaginary component of q is
shown in a dashed line within the stopband.
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this figure, K ¼ 2k sin(p=6) and the Bragg resonance occurs at kz ¼ cos(p=6). In the
vicinity of the resonance all eigensolutions for q are complex, meaning that the mode
described by Eqn. (4.95) is evanescent in x. The region in coordinates kz, ky, v over
which q is evanescent is termed the stopband of the grating.

We find then that within the Bragg region energy is transfered from the reconstruc-
tion wave to the signal wave because the reconstruction wave does not couple to a
propagating wave in the hologram. Oscillations and localization of energy around
the entrance aperture occur because neither coupled wave propagates in x. The
stopband is effectively a gap in the wave normal sphere for propagating modes.

The stopband is a one-dimensional representation of a more general phenomenon
in 2D and 3D periodic structures, termed photonic crystals. In higher-dimensional
structures one may observe bandgaps in which k is complex along all axes
for certain values of v. In such structures modes may be localized in multiple
dimensions [128].

Our main purpose in discussing holography in this text is to facilitate discussion
of dispersive components in spectroscopic systems. Ultimately, photonic crystal
structures and complex diffractive devices hold great promise for integrated
dispersive and imaging components. For the present, however, the main use of
our analysis of band structure is to facilitate discussion of electronic bands in
Chapter 5.

PROBLEMS

4.1 Bessel Beams:

(a) Verify that the field

E(r, t) ¼
ei(vt�bz)

2p

ð2p

0

e�ia(x cosfþy sinf)df (4:97)

where b2 þ a2 ¼ 4p2=l2 is a solution to the wave equation (Eqn (4.18).

(b) Equation (4.97) is called a Bessel beam in view of the identity

2pJ0(ar0) ¼
ð2p

0

eiar0 cos (f�f0)df (4:98)

where J0(x) is the zeroth-order Bessel function of the first kind. Plot the
magnitude of the Bessel beam as a function of x and z for a ¼ 0:2p=l.
Explain why the Bessel beam is called a diffraction-free or propagation-
invariant beam.

(c) Using a lens and an aperture mask, design a system to generate a Bessel
beam.
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(d) The Bessel beam is no longer propagation-invariant when the support of the
beam is limited to a finite aperture. As an example, use the numerical
Fresnel transformation to analyze diffraction of the input field distribution

circ
r

Nl

� 

J0
pr

10l

� 

(4:99)

for N ¼ 500 and N ¼ 1000 over a diffraction range from z ¼ 0 to
z ¼ 10,000l.

4.2 Laguerre–Gaussian Modes:

(a) Derive an expression similar to Eqn. (4.39) for g(r, f) as a function of d
for the case f (r, f) ¼ cmn(r=w0, f), where cmn is the Laguerre–Gaussian
function of Eqn. (3.82).

(b) Plot the amplitude and phase of g(r, f) at d ¼ 0, w2
0=l, 10w2

0=l for
f (r, f) ¼ c97(r=w0, f).

(c) Plot the amplitude and phase of g(r, f) at d ¼ 0, 0:5w2
0=l, w2

0=l, 10w2
0=l

for f (r, f) ¼ c97(r=w0, f)� 10c75(r=w0, f).

4.3 The Talbot Effect. According to the Talbot effect, coherent fields periodic in
the transverse coordinates of an input aperture are “self-imaging,” meaning
that the original input field reappears at various planes in the z direction.

(a) Assuming a period of L in the x and y directions, derive an expression for
the ranges at which the original field reappears.

(b) Assume that the input field is a 5 � 5 grid of circles. The circles are 5
wavelengths in diameter and are spaced on 15 wavelength centers.
Assume that the field is zero outside the circles and uniform with constant
phase and amplitude within each circle. Use Matlab to calculate the field
diffracted from this input aperture at 5 self-imaging and at 5 non-self-
imaging ranges.

4.4 Fraunhofer Diffraction:

(a) Design an experiment to use Fraunhofer diffraction of a l ¼ 633 nm laser
beam to determine the size of a small circular pinhole. Plot the diffraction
pattern observed and describe quantities one might measure to character-
ize the pinhole.

(b) Design an experiment to use Fraunhofer diffraction of a l ¼ 633 nm laser
beam to determine the size of a human hair strand. Plot the diffraction
pattern observed and describe quantities that one might measure to charac-
terize the pinhole.

4.5 Diffraction Patterns. Generate a 1-mm-scale letter E and a 1-mm-scale letter
O. Calculate the 2D Fourier transform of each in Matlab. Calculate the diffrac-
tion pattern when each is normally illuminated by a plane wave with 1 mm
wavelength light. Find the diffraction pattern at ranges of 0 m, 10 cm, 1 m,
and 10 m. Be sure to mark distance scales on your plots.
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4.6 The Grating Equation. Equation (4.58) is called the grating equation. With
reference to this equation

(a) Given L and q= 0, what is the longest wavelength that diffracts off a
grating into a propagating mode? What is the angle of incidence for
which diffraction occurs?

(b) Given l and L, what is the largest value of q corresponding to a propagat-
ing mode? For what range of u is this diffraction order observed?

(c) Plot u 0 versus u for all propagating modes and orders for l=L ¼ 1.

4.7 The Coherent Impulse Response. Consider a 2-cm-aperture lens with a 5-cm
focal length illuminated by light with a wavelength of 1 mm. Use Matlab to
calculate the impulse response for imaging from 10 cm in front of the lens
to approximately 10 cm behind the lens. Plot the coherent impulse response
over a defocus range of +0.5 cm (i.e., from 9 to 11 cm behind the lens).

4.8 Fresnel Zone Plates. A cylindrically symmetric mask with amplitude trans-
mittance

t(r) ¼ 1
2 ½1þ cos(ar2)� (4:100)

is called a Fresnel zone plate. It acts as a lens with multiple focal lengths.

(a) Plot t(r) for a ¼ 50 cm�2.

(b) What are the focal lengths associated with the zone plate?

(c) What fraction of incident irradiance is mapped into the field associated
with each focal component?

4.9 Highpass Spatial Filtering. Consider a lens with a square aperture. The center
of the lens is blocked by a square of side length 1 cm. The outer aperture is
defined by an enclosing square of side length 1.01 cm. The image distance
is 10 cm.

(a) Plot the coherent optical transfer function.

(b) Simulate a macroscopic image, such as a letter, imaged through this system.

4.10 Absorption Holograms. Prove that the maximum diffraction efficiency for a
thin absorption hologram is 0.25.

4.11 Floquet–Bloch Modes:

(a) We neglected wave equation terms in r1 in deriving Eqn. (4.84). Explain
why this is a valid approximation for reflection holograms.

(b) Solutions of the Floquet–Bloch form [Eqn. (4.95)] may still be found
for the holographically modulated wave equation even if we retain
the r1 term. Derive the recursion relationship replacing Eqn. (4.96) for
this case.

(c) Is there a geometry (e.g., polarization and grating orientation) in which the
r1 term significantly influences wave dynamics?
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4.12 Volume Holography:

(a) Plot the maximum diffraction efficiency of a volume hologram as a func-
tion of reconstruction beam angle of incidence assuming that D1=1 ¼

10�3 and that K ¼
ffiffiffi

2
p

k0:

(b) A volume hologram is recorded with l ¼ 532 nm light. The half-angle
between the recording beams in free space is 208. The surface normal
of the holographic plate is along the bisector of the recording beams.
The index of refraction of the recording material is 1.5. What is the
period of grating recorded? Plot the maximum diffraction efficiency at
the recording Bragg angle of the hologram as a function of reconstruction
wavelength.

4.13 Computer-Generated Holograms. A computer-generated hologram (CGH) is
formed by lithographically recording a pattern that reconstructs a desired field
when illuminated using a reference wave. The CGH is constrained by details
of the lithographic process. For example CGHs formed by etching glass are
phase-only holograms. Multilevel phase CGHs are formed using multiple
step etch processes. Amplitude-only CGHs may be formed using digital prin-
ters or semiconductor lithography masks. The challenge for any CGH record-
ing technology is how best to encode the target hologram given the physical
nature of the recording process. This problem considers a particular rudimen-
tary encoding scheme as an example.

(a) Let the target signal image be the letter E function from Problem 4.5.
Model a CGH on the basis of the following transmittance function

t(x, y) ¼
1 if arg F{E}ju¼ x

ld,v¼ y
ld

� 

. 0

0 otherwise

(

(4:101)

where l is the intended reconstruction wavelength and d � x is the
intended observation range. F{E} is the Fourier transform of your letter
E function. Numerically calculate the Fraunhofer diffraction pattern at
range d when this transmittance function is illuminated by a plane wave.

(b) A more advanced transmittance function may be formed according to the
following algorithm:

t(x, y) ¼ 1 if arg e0:2pi½(xþyÞ=l�F{E}ju¼(x=ld),v¼( y=ld)

� �

. 0
0 otherwise

�

(4:102)

Numerically calculate the Fraunhofer diffraction pattern at range d when
this transmittance function is illuminated by a plane wave. It is helpful
when displaying these diffraction patterns to suppress low-frequency
scattering components (which are much stronger than the holographic
scattering).
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(c) A still more advanced transmittance function may be formed by multiply-
ing the letter E function by a high frequency random phase function prior
to taking its Fourier transform. Numerically calculate the Fraunhofer dif-
fraction pattern for a transmission mask formed according to

t(x, y) ¼ 1 if arg e0:2pi½(xþyÞ=lÞF{ef(x,y)E}ju¼(x=ld),v¼(y=ld)

� �

. 0
0 otherwise

�

(4:103)

where f(x, y) is a random function with a spatial coherence length much
greater than l.

(d) If all goes well, the Fraunhofer diffraction pattern under the last approach
should contain a letter E. Explain why this is so. Explain the function of
each component of the CGH encoding algorithm.

4.14 Vanderlught Correlators. A Vanderlught correlator consists of the 4F optical
system sketched in Fig. 4.25.

(a) Show that the transmittance of the intermediate focal plane acts as a shift-
invariant linear filter in the transformation between the input and output
planes.

(b) Describe how a Vanderlught correlator might be combined with a holo-
graphic transmission mask to optically correlate signals f1(x, y) and
f2(x, y). How would one create the transmission mask?

(c) What advantages or disadvantages does one encounter by filtering with a
4F system as compared to simple pupil plane filtering?

Figure 4.25 A Vanderlught correlator.
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5
DETECTION

Despite the wide variety of applications, all digital electronic cameras have the same
basic functions:

1. Optical collection of photons (i.e., a lens)

2. Wavelength discrimination of photons (i.e., filters)

3. A detector for conversion of photons to electrons (e.g., a photodiode)

4. A method to read out the detectors [e.g., a charge-coupled device (CCD)]

5. Timing, control, and drive electronics for the sensor

6. Signal processing electronics for correlated double sampling, color processing,
and so on

7. Analog-to-digital conversion

8. Interface electronics
— E. R. Fossum [78]

5.1 THE OPTOELECTRONIC INTERFACE

This text focuses on just the first two of the digital electronic camera components
named by Professor Fossum. Given that we are starting Chapter 5 and have several
chapters yet to go, we might want to expand optical systems in more than two
levels. In an image processing text, on the other hand, the list might be (1) optics,
(2) optoelectronics, and (3–8) detailing signal conditioning and estimation steps.
Whatever one’s bias, however, it helps for optical, electronic, and signal processing
engineers to be aware of the critical issues of each major system component. This
chapter accordingly explores electronic transduction of optical signals.

We are, unfortunately, able to consider only components 3 and 4 of Professor
Fossum’s list before referring the interested reader to specialized literature. The
specific objectives of this chapter are to
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† Motivate and explain the need to augment the electromagnetic field theory of
Chapter 4 with the more sophisticated coherence field theory of Chapter 6
and to clarify the nature of optical signal detection

† Introduce noise models for optical detection systems
† Describe the space–time geometry of sampling on electronic focal planes

Pursuit of these goals leads us through diverse topics ranging from the fundamental
quantum mechanics of photon–matter interaction to practical pixel readout strategies.
The first third of the chapter discusses the quantum mechanical nature of optical
signal detection. The middle third considers performance metrics and noise charac-
teristics of optoelectronic detectors. The final third overviews specific detector
arrays. Ultimately, we need the results of this chapter to develop mathematical
models for optoelectronic image detection. We delay detailed consideration of such
models until Chapter 7, however, because we also need the coherence field models
introduced in Chapter 6.

5.2 QUANTUM MECHANICS OF OPTICAL DETECTION

We introduce increasingly sophisticated models of the optical field and optical signals
over the course of this text. The geometric visibility model of Chapter 2 is sufficient
to explain simple isomorphic imaging systems and projection tomography, but is not
capable of describing the state of optical fields at arbitrary points in space. The wave
model of Chapter 4 describes the field as a distribution over all space but does not
accurately account for natural processes of information encoding in optical sources
and detectors. Detection and analysis of natural optical fields is the focus of this
chapter and Chapter 6.

Electromagnetic field theory and quantum mechanical dynamics must both be
applied to understand optical signal generation, propagation, and detection. The pos-
tulates of quantum mechanics and the Maxwell equations reflect empirical features of
optical fields and field–matter interactions that must be accounted for in optical
system design and analysis. Given the foundational significance of these theories,
it is perhaps surprising that we abstract what we need for system design from just
one section explicitly covering the Maxwell equations (Section 4.2) and one
section explicitly covering the Schrödinger equation (the present section). After
Section 4.2, everything that we need to know about the Maxwell fields is contained
in the fact that propagation consists of a Fresnel transformation. After the present
section, everything we need to know about quantum dynamics is contained in the
fact that charge is generated in proportion to the local irradiance.

Quantum mechanics arose as an explanation for three observations from optical
spectroscopy:

1. A hot object emits electromagnetic radiation. The energy density per unit wave-
length (e.g., the spectral density) of light emitted by a thermal source has a
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temperature-dependent maximum. (A source may be red-hot or white-hot.)
The spectral density decays exponentially as wavenumber increases beyond
the emission peak.

2. The spectral density excited by electronic discharge through atomic and simple
molecular gases shows sharp discrete lines. The discrete spectra of gases are
very different from the smooth thermal spectra emitted by solids.

3. Optical absorption can result in cathode rays, which are charged particles
ejected from the surface of a metal. A minimum wavenumber is required to
create a cathode ray. Optical signals below this wavenumber, no matter how
intense, cannot generate a cathode ray.

These three puzzles of nineteenth-century spectroscopy are resolved by the postu-
late that materials radiate and absorb electromagnetic energy in discrete quanta.
A quantum of electromagnetic energy is called a photon. The energy of a photon
is proportional to the frequency n with which the photon is associated. The constant
of proportionality is Planck’s constant h, such that E ¼ hn. Quantization of electro-
magnetic energy in combination with basic statistical mechanics solves the first
observation via the Planck radiation formula for thermal radiation. The second obser-
vation is explained by quantization of the energy states of atoms and molecules,
which primarily decay in single photon emission events. The third observation is
the basis of Einstein’s “workfunction” and is explained by the existence of structured
bands of electronic energy states in solids.

The formal theory of quantum mechanics rests on the following axioms:

1. A quantum mechanical system is described by a state function jCl.
2. Every physical observable a is associated with an operator A. The operator acts

on the state C such that the expected value of a measurement is kCjAjCl.
3. Measurements are quantized such that an actual measurement of a must

produce an eigenvalue of A.

4. The quantum state evolves according to the Schrödinger equation

HC ¼ ih� @C
@t

(5:1)

where H is the Hamiltonian operator.

The first three postulates describe perspectives unique to quantum mechanics, the
fourth postulate links quantum analysis to classical mechanics through Hamil-
tonian dynamics.

There are deep associations between quantum theory and the functional spaces and
sampling theories discussed in Chapter 3: C is a point in a Hilbert space V, and V is
spanned by orthonormal state vectors {Cn}. The simplest observable operator is the
state projector Pn ¼ jCnlkCnj. The eigenvector of Pn is, of course, Cn. If PnC ¼ 0,
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then the system is not in state Cn. If PnC ¼C, then the system is definitely in

state Cn. In the general case, we interpret kCnjClj j2 as the probability that the
system is in state Cn.

For a static system, the eigenvalue of the Hamiltonian operator is the total system
energy. For the Hamiltonian eigenstate Cn, we have

HjCnl ¼ EnjCnl (5:2)

This eigenstate produces a simple solution to the Schrödinger equation in the form

C(t) ¼ e�i(Ent=h� )jCnl (5:3)

Having established the basic concepts of quantum mechanics, we turn to the
quantum description of optical detection. Detection occurs when a material system,
such as photographic film, a semiconductor, or a thermal detector interacts with
the optical field. We assume that the Hamiltonian of the isolated material system is
H0 and that the system is initially in a ground eigenstate Cg corresponding to
energy value Eg. Interaction between charge in the material system and the electro-
magnetic field of the incident optical signal perturbs the system Hamiltonian. Let
H1 represent the energy operator for this perturbation. The system Hamiltonian
including the perturbation is H ¼ H0 þH1.

The perturbation to the system Hamiltonian raises the possibility that the state of
the system may change. When this occurs, a photon is absorbed from the optical
signal, meaning that the energy state of the field drops by one quantum and the
energy state of the material system increases by one quantum. Let jCel represent
the excited state of the material system. We may attempt a solution to the
Schrödinger equation using a superposition of the ground state and the excited state:

jC(t)l ¼ a(t)e�i(Egt=h� )jCglþ b(t)e�i(Eet=h� )Cel (5:4)

The transition between the ground and excited states is mediated by the pertur-
bation H1. H1 is an operator corresponding to the classical potential energy
induced in the material system by the incident field. Since the spatial scale of the
quantum system is typically just a few angstroms or nanometers, we may safely
assume that the field is spatially constant over the range of the interaction potential.
The field varies as a function of time, however. Suppose that the field has the form
Aei2pnt. The interaction potential is typically linear in the field, as in

H1 ¼ p � Aei2pnt þ c:c: (5:5)

where p � A is an operator and c.c. refers to the complex conjugate and p is typically
related to the dipole moment induced in the material. In the following we substitute
f ¼ p � A.
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Substituting C(t) in the Schrödinger equation produces

HC ¼ aEge�i(Egt=h� )jCglþ aH1e�i(Egt=h� )jCgl

þ bEee�i(Eet=h� )jCelþ bH1e�i(Eet=h� )jCel

¼ ih� @C
@t

¼ aEge�i(Egt=h� )jCglþ ia0e�i(Egt=h� )h� jCgl

þ bEee�i(Eet=h� )jCelþ ib0e�i(Eet=h� )h� jCel (5:6)

where a0 ¼ da=dt and b0 ¼ db=dt.
With elimination of redundant terms and operating from the left with the orthog-

onal states kCgj and kCej, Eqn. (5.6) produces the coupled equations

a0(t) ¼ a

ih� ei2pntkCgjfjCglþ b

ih� exp i
(Eg�Ee )

�h þ2pn½ �tð Þ kCgjfjCel

b0(t) ¼ b

ih� ei2pntkCejfjCelþ a

ih� exp i
(Ee�Eg)

�h �2pn½ �tð Þ kCejf�jCgl
(5:7)

where we have dropped terms oscillating at high frequencies (Ee � Eg)=h� þ 2pn.
Assuming that the system is initially in the ground state with a ¼ 1 and b ¼ 0

1
ih� exp

i
(Ee�Eg)

h� �2pn

h i
t

� �
kCejf�jCgl (5:8)

is the rate at which the excited-state amplitude increases. The probability that the
system is in the excited state as a function of time, for small values of t ¼ Dt, is

ðDt

o

b0(t)dt

������

������

2

¼ Dt2

4h�2 jkCgjfjCelj2sinc2 (Ee � Eg)
h� � 2pn

� �
Dt

2

� �
(5:9)

We learn three critical facts from Eqn. (5.9):

1. The transition probability from the ground state to the excited state is vanish-
ingly small unless the energy difference between the states, Ee � Eg, is equal
to hn. This characteristic is reflected in strong spectral dependence in photo-
detection systems. At energies for which there are no quantum transitions,
materials are transparent, no matter how intense the radiation. At energies for
which there are transitions, materials are absorbing.

2. The transition probability is proportional to jfj2, where f is proportional to the
amplitude of the electromagnetic field.
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3. The transition from the ground state to the excited state adds a quantum of
energy (Ee � Eg) to the material system and removes a quantum of energy
hn ¼ (Ee � Eg) from the electromagnetic field. While a broader theory detail-
ing quantum states of the field is necessary to develop the concept of the photon
number operator, the basic idea of absorption as an exchange of quanta
between the field and the material system is established by Eqn. (5.9).

Practical detectors consist of very large ensembles of quantum systems.
Photoexcited states rapidly decohere in such systems as the excited-state energy is
transferred from the excited state through electrical, chemical, or thermal processes.
Replacing the transition time Dt by a quantum coherence time tc the signal generated
in such systems is

i ¼ k

ð
jE(n)j2meg(n)g(n)dn (5:10)

where k is a constant and the oscillator strength meg(n) is proportional to the square of
the coherence time and of the quantum transition probability kCejfjCgl. Removing the
electric field amplitude from the quantum operation is a semiclassical approximation
in that we consider quantum materials states but do not quantize states of the electro-
magnetic field. g(n) is the density of states of the material system at frequency n. While
Eqn. (5.9) predicts that state transitions occur only at the quantum resonance fre-
quency, large ensembles of detection states are spectrally broadened by homogeneous
effects such as environmental coupling [which decreases the coherence time and
broadens the sinc function in Eqn. (5.9)] and by inhomogeneous effects corresponding
to the integration of signals from physically distinguishable quantum systems.

The power flux of an electromagnetic field, in watts per square meter (W/m2) is
represented by the Poynting vector

S ¼ E�H (5:11)

For a harmonic field, one may use the Maxwell equations to eliminate H and show
that the amplitude of the Poynting vector is

ffiffiffiffiffiffiffiffiffi
1=m

p
jEj2. This relationship is derived

for the field as a function of time, but one may, of course, use Plancherel’s

theorem [Eqn. (3.19)] to associate
ffiffiffiffiffiffiffiffiffi
1=m

p
jE(n)j2 with the power spectral density

S(n). We present a careful derivation of the power spectral density with the field con-
sidered as a random process in Chapter 6; for the present purposes it is sufficient to
note that our basic model for photodetection is

i ¼ k

ð
S(n)h(n)dn (5:12)

where S(n) � jE(n)j2 is the power per unit area per unit frequency in the field and h(n)
describes the spectral response of the detector on the basis of quantum, geometric,
and readout effects.

Despite our efforts to sweep all the complexity of optical signal transduction into
the simple relationship of Eqn. (5.12), idiosyncracies of the quantum process still
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affect the final signal. The transition probability of Eqn. (5.9) reflects a process under
which the material system changes state when a photon of energy equal to hn is
extracted from the field. At energy fluxes typical of optical systems the number of
quanta in a single measurement varies from a few thousand to a million or more.
As discussed in Section 5.5, measurements of a few thousand quanta produce
noise statistics typical of counting processes.

The difference in scales between the quantum coherence time and the readout rate
of the photodetector is also significant. The detected signal is proportional to the time
average of the jfj2 over some macroscopic observation time. Since temporal fluctu-
ations in the readout signal are many orders of magnitude slower than the oscillation
frequency of the field, the detected signal is “rectified” and the temporal structure of
the field is lost in noninterferometric systems.

To be useful as an optical detector, the state transition from the ground state to
the excited state must produce an observable effect in the absorbing material.
Photographic and holographic films rely on photochemical effects. In analog pho-
tography absorption converts silver salt into metallic silver and catalyzes further
conversion through a chemical development process. This change is observed in
light transmitted or reflected from the film. Since phase modulation based on vari-
ations in the density and surface structure of a material is preferred in holography,
holographic films tend to use photoinitiated polymerization. Bolometers and pyro-
electric detectors rely on physical phenomena, specifically thermal modulation of
resistivity or electric potential. For digital imaging and spectroscopy, we are most
interested in detectors that directly induce electronic potentials or currents.
Mechanisms by which state transitions in these detectors induce signals are discussed
in Section 5.3.

5.3 OPTOELECTRONIC DETECTORS

Optical signals are transduced into electronic signals by (1) photoconductive effects,
under which optical absorption changes the conductivity of a device or junction; or
(2) photovoltaic effects, under which optical absorption creates an electromotive force
and drives current through a circuit. Photoconductive devices may be based on direct
optical modulation of the conductivity of a semiconductor or on indirect effects such
as photoemission or bolometry. Photovoltaic effects occur at junctions between
photoconducting materials. Depending on the operating regime and the detection
circuit, a photovoltaic device may produce a current proportional to the optical flux
or may produce a voltage with a more complex relationship to the optical signal.
This section reviews photoconductive and photovoltaic effects in semiconductors.
We briefly overview photoconductive thermal sensors in Section 5.8.

5.3.1 Photoconductive Detectors

Solid-state materials are classified as metals (conductors), dielectrics (insulators), or
semiconductors according to their optical properties. Metals are reflective. Dielectrics
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are transparent. Semiconductors are nominally transparent, but become highly absor-
bant beyond a critical optical frequency associated with the bandgap energy. The
optical properties of semiconductors are sensitive to material composition and can
be changed by doping with ionizable materials as well as by compounding and inter-
face structure. On the basis of dopant, interface, and electrical parameters, semicon-
ductors may be switched between conducting and dieletric states.

The optical properties of materials may be accounted for using a complex valued
index of refraction n0 ¼ n� ik. The field for a propagating wave in an absorbing
material is

E ¼ E0ei2pnte�i2p(n�ik)(z=l) (5:13)

The wave decays exponentially with propagation. Typically, one characterizes the

loss of field amplitude by monitoring the irradiance I / jEj2. The decay of the irra-
diance is described by I ¼ Ioe�az, where a ¼ 4pk=l. The range over which the irra-
diance decays by 1=e, d ¼ 1=a, is called the skin depth. The skin depth of metals is
generally much less than one free-space wavelength. The vast majority of light
incident on a metal is reflected, however, due to the large impedance mismatch at
the dielectric–metal interface. The skin depth near the band edge in semiconductors
may be 10–100 wavelengths. The real part of the index is near 1 for a metal. It is
typically 3–4 near the band edge of a semiconductor.

The properties of conductors, insulators, and semiconductors are explained
through quantum mechanical analysis. A solid-state material contains approximately
1025 quanta of negative charge and 1025 quanta of positive charge per cubic centimeter
(cm3). These quanta, electrons, and protons mixed with uncharged neutrons exist in a
quantum mechanical state satisfying the Schrödinger equation. Description of the
quantum state is particularly straightforward in crystalline materials, where the
periodicity of the atomic arrangement produces bands of allowed and evanescent
electron wavenumbers.

The Schrödinger equation for charge in a crystal lattice is a wave equation balan-
cing the potential energy of charge displaced relative to the lattice against kinetic
energy

h�2

2 m
r2Cþ V(r)C ¼ EC (5:14)

where V(r) is the potential energy field and E is the energy eigenvalue for the state C.
In a crystal the potential energy distribution is periodic in three dimensions. The basic
behavior of the states can be understood by considering the one-dimensional potential
V(x) ¼ Vo cos(Kx). For this case, Eqn. (5.14) is identical to Eqn. (4.95) and a similar
dispersion relationship results. C(r) is a charged particle wavefunction and the
Fourier “k space” corresponds to the charge momentum, but the structure of
the momentum dispersion is the same as in Fig. 4.24. Just as we saw for Bragg
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diffraction, a stopband in which there are no allowed momentum states is created in
the semiconductor crystal.

Since crystals are periodic in three dimensions, the solution of Eqn. (5.14) in
natural crystals results in a 3D wavenormal surface with bandgaps of momentum
space in which no energy eigenstates exist. The band structures of three particularly
important semiconductor materials are shown in Fig. 5.1. The band diagrams show
energy eigenvalues as a function of the momentum value k for the Floquet modes,
which are 3D versions of Eqn. (4.96).

A significant difference between photonic and electronic band structure arises
from the Pauli exclusion principle, which states that no two identical fermions
may simultaneously occupy the same quantum state. The exclusion principle is a
critical component in explaining the structure of atomic nulcei, atoms, molecules,
and crystals. In addition to charge and mass, quantized values of angular momentum,
or spin are associated with fundamental particles. Fermions are particles with spin
states that preclude multiple quanta occupying the same quantum state. Electrons,

Figure 5.1 Energy band diagrams of (a) germanium, (b) silicon, and (c) gallium arsenide.
The diagrams show k versus E for eigensolutions of the schrödinger equation. The k axis cor-
responds to critical directions with respect to the underlying crystal structure and the lines in
k space between these points. (From Sze, Physics of Semiconductor Devices # 1981.
Reprinted with permission of John Wiley & Sons, Inc.)
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protons, and neutrons are fermions. Bosons are particles that allow multiple occu-
pation of the same state. Photons are bosons. As an example, laser action occurs
when many photons occupy the same state. Similar highly populated states are not
available to fermions.

Just as an atom or molecule has ground and excited states, the energy eigenstates
of a crystal corresponding to the eigenvalues shown in the band diagram may be
occupied or unoccupied in the ground state. For the semiconductor materials of
Fig. 5.1, the fully occupied ground state fills a continuous range of k values. The
filled range is called the valence band. The next available excited states correspond
to k values in the conduction band. For metals, the conduction band is partially
filled even in the ground state and for dielectrics the gap between the ground state
and the excited state is so large that crystal binding is disrupted by the excitation
energy.

Charge transport occurs in semiconductors via conduction electrons and holes.
Conduction electrons are charges excited thermally, electrically, or optically from
the valance band to the conduction band. Depending on the material, these excited
charges persist for some time and diffuse or move in response to an applied
voltage. Similarly, the positively charged valence band states created by the exci-
tation, the holes, can move through the crystal prior to recombination.

The energy difference between the top of the valance band and the bottom of the
conduction band is Eg, the bandgap. Eg is indicated in Fig. 5.1. The Eg values for
various materials are indicated in Table 5.1. Table 5.1 also lists a cutoff wavelength
for each material. Because there are no vacant energy states between the top of the
valance band and the bottom of the conduction band, absorption does not occur in
semiconductors if the frequency of incident radiation is less than nc ¼ Eg/h. With
Eg in electron volts and l in micrometers, this corresponds to a cutoff wavelength
lc ¼ 1.24/Eg.

TABLE 5.1 Bandgap Energies, Cutoff Wavelengths, and Electron and Hole
Mobilities of Several Semiconductors at Room Temperature

Material Eg (eV) lc (mm) mn [cm2=(V � s)] mp [cm2=(V � s)]

CdS 2.42 0.51 400 —
CdSe 1.74 0.71 650 —
GaAs 1.35 0.92 9,000 500
GaP 2.24 0.55 300 150
Ge 0.67 1.85 3,800 1,820
HgTe 0.15 8.27 25,000 350
InAs 0.33 3.76 33,000 460
InP 1.27 0.98 5,000 200
InSb 0.17 7.29 78,000 750
PbS 0.37 3.35 800 1,000
PbSe 0.26 4.77 1,500 1,500
Si 1.1 1.13 1,900 500
ZnS 3.54 0.35 180 —

156 DETECTION



The basic structure of an optical detector based on photoconduction in semicon-
ductors is sketched in Fig. 5.2. Light incident on the detector generates electron–
hole pairs. The photogenerated charge migrates under the influence of an applied
voltage V. The current in the circuit is

i ¼ hFeG (5:15)

where h is the quantum efficiency, F is the photon flux, e is the electron charge, and G
is the photoconductive gain; h is a number between zero and one indicating the frac-
tion of incident photons that generate an electron–hole pair, and F is the ratio of the
incident optical power P to the photon energy hn. (For a polychromatic source F is
the average over the spectral range of the number of photons per second striking the
detector.)

A conduction electron accelerated in a semiconductor by the electromotive force
E ¼ V/l acquires a drift velocity

vd ¼ �mn
V

l
(5:16)

where mn is the electron mobility. If t is the mean lifetime of the excited charge, the
displacement of the charge during excitation is vdt. The maximum displacement in a
photodetector is l, but to maintain charge neutrality electrons absorbed by the positive
electrode are replaced in the circuit by electrons entering the semiconductor from the
negative electrode. Thus, a single excited charge may flow through the detector
G ¼ jvdjt=l times. Accounting for both electrons and holes, we find

G ¼
(mn þ m p)tV

l2
(5:17)

While Eqn. (5.17) indicates that the photoconductive gain increases linearly in the
bias voltage, gain saturation arises in practice through dependence of the carrier life-
time and mobilities on V. The mobilities may change as a result of thermal heating
due to photo- and dark currents, but even before heating becomes significant

Figure 5.2 Photoconductive detector structure.
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surface and contact recombination effects significantly reduce the value of t.
The effective carrier lifetime teff is the harmonic mean

1
teff
¼ 1

t0
þ 1
tc
þ 1
ts

(5:18)

where t0 is the carrier lifetime in the bulk semiconductor, tc is the contact recombi-
nation lifetime, and ts is the lifetime for recombination with surface states. Mobility
values for various semiconductors are given in Table 5.1. t0 ranges from a few milli-
seconds in indirect semiconductors like germanium and silicon to microseconds in
direct materials such as GaAs, but in most detectors of interest for imaging and spec-
troscopy teff will be dominated by the contact recombination lifetime. Assuming that
the diffusion length of the minority carrier is greater than the device thickness

tc �
1

12
l2

D
(5:19)

where l is the device thickness and D is the minority carrier diffusion constant [17].
The diffusion constant is linearly proportional to the carrier mobility according to
D ¼ mkT=e.

In summary, a photoconductive detector is a current source with current pro-
portional to the incident photon flux and gain determined by the applied voltage
and the diffusion length.

Spectral sensitivity is the most important aspect of photoconductive materials for
applications in imaging and spectroscopy. The most common material, silicon,
absorbs light from the near ultraviolet through the near infrared (roughly 300–1100
nm). As illustrated in Fig. 5.3, the skin depth of silicon, and thus the quantum efficiency
of silicon devices, varies considerably over this range. Shorter wavelengths are absorbed
more strongly; longer wavelengths tend to penetrate farther. On the micrometer scale,

Figure 5.3 Skin depth versus wavelength in intrinsic silicon.
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skin depth is a critical feature in determining minimum device size because devices
smaller than an absorption length on the surface of detector tend to induce crosstalk.

It is possible to tailor the spectral response of a semiconductor by

† Doping. A pure semiconductor is called an intrinsic material and behaves as
discussed thus far in this section. A material doped with donor or acceptor
species (an extrinsic material) may support a population of conduction electrons
or holes at thermal equilibrium. The impurity atoms create quantum states
within the bandgap that may be ionized by optical radiation.

† Compounding. Table 5.1 lists elemental and compound semiconductors. The
band structure of compound semicoductors is tuned in mixtures like
Ga1�xAlxAs and Hg1�xCdxTe.

† Quantum Confinement. Nanometer-scale spatial structure in semiconductor
materials creates artificial electronic resonances based on electron wavefunction
cavity effects. Quantum wells and quantum dots are nanostructured devices
designed to shape the absorption and conductivity properties of materials.

5.3.2 Photodiodes

Semiconductor circuits and devices are built from complex structures combining
metal, dielectric, and semiconductor interfaces. The simplest semiconductor
device, a p–n junction diode, is formed at the interface between p-type and n-type
extrinsic photoconductors. A p-type material is doped with acceptor impurities
such that valence band electrons are bound to impurity sites and unbound holes
are produced in the valence band. An n-type material is doped with donor sites
that contribute unbound conduction electrons.

Unbound charge diffuses across an interface between a p-type and an n-type
material, meaning that holes from the p-type region enter the n-type material and elec-
trons from the n-type material enter the p-type material. Charge diffusion creates a
space charge region at the interface. The space charge region is negatively charged
in the p-type material and positively charged in the n-type material. The space
charge distribution creates an electromagnetic field across the junction that inhibits
further charge diffusion.

The charge density, electric field, and electric potential across a p–n junction is
illustrated in Fig. 5.4. The p-type interface is negatively charged at the acceptor
density NA, corresponding to compensation of ionized acceptor sites by donor elec-
trons. The n-type material is similarly positively charged with peak density ND.
Compensation of the acceptor and donor sites creates a depletion region in which
no free charge is present and conduction is inhibited.

Electric current is induced through a p–n junction diode by either an applied
potential across the junction or by electron–hole pair generation. The diffusion
current due to an applied field across the diode is

id ¼ isat eeV=kT � 1
� �

(5:20)
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where T is temperature, k is the Boltzmann constant, e is the electron charge, and V is
the applied voltage. The exponential form of Eqn. (5.20) arises from the Boltzmann
distribution of charge in thermal equilibrium [136]. The depletion region creates a
barrier to charge flow across the diode. The Boltzmann distribution predicts the
charge density above the barrier potential. At room temperature, kT=e is approxi-
mately 25 mV; isat depends on the geometry of the junction and materials properties.

The diffusion current produces the characteristic diode I–V curve illustrated in
Fig. 5.5. The reverse-biased (V , 0) current saturates at �isat, which is typically
very small. In forward bias (V . 0) the diode is highly conducting. The turn-on
voltage is a multiple of the 25 mV thermal voltage in practical materials, for
example in Si the turn-on voltage is approximately 0.7 V. A strong reverse bias pro-
duces “breakdown” in the diode and results in low junction resistance. Breakdown

Figure 5.4 Charge density, electric field, and electric potential across the space charge region
of a p–n junction. The peak charge density is equal to the donor density ND in the n-type
region and �NA in the p-type region.

160 DETECTION



is associated with electron–hole pair generation in the depletion region through the
acceleration of charge with sufficient energy to ionize bound charge.

A photon flux F incident on the depletion region generates a current �heF in the
diode, where h is the quantum efficiency for electron–hole pair generation at the fre-
quency of the incident light. Combining photogenerated and diffusion components,
the total current across the diode is

i ¼ �heFþ isat eeV=kT � 1
� �

(5:21)

The optical signal absorbed by the diode may be characterized by measuring either
the voltage generated across the diode or the current generated through the diode. A
voltage is generated across the diode even in an open circuit. Setting i ¼ 0 and
solving for the photogenerated voltage in Eqn. (5.21) yields

V ¼ kT

e
log 1þ heF

isat

� �
(5:22)

Equation (5.21) indicates that photovoltaic measurements of a diode might be an
effective temperature gauge, but the nonlinear response with respect to F is generally
unattractive.

While the total current through the diode depends on the applied potential, the
change in the photocurrent due to light is linear in F. Photocurrent detection using
an operational amplifier, as illustrated in Fig. 5.6, provides a simple mechanism
for amplifying the diode current into a readout voltage linear in F; in this case the
voltage is

V ¼ ehR fF (5:23)

Figure 5.5 Current I versus voltage V for an ideal p–n diode.
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In summary, photodiodes act as current sources similar to photoconductive
devices but without photoconductive gain. Gain is often provided by an operational
amplifier, which also converts the photocurrent into a voltage proportional to the
photon flux.

Photodiode geometry and circuits are extended in many ways for functional photo-
detectors. For example, the p–i–n diode adds an intrinsic absorption layer between
the p- and n-type materials. The intrinsic layer affords a uniform depletion region
with a constant acceleration field. Avalanche photodiodes are strongly reverse
biased such that photogenerated charge induces a cascade of electron–hole pair ion-
izations, amplifying the current response by factors of 1000 or more. Finally,
Schottky barrier photodiodes rely on the contact potential between a metal and an
insulator to produce the space charge region.

5.4 PHYSICAL CHARACTERISTICS OF OPTICAL DETECTORS

Detectors are described according to

† Geometric characteristics, such as the spatial, spectral, and temporal structure of
measurements and sampling rates

† Noise and statistical characteristics
† Physical characteristics, such as spectral and polarization sensitivities, linearity,

dynamic range, and responsivity

Detector geometry defines sampling structure, which influences detector peformance
so profoundly that it arises throughout the text as well as absorbing the entirety of

Figure 5.6 Diode photocurrent detection using an operational amplifier.
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Chapter 7. Noise is considered in detail in Section 5.5 The present section briefly
overviews essential physical characteristics of optical sensors.

Physical characteristics begin with the transduction mechanism. Common detec-
tors rely on

† Photoinduced chemical or physical changes, as in photographic and holo-
graphic plates and films

† Photoemission, as in vacuum tubes
† Photoconduction and photovoltaic effects in semiconductors, as discussed in

Section 5.3
† Thermal effects

We focus on large electrically addressable arrays of photodetectors, which rely on
semiconducting or thermal detectors. The primary difference between semiconductor
and thermal detectors is that the former is sensitive to the incident photon flux, while
the latter is sensitive to the total absorbed optical energy. Assuming uniform quantum
efficiency with respect to wavelength, the response of a photon detector at 1 W of
power at l ¼ 500 nm is half the response of the same detector to 1 W of power at
l ¼ 1mm. The distinction, of course, is that the photon flux at 500 nm is

F ¼ P

hn
¼ Pl

hc
¼ 2:5� 1018 quanta=s (5:24)

while at 1 mm F ¼ 5� 1018 quanta/s (quanta per second). For a thermal detector,
the change in temperature is linearly proportional to the power deposited.
Assuming uniform spectral absorption, a thermal detector produces the same
response for 1 W at 500 nm as for 1 W at 1 mm.

Thermal detector arrays are commonly used in infrared spectral ranges where
semiconductor detectors are expensive and difficult to fabricate and where relatively
broad and uniform spectral response is desirable. Noise characteristics of thermal
detectors are not generally as attractive as photon detectors, however, so most
high-performance systems use photon detectors.

Responsivity, defined as

R ¼ output signal
input power

(5:25)

is a commonly referenced detector metric. The responsivity may be reported in volts
per watt or amperes per watt, depending on the units in which the output signal is
measured. For the photoconductive detector of Eqn. (5.15) the responsivity is

R ¼ I

hnF
¼ hleG

hc
(5:26)
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which yields 0:8hGl A/W for l in micrometers. Similarly, the responsivity of the
amplified photodiode of Eqn. (5.23) is

R � 0:8hlR f V=W (5:27)

with R f in ohms (V). Responsivity in linear proportion to the quantum efficiency h

and l is characteristic of photon detectors. The responsivity is also a function of l
through spectral variation in the quantum efficiency. The responsivity of a thermal
detector, in contrast, is linearly proportional to the absorption efficiency but is insen-
sitive to wavelength.

Response time is a measure of the minimum temporal variation in the irradiance a
detector can resolve. While the spectral response is, in most cases, determined by the
materials composition of the detector, temporal and temporal frequency responses of
the detector system are determined primarily by details of the readout circuit.
Capacitive effects produce exponential decay impulses in the temporal response,
which yields 1=f decay in the frequency response of the detector.

Linearity describes the relationship between the input irradiance and the output
signal. We have implicitly assumed in our definition of the responsivity that the
output signal is linearly proportional to the input power. In practice, detectors
respond linearly over a limited range. Beyond this range, saturation effects limit
the detector response. Potential saturation effects are clear in our previous discussion
of photodiodes, we discuss saturation in CCD detectors in Section 5.6.

The signal-to-noise ratio (SNR) is a commonly quoted detector characteristic. In
electrical systems, the signal-to-noise ratio (SNR) is the ratio of the power in an elec-
trical system to the noise power. The definition of SNR sometimes varies in appli-
cations to imaging systems, where “signal power” is not as easy to define as one
might think. An image is ultimately a digital object; imaging scientists sometimes
define SNR to mean the ratio between the mean or peak digital signal value and
the noise-based standard deviation of the signal. In many cases, the digital signal
values are proportional to the optical power, although they may be proportional to
the magnitude of an electronic current or voltage.

This text uses the definition

SNR ¼ �s

sn
(5:28)

where �s is the mean reconstructed signal value and sn is the noise standard deviation.
SNR is often quoted in decibels (e.g., SNR ¼ 10 log10 �s=sn dB). Depending on the
definition and units, our definition of SNR may vary by a factor of 2 in dB or by a
square in relation to alternative definitions.

Dynamic range refers to the number of distinct detector states that can be translated
into digital values. Dynamic range is most often quoted in terms of decibels or bits;
for example, a 16-bit detector produces 216 values. The dynamic range may be more
or less equivalent to the peak SNR for a linear system, but more commonly, the
quoted value refers to the number of bits in the digitization circuitry, without
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necessarily ensuring that the detector itself can meaningfully produce all 216 values or
that the mapping is linear. The process of analog to digital conversion produces digi-
tization noise associated with the mapping from an continuous value to digital
number, in most optical systems; however, this source of uncertainty insignificant.

Noise equivalent power (NEP) is the optical power inducing a signal-to-noise ratio
of 1. It is often appropriate to assume that the noise power is proportional to the
square root of the the detector bandwidth Df and the detector area A. In this case,
the detectivity D�

D� ¼
ffiffiffiffiffiffiffiffiffi
ADf

p
NEP

(5:29)

is used as a detector metric. The common unit of detectivity is 1 “jones” ¼ 1 cm .

Hz1/2/W. Values of D� under similar operating conditions for various detector
materials are plotted as a function of wavelength in Fig. 5.7. A value of D� of 1010

jones, for example, implies that a 1-cm2 detector operating with 1 Hz of bandwidth
produces an SNR of 1 for 0.1 nW of incident power.

5.5 NOISE

An optical measurement returns a distribution of different values when repeatedly
sampled under identical circumstances. Variation in recorded values is due to

Figure 5.7 D� as a function of wavelength for various detector materials (courtesy of
Hamamatsu Corporation).

5.5 NOISE 165



quantum mechanical uncertainty, unaccounted background processes or sampling
and digitization structure. If different detectors are used to make the same measure-
ment, variation due to differences in detector characteristics are also observed. One
cannot eliminate variation in measurements, but by understanding the physical pro-
cesses that create it and by modeling its statistics, one can account for its impact
on images. Knowledge of probability density functions for measurement noise
enables us to choose the most likely estimate of signal parameters and to bound esti-
mation errors.

The optical signal incident on a detector is a random process. Optical detectors
convert a stream of photons into a photocurrent, thus transforming one random
process into another. Differences in implementing this transformation account for
some of the controversy in defining SNR mentioned in Section 5.4. Systems with
just a few detection channels digitize the current produced by a photodetector as a
time series. On large detector arrays, such as those used in imaging systems, the
photocurrent cannot be continuously observed for all detector elements. Instead,
the photocurrent is integrated to create a charge. This charge is read at discrete inter-
vals to produce discrete voltage signals. Noise arising in this transformation is usually
modeled using a probability density function for the discrete signal. This section
accordingly focuses on the statistics of discrete measurements rather than those of
random processes.

Noise in imaging and spectroscopy differs from noise in optical communication,
data processing, and data storage systems because temporal signal modulation and
read frequencies tend to be substantially lower while spatial parallelism tends to be
much higher. A typical imaging system operates at frame rates of 1–100 Hz with
pixel read frequencies in the 1–10 MHz range. Modern optical imaging relies on
very large detector arrays. Noise on arrays arises from pixel-level signal fluctuations
(temporal noise) and pixel-to-pixel detector variations (fixed pattern noise). Temporal
noise is due to quantum and thermal fluctuations; fixed pattern noise is caused by
variations in the physical characteristics of detectors. Fixed pattern noise may in prin-
ciple be ameliorated by characterizing the response of each pixel, but accurate charac-
terization is impractical for large arrays.

Quantum photon and charge fluctuations produce shot noise. Shot noise is charac-
teristic of processes that count discrete events, such as the detection of individual
quanta of light and electricity. To understand shot noise, suppose that an extremely
stable source generates an average of �n photons in a time window of duration T.
Dividing the time window into N subwindows each of duration T=N, the probability
of exactly n counts in a particular time window is

p(n) ¼ N!

n!(N � n)!
�n

N

� �n
1� �n

N

� �N�n

(5:30)

where the factorial term accounts for the number of permutations for assigning
n counts to N slots and the exponential terms describe the probability of a specific
realization of n slots with one count and N � n slots with no counts. We assume
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that T=N is sufficiently short that the probability of two counts in any one subwindow
vanishes.

In the limit N ! 1, approximation of N! and (N � n)! using Stirling’s approxi-
mation N! �

ffiffiffiffiffiffi
2p
p

NNþ(1=2)e�N and the use of the limit ea ¼ limN!1(1� a=N)N

yields

p(n) ¼ �nn

n!
e��n (5:31)

p(n) is the Poisson distribution. Properties of the distribution include

X1
n¼0

p(n) ¼ 1

knl ¼
X1
n¼0

np(n) ¼ �n

kn2l ¼
X1
n¼0

n2p(n) ¼ �n2 þ �n

(5:32)

The variance of the distribution is thus s 2 ¼ kn2l� knl2 ¼ �n.
Even though the energy per pixel is quite small, �n is generally large in optical

systems. For example, a typical image might correspond to 1–10 nW of power on
a detector array. Integration for 30 ms deposits 10–100 nJ of energy. Over a mega-
pixel sensor, this corresponds to 10–100 fJ per sensor element. Assuming 1 eV
photons, this corresponds to between 105 and 106 photons per pixel. With such
large photon counts, the probability of any specific number of photons is small, for
example, for �n ¼ 105, p(�n) ¼ 0:0013. The standard deviation of the Poisson distri-
bution, s ¼

ffiffiffi
�n
p

grows as with the signal amplitude, but the signal grows at a
faster rate and the signal-to-noise ratio increases in proportion to

ffiffiffi
�n
p

.
The mean number of quanta detected for optical power P over an integration time

of T is �n ¼ hTP=hn. The shot-noise-limited SNR for this process is

SNR ¼ �n

sn
¼

ffiffiffiffiffiffiffiffiffiffiffi
hP

hnDf

s
(5:33)

where the bandwidth Df is associated with the integration time by T ¼ 1/Df. Setting
SNR ¼ 1, we find that the quantum-limited noise equivalent power is

NEP ¼ hnDf

h
(5:34)

For 1 eV photons integrated at 30 Hertz with 50% quantum efficiency, this corre-
sponds to NEP¼10 attojoules (aJ).
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While visible optical fields are generated by quantum processes far from thermal
equilibrium, near-equilibrium processes in detector circuits lead to thermal, or
Johnson, noise. Johnson noise arises from random fluctuations of thermally excited
charge. These fluctuations may augment or detract from photogenerated currents.
The structure of Johnson noise is derived by considering “modes” of the detector
circuit. A mode at frequency f is populated according to the Boltzmann distribution
for thermal blackbody radiators. The overall noise energy density in the circuit at
energy hf is

E ¼ 2hf

ehf =kT � 1
(5:35)

At room temperature, kT/h ¼ 6.25 THz. At kHz–MHz frequencies of interest to
imaging systems, one may safely assume that E � kT. Integrating over the active
spectral range of the detector, the mean-square power of the thermal noise is Pn ¼

2kTDf.
Assuming a zero-bias detector resistance R, Johnson noise results in mean-square

current ī 2 ¼ 4kTDf/R. The SNR for Johnson noise is

SNR ¼ ehP

hn

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
R

4kTDf

s
(5:36)

The NEP is

NEP ¼ hn

eh

� � ffiffiffiffiffiffiffiffiffiffiffiffiffi
4kTDf

R

r
(5:37)

and the detectivity is

D� ¼ eh

hn

ffiffiffiffiffiffiffiffi
RA

4kT

r
(5:38)

To first order, R is inversely proportional to A and the value RA is independent of
detector area. At room temperature for l ¼ 1 mm, RA ¼ 50 MV . cm2 and h ¼ 0.9,
D� ¼ 4.2 � 109 Jones. Shot noise– and Johnson noise–dominated processes both
correspond to detectivity that increases linearly in wavelength and in the quantum
efficiency h. Of course, h is itself a function of l. We observe a monotonic increase
in detectivity as a function of l in Fig. 5.7 up to a critical point, where h quickly goes
to zero and the detectivity collapses.

In addition to shot noise and Johnson noise, noise arises from sampling and device
response characteristics (1/f noise) and from readout, amplification, and digitization
electronics. An individual optical measurement consists of a sum of signal and noise
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components of the form

i ¼ sþ
X

i

ni (5:39)

Assuming that the components are independent, each noise component is distributed
according to its own statistics. Combining the joint probabilities allows us to develop
a distribution for the overall noise. If components n1 and n2, for example, have dis-
tributions p1(n) and p2(n), then the distribution of n ¼ n1þn2 is

p(n) ¼
ð

p1(n1 ¼ n� n2)p2(n2)dn2 (5:40)

If n1 and n2 are normally distributed with zero mean and deviations s1 and s2, then

pi(n) ¼ 1

si

ffiffiffiffiffiffi
2p
p e�n2=s2

i (5:41)

and

p(n) ¼ 1
s1s22p

ð
exp

�(n� n2)
s 2

1

� �
exp

�n2
2

s 2
2

� �
dn2

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2

1 þ s 2
2

p ffiffiffiffiffiffi
2p
p exp

�n2

s 2
1 þ s 2

2

� �
(5:42)

Thus, the distribution of a sum of normally distributed noise components is normally
distributed with variance equal to the sum of the variances of each individual
component.

Although their origins are quite different, most noise components (with the
notable exception of shot noise) may be assumed to be normally distributed. Fixed
pattern noise, for example, arises from a distribution of manufacturing parameters
in a sensor array. In principle these parameters might be characterized to enable
noise-free calibrated measurement, but in practice the complexity of precise charac-
terization over a large array and a complete range of temperatures and operating con-
ditions is impossible. Some aspects of fixed pattern noise are eliminated by correlated
double sampling, which measures the difference between a pixel value immediately
after reset and again after signal integration. Because of the multiple sources of fixed
pattern noise (device size, temperature, and materials variation), it is often safe to
assume a normal distribution.

The overall noise distribution is the convolution of the shot noise and additive
noise components, for example, the convolution of the Poisson or compound
Poisson distribution with a normal distribution for additive components. Optical
detection may involve a compound Poisson process due to both photon and dark-
current variations. In this case, the shot noise distribution is a correlation of
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Poisson processes and the overall noise distribution is a convolution of the compound
Poisson distribution and a normal distribution.

Independent of the structure of the distribution, if noise may be assumed to be
independent from each source and between each pixel, the variance of the noise at
each pixel is the sum of the variances due to all sources at that pixel. The pixel
SNR is

SNR ¼ 10 log10
PffiffiffiffiffiffiffiffiffiffiffiffiffiP

i s
2
i

p dB

¼ 10 log10
Pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kpPþ s 2
r

p dB (5:43)

where kp is a constant and s 2
r is the “read noise” variance, including components

from Johnson, 1/f, dark-current and fixed pattern noise. For low signal values,
read noise dominates and the SNR grows 10 dB per decade of signal power. At
higher signal values, shot noise dominates and the SNR grows 5 dB per decade of
signal power.

5.6 CHARGE-COUPLED DEVICES

We turn finally to Professor Fossum’s point 4, detector readout. In imaging and spec-
troscopy our interest is in massively parallel arrays consisting of millions of photode-
tectors. From the origins of electronic imaging through the 1980s, image transduction
was implemented using cathode ray tubes. Incident light generated charge on a pho-
toconductive service, and the charge density on this surface was scanned using an
electron beam in a vacuum tube. Such systems are bulky and have poor quantum effi-
ciency. The development of all solid-state focal plane arrays (FPAs) enabled the
development of much more compact, efficient, and robust imaging systems.

A solid-state FPA performs the same two basic functions as a vacuum tube system:
(1) transducing incident light into electronic charge and (2) transforming the 2D array
of photodetector signals into a 1D temporal signal for readout into a digital processor.
We understand how to implement step 1 through our discussion of photodiodes. Step
2 requires us to venture a bit further into discussion of electronic circuit design.

As suggested by steps 5–8 of Professor Fossum’s list, the optoelectronic interface
is somewhat more complex than simply detecting the light and reading it out. The
interface transforms the physical distribution of an image light field into a mathemat-
ical data array. This transformation consists of diverse electronic amplification, noise
reduction, signal conditioning, and analog-to-digital operations. FPA design is separ-
ated into systems that implement some of these operations at individual photodetec-
tion sites (active pixel sensors) and systems that implement most of these operations
after serializing the image data stream (charge-coupled devices) (CCD).

The CCD, invented in 1969 at Bell Laboratories [25], consists of an array of gates.
As illustrated in Fig. 5.8, a single photogate consists of a metal–oxide–semiconductor
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capacitor. The metal is typically a transparent material such as indium tin oxide or very
thin and heavily doped polycrystalline silicon. Light passes through the metal and
oxide layers and is absorbed in the semiconductor. Alternatively, on may use a
“back-illuminated” geometry in which the semiconductor is thinned to allow light pen-
etration through the wafer. Although current does not flow through the oxide layer, a
positive voltage applied to the gate creates a space charge field and moves mobile posi-
tive charge (assuming a p-type semiconductor) away from the gate electrode and
toward the ground electrode. This creates a charge depletion region around the gate
electrode. Buried-channel CCDs include an n-type layer between the oxide and the
p-type layer to move the depletion region away from the oxide–semiconductor inter-
face, which tends to be contaminated by surface states. Buried-channel designs to
isolate the depletion region from noise due to the surface states are used in all
modern CCD and active pixel sensors.

Photon absorption creates electron–hole pairs. The positively charged hole is
repelled by the gate electrode, while negatively charged electrons accumulate in
the depletion region. The accumulated charge reduces the voltage across the gate
by an DV ¼ ne/C, where n is the number of photogenerated electrons and C is the
capacitance. The number of charges that can be accumulated, the well capacity,
depends on the applied voltage and the capacitance, which depends in turn on the
oxide layer thickness and the electrode area. Well capacities of 50,000–500,000
electronics are typical.

Charge-coupled device gates implement both photocharge accumulation and
charge transfer functions. The logical architecture of a CCD pixel consisting of
three gates is illustrated in Fig. 5.9. The central gate is positively biased with
voltage V, while the adjacent gates are negatively biased. Photoelectrons generated
anywhere in the pixel accumulate in the potential energy well under the central
gate. The actual physical architecture is somewhat more complicated because the

Figure 5.8 Metal–oxide–semiconductor (MOS) photogate.
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conducting regions of the gates are interleaved with oxide layers to create overlapping
gates and the photoelectron accumulation gate geometry is not quite symmetric with
the transfer gates.

The voltage applied to the gates is cycled in time to shift the accumulated charge
from one gate to the next, as illustrated in Fig. 5.10. In the first timestep photo-
electrons accumulate under the positive voltage (V2) gates. The V2 and V3 lines are
set at equal positive voltage in the second timestep, broadening the potential well
to include both gates. When the V2 line is negatively biased in the third timestep,
all of the charge has been transferred to the V3 gates. Repeating this process
2 more times with the voltages shown shifts the photogenerated charge by one
pixel. The scheme described in Fig. 5.10 is three-phase charge transfer; variations
using two or four phases or using physically asymmetric gate structures are used in
some designs.

The “bucket brigade” strategy of charge transfer illustrated in Fig. 5.10 is effective
in reading a linear array of pixels. Most commonly, however, one is interested in

Figure 5.9 Three phase CCD pixel.

Figure 5.10 Clocking cycle for a three-phase CCD.
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reading pixels distributed over a plane. 2D readout can be implemented by crossing
CCD systems as illustrated in Fig. 5.11. A parallel array of 1D charge transfer gates
dumps charge into an orthogonal serial array. The readout array transfers charge into
an amplification circuit that converts each charge packet into an output voltage. The
serial array transfer rate is set such that one line can be transfered out in the period of
one pixel shift on the parallel array.

To get an idea of the electronic bandwidths associated with readout, consider a
1-megapixel (1-Mpixel) CCD read at 30 frames per second (fps). With no compression,
the serial data stream must encode 30 Mpixels/s. With a readout dynamic range of
16 bits, this would correspond to 480 megabits per second (Mbits/s). One might
compare this to the video bandwidth of the National Television System Committee
(NTSC) standard for analog service in the United States, which is 4.2 MHz, the

Figure 5.11 Full-frame CCD readout geometry.

5.6 CHARGE-COUPLED DEVICES 173



difference in frequencies is due to the fact that NTSC resolution is around 0.1 Mpixel
and the dynamic range is much less than 16 bits. The parallel shift register bandwidth
necessary to read a column of 1000 pixels at 30 fps is 1

1000 of the serial bandwidth, but
the serial shift register must operate 1000 times faster to stream out the parallel array
data. Of course, these calculations do not allow for any photointegration time. If one
wishes to integrate light for just half of the available time, then the readout burst band-
width must be doubled. The challenges associated with these readout bandwidths
maintain a divide between low-resolution video and high-resolution still imaging.

The geometry shown in Fig. 5.11 is “full-frame readout.” To register the charge
detected at a specific pixel, one must inhibit new photocharge generation once the
transfer process has begun. In full-frame systems this is achieved using a shutter to
shield in the CCD during readout. The shutter may be mechanical in still cameras
(mechanical shutter lifetimes are usually just a few million frames) or liquid
crystal–based. Alternatively, one may use digital processing to remove or take advan-
tage of the motion blur associated with charge generation during readout. Full-frame
readout is not used in video systems. Full frame is used in astronomical and other low-
light scientific applications where one may wish to integrate for several seconds
before reading at a slower rate. The advantage of full-frame systems is that the fill
factor, the fraction of the FPA surface over which light is usefully detected, is
nearly 100%. The overall quantum efficiency of an FPA is the product of the fill
factor and the photodetector quantum efficiency.

Alternative readout schemes when one cannot or does not wish to use a shutter
include “frame transfer” and “interline” readout. In a frame transfer system half of
the parallel shift register is permanently masked. For example, one might build a
1024 � 512 array. A 512 � 512 section is open for light detection, and a 512 �
512 section is masked. Once every frame period the open section is rapidly shifted
in parallel into the masked section. The masked section is read into a serial transfer
register during the next accumulation period.

Interline transfer, which is commonly in consumer imagers, is illustrated in
Fig. 5.12. Alternating CCD columns are permanently masked from the light field.

Figure 5.12 Interline CCD readout geometry. Alternate columns of the CCD are blocked
from the light field. A microlenticular array with aperture equal to two column widths sits
over the open columns to focus the incident light and increase the apparent fill factor.
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Photodiodes in the open columns transfer charge into the masked CCD pixels, which
can then be streamed out periodically without further masking or readout blur. Both
this approach and frame transfer readout reduce the net fill factor by 50%, but the
frame transfer strategy has 100% fill factor over the image surface. Interline transfer
has nominally 50% fill, although the photosensitive columns may in practice be
somewhat larger than the transfer columns. A lenticular array (a set of microscale
cylindrical lenses) is often used to recover the lost fill factor by focusing the incident
beam on the read pixels. The effectiveness of microlenses on the FPA is a fascinating
topic; we will need to develop our system analysis toolbox somewhat before returning
to this topic in Chapter 7. For present purposes we simply note that the microlenses
are likely to significantly complicate our sensor response model. Various other
optical components, such as spectral and polarization filters, may also be integrated
on the FPA.

Charge transfer efficiency (CTE), such as the fraction of charge contained in one
pixel that is transferred to the next pixel in a clock cycle, is a critical parameter for a
CCD FPA. Charge may be lost during a transfer cycle if it is caught in a local trapping
site or if it drifts into the wrong potential well. Incomplete transfer is a particular
problem if the clock time is too short to allow effective diffusion from one well to
the next. On an N � M array the most remote pixel is transfered N þ M times
before readout. The fraction of the photogenerated charge at the readout circuit is
thus (CTE)NþM. For N þ M ¼ 1000, a worst-case readout efficiency of 0.9 requires
a charge transfer efficiency of 0.999895. If we increase N þ M to 10,000, this
charge transfer efficiency would deliver only a third of the original charge in the
correct pixel. CTE limits CCD size to the megapixel size, although larger arrays
may be implemented by a mosaic of multiple CCDs on a single substrate.

The spectral response of a CCD is determined primarily by the bandgap of the
semiconductor substrate, although the gate electrode electronics often also plays a
role. Polysilicon and indium tin oxide electrodes preferentially absorb blue and ultra-
violet ranges. For this reason, back-illuminated geometries are preferred at shorter
wavelengths. Variation in the skin depth as a function of wavelength in silicon is
illustrated in Fig. 5.3. The power 1/e range is half of the skin depth. The skin
depth affects several issues in CCD design. Making a back-illuminated device thin
enough that charge generated within the blue absorption range is effectively collected
in a pixel can substantially reduce the red and infrared quantum efficiency. As dis-
cussed in Chapter 7, one may ultimately like to make pixels of subwavelength
scale. If the skin depth is longer than the pixel pitch, however, light striking the
CCD photodepletion barrier at one point may actually generate charge one or more
pixels away.

As a final comment, we note that CCDs are susceptible to “blooming,” which
occurs when the irradiance at a pixel or set of pixels exceeds well capacity. Excess
charge from the saturated gates bleeds into adjacent pixels, causing error and satur-
ation over the affected region. This problem may be regarded as an example of the
general issue of dynamic range management on focal planes. If a scene consists
of only bright or only faint sources, one may adjust exposure to capture them, but
if a scene contains both bright and faint sources, one cannot reduce exposure to
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prevent saturation of the bright target without loosing sensitivity to the faint targets.
The first-order response in CCD design is to include antiblooming gates, which
remove overflow and prevent interpixel crosstalk. A second-order response might
be to consider pixels with dynamically addressable individual gain and well capacity.
Such innovations are the focus of active pixel sensor design, which is the subject of
the next section.

5.7 ACTIVE PIXEL SENSORS

Active pixel sensors (APSs) integrate diverse optoelectronic signal transduction and
conditioning functions at the pixel level. Active pixel sensors are implemented
in “complementary” metal–oxide–semiconductor (CMOS) silicon technology.
CMOS is the dominant integration technology for microprocessors, memories, and
application-specific circuits. In addition to active pixel arrays, CMOS readout inte-
grated circuits (ROICs) are used as backplanes for detector arrays fabricated using
bolometers or photodiodes in diverse material systems.

The simplest active pixel approach integrates amplification and charge–voltage
conversion at the pixel level. Image sensors with integrated per pixel amplifiers
were developed almost simultaneously with CCD technology and have long been
used in infrared cameras. At first, however, the low-noise and high-fill-factor charac-
teristics of CCDs enabled them to dominate visible and near-infrared (NIR) focal
planes. Numerous fundamental disadvantages of the CCD approach and the radical
improvement of CMOS integration technologies in support of successive micropro-
cessor and memory generations eventually enabled active pixel designs to become
competitive.

The basic design of an active pixel sensor is illustrated in Fig. 5.13. Each pixel is
addressed individually by a parallel row bus and a serial column bus. Each pixel
consists of a photodiode and a multiple transistor buffer, amplification, and readout
circuit. The photodiode acts as a current source, generating charge at a rate
proportional to the incident photon flux. This charge determines the gate voltage
on a source follower transistor, which is coupled to a row select transitor to enable
nondestructive readout. A reset transistor periodically clears the accumulated
photocharge.

Fixed pattern noise results from variations in the responsivity of individual
elements in an array. Variation may be due to differences in the pixel offset potential,
the intrinsic photodiode response, or pixel dark current. Offset variation is particu-
larly troublesome in active pixel sensors. This problem is substantially reduced by
correlated double sampling, which augments the photodiode with a gate to enable
the output voltage to be sampled twice: once immediately after reset and again
after photocharge accumulation. A signal value consisting of the difference
between the final and reset potentials removes sensitivity to the reset value.

Active pixel sensors operate with much lower power than a CCD array. A typical
CCD camera may draw several watts of power where the corresponding active pixel
array draws just a few milliwatts. Of course, if postdetection image processing is
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implemented in the camera, the relative advantage of the APS approach may be
degraded, but in general the power advantage leads to a substantial advantage for
CMOS in mobile devices.

Since a portion of the pixel area is dedicated to amplification and readout circuits,
the fill factor for active pixel devices is substantially worse than for CCDs. The CCD
fill factor for frame transfer devices is essentially 100%, active pixel fill factors typi-
cally range within 30–50%. The effective fill factor is often increased using micro-
lens arrays, but as discussed in Section 7.4, the utility of this approach is somewhat
dubious. In any case, the fill factor of interline transfer CCDs is just comparable to
CMOS devices.

In addition to the power advantage, the potential to implement generalized
sampling strategies at the pixel level is the primary long-term advantage of active

Figure 5.13 Active pixel sensor layout.
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pixel sensors. Examples of generalized sampling include advanced dynamic range
management, such as circuitry to nonlinearly adjust the pixel response during
charge generation or to implement time-dependent sampling based on the current
read voltage, as well as space–time readout strategies for compressive or multiscale
analysis.

Active pixel sensors have been demonstrated with foveated or other non-Cartesian
readout geometries, with shift-variant and adaptive spatial impulse responses and
with nonsequential readout strategies [181]. Over time, one expects that on-chip
sampling and processing with active pixel sensors, in combination with optical multi-
plexing and prefiltering and the generalized sampling theories discussed in Section
7.5, will revolutionize camera design.

5.8 INFRARED FOCAL PLANE ARRAYS

The CCD and CMOS focal planes of Sections 5.6 and 5.7 are utilized in spectral
ranges accessible to silicon photodiodes, including the visible and the NIR
(300 nm , l , 1100 nm). Silicon is a particularly attractive materials system for
focal plane integration because silicon technology for electrical signal transfer and
processing is well developed. In view of the general attractiveness of silicon inte-
grated circuits, all-silicon focal planes have been developed for X-ray, UV, and
NIR imaging by processing silicon layers to accentuate the responsivity in the tar-
geted spectral range. More commonly, however, imaging arrays for applications
outside the visible and NIR ranges rely on different materials systems. Common
materials for shortwave infrared (SWIR, 1m , l , 2:5m), midwave infrared
(MWIR, 3m , l , 7m), longwave infrared (LWIR, 8m , l , 30m) are indicated
in Fig. 5.7.

In principle, one could create readout electronics in these materials systems. For
example, some success has been achieved with SWIR InGaAs and MWIR
HgCdTe CCD arrays. Much greater success has been achieved by heterogeneous inte-
gration of detector materials on silicon circuits or by bonding nonsilicon diode arrays
to silicon backplanes. The most common approach uses indium bump bonds to trans-
fer signals directly from discrete detector junctions into CMOS readout circuits, as
illustrated in Fig. 5.14(a). Alternatively, one may use the “loophole” technique illus-
trated in Fig. 5.14(b). In the loophole system detector material is adhesively bonded
to the silicon readout and thinned. Vias etched through the detector layer are metal-
lized to contact pads on the readout circuit.

While the diverse array of materials systems and nanostructures used in photon
counting infrared sensors each have their idiosyncrasies, at the level of detail of
this chapter we may consider them functionally similar to photon counting visible
devices. We refer the reader to the specialized literature for surveys of IR
materials [57,211]. The common use of thermal detectors in infrared systems has
no parallel in visible focal planes, however, so we offer a brief account of thermal
arrays here.
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A thermal detector measures radiation based on an optically induced change in
temperature. The temperature is measured via

† Photoconductive effects in bolometers, in which a thermally induced change in
electrical resistance changes the current in a circuit

† Photovoltaic effects in thermocouples, in which a change in temperature pro-
duces a change in junction voltage

† Pyroelectric effects, in which a change in temperature produces a change in
electrical polarization

Bolometers are the most commonly used thermal detectors in imaging arrays.
Thermal arrays are attractive in some infrared imaging applications because they

use simpler materials systems (silicon or vanadium oxide) than do photon counting
devices, which makes manufacturing less expensive and more reliable, because
they respond uniformly over broad spectral ranges and do not require active
cooling. The last point illustrates a critical difference between the infrared and
visible spectral ranges; objects at typical environmental temperatures are active
sources of infrared radiation, whereas most environmental visible light arises from
scattered sunlight or active fluorescence. To avoid detector saturation with infrared
photon counting devices, one must use a “cold shield” to isolate the detector array
from ambient light. Thermal arrays, ironically, have sufficiently poor detectivity to

Figure 5.14 Hybrid chip bonding strategies to join a silicon readout circuit with an infrared
focal plane array: (a) illustration of the indium bump technique and (b) scheme for the loophole
technique. (From A. Rogalski [210], # 2003 Elsevier Limited. Reprinted with permission.)
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measure the temperature difference between image objects and the ambient scene
without background saturation.

A typical microbolometer structure is illustrated in Fig. 5.15 [253]. The device con-
sists of a silicon nitride microstructure created by sacrificial layer selective etching.
A vanadium oxide layer serves as a temperature dependent resistor. The bridge struc-
ture isolates the bolometer from the underlying silicon readout circuit. The entire
package is hermetically sealed in vacuum to thermally isolate the bolometer.

Our analysis of microbolometer photodetection follows Kruse [141]. The thermal
balance of the bolometer is described by

C
dDT

dt
þ G(DT) ¼ hP (5:44)

where C is the heat capacity of the bolometer, DT is the difference between bolometer
temperature and the temperature of the surrounding environment, h is the quantum
efficiency for optical absorption, and P is the incident radiant power. The thermal
relaxation constant G describes the cooling of the bolometer due to radiation and
the thermal conductance of the bridge support. The thermal conductance of the
support is the dominant cooling channel.

The Fourier transform of Eqn. (5.44) yields

DT̂(n) ¼ h

Gþ 2pinC
P̂ (5:45)

Figure 5.15 Microbolometer pixel structure. (From A. Rogalski [211], # 2003 Elsevier
Limited. Reprinted with permission.)
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Defining the thermal response time t ¼ C=G, the transfer function mapping
temporal variations in the irradiance into thermal fluctuations is ĥ(n) ¼ exp if(n)ð Þ
h=G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2n2t2
p

. The thermal impulse response of the bolometer is

h(t) ¼
h

G
e�t=t t . 0

0 t , 0

(
(5:46)

The transfer function and impulse response are plotted in Fig. 5.16. The impulse
response in this case is the temperature change in the bolometer due to a temporal
spike in the illuminating radiation.

The goals of microbolometer design are to make the thermal response as large as
possible and the response time as short as possible. One maximizes the response by
making h big and G small. One maximizes h by coating the bolometer surface with a
strongly absorbing film. One minimizes G by creating good thermal isolation in the
microstructure. A problem arises, of course, in that as one reduces G one also
increases the response time t. One would like to minimize t to enable high-frame-
rate imaging. In contrast with the circuit dominated response times of photon count-
ing detectors, the thermal relaxation time is the dominant factor in determining the
response time of bolometers. One minimizes t in a microbolometer structure by
making C as small as possible. The value of C is determined by the mass of the resis-
tive material. The area of the resistive layer is determined by the pixel size, which is
matched to the wavelength and the optical system. To minimize C, therefore, one
reduces thickness of the resistive layer to obtain the desired response time. Layer
thicknesses of less than 1 mm are common.

A bolometer translates the temperature change into a change in electrical resistance
R. One generally operates in a linear regime such that

DR ¼ aR DT (5:47)

where a is the thermal coefficient of resistance (TCR). a may be positive or negative;
typical values are 0.002/K in metals, 20.02/K in semiconductors, and 2/K in

Figure 5.16 (a) Absolute value of the temporal transfer function ĥ(n) of a microbolometer
and (b) the impulse response h(t). The vertical axis is in units of h/G.
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superconducting films. Assuming that the bolometer is probed by a bias current ib to
produce signal voltage Vs ¼ ibDR, the responsivity R(n) ¼ V̂ s=P̂ is

R ¼ ibaRh

G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2n2t2
p (5:48)

The maximum value of ib is determined by the need to avoid resistive heating of the
bolometer. Defining the bias voltage Vb ¼ ibR, we see that the bolometer operating at
frequencies n , 1=t amplifies the bias voltage by a factor ah=G. Since relatively
little can be done to change a or h, minimization of G is at the heart of microbol-
ometer design. A value of G ¼ 2� 10�7 W=K with a semiconducting resistive
layer yields R ¼ 105 Vb V=W.

In contrast with the responsivity of photon counting detectors described by Eqns.
(5.26) and (5.27), we note that the responsivity of a thermal detector is not pro-
portional to wavelength. As discussed in Sections 5.4 and 5.5, responsivity and detec-
tivity define the operating limits of photodetectors. The detectivity of a thermal
detector is typically several orders of magnitude worse than for a photon detector.
An example is seen in the difference between MCT and thermopile detectors in
Fig. 5.7. Note that as with the responsivity, the detectivity of the thermal detector
is constant as a function of wavelength.

Uncooled microbolometer array performance is most often evaluated in terms of
the noise equivalent temperature difference (NETD) and minimum resolvable temp-
erature difference (MRTD) rather than in terms of the noise equivalent power or
detectivity. Since microbolometers operate in environments with substantial back-
ground illumination the goal is not to measure the total infrared flux as much as to
image sources radiating powers above the thermal background. Noise arises from
both (1) the thermal cycle of heat exchange between the bolometer and the environ-
ment and (2) fluctuations in the background radiance. The NETD is the temperature
difference relative to background at which a large blackbody imaged on an array pro-
duces a signal equal to the noise variance. The NETD is the temperature difference
corresponding to SNR ¼ 1.

The definition of NETD incorporates imaging system properties, specifically the
light collection efficiency of the optical system influences the power at the focal
plane and thus the response to a change in object temperature. To understand this
relationship, one must consider the relationship between the power density radiated
by the blackbody and the power density incident on the focal plane. The blackbody
is usually modeled as a Lambertian source, meaning that it radiates most strongly in
the direction normal to the object surface and that the power per unit area per unit
solid angle (the radiance) falls with the squared cosine of the angle between
radiant direction and the surface normal [61]. A patch on the surface of a
Lambertian blackbody of area x2

o produces power density Pox2
o=pz2

o at range zo

from the surface. Po is the irradiance on the surface of the blackbody. A lens of aper-
ture A collects power A2Pox2

o=4z2
o from the patch on the blackbody. The object patch

is mapped to a patch of area M2x2
o on the focal plane. The image power density Pi on
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the focal plane is thus

Pi ¼
A2

4M2z2
o

Po

¼ Po

4( f =#)2 (5:49)

The signal generated by a microbolometer for blackbody temperature change DT is

V ¼ t0D2R

4( f =#)2

DPo

DT
(5:50)

where to is the transmittance of the optics, D2 is the detector area, and DPo=DT is the
change in blackbody irradiance with respect to temperature. Values of DPo=DT for
sources near human body temperature range from 10�5 W=(cm2 �K) in the 3–5 mm
wavelength range to 10�4 W=cm2 � K in the 8–14 mm wavelength range. The
NETD of an imaging system is thus

NETD ¼ 4( f =#)2VN

toD2R(DP=DT)
(5:51)

where VN is the standard deviation of the detector measurement. The impact of the
imaging system on NETD is entirely encapsulated in the f/#, absent other issues
(such as aliasing and aberrations); the system designer seeks to make the f/# as
small as possible.

The minimum resolvable temperature difference is the temperature change appar-
ent to a human observer as a function of spatial frequency. It is typically evaluated by
display of bar chart images. The MRTD is related to the NETD by

MRTD(u) ¼ K(u)
NETD

MTF(u)
(5:52)

where K(u) is the spatial frequency transfer function for the human observer and
MTF(u) is the modulation transfer function for the optical system.

PROBLEMS

5.1 Photoconductive Devices. Consider a 1-mm-thick silicon photoconductor at
T ¼ 300K. The material is p-type with background doping of Nd ¼ 1015 cm�3,
an electron mobility of mn ¼ 1300 cm2/(V . s), and a hole mobility of mp ¼
400 cm2/(V . s). The bulk electron and hole minority carrier lifetimes are
t ¼ 1.0 ms. A bias of V ¼ 5 V is applied to the detector. When illuminated
with wavelength l ¼ 600 nm, the doped silicon has an absorption coefficient of
a ¼ 0:5mm�1 and a surface reflectivity of R ¼ 0.30.
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(a) Compute the photoconductive gain assuming that the carrier lifetime is
dominated by the bulk lifetime. Comment on whether this value seems
reasonable. Then compute the photoconductive gain assuming that the
contact lifetime of Eqn. (5.19) dominates and use this value for the rest
of the problem.

(b) By what factor would the gain be increased by cooling the detector to T ¼
77 K? Under the assumptions leading to Eqn. (5.19), show that the photo-
conductive gain is proportional to the ratio of the kinetic energy gained by a
carrier crossing the detector and the thermal energy of a free carrier.

(c) Compute the responsivity of the detector.

5.2 Photoconductive and Photovoltaic Devices. Compare the responsivity of photo-
conductive detectors and photodiodes as described by Eqns. (5.26) and (5.27).
Explain why focal plane arrays use photodiode gates rather than photoconduc-
tive detectors.

5.3 D�. The spectral dependence of the quantum efficiency for a certain detector is
described by

h ¼ h0

2
1� tanh

l� 1:5
0:1

� �� �
(5:53)

for l in micrometers and h0 ¼ 0:9. Assuming that RA ¼ 50 MV . cm2, plot
the Johnson noise–limited detectivity for this detector over the range
l ¼ 0:5–2 mm at temperatures T ¼ 77 and T ¼ 270K. Include units for your
plots. Compare your results with Fig. 5.7.

5.4 Focal Plane Arrays. Datasheets for CCD and active pixel sensors manufac-
tured by diverse suppliers are available online. A scatterplot considers each
device as a data point and plots correlations between performance parameters.

(a) Make a scatterplot of pixel size versus saturation signal for full-frame CCDs
found at supplier websites. Identify the model numbers on your plot.

(b) Make a scatterplot of pixel size versus dynamic range.

(c) Counting each product datasheet as one data point, plot histograms of
quantum efficiency at 550 nm for full-frame, interline, and CMOS focal
plane arrays.

(d) Plot the quantum efficiency versus wavelength for a selection of front- and
back-illuminated CCDs. How is h optimized for near-infrared focal planes?

(e) CMOS focal planes are characterized by diverse fill factor, dynamic range
management, and pixel complexity factors. Briefly describe and classify the
range of available CMOS devices. How are CMOS sensors from various
leading suppliers differentiated?

5.5 Photon Flux. Estimate the saturation irradiance in W/m2 for a CCD sensor
under illumination by green light. Assume 5 mm pixel pitch, a well capacity
of 100,000 electrons, and a quantum efficiency of 40% read at 30 fps.
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5.6 Microbolometers. Consider a microbolometer array with 50 mm square pixels
operating at 30 frames per second with G ¼ 10�7 W/K and a resistive material
specific heat of 1 J/(cm3 . K).

(a) As illustrated in Fig. 5.16(a), the frequency response of a microbolometer
has a peak at n ¼ 0. Find t such that the thermal transfer function at the
frame rate is 70% of the direct current (DC) response.

(b) How thin must the resistive layer of the bolometer be to obtain the target
value of t?

(c) Suppose that this array images a 1 cm2 area blackbody radiating 100 W at a
range of 20 m using f/1 optics with a focal length of 20 cm. Assuming a
responsivity 105 V/W, estimate the voltage change induced. Assuming a
semiconducting resistive layer, estimate the temperature change induced.

(d) Assuming that the variance of the voltage signal is 0.1% of the detected
value in (c), estimate NETD for this array assuming operation in the 3–5
range and (separately) in the 8–14 mm spectral range.
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6
COHERENCE IMAGING

. . . subjects that often appear to be well understood and perhaps even a little
old-fashioned have frequently some surprises in store for us.

—E. Wolf [249]

6.1 COHERENCE AND SPECTRAL FIELDS

The mutual coherence of the optical field is

G(r1, r2, t1, t2) ¼ E�(r1, t1)E(r2, t2)h i (6:1)

where E(r, t) is the electric field at spatial position r and time t. For simplicity, we
ignore the polarization of the field, which could be accounted for by a tensor-
valued mutual coherence. The angular brackets k l signify the expected value of
the terms contained over an ensemble of identical physical systems. The mutual
coherence and related functions described in this section are of interest because

1. Mutual coherence, like the irradiance but unlike the electric field, is observa-
ble. The mutual coherence can be completely described by measuring the irra-
diance at a suitable range of sampling points.

2. Mutual coherence, like the electric field but unlike the irradiance, can be
calculated over a volume given its value on a boundary. The mutual coherence
at the input to an optical system uniquely determines the mutual coherence at
the output. In Chapter 4 we derived input/output transformations for the elec-
tric field in imaging systems. In this chapter, we show that impulse responses
derived for the electric field can be immediately applied to describe the propa-
gation of coherence functions.

Coherence functions completely determine optical fields observed via irradiance
detectors, meaning that if one knows the coherence function on a boundary, one can
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predict the irradiance that would be measured at any point and, conversely, knowing the
irradiance that would be measured at all points is equivalent to knowing the mutual coher-
ence. There are situations in ultrafast and nonlinear optics where the coherence functions
described here are insufficient to fully characterize the field, but coherence functions are
the most fundamental tool for analysis of irradiance-based imaging and spectroscopy
(which is to say, essentially all optical imaging and spectroscopy).

The enormous disparity between the oscillation frequency of the optical field and
the temporal sampling rate of optoelectronic detectors is as important to the nature of
optical detection as the restriction to irradiance measurements. The optical frequency
is a few hundred terahertz. While the fastest optoelectronic point detectors sample at
terahertz rates, detectors used in imaging and spectroscopy operate in the kilohertz–
megahertz range. Even at terahertz rates detectors average over hundreds of optical
cycles, a detector in a focal plane array averages billions of cycles of the field.
Under these conditions, each optical measurement may safely be regarded as a
good statistical sample of the state of the field.

The statistical nature of optical measurement is enshrined in two assumptions.
First, we assume that G(r1, r2, t1, t2) is stationary with respect to time. A random
process is stationary if its statistics are independent of the origin of the
temporal axis. Formally, the mutual coherence is stationary with respect to time if
G(r1, r2, t1, t2) ¼ G(r1, r2, t), where t ¼ t1 2 t2. The optical field is not generally
stationary on long timescales. For example, the statistics of sunlight are different
between day and night. However, the difference in timescales between the optical
period and sample times on the one hand and such macroscopic events on the
other is enormous. So long as sampling is much faster than rate of
macroscopic variation in the irradiance, it is safe to assume that the mutual coherence
is stationary with respect to the time axis. Note that we do not assume that mutual
coherence is stationary with respect to r.

Second, we assume that the field is ergodic. A random process is ergodic if the
time average of the signal is equal to the statistical mean. In the case of the mutual
coherence the ergodic assumption is

E�(r1, t1)E(r2, t2)h i ¼ lim
T!1

1
T

ðT=2

�(T=2)

E�(r1, t1)E(r2, t2)dt (6:2)

Noting that practical optical measurements average over a very large number of cycles,
each measurement may be regarded under the ergodic assumption as an ensemble
average.

Assuming ergodicity and stationarity, relationships between the mutual coherence
and the irradiance are easily derived. We saw in Eqn. (5.12) that photodetectors
measure

I(r) ¼ lim
T!1

1
T

ðT=2

�(T=2)

E(r, t)j j2dt

¼ G(r, r, t ¼ 0) (6:3)
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where we assume uniform spectral response and we set constants equal to 1.
Conversely, if the fields E1 ¼ E(r1, t1) and E2 ¼ E(r2, t2) are superimposed by an
optical system, the irradiance is

I(r)¼ jE1 þ eifE2j2
D E

¼ G11 þ G22 þ eifG12 þ e�ifG21 (6:4)

where G12 ¼ kE1
�E2l and f is an optically induced phase difference between the

fields. By varying f over several irradiance measurements, one may generate a non-
degerate dataset for algebraic estimation of G12.

Recalling Eqn. (5.12) again, we note that photocurrents are most correctly
modeled as projections of the power spectrum of the field. The power spectral
density S(r, n) is the distribution of irradiance per unit spectral range such that the
total irradiance is

I(r) ¼
ð

S(r, n) dn (6:5)

Nominally, we might define the power spectral density in terms of the ensemble
average power spectrum of the electric field as

S(r, n) ¼ bE(r, n)
���

���2
� �

(6:6)

but this definition must be treated with care because, as this is a stationary random
process, we cannot assume that jE(r, t)j tends to zero as t!1. This means that
the field is not square integrable and does not therefore have a well-defined Fourier
transform. It is nevertheless possible for us to consider expectation values for the
mutual coherence and spectral density. For example, we relate the ensemble average
kbE�(r1, n)bE(r2, n0)l to the mutual coherence as

bE�(r1, n)bE(r2, n0)
D E

¼
ð ð

E�(r1, t1)E�(r2, t2)h ie�2pint1 e2pin0t2 dt1 dt2

¼
ð ð

G(r1, r2, t1 � t2)e�2pint1 e2pin0t2 dt1 dt2

¼
ð

e2pi(n0�n)tdt

ð
G(r1, r2, t)e�2pintdt dt

¼ d(n0 � n)
ð
G(r1, r2, t)e�2pintdt (6:7)

Defining

W(r1, r2, n) ¼ lim
Dn!0

ðnþDn

n�Dn

bE�(r1, n)bE(r2, n0)
D E

dn0 (6:8)
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we find from Eqn. (6.7) that

W(r1, r2, n) ¼
ð
G(r1, r2, t)e�2pintdt (6:9)

where W(r1, r2, n) is the cross-spectral density. The Fourier transform relationship
between G(r1, r2, t) and W(r1, r2, n) is a version of the Wiener–Khintchine
theorem and may be regarded as an extension of Plancherel’s theorem [(Eqn.
(3.19)] to stationary processes. The power spectral density is related to the cross-spec-
tral density as S(r, n) ¼ W(r, r, n) and the Wiener–Khintchine relationship between
S(r, n) and the mutual coherence is simply

S(r, n) ¼
ð
G(r, r, t)e�2pint dt (6:10)

The inverse Fourier relationship

G(r, r, t) ¼
ð

S(r, n)e2pint dn (6:11)

immediately yields Eqn. (6.5) for t ¼ 0.
Finally, we complete our definitions of coherence functions by noting that G eval-

uated at t ¼ 0 is sufficiently useful to deserve a name, the mutual intensity J(r1, r2)
such that

J(r1, r2) ¼ G(r1, r2, t ¼ 0): (6:12)

Table 6.1 summarizes the optical coherence functions.

6.2 COHERENCE PROPAGATION

In Chapter 4 we derived various impulse responses for propagation of the electromag-
netic field from one boundary to the next through free space and optical systems. The
primary utility of the E-field impulse response is that it can be trivially extended to
model the impulse response for coherence propagation. The transformation of an

TABLE 6.1 Coherence Functions

G(r1, r2, t1, t2) ¼ E�(r1, t1)E(r2, t2)h i Mutual coherence

W(r1, r2, n) ¼ lim
Dn!0

ðnþDn
n�Dn

bE�(r1, n)bE(r2, n 0)
D E

dn 0 Cross-spectral density

S(r, n) ¼ W(r, r, n) Spectral density
J(r1, r2) ¼ G(r1, r2, t ¼ 0) Mutual intensity
I(r) ¼ J(r, r) Irradiance
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electric field at temporal frequency n on the input (x, y) plane to the electric field on
the output (x0, y0) plane in Chapter 4 takes the form

g(x0, y0, n) ¼
ð ð

f (x, y, n)hc(x, x0, y, y0, n) dx dy (6:13)

We refer to hc(x, x0, y, y0, n) as the coherent impulse response of the optical system.
This section uses the coherent impulse response to derive an impulse response for

propagation of coherence functions from an input interface to an output interface.
We refer to the simple diffractive system sketched in Fig. 6.1. Just as we found it
most convenient to work in temporal Fourier space in Chapter 4, we find it more con-
venient to propagate the spectral density than the mutual coherence. Our basic problem
differs somewhat from the diffraction problem of Fig. 4.2 in that the cross-spectral
density is defined over 4D correlation spaces at the input and output rather than just
over the input and output planes. As illustrated by the point pairs in Fig. 6.1, the
cross-spectral density is a defined between each pair of points on the input plane and
each pair of points on the output plane. Given the input cross-spectral density W(x1,
y1, x2, y2, n), we must determine the output cross-spectral density W(x 01, y 01, x 02, y 02, n0).

To determine the impulse response appropriate for transformation of the cross-
spectral density from the coherent impulse response, we note from Eqn. (6.13) that

ĝ�(x01, y01, n)ĝ(x02, y02, n0) ¼
ð ð ð ð

f̂ �(x1, y1, n)f̂ (x2, y2, n0)

� h�c(x1, x01, y1, y01, n)

� hc(x2, x02, y2, y02, n0) dx1 dy1 dx2 dy2 (6:14)

Noting that

W(x1, y1, x2, y2, n) ¼ lim
Dn!0

ðnþDn

n�Dn

f̂ �(x1, y1, n)f̂ (x2, y2, n0)
� �

dn0 (6:15)

Figure 6.1 Input and output boundaries for propagation of coherence.
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and

W(x01, y01, x02, y02, n) ¼ lim
Dn!0

ðnþDn

n�Dn

ĝ�(x1, y1, n)ĝ(x2, y2, n0)h i dn0 (6:16)

we operate on the left and right sides of Eqn. (6.14) with lim
Dn!0

Ð
nþDn
n2Dn k.l to obtain

W(x01, y01, x02, y02, n) ¼
ð ð ð ð

W(x1, y1, x2, y2, n)

� h�c(x1, x01, y1, y01, n)

� hc(x2, x02, y2, y02, n) dx1 dy1 dx2 dy2 (6:17)

The impulse response for the 4D transformation of the cross-spectral density from the
input plane to the output plane is thus

hW (x1, y1, x2, y2, x01, y01, x02, y02, n) ¼ h�c (x1, x01, y1, y01, n)hc(x2, x02, y2, y02, n) (6:18)

Equation (6.18) provides a very general basis for propagation of coherence func-
tions in optical analysis. Once one knows the coherent impulse response, one can
easily apply this principle to find the cross-spectral density response. The remainder
of this section applies Eqn. (6.17) in analysis of three examples:

1. The propagation W from a 2D spatially incoherent primary source to an obser-
vation plane

2. The propagation of W from a remote source through an intermediate
modulation plane (e.g., an aperture stops or an optical distortion) to an obser-
vation plane

3. The propagation of W from an object illuminated by partially coherent light to
an observation plane

Turning to example 1, we note that most nonlaser optical radiators, such as the Sun
and the stars, fluorescent and incandescent lightbulbs, and photochemical reactions,
are well-modeled as sources of spatially incoherent light. Formally, the optical field
on a plane is said to be spatially incoherent if

W(x1, y1, x2, y2, n) ¼ l2S(x1, y1, n)d(x1 � x2)d( y1 � y2) (6:19)

where l is a finite measure of the spatial coherence cross section. Spatial incoherence
means that the light from any two distinct points on the plane is uncorrelated. While
as a practical matter any physically realized field has a finite coherence cross section,
we nevertheless find the incoherent model of Eqn. (6.19) quite useful as a first
approximation to natural sources. Substituting the incoherent cross-spectral density
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in Eqn. (6.17) yields

W(x01, y01, x02, y02, n) ¼ l2
ð ð

S(x, y, n)h�c (x, x01, y, y01, n)hc(x, x02, y, y02, n) dx dy

(6:20)

In the case of free-space diffraction, hc is given by Eqn. (4.38) under the Fresnel
approximation and

W(x01,y01,x02,y02,n)¼ l2

l2z2

ðð
S(x,y,n)e�i(pn=cz)[(x�x01)2þ(y�y01)2]ei(pn=cz)[(x�x02)2þ(y�y02)2] dxdy

W(Dx,Dy,q,n)¼ l2

l2z2
e�i(2pnq=cz)

ðð
S(x,y,z,n)ei(2pn=cz)(xDxþyDy) dxdy (6:21)

where q ¼ �xDxþ �yDy, �x ¼ (x01 þ x02)=2, and Dx ¼ x01 � x02. We find, therefore, that
the cross-spectral density radiated by an incoherent source is proportional to the
Fourier transform of the spatial distribution of the source and that it is quasistationary
with respect to space (only the phase factor q depends on absolute spatial position).

Most importantly, note that the cross-spectral density of the radiated field no
longer describes a spatially incoherent field. For sources of finite extent, the field
“gains coherence” on propagation. If the spatial support of the source is A, one
expects by Fourier uncertainty that the spatial support (the coherence cross
section) of the coherence function will be approximately Dxmax � lz=A ¼ l=Du,
where Du ¼ z=A is the angular extent of the source viewed from the output plane.
As an example, if we assume that the Sun is a circular disk described by the spectral
density S(r, n) ¼ S(n)circ(r=A), then the cross-spectral density of sunlight on Earth is

W(Dx, Dy, n) ¼ kS(n)jinc
nDu

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
c

 !
(6:22)

where we drop the q phase term because the maximum phase change that it produces
is proportional to the ratio of the range of our measurement space to diameter of the
Sun. The angular extent of the Sun viewed from Earth is 8.6 milliradians (mrad),
meaning that the diameter of the cross-spectral density is approximately 284 wave-
lengths. The coherence cross section defined as the maximum value of Dx or Dy
such that jW(Dx, Dy, n)j is nonvanishing is an important measure of the coherence
of the field. The related concepts of coherence length and coherence time are dis-
cussed in Section 6.3.1.

The spectral density S(n) ¼ W(Dx ¼ 0, Dy ¼ 0, q ¼ 0, n) is uniform at all points
in the Fresnel diffraction plane for an incoherent source. If the source is homogeneous
such that the input spectral density separates into f(x, y)S(n) (as in our solar model),
then the diffracted spectrum is equal to the source spectrum. In general, the diffracted
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spectral density is equal to the mean of the spectral density over the input plane. Note
that both the coherence and the spectrum of the field evolve on propagation.

It is strange, of course, that the intensity and spectral density of the source should
be uniform in the Fresnel domain. We are used to the idea that the intensity of the
source blurs slowly as it diffracts. The key to this mystery is our assumption that
the source is incoherent, which essentially means that the input field has very high
spatial frequencies that diffract rapidly. In the near field of actual sources a more
advanced coherence model is necessary, but the incoherent model is satisfactory
for most imaging applications.

As an important final comment on example 1, consider the power spectral density
in the output plane under the propagation transformation Eqn. (6.20)

S(x0, y0, n) ¼ W(x0, y0, x0, y0, n)

¼ l2
ð ð

S(x, y, n)hic(x, y, x0, y0, n) dx dy (6:23)

where

hic(x, y, x0, y0, n) ¼ hc(x, x0, y, y0, n)j j2 (6:24)

Equation (6.23) expresses the general rule that the impulse response describing the
transformation of the incoherent power spectral density by an optical system is
equal to the squared magnitude of the coherent impulse response. We find this
rule extremely useful in considering imaging of incoherent sources in Section 6.4.

Examples 2 and 3 consider imaging systems that sense objects using scattered light or
sense primary sources through intervening apertures, systems, and media. Full 3D analy-
sis of these systems is quite challenging; as a first approximation we consider the planar
modulation system sketched in Fig. 6.2. Light from a remote primary source illuminates
a 2D transmission mask in the input (x, y) plane. If Win(x1, y1, x2, y2, n) is the
cross-spectral density of the light illuminating the mask, the cross-spectral density

Figure 6.2 Coherence propagation through a 2D transmittance mask.
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immediately after the mask is

Wout(x1, y1, x2, y2, n) ¼ t�(x1, y1, n)t(x2, y2, n)Win(x1, y1, x2, y2, n) (6:25)

where we allow for the possibility of spectral dependence in the mask transmittance. The
mask transmittance is in general complex, reflecting phase and amplitude modulation.

In example 2 one images a primary source through an intervening modulation. The
impulse response of the optical system in Fig. 6.2 to the right of the mask is a Fourier
kernel. The optical system may consist, for example, of a Fourier transform lens with
coherent impulse response given by Eqn. (4.68). The coherence transformation from
the input to the mask to the output plane is

W(x01, y01, x02, y02, n)¼
ð ð ð ð

W(x1 � x2, y1 � y2, n)t�(x1, y1)t(x2, y2)

� exp 2pi
x1x01 þ y1y01

lF

� 	
exp �2pi

x2x02 þ y2y02
lF

� 	
dx1 dy1 dx2 dy2

(6:26)

where we assume the spatially stationary cross-spectral density of an incoherent
source neglecting the q term under the assumption that q/lz� 1. We consider
imaging systems in which the q term is not negligible in Section 6.4.2.

Substituting the cross-spectral density from Eqn. (6.21) yields

W(x01, y01, x02, y02, n) ¼ k

ð ð
S(x, y, n)

� t̂�
x

lz
� x 01
lF

,
y

lz
� y1

lF

� 	

� t̂
x 02
lF
� x

lz
,

y 02
lF
� y

lz

� 	
dx dy (6:27)

where, as always, t̂ is the Fourier transform of t. Since t is acting as the effective pupil
stop for an imaging system, Eqn. (6.27) is hardly surprising. Recognizing that this is an
imaging system, one immediately recognizes that the coherent impulse response is the
Fourier transform of the pupil, which one can insert in Eqn. (6.20) to get Eqn. (6.27).

It is, however, worth emphasizing a couple of details with respect to Eqn. (6.27).
First, note that even though the input source is incoherent, its image is partially
coherent. The Fourier transform of Eqn. (6.27) with respect to all spatial variables yields

Ŵ(u1, v1, u2, v2, n) ¼ kŜ
(u1 þ u2)z

F
,

(v1 þ v2)z
F

, n

� 	

� t�(�lFu1, �lFv1)t(lFu2, lFv2) (6:28)
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Since t must have finite support, W is bandlimited in all four spatial variables. By the
Fourier localization relationship of Eqn. (3.25) one expects that if the support of t is
A, such that the support of Ŵ is A/lF, then the coherence cross section of the image
will be approximately lF/A. This postulate is trivially confirmed if the input object
is a point source. A more interesting case considers the spectrally homogeneous spatially
uniform source corresponding to S(x, y, n) ¼ S(n), in which case

W(Dx, Dy, n) ¼ kS(n)
ð ð

t̂�
x

lf
,

y

lF

� 	
t̂

x� Dx

lF
,

y� Dy

lF

� 	
dx dy (6:29)

If t is a circular aperture of diameter A, t̂ is the jinc function of Eqn. (4.75). Since jinc(r)
is invariant under autoconvolution, the cross-spectral density of the diffraction limited
image of a uniform incoherent source is

W(Dx, Dy, n) ¼ kS(n)jinc
A

lF

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p� 	
(6:30)

Our second comment with respect to Eqn. (6.27) is that the cross-spectral density,
even when imaging an incoherent source, may contain information that is otherwise
difficult to extract from irradiance or spectral density measurements. The mapping
between the input and output power spectra represented by Eqn. (6.23) discards
phase and cross-correlation data from the transfer function t(x, y) that may be used
to image through distortions or turbulence. Investigators commonly use a diversity
of pupil modulations or use “wavefront sensors” to overcome this problem.

Example 3 images the mask in Fig. 6.2 onto the output plane. We again assume
that the mask is illuminated by a random field that is stationary in both space and
time, such that the output cross-spectral density is

W(x01, y01, x02, y02, n) ¼
ð ð ð ð

W(Dx, Dy, n)t�(x1, y1)t(x2, y2)

� h�(x01 � x1, y01 � y1, n)

� h(x02 � x2, y02 � y2, n) dx1 dy1 dx2 dy2 (6:31)

where h is an imaging kernel as described by Eqn. (4.73). The goal in this case is to
image the scattering object, t(x, y). One may usually assume that the illuminating
cross-spectral density and the imaging kernel are known a priori.

To illustrate the significance of Eqn. (6.31), consider an object consisting of two
points, For example, t(x, y) ¼ d(x� a, y)þ eifd(xþ a, y), such that

W(x01, y01, x02, y02, n) ¼ W(0, 0, n)[h�(x01 � a, y01, n)h(x02 � a, y02, n)

þ h�(x01 þ a, y01, n)h(x02 þ a, y02, n)]

þ eifW(2a, 0, n)h�(x01 � a, y01, n)h(x02 þ a, y02, n)

þ e�ifW(�2a, 0, n)h�(x01 þ a, y01, n)h(x02 � a, y02, n) (6:32)
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If the two object points are within a spatial coherence cross section on the target, then
there is interference between their impulse responses in the image. The relative phase
of the scattering objects f may potentially be abstracted from this interference or may
appear as an image artifact if no attempt is made to measure it. As we saw with sun-
light, even large incoherent sources may illuminate a scene with sufficient coherence
that such interference effects play a role.

It is particularly interesting to consider the interference of two point scatterers that
cannot be resolved by the imaging system. In this case h(a, y, n) � h(�a, y, n) and
the power spectral density at x01, y01 ¼ 0 is

S(0, 0, n) ¼ 2W(0, 0, n)þ 2jW(2a, 0, n)jcos(fþ fa) (6:33)

Figure 6.3 (a) Spectrum S(l) generated in the image of two unresolved point sources illumi-
nated by a wave with cross-spectral density jinc(Dr Du/l), where a is in units of l/Du
(we assume one octave of uniform spectral density); (b) plots the spectrum for a ¼ 1.5l/Du.
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where fa ¼ arg[W(2a, 0, n)]. Note that the relative position of the two point sources
affects the spectrum of the image field even though the points are unresolved. The
scattered spectrum observed on the optical axis as a function of a and wavelength
for a jinc distributed cross-spectral density is illustrated in Fig. 6.3. We assume
that the spectrum of the illuminating source is uniform across the observed range.
The scattered spectrum is constant if the two points are in the same position or if
the two points are widely separated. The scattered power is doubled if the two
points are at the same point as a result of constructive interference. If the two
points are separated in the transverse plane by 1–2 wavelengths, the spectrum is
weakly modulated, as illustrated Fig. 6.3(b). The spectral modulation is much
greater if the sources are displaced longitudinally or if the scattered light is observed
from an off-axis perspective. This example is considered in Problem 6.3; more
general discussion of spectral modulation by secondary scattering is presented in
Sections 6.5 and 10.3.1.

While the three examples that we have discussed have various implications for
imaging and spectroscopy, our primary goal has been to introduce the reader to analy-
sis of cross-spectral density transformations and diffraction. Equation (6.20) is quite
general and may be applied to many optical systems. Now that we know how to pro-
pagate the cross-spectral density from input to output, we turn to the more challen-
ging topic of how to measure it.

6.3 MEASURING COHERENCE

We saw in Section 6.2 that given the cross-spectral density (or equivalently
the mutual coherence) on a boundary, the cross-spectral density can be calculated
over all space. But how do we characterize the coherence function on a boundary?
We have often noted that optical detectors measure only the irradiance I(x, y, t)
over points x, y, and t in space and time. Coherence functions must be inferred
from such irradiance measurements. The goal of optical sensor design is to lay out
physical structures such that desired projections of coherence fields are revealed in
irradiance data.

Sensor performance metrics are complex and task-specific, but it is useful to
start with the assumption that one wishes simply to measure natural cross-spectral
densities or mutual coherence functions with high fidelity. We explore this
approach in simple Michelson and Young interferometers before moving on to
discuss coherence measurements of increasing sophistication based on parallel and
indirect methods.

6.3.1 Measuring Temporal Coherence

The temporal coherence of the field at a point r may be characterized using a
Michelson interferometer, as sketched in Fig. 6.4. Input light from pinhole is colli-
mated and split into two paths. Both paths are retroreflected on to a detector using
mirrors. One of the mirrors is on a translation stage such that its longitudinal position
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may be varied by an amount d. If the input field is E(t), the irradiance striking the
detector is

I(d) ¼ 1
4

E(t)þ E t þ 2d
c

� 	����
����
2

* +

¼ G(0)
2
þ 1

4
G

2d
c

� 	
þ 1

4
G � 2d

c

� 	
(6:34)

where we have abbreviated the single-point mutual coherence G(r, r, t) with G(t).
G(t) is isolated from G(0) and G(�t) in Eqn. (6.34) by Fourier filtering. The
Fourier transform of I(d) is

Î(u) ¼ G(0)
2

d(u)þ c

8
S n ¼ uc

2


 �
þ c

8
S n ¼ � uc

2


 �
(6:35)

S(n) is the positive frequency component of Î(u), and G(t) is the inverse Fourier trans-
form of S(n).

The Fourier transform pairing between the power spectrum and the mutual coher-
ence corresponds to a relationship between spectral bandwidth and coherence time
through the Fourier uncertainty relationship. The bandwidth sn measures the
support of S(n), and the coherence time tc / 1=snu measures the support of G(t).
Various precise definitions for each may be given; the variance of Eqn. (3.22) may
be the best measure. For present purposes it most useful to consider the relationship
in the context of common spectral lines, as listed in Table 6.2.

Figure 6.4 Measurement of the mutual coherence using a Michelson interferometer. Light
from an input pinhole or fiber is collimated into a plane wave by lens CL and split by a beam-
splitter. Mirror M2 may be spatially shifted by an amount d along the optical axis, producing a
relative temporal delay 2d/c for light propagating along the two arms. Light reflected from M1
interferes with light from M2 on the detector.
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The Gaussian and Lorentzian spectra are plotted in Fig. 6.5. A common character-
istic is that the spectrum is peaked at a center frequency n0 and has a characteristic
width sn. The mutual coherence function oscillates rapidly as a function of t with
period n0. The mutual coherence peaks at t ¼ 0 and has characteristic width 1=sn.

Mechanical accuracy and stability must be precise to measure coherence using a
Michelson interferometer. The output irradiance I(d) oscillates with period l0=2,
where l0 ¼ c=n0. Nyquist sampling of I(d) therefore requires a sampling period of
less than l0=4, which corresponds to 100–200 nm at optical wavelengths. Fine
sampling rates on this scale are achievable using piezoelectric actuators to translate

TABLE 6.2 Spectral Density and Mutual Coherence

Lineshape S(n) G(t)
Monochromatic d(n� n0) e2pin0t

Gaussian (1=sn)e�p [(n�n0)2=s 2
n ] e2pin0te�ps

2
n t

2

Lorentzian sn=[(n� n0)2 þ s 2
n ] 2pe2pin0te�2psn jtj

Figure 6.5 Spectral densities and mutual coherence of Gaussian and Lorentzian spectra. The
mutual coherence is modulated by the phasor e2pin0t; the magnitude of the mutual coherence is
plotted here.
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the mirror M2. Ideally, the range over which one samples should span the coherence
time tc. This corresponds to a sampling range D ¼ c=2tc.

The Michelson interferometer is used in this way is a Fourier transform
spectrometer (there are many other interferometer geometries that also produce FT
spectra). The Michelson is the first encounter in this text with a true spectrometer.
While we begin to mention spectral degrees of freedom more frequently, we delay
most of our discussion of Fourier instruments until Chapter 9. For the present purposes
it is useful to note that the FT instrument is particularly useful when one wants to
measure a spectrum using only one detector. FT instruments are favored for spectral
ranges where detectors are noisy and expensive, such as the infrared (IR) range covering
2–20mm. Instruments in this range are sufficiently popular that the acronym FTIR
covers a major branch of spectroscopy.

6.3.2 Spatial Interferometry

One must create interference between light from multiple points to characterize
spatial coherence. The most direct way to measure W(x1, y1, x2, y2, n) samples the
interference of every pair of points as illustrated in Fig. 6.6. Pinholes at points P1

and P2 transmit the fields E(P1, n) and E(P2, n). Letting h(r, P, n) represent the
impulse response for propagation from point P on the pinhole plane to point r to
the detector plane, the irradiance at the detector array is

I(r) ¼
ð
jE(P1, n)h(r, P1, n)þ E(P2, n)h(r, P2, n)j2
D E

dn

¼ I(P1)þ I(P2)þ
ð

W(P1, P2, n)h�(r, P1, n)h(r, P2, n) dn

þ
ð

W(P2, P1, n)h�(r, P2, n)h(r, P1, n) dn (6:36)

Figure 6.6 Interference between fields from points P1 and P2.
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Approximating h with the Fresnel kernel models the irradiance at point (x, y) on
the measurement plane as

I(x, y) ¼ I(P1)þ I(P2)

þ
ð

W(x1, y1, x2, y2, n)

� exp 2pin
xDxþ yDy

cd

� 	
exp �2pin

q

cd
dn


 �

þ
ð

W(x2, y2, x1, y1, n)

� exp �2pin
xDxþ yDy

cd

� 	
exp 2pin

q

cd
dn


 �
(6:37)

where d is the distance from the pinhole plane to the measurement plane and as before
Dx ¼ x1 � x2 and q ¼ �xDxþ �yDy.

With Fresnel diffraction, the interference pattern produced by a pair of pinholes
varies along the axis joining the pinholes and is constant along the perpendicular
bisector, as illustrated in Fig. 6.6. We isolate the 1D interference pattern mathe-
matically by rotating variables in the x, y plane such that ~x ¼ (xDxþ yDy)=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
and ~y ¼ (xDx� yDy)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
. In the rotated coordinate system

the interference term in the two-pinhole diffraction pattern becomes

ð
W(x1, y1, x2, y2, n)exp 2pin

~x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
cd

 !
exp 2pin

q

cd
dn


 �
, (6:38)

which is independent of ~y.
The interference term is the inverse Fourier transform of the cross-spectral density

with respect to n, which means by the Wiener–Khintchine theorem that the inter-
ference is proportional to the mutual coherence. Specifically

I(~x) ¼ I(P1)þ I(P2)

þ G x1, y1, x2, y2, t ¼ q� ~x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
cd

 !

þ G x2, y2, x1, y1, t ¼ ~x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2 � q

p
cd

 !
(6:39)

Like the Michelson interferometer, the two-pinhole interferometer measures the
mutual coherence. In this case, however, samples are distributed at a single moment
in time along a spatial sampling grid.
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Sampling for the pinhole system is somewhat complicated by the uneven scaling
of the sampling rate. Ideally, one would sample t over the range (0, tc) at resolution
1=2nmax, where Dn is the bandwidth of the field and nmax is the maximum temporal
frequency. This corresponds to a spatial sampling range X ¼ ctcd=D x at sampling
rate cd=2nmax. If the pixel pitch for sampling the interference pattern is 10l, which
may be typical of current visible focal planes, one would need to ensure that
d=Dx . 20. In this case tc ¼ 100 fs would correspond to X ¼ 0:6 mm.

As with the Michelson interferometer, one isolates the cross-spectral density from
I(~x) by Fourier analysis. The Fourier transform of Eqn. (6.39) with respect to ~x yields
the following term in the range u . 0:

Î(u . 0) ¼ W x1, y1, x2, y2, n ¼ cduffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
 !

exp �2pi
quffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dx2 þ Dy2
p

 !
(6:40)

Thus we are able to isolate the complex coherence function by Fourier filtering. In the
current example we use an entire plane to characterize W(x1, y1, x2, y2, n) as a
function of n with (x1, y1, x2, y2) held constant.

As an example, suppose that a primary source consisting of a point radiator with a
spectral radiance S(n) illuminates the pinholes. Assuming that the point source is
located at (x0, y0, z ¼ 0), Eqn. (6.21) immediately yields the cross-spectral density
at planes z = 0

W(Dx, Dy, q, n) ¼ l4

l2z2
S(n)

� exp �i2pn
(x0Dxþ y0Dy)

cz

� 	
exp �i2pn

q

cz

� 	
(6:41)

and, for the two-pinhole system of Fig. 6.6

I(x, y) ¼ 2I0 þ G[t (x, y)]þ G[�t(x, y)] (6:42)

where G(t) is the mutual coherence and the inverse Fourier transform of S(n) and

t (x, y) ¼ (x0 � x)Dxþ ( y0 � y)Dyþ 2q

cd

¼ x0Dxþ y0Dy� 2~x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
þ 2q

cd
(6:43)

A plot of I(~x) for q ¼ 0 and for Dx=d ¼ 0:1 is shown in Fig. 6.7 for a Gaussian
spectrum of width 10 nm with a central wavelength of 600 nm. The interference
pattern produced has a period of l0d=Dx, which is 6 mm in this case. Thus, one
would hope to spatially sample at 3 mm resolution over the 1.5 mm range to
capture this interference pattern.
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Each configuration of the pinholes enables us to characterize W(Dx, Dy, �x, �y, n) as
a function of n for a particular value of (Dx, Dy, �x, �y). One can imagine moving the
pinholes around the plane to fully sample the cross-spectral density, but the
two-pinhole approach is not a very efficient sampling mechanism and faces severe
challenges with respect to sampling rate and range for large or small values of Dx.
The two-pinhole approach is nevertheless the basic strategy underlying the
Michelson stellar interferometer [58]. The sampling efficiency can be improved by
using lens combinations to reduce the spatial pattern due to one pair of pinholes to
a line, thus enabling “two slit” characterization of distinct values of Dx and �x in
parallel. Dual-slit sampling enables full utilization of a 2D measurement plane for
independent measurements, but the mechanical complexity and limited throughput
of this approach pose challenges.

6.3.3 Rotational Shear Interferometry

The cross-spectral density on a plane is a five-dimensional function of four spatial
dimensions and temporal frequency. A rotational shear interferometer (RSI)
characterizes this space from nondegenerate measurements on a 2D plane. The
basic structure of an RSI is sketched in Fig. 6.8. Figure 6.9 is a photograph of an RSI.

The structure is the same as for a Michelson interferometer, but the flat mirrors
have been replaced by wavefront folding mirrors. A wavefront folding mirror is a
right angle assembly of two reflecting surfaces. A light beam entering such an inter-
ferometer is inverted across the fold axis, as described below. In the RSI of Fig. 6.6
the fold mirrors consist of right-angle prisms. The “fold axis” is the right-angle edge

Figure 6.7 Irradiance pattern I(x) produced by a 10 nm spectral bandwidth source centered
on 600 nm observed through a two-pinhole interferometer with Dx=d ¼ 0:1. Plot (a) details
the center region of plot (b).
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Figure 6.8 System layout of a rotational shear interferometer.

Figure 6.9 Photograph of a rotational shear interferometer. The fold mirrors consist of right-
angle prisms, one of the prisms is mounted in a computer controlled rotation stage to adjust the
longitudinal displacement and shear angle.

6.3 MEASURING COHERENCE 205



of the prism. As illustrated in Fig. 6.8, the fold axes of the mirrors are displaced from
the vertical (x) axis by angle u on one arm and by �u on the other arm.

The effect of angular displacement of the fold axes is to produce a field distri-
bution from each arm rotated in the x, y plane with respect to the field from the
other arm. Let E(x, y) be the electromagnetic field that would be produced on the
detection plane of an RSI after reflection from a flat mirror. If this same field is
reflected by a fold mirror with fold axis is parallel to y, the resulting reflected field
is E(�x, y). If the fold axis is parallel to x, the resulting field is E(x,�y). If the
fold axis lies at an arbitrary angle u with respect to the x axis in the xy plane, the
resulting field is E[x cos(2u)þ y sin(2u), x sin(2u)� y cos(2u)]. With the fold axes
of the mirrors on the two reflecting arms of the RSI counter rotated by u and �u,
the electromagnetic field on the detection plane is

E[x cos(2u)þ y sin(2u), x sin(2u)� y cos(2u)]

þ E[x cos(2u)� y sin(2u), �x sin(2u)� y cos(2u)] exp(if) (6:44)

where, as with a Michelson interferometer, f ¼ 4pnd=c is the phase difference
between the two arms produced by a relative longitudinal displacement d between
mirrors on the two arms.

The spectral density on the detection plane is found by taking appropriate expec-
tation values of the square of Eqn. (6.44), which yields

Srsi(x, y, n) ¼ S[x cos(2u)þ y sin(2u), x sin(2u)� y cos(2u), n]

þ S[x cos(2u)� y sin(2u), �x sin(2u)� y cos(2u), n]

þ e4pi(nd=c)W[Dx ¼ 2y sin(2u), Dy ¼ 2x sin(2u),

�x ¼ 2x cos(2u), �y ¼ �2y cos(2u), n]

þ e�4pi(nd=c)W[Dx ¼ �2y sin(2u), Dy ¼ �2x sin(2u),

�x ¼ 2x cos(2u), �y ¼ �2y cos(2u), n] (6:45)

where S(x, y, n) and W(D x, Dy, �x, �y, n) are the spectral densities that would appear on
the detection plane if the fold mirrors were replaced by flat mirrors.

As an example, suppose that an RSI is illuminated by a remote point source with
spectral density S(n). The cross-spectral density incident on the RSI measurement
plane for this case is given by Eqn. (6.41). Substituting in Eqn. (6.45) and ignoring
constant factors, the spectral density observed on the RSI measurement plane is

Srsi(x, y, n) ¼ S(n) 1þ cos 4p
n

c
[uxy sin(2u)þ uyx sin(2u)þ d)]

n o
 �
(6:46)

where ux ¼ x=z and uy ¼ y=z are the angular positions of the point source
as observed at the RSI. Figure 6.10 shows interference patterns detected by an
RSI observing a remote point illuminated at two wavelengths. In this
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case S(n) ¼ I1d(n� n1)þ I2d(n� n2), and the irradiance on the detector is

I(x, y) ¼ I1 þ I2 þ I1 cos
4pn1 sin(2u)

c
(uxyþ uyx)

� 

þ I2 cos
4pn2 sin (2u)

c
(uxyþ uyx)

� 
(6:47)

Consistent with Eqn. (6.47), the images in Fig. 6.10 show beating between two har-
monics, as confirmed in Fig. 6.11, which shows the 2D FFT of the irradiance patterns
with DC frequencies suppressed. The FFT produces images of the illuminating point
source at [u ¼ 2uy sin(2u)=l, v ¼ 2ux sin(2u)=l]. The point image further from the
origin thus corresponds to the image of the source at the bluer illuminating
wavelength.

The figures show interference patterns for two different angular displacements of
the point source from the optical axis. As expected, the fringe frequency increases as
the angle increases. The dark vertical lines at the left edge of Fig. 6.10(a) are shadows
of the fold edge of the wavefront folding mirrors. The total angular displacement the
fold mirrors is 48, meaning u ¼ 28.

Note from Eqn. (6.46) that the fringe frequency is proportional to sin(2u), so u

may be set to match the fringe pattern to the sampling rate on the detector plane.
The fringe frequency is also proportional to n and the angular position. If u is
fixed, nux and nuy may be determined from Fourier analysis of Eqn. (6.46). n and
ux, uy may be disambiguated by varying d or the orientation of the RSI relative to
the scene.

Figure 6.10 RSI raw data image for the two-color point source of Eqn. (6.47):

(a)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u 2

x þ u 2
y

q
¼ 1:348; (b)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u 2

x þ u 2
y

q
¼ 38 (u ¼ 28 in both cases).
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Since Eqn. (6.47) is the impulse response for incoherent imaging, the RSI irradi-
ance created by an arbitrary 3D incoherent primary source is

I(x, y) ¼
ð

S(x, y, z, n) dx dy dz dnþ
ð

S(ux, uy, n)

� cos
4pn sin(2u)

c
uxyþ uyx
� �

þ 4pnd

c

� 
dux duy dn (6:48)

where, as in Eqn. (2.31), we obtain

S(ux, uy, n)
ð

S(x ¼ zux, y ¼ zuy, z, n) dz (6:49)

The second term in Eqn. (6.48), the 3D cosine transform of S(ux, uy, n), is invertible
given the real and nonnegative nature of the power spectral density. Thus, the RSI can

Figure 6.11 FFT of Figs. 6.10(a) and (b). The plot scale is the same in both cases; (a) the
higher-frequency fringes of (b) correspond to a source at greater angular displacement.
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function as an infinite depth of the field imaging system [170]. Unfortunately,
however, noise from the DC background tends to dominate image reconstruction
from Eqn. (6.48). For shot noise–dominated imagers, for example, the pixel SNR
in reconstructing S(ux, uy, n) using linear estimators is

SNRij ¼
Pijffiffiffiffiffiffi
2P
p (6:50)

where Pij is the expected photon count from pixel ij and P is the total number of
photons detected by the RSI [14]. If, for example, the image consists of N pixels
of approximately equal intensity, the SNR is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pij=2 N

p
. This compares with an

SNR of
ffiffiffiffiffi
Pij

p
for a conventional focal image, although the comparison is not quite

fair given the RSI’s infinite depth of field. We discuss image depth of field in
detail in Section 10.2.

Measurement of the full 5D cross-spectral density using an RSI is most easily
described on the Dx ¼ (x1 � x2), �x ¼ (x1 þ x2)=2 basis. We see from Eqn. (6.45)
that each point in the RSI plane measures W(Dx, Dy, n) for a unique value of
Dx, Dy, and that the mean positions �x, �y vary linearly across the RSI plane. The
process of cross-spectral density measurement is illustrated in experimental data in
Fig. 6.12. The first step is to gather a data cube of RSI measurements for displace-
ments d covering the spectral coherence length. Each pixel of this data cube is
Fourier-transformed along the d axis to transform from the mutual coherence to
the cross-spectral density. Slices of the transformed data cube in the transverse
plane correspond to a plane of Dx, Dy data tilted with respect to the �x, �y axes.
Slices of W at specific frequencies and may be transformed to image an incoherent
source as shown in the figure. One samples a full range of mean positions using rela-
tive lateral translation of the RSI and object.

The RSI presents an efficient and powerful direct method for measuring the cross-
spectral density. As we have seen, however, the method provides poor SNR and
requires a sophisticated positioning and scanning system. It is clear from Section 6.2
that a sensor to measure the true cross-spectral density is a boon to optical imaging,
but direct two-beam interferometry is not the only means of measuring W. We turn
to subtler methods in the next section.

6.3.4 Focal Interferometry

The vast majority of optical measurements use lens systems rather than pointwise
interferometry. A focal system is also an interferometer; the magical transformation
from diffuse light to well-focused image arises from wave interference. Focal inter-
ference, however, is based on global transformations of coherence functions rather
than two-beam correlations.

Transformation of coherence functions in focal systems is the most basic tool
of optical system analysis. One may use coherence functions to analyze the
action of focal imaging systems on optical fields, which approach we adopt in
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Section 6.4, or one may use focal systems to analyze coherence functions, which
approach we take in the present section.

We specifically consider the transformation between the cross-spectral density on
the input aperture of a lens and the spectral density in the focal volume, as illustrated
in Fig. 6.13. Modeling diffraction by the Fresnel approximation [Eqn. (4.38)], and the
lens transmittance by thin parabolic phase modulation [Eqn. (4.62)], the spectral

Figure 6.12 Measurement of W(Dx, Dy, n) with an RSI. Plotted at upper left is the irradiance
measured by a single pixel as a function of the longitudinal delay d. The absolute value of the
FFT of this trace is shown below to the right with the DC terms suppressed. A single complex
value corresponding to the cross-spectral density at a particular wavelength is selected from this
trace. The particular frequency selected is marked with a vertical line in the FFT trace. The
image at lower left shows the magnitude of the cross-spectral density at this frequency at
each pixel on the RSI. The image at lower right is the inverse discrete cosine transform of
this map, which for an incoherent source produces an image. The object is a “LiteBrite” toy
with red pegs stuck in paper in front of an incandescent lightbulb. The letters CCI denote
the shortlived Center for Computational Imaging.
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density in the focal volume is

S(x, y, z, n) ¼ n2

c2z2

ð ð ð ð
W(x1, y1, x2, y2, n)P�(x1, y1)P(x2, y2)

� exp ipn
x2

1 þ y2
1

cF

� 	
exp �ipn

x2
2 þ y2

2

cF

� 	

� exp �ipn
(x� x1)2 þ ( y� y1)2

cz

� 	

� exp ipn
(x� x2)2 þ ( y� y2)2

cz

� 	
dx1 dx2 dy1 dy2 (6:51)

In the by now standard Dx, �x parameterization, this transformation reduces to

S(x, y, z, n) ¼ 4n2

c2z2

ð ð ð ð
W(Dx, Dy, �x, �y, n)

� exp 2ipn Dx�xþ Dy�yð Þ 1
cF
� 1

cz

� 	� 

� P� �xþ Dx

2
, �yþ Dy

2

� 	
P �x� Dx

2
, �y� Dy

2

� 	

� exp 2ipn
xDxþ yDy

cz

� 	
dDx dDy d�x d�y (6:52)

Despite the fact that it projects a 5D distribution onto 4D, Eqn. (6.52) forms the
basis for estimation of the cross-spectral density from focal measurements.
Strategies for handling the mismatched dimensionality include

1. Taking advantage of the fact that W reduces to a 3D or 4D function in many
optical systems

Figure 6.13 Geometry for measurement of the cross-spectral density on the input aperture of
a lens by analysis of the power spectral density in the focal volume.
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2. Using temporal variation of the pupil function or parallel nondegenerate optical
systems to increase the dimensionality or sampling range of the focal volume

3. Applying generalized sampling and estimation strategies to infer W from
discrete measurements on S.

These strategies are not exclusive and are often applied in combination. All three
strategies are improved by design and coding of the aperture function to facilitate
particular applications. Given that coding, sampling, and inversion strategies for
Eqn. (6.52) are the focus of much of the remainder of this text, we cannot hope to
fully analyze the possibilities in this section. We do, however, briefly overview
examples of the first two basic strategies.

The first strategy focuses on reconstruction of the cross-spectral density arising
from remote incoherent objects, as described by Eqn. (6.21). For such incoherent
objects the cross-spectral density reduces to a 4D function over (Dx, Dy, q, n) and
reduces Eqn. (6.52) to

S(x, y, z, n) ¼ 4

l2z2

ð ð ð
W(Dx, Dy, q, n)B(Dx, Dy, q)

� exp �2ipn
xDxþ yDyþ (1� z=F)q

cz

� 	
dDx dDy dq (6:53)

where the volume transfer function B(Dx, Dy, q)is defined as

B(Dx, Dy, q) ¼
ð

P�
1
2

q

Dx
� ~qDyþ Dx


 �
,

1
2

q

Dy
þ ~qDxþ Dy

� 	� 

� P
1
2

q

Dx
� ~qDy� Dx


 �
,

1
2

q

Dy
þ ~qDx� Dy

� 	� 
d~q (6:54)

and ~q ¼ ��x=Dyþ �y=Dx.
For the circular aperture described by P(x, y) ¼ circ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
=A


 �
, B(Dx, Dy, q)

is described in closed form as [80,106]

B(Dx, Dy, q) ¼ 2
Dx2 þ Dy2

R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Dx2 þ Dy2)A2 � (Dx2 þ Dy2 þ 2jqj)2

q� 
(6:55)

where R[ ] denotes the real part. B(Dx, Dy, q) is well behaved except for a singularity
at (Dx ¼ 0, Dy ¼ 0). The cross section of B(Dx, Dy, q) through the Dy ¼ 0 plane is
shown in Fig. 6.14.

We refer to the support of B as the band volume because, just as the aperture
determines the 2D bandpass in focal imaging, we see in Section 6.4.2 that B is an
effective transfer function for 3D imaging. The B(Dx, Dy, q) ¼ 0 boundary for a
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circular aperture is illustrated in Fig. 6.15. The figure is in units of A. The limited
extent of the band volume restricts the range over which W(Dx, Dy, q, n) is known
by focal interferometery. The band volume fills a disk of radius A in the Dx, Dy
plane. The bandpass along the q axis vanishes at the origin and at the edge of the
Dx, Dy disk. The maximum q bandpass occurs at Dx2 þ Dy2 ¼ A2=2, which yields
qmax ¼ A2=8.

Equation (6.53) may be inverted to estimate the bandlimited cross-spectral density
on the lens aperture. This process is equivalent to imaging an incoherent object,

Figure 6.14 Cross section of B(Dx, 0, q).

Figure 6.15 Band volume in Dx, Dy, q space for focal interferometry on a circular aperture
lens. The Dx and Dy axes are in units of A aperture diameter. The q axis is in units of square
amperes (A2).
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which is the focus of Section 6.4. Beyond simple inversion we discuss aperture coding
strategies in Chapter 10 to reshape the transfer function B. Such strategies cannot
increase the band volume, but they are effective in improving targeted image
metrics. They may be used, for example, to reduce the need to sample S(x, y, z, n)
over the full focal volume or to improve mathematical conditioning of the sensor
model for specific object classes.

We saw in Section 6.2 that W(Dx, Dy, q, n) is often independent of q. If we limit
our attention to the focal plane in this case, Eqn. (6.53) reduces to

S(x, y, n) ¼ 4

l2F2

ð ð ð
W(Dx, Dy, n)~B(Dx, Dy)

� exp �2ipn
xDxþ yDy

cz

� 	
dDx dDy (6:56)

where

~B(Dx, Dy) ¼
ð

B(Dx, Dy, q) dq (6:57)

Function ~B(Dx, Dy), which is the primary focus of Section 6.4, is a smooth and
well-behaved function. Its form for a diffraction limited circular aperture is given
in Eqn. (6.67).

We next turn to focal interferometry strategy 2, temporal variation of the pupil
function for 5D coherence sensing. 5D sensing is unnecessary for normal incoherent
imaging, but 5D cross-spectral densities do arise for incoherent sources modulated by
intervening scatters and for objects illuminated by partially coherent light.

Marks et al. [172] describe a mechanism for characterizing the 5D cross-spectral
density using an astigmatic coherence sensor (ACS). The ACS uses a cylindrical
lens assembly, schematically similar to the lens system of Fig. 6.16, to achieve fully
5D sampling of the cross-spectral density. The transmittance function of a cylindrical

Figure 6.16 Cylindrical lens assembly for the astigmatic coherence sensor.
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lens oriented with focal power along the x axis is t(x, y) ¼ exp(ipx2/F). If the transverse
axis of the lens is rotated in the (x, y) plane by an angle f, the transmittance becomes

t(x, y) ¼ exp ip
(x cosfþ y sinf)2

lF

� 	
(6:58)

The pair of lenses in Fig. 6.16 are rotated to positions f and 2f such that the product of
their transmittance functions is

t(x, y) ¼ exp i2p
(x2cos2fþ y2 sin2 f)

lF

� 	
(6:59)

Substituting distinct x and y focal lengths in Eqn. (6.51) produces

S(ux, uy, fx, fy, n) ¼ k

ð ð ð ð
W(x1, y1, x2, y2, n)P�(x1, y1)P(x2, y2)

� eipn(x2
1�x2

2)fx eipn( y2
1�y2

2)fy

� e�i2pn[ux(x1�x2)þuy( y1�y2)] dx1 dx2 dy1 dy2 (6:60)

where

fx ¼
2 cos2 f

cF
� 1

cz

� 	
, fy ¼

2 sin2 f

cF
� 1

cz

� 	

u¼ x/cz and uy¼ y/cz; fx is a defocus parameter that may be scaled by shifting the
detector plane, adjusting focal length with a zoom lens mechanism, and/or adjusting
the astigmatism.

The value of W(x1, y1, x2, y2, n) may be recovered from Fourier analysis of S(ux, uy,
fx, fy, n). The value at x1 and x2, for example, is obtained from the spectral density at
spatial frequencies ufx

¼ n(x2
2 � x2

1)=2 ¼ nDx�x ¼ nq and uux ¼ n(x1 � x2) ¼ nDx.
W can be reconstructed for (x1, y1, x2, y2) in the support of the pupil P(x, y), which

for a circular aperture is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
, A. The resolution on the q manifold is

determined by the sampling range for fx, Df ¼ 2=cF � Dz=(czmaxzmin), where
Dz ¼ zmax � zmin is the range of z values over which one measures the power spectral
density. If, for example, zmax ¼ 2F and zmin ¼ F/2, then Df ¼ 5/cF and the Fourier
bandpass-limited resolution for q is approximately lF/5. By a similar argument, the
resolution with which one can estimate Dx is of order lf/#.

The significance of coherence measurement using Eqns. (6.52), (6.53), and (6.60)
will become clearer in subsequent sections as we consider imaging transformations
and modal decomposition of the cross-spectral density. For present purposes, it
may be helpful to briefly consider likely characteristics of W on an aperture and
the nature of the focal transformation. For example, we note from Eqn. (6.21) that
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a remote object consisting of a single-point radiator at (x0, y ¼ 0, z0) produces a cross-
spectral density on the lens system aperture

W(Dx, Dy, �x, �y, n) ¼ k n2

z2
0

e2pi(Dxx0=lz0)e�2pi[(Dx�xþDy�y)=lz0] (6:61)

A point object thus produces a harmonic cross-spectral density. The focal power
spectral density, as the bandlimited Fourier transform of the cross-spectral density,
localizes the image of the point object as tightly as possible given a finite aperture.
As discussed in Section 6.4.2, the coherent impulse response for this localization
is the Fourier transform of the band volume B.

The power spectral density in the focal volume for a point object is distributed as
the magnitude squared of the coherent impulse response. As discussed in Section 6.6,
the cross-spectral density forms a nonnegative kernel in Eqn. (6.60), ensuring that the
power spectral density is everywhere nonnegative.

Analysis of the focal power spectral density as a coherence measurement is most
useful in cases where the cross-spectral density is not well described by Eqns. (6.21)
or (6.61). Examples include

1. Situations in which W is modulated by imaging system aberrations,

2. Situations in which the remote object is not an incoherent radiator, such as the
case discussed in Section 6.2 of a secondary scatterer illuminated by partially
coherent light

3. Situations in which W is transformed by propagation through inhomogeneous
media

In each of these cases, the general form of the cross-spectral density due to a point
generalizes from Eqn. (6.61) to W(x1, x2, n) ¼

P
nWnf

�
n(x1, n)f(x2, n), where fn

(x, n) are the coherent modes of the field. Marks et al. [169] describe a method for
imaging through a distortion by using an ACS to determine the coherent modes of
the field. The 4D spatial sampling of the ACS is necessary to remove degeneracies
in the power spectral density that could be created by different coherent-mode
decompositions.

Cross-spectral density characterization using the ACS may be regarded within the
general framework of applying coded aberrations and defocus to an imaging system
to analyze unknown distortions called phase diversity [98]. Phase diversity is most
commonly parameterized directly in the object density and the image distortion
and analyzed using maximum likelihood methods [197].

6.4 FOURIER ANALYSIS OF COHERENCE IMAGING

Equation (6.18) is immediately useful in describing the impulse response and transfer
function of imaging systems. While the result may be applied to imaging of objects in
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arbitrary coherence states, in most applications it is safe to assume that the source is
spatially incoherent. This is certainly the case for self-luminous objects and diffusely
illuminated objects. The present section accordingly focuses on incoherent objects.

Our immediate goal is to extend the Fourier analysis of Section 4.7 to the case of
incoherent objects. We begin by considering 2D objects imaged from an object plane
to a well-focused image plane satisfying the thin-lens imaging law [Eqn. (2.17)]. We
describe the point spread function and the optical transfer function (OTF), which are
the incoherent source analog of the coherent impulse response and transfer
function. Incoherent imaging leads logically to discussions of multidimensional
spatial and spectral imaging. We begin to consider these topics in this section by
showing that the volume transfer function of Eqn. (6.54) is the 3D transfer
function for incoherent imaging, and we relate volume transfer function to the
OTF and to the defocus transfer function (which describes 2D imaging between
misfocused planes).

6.4.1 Planar Objects

The coherent impulse response between the field on a image plane a distance z1 in
front of a lens of focal length F and the field on an object plane a distance z2

behind a lens under the imaging condition that 1=z1 þ 1=z2 ¼ 1=F is presented in
Eqn. (4.72). Referring to Eqn. (6.23), the incoherent impulse response [often
referred to as the point spread function (PSF)] is simply the squared magnitude of
the coherent impulse response. The effect of squaring on Eqn. (4.72) fortuitously
eliminates shift-variant phase terms, producing the shift-invariant incoherent
impulse response

hic(x, y) ¼ jMj2jhr(x, y)j2 (6:62)

where hr(x, y) is as given by Eqn. (4.73). The PSF is absolutely shift-invariant under
the thin lens approximation, although as always we caution the student that this exact
shift invariance is ultimately lost in nonparaxial optical systems.

We assume for simplicity that the field is quasimonochromatic such that
S(x, y, n) � f (x, y)d(n� n0). In this case, the incoherent imaging transformation
analogous to Eqn. (4.75) is

g(x0, y0) ¼ l2

M2

ð ð
f

x

M
,

y

M


 �
hic(x

0 � x, y0 � y) dx dy (6:63)

where we evaluate hic(x, y) at a specific wavelength l; g(x0, y0) is the image irradiance
produced for the object irradiance f (x, y). We saw in Eqn. (4.73) that hr(x, y) is pro-
portional to the Fourier transform of the pupil transmittance and, in Eqn. (4.76), that
the coherent transfer function is proportional to the P(x ¼ �ldiu, y ¼ �ldiv). Since
the impulse response for the incoherent system is the square of the coherent impulse
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response, we know by the convolution theorem that the transfer function for incoher-
ent imaging is the autocorrelation of the pupil transmittance:

ĥic(u, v) ¼
ð ð

P�(�ldiu
0, �ldiv

0)P[�ldi(u
0 � u), �ldi(v

0 � v)] du0dv0 (6:64)

The maximum modulus of the autocorrelation occurs at u ¼ 0, v ¼ 0. Since one is
usually most interested in relative values, the transfer function is most often con-
sidered in the normalized form

H(u, v) ¼ ĥic(u, v)

ĥic(0, 0)
(6:65)

H(u, v) is the optical transfer function (OTF). The OTF is a commonly used metric
for image system analysis. The modulus of the OTF, the modulation transfer function
(MTF), is an even more common metric.

For the canonical case of an incoherent imaging system with clear circular pupil of
diameter A, we obtain the incoherent impulse response from the coherent PSF
described by Eqn. (4.74). Estimating the spatial coherence length by l, we find
that this imaging system corresponds to the linear transformation

g(x0, y0) ¼ A4

l2M2d4
i

ð ð
f

x

M
,

y

M


 �

� jinc2 A

ldi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x0 � x)2 þ ( y0 � y)2

q� 	� 
dx dy (6:66)

The OTF for this system may be found in closed form by integrating Eqn. (6.64),
which yields

H(m) ¼ 2
p

R arccos
mldi

A

� 	
� mldi

A

� 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� mldi

A

� 	2
s2

4
3
5 (6:67)

where m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

. The OTF vanishes for m . A=ldi. The impulse response and
MTF for a circular aperture are illustrated in Fig. 6.17. Compared with the corre-
sponding plots for a coherent system a presented in Fig. 4.14, the support of the
MTF is twice that of the coherent transfer function but the passband is no longer flat.

The MTF for an annular aperture, which was observed to produce a highpass
coherent transfer function in Chapter 4, is shown in Fig. 6.18 for a lens with the
center 0.9 radius component obscured. The MTF shows secondary peaks at high
frequencies, but the maximum transfer function in the passband for incoherent
systems is always at u ¼ 0, v ¼ 0.
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Figure 6.19 shows the image obtained when the object of Fig. 4.16 is incoherently
illuminated and imaged through a circular aperture. The lowpass image is obtained
using a clear aperture, while the two highpass images correspond to the same annular
apertures as considered in Fig. 4.16. Note that while the low-frequency component
always dominates the incoherent image, it is possible to differentially increase the relative
throughput of high-frequency components.

6.4.2 3D Objects

To this point we have considered transformations between fields distributed on
planes. This section expands our attention to input–output relationships between
object and image volumes. 3D analysis requires a careful distinction between coher-
ence measures of the propagating optical field and coherence measures of the field
generated locally by an object. We consider the mapping from an incoherent 3D

Figure 6.17 MTF and incoherent impulse response for an f/1 optical system imaging an
object at infinity. As in Fig. 4.14, the distance between the first two zeros of the impulse
response is 2.44 wavelenths. As a result of squaring, however, the full-width half-maximum
is narrower and the passband is increased by a factor of 2. The passband is no longer flat,
however.
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object to the power spectral density detected by an imaging system. We assume that
that the spectral density of the primary source is subject to the three-dimensional
version of Eqn. (6.19):

W(x1, y1, z1, x2, y2, z2, n) ¼ S(x1, y1, z1, n)d(x1 � x2)d(y1 � y2)d(z1 � z2) (6:68)

We do not consider such seven-dimensional versions of the cross-spectral density
when considering measures of the optical field because, as we saw in Eqn. (6.17);
knowledge of W on the five-dimensional (x1, x2, y1, y2, n) manifold is sufficient to
calculate W everywhere. This is not the case for a 3D primary source distribution,
however, which is not subject to the Maxwell equations, and which is capable of
independently radiating a signal at each point in 3D.

Figure 6.18 MTF and impulse response for an F/1 optical system imaging an object at infin-
ity with an annular pupil. As in Fig. 4.15, the radius of the blocked center disk constitutes 90%
of the radius of the full aperture. Note that for incoherent imaging, the imaging system no
longer acts as a highpass filter.
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Once emitted the object field and cross-spectral density become subject to the
Maxwell equations and evolve according to

Wfield(x01, y01, x02, y02, n) ¼
ð ð ð ð

Wobject(x1, y1, z1, x2, y2, z2, n)

� hc(x1, x01, y1, y01, z1, n)

� hc(x2, x02, y2, y02, z2, n) dx1 dy1 dx2 dy2 dz1 dz2 (6:69)

Figure 6.19 Effect of pupil filtering on in the imaging system corresponding to Figs. 6.17
and 6.18. Compare with Fig. 4.16.
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In particular, the cross-spectral density on the plane z ¼ 0 due to a 3D incoherent
primary source radiating the power spectral density S(x, y, z, n) is

W(x1, y1, x2, y2, n) ¼
ð ð ð

S(x, y, z, n)hc(x, x1, y, y1, z, n)

� hc(x, x2, y, y2, z, n) dx dy dz (6:70)

In the Fresnel approximation, Eqn. (6.70) yields

W(Dx, Dy, q, n) ¼
ð ð ð

S(x, y, z, n)

l2z2

� exp �i
2pn

cz
(xDxþ yDyþ q)

� 
dx dy dz (6:71)

where again q ¼ �xDxþ �yDy, �x ¼ (x1 þ x2)=2 and Dx ¼ x1 � x2. Equation (6.71)
is identical to Eqn. (6.21) with the addition of an integral over the longitudinal axis.

Equation (6.71) is an expression of the van Cittert–Zernike theorem, which states
that the cross-spectral density radiated in the Fresnel or Fraunhofer regime of a
spatially incoherent primary source is proportional to the spatial Fourier transform
of the source distribution. The van Cittert–Zernike theorem is most frequently
applied to radio wave imaging, particularly in the context of radio astronomy, but
it has found use in optical imaging as well. For example, Marks et al. [173] used a
rotational shear interferometeter to directly characterize W(Dx, Dy, q, n). As dis-
cussed in Section 6.3.3, an RSI most easily measures W(Dx, Dy, q ¼ 0, n). The
Fourier transform of W(Dx, Dy, q ¼ 0, n) with respect to Dx and Dy is

Q(u 0x, u
0
y, n) ¼

ð ð
W(Dx, Dy, q ¼ 0, n)ei(2pn=c)(u 0xDxþu 0yDy) dDx dDy

¼
ð ð ð

S(u 0x, u 0y, uz, n) duz (6:72)

Marks et al. used the ray integrals Q(u 0x, u 0y, n) in the cone beam tomography algor-
ithm described in Section 2.6 to reconstruct 3D objects [170]. Equation (6.72) is of
interest again in Section 10.2 as an existence proof of an infinite depth of field
imaging system.

Returning to focal systems, substituting Eqn. (6.71) into Eqn. (6.53) yields the
transformation between the object power spectral density So(x, y, z, n) to the left of
a lens and the power spectral density Si(x, y, z, n) to the right

Si(x
0, y0, z0, n) ¼ 4

l2z2

ð ð ð ð ð ð
So(x, y, z, n)e�i(2pn=cz)(xDxþyDyþq) B(Dx, Dy, q)

� exp �2ipn
x0Dxþ y0Dyþ (1� z0=F)q

cz0

� 	
dDx dDy dq dx dy dz
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Si(ux0 , uy0 , uz0 , n) ¼
ð ð ð

So(ux, uy, uz, n)

� h(ux þ ux0 , uy þ uy0 , uz þ uz0 , n) dux duy duz (6:73)

where B(Dx, Dy, q) is the volume transfer function of Eqn. (6.55) and ux ¼ x/z and
uy ¼ y/z. Similar definitions apply for the primed variables with the exception that
uz ¼ 1/z but uz0 ¼ (1=z0 � 1=F). z and z0 are both measured as positive distances
from the plane of the lens.

The impulse response for mapping from the object volume to the image volume is

h(ux, uy, uz, n) ¼
ð ð ð

ei2p (uxuþuyvþuzw)B(�lu, �lv, �lw) du dv dw (6:74)

The transformation from the 3D object space of (ux, uy, uz) to the 3D image space
(ux 0 , uy 0 , uz 0 ) is a shift-invariant linear transformation with impulse response
h(ux, uy, uz, n) and transfer function

ĥ3D(u, v, w, l) ¼ B(�lu, �lv, �lw) (6:75)

Since ux and uy are dimensionless, the angular frequencies u and v are also dimen-
sionless (uz is in units of inverse meters, w is in units of meters; l is, of course,
wavelength).

It is possible to measure Si(ux, uy, uz, n) by scanning an imaging spectrometer
through the focal volume of an imaging system. The general problem of estimating
the So(ux, uy, uz, n) from such measurements is an inverse problem typical of
tomographic analysis. Note that such an estimation process would be quite different
from simply scanning through the focal volume and measuring the image field.
Tomographic analysis reconstructs the object density rather than the field distribution
the object produces.

In the present case, the forward mapping from the object spectral density to the
image is a convolution. In principle, one could estimate So(ux, uy, uz, n) by
deconvolution techniques as discussed in Section 8.5 Such techniques are not
likely to be effective, however, because the 3D impulse response of Eqn. (6.74)
does not have finite support along the longitudinal axis. In view of this challenge,
a variety of techniques have been developed to image in three dimensions without
directly inverting Eqn. (6.73), including the projection tomography and structured
illumination (optical coherence tomography) strategies discussed in this chapter as
well as wavefront coding and radiometric strategies discussed in Chapter 10. The
most common conventional strategy is plane-by-plane analysis based on the 2D
defocus transfer function discussed in Section 6.4.3.

Despite the challenges associated with the singularity in B(Dx, Dy, q), it is possible
to estimate the 3D resolution that one might expect to obtain by direct inversion
of Eqn. (6.73). As depicted in Fig. 6.15, for a circular aperture of diameter A the
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domain of the band volume extends over
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
� A and jqj � A2=8.

Assuming that our estimate of So(ux, uy, uz, n) is limited to this passband, the
angular resolution of the imaging system is approximately dux � l=A and the
minimum range resolution for an object at range zo, assuming high-frequency
transverse features, is dzs � 8lz2

o=A2. Objects that are approximately 1 focal
length from the aperture yield a range resolution of dz � 8l( f =#)2, which is
useful for 3D microscopy. As the object range extends beyond one focal length,
however, the range resolution deteriorates as the square of the range. Substantially
better range resolution is obtained using spatial tomography (Section 2.6) or spectral
tomography (Sections 6.5 and 10.3.1).

6.4.3 The Defocus Transfer Function

Plane-to-plane imaging is based on the assumption that the object distribution is con-
fined to a single plane, for example

So(ux, uy, uz, n) ¼ So(ux, uy, n)d(uz � uz0 ) (6:76)

Under this assumption Eqn. (6.73) becomes

Si(ux0 , uy0 , uz0 , n) ¼
ð ð

So(ux, uy, n)h(ux þ ux0 , uy þ uy0 , uz þ uz0 , n) dux duy (6:77)

To simplify our notation in the following discussion, let f (x, y) represent
So(�ux, �uy, n0) and guz (x

0, y 0) represent Si(ux 0 , uy 0 , uz 0 , n0). In this notation, the
imaging transformation is

guz (x
0, y0) ¼

ð ð
f (x, y)huzþuz0

(x0 � x, y0 � y) dx dy (6:78)

where

huz (x, y) ¼
ð ð ð

ei2p uxuþuyvþuzwð ÞB(�lu, �lv, �lw) du dv dw (6:79)

If the imaging condition uz þ uz0 ¼ 0 is satisfied, the plane-to-plane impulse
response is

h0(ux, uy, l) ¼
ð ð

ei2p (uxuþuyv)B(�lu, �lv, �lw) du dv dw (6:80)

The OTF for the planar system is the 2D Fourier transform of the impulse response

ĥ(u, v, l) ¼
ð

B(�ldiu, �ldiv, �lw) dw (6:81)

where, for consistency with Eqn. (6.64), we return to u, v in units of inverse spatial
distance. It turns out, of course, that Eqn. (6.81) is equivalent to Eqn. (6.64).
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More generally, we define the defocus transfer function [77] as the x, y Fourier
transform of huz (x, y):

ĥuz (u, v, l) ¼
ð

ei2puzwB(�ldiu, �ldiv, �lw) dw (6:82)

Substituting for B from Eqn. (6.54) and transforming from the q, ~q plane back to the
�x, �y plane yields

ĥuz (u, v, l) ¼
ð ð

ei2puzdi(�xuþ�yv)P� �x� ldiu

2
, �y� ldiv

2

� 	

� P �xþ ldiu

2
, �yþ ldiv

2

� 	
d�x d�y (6:83)

The ambiguity function of a two-dimensional function P(x, y) is defined as [193]

A(x, y, a, b) ¼
ð ð

ei2p (ax 0þby 0)P� x0 � x

2
, y0 � y

2


 �

� P x0 þ x

2
, y0 þ y

2


 �
dx0dy0 (6:84)

Comparing Eqns. (6.83) and (6.84), we find ĥuz (u, v, l)¼ A(ldiu, ldiv, uzdiu, uzdiv).
One could equivalently derive the defocus transfer function by simply including the
defocus distortion in the pupil function

Puz (x, y) ¼ epi(uz=l)(x2þy2)P(x, y) (6:85)

Substitution of this pupil into Eqn. (6.64) leads immediately to Eqn. (6.83).
Hopkins considers the defocus transfer function as a function of the wavefront cur-

vature error w20 [120]. w20 is the distance between the actual focusing wavefront at
the edge of the aperture and the wavefront that would focus without distortion at
the image plane. The relationship between uz ¼ (1=zo þ 1=zi � 1=F) and w20 is
uz ¼ 2w20/A2. Hopkins’ notation allows for similar consideration of diverse wave-
front aberrations, such as spherical aberration, coma, and astigmatism. The defocus
transfer function is displayed as a function of u and w20 for a circular aperture in
Fig. 6.20. The OTF is cylindrically symmetric in the u, v plane for a circular aperture;
Fig. 6.20 shows the cross section along a single axis.

Hopkins [121] suggests that “tolerable” defocus at a given frequency u satisfies

jĥw20 (u)j
jĥ0(u)j

� 0:8 (6:86)

Figure 6.21 illustrates the maximum defocus as a function of spatial frequency
according to Hopkins’ criterion.
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Figure 6.20 Defocus OTF for a circular pupil of diameter A as a function of the defocus
parameter w20 (u is in units of A/ldi; w20 is in units of l). The focal OTF of Fig. 6.17 is
observed for w20 ¼ 0.

Figure 6.21 Defocus w20 such that Hw20 (u, 0, l) ¼ aH0(u, 0, l) as a function of spatial
frequency (w20 is in units of l; u is in units of A/ldi); a ¼ 0.5 in the topmost curve, 0.8 in
the middle curve, and 0.9 in the bottom curve.
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With zi and F fixed, the change object position for a given defocus is

Dzo ¼
2w20z2

o

A2
(6:87)

For w20 � l, this suggests that the range of the object field is approximately 4lz2
o=A2.

The object range is called the depth of field of the imaging system. The depth of field
and strategies for extending it are the focus of Section 10.2.

6.5 OPTICAL COHERENCE TOMOGRAPHY

Optical coherence tomography (OCT) uses the encoding of spatial information in the
scattered spectra and coherence of secondary sources [122]. Classic approaches to OCT
use spatially coherent illumination with short temporal coherence length. As with pro-
jection tomography, OCT emphasizes subsurface volume imaging. Alternative strat-
egies for optical 3D imaging include confocal scanning and optical projection
tomography, but OCT images much deeper into scattering media because its axial
PSF is sharp enough to overcome the exponential depth dependence of scattered
light intensity [124].

The basic design of an OCT system is sketched in Fig. 6.22. A light source radiat-
ing spectral density S(n) is coupled into a single-mode optical fiber. The light source
is typically a point source such as light emitting diode or a single spatial mode source

Figure 6.22 Single-spatial-mode optical coherence tomography system layout.
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generated from a mode-locked laser. For reasons discussed in Section 6.6.3, the light
source must be spatially coherent to efficiently couple into the fiber.

The source signal is separated by a fiber splitter into reference and probe
signals. The reference signal is removed from the fiber and reflected by a
mirror back toward the source. The mirror is on a translation stage such that a
variable time delay 2d/c may be added to the reflected field, where d is the
spatial translation of the mirror. The probe signal is focused on a object under
test. The signal retroreflected from the object and the retroreflected reference
recombine in the fiber splitter, which directs half of the recombined light to a
photodetector.

As with focal systems, the easiest approach to characterizing the response of a
coherence system is to begin by characterizing the coherent response. In the
OCT system, for example, assume that the source electromagnetic field is E(t)
(we neglect spatial degrees of freedom in single-mode systems). The signal
reflected by the reference mirror is aE(t � 2d=c). The relationship between the
returned probe field and the object under test is more complex; for simplicity
we assume that the field reflected in the neighborhood of the probe focus is
described by a scattering density s (z), where z is the longitudinal position rela-
tive to the probe focal point. The field returned from the object is thenÐ
s (z)E(t � 2z=c) dz.

The coherent response field at the output detector is thus

Eo(t) ¼ aE t � 2d
c

� 	
þ
ð
s (z)E t � 2z

c

� 	
dz (6:88)

The output power spectral density corresponding to the coherent response is

So(n) ¼ S(n) jaj2 þ
ð ð

s�(z1)s (z2)e4pin(z1�z2=c)dz1dz2

�

þ a�e4pin(d=c)
ð
s (z)e�4pin(z=c)dz

þ ae�4pin(d=c)
ð
s�(z)e4pin(z=c)dz


(6:89)

where S(n) is the power spectral density of the illumination source. The second term
in Eqn. (6.89) is the self-modulation of the spectrum scattered from the object; the
third and fourth terms are intereferometric cross-modulation of the spectrum from
the reference and probe arms.

The goal of the OCT system is to reconstruct the scattering density s (z)
from measured data. Direct measurement of So(n) is called Fourier domain OCT.
s (z) is imaged from So(n) by filtering and image postproscessing. A basic image
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appears in the Fourier transform of Sm(n)

Gm(t) ¼ jaj2G(t)þ
ð ð

S(Dz)G t� 2Dz

c

� 	
dDz

þ a�
ð
s (z)G t� 2(d� z)

c

� 	
dz

þ a

ð
s�(z)G� t� 2(d� z)

c

� 	
dz (6:90)

where S(Dz) ¼
Ð
s �(�z)s (�z� Dz) d�z. In most cases, we assume that s (z) is uncorre-

lated and that S(Dz) � d(Dz), in which case both of the first two terms of Eqn. (6.90)
are localized around t ¼ 0. A signal proportional to s (z) appears in Gm(t) in the
vicinity of t ¼ 2(d� z)=c. The position of the signal may be shifted relative to the
t ¼ 0 interferents by setting d appropriately.

Since G(t) is the impulse response for the OCT imaging system, the logitudinal
spatial resolution is approximately ctc=2, where tc is the coherence length. Signal
estimation consists of deconvolution of

Ð
s (z)Gft� [2(d� z)=c]g dz using analytic

methods as described in Sections 8.3 and 8.5. One may, of course, choose to shape
G(t) to assist in this deconvolution.

The first OCT studies relied on measurements of the output intensity as a function
of d; this approach is called time-domain OCT. Measurements in time-domain
systems take the form

I(d) ¼
ð

Sm(n, d) dn

¼ G(0)jaj2 þ
ð
S(Dz)G

2Dz

c

� 	
dDz

þ a�
ð
s (z)G

2(z� d)
c

� 	
dzþ a

ð
s�(z)G�

2(z� d)
c

� 	
dz (6:91)

Measurement of the mutual coherence and the power spectral density is, of course,
equivalent. The decision as to which approach to take is based on physical design
constraints and signal fidelity and SNR outcomes. As discussed in Chapter 9,
measurement of a spectrum by multichannel dispersive spectroscopy generally pro-
duces better SNR than does measurement by Fourier transform spectroscopy. For
this reason, spectral domain OCT is increasingly popular [48,54,148]. Of course,
practical OCT involves numerous application-specific sampling, filtering, and proces-
sing strategies. As an example, Fig. 6.23 is a 3D optical coherence tomography image
of a Drosophila melanogaster (fruit fly) sample commonly used for genetic studies.
With current-generation Fourier domain OCT systems, such 3D datasets are acquired
in ,10 s, thus making such systems suitable for real-time clinical diagnostics (e.g.,
for imaging the cornea or retina in human patients) or for high-throughput phenotyp-
ing of small animals as illustrated here.
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Emerging OCT designs mix spatial and spectral tomography by considering the
3D shape of the illuminating beam and by combining data gathered by spatially scan-
ning the illumination/return sensor head [209]. Many illumination and optical collec-
tion geometries may be considered in this case; the most obvious approach is a focal
system in which light scattered from a spectrally broadband plane illumination wave
is collected by an imaging optic. As always, the first step in analysing such a system is
to consider the coherent system response. Modeling the spectrum of the illumination
signal as E(n) and the 3D scattering density as s (r), the coherent scattered field in the
plane z ¼ 0 under the Fresnel scattering model is

E(x, y, n) ¼
ð ð ð

ei(4pzn=c)s (x0, y0, z0)h(x� x0, y� y0, z0, n) dx0 dy0 dz0 (6:92)

where h(x, y, z, n) is the coherent impulse response for imaging from point (x, y, z)
onto the output focal plane array. Creating interference of this field with the time-
delayed reference signal, as in Eqn. (6.89), produces the spectral density

Sm(x, y, n) ¼ S(n)
h
Ir þ Io þ

ð ð ð
ei [4p (d�z)n=c]s (x0, y0, z)

� h(x� x0, y� y0, z0, n) dx0 dy0 dzþ c:c:
i

(6:93)

where Ir and Io are the remitted reference and object intensities and c.c. denotes
complex conjugation of the modulation term. As before, the cross-terms may be iso-
lated by filtering on the spectral modulation at frequency 2d=c. The returned signal in

Figure 6.23 Drosophila melanogaster imaged by Fourier domain OCT. (Image courtesy of
Bioptigen, Inc.)
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this case is the volume Fresnel transform of the object density, which may be
processed with diffraction-limited transverse and coherence-limited longitudinal
resolution to produce a true 3D image. Alternatively, one may choose to use a lens
or coded aperture to shape the 3D system response for a more convenient 3D
transformation.

6.6 MODAL ANALYSIS

Imagine that one seeks to create an optical sensor to distinguish two objects, “Alice”
and “Bob.” Ideally one might like to make a sensor such that all light scattered from
Alice is collected on one detector while all light from Bob is collected on another
detector. This is, in fact, more or less what happens in a focal system mapping
light from a 2D object to a 2D image. Essentially all of the light radiated by a
given pixel on the object is collected at the corresponding pixel on the image. In
general, however, such isomorphic mappings are not possible. For example, it is
not possible to create an optical sensor such that all light radiated from certain
voxel in a volume source can be physically separated from light radiated by all
other voxels. The present section explains why this is so.

Our first step is to relate the sampling theories of Chapter 3 to discrete represen-
tation of electromagnetic fields on boundaries and to modes and modal transform-
ations. We then develop discrete representations of coherence functions and show
that there is a coherent-mode decomposition corresponding to each particular realiz-
ation of the cross-spectral density. We use the coherent-mode decomposition to
comment on the incompressibility of the modal phase space. The “modal phase
space” is the distribution of mode amplitudes on a given basis. The incompressibility
of the phase space refers to physical constraints on the phase space transformations. In
particular, in lossless linear optical systems the number of coherent modes is con-
served and the greatest mode amplitude cannot be increased. The impossibility of
increasing the largest mode amplitude means, for example, that where the light
from Alice and light from Bob are mixed in overlapping modes, no optical system
can abstract all light from Alice in a single mode while excluding all light from Bob.

6.6.1 Modes and Fields

We have analyzed many instances of field propagation through optical systems,
including free-space diffraction as illustrated in Figs. 4.2 and 6.1 and propagation
through lenses (Fig. 4.13) and transmittance masks (Fig. 4.8). Here we consider
the general process of transformation of the electromagnetic field from an input
plane parameterized by (x, y) to an output plane parameterized by (x 0, y0) by such
systems. We begin by considering the electromagnetic field in the input plane. We
assume that the scalar amplitude of the field is f (x, y, n) [ L2(R3). We may represent
f (x, y, n) discretely either by confining it to a linear subspace (such as the space VB of
bandlimited functions), or we may use a multiscale basis to represent it on L2(R3).
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In either case, we end up with a discrete representation

f (x, y, n) ¼
X

n

fnfn(x, y, n) (6:94)

where n is a vector index over position, order, scale, and/or dimension.
Discrete analysis has a long history in optical systems. In the optical tradition the

basis components fn are termed “modes” and fn is regarded as the amplitude of the
field in the nth mode. A mode is an electromagnetic field distribution that satisfies
boundary conditions and the Maxwell equations. Modal analysis is generally the
basis for understanding waveguides and resonators, where boundary conditions
severely constrain the spatial structure of modes.

As with all optical system analysis, the general goal of modal analysis is to apply
knowledge of the field on an input boundary to calculate the state of the field on an
output boundary. The field distribution of Eqn. (6.94) is transformed by diffraction,
refraction, reflection, and absorption on propagation through the system. The output
field g(x0, y0, n) is

g(x0, y0, n) ¼
X

n

fn ~fn(x0, y0, n) (6:95)

where ~fn(x0, y0, n) is the input component fn(x, y, n) as transformed by the optical
system. For free-space diffraction, ~fn(x, y, n) is the Fresnel transform of fn(x, y, n).

While the input field may be described using any basis, we are most interested in
the basis vectors that propagate through the optical system. A mode,
fn(x, y, n) [ VB, propagating without attenuation in free space must be bandlimited

such that f̂ n(u, v, n) vanishes for all

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
.

n

c
(6:96)

Field components not in VB are rejected on propagation through the optical system,
and the rank of the field distribution is correspondingly reduced.

Typically, one chooses an orthonormal basis fn(x, y, n) such that

ð
f�n(x, y, n)fm(x, y, n) dx dy ¼ dnm (6:97)

For f(x, y, n) [ VB, we recall from Plancherel’s theorem [Eqn. (3.20)] that

ð
~f
�
n(x, y, n)~fm(x, y, n) dx dy dn ¼

ð
~̂f
�
n(u, v, t) ~̂fm(u, v, t) du dv dt

¼
ð
f̂
�
n(u, v, t)f̂m(u, v, t)
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

c2
� u2 � v2

r
d

 !

� exp �2pi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

c2
� u2 � v2

r
d

 !
du dv dt

¼
ð
f�n(x, y, n)fm(x, y, n) dx dy dn

¼ dnm (6:98)

In other words, free-space propagation of bandlimited distributions is a unitary trans-
formation and preserves the orthogonality of a basis. In this case, the rank of the field
is preserved and the coefficients fn are good descriptors of g [ V(~f). Orthogonality
is also preserved for bandlimited fields in coherent imaging systems, although in this
case the bandlimit is due to the aperture stop rather than the dispersion relationship.

In selecting basis functions for practical field analysis, one attempts to balance
the utility of f(x, y, n) in representing f and g against numerical and computational
properties under Fresnel transformation. As discussed in Chapters 3 and 4, quasiband-
limited eigenbases of the Fresnel transform, such as the Hermite–Gaussian and
Laguerre–Gauassian modes, are often used for coherent field analysis. At another
extreme, Section 10.3.1 discusses modal decomposition in terms of prolate spheroidal
functions, which are eigenfunctions of the bandlimited Fourier transform.

Compact bases on discrete lattices, like wavelets or B-spines, are more attractive for
image plane analysis because one naturally represents an image as a discrete array of
modal coefficients such that the array itself resembles the object. The projection of an
image onto special functions like the Hermite–Gaussians or the prolate spheroidal func-
tions looks nothing like the natural image. Unfortunately, choices of discrete lattice
bases that remain attractive on optical propagation are slim. Several studies have
attempted to address this deficiency. For example, Liebling et al. introduce fresnelets,
which are Fresnel-transformed B-spines [154,155]. The fresnelets are naturally attrac-
tive for object expansion, but have no simple propagation features. One may alterna-
tively consider lattices of Gaussian beams, a practice pioneered by Gabor [82]. Gabor
functions do not unfortunately form wavelet bases, but more recent studies of Gabor
analysis and frames, such as those by Shlivinski et al. [223] and Bastiaans [13], illustrate
the power of this approach. While these strategies are useful in digital holography and
device modeling, much simpler methods suffice for the present purposes. Our goals
are simply to show that a basis of propagating modes remains a basis on propagation
through a bandlimited system and to consider discrete transformation representations.

The concept of time reversal is essential in understanding the modal transform-
ations on optical propagation. The assumption that a 3D field distribution is comp-
letely determined by 2D boundary conditions has been central to our discussion of
field propagation. This assumption also applies for fields propagating from the
output plane to the input plane of an optical system. Time reversal holds that
f (x, y, n) must result from propagating g(x0, y0, n) backward through the system.
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Time reversal symmetry holds generally in classical mechanics, electromagnetics,
and quantum mechanics as long as coherent state descriptors apply. Time reversal
symmetry is lost in systems with gain or loss (which one may regard as incompletely
described quantum systems), in systems where boundary conditions are not fully
specified (i.e., when some reflected or scattered field components are not included
in the output field model) and in systems that are not static in time.

In cases where time reversal applies, all plane-to-plane mode transformations are
unitary and modes remain orthogonal on propagation. The unitary nature of a particu-
larly important mode transformation is discussed in Problem 6.13. Where time rever-
sal does not apply, various constraints may still be specified on the resulting mode
structure. These constraints are easier to describe in the context of coherence function
transformations, which we address below (Sections 6.6.2–6.6.4).

6.6.2 Modes and Coherence Functions

We found in Eqn. (6.17) that the coherent impulse response can be used to form
the transformation kernel for the cross-spectral density. Similarly, modes of the
coherent field may be used to construct a discrete representation of the cross-
spectral density. We model the electromagnetic field as a random process on a
discrete spatiospectral basis described by Eqn. (3.2) with fn as a random variable.
Using the definition Eqn. (6.8) the cross-spectral density corresponding to the
field of Eqn. (3.2) is

W(x1, y1, x2, y2, n) ¼
X

n

X
m

Wnm(n)f�n(x1, y1, n)fm(x2, y2, n) (6:99)

where Wnm ¼ h f �n fmi. Note that the matrix defined by the coefficients Wnm is
Hermitian (e.g., Wnm ¼ W�mn).

While the number of modes in Eqn. (6.99) may in general be infinite, it is not dif-
ficult to show that the effective number of propagating modes is finite in any given
optical system. Our present goal is to show that the modal expansion of W may be
diagonalized. As a first step, we seek modes c (x2, y2, n) such that

ð ð
W(x1, y1, x2, y2, n)c(x1, y1, n) dx1 dy1 ¼ Lc(x2, y2, n) (6:100)

Representing these eigenmodes in the initial basis as

c (x, y, n) ¼
X

n

cnfn(x, y, n) (6:101)

reduces Eqn. (6.100) to the matrix form

Wyc ¼ Lc (6:102)

As an Hermitian matrix W has real eigenvalues and may be expressed as

W ¼ ULU�1 (6:103)
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where U is a unitary matrix with rows equal to the mutually orthogonal eigenvectors
of W and L is a diagonal matrix with Lii equal to the eigenvalues of W.

Substituting Eqn. (6.103) in Eqn. (6.99) yields

W(x1, y1, x2, y2, n) ¼
X

n

Ln(n)cC�
n (x1, y1, n)cC

n (x2, y2, n) (6:104)

where the coherent modes cC are linear combinations of the original modes according
to cC ¼ Uf. Equation (6.104) is called a coherent-mode decomposition of the cross-
spectral density. By this decomposition we find that the cross-spectral density can
always be reduced to a superposition of densities associated with a discrete set of perfectly
coherent but mutually orthogonal modes. A more rigorous discussion of the coherent-
mode decomposition without the assumption of a finite basis is presented by Wolf [249].

As discussed in Section 6.6.4, measurements of the power spectral density or irradi-
ance may consist of projections of the cross-spectral density on particular modes. In
particular, the projection on the coherent modes may be measured. Since such measure-
ments must be nonnegative and since there is no significance to coherent modes with null
amplitude, W is a positive definite matrix such that Ln . 0 for all n.

As an example, consider an object consisting of two mutually incoherent Gaussian
sources in a plane. The sources are separated by a distance a and are of waist size 2a.
One of the sources is twice as intense as the other. The cross-spectral density for this
source is

W(x1, y1, x2, y2, n) ¼ S(n)fo
y1

2a


 �
fo

y2

2a


 �
2fo

x1 � 0:5a

2â

� 	
fo

x2 � 0:5a

2â

� 	�

þ fo
x1 þ 0:5a

2â

� 	
fo

x2 þ 0:5a

2â

� 	

¼ S(n)[2jf�ihf�j þ jfþihfþj] (6:105)

where fo(x) is the fundamental Gaussian mode of Eqn. (3.55), jf�i ¼
fo( y=2a)fo[(x� 0:5a)=2a)] and jfþi ¼ fo( y=2a)fo[(xþ 0:5a)=2a]. An orthonor-
mal basis may be assembled from these modes using

jfai ¼
jf�i þ jfþi

23=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e�(p=8)
p

jfbi ¼
jf�i � jfþi

23=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e�(p=8)
p

(6:106)

On this basis, the cross-spectral density matrix W is

W � 3:55 0:52
0:52 0:69

� 	
(6:107)
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We assemble coherent modes from the eigenfunctions of this matrix as described
above; the eigenvalues are approximately 3.6 and 0.6. The coherent modes are

jf1i � �0:98jfai � 0:17jfbi
jf2i ¼ �0:17jfai þ 0:98jfbi

(6:108)

and the cross-spectral density is

W(x1, y1, x2, y2, n) � S(n) 3:6jf1ihf1j þ 0:6jf2ihf2j½ 	 (6:109)

The irradiance, cross-spectral density, and coherent-mode distributions for this field
are illustrated in Fig. 6.24.

The coherent-mode decomposition uniquely yields orthonormal decomposition
modes, but this does not necessarily imply that it is more descriptive of the “true”
source. In the specification of the current example, the overlapping Gaussian distri-
butions might come from distinct lasers. The coherent-mode decomposition takes
both sources into account to produce a decomposition into orthogonal modes. It is
interesting to note that the amplitude of the stronger coherent mode is greater than
the amplitude of either of the individual sources used to compose the joint source.
We find, therefore, that it is possible to integrate power in a single coherent mode
from multiple mutually incoherent sources. This is a subtle point; we will return to
consider its significance after showing in Section 6.6.3 that it is impossible to effi-
ciently combine power from mutually orthogonal modes.

6.6.3 Modal Transformations

We turn next to the effect of propagation through an optical system and transform-
ations of coherent modes. As discussed relative to Eqn. (6.97), an orthogonal basis
remains orthogonal on diffraction, meaning that the coherent-mode spectrum Ln

remains invariant even as the spatial structure of the coherent modes evolves. Such
invariance is particularly relevant in resonator and waveguide analysis, where one
regards the modes as 3D spatial distributions. In sensor systems, however, one is
more likely to seek to transform the modal structure of the field to enable effective
information extraction. It is important to understand that the coherent-mode structure
is a property of a single realization of the field, and that different objects may produce
completely different coherent modes. Complete characterization of a field is equival-
ent to discovery of both the coherent-mode spectrum and the coherent modes. In
many cases one has prior knowledge of the coherent modes; for example, in
imaging an incoherent 2D object one may reasonably assume that the coherent
modes correspond to the bandlimited Shannon basis functions. In cases where the
coherent modes are not known a priori, however, one has no choice but to make
measurements on a nonideal basis. We discuss measurement strategies in Section
6.6.4 after considering limits on modal transformations.
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Figure 6.24 Plot (a) shows the irradiance in the (x, y) plane associated with the cross-spectral
density of Eqn. (6.105), (b) is a cross section of the 5D function W(x1, y1, x2, y2, n) at fixed n in
the plane y1 ¼ 0, y2 ¼ 0, (c) and (d) are the orthonormal coherent-mode distributions, and
(e) plots the cross section of the coherent modes along the x axis.
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In general, one may assume that an optical element exists to transform any indi-
vidual mode into any other. We are most aware of the use of lenses to transform
plane waves into focusing beams, but we can easily imagine the use of holograms
to couple any pair of modes. Volume holograms, as discussed in Section 4.8, can
approach 100% efficiency in such associations.

While mode-to-mode transformations are extremely useful, a more powerful
mapping would map more than one input mode into a single output mode. For
example, one might wonder whether it would be possible to make a device to
focus two distinct input plane waves onto a single output focal spot. The answer to
this question is “yes,” but the efficiency with which light can be combined from
two distinct modes depends on the relative coherence of the modes. Two mutually
coherent plane waves of equal amplitude can be focused on the same spot with
100% efficiency. The maximum efficiency for focusing two mutually incoherent
plane waves on the same spot, in contrast, is 50%.

The most basic geometry for two-mode integration is illustrated in Fig. 6.25,
which shows two incident plane waves combined by a beamsplitter. The input
modes jf1i and jf2i interfere in output modes jfai and jfbi. The mutual intensity
of the input modes is described by three numbers: J11 ¼ I1, J22 ¼ I2, and
J12 ¼ J�21. In the bracket notation of Section 6.6.2, the mutual intensity of the input
field is

J ¼ jf1i jf2ið Þ I1 J12

J21 I2

� 	
hf1j
hf2j

� 	
(6:110)

Figure 6.25 Use of a beamsplitter to combine two plane waves.
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The beamsplitter transforms the input modes into output modes jfai and jfbi
such that

jfai
jfbi

� 	
¼ T

jf1i
jf2i

� 	
(6:111)

where, as discussed in Section 6.6.1 and in Problem 6.13, T is a unitary matrix.
The mutual intensity of the output field is described by the matrix

J ¼ Ty I1 J12

J21 I2

� 	
T (6:112)

In the particularly common case of a beamsplitter that sends half of the incident
power from jf1i onto output mode jfai and half onto output mode jfbi, a suitable
form for T is

T ¼ 1ffiffiffi
2
p 1 1

1 �1

� 	
(6:113)

such that

J ¼ 1
2

I1 þ I2 þ 2Re(J12) I1 � I2 � 2iIm(J12)
I1 � I2 þ 2iIm(J12) I1 þ I2 � 2Re(J12)

� 	
(6:114)

We note several important points:

1. J is Hermitian.

2. Power is conserved: Tr(J) ¼ I1 þ I2.

3. If the input modes are absolutely coherent and in phase, J12 ¼
ffiffiffiffiffiffiffi
I1I2
p

. If
I1 ¼ I2 ¼ I in this case then the output mutual intensity is described by

J ¼ 2I 0
0 0

� 	
(6:115)

The student may wish as an exercise to confirm that the input field is described
by a single coherent mode in this case.

4. If the input modes are relatively incoherent, then J12 ¼ 0. If I1 ¼ I2 ¼ I in this
case, then the output mutual intensity is described by

J ¼ I 0
0 I

� 	
(6:116)
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If I1 = I2, then

J ¼ 1
2

I1 þ I2 I1 � I2

I1 � I2 I1 þ I2

� 	
(6:117)

meaning that output modes are partially coherent. The coherent modes for this
system would correspond to the individual outputs for each input mode.

Transformations of the form J0 ¼ TyJT with T unitary do not change the eigen-
vectors or eigenvalues of J and therefore maintain the coherent-mode structure
unchanged. There are various mechanisms, however, by which an optical system
can change the coherent modes and the modal eigenvalues. These include

† Modal Filtering. Various devices decrease the number of propagating modes
in an optical system. A pinhole is the most common example. We have used
pinholes several times to select a single spherical wave from a broader field
distribution, most recently in our discussion of the two-pinhole interferometer.
Such devices are called spatial filters. As discussed in Chapter 9, spatial filters
are commonly used in spectroscopy to break degeneracies between
spectral and spatial degrees of freedom. Complex spatial filters may be
implemented using diffractive devices or coded apertures. In the example of
Fig. 6.25, spatial filtering may consist simply of discarding the light on one of
the output arms. In that case, we have combined two input modes into one
output mode.

† Absorption. A device that differentially absorbs some of the light in an optical
system breaks time reversal symmetry and restructures the coherent modes.

† Modal Decorrelation. Modes propagate on different paths through the optical
system. If the structure of the optical system is time varying on these paths, the
relative coherence of the modes may be destroyed. The most common example
is propagation through turbulence. In the example of Fig. 6.25, the two output
beams may experience different time-varying phase modulation. Such modu-
lation can render the output beams relatively incoherent, which diagonalizes J.
In the case of the 50/50 beamsplitter with incoherent input beams, this pro-
duces relatively incoherent output beams with equal irradiances of (I1 þ I2)=2.

Other mechanisms for changing the coherent-mode structure include laser gain
and nonlinear wavemixing.

For imaging and spectroscopy we focus on systems where optical components
implement joint transformations on 106–1012 modes simultaneously. We begin
consideration of such systems with the coherent mode decomposition of the cross-
spectral density at the input

W(x1, y1, x2, y2, n) ¼
X

n

ln(n)c�n(x1, y1, n)cn(x2, y2, n) (6:118)
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As discussed in Section 6.6.2, the mode amplitudes ln(n) are real and positive and the
modes are orthonormal. The coherent modes are transformed on propagation through
an optical system such that the cross-spectral density at the output is

W(x01, y01, x02, y02, n) ¼
X

n

ln(n)~c
�
n(x01, y01, n)~cn(x02, y02, n) (6:119)

In view of the impact of optical loss and spatial filtering, the functions ~cn(x, y, n) are
not necessarily orthogonal [251]. The cross-spectral density across the output aperture
is described by the new coherent-mode decomposition

W(x01, y01, x02, y02, n) ¼
X

n

Ln(n)C�n(x01, y01, n)Cn(x02, y02, n) (6:120)

where Cn(x, y, n) form a new set of orthonormal coherent modes and the functions
Ln are new eigenvalues. Using the nodal orthonormality, projection of Eqn.
(6.120) against the coherent modes yields

ð ð ð ð
W(x01, y01, x02, y02, n)C�m(x01, y01, n)�Cm(x02, y02, n) dx01 dy01 dx02 dy02 ¼ Lm(n)

(6:121)

Substitution of the cross-spectral density of Eqn. (6.119) in the integral of
Eqn. (6.121) yields

X
n

jcnmj2ln ¼ Lm (6:122)

where cnm is the projection of the transformed input coherent modes on the output
plane coherent modes:

cnm ¼
ð ð

~c
�
n(x, y, n)Cm(x, y, n) dx dy (6:123)

We note again that the input coherent modes are orthonormal. Barring laser gain,
nonlinear wavemixing, or sources within the optical system, the spectral density of a
mode cannot increase in magnitude. This means that

ð ð
j~c�n(x, y, n)j2dx dy � 1 (6:124)

Since the output coherent modes are orthonormal and complete over the output space,
we also find that

ð ð
j~c�n(x, y, n)j2dx dy ¼

X
m

jcnmj2 (6:125)
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and

X
m

jcnmj2 � 1 (6:126)

Summing Eqn. (6.122) with respect m, this implies that

X
n

ln �
X

m

Lm (6:127)

meaning that the input power is greater than or equal to the output power.
Alternatively, we may express the output coherent modes in terms of the input

coherent modes. Of course, in a system satisfying time reversal, the output and
input coherent modes are matched one to one and cnm ¼ dnm. If we consider the
more general reversible transformation between any set of orthogonal input modes
and orthogonal output modes, conservation of power on time reversal produces the
complimentary relationship to Eqn. (6.126):

X
n

jcnmj2 � 1 (6:128)

While the structure of the coupling coefficients may change as a result of loss, filter-
ing, and decoherence, all three of these mechanisms decrease, rather than increase,
the effective value of the coupling coefficient between an input mode and an
output mode. We therefore find that Eqn. (6.128) holds in any gain or source free
optical system.

Equation (6.122) relates the power in the mth output mode to the power in input
modes. jcnmj2 is the fraction of the nth input-mode power that is coupled into the mth

output coherent mode. According to Eqn. (6.128), the coefficients jcnmj2 are a
weighted distribution such that no output mode can be brighter than the brightest
input mode, for example

Lmax � lmax (6:129)

The maximal brightness is obtained when cnm ¼ 1 for n corresponding to the bright-
est input mode.

Equation (6.129) is an outcome of the second law of thermodynamics, which
states that in isolated physical systems the total entropy can only remain constant
or increase. The entropy of a system is a measure of the total number of physical
states that it might occupy. If the exact state of the system is known, as in a coherent
optical field, then the entropy is low. If the energy of the system is distributed over
many different coherent modes, the entropy is higher. In terms of normalized
coherent-mode amplitudes ~lm ¼ lm=

P
nln, the entropy of an optical field may be
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expressed [190]

H ¼
X

n

~lnlog~ln (6:130)

If, for example, ~l1 ¼ 1 and ln.1 ¼ 0, then H ¼ 0 and the entropy is a minimum.
Alternatively, maximal entropy occurs for ln ¼ 1=N for all n, in which case H ¼
log N.

The more general statement of the second law in optical systems is

1. Any time reversable optical system leaves the coherent-mode amplitudes
unchanged.

2. Nonreversible effects such as modal filtering, absorption, and modal decorr-
elation transform the coherent-mode amplitudes so as to increase the system
entropy.

Returning to the combination of power from multiple modes into a single mode or
a smaller number of modes, one may say as a corollary to Eqn. (6.129) that if energy
is conserved, then Lmin � lmin. This means that the number of modes in the field is
conserved when energy is conserved. In the example discussed at the beginning of
this section, two mutually coherent plane waves at the input can be combined into
a single output mode with 100% efficiency because both input signals are part of
the same coherent mode of the cross-spectral density. If the input cross-spectral
density consists of two modes, no single mode of the output cross-spectral density
can exceed the stronger of the two input modes.

Conservation of modes may be related to the space–bandwidth product and the
etendue of an optical system. The space–bandwidth product is the product of the
spatial support over which an optical signal is observed and the spatial frequency
bandwidth of the field. We saw in Section 3.6 that the number of discrete modes
necessary to represent a signal is proportional to the space–bandwidth product.
The etendue, L/ A2V, of an optical system is the product of the solid angle V

spanned by the wavevectors of radiation collected at the instrument aperture and
the area A2 of the entrace pupil. Of course, we know from many previous discussions
that the angle of the wavevector is proportional to spatial frequency. V is thus a
measure of the spatial bandwidth, and the etendue is proportional to the space–
bandwidth product, which is proportional to the number of modes that propagate
through the system. An energy conserving system must therefore conserve etendue.

6.6.4 Modes and Measurement

We have mentioned several times that measurements of the field take the form of
irradiance or spectral density projections. Back in Section 2.1 we introduced the
concept of a visibility function to describe these projections. We updated the visibility
in terms of the coherent impulse response in Chapter 4 and the incoherent or partially
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coherent response in this chapter. With our understanding of coherence transform-
ations, we are now ready to express the most general form of a first-order optical
measurement as

mi ¼
ð ð

h�i (x1, y1, n)W(x1, y1, x2, y2, n)hi(x2, y2, n) dx1 dx2 dy1 dy2 dn (6:131)

where hi(x, y, n) is a coherent impulse response or visibility for the ith measurement.
Substituting the coherent-mode decomposition of W into Eqn. (6.104) and repre-

senting the set of measurements as a vector m allows us to recast the measurement
process as

m ¼ HL (6:132)

where

hij ¼
ð

hi(x, y, n)cC
j (x, y, n) dx dy dn

����
����
2

(6:133)

and L is a vector of coherent-mode amplitudes.
Optical system design consists of selecting the measurement basis hi within physical

and economic limits to enable estimation of the object under observation. Ideally,
design also consists of specifying the measurement matrix H in Eqn. (6.132), but
this assumes that we know the coherent modes in advance. Common measurement
scenarios in optical systems include the following cases:

1. Focal systems, where the coherent modes of the system are known and one has
the physical capacity to create a mode-specific filter to separate the coherent
modes in the measurement system. This scenario describes 2D focal imaging
and conventional slit spectroscopy. In the imaging case, for example, the
coherent modes are bandlimited focused spots spanning the object plane. A
lens system maps the input spots to the output image, where each pixel is
measured independently. In the ideal case, H is the identity matrix for this
system. Criteria by which one might design H are discussed in Chapter 8,
but for present purposes it is safe to say that if information is uniformly
and independently distributed in the object pixels, then one can do no
better than to design H to be an identity. If, on the other hand, object infor-
mation is more subtly distributed, one may wish to consider generalized
sampling strategies as dicussed in Section 7.5.

2. Multidimensional systems, where the coherent modes are known but one lacks
the physical capacity to independently measure each coherent mode.
Multispectral imaging, as discussed in Section 10.6, is the model system
for this case. In principle, one could create a filter assembly to separate
each spectral channel and then implement focal imaging on the coherent
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modes, but physical implementation of such a system is impossible or ineffi-
cient, and one chooses to apply temporal multiplexing or generalized
sampling instead. One can directly design H in this case.

3. Interferometric systems, where the coherent modes are unknown and must be
discovered as part of the measurement process. Examples for this case
include imaging through turbulent or inhomogeneous media and imaging
under partially coherent illumination. A typical strategy for this case involves
selection of an a priori modal decomposition. In some cases, the a priori
basis may be “close” to a coherent mode decomposition. In other cases, the
a priori basis may simply have convenient mathematical properties. The focal
interferometry strategies discussed in Section 6.3.4 are an example of interfero-
metric imaging on nearly orthogonal bases. Imaging with a rotational shear
interferometer, on the other hand, applies a Fourier basis to an unknown
cross-spectral density.

6.7 RADIOMETRY

The discipline of radiometry focuses on measuring the energy content of optical radi-
ation and on mapping the flow of energy through optical systems. Radiometry
describes the optical field using phenomenological functions related to the irradiance
such as the spectral radiance, Bn(x, s, n), which is the power radiated through point
x [ R3 in direction s [ S2 per unit solid angle per unit wavelength. The SI unit of
spectral radiance is watt per steradian per square meter per hertz. The spectral radi-
ance may be integrated along the wavelength axis to produce the radiance, which
is the radiant energy propagating through x in the s direction per unit solid angle.
This section discusses the relationship between the spectral radiance and the cross-
spectral density and describes the constant radiance theorem, which limits the
ability of optical systems to focus partially coherent light. Unless otherwise indicated,
the term radiance refers to the spectral radiance in subsequent discussion.

6.7.1 Generalized Radiance

As always in optical system analysis, propagation of the radiance from one boundary
to the next is our first challenge. Propagation of the radiance is most easily derived
from the wave equations satisfied by the cross-spectral density

r2
1 þ

2pn

c

� 	2
" #

W(x1, x2, n)¼ 0

r2
2 þ

2pn

c

� 	2
" #

W(x1, x2, n)¼ 0

(6:134)

wherer2
1 is the 3D Laplacian with respect to the x1. These equations are derived by sub-

stituting the definition of the cross-spectral density into the wave equation [(Eqn. (4.19)].
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The radiance is most often used to analyze diffuse objects with relatively low
coherence, in which case one might assume that the cross-spectral density varies
slowly with respect to �x. An object such that

@W(Dx, �x, n)
@�x

� @W(Dx, �x, n)
@D x

(6:135)

is said to be “quasihomogeneous” [165]. (Homogeneous in this context is synony-
mous with spatially stationary.) A quasihomogeneous object is spatially uniform
on the scale of the coherence cross section. Given that the coherence cross section
of an image field is approximately equal to the transverse resolution, a quasihomo-
geneous image must be slowly varying in comparison to the optical resolution.
This is not generally a good assumption in imaging, but radiance is a sufficiently
useful concept that we neglect for the moment difficulties at the limits of resolution.

Reparameterizing W(x1, x2, n) in terms of Dx and �x transforms Eqns. (6.134)
into [198]

rDx 
 r�xW ¼ 0 (6:136)
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Neglecting the Laplacian with respect to �x under the quasihomogeneous approxi-
mation reduces Eqn. (6.137) to

r2
Dx þ

2pn

c

� 	2
" #

W(D x, �x, n) ¼ 0 (6:138)

which is solved by

W(D x, x, n) ¼
ð

V

B(x, s, n)e�(2pin=c)s
Dx ds (6:139)

where according to Eqn. (6.136)

s 
 rxBn(x, s, n) ¼ 0 (6:140)

The “generalized radiance,” as proposed by Walther [244], is defined by the inverse
transform corresponding to Eqn. (6.139)

B(x, s, n) ¼
ð ð

W(Dx, x, n)e(2pin=c)s
Dx dDx (6:141)
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where D x [ R2. Walther’s aim was to associate the phenomenological radiance with
physical optics. Ideally, a physically based radiance satisfies four criteria:

1. Bn(x, s, n) is a linear transform of W(Dx, x, n).

2. Bn � 0, assuring that the radiance from an object is positive.

3. Bn ¼ 0 outside the support of a radiating object.

4. cos u
Ð Ð
Bn(x, s, n) ¼ Jn(s, n), where the radiant intensity Jn(s, n) is the

physical optical energy flux along s.

Unfortunately, the generalized radiance does not satisfy these four criteria [166]. In
fact, Friberg proved that no radiance function could satisfy these criteria [79]. The
generalized radiance remains useful, however, for paraxial analysis of quasihomoge-
neous fields. Under the quasihomogenous approximation, the generalized radiance
can be shown to be consistent with physical optics [165].

The attraction of the radiance in system analysis is encapsulated in Eqn. (6.140),
which states that B(�x, s, n) is invariant along a ray in the s direction. In particular,
Friberg demonstrated under the paraxial approximation that the generalized radiance
may be propagated by the ABCD ray transfer matrice M according to

Bn
x0

s0

� � 	
¼ Bn M

x
s

� � 	
(6:142)

As briefly discussed in Section 10.4.3, paraxial ray tracing of the radiance fields is
widely applied in image rendering algoritms for computer graphics [152,101,199].
Propagation of the radiance by ray tracing is also useful for analysis astronomical
sources and nonimaging optics [248].

6.7.2 The Constant Radiance Theorem

The radiance is sometimes termed the “brightness” of the field. The goal of this
section is to show that no linear optical system can increase brightness, a result
called the constant radiance theorem. The constant radiance theorem expresses the
primary difference between a diffuse source, such as a fluorescent lightbulb or a
flame, and a laser. While the fluorescent source may emit several watts and the
laser just a few milliwatts, the laser can be focused on a much brighter spot. In con-
trast, no linear optical system can make a fluorescent source brighter than the irradi-
ance on the irradiating surface.

The generalized radiance is the Wigner distribution function of the coherent field

B(x, s, n) ¼
ð ð

E� x� Dx

2
, n

� 	
E xþ Dx

2
, n

� 	� �
e(2pin=c)s
Dx dDx (6:143)

The Wigner function developed as a “phase space” representation of quantum mech-
anical states [259]. As a space–frequency distribution, the Wigner function is closely
related to windowed Fourier transformations and wavelet analysis.
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The relationship of the Wigner distribution function and the generalized radiance
was developed by Bastiaans [11]. In particular, Bastianns [12] considers modal trans-
formations of the generalized radiance. Substituting Eqn. (6.118) into Eqn. (6.143),
we find that the generalized radiance corresponding to the coherent mode decompo-
sition of the cross-spectral density is

Bn(x, s, n) ¼
X

n

lnBn,n(x, s, n) (6:144)

where

Bn,n(x, s, n) ¼
ð ð

cn
� x� Dx

2
, n

� 	
cn xþ Dx

2
, n

� 	
e(2pin=c)s
Dx dDx (6:145)

The Wigner distributions of the coherent modes satisfy the orthogonality relation-
ship [11]

ð ð ð ð
Bn,n(x, s, n)Bm,n(x, s, n) dx ds ¼

ð ð
cn
�(x, n)cm(x, n) dx

����
����
2

¼
1 m ¼ n

0 m = m

�
(6:146)

Equations (6.129), (6.144), and (6.146) broadly constrain radiance transformations
in optical systems. According to Eqn. (6.144), the radiance is the weighted sum of the
radiances of the coherent modes. According to Eqn. (6.146), the brightness at any
point in the output field will be associated primarily with a single coherent mode.
According to Eqn. (6.129), the brightness of the brightest such mode cannot be
increased in a linear optical system.

PROBLEMS

6.1 Coherence Time and Cross Section. Consider a light source emitting the
blackbody spectrum

S(n) ¼ 2hn3

c2

1

e(hn=kbT) � 1
(6:147)

where h is Planck’s constant, kb is Boltzmann’s constant, and T is temperature.

(a) Plot S(n) for T ¼ 5000 K. What is the wavelength corresponding to the
maximum of S(n)?

(b) Estimate the coherence time for this source.
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(c) Suppose that the source is a 1-mm-diameter disk. Derive an expression for
the cross-spectral density at a range of 100 m. Plot the cross-spectral
density as a function of Dx and l for Dy ¼ 0.

(d) Estimate the coherence cross section [the range of Dx over which
W(Dx, Dy, n) is nonnegligible] at 100 m.

6.2 Temporal Coherence and Bandwidth

(a) A Michelson interferometer scans the path delay d over range D with a
sampling period D. Estimate the wavelength range and resolution that
this instrument achieves when used as a spectrometer.

(b) A two-point interferometer with pinhole separation Dx, as illustrated in
Fig. 6.6, is sampled on a focal plane at a range of d from the pinholes.
The pinholes are illuminated by spatially coherent light. The spatial
sampling period is D, and the sampling range is D. Estimate the wave-
length range and resolution that this instrument achieves when used to esti-
mate the power spectral density of the illumination.

6.3 Spectral Encoding in Scattered Partial Coherence. Two unresolved point scat-
teres separated by 2a in the plane transverse to the optical axis generate the
spectrum (l) ¼ So(l)[1þ jinc(aa=l)].

(a) Use Fourier arguments to quantify the accuracy with which one might esti-
mate a from this spectrum. Comment on the significance of this result for
remote target superresolution.

(b) What is the scattered cross-spectral density if the scatters are displaced by
a along the optical axis rather than in the transverse plane? Generate a plot
similar to Fig. 6.3 showing the spectral density observed along the optical
axis as a function of a for this case.

6.4 3D and 2D Transfer Functions. Show that the incoherent transfer function,
Hic(u, v) as described by Eqn. (6.64), satisfies

Hic(u, v, l) ¼ 1

2(ldi)2

ð
B(�ldiu, �ldiv, q) dq (6:148)

where B(x, y, q) is defined according to Eqn. (6.54).

6.5 RSI Fringe Frequency. The point source of Fig. 6.10 was illuminated at l ¼
532 nm and l ¼ 633 nm.

(a) What is the fringe period in Fig. 6.10(a) and (b)?

(b) Generate a plot of simulated data showing the irradiance at some particular
detection pixel as a function of longitudinal delay d for this source.

(c) Assuming 20-mm detector pixels, what is the maximum source position ux

could one observe with this instrument at u ¼ 28 for each of the two illu-
mination wavelengths?
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6.6 Coherent and Incoherent Imaging

(a) Given that the impulse response for incoherent imaging is the square of
the impulse response for coherent imaging, does an incoherent imaging
system implement a linear transformation?

(b) Does the higher bandpass of an incoherent imaging system yield higher
spatial resolution than the comparable coherent imaging system?

(c) Is it possible for the image of a coherent object to be an exact replica? (For
instance, can the image be equal, modulo phase constants, to the input
object with no blurring?)

(d) Is it possible for the image of an incoherent object to be an exact replica?

6.7 MTF and Resolution. An f/2 imaging system with circular aperture of diam-
eter A ¼ 1000l is distorted by an aberration over the pupil such that

P(x, y) ¼ eipax2y (6:149)

where a ¼ 10�4=AlF. Plot the MTF for this system. Estimate its angular
resolution.

6.8 Coherent and Incoherent Imaging (suggested by J. Fienup). The interference
of two coherent plane waves produces the field

c(x, z) ¼ 1
2 [1þ cos(2pu0x)]ei2pw0z (6:150)

The interfering field is imaged as illustrated in Fig. 6.26. As we have seen, the
coherent imaging system is bandlimited with maximum frequency
umax ¼ A=ldi. Experimentally, one observes that the image of the field is
uniform (e.g., there is no harmonic modulation) for A , uoldi. If, however,
one places a “diffuser” at the object plane, then one observes harmonic modu-
lation in the image irradiance as long as A . uoldi=2. The diffuser is
described by the transmittance t(x) ¼ eif(x), where f(x) is a random process.
Diffusers are typically formed from unpolished glass.
(a) Explain the role of the diffuser in increasing the imaging bandpass for this

system.

Figure 6.26 Geometry for Problem 6.8.
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(b) Without the diffuser, the image of the interference pattern is insensitive to
defocus. Once the diffuser is inserted, the image requires careful focus.
Explain this effect.

(c) Model this system in one dimension in Matlab by considering the coherent
field

f (x) ¼ e�(x2=s 2)[1þ cos(2p uox)] (6:151)

for s ¼ 20=uo. Plot j f j2. Lowpass-filter f to the bandpass umax ¼ 0:9uo

and plot the resulting function.

(d) Modulate f (x) with a random phasor t(x) ¼ eif(x) (simulating a diffuser).
Plot the Fourier transforms of f (x) and of f (x)t(x). Lowpass-filter
f (x)t(x) with umax ¼ 0:9uo and plot the resulting irradiance image.

(e) Phase modulation on scattering from diffuse sources produces “speckle”
in coherent images. Discuss the resolution of speckle images.

6.9 OCT. A Fourier domain OCT system is illuminated by a source covering the
spectral range 800–850 nm. One uses this system to image objects of thick-
ness up to 200 mm. Estimate the longitudinal spatial resolution one might
achieve with this system and the spectral resolution necessary to operate it.

6.10 Resolution and 3D Imaging. Section 6.4.2 uses dux � l=A and dz � 8lz2=A2

to approximate the angular and range resolution for 3D imaging using
Eqn. (6.73). Derive and explain these limits. Compare the resolution of
this approach with projection tomography and optical coherence tomography.

6.11 Bandwidth. Section 6.6.1 argues that the spatial bandwidth of the field does
not change under free-space propagation. Nevertheless, one observes that
coherent, incoherent, and partially coherent images blur under defocus. The
blur suggests, of course, that bandwidth is reduced on propagation. Explain
this paradox.

6.12 Coherent-Mode Decomposition. Consider a source consisting of three
mutually incoherent Gaussian beams at focus in the plane z ¼ 0. The source
is described by the cross-spectral density

W(x1, y1, x2, y2, n)¼ S(n) f0
x1

D
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(a) In analogy with Fig. 6.24, plot the irradiance, cross sections of the cross-
spectral density, and the coherent modes in the plane z ¼ 0.

(b) Assuming that D ¼ 100l, plot the coherent modes and the spectral density
in the plane z ¼ 1000l.

6.13 Time Reversal and Beamsplitters. Consider the pelicle beamsplitter as illus-
trated in Fig. 6.27. The beamsplitter may be illuminated by input beams
from the left or from below. Assume that the illuminating beams are mono-
chromatic TE polarized plane waves (e.g., E is parallel to the y axis). The
amplitude of incident wave on ports 1 and 2 are Ei1 and Ei2. The beamsplitter
consists of a dielectric plate of index n ¼ 1.5. Write a computer program to
calculate the matrix transformation from the input mode amplitudes to the
output plane wave amplitudes Eo1 and Eo2. Show numerically for specific
plate thicknesses ranging from 0:1l to 0:7l that this transformation is unitary.

6.14 Wigner Functions. Plot the 2D Wigner distributions corresponding to the 1D
Hermite–Gaussian modes described by Eqn. (3.55) for n ¼ 0,2,7. Confirm
that the Wigner distributions are real and numerically confirm the orthogonal-
ity relationship given in Eqn. (6.146).

Figure 6.27 Pellicle beamsplitter geometry.
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7
SAMPLING

If a function f (t) contains no frequencies higher than W cps, it is completely determined
by giving its ordinates at a series of points spaced 1/2 W seconds apart. This is a fact
which is common knowledge in the communication art.

—C. Shannon [219]

7.1 SAMPLES AND PIXELS

“Sampling” refers to both the process of drawing discrete measurements from a signal
and the representation of a signal using discrete numbers. It is helpful in compu-
tational sensor design and analysis to articulate distinctions between the various
roles of sampling:

† Measurement sampling refers to the generation of discrete digital values from
physical systems. A measurement sample may consist, for example, of the
current or voltage returned from a CCD pixel.

† Analysis sampling refers to the generation of an array of digital values describ-
ing a signal. An analysis sample may consist, for example, of an estimated
wavelet coefficient for the object signal.

† Display sampling refers to the generation of discrete pixel values for display of
the estimated image or spectrum.

Hard separations between sampling categories are difficult and unnecessary. For
example, there is no magic transition point between measurement and analysis
samples in the train of signal filtering, digitization, and readout. Similarly, analysis
samples themselves are often presented in raw form as display samples. In the
context of system analysis, however, one may easily distinguish measurement,
analysis, and display.

Optical Imaging and Spectroscopy. By David J. Brady
Copyright # 2009 John Wiley & Sons, Inc.
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A mathematical and/or physical process is associated with each type of sample.
The measurement process implements a mapping from the continuous object
signal f to discrete measurement data g. In optical imaging systems this mapping
is linear:

gi ¼
ð

f(x)hi(x) dx (7:1)

g consists of measurement samples. The analysis process transforms the measure-
ments into data representative of the object signal. Specifically, the analysis
problem is

Given g, derive the set of values fa that best represent f:

The postdetection analysis samples fa may correspond, for example, to estimates of
the basis coefficients fn from Eqn. (7.2), to estimates of coefficients on a different
basis, or to parameters in a nonlinear representation algorithm. We may assume,
for example, that f is well represented on a basis cn(x) such that

f (x) ¼
X

n

fncn(x) (7:2)

and Eqn. (7.1) reduces to

g ¼ Hf (7:3)

where hij ¼
Ð

hi(x)cj(x) dx. The vector f with elements fn consists of analysis
samples, and the analysis process consists of inversion of Eqn. (7.3). Algorithms
for implementing this inversion are discussed in Chapter 8.

Display samples are associated with the processes of signal interpolation or
feature detection. A display vector consists of a set of discrete values fd that are
assigned to each modulator in liquid crystal or digital micromirror array or that are
assigned to points on a sheet of paper by a digital printer. Display samples may
also consist of principal component weights or other feature signatures used in
object recognition or biometric algorithms. While one may estimate the display
values directly from g, the direct approach is unattractive in systems where the
display is not integrated with the sensor system. Typically, one uses a minimal set
of analysis samples to represent a signal for data storage and transmission. One
then uses interpolation algorithms to adapt and expand the analysis samples for
diverse display and feature estimation systems.

Pinhole and coded aperture imaging systems provide a simple example of distinc-
tions between measurement, analysis, and display. We saw in Eqn. (2.38) that fa natu-
rally corresponds to projection of f (x, y) onto a first-order B-spline basis. Problem 3.12
considers estimation of display values of f (x, y) from these projections using biortho-
gonal scaling functions. For the coded aperture system, measurement samples are
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described by Eqn. (2.39), analysis samples by Eqn. (2.38), and display samples by Eqn.
(3.125). Of course, Eqn. (3.125) is simply an algorithm for estimating f (x); actual plots
or displays consist of a finite set of signal estimates. In subsequent discussion, we
refer to both display samples and to Haar or impulse function elements as picture
elements or pixels (voxels for 3D or image data cube elements).

We developed a general model of measurement, analysis, and display for coded
aperture imaging in Chapter 2, but our subsequent discussions of wave and coherence
imaging have not included complete models of continuous to discrete to display pro-
cesses. This chapter begins to rectify this deficiency. In particular, we focus on the
process of measurement sample acquisition. Chapter 8 focuses on analysis sample
generation, especially with regard to codesign strategies for measurement and analy-
sis. In view of our focus on image acquisition and measurement layer design, this text
does not consider display sample generation or image exploitation.

Section 7.2 considers sampling in focal imaging systems. Focal imaging is particu-
larly straightforward in that measurements are isomorphic to the image signal.
Section 7.3 generalizes our sampling model to include focal spectral imaging.
Section 7.4 describes interesting sampling features encountered in practical focal
systems. The basic assumption underlying Sections 7.2–7.4, that local isomorphic
sampling of object features is possible, is not necessarily valid in optical sensing.
In view of this fact, Section 7.5 considers “generalized sampling.” Generalized
sampling forsakes even the attempt maintain measurement/signal isomorphism
and uses deliberately anisomorphic sensing as a mechanism for improving imaging
system performance metrics.

7.2 IMAGE PLANE SAMPLING ON ELECTRONIC
DETECTOR ARRAYS

Image plane sampling is illustrated in Fig. 7.1. The object field f (x, y) is blurred by an
imaging system with shift-invariant PSF h(x, y). The image is sampled on a 2D detector
array. The detector pitch is D, and the extent of the focal plane in x and y is X and Y.

Figure 7.1 Image plane sampling.
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The full transformation from the continuous image to a discrete two-dimensional
dataset g is modeled as

gnm ¼
ð1

�1

ð1

�1

ðX=2

�X=2

ðY=2

�Y=2

f (x, y)h(x0 � x, y0 � y)

� p(x0 � nD, y0 � mD) dx0 dy0 dx dy (7:4)

where p(x, y) is the pixel sampling function. For rectangular full fill factor pixels, for
example, p(x, y) ¼ rect(x=D)rect(y=D).

Several assumptions are implicit in the sampling model of Eqn. (7.4). The object
distribution, the optical PSF, and the pixel sampling function are in general all depen-
dent on the optical wavelength l. For simplicity, we assume in most of this section
that the field is quasimonochromatic such that we can neglect the wavelength depen-
dence of these functions. We also focus on irradiance imaging, meaning that f (x, y)
and h(x, y) are nonnegative. We neglect, for the moment, the possibility of 3D object
distributions. We also neglect complexity in the pixel sampling function, such as
crosstalk, shading, and nonuniform response.

The function g consists of discrete samples of the continuous function

g(x00, y00) ¼
ð1

�1

ð1

�1

ðX=2

�(X=2)

ðY=2

�(Y=2)

f (x, y)h(x0 � x, y0 � y)

� p(x0 � x00, y0 � x00) dx0 dy0dx dy (7:5)

g(x, y) is, in fact, a bandlimited function and can, according to the Whittaker–
Shannon sampling theorem [Eqn. (3.92)], be reconstructed in continuous form
from the discrete samples gnm. To show that g(x, y) is bandlimited, we note from
the convolution theorem that the Fourier transform of g(x, y) is

ĝ(u, v) ¼ f̂ (u, v)ĥ(u, v)p̂(u, v) (7:6)

ĥ(u, v) is the optical transfer function (OTF) of Section 6.4.1, and its magnitude is the
optical modulation transfer function. In analogy with the OTF, we refer to p̂(u, v)
as the pixel transfer function (PTF) and to the product ĥ(u, v)p̂(u, v) as the system
transfer function (STF). Figure 7.2 illustrates the magnitude of the OTF [e.g., the
modulation transfer function, (MTF)] for an object at infinity imaged through an
aberration-free circular aperture and the PTF for a square pixel of size D.

One assumes in most cases that the object distribution f (x, y) is not bandlimited.
Since the pixel sampling function p(x, y) is spatially compact, it also is not bandlim-
ited. As discussed in Section 6.4.1, however, the optical transfer function ĥ(u, v) for a
well-focused quasimonochromatic planar incoherent imaging system is limited to a
bandpass of radius 1=lf =#. Lowpass filtering by the optical system means that
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aliasing is avoided for

D � lf =#

2
(7:7)

The factor of 2 in Eqn. (7.7) arises because the width of the OTF is equal to the
autocorrelation of the pupil function. We saw in Section 4.7 that a coherent imaging
system could be characterized without aliasing with a sampling period equal to
lf =#; the distinction between the two cases arises from the relative widths of the
coherent and incoherent transfer functions as illustrated in Figs. 4.14 and 6.17.

The goals of the present section are to develop familiarity with discrete analysis of
imaging systems, to consider the impact of the pixel pitch D and the pixel sampling
function p(x, y) on system performance, and to extend the utility of Fourier analysis
tools to discrete systems. We begin by revisiting the sampling theorem. Using
the Fourier convolution theorem, the double convolution in Eqn. (7.4) may be
represented as

gnm ¼
ð1

�1

ð1

�1

e2piunDe2pivmD f̂ (u, v)ĥ(u, v)p̂(u, v) du dv (7:8)

Figure 7.2 MTF for a monochromatic aberration-free circular aperture and PTF for a square
pixel of size D: (a) MTF; (b) MTF cross section; (c) PTF; (d) PTF cross section.
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The discrete Fourier transform of g is

ĝn0m0 ¼
1

N2

XN=2

�N=2þ1

XN=2

�N=2þ1

ei2pnn0=Nei2pmm0=Ngnm

¼
ð1

�1

ð1

�1

e�pi [(n0=N)�uD]e�pi [(m0=N)�vD]

� sin[p(n0 � uX)]
sin p[(n0=N)� uD]f g

sin[p(m0 � vY)]
sin p[(m0=N)� vD]f g

� f̂ (u, v)ĥ(u, v)p̂(u, v) du dv (7:9)

Under the approximation that

sin[p(n0 � uX)]
sin p[(n0=N)� uD]f g �

X
n

(�1)nNsinc(uX � n0 � nN) (7:10)

We find that ĝn0m0 is a projection of ĝ(u, v) onto the Shannon scaling function basis
described in Section 3.8. Specifically

ĝn0m0 �
X1

n¼�1

X1
m¼�1

ĝ
n0 þ nN

X
,

m0 þ mN

Y

� �
(7:11)

Since ĝn0m0 is periodic in n0 and m0, ĝ tiles the discrete Fourier space with discretely
sampled copies of ĝ(u, v). We previously encountered this tiling in the context of the
sampling theorem, as illustrated in Fig. 3.4.

Figure 7.3 is a revised copy of Fig. 3.4 to allow for the possibility of aliasing.
ĝ[(n0 þ nN)=X, (m0 þ mN)=Y] is a discretely sampled copy of ĝ(u, v) centered

Figure 7.3 Periodic Fourier space of a sampled image.
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on n0 ¼ �nN. The Fourier space separation between samples is du ¼ 1=X, and the
separation between copies is N=X ¼ 1=D. The value of ĝn0m0 within a certain range
is equal to the sum of the nonvanishing values of ĝ[(n0 þ nN)=X, (m0 þ mN=Y)]
with that range. If more than one copy of ĝ is nonzero within any range of n0m0,
then the measurements are said to be aliased and an undistorted estimation of f (x,
y) is generally impossible. Since the displacement between copies of ĝ(u, v) is deter-
mined by the sampling period D, it is possible to avoid aliasing for bandlimited ĝ by
selecting sufficiently small D. Specifically, there is no aliasing if jĝ(u, v)j vanishes for
juj . 1=2D. If aliasing is avoided, we find that

ĝnm ¼ f̂
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Figures 7.4 and 7.5 illustrate the STF for D ¼ 2lf =# , D ¼ 0:5lf =# and
D ¼ lf =#. Figure 7.4 plots the STF in spatial frequency units 1=D. The plot is a
cross section of the STF as a function of u. For rotationally symmetric systems,
STF and MTF plots are typically plotted only the positive frequency axis. Relative
to the critical limit for aliasing, the STF of Fig. 7.4(a) is undersampled by a factor
of 4, and Fig. 7.4(b) is undersampled by a factor of 2. Figure 7.4(c) is sampled at
the Nyquist frequency. The aliasing limit is 1=2D in all of Fig. 7.4(a)–(c). The
STF above this limit in (a) and (b) transfers aliased object features into the sample

Figure 7.4 Imaging system STF for various values of D: (a) D ¼ 2lf/#; (b) D ¼ lf/#;
(c) D ¼ 0.5lf/#.
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data. Because of the shape of the pixel and optical transfer functions, the aliased data
are strongly attenuated relative to the low frequency passband.

Figure 7.5 plots the same STFs as in Fig. 7.4 in spatial frequency units of 1=lf =#.
In these units, the band edge for all three STFs is at u ¼+1=lf =#. The strongly
undersampled system of Fig. 7.5(a) aliases frequencies in the range 1=lf =# .

juj . 1=4lf =#. The STF of Fig. 7.5(b) is aliased over the range 1=lf =# . juj .
1=2lf =#. The structure of the STF is similar for the critically sampled and the
2� undersampled systems; Fig. 7.5(d) illustrates the difference between the two.
The relatively modest increase in STF and the attenuated magnitude of the MTF
may lead one to question whether the 4� increase in focal plane pixels is worth
the improvement in the system passband.

Various definitions of the system modulation transfer function have been applied
to sampled imaging systems. Several studies favor an attenuated system MTF pro-
posed by Parks et al. [196]. We describe Parks’ MTF presently, but suggest that a
simpler definition is more appropriate. We define the system MTF to be the magni-
tude of the STF defined above. We prefer this definition because it clearly separates
the influence of measurement sampling from the influence of analysis or display
sampling on the MTF. A simple example is helpful in clarifying these distinctions.

Consider the signal f (x, y) ¼ 1
2 1þ cos [2p (uoxþ voy)þ f]f g. According to

Eqn. (7.4), the measured samples for this signal are

gnm ¼ ĥ(0, 0)p̂(0, 0)þ jĥ(uo, vo)jjp̂(uo, vo)j
� cos(2p (uonDþ vomD)þ fþ fh þ fs) (7:13)

Figure 7.5 Imaging system STF for various values of D: (a) D ¼ 2lf/#; (b) D ¼ l f/#;
(c) D ¼ 0.5l f/#; (d) ¼ (c) – (b).
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where fh and fs are the phases of the optical and pixel transfer functions at (u0, v0).
Figure 7.6 illustrates this sample data for various relative phases between the input
signal and the sampling lattice. As noted by Parks [196] and in many other
studies, the fringe visibility (e.g., the ratio of the peak-to-valley difference to the
average signal value) varies as a function of f. The sample data are not periodic in
n unless u0 is rational. Under the assumption that the sample data is the display
image, Parks accounts for the variation in the peak-to-valley signal by noting that
the mean peak-to-valley range when f is accounted as a uniformly distributed
random variable is reduced by a factor sinc(uoD) relative to the peak-to-valley range
in the input. Parks accordingly suggests that a factor sinc(uoD) should be added to
the STF.

The addition of a sinc(uoD) factor to the system MTF is erroneous because it
neglects the interpolation step implicit in the sampling theorem. As noted in
Eqn. (7.5), the sample data gnm describe discrete samples of the bandlimited function
g(x, y) in direct accordance with the Shannon sampling theorem. Interpolation of
g(x, y) from the sample data using the sampling theorem [Eqn. (3.92)] produces the
plots shown in Fig. 7.7. As expected, the reconstructed plots accurately reflect the
input frequency and phase. Of course, there is some difficulty in producing these plots
because the sampling theorem relies on an infinite sum of interpolation functions at
each reconstruction point. Figure 7.7 approximates the sampling theorem by summing
over the 100 sample points nearest the origin to generate an estimated signal spanning
20 sample cells. Lessons learned from this exercise include the following:

1. The sampling period D determines the aliasing limits for the signal but does not
directly affect the MTF.

2. Separation and careful utilization of measurement, analysis, and display
samples is important even for simple samples drawn from a Cartesian grid.
As our measurements become more sophisticated, this separation becomes
increasingly essential.

Figure 7.6 Sample data for a harmonic image at u0 ¼ 0.9 Nyquist (e.g., u0D ¼ 0.45) for
various relative phases between the image and the sampling grid. The horizontal axis is in
units of the Nyquist period, 2D.
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3. Better display image samples are obtained by processing measurement
samples. Optimal estimation of the continuous signal f (x) at x depends on mul-
tiple measurement sample values in a neighborhood of x. Of course, this may
mean that the resolution of the image display device should exceed the resol-
ution of the sample data. Higher resolution on display is not uncommon,
however, especially if one chooses to print the image.

4. Accurate signal interpolation from measurement samples is enabled by prior
knowledge regarding the signal and the measurement system. In this case,
we know that the signal is bandlimited by the optical MTF and thus expect
the sampling theorem to apply. If the sampling theorem applies, Fig. 7.7
does more than smooth Fig. 7.6; it actually recovers the signal from sampling
distortion.

5. It may be undesirable in terms of data and communication efficiency to trans-
mit a “best” image estimate from the image capture device. It may be more
useful to record compressed sample data along with known system priors for
later image estimation.

6. The process of sampled image recording and estimation is deeper and more
subtle than one might first suppose. Knowledge of the sampling period is suf-
ficient to estimate g(x, y), but the sampling theorem itself is computationally
unattractive. One expects that a balance between computational complexity
and signal fidelity could be achieved using wavelets with compact support
rather than the Shannon scaling function. One may consider how sampling
systems can then be designed to match interpolation functions.

7. All of these points rely on the existence of careful and accurate models for the
physical measurement process.

The particular interpolation method used above, based on a finite support version
of the Shannon generating function, is windowed sinc interpolation. The art of

Figure 7.7 Signals reconstructed using Shannon interpolation from the sample data of
Fig. 7.6. The frequency for all signals remains uo ¼ 0.9 Nyquist, and the horizontal axis is
again in units of the Nyquist period.
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interpolation is itself a fascinating and important topic, most of which is unfortunately
beyond the scope of this text. Interpolation in the presence of noise and balanced
analysis of computational complexity and image fidelity are particularly important
considerations. See Refs. 234 and 230 for relatively recent overviews. While the
primary focus of this text is on image capture system design, over the next several
chapters we regularly return to joint design of optical coding, sampling, and signal
interpolation. For the present purposes, it is most important to understand that post-
measurement interpolation is necessary, natural, and powerful.

While optical imaging systems are always bandlimited, undersampling relative to
the optical Nyquist limit is common in digital imaging systems. One may well ask
whether our analysis of Shannon interpolation applies in undersampled systems.
The short answer is “Yes.” Undersampling aliases signals into the reconstructed
bandwidth but does not reduce the MTF. This is illustrated in Fig. 7.8, which
shows sample data and the reconstructed signal for various phase shifts for a signal
at uo ¼ 1.5 Nyquist. As expected, the signal reconstructs faithfully the aliased signal
corresponding to the frequency 20.5 Nyquist.

While mindful of the fact that the ideal display image is interpolated from
measurement data, we find direct visualization of the measured data sufficient in

Figure 7.8 Measurement samples and reconstructed signals for a harmonic signal at
u0 ¼ 1.5 Nyquist.
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the remainder of this section. Figures 7.9 and 7.10 present simulated measurement
data for various sampling rates. The object field is illustrated at top. The second
row illustrates the image as lowpass filtered by a diffraction limited incoherent
imaging system. The third row is a discrete representation sampled at
D ¼ (lf =#)=2. The fourth row is “rect” sampled with 100% fill factor at

Figure 7.9 Optical and pixel filtering in incoherent imaging systems.

264 SAMPLING



D ¼ lf =#. The fifth row is 4� undersampled. Aliasing in the fourth and fifth rows
causes low frequency modulation to appear where higher frequencies are present in
the object. While these figures clearly illustrate aliasing and loss of contrast as the
sampling rate falls with fixed field of view and magnification, selection of a sampling
rate for practical systems is not as simple as setting D ¼ (lf =#)=2. In fact, most current
digital imaging systems deliberately select D . (lf =#)=2.

Ambiguity and noise are the primary factors limiting the fidelity with which one
can estimate the true object from measurement samples. Ambiguity takes many
forms and becomes increasingly subtle as we move away from isomorphic imaging
measurements, but for the present purposes aliasing is the most obvious form of

Figure 7.10 Cross sections of the images shown in Fig. 7.9.
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ambiguity. Barring some prior knowledge regarding the spectral structure of an
image, one cannot disambiguate whether low frequencies in the fifth row of
Fig. 7.9 come from actual object features or from aliased high-frequency features.

However, aliasing is by no means the only or even the primary barrier to high-
fidelity object estimation. One may often choose to tolerate some aliasing in favor
of other system parameters, particularly given that the optical transfer function is
itself highly attenuated in the aliasing range.

We begin exploring the impact of noise by estimating the strength of the signal as
a function of sampling period. Figure 7.11 shows an imaging system mapping an
object at range R onto an image. An object patch of size d � d is mapped onto a
focal plane pixel, which we assume to be of symmetric size D � D. This means
that the magnification of the system is D=d ¼ F=R. In remote sensing systems d
is called the ground sample distance [75]. Letting P represent the mean object irra-
diance, the mean signal power from the ground sample patch passing through the
entrance aperture A is Pd2A2=R2. The mean signal measured from a single focal
plane pixel is thus

kgnml ¼ Pt
d2A2

R2
¼ Pt

D2

( f =#)2 (7:14)

where t is the pixel integration time. This simple result indicates a tension between
high signal values obtained via a large pixel pitch and high resolution obtained via a
small pixel pitch. No such tension is evident for the f/#, however, where small
values are universally desirable. Small f/# is associated with aberration and
spatial variance in the optical MTF, however, so optical design will ultimately
need to balance optical processing (to achieve small f/#), computational proces-
sing, and signal values.

For a photon noise–dominated system the signal of Eqn. (7.11) corresponds to a
mean pixel SNR of

SNR ¼ kgl
sg
¼

ffiffiffiffiffiffiffiffiffi
hPt

hv

r
D

f=#
(7:15)

Figure 7.11 Imaging geometry showing ground sampling distance.
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In some cases t may be a function of D; for example, if the total focal plane readout
bandwidth remains constant then t is proportional to D2. Most often, t is determined
by the frame rate needed to avoid motion blur in the scene. We assume that each pixel
integrates for essentially the full frame period. This is not possible for all types of
focal planes, and again the effective integration time may depend on the pixel
pitch and density.

A thermal noise dominated system yields

SNR ¼ D�P
ffiffiffi
t
p D

( f=#)2 (7:16)

The effect of Poisson noise on the sampled data is illustrated in Fig. 7.12, which
shows the sampled images of Fig. 7.9 with simulated photon noise added. The con-
trast and uniformity of the subsampled images are better than for the critically
sampled data, indicating that for low photon fluxes better image metrics may be
obtained with larger pixel pitch. Of course, for Poisson noise one could achieve
the advantage of a larger pitch adaptively by binning adjacent pixels or using more
advanced forms of computational filtering. A larger pixel pitch offers diverse benefits
to the focal plane array designer, however.

Figure 7.12 The sampled images of Fig. 7.9 with Poisson noise added under the assumption
that at critical sampling kgnml ¼ 200 electrons.
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The potential advantage of a larger pixel pitch is less clear for Johnson noise, as
illustrated in Fig. 7.13. While the SNR scaling as a function of D is the same for the
two cases, Johnson noise is uncorrelated with the image structure and tends to
wash out high-contrast high-frequency features. While Poisson noise is related to the
signal value and Johnson noise is related to the detector area, multiple noise sources
may be considered that are not correlated to the signal value or to D. For noise
sources independent of D, such as read or 1/f noise, there may be little cost in going
to finer pixel pitches.

7.3 COLOR IMAGING

As discussed in Chapter 6, complete description of the optical field requires
consideration of multidimensional coherence and spectral density functions. The
power spectral density distributed across a 2D image plane, S(x, y, l), is the simplest
example of a multidimensional optical distribution. A 3D image of the power spectral
density is commonly termed an optical data cube. The optical data cube consists of

Figure 7.13 The sampled images of Fig. 7.9 with Johnson noise added with a variance of 5%
of the mean signal.
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a stack of 2D images with each image corresponding to an object distribution at a
particular wavelength.

This section generalizes the sampling model of Eqn. (7.4) to spectral images. Our
initial goal is to understand how to generate measurement samples. The problem we
confront is that, while the spectral data cube is distributed over 3D, available detectors
sample distributions over 2D detector arrays. The most common strategies for over-
coming this problem are as follows:

1. Interlacing diverse spectral projections of the data cube across a 2D array.
This approach produces the measurement model

gnm ¼
ð ð ð ð ð

f (x, y, l)h(x0 � x, y0 � y, l)tnm(l)

� p(x0 � nD, y0 � mD) dx0 dy0dx dy dl (7:17)

The spectral sampling function tnm(l) is encoded at different pixels by placing
microfilters over each physical pixel or by application of coding masks.

2. Temporally modulating the spectral structure of the pixel response. This
approach produces the measurement model

gnmk ¼
ð ð ð ð ð

f (x, y, l)h(x0 � x, y0 � y, l)

� p(x0 � nD, y0 � mD, l)tk(l) dx0 dy0dx dy dl (7:18)

where tk(l) is a spectral filter and k indexes measurement time. Temporal
modulation may be implemented interferometrically or by using electrically
tunable spectral filters.

3. Temporally modulating the field of view. For example, the “pushbroom” strat-
egy isolates a single spatial column of the object data cube by imaging on a slit
and then disperses the slit spectrally as described in Section 9.2. The measure-
ment model for this approach is

gnmk ¼
ð ð ð ð ð

f (x� kD, y, xþ al)h(x0 � x, y0 � y, l)

� p(x0 � nD, y0 � kD, l)t(x� kD) dx0 dy0dx dy dl (7:19)

Temporal modulation and pushbroom sampling each measure a plane the 3D
data cube in timesteps indexed by k. A narrow pass temporally varying filter
measures the color plane f (x, y, l ¼ kDl) in the kth timestep. The pushbroom
strategy measures the spatio-spectral plane f (x ¼ kD, y, l) in the kth timestep.

4. Multichannel spatial sampling separates the optical signal into multiple detec-
tor arrays and measures multiple images in parallel. For example, a prism
assembly can separate red, green, and blue channels for parallel image capture.
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There are advantages and disadvantages to each spectral image sampling strategy.
The interlaced sampling approach is relatively simple and produces compact imaging
systems but gives up nominal spatial resolution. The temporal modulation strategy
gives up temporal resolution on dynamic scenes. Spatially parallel sampling requires
multiple focal planes, relatively complex optics, and advanced algorithms for
multiplane registration and data cube integration.

The most common approach to spectral imaging is an interlaced imaging strategy
using three different microfilters over a 2D detector array to produce the familiar RGB
(red–green–blue) spectral images of “color cameras.” This strategy is based on the
Bayer filter, consisting of a 2D array of absorption filters. Exactly one such filter is
placed over each sensor pixel. Denoting the red filter as R, the green filter as G,
and the blue filter as B, the Bayer filter assigns microfilters to pixels in the pattern [16]
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(7:20)

Motivated by the peak in the human visual response to green, the Bayer filter collects
twice as many green samples as red and blue. Many details related to human vision
may be considered in the measurement and display of color images.

The Bayer system collects the three color planes:

gr
nm ¼

ð ð ð ð ð
f (x, y, l)h(x0 � x, y0 � y, l)

� tr(l)s(x0 � 2nD, y0 � 2 mD) dx0 dy0dx dy dl (7:21)

gg
nm ¼

ð ð ð ð ð
f (x, y, l)h(x0 � x, y0 � y, l)

� tg(l)s(x0 � nD� mD, y0 � nDþ mD) dx0 dy0 dx dy dl (7:22)

gb
nm ¼

ð ð ð ð ð
f (x, y, l)h(x0 � x, y0 � y, l)

� tb(l)s(x0 � 2nD, y0 � 2 mD) dx0 dy0 dx dy dl (7:23)

tr(l) is the filter transmittance as a function of wavelength for the red spectral
channel; similar filters are assumed for the green and blue channels.

The effect of interlaced sampling can be visualized using the lattices of Fig. 7.14.
The sampling lattices are the spatial maps of the measurement points. The lattice
vectors define unit steps from one sampling point to the next. For a monochrome
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imager, the lattice vectors are Dix and Diy. For the Bayer filter, the red and blue
sampling lattice vectors are 2Dix and 2Diy. The sampling lattice vectors for the
green image are Dix þ Diy and Dix � Diy.

The STF for the red, green, and blue images is ĥ(u, v)̂s(u, v), the same as for a
monochromatic imager, and the discrete Fourier transforms of Eqns. (7.21), (7.22),
and (7.23) produce periodically replicated copies of the image spectra, as in
Eqn. (7.11). The Fourier space unit cells for the red, green, and blue images differ
as a result of the different sampling periods.

As illustrated in Fig. 7.15, reduced sampling rates for the color planes shrink the
aliasing (Nyquist) frequency limit. The limit for the red and blue channels is reduced
by a factor of 2. The aliasing window for the green data plane is reduced by a factor of

Figure 7.14 Sampling lattices for interlaced color imaging.

Figure 7.15 Fourier space aliasing limits for Bayer sampling.
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and rotated by 458. Along the u and v axes the aliasing limit is the same for the
green and monochrome images, while along the u ¼ v diagonal the aliasing boundary
for the green is half the monochrome limit.

At the simplest level, image interpolation for the interlaced color capture system
proceeds in the same way as for the monochrome system. The uniformly sampled
data in each color plane are used to interpolate a finer display sample grid for that
color plane, and then the RGB planes are stacked to produce a color image. Ideally,
the interpolated signal resolution and structure are chosen to match the display device.

Since the aliasing limit on the reciprocal lattice is reduced for interlaced color
imaging, the effective spatial resolution also decreases. One wonders, however, if
this reduction is justified. In independently reconstructing each color plane, one
implicitly assumes that each color plane is independent. We know empirically,
however, that this is not true. If the planes were independent, then the image in the
red channel would not tend to resemble the image in the blue channel. In practice,
red, green, and blue planes in an RGB image tend to look extremely similar. If we
can utilize the interdependence of the color planes, perhaps we can obtain spectral
images without loss of spatial resolution. To explore this possibility, however, we
need to generalize our sampling models (Section 7.5) and develop nonlinear signal
estimation methods (Section 8.5).

While we had to work through a simple challenge to sample the 3D data cube on a 2D
plane, we have been able with interlaced measurement to maintain isomorphic sampling
in the sense that each measurement gnm corresponds to a sample point in the 3D spatio-
spectral data cube. Such isomorphisms are not always possible, however, and even when
possible, they are not always a good idea. For example, if we choose the filters ti(l) not as
simple RGB filters but with some more complex multichannel response, we can increase
the light sensitivity and perhaps the spatial resolution of the imager.

7.4 PRACTICAL SAMPLING MODELS

In practical cameras, transduction of an optical signal consisting of the irradiance or
power spectral density incident on a focal plane [ f (x) in Eqn. (7.1)] to a discrete array
of analytical samples occurs through a sequence of embedded sampling and proces-
sing steps. The details of these steps differ based on the nature of the focal plane and
the application. As an example, typical consumer visible light imaging systems apply
the following steps in readout circuitry:

1. Sensor Data Readout.

2. Black-Level Correction and Digital Gain. Black-level correction subtracts the
mean dark current from the readout prior to amplification.

3. Bad Pixel Correction. A small percentage of pixels, especially in microbolo-
meter and active pixel cameras, are defective because of manufacturing errors.
These pixels are identified and data from them are dropped for the life of the
focal plane. Rather than return a null for the bad pixel data, the readout circuit
interpolates a value from neighboring pixels.
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4. Green–Red/Green–Blue Compensation. The 3D structure of color filters and
microlenses induces crosstalk between pixel values. A difference in the sen-
sitivity of green pixels horizontally adjacent to red and green pixels horizon-
tally adjacent to blue is one aspect of this crosstalk. Statistical properties of the
crosstalk are calibrated and used to estimate true signal values.

5. White Balance. The filter response and detector quantum efficiency differ for
red, green, and blue channels. The known response is used to adjust estimated
signal values.

6. Nonuniformity Correction. Pixel responses are nonuniform across arrays
because of slight variations in manufacturing parameters. Since fixed
pattern noise may vary as a function of temperature and other environmental
conditions, and since accurate characterization is challenging, it is difficult to
completely eliminate this effect. However, it can be roughly characterized and
is corrected on readout.

7. Antishading. As discussed below, spatially varying gain is applied to correct
radial variations in the image brightness due to the microlens array and
aberrations.

8. Denoising. Processing to this point reflects corrections due to known system
characteristics. Denoising uses strategies discussed in Section 8.5 to remove
image features due to random fluctuations or uncharacterized system
variations.

9. RGB Interpolation. Simple algorithms interpolate the RGB image from the
Bayer sampled measurements. More sophisticated approaches may apply non-
linear inference strategies discussed in Section 10.6.

10. Image Enhancement. Digital contrast and brightness correction, high- or
lowpass filtering, deblurring and other high-level enhancements may be
applied to image data prior to final readout.

As one might expect from this complex array of processing steps, the final digital
signals may not be quite linear in the irradiance or “radiometrically calibrated.” As
discussed in Section 5.7, pixel-level analog–digital signal transduction remains
under active development. We will generally neglect the full complexity of signal
transduction in the remainder of this text, but given our focus on optical system
design and analysis, it is worth commenting here on the impact of optical prefilters
on the sampled signal.

Microlens arrays are used to increase the effective fill factor of focal plane arrays.
Figure 5.12 shows cylindrical lenslets consistent with interline CCD readout; in
general, microlens arrays will be patterned in two dimensions to match photodiode
distributions on active pixel arrays. The geometry of a microlens array is illustrated
in Fig. 7.16. The microlenses are affixed to a focal plane array with photodiode
cross section d. The microlens pitch matches the pixel pitch D. The microlens
focal length is F. The goal of the microlenses is to collect as much light as possible
onto the photodiodes. Of course, we know from the constant radiance theorem gen-
erally and from Eqn. (6.53) specifically that there are limits on how much a lens can
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do to localize partially coherent light. If the image striking the microlens array is inco-
herent, then the microlenses cannot increase the radiance on the photodiodes.

We saw in Eqn. (6.30) that the coherence cross section of an incoherent image is
approximately lf=#. According to Eqn. (6.53), the spectral density on a photodiode
at the focal plane of the microlens is the Fourier transform of the image cross-spectral
density. With reference to Eqn. (6.30), we model the cross spectral density on the
microlens aperture as

W(Dx, Dy, v) ¼ S(v)jinc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
lf=#

 !
(7:24)

The Fourier transform produces a focal spot with cross section F=f=#. This cross
section is less than photodiode cross section if the

f=# � F

d
(7:25)

Figure 7.16 Shading due to microlenses. Field curvature at the focal plane causes microlens
focal spots to shift in scale and position across the field, leading to variation in quantum
efficiency.
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If we set the microlens focal length to the pixel pitch, efficient light collection limits
the system f=# to D=d, for example, 1 divided by the square root of the focal plane fill
factor without the microlenses. A fill factor of 50%, for example, would require at
least f=1:4 optics to take full advantage of the microlenses. It is not uncommon for
this effect to limit practical cameras to f =2 optics.

On the other hand, one can imagine sub-f/1 microlenses achieving modest
improvements in effective fill factor even for low-f=# objective optics. An additional
issue with the microlenses, however, leads to more trouble if the lenses are effective
in concentrating the irradiance. Microlenses, along with the 3D structure of the color
filters and the detector array, also affect the image measurement model through
shading. Typical imaging systems produce field curvature across the objective lens
focal plane, as illustrated on an absurd scale in Fig. 7.16. Light at the edge of the
field may undergo phase modulation that makes it less coherent (increasing the
size of the microlens focal spot) and that shifts the position of its focal spot on the
photodiodes. We illustrate this effect in Fig. 7.16 by showing the light distribution
from the objective focal spot shifted relative to the photodiode when relayed by
the microlens at the edge of the field. Shading reduces the effective fill factor and cor-
responding quantum efficiency toward the edges of the field. The net effect may be
modeled by a shift variant pixel mask tnm such that

gnm ¼ tnm

ð1

�1

ð1

�1

ðX=2

�(X=2)

ðY=2

�(Y=2)

f (x, y)h(x0 � x, y0 � y)

� s(x0 � nD, y0 � mD) dx0 dy0 dx dy (7:26)

Figure 7.17 Effect of shading on measured data. The image in (a) is “true,” and in (b) the
image shows shading simulated by a Gaussian pixel mask.
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Figure 7.17 shows shading in simulated data with a pixel mask tnm ¼
exp(�n2=s 2)exp(�m2=s 2). Assuming that the affect is well characterized, shading
may be ameliorated in pixel nonuniformity correction. One may also consider objec-
tive lens design and microlens or focal plane layouts to reduce this effect.

The 3D structure of the focal plane optics and optoelectronics introduce additional
effects, known broadly as pixel crosstalk. Scattering at the microlens and color
filter junctions and on the focal plane, as well as charge diffusion between pixels,
causes crosstalk. These effects may be modeled in the pixel sampling function
s(x, y), which may be space-variant across the array and may overlap between
color channels.

7.5 GENERALIZED SAMPLING

This section considers in more detail the spaces and generalized sampling strategies
introduced in Section 3.9. Our goal is to understand the philosophy of modern
measurement design as applied to optical systems and to explore challenges and
opportunities in generalized sampling. The term “generalized sampling” dates to
Papoulis’ work showing that one can reconstruct a bandlimited function from
sub-Nyquist rate samples over multiple nonredundant narrowband channels [194].
As discussed in Section 10.4, Papoulis’ result is the basis for digital superresolution
in multiple aperture imaging systems.

A discussion of modern generalized sampling begins with concepts of dimension-
ality. An optical field is a distribution f (x) over D dimensional space, where x [ RD

and f assumes a scalar value in R or C at each value of x. Example values of D are 1
for a spectrum, 2 for a monochrome image, 3 for a color image, and 5 for the cross-
spectral density on an aperture. We refer to f (x) as the object field (or simply the
object) in this text and to RD as the object embedding space. A digital image of
the object is a discrete representation of f (x), f [ RN or f [ C

N . N is the number
of data values in the digital image.

Mechanisms by which the continuous distribution f (x) is mapped onto a discrete
list were introduced in Chapter 3. Typically, f is an ordered list with coefficients fn

where n [ ND assumes N distinct values. In the case of Shannon or wavelet sampling,
the order parameter n corresponds to a spatial position in RD and, potentially, wavelet
order. For analytic samples, f may alternatively describe the representation of f(x) in
special functions, such as the Hermite–Gaussians, with an index parameter correspond-
ing to order alone.

In the remainder of this section, we focus on ordered representations of f.
Although we recognize that one may choose to interpolate this data for final
display, we refer to the components of f in this representation as “pixels.” For an
ordinary set of data values the order may not matter, but in an image one assumes
that adjacent pixels are somehow related. For a 1D signal, the coefficients of f, fn,
are indexed by a scalar parameter n with the assumption that fn and fn+m are statisti-
cally dependent for m less than some coherence length.
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7.5.1 Sampling Strategies and Spaces

Repeating Eqn. (7.3), optical sampling strategies satisfy the measurement model

g ¼ Hf (7:27)

where g [ RM and H is an M � N matrix. The measurement data g may also be an
ordered list, but the dimension of the measurement order parameter may be different
from that of the display order parameter. The measurements do not necessarily have a
natural display space, but in the following discussion we assume that the coefficients
of g are gng with ng [ NDg such that ng assumes assumes M distinct values. Dg is the
“embedding dimension” for the measurements.

Sampling strategies may be categorized in terms of the relationship between the
object and measurement embedding spaces as follows:

† Conventional Measurement: Dg ¼ D. This case covers the traditional under-
standing of Shannon sampling (e.g., the actual signal value of f is measured
at fixed points in RD). It also covers Shannon sampling on linear transform-
ations of f (x), such as the Fourier or Radon transform. The most common con-
ventional sampling model is

gn ¼
ð

f (x)h(x� Dn) dx (7:28)

† Dimension Increasing Measurement: Dg . D. This case corresponds to
Papoulis’ multiband sampling. As an example, imagine a system sampling
wavelet coefficients of f. Measurements in such a system are indexed by pos-
ition in the object embedding space as well as wavelet level. The dimension
of the measurement embedding space is twice the dimension of the object
embedding space. Multiple aperture imaging, as discussed in Section 10.4, is
a dimension increasing system. A typical sampling model is

gnm ¼
ð

f (x)hm(x� Dn) dx (7:29)

† Dimension Reducing Measurement: Dg , D. The Bayer sampling strategy of
Section 7.3 is an example of this case; the 3D optical data cube is projected
onto an interlaced 2D array of measurements. A typical sampling model is

gn ¼
ð

f (x)h(Px� Dn, (I� P)x) dx (7:30)

where n [ NDg . P is a projection operator selecting a subspace of RD. The
sampling kernel is shift-invariant on this subspace, but shift-variant in
the complementary subspace corresponding to I–P. For example, Bayer
sampling uses regularly spaced samples in each color plane, but integrates
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shift-variant projections along the color axis. We discuss more advanced spec-
tral projection and image inference strategies for dimension reducing measure-
ments in Section 10.6.

† Dimensionless Measurement: Dg ¼ M. In this case g is not ordered.
Measurements consist of global projections of f, and the effective dimension
of the measurement embedding space is M. The measurement model is

gn ¼
ð

f (x)hn(x) dx (7:31)

Each of these sampling strategies is represented in the physical examples presented in
this text. While each may include diverse and sophisticated kernels, typical kernels,
and design goals differ in systems implemented to date. In the typical conventional
system the sampling function integrates the signal using a compact kernel. In
dimension increasing systems physical constraints such as difficulty in obtaining
sufficiently small pixel pitch or temporal bandwidth lead one to use multiple non-
degenerate sampling kernels, again spanning compact support. Dimension reducing
systems may apply a sampling kernel with unbounded support over one dimension
on a lattice with finite support over other dimensions. For example, the sampling
kernel may have compact spatial support but be unbounded in time or color. The
typical dimensionless kernel has unbounded support in all embedding dimensions.

Following a relatively quiet period between Shannon’s work in the 1940s, research
in sampling theory has been vibrant since the mid-1970s. Powerful new results have
been obtained very recently in the development of compressive sampling based on
dimensionless measurements. In view of the continuing rapid development of this
field, our discussion here will necessarily be incomplete. We hope, however, to
provide the reader with insight into how sampling structure shapes optical sensors.

A sampling system is compressive if the number of signal values inferred from the
data, N, is greater than the number of measurements, M. As illustrated in Figs. 7.6 and
7.7, interpolation to create more display signal values than measurement values is
always a good idea. In this sense, compressive sampling has a very long history in
sampling system design. More generally, one may design the conventional sampling
kernel to work in combination with image constraints to enhance decompressive
inference [3]. As an example, Fig. 7.18 illustrates the use of a multilobe PSF to
enable decompressive image restoration. This particular example is not physically
accurate in that the model PSF consists of random discrete points, but it illustrates
the general concept well. The point cloud at the upper left of Fig. 7.18 is convolved
with this PSF, which we assume models an optical system. The convolved image is
detected by an array under the assumption that each 4 � 4 block of image pixels maps
onto a single detector image. We refer to this process as downsampling, which is
identical to fourth-order Haar averaging. The simulation illustrated in Fig. 7.18
then uses the Matlab function deconvlucy (see Section 8.5) with 4� upsampling.
Surprisingly, the upsampled image corresponds to the original input.

Compressive sampling may occur with each type of generalized sampling. Sensor
system design must consider both the structure of measurement sampling and the
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process of signal inference from sample data. Most of our discussion of signal infer-
ence is reserved for Chapter 8, but general comments on the nature of inference algor-
ithms are helpful in comparing sampling strategies. The easiest case is, of course,
conventional Shannon sampling. With regularly sampled Shannon data, the display
signal consists of either the samples themselves, as in Fig. 7.6, or, more accurately,
interpolated sample data as in Fig. 7.7. As originally envisioned, dimension increas-
ing measurement is designed for well-conditioned linear transformations of Shannon
data. Such transformations may be inverted using methods described in Section 8.2.1
to obtain signal representation samples. More recent studies, however, have demon-
strated utility in simple compressive sampling and inference strategies for multi-
channel sampling systems [202,203].

Dimension reducing and dimensionless data are not generally well conditioned for
signal estimation on the object embedding space. These systems rely on the nonlinear
inference algorithms described briefly in Section 8.5. Before we consider how these
data are inverted, however, it is useful to consider why we believe that they may be

Figure 7.18 Image restoration from downsampled data using a blurred PSF. The point
cloud in the original image is convolved with the PSF at lower right prior to downsampling
by a factor of 4 in each dimension. Upsampled Richardson–Lucy deconvolution is used to
estimate the restored image at lower left. All images were zeropadded for processing. The
zero padding is retained in the downsampled image but has been cropped for the original
and restored images.
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invertible. Before doing this, we must consider more carefully the meaning of well-
conditioned.

Selection of the sampling kernels h(x, n) and of the signal representation basis
determine the nature of the signals that can be characterized by a sensor system.
As discussed in Section 3.6, a set of functions h(x, n)f g generates a vector space
VH consisting of all linear superpositions of the sampling kernels. Each sampling
function is a point in the vector space. Measurement sampling consists of projecting
the signal f (x) onto VH .

In generalized sampling systems, one chooses a basis fi(x)f g for signal display.
The display signal f [ L2(RD) is represented as

f (x) ¼
X

i

fifi(x) (7:32)

We refer to the vector space generated by the display basis as the “canonical” space
Vc. The image or spectrum represented on Vc is the signal that an end user accepts as
“the image.”

Ideally one expects that VH , Vc, in which case all measurement data may be
accounted for in estimating the display signal. In this case, we may assume that the
analytical sample vector f in Eqn. (7.27) has components corresponding to the
display coefficients fi from Eqn. (7.32) (although one may sometimes choose to
store analytic samples on a different basis). The measurement matrix H in this
case has coefficients

hni ¼
ð

h(x, n)fi(x) dx (7:33)

It is also helpful to define the vector space V?, corresponding to the null space of H
on Vc and the set Vf , corresponding to points in Vc that are possible objects. Properties
of V? include

VH > V? ¼ 0

VH � V? ¼ Vc
(7:34)

Vf , Vc is not a vector space because it violates linear superposition; the sum of two
images is not necessarily an image. As is the case with art, it is difficult to explicitly
define Vf . One may imagine a “I know it when I see it” hyperfunction capable of clas-
sifying elements of Vc as “images” or “not images.” Such a hyperfunction is not
usually available, but in most cases one is confident in claiming that elements of
Vf are sparse on Vc and almost all elements of Vc are not in Vf .

The origin of aliasing is elegantly described in terms of the spaces VH , Vc, V?, and
Vf . For conventional sampling systems reconstructing the optical and pixel bandlim-
ited image of Eqn. (7.5) the sampling kernel is d(x� nD) and the display basis is sinc
(x=D� i). The measurement matrix H is the identity, and Vc is the space of functions
with bandlimit 1=2D. One may alternatively assume a sampling kernel rect (x=D� n),
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which reflects the measurement model of Eqn. (7.4). With this choice, the measure-
ment matrix is no longer an identity and the analytic samples are interpolated values
of g(x) rather than f (x). Note that the sampling function is not bandlimited in either
case, d(x) � VB and rect(x) � VB. This means, of course, VH å Vc.

In general, we may separate VH into VHC ¼ VH > Vc and an orthogonal component
VH �C. A particular signal f (x) may be similarly decomposed as

f (x) ¼ fc(x)þ f�c(x) (7:35)

where fc(x) [ Vc and f�c(x) is in the orthogonal complement of Vc in L2(RD).
A measurement takes the form

g ¼
ð

h(x)f (x) dx

¼ Hcfc þH�cf�c (7:36)

where h�c,ij ¼
Ð

hi(x)f�c, j(x) dx and f�c, j(x) is a basis vector for VH �C. g is an
M-dimensional vector and Hc under conventional sampling is an M � M matrix.
H�C is an M � N matrix with N dependent on the number of expansion coefficients
used to represent f�c. While somewhat more advanced methods, as discussed in
Section 8.2.1, are used in practice, formally one inverts Eqn. (7.36) as

H�1
c g ¼ fc þH�1

c H�cf�c (7:37)

The rightmost term in Eqn. (7.37) is the aliased signal; by choosing a display basis
that does not fully capture the signal or the sampling functions, one naturally
induces aliasing artifacts. Where we have previously encountered aliasing only in
the context of Shannon sampling, Eqn. (7.37) generalizes aliasing analysis to any
set of sampling and display functions. The Whittaker–Shannon sampling theorem
assumes that f�c ¼ 0, thus eliminating the aliased display component. Aliasing is
avoided in general if f (x) [ Vc or H�c ¼ {0}. Aliasing is unavoidable if neither con-
dition is satisfied.

Aliasing arises when VH contains elements not in Vc. The complementary problem
that Vc contains elements not in VH is far more common and troubling in optical
sensor systems. In this case, f [ Vc may be decomposed as

f ¼ fH þ f? (7:38)

where fH [ VH and f? [ V?. The measurement process projects f onto VH

according to

g ¼ HfH (7:39)

The measurement samples g may be processed to estimate analytical samples fH , but
no information is available about f? unless prior knowledge can be applied to infer

7.5 GENERALIZED SAMPLING 281



data in the null space from data in the range. Display signals may consist of fH or of
f � Vc calculated using prior constraints.

Projection onto VH allows us to separate the processes of measurement, analysis,
and signal estimation. The measurement process is likely to characterize f well if
f � V?. If f falls completely in the null space, then no information is obtained
from the measurement. The relationship between the projection of f on VH and the
utility of the measurement is captured in the restricted isometry property (RIP) of
Candes and Tao [42]. H satisfies RIP if the following relationship applies for
nearly all f:

(1� dk)jjfjj2 � jjHfjj2 � (1þ dk)jjfjj2 (7:40)

One assumes that the sampling functions hn(x) are orthonormal in Eqn. (7.40), in
which case the rows of H will also be orthonormal. The basic idea of the RIP is
that if the Euclidean length of the signals are preserved, then the signals cannot lie
in the null space of H and that measurement cannot reduce the phase space of the
signal. If dk 	 1, then Eqn. (7.40) simply implies that f [ VH . Candes and Tao
define RIP for f sparse on some basis and allow nonnegligible values of dk. To under-
stand the idea of an incompressible phase space, imagine that f1 and f2 are distinct
prospective signals. For the measurement system to distinguish between f1 and f2,

we require that jjH( f1 � f 2)jj2 
 jj f1 � f2jj2. The RIP ensures that this condition
is satisfied.

The RIP is a measure of the conditioning of the measurement system. If this prop-
erty is satisfied for dk 	 1, then H is well conditioned for estimation of f [ Vf .
More detailed analysis of conditioning and VH using singular value decomposition
is presented in Section 8.4. For the present purposes, it is sufficient to note that
f � V? suggests that inversion is possible. Inversion strategy depends on the
value of dk. For dk 	 1, linear inversion of Eqn. (7.27) provides a good estimate
of f. For finite dk, nonlinear estimators are applied to find f? given fH . In each
case, the system design challenge is to codesign H and the image estimation
algorithm to achieve high-fidelity imaging. We consider linear and nonlinear
approaches in turn.

7.5.2 Linear Inference

Linear projection attempts to maximize the overlap between VH and Vf. The estimated
signal in this case is the projection of f (x) onto VH. Karhunen–Loeve decomposition,
also known as principal component analysis (PCA), is a basic linear technique for
linear projection. PCA calculates a set of basis vectors that can be used to approxi-
mate f. The PCA estimate achieves the least mean square error in estimating f
while maximizing the variance of VH for a fixed number of measurements [129].
The number of measurements may be much smaller than N, so encoding the data
as linear combinations of the basis vectors transforms them to a lower-dimensional
space. This dimension reduction can be used to minimize sensor resources and band-
width and to improve visualization and feature extraction.
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Principal components are data-dependent vectors. Given a representative set of
signal vectors F ¼ {f1, f2, . . . fQ}, the principal components (or K–L vectors) are
the eigenvectors of the covariance

P
¼ (F� �f)(F� �f)0, where �f is the mean

signal. The principal components are ordered over the magnitude of their eigen-
values, meaning that the first principal component corresponds to the largest eigen-
value. Projection of a given signal fi onto the PCA basis takes the form

fiH ¼ H0H( fi � f̄ )þ f̄ (7:41)

where H in this case is an M � N matrix with each row corresponding to a principal
component. H is formed from the principal components corresponding to the M
largest eigenvalues.

Imaging systems based on compressive linear projections are considered by
Neifeld and Shankar [186]. Figure 7.19 shows an example of an image training
set. The face images were divided into 8 � 8 pixel blocks; each block was used as
an example of a 64-element signal vector. The 16 strongest features arising from
KL decomposition of the covariance are shown in Fig. 7.19(b). One may obtain
image fidelity improvements in addition to compressive sampling advantages due
to feature-specific sampling. As an example, Fig. 7.20 illustrates reconstruction of
a face from conventional pixel sampling and from KL feature-specific sampling in
the presence of additive white Gaussian noise.

Figure 7.19 (a) Faces used for training KL vectors in a feature specific imager; (b) first 16
principal components for N ¼ 64 block representation space. (From Neifeld and Shankar
[185] # 2003 Optical Society of America. Reprinted with permission.)
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The primary challenges of PCA-based imaging are that Vf may not be sufficiently
characterized to enable principal component estimation, that the principal components
(which may contain negative components) may not be easily measured with optical
hardware, and that Vf may not be compact on a linear space. Confronted with these
challenges, the system designer seeks to to minimize the cost of measurement within
physical constraints while maximizing system performance. Typical physical
constraints focus on the range and distribution of coefficients hij. With irradiance
measurements, for example, one often requires 0 � hij � 1. On the other hand,
designers may effectively achieve negative weights by double sampling and electronic
processing as discussed in Section 9.3.

Neifeld and colleagues describe and compare several linear projection strategies in
addition to KL decomposition, including measurement matrices based on Hadamard
and wavelet decompositions. They also discuss sampling based on independent com-
ponent analysis (ICA). ICA uses linear sampling but applies nonlinear techniques in
identifying data-dependent features. The sampling strategy outlined in Ref. 185 is a
block-based dimension reducing approach, but the analysis in that paper and sub-
sequent work (especially Ref. 185) applies as well to dimensionless design.
Various alternative feature design strategies may be considered to match physical
constraints. For example, Hamza and Brady [109] describe compressive spectroscopy
based on “nonnegative matrix factorization,” which maintains nonnegativity in both
measurement vectors and estimated signals.

7.5.3 Nonlinear Inference and Group Testing

Nonlinear signal inference enables us to estimate f (x) [ Vc even when VH does not
span Vc. More specifically, we estimate fH(x) [ VH and f?(x) [ V? such that

Figure 7.20 Reconstructed images using (a) conventional imaging and (b) KL feature-
specific imaging. White Gaussian noise is added to both images, at this noise level the
feature-specific imager produces lower mean-square error due to filtering on significant princi-
pal components. (From Neifeld and Shankar [185] # 2003 Optical Society of America.
Reprinted with permission.)
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fH(x) satisfies g ¼ Hf. The null space component f?(x) is inferred from fH(x) using a
“prior” constraint on the signal. A prior expresses some knowledge regarding the
nature of the signal known even before the measurement is made. Common
priors include

† Knowledge that the signal is nonnegative
† Knowledge that nonzero signal values are sparse
† Knowledge that the signal is smooth
† Knowledge of the principal components of the signal class
† Knowledge of a probability density function on signal values or signal features

Given a prior, one infers the signal from joint linear estimation and prior enforcement.
This approach is particularly attractive in view of the fact that since Vf is not a linear
space, no linear estimation strategy can be efficient. In the ideal system only one poss-
ible signal will jointly satisfy g ¼ Hf and the prior constraint.

The two most common priors are that f(x) must be “image-like” or that f(x) must be
sparse on some basis. “Image-like” means that f (x) has some ad hoc properties associ-
ated with images, such as smoothness, local connectivity, or fractal structure. We
descibe minimum variance and deconvolution algorithms for enforcing the image-
like prior in Section 8.5. The remainder of this section focuses on sampling and non-
linear inference based on sparsity priors. Sparsity and image-like priors represent two
endpoints of a spectrum of constraints. Sparsity emphasizes the independence of each
data value on an appropriate basis, image-like priors emphasize the statistical depen-
dence of data embedded in low-dimensional spaces. One imagines that more sophis-
ticated priors combining sparsity and connectivity constraints will emerge from
continuing research.

Nonlinear sparse signal estimation is closely related to “group testing” [62].
A group testing system seeks to determine the state of a set of objects using a set
of measurements. In the current context, the objects are the elements of f and the
measurements are the elements of g. A single test, for instance, a measurement, con-
sists of a weighted sum of the elements of f, gi ¼

P
hij f j. The test is a group test

because H is not an identity. Group testing is “nonadaptive” if the outcome of one
test cannot be used to inform future tests. Adaptive group testing is somewhat
more measurement-efficient but is more difficult to implement in optical systems.
Group testing is separated into “combinatorial” systems, under which the combi-
nation of priors and code design ensures that one is logically certain to correctly
characterize f from g, and “probalistic” systems, under which one infers f from g
according to likelihood functions with some possibility of error.

The classic group testing system seeks to characterize a point object occupying
one of N positions. In imaging the object is a spatial impulse; in spectroscopy the
object is an isolated spectral feature. Naively, one might characterize such a source
by measuring all N pixels or spectral channels. Using combinatorial group testing,
however, one can characterize such a source using logd (N) measurements, where d
is the dynamic range of hij. A design for H achieving this measurement efficiency
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takes the form

hij ¼ mod floor
j� 1
di�1

� �
, d

� �
(7:42)

where floor(x) is the greatest integer less than or equal to x and i [ {1, logd N},
j [ {1, N} Plots of H for d ¼ 2 and d ¼ 4 for N ¼ 128 are shown in Fig. 7.21.
The goal of the sampling code design is to ensure that the signature associated
with each object position is unique. In Fig. 7.21(a) each column corresponds to an
object position. Taking black as 0 and white as 1, the code for the first object position
is 1111111 measured along the column. The second object position from the left cor-
responds to the code 0111111. The third column produces 1011111. The last column
on the right corresponds to the code 0000000 (producing a null measurement). In
general, an object located in position i radiating power S produces a signature Shi,
where hi is the ith column vector. 2M different signatures are produced for
hij [ [0, 1], of which 2M � 1 produce a measurable signature. Figure 7.21(b) may
be analyzed similarly for a four-level code. In this case, an object located in position
i radiating power S produces a signature also produces signature Shi, but hij is now
drawn from [0, 1, 2, 3]. The first three rows of the code sketched in Fig. 7.21(b)
produce 43 ¼ 64 unique measurement signatures. A binary code in the fourth row
drawn from h [ [3, 4] disambiguates the 64 codes into 128 states and allows
unambiguous estimation of S.

Group testing codes are particularly easy to implement in optical spectroscopy.
Figure 7.22 illustrates a spectrograph design used to implement the sampling matrices
of Fig. 7.21 by Potuluri et al. [206], who used a “measurement efficient optical

Figure 7.21 Sampling matrices for (a) a binary-coded single-object group test and (b) a four-
level dynamic range single-object testing (N ¼ 128 in both cases). Seven measurements are
sufficient to uniquely identify all object positions in the binary case, in (b) three four-level
rows and one binary row enable object localization and power estimation.
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wavemeter” to characterize a source in 256 wavelength bands with seven or fewer
measurements. The source in this case is a slit or pinhole; the goal is to identify
the wavelength of the source in logd N measurements. The collimator and frontend
grating map the source onto the spectral encoding mask such that each color
channel occupies a different transverse column; for instance, if the source power
spectrum is S(l), then the power spectrum illuminating the mask is f (x, y) ¼
S(x� al). Section 9.2 describes how a dispersive spectrograph implements this
transformation. For the present purposes it is sufficient to note that if the mask trans-
mission t(x, y) is described by one of the codes of Fig. 7.21, then the spectral density
on the plane immediately after the mask can be represented discretely as tij f j, where
f j � S(l ¼ jD=a) is the signal in the jth spectral channel. Optical components follow-
ing the mask decollimate the light to focus on an output slit, which in this case is
occupied by a detector array distributed along the y axis. The effect of the backend
optics is to sum the spectral channels transmitted by the mask along the rows such
that the measured irradiance on the ith detector is gi ¼

P
j tij f j.

Figure 7.22 Optical spectrograph for implementing group testing/generalized sampling
strategies.
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The spectrograph of Fig. 7.22 can implement any linear transformation on the
input spectrum under the constraint that 0 � tij � 1. Potuluri demonstrated the
binary codes of Fig. 7.21 as a means of minimizing the number of detectors
needed to characterize the spectrum. Minimizing the number of detectors is particu-
larly important in wavelength ranges like the near and midwave infrared, where detec-
tor cost scales linearly with the number of elements in the array. Dispersive systems
similar to Fig. 7.22 have been combined with dynamic spatial light modulators to
implement adaptive group testing [68].

The single target group testing problem is generalized in binary “superimposed
codes” introduced by Kautz and Singleton [135]. Rather than implementing
g ¼ Hf as a linear product, sensors using superimposed codes implement a logical
OR operation on gi ¼ <hij fi, where we assume that f j [ {0, 1}. Superimposed
codes uniquely discriminate up to k nonzero values of f among N pixels, effectively
allowing k 	 N possible signal components rather than just 1. To achieve this objec-
tive, the inclusive logical OR of all subsets of up to k columns of H must be mutually
distinct. A set of codewords (or equivalently H with the codewords as columns) with
this property is called a uniquely decipherable code of order k (UDk). A UD2 code for
N ¼ 64 consisting of 16 codewords is illustrated in Fig. 7.23. Up to two objects in 64
elements correspond to 2049 object states. The measurement states corresponding to
these object states are illustrated in Fig. 7.24. As with the single-object codes, the
design goal is to ensure that each object state produces a unique measurement
state. Superimposed codes have been applied in diverse signal analysis and communi-
cation applications. Zheng et al. [262] embedded the codes of Fig. 7.23 in a fiber
sensor network to track up to two individuals walking across a floor.

7.5.4 Compressed Sensing

Unfortunately, design of UDk codes is not possible for significant values of k, and the
superimposed code approach does not enable robust reconstruction of analog signal
values. It turns out, however, that probabilistic group testing enables k-sparse signal
estimation without the necessity of careful code or inference algorithm design.
Compressive sampling is a probalistic group testing method describing both the
nature of sampling codes necessary for sparse signal reconstruction and algorithms
for signal inference.

Figure 7.23 UD2 code for N ¼ 64 with 16 codewords. White corresponds to pixel value 1,
and black corresponds to 0.
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Potuluri et al. used multiscale wavelet codes in the spectrograph of Fig. 7.22 to
demonstrate probabilistic group testing for compressive spectroscopy [205,29], but the
estimated signal fidelity suffered from incomplete development of both the sampling
scheme and the inference algorithms. These issues are resolved in the compressed
sensing (CS) theory of Donoho [59], Candes and Tao [40], and Candes et al. [41]. CS
explores the estimation of sparse signals using dimensionless measurements on an “inco-
herent” sampling basis. We begin our brief exploration of CS by defining terms:

A signal f (x) [ Vc is k-sparse in the basis C of Vc if the expansion

f (x) ¼
X

i

fici(x) (7:43)

includes at most k nonvanishing coefficients fi.
The coherence between two different bases of Vc, F, and C is

m(F, C) ¼
ffiffiffiffi
N
p

max
k, j
jkfkjc jlj2 (7:44)

The coherence quantifies the largest correlation between any two elements of F
and c. If the two bases happen to share a basis vector, the coherence is

ffiffiffi
n
p

. Since
the two bases span the same vector space, the coherence cannot be 0. The range of
coherence values is m(F, C) [ [1,

ffiffiffi
n
p

]. In the case that m(F, C) ¼ 1, the bases F

and c are said to be incoherent. As an example, in the finite support approximation

Figure 7.24 Measurement states correspond to all possible object states for the code of
Fig. 7.23.
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of Section 3.7, bases of VB include the Shannon basis c j ¼
ffiffiffiffiffiffi
2B
p

sinc(2Bx 2j) and

the Fourier basis fk ¼
ffiffiffiffiffiffiffiffi
1=X

p
exp (2p ikx=X). These two bases are incoherent on VB.

Compressed sensing uses measurements on a subspace spanned by elements of F
to characterize f k-sparse on C. As a simple example, suppose that the measurement
matrix H is constructed by randomly selecting M vectors fk from F such that
H ¼

PM
m jfmlkfmj. CS theory combines k-sparsity and coherence in the following

theorem [38]:

If the representation of f is k-sparse in c and if

M � kCm(F, C) log N (7:45)

for some positive constant C, then the estimated signal

fe ¼ arg min
f
jjfjj1

such that

H fe ¼ g (7:46)

satisfies f e ¼ f with overwhelming probability.

jjfjj1 ¼
P

j jf jj is the l1 norm of the representation f of f (x) on C.
As discussed in Section 8.5, the basic strategy expressed by Eqn. (7.46) is charac-

teristic of nonlinear signal estimation from linear measurements. One augments the
requirement that the estimated signal must be self-consistent with the measured
data with a constraint based on prior knowledge. In this case, the prior knowledge
is that the signal is sparse. The brilliant insight of CS theory is a proof that k-sparsity,
low coherence measurement, and l1 minimization are linked with high probability.

Figure 7.25 Image recovery from compressively sampled data. Image (a) is formed from k ¼
25,000 nonzero Haar wavelet coefficients on an N ¼ 10242 pixel image. Image (b) shows the
averages and details of Haar decomposition. Image (c) is an exact copy of (a) reconstructed
using l1 minimization from m ¼ 70,000 samples corresponding to projections onto randomly
selected noiselet basis vectors. (From Candes and Romberg [38] # 2007 IOP Publishing,
Ltd. Reprinted with permission.)
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Figure 7.25 is an example of image sampling and restoration from compressive
samples. The representation basis, on which the image is sparse by design, is
the Haar wavelet. The noiselets described by Coifman et al. [50] are applied as
the sampling functions. The coherence between the noiselets and the Haar
wavelets is

ffiffiffi
2
p

.
Compressed sensing theory has profound implications for measurement theory

generally and for optical imaging and spectroscopy in particular. Many interesting
questions remain unanswered and unexplored, however. The theory as outlined
thus far assumes that one has prior knowledge of the basis C on which f is
k-sparse. Examples in this section and later in the text will often assume that f is
sparse on a particular wavelet basis. The selection of this basis is often arbitrary,
although “best basis” algorithms may be applied to optimize f to some image-
related prior. Clearly, where one has prior knowledge of C CS may be applied to
great effect. Examples in which f is sparse on the display basis or in which the
Fourier transform of f is sparse are more common at radio—rather than optical—
frequencies, but in such cases the “fast Fourier sampling” subbranch of CS is of
great value [91].

In the absence of precise knowledge of the sparse basis, one may wonder how to
design the measurement operator H. Guidance in this regard is provided by the
restricted isometry property of Eqn. (7.40). RIP and CS are closely related to “dimen-
sionality reduction.” The idea of dimensionality reduction is that if signals are pro-
jected onto lower-dimensional subspaces using incoherent operators, then the basic
topology of Vf, meaning Euclidean length and distance, will tend to be preserved.
Since in most imaging applications the display basis for f is not sparse (e.g.,
images are rarely like the point clouds of Fig. 7.18), the restricted isometry principle
provides a rough guide to evaluating the performance of measurement operators
without knowledge of C.

Compressed sensing theory has been directly applied to optical imaging in
the Rice University single-pixel camera [228]. As illustrated in Fig. 7.26, the Rice

Figure 7.26 Rice single-detector compressive sampling camera. A scene imaged onto a
digital micromirror array is relayed onto a single photodiode after weighting by the mirror
reflectivities. (From Takhuar et al., Computational Imaging IV, SPIE, Vol. 6065 [228].
# 2006 SPIE. Reprinted with permission.)
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camera places a digital mirror device (DMD) in an image plane. The image plane is
relayed by the mirrors onto a single photodetector, which sums the irradiance from all
relayed pixels. A basic model for the camera assumes that the jth mirror element can
be switched between a state that transmits the jth pixel to the photodetector and a state
that which prevents the jth pixel from hitting the photodetector. The irradiance strik-
ing the photodetector in the ith timestep is gi ¼

P
j hij fi, where hij [ {0, 1}. The

state of the measurement projector hij can be changed arbitrarily from one timestep
to the next to implement a full measurement g ¼ Hf .

Figure 7.27 shows an image reconstructed using CS processing on the Rice
camera. l1 minimization was implemented using the “basis pursuit” algorithm [45].
The figure assumes k-sparse representation on the Haar basis and uses random
projections with approximately half of the pixels transmitting in the design of H;
k-sparsity on the Haar basis is confirmed in Figs. 7.27(b) and (c).

In comparing dynamic range and image fidelity measures under photon counting
noise for the single-pixel camera with conventional pixel arrays, raster-scanned
imagers, and full-rank multiplex imaging systems, Duarte et al. find that the per
measurement dynamic range required by the single-pixel system is N/2 times
greater than for conventional pixel array [63]. The mean-square error (MSE) is

Figure 7.27 A 64 � 64 image reconstructed using the Rice single-pixel compressive camera:
(a) ideal image; (b) 400 largest wavelets; (c) 675 largest wavelets; (d) image on DMD; (e) 1600
measurements; (f) 2700 measurements. parts (b) and (c) show the digital image as projected
onto limited numbers of Haar wavelets; (d) is a 320 � 240 camera image of the irradiance inci-
dent on the DMD/image plane; (e) and (f) show l1 minimization constrained reconstructions
for 1600 and 2700 measurements of random pixel maps. (From Takhuar et al., Computational
Imaging IV, SPIE, Vol. 6065 [228] # 2006 SPIE. Reprinted with permission.)
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estimated at 3C2
NM times greater, where CN is a constant. The precise error of com-

pressive image estimation is somewhat difficult to estimate; however, most algorithms
outperform linear estimation limits. Section 9.3 describes a simple example compar-
ing error reduction strategies for multiplex and isomorphic imaging systems. In view
of the increased MSE, one is unlikely to prefer a single-pixel camera for applications
where pixel arrays are readily available. On the other hand, in extreme ultraviolet,
x-ray, infrared, and terahertz systems where pixel arrays are not available, the CS
approach may be attractive. Of course, one may also imagine compressive designs
even in the visible range that are somewhere in between single-pixel and full-array
sampling. Consideration of such arrays raises interesting questions involving the
relationship between sampling and pixel size.

Duarte’s analysis implicitly assumes that the light collection efficiency of the Rice
camera is equal to the collection efficiency of the pixel array. The validity of this
assumption depends on the etendue of the camera. As discussed in Section 6.6.3,
etendue must be conserved in power conserving optical systems. Since the solid
angle accepted by a camera is inversely proportional to the square of the f=#, the
etendue is proportional to

L ¼ A2

( f=#)2 (7:47)

where A is the entrance aperture diameter. The quantum efficiency of the Rice camera
for light collected onto the DMD is thus

h ¼
A2

pd( f=#)2
DMD

A2
DMD( f=#)2

pd

(7:48)

where Apd is the aperture diameter for the photodiode, ADMD is the area of the DMD,
and the f=# terms describe the collection optics for each system. In order to maintain
optical throughput, the etendue of the photodiode must equal that of the DMD,
meaning, for example, that the area of the photodiode equals that of the DMD
array or that the f=# for the photodiode is much less than that for the DMD collection
optics. In practice, the latter strategy is adopted because the input f=# accepted by the
DMD modulator is naturally modest because of the limited scan range of the mirrors.
In either case, however, the etendue of the photodiode must greatly exceed the
etendue of a conventional pixel.

The digital mirror array of Fig. 7.26 is an example of a spatial light modulator
(SLM), such as an electrically programmable transmission mask. One may imagine
building single-pixel cameras with an SLM that accepts a smaller f=# than the
DMD array, such as a liquid crystal display or a micromechanical shutter array. In
this case, h may be dominated by the ratio of the photodiode and modulator areas.
Operating in a regime where the noise equivalent power is

NEP ¼
ffiffiffiffiffiffiffiffiffiffiffi
A2Df

p
D�

(7:49)

7.5 GENERALIZED SAMPLING 293



The SNR for a single measurement of the Rice camera is

SNR ¼ D�

Apd

ffiffiffiffiffiffi
Df

p A2
pd

A2
SLM

P

¼ D�ffiffiffiffiffiffi
Df

p Apd

A2
SLM

P (7:50)

where P is the incident power per pixel. In addition to the factors identified by Duarte,
one finds that the SNR for the CS camera may be reduced by both the potential
increase in the readout frequency necessary for single-pixel imaging and the increase
in sensor area needed for efficient light collection.

The generalized sampling story told in this section has rapidly launched our
discussion into coding and signal estimation strategies and physical constraints.
Prior to continuing this discussion, the reader may benefit from the background on
coding and signal estimation provided in Chapter 8 and on physical system design
provided in Chapter 9. We return to generalized and compressive sampling system
design in Chapter 10.

PROBLEMS

7.1 Pixel Transfer Function. Consider an active pixel sensor with 25% fill factor.
Suppose that the pixel pitch is 8 mm x and in y. The circuit designer may
choose between a compact 4 � 4-mm photodiode or a photodiode integrating
the photocurrent from 16 distinct 1�1-mm patches placed randomly within the
pixel cell. Plot and compare the pixel transfer functions for these two approaches.

7.2 Aliasing and Noise. Consider a one-dimensional system imaging the object
f (x) ¼ 1þ cos(ax2) over the range x ¼ [�20, 20]. Let a ¼ 0:15: f (x) is
imaged through a rectangular aperture with pupil function P(x) ¼ rect(x=A) at
wavelength l ¼ 1. The resulting image is sampled on an electronic detector
array with rectangular pixels on a pixel pitch D ¼ 0.5.

(a) Plot f (x) over its range.

(b) Plot the OTF, PTF, and STF under the following circumstances:
† f/1 optics, full fill factor
† f/1 optics, 50% fill factor
† f/1 optics, 10% fill factor
† f/2 optics, full fill factor

(c) Plot the sample data for f/1 optics and full fill factor with no noise.

(d) Plot the sample data for f/1 optics and full fill factor with additive Gaussian
noise added to each data point with a standard deviation of 0.1.

(e) Plot the sample data for f/2 optics and full fill factor with additive Gaussian
noise added to each data point with a standard deviation of 0.1.
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7.3 Interpolation. Consider the function f (x) ¼ 1þ cos(ax2 þ bx) over the range
x ¼ [�40, 40]. Let a ¼ 0.05 and b ¼ p.

(a) Plot f (x) over its range.

(b) Suppose that f (x) is sampled using rectangular pixels at full fill factor on a
pitch of D ¼ 0.5. Plot the measured data gn:

(c) Use truncated sinc interpolation to estimate the continuous function g(x)
corresponding to the sampled data. Plot g(x).

(d) Discuss the statement “g(x) is lowpass-filtered with respect to f (x).” What is
the filter function?

(e) Do you observe any aliasing artifacts in g(x)?

7.4 Aliasing. Choose a natural image of size N � N pixels for N � 512. Use the
Haar and cubic spline scaling functions to produce averages reducing N by a
factor of 2, a factor of 4, and a factor of 8. Can you find aliasing artifacts in
the resulting images? Illustrate them in your report. Compare aliasing in Haar
and cubic spline downsampling.

7.5 RGB Interpolation and Aliasing. Consider a color object in red, green, and blue
color channels with

fr(x, y) ¼ fg(x, y) ¼ fb(x, y) ¼ 1þ cos a(x2 þ y2)
	 


(7:51)

for x, y in the range (2255, 256) and a ¼ 0.002. The object is sampled on focal
plane with pixel pitch D ¼ 1 covered by the Bayer pattern.

(a) Plot the measured data for the red, green, and blue channels.

(b) Interpolate the sampled data to 512 � 512 RGB pixels.

(c) Combine the images to show an RGB image of the object. Discuss any
aliasing and registration issues that you encounter. How might you
resolve registration issues?

7.6 Microlenses. Consider a focal plane with a pixel pitch of 10 mm and a 25% fill
factor. Microlenses with focal length equal to the pixel pitch are used to create
the effect of a full fill factor.

(a) What is the minimum useful objective f=# for imaging with this focal
plane?

(b) Suppose that the focal plane is used to image a ground sample distance of
10 cm of earth illuminated by sunlight. The pixel integration time is 10 ms.
Estimate the photon noise–limited SNR. Estimate the thermal noise–
limited SNR under the assumption that D� ¼ 1011 jones.

7.7 Deconvolution and Decompression. The image in Fig. 7.18 is a random sparse
array of points (approximately 100 points on a 256 � 256 array). The PSF is
also a random set of sparse points (approximately 25 on a 32�32 array). The
blurred downsampled image was generated using the function imfilter
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with the PSF followed by Haar decomposition. Reconstruction was imple-
mented using the deconvlucy function.

(a) Write Matlab code to replicate Fig.7.18 using your own randomly generated
data.

(b) Simulate the reconstruction process in the beginning with normally distrib-
uted additive noise with a noise level of 10�6 of the signal maximum. At
what noise level does the reconstruction degrade? Do results differ with
Poisson noise?

(c) What happens if you use this method on a natural image rather than a sparse
point cloud?

Figure 7.28 Projection of the columns of an image in principal components.
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7.8 PCA Compression. As a simple example of PCA compression, one may use the
rows or columns of an image as a representative set of 1D signals. As an example,
Fig. 7.28 shows the Matlab image saturn.png. The 1500� 3600 matrix
consisting of the red, green, and blue color planes, illustrated in Fig. 7.28(a),
was decomposed using the svd function. Figure 7.28(c) shows the column
eigenvectors corresponding to the five largest eigenvalues, ordered from the
first eigenvector on the bottom to the fifth at the top. One expects these eigen-
vectors to reflect the large-scale features of the columns. Figure 7.28(d) shows
the 700th column vector at the bottom, and the 700th column vector projected
on the first 10, 50, and 100 eigenvectors. Figure 7.28(b) shows all of the
columns projected onto the first 100 eigenvectors. In this sense, the data in
Fig. 7.28(b) are compressed by 15 � relative to the baseline image in (a).

(a) Generate the analog of Fig. 7.28 for the 300th and 500th columns of (a).

(b) What happens to the reconstructed signal quality if you add Poisson noise
to the signal prior to projection on the principal components?

(c) Generate the analog of Fig. 7.28(b) using only the first 10 principal com-
ponents of the columns.

7.9 Multiplex Sampling and Etendue

(a) Consider a single-pixel compressive imaging camera using a spatial light
modulator with pixel pitch D. The camera operates at a center wavelength
l0. Use conservation of etendue to estimate the minimum pixel area necess-
ary to efficiently collect the light transmitted by the modulator.

(b) The compressive spectrometer design of Fig. 7.22 also uses a spatial pattern
to encode a measurement matrix. In this case, pixels of approximate size
l f=# may efficiently collect the weighted signal. Explain the difference
between the two systems.
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8
CODING AND
INVERSE PROBLEMS

In retrospect, I am guessing that my own innocent half-page letter in the June 1949 IRE
Proceedings may have had a beneficial effect.

—M. Golay [95]

8.1 CODING TAXONOMY

Coding is the process of structuring data for transmission between a source and a
receiver. This chapter considers transmission of information between an object and
an optical sensor system as a coding problem. Coding is most advanced in the
context of “algebraic coding theory,” which is the mathematical basis of modern
communication systems. The system structure for a communications system is illus-
trated in Fig. 8.1. The goal of the system is to transmit data from a source to a receiver.
In algebraic coding systems the source data is a set of algebraic symbols, such as a
text file in ASCII symbols. In many cases, the source may encode its data for com-
pression or encryption. The source-encoded data are transmitted over a channel,
such as a telephone line or radio connection, to a receiver. Prior to transmission, a
channel encoder writes the source data in a code specific to properties of the
channel. The goal of channel encoding is to maximize the probability that the data
will be received without error, loss, or interception. The encoding process is reversed
by a channel decoder and source decoder at the receiving end of the channel.

Figure 8.2 is an analogous diagram for optical sensing. The goal of the optical
system is to relay data describing a physical object from the object to a sensor.
The input to the system is the object itself; the output is an “image” of the object.
We place image in quotes to respect the many forms that an image may take in a com-
putational sensor system, including a description of the 2D or 3D distribution of an
object’s density or composition, an object’s emission, fluorescence, or reflectance

Optical Imaging and Spectroscopy. By David J. Brady
Copyright # 2009 John Wiley & Sons, Inc.

299



spectrum, or even, in the example of a bar code reader or a character recognition
system, a digital identifier of the object.

The object encoder in Fig. 8.2 excites a response from the the object state. The
system designer may control this encoder, for example, through selection of temporal,
spectral, or spatial illumination patterns. The channel encoder translates the object
state into patterns in the radiating optical field. For remote sensing, the object and
channel encoders may consist simply of sunlight scattering from the object. In
microscopy, the channel encoder may consist of optical elements, such as reference
structures, nanoparticles, or spatial or spectral filters, in the near field of the object.
For optical sensor systems, the channel is the medium through which the field propa-
gates. In this text, the channel is most often unrestricted space, but one may imagine
systems in which the channel consists of a waveguide or fiber bundle.

The channel decoder consists of the optical and optoelectronic components that
transform the field transmitted over the optical channel into digital data. Most com-
monly the channel decoder is the lens system that forms a conventional 2D image of
the object. In computational systems, however, digital data from the channel decoder
are seldom the final image. In these systems a source decoder in the form of digital
signal processing produces the final image.

The primary difference between communication and sensor systems is that the
former produces an exact replica of the input source at the destination while the

Figure 8.1 Coding in communication systems.

Figure 8.2 Coding in optical sensors.

300 CODING AND INVERSE PROBLEMS



latter produces a digital description of a physical object. Performance metrics in
algebraic coding theory are relatively straightforward. The source data are a set of
symbols. The goals are for the receiver to replicate these symbols without error
and without some unfriendly receiver intercepting them. These goals are challenging
because noise and distortions in the transmission channel corrupt the transmitted
signal. Algebraic coding structures are used to avoid error and interception even in
the presence of noise and eavesdropping. Performance metrics for algebraic coding
include the rate of data transmission, the probability of error, the probability of inter-
ception, and the computational complexity of encoding and decoding. These metrics
may be balanced against each other, codes with high transmission rates tend to
produce greater error than do codes with lower rates and more redundancy.

Performance metrics and the goals of code design are more difficult to define for
optical sensing. The source data are a unique physical object. The overall system goal
is to transmit and estimate a set of symbols describing this object. The sensor does not
exactly replicate the object. Common measures of system performance include the
mean-square error between a set of object properties and the corresponding image
properties. Alternatively, a weighted sum of errors based on the information value
of each image property or a utility measure based on the decision value of the
image as a whole might be considered, or the information transfer capacity
between the object state and the image might be evaluated.

As increasingly sophisticated computational sensor systems emerge, performance
metrics have become more diverse and application-specific. A chemometric imaging
system might be evaluted on the basis of its chemical classification and concentration
accuracy, a biometric system might be evaluated in terms of human identification
metrics, or an imaging system might be evaluated according to the visual appearence
of specific types of objects. For example, infrared imaging systems are evaluated
according to the range at which a human observer can find a human target in the
image. These complex performance-specific measures are often difficult to accurately
model in hierachical sensor systems in which the channel coding and decoding (e.g.,
the optoelectronic subsystem) is largely distinct from the object decoding (i.e., digital
signal processing).

Sensor system coding generally predates algebraic coding; indeed, Golay’s work
on coded aperture spectroscopy [94] is a primary precursor to algebraic coding
theory. Today sensor system coding is less advanced than algebraic coding, but sub-
stantial progress has occurred recently, and great promise is clear in continuing
research. Unfortunately, we are unable to present a definitive analysis of optimal
sensor codes and decoding (e.g., image estimation) algorithms in this text. We are
able to describe the structure of physical-layer coding in optical systems and the
motivation for nontrivial coding and physical components for code implementation.

With reference to the optical sensor model expressed in Eqns. (7.1) and (7.3), this
chapter focuses on coding as the process of designing the continuous or discrete
measurement operators h(x, x0) or H to optimize system performance. A model of
H and of the object and data sampling structure is called a “forward model.”
Inversion of the forward model to estimate the object is the “inverse problem.”
The basic idea of deliberate coding of the forward problem to match advanced
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inverse algorithms is “integrated sensing and processing,” as developed by Dennis
Healy in a series of DARPA programs.

In traditional focal imaging one seeks a physical system such that
h(x, x0) � d(x� x0) or H � I. We refer to the point-to-point mappings described
by such identity responses as isomorphisms. In many cases, isomorphic mapping
may in fact be the optimal imaging system code. In other cases, multiplex sensing,
under which each measurement depends jointly on multiple object points, may be
preferred. Multiplex sensing is of particular interest in situations in which

† Isomorphic mapping is not possible. Imaging over an extended depth of field, as
discussed in Section 10.2, as well as tomographic and multidimensional imaging,
as discussed in Sections 2.6, 6.4.2, 6.5, and 10.6, fall in this category.

† Isomorphic mappings are imperfect. Chapters 4 and 6 describe band limits on
focal mappings. In addition to these Fourier limits, imperfections in optical fab-
rications and the failure of the paraxial approximation produce blurring and aber-
ration in imaging systems. Code design balances the impact of image blurring and
distortion by joint optimization of optical design and image processing
algorithms.

† Optical components for isomorphic mappings are impractical or unavailable.
Coded aperture imaging, as discussed in Section 2.5, is an example of such a
situation.

† The cost per measurement is high. In some spectral ranges the cost of detectors or
physical implementation limits may restrict the number of measurements. In such
cases deliberate blurring of the PSF enables compressive measurement.

† The combination of prior object knowledge and nonlinear reconstruction algor-
ithms produce better results than do the linear estimators. As an example,
Ashok and Neifeld [5] consider deliberate blurring to enable subpixel point
target identification and tracking. Alternative examples may be found in
diverse feature and target identification systems.

Code design for optical systems balances physical constraints on achievable mappings
against mathematically desireable code properties. Coding strategies implemented in
optical sensor systems may be organized according to the physical significance of
code parameters and the number of parameters per reconstructed pixel element. By a
“code parameter,” we mean a physical variable set by the system designer. A code
parameter may correspond to direct modulation of the optical signal in a spatial
light modulator or to diverse lens design parameters. In some systems, each value of
H is independently set by the code designer, but in most optical systems H is implicitly
determined by a relatively small number of design parameters. The range of coding
strategies for optical systems is captured in the following taxonomy:

† Pixel coding refers to systems that directly and locally modulate data in an image
plane. Pixel code parameters correspond directly to elements of H. The physical
significance of a code value may correspond, for example, to the transmission of a
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mask pixel. If each value of H can be independently selected, the number of code
values greatly exceeds the number of signal pixels reconstructed. Pixel coding is
commonly used in spectroscopy and spectral imaging. Structured spatial and tem-
poral modulation of object illumination is also an example of pixel coding. In
imaging systems, focal plane foveation and some forms of embedded readout
circuit processing may also be considered as pixel coding. The impulse response
of a pixel coded system is shift-variant. Physical constraints typically limit the
maximum value or total energy of the elements of H.

† Convolutional coding refers to systems with shift-invariant impulse reponse
h(x� x0). As we have seen in imaging system analysis, convolutional coding
is exceedingly common in optical systems, with conventional focal imaging as
the canonical example. Further examples arise in dispersive spectroscopy. We
further divide convolutional coding into projective coding, under which code par-
ameters directly modulate the spatial structure of the impulse response, and
Fourier coding, under which code parameters modulate the spatial structure of
the transfer function. Coded aperture imaging and computed tomography are
examples of projective coding systems. Section 10.2 describes the use of pupil
plane modulation to implement Fourier coding for extended depth of field. The
number of code elements in a convolutional code corresponds to the number
of resolution elements in the impulse response. Since the support of the
impulse response is usually much less than the support of the image, the
number of code elements per image pixel is much less than one.

† Implicit coding refers to systems where code parameters do not directly modulate
H. Rather, the physical structure of optical elements and the sampling geometry
are selected to create an invertible measurement code. Reference structure tom-
ography, van Cittert–Zernike-based imaging, and Fourier transform spec-
troscopy are examples of implicit coding. Spectral filtering using thin-film
filters is another example of implicit coding. More sophisticated spatiospectral
coding using photonic crystal, plasmonic, and thin-film filters are under explora-
tion. The number of coding parameters per signal pixel in current implicit coding
systems is much less than one, but as the science of complex optical design and
fabrication develops, one may imagine more sophisticated implicit coding
systems.

The goal of this chapter is to provide the reader with a context for discussing spec-
trometer and imager design in Chapters 9 and 10. We do not discuss physical
implementations of pixel, convolutional, or implicit codes in this chapter. Each
coding strategy arises in diverse situations; practical sensor codes often combine
aspects of all three. In considering sensor designs, the primary goal is always to
compare system performance metrics against design choices. Accurate sampling
and signal estimation models are central to such comparisons. We learned how to
model sampling in Chapter 7, the present chapter discusses basic stragies for
signal estimation and how these strategies impact code design for each type of code.

8.1 CODING TAXONOMY 303



The reader may find the pace of discussion a bit unusual in this chapter. Apt
comparison may be made with Chapter 3, which progresses from traditional
Fourier sampling theory through modern multiscale sampling. Similarly, the
present chapter describes results that are 50–200 years old in discussing linear esti-
mation strategies for pixel and convolutional coding in Sections 8.2 and 8.3. As with
wavelets in Chapter 3, Sections 8.4 and 8.5 describe relatively recent perspectives,
focusing in this case on regularization, generalized sampling, and nonlinear signal
inference. A sharp distinction exists in the impact of modern methods, however. In
the transition from Fourier to multiband sampling, new theories augment and
extend Shannon’s basic approach. Nonlinear estimators, on the other hand, substan-
tially replace and revolutionize traditional linear estimators and completely under-
mine traditional approaches to sampling code design. As indicated by the hierarchy
of data readout and processing steps described in Section 7.4, nonlinear processing
has become ubiquitous even in the simplest and most isomorphic sensor systems.
A system designer refusing to apply multiscale methods can do reasonable, if unfor-
tunately constrained, work, but competitive design cannot refuse the benefits of non-
linear inference.

While the narrative of this chapter through coding strategies also outlines the basic
landscape of coding and inverse problems, our discussion just scratches the surface of
digital image estimation and analysis. We cannot hope to provide even a representa-
tive bibliography, but we note that more recent accessible discussions of inverse pro-
blems in imaging are presented by Blahut [21], Bertero and Boccacci [19], and
Barrett and Myers [8]. The point estimation problem and regularization methods
are well covered by Hansen [111], Vogel [241], and Aster et al. [6]. A modern text
covering image processing, generalized sampling, and convex optimization has yet
to be published, but the text and extensive websites of Boyd and Vandenberghe
[24] provide an excellent overview of the broad problem.

8.2 PIXEL CODING

Let f be a discrete representation of an optical signal, and let g represent a measure-
ment. We assume that both f and g represent optical power densities, meaning that
fi and gi are real with fi, gi � 0. The transformation from f to g is

g ¼ Hf þ n (8:1)

where n represents measurement noise. Pixel coding consists of codesign of the
elements of H and a signal estimation algorithm.

The range of the code elements hij is constrained in physical systems. Typically, hij

is nonnegative. Common additional constraints include 0 � hij � 1 or
P

i hij � 1.
Design of H subject to constraints is a weighing design problem. A classic
example of the weighing design problem is illustrated in Fig. 8.3. The problem is
to determine the masses of N objects using a balance. One may place objects
singly or in groups on the left or right side. One places a calibrated mass on the
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right side to balance the scale. The ith measurement takes the form

gi þ
X

j

hijmj ¼ 0 (8:2)

where mj is the mass of the jth object. hij is þ1 for objects on the right, 21 for objects
on the left and 0 for objects left out of the ith measurement. While one might naively
choose to weigh each object on the scale in series (e.g., select hij ¼ �dij), this strategy
is just one of many possible weighing designs and is not necessarily the one that pro-
duces the best estimate of the object weights. The “best” strategy is the one that
enables the most accurate estimation of the weights in the context of a noise and
error model for measurement. If, for example, the error in each measurement is inde-
pendent of the masses weighed, then one can show that the mean-square error in
weighing the set of objects is reduced by group testing using the Hadamard testing
strategy discussed below.

8.2.1 Linear Estimators

In statistics, the problem of estimating f from g in Eqn. (8.1) is called point estimation.
The most common solution relies on a regression model with a goal of minimizing
the difference between the measurement vector Hfe produced by an estimate of f
and the observed measurements g. The mean-square regression error is

1(fe) ¼ (g�Hfe)0(g�Hfe)h i (8:3)

The minimum of 1 with respect to fe occurs at @1=@fe ¼ 0, which is equivalent to

�H0gþH0Hfe ¼ 0 (8:4)

This produces the ordinary least-squares (OLS) estimator for f:

fe ¼ (H0H)�1H0g (8:5)

Figure 8.3 Weighing objects on a balance.
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So far, we have made no assumptions about the noise vector n. We have only
assumed that our goal is to find a signal estimate that minimizes the mean-square
error when placed in the forward model for the measurement. If the expected value
of the noise vector nh i is nonzero, then the linear estimate f e will in general be
biased. If, on the other hand

nh i ¼ 0 (8:6)

and

nn0h i ¼ s 2I (8:7)

then the OLS estimator is unbiased and the covariance of the estimate is

S fe ¼ s 2(H0H)�1 (8:8)

The Gauss–Markov theorem [147] states that the OLS estimator is the best linear
unbiased estimator where “best” in this context means that the covariance is
minimal. Specifically, if S~f e

is the covariance for another linear estimator f̃ e, then

S~f e
� S fe is a positive semidefinite matrix.

In practical sensor systems, many situations arise in which the axioms of the
Gauss–Markov theorem are not valid and in which nonlinear estimators are preferred.
The OLS estimator, however, is a good starting point for the fundamental challenge
of sensor system coding, which is to codesign H and signal inference algorithms so as
to optimize system performance metrics. Suppose, specifically, that the system metric
is the mean-square estimation error

s 2
e ¼

1
N

trace S fe

� �
(8:9)

where H0H is an N � N matrix. If we choose the OLS estimator as our signal infer-
ence algorithm, then the system metric is optimized by choosing H to minimize
trace[(H0H)�1].

The selection of H for a given measurement system balances the goal of minimiz-
ing estimation error against physical implementation constraints. In the case thatP

j hij � 1, for example, the best choice is the identity hij ¼ dij. This is the most
common case for imaging, where the amount of energy one can extract from each
pixel is finite.

8.2.2 Hadamard Codes

Considering the weighing design constraint jhijj � 1, Hotelling proved in 1944 that
for hij [ [�1, 1]

s 2
e �

s 2

N
(8:10)

under the assumptions of Eqn. (8.6). The measurement matrix H that achieves
Hotelling’s minimum estimation variance had been explored a half century earlier

306 CODING AND INVERSE PROBLEMS



by Hadamard. A Hadamard matrix Hn of order n is an n � n matrix with elements
hij [ {�1, þ1} such that

HnH0n ¼ nI (8:11)

where I is the n � n identity matrix. As an example, we have

H2 ¼
þ þ
þ �

� �
(8:12)

If Ha and Hb are Hadamard matrices, then the Krönecker product Hab ¼ Ha �Hb is
a Hadamard matrix of order ab. Applying this rule to H2, we find

H4 ¼

þ þ þ þ
þ � þ �
þ þ � �
þ � � þ

2
664

3
775 (8:13)

Recursive application of the Krönecker product yields Hadamard matrices for n ¼ 2m.
In addition to n ¼ 1 and n ¼ 2, it is conjectured that Hadamard matrices exist for all
n ¼ 4m, where m is an integer. Currently (2008) n ¼ 668 (m ¼ 167) is the smallest
number for which this conjecture is unproven.

Assuming that the measurement matrix H is a Hadamard matrix H0H ¼ NI,
we obtain

S fe ¼
s 2

N
I (8:14)

and

s 2
e ¼

s 2

N
(8:15)

If there is no Hadamard matrix of order N, the minimum variance is somewhat worse.
Hotelling also considered measurements hij [ 0, 1, which arises for weighing

with a spring scale rather than a balance. The nonnegative measurement constraint
0 , hij , 1 is common in imaging and spectroscopy. As discussed by Harwit and
Sloane [114], minimum variance least-squares estimation under this constraint is
achieved using the Hadamard S matrix:

Sn ¼ 1
2 (1�Hn) (8:16)

Under this definition, the first row and column of Sn vanish, meaning that Sn is an
(n 21) � (n 21) measurement matrix. The effect of using the S matrix of order n
rather than the bipolar Hadamard matrix is an approximately four-fold increase in
the least-squares variance.

8.2 PIXEL CODING 307



Spectroscopic systems often simulate Hadamard measurement by subtracting
S-matrix measurements from measurements based on the complement ~Sn ¼
(Hn þ 1)=2. This difference isolates g ¼ Hn f. The net effect of this subtraction is
to increase the variance of each effective measurement by a factor of 2, meaning
that least squares processing produces a factor of 2 greater signal estimation variance.
This result is better than for the S matrix alone because the number of measurements
has been doubled.

8.3 CONVOLUTIONAL CODING

As illustrated in Eqns. (2.30), (4.75), and (6.63), convolutional transformations
of the form

g(x, y) ¼
ð ð

f (x0, y0)h(x� x0, y� y0)dx0dy0 þ n(x, y) (8:17)

where n(x, y) represents noise, are common in optical systems. We first encountered
the coding problem, namely, design of h(x, y) to enable high fidelity estimation of
f(x, y), in the context of coded aperture imaging. The present section briefly
reviews both code design and linear algorithms for estimation of f(x, y) from
coded data.

The naive approach to inversion of Eqn. (8.17) divides the Fourier spectrum of the
measured data by the system transfer function according to the convolution theorem
[Eqn. (3.18)] to obtain an estimate of the object spectrum

f̂ est(u, v) ¼ ĝ(u, v)

ĥ(u, v)
(8:18)

As we saw in Problem 2.10, this approach tends to amplify noise in spectral ranges
where jh(u, v)j is small.

In 1942, Wiener proposed the alternative deconvolution strategy based on mini-
mizing the mean-square error

e2 ¼
ð ð

( f � fest)
2

� �
dx dy

¼
ð ð

( f̂ � f̂ est)
2 du dv

� 	
(8:19)

Noting that 1(u, v) ¼ ( f̂ � f̂ est)
2

� �
is nonnegative everywhere, one minimizes e2 by

minimizing 1(u, v) at all (u, v). Supposing that f̂ est ¼ ŵ(u, v)ĝ(u, v), we find

1(u, v) ¼ j f̂ (u, v)j2
D E

� f̂ ŵ�(ĥ
�
f̂
� þ n̂�)

D E

� f̂
�
ŵ(ĥf̂ þ n̂)

D E
þ jŵj2j(ĥf̂ þ n̂)j2
D E

¼ j[1� ŵ(u, v)ĥ(u, v)]j2Sf (u, v)þ jŵj2Sn(u, v) (8:20)
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where we assume that the signal and noise spectra are uncorrelated such that
f̂ (u, v)n̂�(u, v)
� �

¼ 0. Sn(u, v) and Sf (u, v) are the statistical expectation values of

the power spectral density of noise and of the signal, Sf (u, v) ¼ hj f̂ (u, v)j2i and

Sn(u, v) ¼ hjn̂(u, v)j2i. Setting the derivative of 1(u, v) with respect to ŵ equal to
zero yields the extremum �ĥ[1� ŵ(u, v)ĥ(u, v)]�Sf (u, v)þ ŵ�Sn(u, v) ¼ 0. The
minimum mean-square error estimation filter is thus the Wiener filter

ŵ(u, v) ¼ ĥ
�
(u, v)Sf (u, v)

jĥ(u, v)j2Sf (u, v)þ Sn(u, v)
(8:21)

The Wiener filter reduces to the direct inversion filter of Eqn. (8.18) if the signal-
to-noise ratio Sf/Sn 	 1. At spatial frequencies for which the noise power spectrum
becomes comparable to jĥ(u, v)j2Sf (u, v), the noise spectrum term in the denominator
prevents the weak transfer function from amplifying noise in the detected data.

Substituting in Eqn. (8.20), the mean-square error at spatial frequency (u, v) for the
Wiener filter is

1(u, v) ¼ Sf (u, v)

1þ jĥ(u, v)j2[Sf (u, v)=Sn(u, v)]
(8:22)

Convolutional code design consists of selection of ĥ(u, v) to optimize some metric.
While minimization of the mean-square error is not the only appropriate design
metric, it is an attractive goal. Since the Wiener error decreases monotonically with

jĥ(u, v)j2, error minimization is achieved by maximizing jĥ(u, v)j2 across the target
spatial spectrum.

Code design is trivial for focal imaging, where Eqn. (8.22) indicates clear advan-
tages for forming as tight a point spread function as possible. Ideally, one selects
h(x, y) ¼ d(x, y), such that ĥ(u, v) is constant. As discussed in Section 8.1,
however, in certain situations design to the goal h(x, y) ¼ d(x, y) is not the best
choice. Of course, as discussed in Sections 8.4 and 8.5, one is unlikely to invert
using the Wiener filter in such situations.

Figure 8.4 illustrates the potential advantage of coding for coded aperture systems
by plotting the error of Eqn. (8.22) under the assumption that the signal and noise
power spectra are constant. The error decreases as the order of the coded aperture
increases, although the improvement is sublinear in the throughput of the mask.
The student will, of course, wish to compare the estimation noise of the Wiener
filter with the earlier SNR analysis of Eqns. (2.47) and (2.48).

The nonuniformity of the SNR across the spectral band illustrated in Fig. 8.4 is
typical of linear deconvolution strategies. Estimation error tends to be particularly
high in near nulls or minima in the MTF. Nonlinear methods, in contrast, may
utilize relationships between spectral components to estimate information even
from bands where the system transfer function vanishes. Nonlinear strategies are
also more effective in enforcing structural prior knowledge, such as the nonnegativity
of optical signals.
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The Wiener filter is an example of regularization. Regularization constrains
inverse problems to keep noise from weakly sensed signal components from swamp-
ing data from more strongly sensed components. The Wiener filter specifically damps
noise from null regions of the system transfer function. In discrete form, Eqn. (8.17) is
implemented by Toeplitz matricies. Hansen presents a recent review of deconvolution
and regularization with Toeplitz matrices [112]. We consider regularization in more
detail in the next section.

8.4 IMPLICIT CODING

A coding strategy is “explicit” if the system designer directly sets each element hij of
the system response H and “implicit” if H is determined indirectly from design
parameters. Coded aperture spectroscopy (Section 9.3) and wavefront coding
(Section 10.2.2) are examples of explicit code designs. Most optical systems,
however, rely on implicit coding strategies where a relatively small number of lens
or filter parameters determine the large-scale system response. Even in explicitly
coded systems, the actual system response always differs somewhat from the
design response.

Reference structure tomography (RST; Section 2.7) provides a simple example of
the relationship between physical system parameters and sensor response. Physical

Figure 8.4 Relative mean-square error as a function of spatial frequency for MURA coded
apertures of various orders. The MURA code is described by Eqn. (2.45). We assume that
Sf (u, v) is a constant and that Sf (u, v)=Sn(u, v) ¼ 10.
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parameters consist of the size and location of reference structures. Placing one
reference structure in the embedding space potentially modulates the visibility for
all sensors. While the RST forward model is linear, optimization of the reference
structure against coding and object estimation metrics is nonlinear. This problem is
mostly academic in the RST context, but the nonlinear relationship between optical
system parameters and the forward model is a ubiquitous issue in design.

The present section considers coding and signal estimation when H cannot be
explicitly encoded. Of course an implicitly encoded system response is unlikely to
assume an ideal Hadamard or identity matrix form. On the other hand, we may
find that the Hadamard form is less ideal than we have previously supposed. Our
goals are to consider (1) signal estimation strategies when H is ill-conditioned and
(2) design goals for implicit ill-conditioned H.

The m � n measurement matrix H has a singular value decomposition (SVD)

H ¼ ULV0 (8:23)

where U is an m � m unitary matrix. The columns of U consist of orthonormal
vectors ui such that ui 
 uj ¼ dij. {ui} form a basis of Rm spanning the data space.
V is similarly an n � n unitary matrix with columns vi spanning the object space
Rn. L is an m � n diagonal matrix with diagonal elements li corresponding to the
singular values of H [97]. The singular values are nonnegative and ordered such that

l1 � l2 � 
 
 
 � ln � 0 (8:24)

The number of nonzero singular values r is the rank of H and the ratio greatest singu-
lar value to the least nonzero singular value l1=lr is the condition number of H . H is
said to be ill-conditioned if the condition number is much greater than 1.

Inversion of g ¼ Hf þ n using the SVD is straightforward. The data and object
null spaces are spanned by the m2r and n2r vectors in U and V corresponding
to null singular values. The data range is spanned by the columns of Ur ¼
(u1, u2, . . . , ur). The object range is spanned by the columns of Vr ¼
(vvvvv1, vvvvv2, . . . , vvvvvr). The generalized or Moore–Penrose pseudoinverse of H is

Hy ¼ VrL
�1
r UT

r (8:25)

One obtains a naive object estimate using the pseudoinverse as

f naive ¼ Hyg

¼ PVH f þ
Xr

i¼1

ui 
 n
li

vvvvvi (8:26)

where PVH f is the projection of the object onto VH. The problem with naive inversion
is immediately obvious from Eqn. (8.26). If noise is uniformly distributed over the
data space, then the noise components corresponding to small singular values are
amplified by the factor 1=li.

8.4 IMPLICIT CODING 311



Regularization of the pseudoinverse consists of removing or damping the effect of
singular components corresponding to small singular values. The most direct regular-
ization strategy consists of simply forming a psuedoinverse from a subset of the
singular values with li greater than some threshold, thereby improving the effective
condition number. This approach is called truncated SVD reconstruction.

Consider, for example, the shift-coded downsampling matrix. A simple downsam-
pling matrix takes Haar averages at a certain level. For example, 4� downsampling is
effectively a projection up two levels on the Haar basis. A 4� downsampling matrix
takes the form

H ¼
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(8:27)

In general, downsampling by the factor d projects f from R
n to Rn/d.

Digital superresolution over multiple apertures or multiple exposures combines

downsampled images with diverse sampling phases to restore f [Rn from d different

projections in Rn/d. We discuss digital superresolution in Section 10.4.2. For the
present purposes, the shift-coded downsampling operator is useful to illustrate regu-
larization. By “shift coding” we mean the matrix that includes all single pixel shifts of
the downsampling vector. For 4� downsampling the shift coded operator is

H ¼
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(8:28)

The singular value spectrum of a 256 � 256 shift-coded 4� downsample oper-
ator is illustrated in Fig. 8.5. Only one set of singular vectors is shown because the
data and object space vectors are identical for Toeplitz matrices (e.g., matrices repre-
senting shift-invariant transformations) [112]. This singular value spectrum is typical
of many measurement systems. Large singular values correspond to relatively low-
frequency features in singular vectors. Small singular values correspond to singular
vectors containing high-frequency components. By truncating the basis, one effec-
tively lowpass-filters the reconstruction.
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Transformations of images are greatly simplified if the system operator is separable
in Cartesian coordinates. A separable downsampling operator may operate on an
image f with a left operator Hl for vertical downsampling and a right operator Hr

for horizontal downsampling. As an example, Fig. 8.6(a) shows a particular image
consisting of a 256 � 256-pixel array. We model measured data from this image as

g ¼ Hl f H0r þ n (8:29)

The least mean-square estimate of the image for shift-coded 4� downsampling with
s 2 ¼ 10�4 normally distributed additive noise is illustrated in Fig. 8.6(b). As
expected, the mean-square error is enormous because of the ill-conditioned measure-
ment operators. Figure 8.6(c) is a truncated SVD reconstruction from the same data
using the first 125 of 256 singular vectors. One observes both artifacts and blurring in
the truncated SVD image; the loss of spatial resolution is illustrated in a detail from
the center of the image in Fig. 8.7.

The mean-square error in the truncated SVD reconstruction (0.037) exceeds the
measurement variance by more than two orders of magnitude. The MSE includes
effects due to both noise and reconstruction bias, however. Since the truncated
SVD reconstruction is not of full rank, image components in the null space of the
reconstruction operator are dropped and lead to bias in the estimated image. One
may consider that the goal of truncated SVD reconstruction is to measure the projec-
tion of f on the subspace spanned by the high singular value components. In this case,

Figure 8.5 Singular values of a 256 � 256 shift-coded 4� downsample operator.
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one is more interested in the error between the estimated projection and the true pro-
jection, jjPVH f � PVH f ejj2. For the image of Fig. 8.6(c) the mean-square projection
error is 3:3� 10�4, which is 3� larger than the measurement variance. The vast
majority of the difference between the reconstructed image and the original arises
from bias due to the structure of the singular vectors. As discussed in Section 8.5,
it might be possible to remove this bias using nonlinear inversion algorithms.

Figure 8.6 A 256 � 256 image reconstructed using linear least-squares and truncated
SVD: (a) original; (b) least-squares reconstruction MSE ¼ 51.4; (c) truncated SVD MSE ¼
4.18e2003.

Figure 8.7 Detail of the original image (a) and the truncated SVD reconstruction (b).
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Tikhonov regularization addresses the noise sensitivity of the pseudoinverse by
constraining the norm of the estimated signal. The basic idea is that since noise
causes large fluctuations, damping such fluctuations may reduce noise sensitivity.
The goal is to find fe satisfying

f e ¼ arg min
fe
jjg�Hfejj22 þ l2

ojj f ejj22
n o

(8:30)

The solution to this constraint may be expressed in terms of the singular vectors as

fe ¼
Xr

i¼1

l2
i

l2
i þ l2

o

ui 
 g
li

vvvvvi (8:31)

Tikhonov regularization adjusts the pseudoinverse in a manner extremely similar to
the adjustment that the Wiener filter makes to deconvolution. Singular components
with li 	 lo are added to the estimated signal as with the normal pseudoinverse.
Components with li � lo are damped in the reconstruction. In the limit that
lo ! 0, the Tikhonov solution is the pseudoinverse solution (or least squares in

Figure 8.8 Reconstruction of the 4� downsampled shift coded system using Tikhonov regu-
larization. Detail images at the bottom compare the same original and reconstructed regions as
in Fig. 8.7.
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the case of a rectangular system matrix). One may expect the Tikhonov solution to
resemble the order-k truncated SVD solution in the range that lk � lo. Figure 8.8
is a Tikhonov reconstruction the data from Fig. 8.6 with lo ¼ 0:3. There is no
Tikhonov regularization parameter that obtains MSE comparable to the truncated
SVD for this particular image, but one may expect images with more high-frequency
content to achieve better Tikhonov restoration. Just as estimation of Sn(u, v) is central
to the Wiener filter, determination of lo is central to Tikhonov regularization.
Tikhonov regularization is closely related to Wiener filtering, both are part of a
large family of similar noise damping strategies. Since our primary focus here is
on the design of H, we refer the reader to the literature for further discussion [111].

The nominal design goal for implicit coding is basically the same as for pixel and
convolutional coding: making the singular spectrum flat. Hadamard, Fourier trans-
form, and identity matrices perform well under least-squares inversion because
their singular values are all equal. Any measurement matrix formed of orthogonal
row vectors similarly achieves uniform and independent estimation of the singular
values (with the measurement row vectors forming the object space singular
vectors). For the reasons listed in Section 8.3, however, there are many situations
where unitary H is impossible or undesirable.

For implicit coding systems in particular, one seeks to optimize sensor system per-
formance over a limited range of physical control parameters. Relatively subtle changes
in sampling strategy may substantially impact signal estimation. As an example, con-
sider again a 4� downsampling system. Suppose that one can implement any
8 element shift invariant sampling code with four elements equal to 1

4 and four elements
equal to 0. The downsampling code 11110000/4 with SVD spectral illustrated in
Fig. 8.6 is one such example, but there 70 different possible codes. Figure 8.9 plots
the singular values for three such codes for a 128 � 128 measurement matrix. The
11110000 code produces the largest singular values for low-frequency singular
vectors but lower singular values in the midrange of frequency response. The other
example codes produce fewer low-frequency singular vectors and yield higher singular
values in midrange. Figure 8.10 shows the lo ¼ 0:3 Tikhonov reconstruction of the
detail region shown in Figs. 8.7 and 8.8 for these codes with s 2 ¼ 10�4. The MSE
is higher for the noncompact PSFs, but one can argue that the Tihonov reconstruction
using the 11100100 code captures features missed by the 11110000 code. Truncated
SVD reconstruction using the disjoint codes produces artifacts due to the higher-
frequency structure of the singular vectors. At this point, we argue only that code
design matters, leaving our discussion for how it might matter to the next section.

More generally, we may decompose f in terms of the object space singular
vectors as

f ¼
X

i

f SV
i vi (8:32)

We may similarly decompose g in terms of the data space singular vectors. On these
bases, the measurement take the form

gSV ¼ L f SV þ UT n (8:33)
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Since identically and independently distributed zero mean noise maintains these
properties under unitary transformation, one obtains the covariance statistics of
Eqn. (8.8) on least-squares inversion of Eqn. (8.33). In fact, since L is diagonal,
each singular value component can be independently estimated with variance

s 2
f SV
i,e
¼ s 2

l2
i

(8:34)

The significance of this variance in the estimated image depends on how singular
value estimates are synthesized in the inversion process. One certainly expects to
neglect components with s	 l, but linear superposition of the remaining singular
vectors is only one of many estimation algorithms.

One may confidently say that optical measurement effectively consists of measur-
ing the singular value components f SV

i for li . s. One has less confidence in assert-
ing how one should design the structure of the singular vectors or how one should
estimate f from the singular value components. Building on our discussion from

Figure 8.9 Singular value spectra for Toeplitz matrix sampling using eight-element convolu-
tional codes. The code elements listed as 1 are implemented as 1

4 so that the singular values are
comparable to those in Fig. 8.5.
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Section 7.5.4, one generally seeks to design H such that f � V? and such that distinct
images are mapped to distinct measurements. So long as these requirements are sat-
isfied, one has some hope of reconstructing f accurately.

Truncated SVD data are anticompressive in the sense that one obtains fewer
measurement data values than the number of raw measurements recorded. As we
see with the reconstructions in this section, this does not imply that the number of
estimated pixels is reduced. One may ask, however, why not measure the SVD pro-
jections directly? With this question we arrive at the heart of optical sensor design.
One is unlikely to have the physical capacity to implement optimal object space

Figure 8.10 Tikhonov and truncated SVD reconstruction of the detail region of Fig. 8.7.
Tikhonov reconstruction with l0 ¼ 0:3 is illustrated on the left; the top image corresponds
to the 11110000 code. The SVD on the right used the first 125 of 256 singular vectors from
the left and right.
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projectors in a measurement system. Physical constraints on H determine the structure
of the measurements. Optical sensor design consists of optimizing the singular values
and singular vectors within physical constraints to optimize signal estimation. To
understand the full extent of this problem, one must also consider the possibility of
nonlinear image estimation, which is the focus of the next section.

8.5 INVERSE PROBLEMS

As discussed in Section 7.5, a generalized sampling system separates the processes of
measurement, analysis, and display sampling. Generalized measurements consist of
multiplex projections of the object state. With the exception of principal component
analysis, the signal estimation algorithms mentioned in Section 7.5 bear little resemb-
lence to the estimation algorithms considered thus far in the present chapter. As we
have seen, however, linear least squares is only appropriate for well-conditioned
measurement systems. Regularization methods, such as the Wiener filter and trun-
cated SVD reconstruction, have wider applicability but produce biased reconstruc-
tions. The magnitude of the bias may be expected to grow as the effective rank
(the number of useful singular values) drops.

Regularized SVD reconstruction differs sharply in this respect from compressed
sensing. As discussed in Section 7.5.4, a compressively sampled sparse signal may
be reconstructed without bias even though the measurement operator is of low rank.
The present section considers similar methods for estimation of images sampled by
ill-conditioned operators.

Prior to considering estimation strategies, it is useful to emphasize lessons learned
in Section 8.4. Specifically, no matter what type of generalized sampling one follows
in forward system design, the singular vectors of the as-implemented measurement
model provide an excellent guide to the data that one actually measures. One may
regard design of the singular vectors as the primary goal of implicit coding.
Evaluation of the quality of the singular vectors depends on the image estimation
algorithm.

Image estimation and analysis from a set of projections f SV
i ¼ hvi, f i is an extra-

ordinarily rich and complex subject. One can imagine, for example, that each singular
vector could respond to a feature in a single image. One might in this case identify the
image by probablistic analysis of the relative projections of the measurements. Once
identified, the full image might be reconstructed on the basis of a single measurement
value. One can imagine many variations on this theme targeting specific image fea-
tures. As the primary focus of this text is the design of optical systems to estimate
mostly unconstrained continuous images and spectra, however, we limit our attention
to estimation more evolutionary revisions to least-squares methods.

As discussed at the end of Section 8.1, inverse problems have a long history and
an extensive biography. The main objectives of the present section are to present a
few examples to prepare the reader for design and analysis exercises in this and suc-
ceeding chapters. Inversion algorithms continue to evolve rapidly in the literature; the
interested reader is well advised to explore beyond the simple presentation in this text.
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We focus here on the two most popular strategies for image and spectrum estimation:
convex optimization and maximum likelihood methods.

8.5.1 Convex Optimization

The inverse problem returns an estimated image fe given the measurements g ¼
Hf þ n. Optimization-based estimation algorithms augment the measurements with
an objective function g ( fe) describing the quality of the estimated image on
the basis of prior knowledge. The objective function returns a scalar value. The
optimization-based inverse problem may be summarized as follows

fe ¼ arg min
f

g(f)

such that

H f ¼ g (8:35)

Image estimation using an objective function consists of finding the image estimate fe
consistent with the measurements that also minimizes the objective function.

The core issues in optimization-based image estimations are (1) selection of the
objective function and (2) numerical optimization. The objective function may be
derived from

† Physical Constraints. Unconstrained estimators may produce images that violate
known physical properties of the object. The most common example in optical
systems is nonnegativity. Optical power spectra and irradiance values cannot
be negative, but algebraic and Wiener filter inversion commonly produces nega-
tive values from noisy data. Optimization of least-squares estimation with an
objective function produces a better signal estimate than does truncation of non-
physical values.

† Functional Constraints. Natural objects do not consist of assortments of indepen-
dent random pixels (commonly called “snow” in the age of analog television).
Rather, pixel values are locally and globally correlated. Local correlation is
often described as “smoothness,” and pixels near a given pixel are likely to
have similar values. Global correlation is described by sharpness, and edges
tend to propagate long distances across an image. An objective function can
enforce smoothness by limiting the spatial gradient of a reconstructed image
and sharpness by constraining coefficients in wavelet or “curvelet” decompo-
sitions. Sparsity, as applied in compressive sampling, is also a functional
constraint.

† Feature Constraints. At the highest level, image inference may be aware of the
nature of the object. For example, knowledge that one is reconstructing an
image of a dog may lead one to impose a “dog-like” constraint. Such higher-
order analysis lies at the interface between computational imaging and machine
vision and is not discussed here.
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Constrained least-squares estimators provide the simplest optimization methods.
Lawson and Hanson [146] present diverse algorithms for variations on the least-
squares estimation problem, including the algorithm for nonnegative estimation
implemented in Matlab as the function lsqnonneg. lsqnonneg is a recursive
algorithm designed to move the ordinarly least-squares solution to the nearest nonne-
gative solution.

The least-gradient (LG) algorithm described by Pitsianis and Sun [31] provides a
useful example of constrained least-squares methods. LG is closely related to well-
known least squares with quadratic inequality (LSQI) minimization problems. The
signal estimated by the LG agorithm is

fLG ¼ arg min
f

g(f) ¼ krfk2

such that

H f ¼ g (8:36)

where r denotes the discrete gradient operation. When discretized over equispaced
samples of a signal, the gradient may be the backward difference rkf ¼ fk � fk�1,
or the forward difference, or the central difference. In matrix form, r is an
(N 21)�N bidiagonal matrix:

r ¼

�1 1 0 
 
 
 0
0 �1 1 
 
 
 0

..

. ..
. . .

. . .
. ..

.

0 0 
 
 
 �1 1

2
6664

3
7775

We obtain the LG solution in two steps. First, we find a particular least-squares
solution fp to the linear equation H f ¼ g. The general solution to the equation can
then be described as f ¼ fp þ N c, where N spans the null space of H, and c is an
arbitrary coefficient vector. The problem described by Eqn. (8.36) reduces to a
linear least-squares problem without constraints:

fLG ¼ arg min
c
kr(N c� fp)k2

2

The solution is expressed

fLG ¼ fp � N(NTrTrN)�1(rN)T rfp (8:37)

where we assume that the rN is of full rank in columns. The general solution
[Eqn. (8.37)] does not depend on the selection of a particular solution fp to the
measurement equation. More advanced strategies than ordinary least-squares inver-
sion include QR factorization of the measurement matrix. Other approaches, like
lsqnonneg, require iterative processing.
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Figures 8.11 and 8.12 plot example LG reconstructions using the signal of
Fig. 3.9. The measurement operator shown in Fig. 8.11 takes the level 0 Haar
averages. (The function is modeled using 1024 points. The measurement operator
consists of a 16�1024 matrix; 64 continuous values in each row are 1.) The measure-
ment operator is a 64� downsample matrix. Figure 8.11(a) shows the true function
and the least-squares inversion from the downsampled data. Figure 8.11(b) is the
LG reconstruction. For these measurements, LG estimation may be simply regarded
as interpolation on sampled data.

Figure 8.12 considers the same data with the rect(x) sampling kernel replaced by
sinc(8x). The measurement operator is again 16� 1024. As shown in Fig. 8.12(b), the
least-squares inversion reflects the structure of the singular vectors of the measure-
ment operator. The LG operator uses null space smoothing to remove the naive struc-
ture of the singular vectors. The efficacy of LG and other constrained least-squares
methods depends on the structure of the sampled signal space. For example, the
sinc(8x) sampling function may achieve better results on sparse signals, as illustrated
in Fig. 8.13, which compares Haar and sinc kernel measurement for a signal consist-
ing of two Gaussian spikes.

The ability to implement computationally efficient spatially separable processing
is a particular attraction of linear constrained reconstruction. For example, the shift-
coded downsample operator of Section 8.4 may be inverted simply by operating

Figure 8.11 Reconstructions of the signal of Fig. 3.9 as sampled on the Haar basis of order 0:
(a) the true function and the least-squares estimate; (b) the least gradient; (c) the measurement
operator H.
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Eqn. (8.29) from the left and right by the using the LG operator of Eqn. (8.37).
Figure 8.14 uses this approach to demonstrate a slight improvement in image fidelity
under LG smoothing of the Tikhonov regularized image of Fig. 8.8. Of course, the
shift-coded downsample operator does not have a null space, but Fig. 8.14 treats
the 156 singular vectors corresponding to the smallest singular values as the null
space for LG optimization.

Equation (8.35) is a convex optimization problem if g ( f ) is a convex function.
A set of points Vf, such as the domain of input objects, is convex if for all f1, f2 [ Vf

a f 1 þ (1� a) f 2 [ Vf (8:38)

for 0 � a � 1. The point a f 1 þ (1� a) f 2 is on the line segment between f1 and f2

at a distance (1 2 a)k f1 2 f2k from f1 and ak f1 2 f2k from f2.
g( f ) is a convex function if Vf is a convex set and

g a f 1 þ (1� a) f 2ð Þ � ag a f 1ð Þ þ (1� a)g f 2ð Þ (8:39)

for all f in the domain of g ( ) with 0 � a� 1. kH f � gk2
2 and k fk1 are example

convex functions.

Figure 8.12 Reconstructions of the signal of Fig. 3.9 as captured by sampling function
sinc(8x): (a) the true function and the least-squares estimate; (b) the true function and the
least-gradient reconstruction; (c) shows the sampling function.
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The basic idea of convex optimization is illustrated in Fig. 8.15. Figure 8.15(a)
illustrates a convex function as a density map over a convex region in 2D.
Figure 8.15(b) shows a nonconvex set in the 2D plane. Optimization is implemented
by a search algorithm that moves from point to point in Vc. Typically, the algorithm
analyzes the gradient of g ( f ) and moves interatively to reduce the current value of g.

Figure 8.13 Reconstructions of the signal of a pair of isolated Gaussian signals as captured
by zeroth-order Haar function and by sampling function sinc(8x) (shown in Fig. 8.12): (a) the
true function and the least-squares estimate for each sampling function; (b) the true function
and the least-gradient reconstructions.

Figure 8.14 Least-gradient reconstruction of the Tikhonov regularized image of Fig. 8.8.
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If Vc and g ( f ) are convex, it turns out that any local minima of the objective function
discovered in this process is also the global minimum over Vc [24]. If, as illustrated in
Fig. 8.15(b), Vc is not convex, then the search may be trapped in a local minimum.
Simple gradient search algorithms converge slowly, but numerous fast algorithms
have been developed for convex optimization [24].

Equation (8.35) is a constrained optimization problem, with optimization of the
objective function as the goal and the forward model as the constraint. A general
approach to solving the constrained problems reduces Eqn. (8.35) to the uncon-
strained optimization problem

fe ¼ arg min
f e

{kg�H f ek2
2 þ l2

0g ( f e)} (8:40)

This problem is a nonlinear regularization comparable to Tikhonov regularization
[Eqn. (8.30)]. Compressive imaging may, in particular, be viewed as Tikhonov
regularization using the l1 norm. For the case l0 ¼ 0, Eqn. (8.40) reduces to the
psuedoinverse. In practice, one may attempt to jointly satisfy the forward model
and the constraint by iteratively minimizing Eqn. (8.40) for decreasing values of
l0. Algorithms under which this iteration rapidly converges have been developed
[96], leaving rapid solution of the unconstrained minimization problem as the heart
of convex optimization.

A linear constraint with a quadratic objective function provides the simplest form
of convex optimization problem. As observed for Eqn. (8.36), this problem can be
solved algebraically. One may find, of course, that the algebraic problem requires
advanced methods for large matricies. At the next level of complexity, many
convex optimization problems provide differentiable objectives. These problems
are solved by gradient search algorithms, usually based on “Newton’s method” for
conditioning the descent. At a third level of complexity, diverse algorithms
mapping optimization problems onto linear programming problems, interior point
methods and interative shrinkage/thresholding algorithms may be considered.

Software for convex optimization and inverse problems is summarized on the Rice
University compressive sensing Website (www.dsp.ece.rice.edu/cs/), on

Figure 8.15 Boundary (a) outlines a convex set in 2D. Minimization of a convex function over
this set finds the global minimum. Boundary (b) outlines a nonconvex set. Minimization of a
convex function over this set may be trapped in a local minima.
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the Caltech l1-magic site (www.acm.caltech.edu/l1magic/), on Boyd’s
webpage (www.stanford.edu/boyd/cvx/), and on Figueiredo’s website
(www.lx.it.pt/mtf/).

One may imagine many objective functions for image and spectrum estimation
and would certainly expect that as this rapidly evolving field matures, objective func-
tions of increasing sophistication will emerge. At present, however, the most com-
monly applied objective functions are the l1 norm emerging from the compressive
sampling theory [59,39,40] and the total variation (TV) objective function [212]

gTV( f ) ¼
XN�1

i, j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( fiþ1, j � fij)2 þ ( fi, jþ1 � fij)2

q
(8:41)

The l1 objective is effective if the signal is sparse on the analysis basis and the TV
objective is effective if the gradient of the signal is sparse. Since TV is often
applied to image data, we index f in 2D in Eqn. (8.41). The first term under the
root analyzes the discrete horizontal gradient and the second, the vertical gradient.

As illustrated in Figs. 7.25 and 7.27, the l1 objective is often applied to signals that
are not sparse in the display basis. One assumes, however, that there exists a useful
basis on which the signal is sparse. Let u ¼Wf be a vector describing the signal on
the sparse basis. The optimization problem may then be described as

u ¼ arg min
u
kuk1

such that

HW u ¼ g (8:42)

Determination of the sparse basis is, of course, a central issue under this approach.
Current strategies often assume a wavelet basis or use hyperoptimization strategies
to evaluate prospective bases.

We consider a simpler example here, focusing on the atomic discharge spectrum of
xenon. Atomic discharge spectra consist of very sharp discrete features, meaning that
they are typically sparse in the natural basis. Figure 8.16(a) shows the spectrum of
a xenon discharge lamp measured to 0.1 nm resolution over the spectral range
860–930 nm. The spectrum was collected by the instrument described by
Wagadarikar et al. [243]. Measured data extended slightly beyond the display
limits; 765 data sample experimental values were used for the simulations shown
in Fig. 8.16. Figure 8.16(b) is the spectral estimate reconstructed from 130 random
projections of the spectrum. The reconstruction used the Caltech l1-magic program
l1eq_example.m. Typical results have reported that sparse signals consisting
of K features require approximately 3K random projections for accurate reconstruc-
tion. While the xenon spectrum contains only four features over this range, each
feature is approximately 0.5 nm wide in these data, suggesting that there are
20–30 features in the spectrum. The experimental spectrum, including background
noise, was presented to the simulated measurement system.
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Figure 8.16(c) shows baseline details for diverse measurement and reconstruction
data. The plot 1 baseline is the experimental data, which has slight noise features on
the baseline. The plot on the 2 baseline is the reconstructed data from (b). The 3 base-
line shows the reconstruction obtained from 130 projections if the baseline noise is
thresholded off of the experimental data prior to simulated measurement. The 4 base-
line shows the reconstructed data from the noisy experimental data if 200 projections
are used. The 5 baseline shows the reconstruction from 100 projections, and the 6
baseline shows the reconstruction from 90 random projections. The random projec-
tions used the normal distribution measurement operator generated by the original l1-
magic program. As illustrated in the figure, estimated signal degregation is rapid if the
sample density falls below a critical point. Note that each sucessive trace in Fig. 8.16
is shifted to the right by 1 nm to aid visualization.

A second example uses the TV objective function and the two-step iterative
shrinkage/thresholding algorithm (TWIST) [20]. As discussed in [76], the original
iterative shrinkage/thresholding algorithm combines maximum likelihood estimation
with wavelet sparsity. We briefly review maximum likelihood methods in Section
8.5.2. For the present purposes, we simply treat TWIST as a blackbox optimizer of
the TV objective.

We use TWIST to consider again the 4� downsample shift code. Rather than
force model consistency with the full measurement operator, however, we focus on

Figure 8.16 (a) Discharge spectrum of xenon measured measured by Wagadarikar et al.
[243]; (b) reconstruction using l1 minimization from 130 random projections; (c) reconstruction
baseline detail for several strategies.
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the optimization problem

fe ¼ arg min
f

gTV ( f )

such that

f SV
i,e ¼ gSV

i for all i � r (8:43)

where r is the rank of the truncated SVD and f SV
i,e and gSV

i are the projections onto the
singular vectors discussed in Section 8.4. This optimization forces consistency with
the high-singular-value vectors, treating those vectors as generalized measurement
projectors.

Reconstruction under this algorithm is illustrated in Fig. 8.17, which analyzes the
same image as in Fig. 8.6 using the sampling codes 11110000 and 11100100. The
first 125 out of 256 singular vectors are used in each case. In comparison with
Figs. 8.8 and 8.10, we observe that truncated SVD reconstruction augmented by
TWIST optimization substantially improves the image in each case. While the dis-
joint code performs worse under truncated SVD and Tikhonov reconstruction, it

Figure 8.17 Reconstruction of the image of Fig. 8.6 using SVD/TWIST optimization satis-
fying Eqn. (8.43) for the first 125 singular vectors: (a) MSE ¼ 2.94e2003 using the 11110000
shift code; (b) MSE ¼ 2.65e2003 using the 11100100 code.
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yields modestly better performance after TV optimization. The normally distributed
measurement variance is 1024 as in previous images. Reconstruction was
implemented using Bioucas-Dias and Figueiredo’s demo_l2_TV.m code distribu-
ted at www.lx.it.pt/mtf/.

Implementation of the constrained inverse problems using the truncated SVD is
unnecessary in direction-coded (e.g., pixel-coded) systems, but may enable substan-
tial noise reduction in implicitly coded systems.

8.5.2 Maximum Likelihood Methods

One strategy for selecting among the infintely many solutions to the ill-posed or
ill-conditioned measurement

g( y) ¼
ð

f (x)h(x, y) dx (8:44)

focuses on finding the mostly likely image f (x) given measurements g( y). To find the
maximum likelihood image, one must evaluate the probability of f (x) given g( y).
Expectation–maximization (EM) algorithms evaluate this probability by treating
g( y), f (x), and h(x, y) as probability distributions in Bayesian statistical analysis.
The joint density of the signal on the interval x [ (x, x þ dx) and the output data
on the interval y [ ( y, y þ dy) is f (x)h(x, y) dx dy. Conversely, we may write this
density in terms of the output data as g( y)~h(x, y) dx dy, where h̃(x, y) is the inverse
impulse response. Equating these two expressions of the same probability and substi-
tuting the forward model for g( y) yields

~h(x, y) ¼ f (x)h(x, y)Ð
f (x)h(x, y) dx

(8:45)

Given that h̃(x, y) is the inverse response, we then find

f (x) ¼
ð

g( y)f (x)h(x, y)Ð
f (x)h(x, y) dx

dy (8:46)

Equation (8.46) may be viewed as a version of Bayes’ theorem expressing a self-
consistency requirement on the reconstructed object. Unfortunately, one would
need to know the object distribution to verify that it satisfies this equation.

Equation (8.46) was independently introduced to optical image analysis by
Richardson [210] and Lucy [158]. The Richardson–Lucy algorithm attempts to
find the image by recursive application of Eqn. (8.46). Starting with an initial non-
negative guess for f (x), further solutions are attempted according to

f rþ1(x) ¼ f r(x)
ð

g(y)h(x, y)Ð
f r(x)h(x, y) dx

dy (8:47)
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For Poisson noise–dominated signals, this recursion can be shown to coverge to the
maximum likelihood estimate of f (x). Whatever the nature of the noise, each suces-
sive estimate is nonnegative if one starts with nonnegative f (x), g( y) and h(x, y).

The Richardson–Lucy algorithm generalizes to diverse EM algorithms based
on similar statistical arguments. These algorithms may include hidden parameters,
such as unknown PSFs, in the physical model. EM algorithms recursively apply
“estimation” based on Eqn. (8.47) to find f r(x) and “maximization” based on
Eqn. (8.45) to find the likelihood function [56]. The formal analysis of EM algorithms
to image processing is developed in Ref. 226 and subsequent publications; Blahut
[21] provides an excellent introduction to Richardson–Lucy and EM algorithms.
While the preceding discussion focuses on 1D signals, the Richardson–Lucy algorithm
extends trivially to higer dimensions.

Discrete coding of Richardson–Lucy algorithms based on Eqn. (8.47) is straight-
forward. For the special case of 2D shift-invariant kernels, Matlab includes the
Richardson–Lucy algorithm in the function deconvlucy, with arguments consist-
ing of the measurement data and kernel and the number of iterations for signal recon-
struction. Determining the number of iterations is a particular challenge for EM
algorithms; in many cases human observers tune the algorithm to meet qualitative
image quality metrics.

Expectation–maximization algorithms are sometimes attractive in comparison to
l1-norm and total variation (TV) methods because they naturally enforce nonnegativ-
ity and process nonseparable 2D and 3D kernels relatively easily and efficiently. For
system design, our interest focuses on the deliberate coding of the system PSF to
improve system performance under deconvolution. As illustrated in Fig. 8.18,
naive Richardson–Lucy deconvolution is not competitive on the simple example
problem of the last two sections. As we saw with the IST algorithm, however,
maximum likelihood and wavelet or TV sparsity algorithms are not orthogonal.

Figure 8.18 Richardson–Lucy deconvolution of an image with s2 ¼ 1024 normally distrib-
uted noise for a 4 � 4-block code (left) and a code formed from the outer product of the
11100100 operator. Both PSFs are divided by 16 to normalize as in previous examples. The
edge of the image was zero padded by 100 pixels on each side to avoid boundary effects.
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Choi and Schulz incorporate TV regularization in a Richardson–Lucy algorithm to
achieve results comparable to those achieved for the shift-coded IST inverse
problem [47].

The reader thus leaves this chapter with demonstrations that the impact of coding
and inverse problems is enormous, but with little clear guidance beyond a general
understanding that singular values and singular vectors may be used to roughly
understand the SNR and structure of data transfer in implicit sensors. The best
design strategy in current design practice is to jointly tune algorithms and sampling
codes in simulation prior to optical system construction. For examples, we proceed to
Chapters 9 and 10.

PROBLEMS

8.1 Deconvolution and Coded Apertures. Consider again Problem 2.10.

(a) Decode your image using the Wiener filter corresponding to your coded
aperture. Assume normally distributed independent noise in each measure-
ment pixel. What is the noise spectral density? Assume uniform image
spectral density. Plot Wiener filter reconstructed images for various SNR
levels. How do your results compare with results using the decoding filter
of Chapter 2?

(b) Decode your image using Richardson–Lucy deconvolution. Assume nor-
mally distributed independent noise in each measurement pixel. What is
the noise spectral density? Assume uniform image spectral density. Plot
reconstructed images for various SNR levels.

8.2 Hadamard Coding. Consider the measurement system g ¼ H f þ n with f, g [
R127 and H a 127 � 127 matrix. The zero-mean noise n may be drawn from a
normal distribution or may be Poisson distributed about the expected values gij.
Assuming that in the normal case the measurement variance is 10�4h f 2

ij i and in
the Poisson case that h f 2

ij i ¼ 1000, use Monte Carlo simulations to characterize
the least-squares estimation variance for H corresponding to

(a) The order 128 Hadamard S matrix

(b) A random 127�127 matrix with values uniformly drawn from [21, 1]

(c) The level 3 Haar wavelet transform of f

8.3 Regularizaton. Operating from the left and right on a 127 � 127 natural image
using the measurement matrices of Problem 8.2, find the mean-square error for
least-squares image estimation, truncated SVD estimation, and Tikhonov regu-
larization. Make sure to use the same random matrix in all experiments and
document your regularization parameters.

8.4 Deconvolution. Using a 256 � 256 monochrome natural image sampled by a
3 � 3 shift-coded downsampling operator, compare the Wiener filter and
Richardson–Lucy deconvolution assuming that s2 ¼ 1023k f 2 l normally
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distributed independent pixel noise is added. Repeat the comparison for Poisson
noise with k f l ¼ 1000.

8.5 LG Interpolation. Consider the Matlab image camera trees.tif.

(a) Downsample the image by factors of 2 and 4 using the Haar wavelet. Plot
the resulting images. For each of the downsampled images, upsample the
image using linear, cubic spline, and least-gradient interpolation (using
the null space smoothing function posted on the course Website for LG
interpolation).

(b) Suppose that the image is downsampled according to

gij ¼ f (2iþ1)(2jþ1) þ f (2iþ1)(2jþ6) þ f (2iþ6)(2jþ1) þ f (2iþ6)(2jþ6) (8:48)

for (i, j) [ ((0, 0), size(trees)/2). Plot the measurement data. Use the
LG algorithm to estimate f from g. Plot the resulting image.

8.6 Convex Functions. Prove that kH F� gk2
2 and k f k1 are convex functions for

f [ RN.

8.7 Compressive Sampling. NIST maintains a database of atomic spectra at
physics.nist.gov/PhysRefData/ASD/. Use the lines and intensities
of the noble gases over the spectral range 550–600 nm to create a spectral
library. Design a random matrix compressive sampling system to characterize
these spectra and simulate the system using one or more of the convex optim-
ization codes described in Section 8.5.1. How many measurements are required
to characterize these signals? Test your sensor on other atoms, such as sodium.
What happens when you add noise to the measurements?

8.7 Sparse Reconstruction. Download the gradient projection for sparse recon-
struction code from www.lx.it.pt/mtf/GPSR/.

(a) Run demo_continuation.m and demo_image_deblur. Try chan-
ging the number of spikes in the demo_continution code to 10, 50,
100, and 300.

(b) Run the deblur code for all three impulse responses in the code.

(c) Deblur the same images using the Richardson–Lucy algorithm.

8.8 Shift Coding. Generate copies of Figs. 8.6, 8.8, 8.14, 8.17, and 8.18 corre-
sponding to three different images. Example images might include the
Shepp–Logan phantom or cameraman images distributed with Matlab or
images from your own library. How much variability in MSE and other recon-
struction characteristics do you observe? Do you observe differences between
discrete images like the phantom and continuous natural images?
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9
SPECTROSCOPY

Parmi les appareils utilises en analyse spectrale, il est maintenant classique de distinguer,
d’une part, les spectrometres, o le spectre est explore dans le temps, element par element
et, d’autre part, les spectrographes qui permettent d’obtenir des informations simultane-
ment sur tous les elements du spectre.

—A. Girard [93]

9.1 SPECTRAL MEASUREMENTS

A spectrometer analyzes the power spectral density S(n) of an optical signal. Of
course, optical signals are functions of space, time, and polarization as well as wave-
length or frequency, but we limit our discussion in this chapter to instruments that
measure the power spectral density in a single optical mode or the average spectral
density over a range of modes, returning to the larger issue of spectral imaging [deter-
mination of S(r, n)] in Section 10.6.

Spectral information is isolated from optical signals by three mechanisms:

† Spatial Dispersion. Dispersive elements, such as prisms and gratings, redirect
refracting and diffracting waves as a function of wavelength. These elements
are combined with spatial filters to produce spectrally informative spatial pat-
terns. Sections 9.2 and 9.3 integrate the dispersive elements described in
Chapter 4 in spectrometer designs. The most recent trend in dispersive spectro-
graph design focuses on the use of volume diffractive structures, such as photo-
nic crystals, multiplex holograms, and multilayer diffractive optical elements, to
produce 2D dispersion patterns. 2D dispersion radically reduces the volume
required to achieve a given resolution in a dispersive spectrometer. 2D design
is discussed in Section 9.8.

† Interferometry. The general distinction between dispersive and interferometric
spectrometers is that dispersive spectrometers modulate light in image planes,
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whereas interferometric spectrometers modulate light in Fourier or modal space.
For example, the Fourier transform (FT) spectrometer briefly described in Section
6.3.1 filters certain spectral modes based on a phase matching criterion. We
expand our discussion of FT spectroscopy in Section 9.4 and discuss “multi-
beam” or resonant interferometric spectroscopy in Sections 9.5–9.8.

† Resonance. Spectrally sensitive absorption, transmission, and reflection may
arise in optical devices and materials as a result of microscopic optical and elec-
tronic properties rather than macroscopic optical design. Resonant effects are
created by optical cavities and nanostructures or by quantum mechanical
materials processes. These effects are used to create spectroscopic filters.
Thin-film filters, organic dyes, metal nanoparticles, and semiconductor
quantum dots are the most common such devices in current practice. Spectral
analysis may be implemented by using electronic detectors with intrinsic spec-
tral sensitivity, as in the Foveon X3 direct image sensor. Under the rubics photo-
nic crystals, metamaterials, quantum dots, plasmonics, and volume holography,
current research focuses on coding the spectral response of materials that are
artificially structured in multiple dimensions. Structured materials for spec-
troscopy are discussed in Sections 9.6 and 9.8.

The careful reader will notice that classification boundaries between dispersive,
interferometric, and resonant devices are not absolute. In fact, differences between
the three mechanisms exist primarily in the geometries of optical axes and the
spatial scale of interferometric effects. Filters utilize interferometry in micrometer-
and nanometer-scale cavities, dispersive elements use micron scale diffractive com-
ponents but implement coding in transverse planes rather than in fine structure.
Interferometric spectrometers may be viewed as large scale tunable multiplex filters.

Dispersive and interferometric strategies for spectrometer design are illustrated in
Fig. 9.1. While color channels are illustrated by red, green, and blue planes in
Fig. 9.1(a), we are in general interested in substantially more than just three channels.
As suggested by Girard in this chapter’s opening quote, one may design a spec-
trometer to measure each spectral channel, or linear combinations of the spectral
channels, serially in time or spatially in parallel. One may imagine an instrument
that completely separates the spectral channels spatially, as illustrated in
Fig. 9.1(b). In view of the constant radiance theorem, however, such an instrument
must maintain the full radiance of each input color channel in the detector plane.
This effectively means that the area of the exit aperture of the spectrograph must
exceed the input aperture by a factor of N, where N is the number of spectral channels.
This approach is commonly adopted in fiber spectrometers. More commonly,
however, one cannot afford such a large exit aperture, and the approach illustrated
in Fig. 9.1(c) is adopted. In this case, a slit is introduced as an entrance stop.
Referring again to the constant radiance theorem, reducing the spatial extent of the
object inevitably means discarding some of its energy. This tradeoff and mechanisms
for alievating it using coding and spatially overlapping dispersed channels are dis-
cussed in Sections 9.2 and 9.3.
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Resonant filtering based on a spatially dispersed array of filters is illustrated in
Fig. 9.1(d). One may alternatively utlize a single spectral filter tuned as a function
of time, a strategy that we discuss in Section 9.7. Figure 9.1(e) shows ring patterns
in each spectral channel as typically observed in interferometric instruments. These
systems commonly measure the output at the central point as a function of time as
the interferometer is scanned. As indicated by the ring patterns, however, it is also
possible to discover spectral information from the spatial distribution of light in
interferometers.

Other than differences in the physical encoding mechanism, dispersive, interfero-
metric, and resonant spectroscopy are quite similar. To obtain spatial or temporal
modulation without increasing the aperture, each system must filter out a fraction

Figure 9.1 Encoding strategies for spectrometer design: (a) color planes in an optical signal;
(b) spatially separated dispersion; (c) spatially filtered dispersion; (d) spectral filtering; (e) inter-
ferometric multiplexing.
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of the incident energy. All three approaches are capable of spatially parallel and/or
temporally serial measurement. Design choices between various strategies are
driven by four factors:

1. Properties of Target Objects. Determining factors include whether these
objects are single- or multiple-mode, self-luminous or optically excited, or
spatially homogeneous. Spectroscopy for physical science and telecommunica-
tions applications is often single-mode; biological objects tend to be diffuse.

2. Properties of Available Optoelectronic Detectors. Detector technology is often
the determining factor for spectrometer design. Prior to the twentieth century,
spectra were observed by eye or using photochemical recording. Electronic
recording using discrete detectors blossomed over the period from 1950–
1970. Electronic recording enabled Fourier transform spectroscopies, which
require digital postprocessing. Since the mid-1980s, 2D detector arrays have
been gradually introduced to spectroscopy. Current design strategies use 1D
and 2D detector arrays for the visible range and single-channel detectors for
regions of the spectrum where large-scale detector arrays are expensive or
noisy. One may anticipate that detector arrays will eventually grow to dominance
in the infrared as well as the visible.

3. Properties of Available Optics and Modulators. Materials and fabrication
technologies for dispersion and imaging components vary across spectral
ranges. The diversity of established optical materials and grating fabrication
technologies is much more limited at spectral extremes than in the visible.
For this reason, systems that utilize very simple components, such as interfe-
rometers, may be expedient. At the other end of complexity, continuing
advances in spatial light modulator technologies enable adaptive coding spec-
troscopic strategies. Integration of micromirror arrays or liquid crystal devices
may significantly impact design.

4. System Performance Metrics. Where multiple design strategies are feasible,
design decisions are based on comparative system performance. The perform-
ance of a spectrometer is measured by
† Spectral resolution dl, which is often expressed in terms of the resolving

power, which is the ratio of mean operating wavelength to the resolution,
R ¼ �l=dl.

† Spectral range Dl, the difference between the minimum and maximum
resolvable wavelength. One typically desires a broad spectral range (e.g.,
350–1000 nm) in absorption or fluorescence instruments. Raman instruments
generally require wavenumbers ranging within only a few thousand [A wave-
number is an optical frequency measured in reciprocal centimeters (cm21).
The frequency corresponding to one wavenumber is the frequency at which
the wavelength of light is 1 cm (e.g., 30 GHz); 1000 wavenumbers is a spectral
range of 30 THz, corresponding to a wavelength range of 100 nm for a 1 mm
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center wavelength. Wavenumbers are commonly used to describe Raman
spectra.]

† Etendue L, the product of the solid angle collected at the instrument aperture
and the area of the entrance pupil. The étendue quantifies the light collection
capacity of the instrument.

† Instrument volume.
† Spectral throughput, the fraction of the incident power spectral density

within the instrument’s etendue that is absorbed in each measurement. The
spectral throughput for narrowpass filters is dl=Dl. The spectral throughput
for dispersive and interferometric instruments is generally � 1

2. The utility of
higher spectral throughput depends on the noise characteristics of the detec-
tion system and estimation algorithm, which brings us to signal fidelity or
information metrics such as SNR or transinformation.

As discussed in the following sections, design consists of tradeoffs between these
metrics.

Before launching into our survey of basic spectrometer designs, one must empha-
size that spectroscopy is an enormous, diverse, and well-developed discipline with
many different design strategies. This chapter reviews the landscape of potential
approaches, but many interesting designs must unfortunately be neglected. In particu-
lar, guided-wave, coded source absorption, diverse component-specific designs, and a
vast array of ingenious implementation strategies are ignored. Even within the
approaches discussed, our review is cursory. Thin-film filter design, photonic crys-
tals, plasmonic filters, and liquid crystal devices may each be fruitfully explored in
much greater detail. The analytic approach presented here is quite general,
however, and will hopefully assist students and researchers in the consideration of
more detailed designs.

9.2 SPATIALLY DISPERSIVE SPECTROSCOPY

A device using optical elements to physically isolate spectral channels is called a
spectrograph. A spectrometer combines a light collection system, a spectrograph,
and a optoelectronic detection and processing system to computationally estimate
the power spectral density. As illustrated in Fig. 9.2, the spectrograph for a simple
dispersive spectrometer consists of a spatial filter (a slit), a dispersive element, and
an imaging system. The dispersive element is typically a diffraction grating, although
prisms may also be used. The spectrograph images the spatial filter onto a detector
array after transmission through the dispersive element. The dispersive element
induces a wavelength-dependent shift in the position of the image.

The resolving power, etendue, and volume of the dispersive spectrometer depend
on the slit width a, the grating period L, and the focal length F. The 4F spectrometer
of Fig. 9.2 is identical to the Vanderlugt correlator of Problem 4.14 with the
grating assuming the role of the filter. The impulse response for propagation
from the input plane of the spectrometer to the output plane is the imaging PSF as
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filtered by the grating transmittance. Assuming, after Eqn. (4.55), that the grating
transmittance is

tg(x) ¼
X

q

hqe2piq(x=L) (9:1)

we apply the Fourier shift theorem to find the optical impulse response

hg(x, y) ¼
X

q

hqh x� qlF

L
, y

� �
(9:2)

where h(x, y) is the PSF of the imaging system without the grating.
Letting t(x, y) ¼ rect(x=a)rect(y=A), represent the transmission function of the slit,

the detected signal may be modeled as

gn ¼
X

q

hq

ð ð ð ð
S(l)t(x, y)h x0 � x� qlF

L
, y0 � y

� �
p(x0 � nD, y0) dx dy dx0dy0dl

¼
X

q

hq

ð
S(l)hl(l� nDl) dl (9:3)

where D is the pixel pitch, p(x) is the pixel sampling function, Dl ¼ LD=qF, and

hl(l) ¼
ð ð ð ð

t(x, y)h(x0 � x, y0 � y)p x0 þ qFl

L
, y0

� �
dx dy dx0dy0 (9:4)

Figure 9.2 A dispersive spectrometer based on a 4F optical system with an entrance slit of
width D and a transmission diffraction grating of period L.
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We have assumed a 1D detector array; we expand our analysis to 2D detectors in
Section 9.3. The system impulse response hl(l) is called the instrument function in
spectroscopy literature.

In practice, the bend induced in the optical path by the grating, shearing between
the wavelength channels and conventional aberrations induce substantial shift var-
iance and distortion in the instrument function. Sophisticated designs, often incorpor-
ating reflective gratings and optics, have been developed for spectrometer systems to
overcome these challenges. Systems using volume transmission gratings, as illus-
trated in Fig. 9.2, have become popular since the mid-1990s; the primary advantages
are that the Bragg effects discussed in Section 4.8 enable high-efficiency single-order
diffraction and that volume phase holograms are easily manufactured.

While we must be mindful of the complexity of real system analysis, we return
again to this text’s focus on abstract system models. While Eqn. (9.3) may be inver-
tible even with multiple diffraction orders, we assume for simplicity that either Bragg
matching or an “order sorting” spatial filter is used to eliminate all but the q ¼ 1
order, which reduces Eqn. (9.3) to

gn ¼
ð

S(l)hl(l� nDl) dl (9:5)

This dispersive spectrometer is the second of the two classes mentioned by Girard in
the quote at the beginning of this chapter; it maps the 1D spectral signal onto a par-
allel 1D array of pixels. If hl(x) is suitably compact, then gn is a spatial image of the
spectral density.

As discussed Chapter 7, gn are samples of the continuous function g(x). Assuming
that aliasing and interpolation issues are managed as discussed in Chapter 7, the
spectrometer measures a image of S(l) with system transfer function

ĥl(u) ¼ t̂
Lu

F

� �
ĥ

Lu

F

� �
p̂

Lu

F

� �
(9:6)

As with imaging systems, the resolution of the estimated spectrum depends on the
aliasing limit, ualiasing ¼ 1=(2Dl) and on the system bandpass. Factors in the system
STF are illustrated in Fig. 9.3, assuming a rectangular slit of width 25lf=#. For
the slit width illustrated in the figure, t̂(Lu=F) approaches zero much faster than

the optical or pixel transfer functions, meaning that ĥl(u) � t̂(Lu=F) (and that the
impulse response hl(l) is effectively an image of the slit). One may well ask, why
not use a narrower slit to broaden the STF? The answer, of course, is that a narrower
slit increases the spectral resolution at a cost of decreased light collection efficiency.

The slit transfer function is t̂(Lu=F) ¼ sinc(aLu=F). According to the Fourier
uncertainty relationship [Eqn. (3.35)], this system bandpass implies a resolution
of order

dl � aL

F
(9:7)
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and a resolving power of

R ¼ lF

aL
(9:8)

Of course, the minimum resolvable slit width is lf=#, meaning that if we make the
slit as small as possible, R ¼ A=L ¼ Ng, where Ng is the number of grating periods
within the aperture [126]. In practice, the resolving power is usually much less than
the diffraction-limited value.

The etendue of the dispersive spectrometer is approximately

L � p 2Aa

2( f=#)2 (9:9)

The product of L and R is known as the efficiency of a spectrograph. The efficiency of
a grating spectrometer is

E ¼ p 2lF2

2L( f=#)3 (9:10)

We note that the efficiency is independent of slit width, indicating a fundamental
tradeoff between resolution and light collection in slit-based instruments. While

Figure 9.3 Transfer functions for slit-based dispersive spectroscopy. The slit width is
25lf/#, and the pixel width is 10lf/#. Plot (b) shows the STF, which is the product of the
individual transfer functions.
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there are possibilities for ingenious folding, the volume of a slit spectrometer may be
approximated V ¼ p2F3=4( f=#)2, meaning that the efficiency is approximately

E � lV2=3

L( f=#)5=3
(9:11)

It is, therefore, possible to improve both the étendue and the resolving power by
increasing the volume, which leads to well-known associations between spectrometer
size and system performance. Designs in the next several sections challenge the
“bigger is better” mantra.

Since one seldom uses a slit that challenges the optical resolution limit, there is
little motivation to use small pixels in spectroscopic focal planes. Figure 9.3
assumes a slit width of 10lf=#, which mostly avoids aliasing and does not substan-
tially degrade the STF. The many sidelobes of the slit transfer function and the result-

ing bit of aliasing indicate that an apodized slit, such as t(x) ¼ e�x2=a2
, might have

some advantages.

9.3 CODED APERTURE SPECTROSCOPY

The basic geometry for a coded aperture dispersive spectrometer is illustrated in
Fig. 9.4. The only visible change relative to Fig. 9.2 is that we have replaced the
slit with a coded aperture. Just as replacing a pinhole with a coded aperture in
Chapter 2 enabled us to increase throughput for projective imaging, a coded aperture
dispersive spectrometer avoids the dependencies between resolving power, etendue,
and volume derived in Section 9.2.

Figure 9.4 A dispersive spectrometer replacing the slit of Fig. 9.2 with a coded aperture.
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In addition to the coded aperture, we now find it useful to assume that the readout
detector array is two-dimensional. With a 2D detector and again assuming only one
diffracted order, Eqn. (9.3) becomes

gnm ¼
ð

S(l)hl(l� nDl, mD) dl (9:12)

where

hl(l, y00) ¼
ð ð ð ð

t(x, y)h(x0 � x, y0 � y)p x0 þ Fl

L
, y0 � y00

� �
dx dy dx0dy0 (9:13)

As in Eqn. (2.35), we model the coded aperture transmittance as a discrete binary
code modulating identical mask pixels, for example

t(x, y) ¼
X

ij

tijt (x� iax, y� jay) (9:14)

In contrast with the slit spectrometer, ax is the width of the coded aperture pixel rather
than the full input aperture size. To simplify our analysis, we assume that ax ¼ axD

for ax [ Z. We also assume that the impulse responses are separable in x and y, for
instance, that t (x, y) ¼ tx(x)ty(y), p(x, y) ¼ px(x)py(y) and h(x, y) ¼ hx(x)hy(y).
Defining a reduced instrument function

hlr(l) ¼
ð ð

tx(x)hx(x0 � x)px x0 þ Fl

L

� �
dx dx0 (9:15)

We find a discrete measurement model analogous to Eqn. (2.39)

gnm ¼
X

ij

tijkm�ayjSnþaxi (9:16)

where

Sn ¼
ð

S(l)hlr(l� nDl) dl (9:17)

and

km ¼
ð ð

ty(y)hy(y0 � y)py(y0 � mD) dy dy0 (9:18)

The optical system images the transmission mask onto the focal plane along the y
axis. In general, one might desire a pixel sampling pitch smaller than the mask
pitch to ensure Nyquist sampling of the y-axis image. Under this approach one can
correct for misalignments between the input mask and the focal plane [243]. To
simplify our analysis, we assume that either perfect alignment between the coded
aperture and the focal plane or corrected alignment using digital interpolation
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enables us to assume ay ¼ 1 and km ¼ dm, in which case Eqn. (9.16) becomes

gnm ¼
X

i

timSn�axi (9:19)

While Eqn. (9.19) is similar in form to the coded aperture imaging measurement
model, there are important differences: (1) since the coded modulation occurs in an
image plane of the sensor, the impact of diffraction is much less for coded aperture
spectroscopy; and (2) Eqn. (9.19) reflects a one-dimensional convolution rather than
the 2D convolution of (2.39). One may choose to invert Eqn. (9.19) using convolu-
tional coding along the dispersion direction, as described by Mende et al. [177], but it
is also possible to implement better-conditioned pixel codes along the axis transverse
to dispersion.

We focus specifically on independent column coding [89]. With this strategy,
columns of the coding matrix tij are selected to be maximally orthogoal under the
nonnegative weighting constraint. Letting gn be the vector of measurements corre-
sponding to the nth column of the measurement data and Sn be the N-dimensional
vector with coefficients Sn�axi, where N is the dimension of tij, we may express
Eqn. (9.16) as

gn ¼ TSn (9:20)

where T is a matrix with coefficients tij. This measurement may be inverted using the
least-squares or least-gradient methods described in Chapter 8 to produce an estimate
of Sn corresponding to spectrum samples spanning the range from Sn�N to Sn�1.
Reconstructing the columns over the range from n ¼ 1 to n ¼ N produces one or
more estimates of the spectral density samples over the range from S12N to SN21.

As an example, Fig. 9.5 illustrates spectral reconstruction from experimental data
in with a 48-element Hadamard S-matrix code. Motivations for selecting this code
arise from the SNR issues discussed in Section 8.2.2 and in Refs. 114 and 243.
The image in Fig. 9.5(a) shows the raw CCD data from the spectrometer.
Curvature in the image arises from the nonlinearity of the grating equation
[Eqn. (4.58)] with respect to angle. This curvature is corrected by an anamorphic
transformation in Fig. 9.5(b). Least-gradient signal estimation using an upsampled
calibrated measurement code is implemented on each column of the corrected
image to produce the spectral estimates in Fig. 9.5(c). The spectral estimates in the
ith row are shifted to the right by i to produce the aligned spectral data shown in
Fig. 9.5(d). The columns of this matrix are averaged to produce the spectral
density estimate shown in Fig. 9.5(e). These particular data correspond to the spec-
trum of a xenon discharge lamp.

After processing, the independent column code spectrometer returns an estimate of
Sn over the range discussed above. Sn is a discrete sample of a continuous function
filtered by the system transfer function

ĥlr(u) ¼ t̂x
Lu

F

� �
ĥx

Lu

F

� �
p̂x

Lu

F

� �
(9:21)
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The coding pixel function t(x) replaces the slit transmittance in the STF of the coded
aperture system. As discussed momentarily, coded aperture systems take advantage of
aperture mask features approaching the diffraction limit. The difference between the
transfer function for a typical coded aperture system and a slit is illustrated in Fig. 9.6.
In the coded aperture system, one must be careful to select ax � 2 to avoid aliasing
the reconstructed spectrum.

Using the same arguments as those used to derive Eqn. (9.7), the spectral resol-
ution of the coded aperture system is dl ¼ aL=F ¼ axDL=F. For the same mask
feature size, the etendue is for the coded aperture system is a factor of N/2 higher

Figure 9.5 Spectral estimation using an independent column code spectrometer: (a) raw
CCD image; (b) smile-corrected CCD image; (c) spectral estimates from each column of aper-
ture code; (d) aligned spectral estimates; (e) spectral estimate.
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than for a slit, specifically

L ¼ p 2NAa

4( f=#)2 (9:22)

The factor of 1
2 is introduced based on an expectation that mean code transmittance is

1
2. The efficiency of the coded aperture system is

E � lNV 2=3

2L( f=#)5=3
(9:23)

Unlike the slit spectrometer, the étendue of a coded aperture spectrometer can be
increased without reducing the spectral resolving power, and the spectral resolving
power can be increased without reducing the étendue. In each case, these effects
are acheived by increasing the order of the code N in proportion to any decrease in
the code feature size a. In principle, one could reduce a to the diffraction limited
value for a coded aperture system and attain the R ¼ Ng resolving power limit. In
practice, one is more likely to select a � 2D to ensure Nyquist rate sampling of the
spectral data. It is interesting to note that one can maintain spectral efficiency E in
smaller volume spectrometers by increasing N in inverse proportion to V 2/3.

Figure 9.6 Transfer functions for coded dispersive spectroscopy. The slit width is 2lf/#, and
the pixel width is lf/#. Plot (b) shows the STF, which is the product of the individual transfer
functions. The pixels undersample the optical resolution limit but sample near the Nyquist limit
for the mask feature size.
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Etendue and spectral efficiency are not in themselves good metrics of the spectrum
returned by an instrument. Ultimately, analysis should be based on the performance
of an instrument in the context of the specific task for which it is designed. Such
metrics will depend on the nature of the objects under analysis. For example, for
reasons discussed momentarily, coded aperture spectrometers are particularly
useful in the analysis of systems dominated by additive noise or signals in which
the components that one wishes to measure are the strongest features. Conventional
slit spectrometers, or codes intermediate between a full coded aperture and a slit,
may be optimal in analyzing objects where shot noise from a background feature
dominates relatively weak signatures from features of interest.

In the case of the slit spectrometer, analytic samples and measurement data are
identically represented by Eqn. (9.5). As described by Eqn. (5.43), the variance of
the sample data due both to various additive components and to signal dependent
shot noise is

s 2
S ¼ s 2

r þ kp
�S (9:24)

For the coded aperture system, in contrast, the analytic samples Sn are obtained by
computational inversion of the measurement samples gn. The variance of the coded
aperture measurements is

s 2
g ¼ s 2

r þ
N

2
k p

�S (9:25)

where we assume that half of the spectral channels are collected in each measurement.
Using the ordinary least-squares estimator, the variance of the analysis samples for
the coded aperture is

s 2
S ¼

4s 2
r

N
þ 4kp

�S (9:26)

where the factor of 4 assumes the use of the S-matrix code. The variance of both the
coded aperture and the slit is reduced by averaging. The slit system averages over the
spatial extent of the slit, while the independent column code system breaks the slit up
into features. As illustrated in Fig. 9.5, however, the independent column code
averages along the columns after reconstruction and alignment. Since the impact of
the averaging step is the same for both approaches, we do not consider it further here.

On first glance, Eqns. (9.24) and (9.26) indicate that the slit spectrometer is
preferred in shot-noise-dominated systems and the coded aperture is preferred for
read-noise-dominated systems. Since one expects read noise to dominate at low
signal values and shot noise at high signal values, one may expect coded apertures
to be useful in the design of sensitive and short-exposure instruments, while conven-
tional slit spectrometers may perform better when exposure time is not an issue.

Careful comparison of slit and coded aperture spectroscopy must also consider the
distribution of source features and noise. A source may be said to consist of a single
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bright feature if only a single value of Sn is nonzero or if the source consists of a fixed
pattern of spectral components. In either case, the SNR for estimation of the bright
feature with a slit spectrometer is

SNRslit ¼
Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s 2
r þ kpS

q (9:27)

whereas the SNR for the coded aperture spectrometer is

SNRCA ¼
NS

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2

r =N þ kpS
q (9:28)

where �S corresponds to the mean energy in the target feature.
On the other hand, if the signal consits of a two unknown spectral components

Sþ � S�, then SNR for the weaker component with a slit spectrometer is

SNRslit ¼
S�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s 2
r þ kpS�

q (9:29)

while the SNR for the coded aperture is

SNRCA ¼
N�S�

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s 2

r =N þ kpSþ
q (9:30)

meaning that the SNR for measurement of this feature will be worse for the coded
aperture system than for the slit if the target feature is more than N2 times dimmer
than the strong feature.

The examples of a measurement of single bright feature and the search for a dim
background feature in the presense of a bright obscuring feature illustrates a central
distinction between slit and coded aperture spectrometers: even when the mean vari-
ances are equal the structure of noise is quite different between the two systems. Shot
noise in the slit system introduces larger variance in the brightest channels while shot
noise in the multiplex system distributes noise uniformly over all reconstructed chan-
nels. A slit and a coded aperture spectrometer with equal estimation variance differ in
that all signal components with energy above the mean have lower estimation error
for the coded aperture, while all signal components with energy below the mean
have lower estimation error for the slit spectrometer. Roughly speaking, this suggests
that multiplex systems (e.g., coded apertures) have an advantage for radiant features
(as in emission or Raman spectroscopy) but are at a disadvantage for absorptive
features (where background dominates).

This point is illustrated in Fig. 9.7, which shows estimated spectra for a slit and a
coded aperture spectrometer using an N ¼ 512 Hadamard S matrix. Both systems are
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achieve similar total signal variance after reconstruction, the square difference
between the spectra and the true spectrum for a particular numerical experiment
are shown in Fig. 9.7(a). Note, however, that the coded aperture spectrum has
noise distributed across all channels of the reconstruction while null values of the
slit spectrum are reconstructed as zero. Since the spatial structure of the noise is unre-
lated to the actual signal structure for the coded aperture system, denoising is much
more effective. Figure 9.7(b) shows the estimated spectra of (a) after denoising with
the Matlab wden() command using minimax thresholding and the order 8 symlet.
The lower spectrum is due to a slit, the upper due to the coded aperture. As illustrated
in the figure caption, the experimental variance between the estimated and true
spectra is reduced by a larger factor for the multiplex system than for the slit spec-
trometer. Figure 9.7(c) and (d) show details of the plots from (b), illustrating that
the CA system is particularly superior near peak spectral values. The multiplex
system is less effective in the detection of “noise-like” weak spectral features and
is more likely to introduce non-signal-related artifacts to the estimated spectrum.

The two extremes of a slit spectrometer and full S-matrix sampling are endpoints
on a continuum wherein diverse coding strategies may be applied to optimally tease

Figure 9.7 Comparison of reconstructed spectra for a slit and a coded aperture spectrometer.
Plot (a) (where sslit

2 ¼ 0.049, sCA
2 ¼ 0.056) shows the reconstructed spectrum for shot-noise-

only measurements. The lower trace is the true spectrum; the middle curve is the slit spectrum,
assuming a peak measurement count of 1000 quanta per sample. The upper trace is the spec-
trum reconstructed using nonnegative least squares for N ¼ 512 Hadamard S-matrix sampling.
Plot (b) (where sslit

2 ¼ 0.04, sCA
2 ¼ 0.022) shows the wavelet denoised signals of (a). Plots (c)

and (d) are detail plots from (b).
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out spectral features. In view of the diverse utilities of different coding strategies,
some design studies have found dynamically encoded apertures using micromechani-
cal, liquid crystal, and acoustooptic devices to be attractive [55].

As a final comment on dispersive spectroscopy, note that the spectral throughput
for both the slit and coded aperture systems is 1 (we have already accounted for the
50% loss in throughput for the coded aperture system in the etendue). The spectral
throughput is marginally or substantially reduced by spectrometer designs surveyed
in the remainder of the chapter.

9.4 INTERFEROMETRIC SPECTROSCOPY

Dispersion encodes optical signals by directing different components on different
spatial paths. Interference encodes optical signals by linearly combining two or
more signals on the same path. One may, of course, imagine instruments that
combine both dispersion and interference (as we do in Sections 9.6 and 9.8). We
first consider the classic instruments of purely interferometric spectroscopy.
Interference strategies separate into “two-beam systems,” which were introduced in
Section 6.3, and “multibeam” resonant systems, which we introduce in Section
9.5. The present section compares the resolving power, etendue, and SNR of two-
beam interferometric spectroscopy with the dispersive system metrics derived in
the previous two sections.

A Fourier transform (FT) spectrometer based on the Michelson interferometer of
Fig. 6.4 gathers serial data by causing interference between a beam and a longitudin-
ally delayed replica of itself. We modeled the interference as a time shift in
Eqn. (6.34). Our present goal is to develop a more precise model accounting for a
beam spanning a finite solid angle. The interference geometry of a Michelson inter-
ferometer is illustrated in Fig. 9.8. An optical field is split into two beams and caused
to interfere with itself after a longitudinal delay. Figure 9.8 shows two copies of a field

Figure 9.8 A Michelson interferometer creates interference between a light beam and a
longitudinally delayed copy of itself. Here the delay is 2d. The average irradiance is typically
measured by integration over the transverse x, y plane at z ¼ 0.
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with a relative delay of Dz ¼ 2d. An FT instrument measures the irradiance of the
interference pattern averaged over a detector in the z ¼ 0 plane.

Fourier transform spectrometers collect a range of measurements by either
continuously scanning d or by a step-and-integrate process under which d changes
by discrete values. The continuous motion approach, using micromechanical or
piezoelectric positioning stages, is more common for single-detector instruments.
Step-and-integrate approaches are necessary in spectral imaging systems where the
detector array must acquire 2D frames. Step-and-integrate systems require positioning
accuracy to l/100 and are extremely sensitive to positioning error [119]. Similarly,
scanned systems require uniform and well-characterized motion.

Using the irradiance model of Eqn. (6.34), continuous scanning produces discrete
measurements

gn ¼
A2Dt

2
G(0)þ A2

4

ð
G(Dz ¼ �Z þ 2vt, t ¼ 0)p(t � nDt) dt

þ A2

4

ð
G(Dz ¼ Z � 2vt, t ¼ 0)p(t � nDt) dt (9:31)

where A is the diameter of the detector aperture, v is the velocity of the scan, and p(t)
is the temporal sampling function of the detector. One might, for example,
assume that p(t) ¼ rect(t/Dt). We assume that the scan starts at 2Z/2 and spans
(2Z/2, Z/2).

We derive the relationship between gn and the power spectral density beginning
with the cross-spectral density. The cross-spectral density between a light field at
z ¼ 2d and the same field delayed by z ¼ d is

W(Dx¼ 0, Dy¼ 0, Dz¼ 2d, n)¼ e4pi(dn=c)

ld

ð ð

�W0(Dx0, Dy0, n)ei(p=ld)(Dx02þDy02)dDx0dDy0 (9:32)

W0(Dx0, Dy0, n) is the cross spectral density in the plane z ¼ 0, and we model diffrac-
tion using the Fresnel kernel. We assume a Schell model (spatially stationary) object.
Further assuming a Gaussian–Schell model such that

W0(Dx, Dy, n)¼ S(n) exp � p(Dx2þDy2)
w2

0

� �
(9:33)

yields

W(Dz¼ 2d, n)¼ e4pi(dn=c) w2
0n

w2
0n� icd

S(n) (9:34)
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As indicated by Eqn. (9.34), the cross-spectral density of the longitudinally shifted
fields decays inversely in the ratio dl=w2

0. It is possible to accurately model both
the amplitude and phase of the decay factor, but for the present purposes it is more
illustrative to note that the decay factor limits the effective scan range to
jdj, w2

0=l. This range is specific to the Gaussian–Schell model; it may be possible
to extend it by a constant factor through wavefront engineering based on the optical
extended depth of field techniques described in Section 10.2 Within the effective scan
range we assume

W(Dz¼ 2d, n)� e4pi(dn=c)S(n) (9:35)

Noting that

G(Dz, t¼ 0)¼
ð

W(Dz, n) dn (9:36)

we observe that

ð
G(Dz ¼ 2vt� Z, t¼ 0)p(t� nDt) dt

¼
ð ð

exp 2pi
(2vt� Z)n

c

� �
S(n)p(t� nDt) dt dn

¼
ð

p̂
2vn

c

� �
exp �2pi

(Z þ 2nvDt)n
c

� �
S(n) dn

¼
X

n0
e�2pi(nn0=N)Sn0 (9:37)

where

Sn0 ¼
ð

p̂
2vn

c

� �
e�2pi(Zn=c) exp pi

n0

N
� 2v

c
Dtn

� �� �

� sin p [n0 � (2Z=c)v]f g
sin p [(n0=N)� (2Z=Nc)Dtn]f gS(n)dn (9:38)

N ¼ Z/vDt is the number of samples recorded. Equation (9.37) is derived by taking
the discrete Fourier transform, as in Eqn. (7.9), to isolate Sn0 and then taking the
inverse transform. Approximating the Dirichlet kernel as in Eqn. (7.10) yields

Sn0 �
X1

n00¼�1

ð
p̂

2vn

c

� �
sinc

2Z

c
n� n0 � n00N

� �
S(n)dn

¼
X1

n00¼�1

p̂
2v

Z
(n0 þ n00N)

� �
S

c

2Z
(n0 þ n00N)

h i
(9:39)
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The values Sn0 are the analytic samples of the power spectrum that one estimates
from the data gn. We see in Eqn. (9.39) that these samples are spaced by Dn¼ c=2Z,
meaning that the spectral resolution is dl¼ l2=2Z. Applying the constraint from
Eqn. (9.34) that Z , w2

0=l, we find that the resolving power of the FT spectrometer is

R¼ 2w2
0

l2 (9:40)

Recalling from Eqn. (6.22) that the coherence cross section is related to the angular
extent of a beam by w0 � l=Du, the resolving power becomes

R� 2

Du2 (9:41)

If the interferometer collects light through a focal system, we may assume that
Du� 1=f=# and R¼ 2( f=#)2.

The etendue of an FT spectrometer with aperture diameter A is L ¼ A2=( f=#)2,
corresponding to efficiency E ¼ A2. Estimating the volume of the instrument to be
V ¼ f/#A3, the efficiency in terms comparable to the dispersive instruments is

E ¼ V2=3

( f=#)2=3
(9:42)

Comparing Eqn. (9.42) with Eqns. (9.23) and (9.11), we find that the relative efficien-
cies of FT and dispersive instruments depend strongly on f/#. The f/# of an FT
instrument is linked to resolving power. R¼1000, for example, requires f/#�23.
The f/# of dispersive instruments, in contrast, is determined by the angular band-
width of the diffractive element, as discussed for volume holograms in Section
9.6.1, and by lens scaling issues discussed in Section 10.4.1. f/10 is typical in
practical designs. For typical parameters, the spectral efficiency of a slit spectragraph
is made worse than FT instruments. Coded aperture systems may achieve efficiencies
comparable to or somewhat better than FT systems.

The idea that the LR product is a constant of spectrometer design was popularized
in the 1950s [125]. At that time, the balance of design favored FT instruments. The
emergence of high-quality detector arrays explains the difference between analysis
then and now. The 1950s era design assumed that the spectrometer would use a
single-detector element. If the detector area is the same for the dispersive and FT
instruments, then the resolving power and efficiency are much better for the FT
system. FT systems remain the approach of choice at wavelengths, such as the infrared
and ultraviolet extremes, where reliable detector arrays are unavailable. Dispersive
systems gain substantially as the detector area is reduced and arrays are fabricated.
With the emergence of 2D detector arrays, the “throughput advantage” often associ-
ated with interferometric instruments has actually swung substantially in favor of
dispersive design. Spectrometer design remains remarkably fluid, however. There
are many interferometric designs that produce spatial patterns and yield somewhat
better efficiency than the Michelson interferometer.
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Equation (9.38) indicates aliasing of spectral components separated by the range
cN/2Z ¼ Ndl. Aliasing is unlikely to be an issue for the continuous scan–integrate
approach, however, because the spectrum is lowpass-filtered by the sampling func-
tion. Typically, we assume that p̂(n) ¼ sinc(Dtn), meaning that terms in the series
are substantially attenuated for jn0 þ n00Nj . N=2. Since we are exclusively interested
in values of Sn for positive n, this means that we obtain on the order of one spectral
value for every two samples (although samples near the band edge will be severely
attenuated). In practice, sampling at the rate of vDt ¼ lmax/4 may be advisable.
With the multiplex spectrometer, the spectral values nc/2Z span the range from
DC (n ¼ 0) to nmax. In practice, of course, DC values are not part of the optical spec-
trum. If we consider an instrument spanning the range from l ¼ 2�20mm, then 90%
of the spectral range from DC to lmax contains useful information. On the other hand,
an instrument in the visible spanning the range l ¼ 500�700 nm must collect over
six measurements per data value. This potential sampling inefficiency puts interfero-
metric systems at a disadvantage to dispersive systems in using detector arrays.

Substituting Eqn. (9.38) in Eqn. (9.31) and assuming that G(0) ¼
P

n Sn, the
measurement model for an FT spectrometer becomes

gn ¼
1
2

XN=2

n0¼0

1þ cos 2p
nn0

N

� �� �
Sn0 (9:43)

This mapping can be inverted using methods discussed in Chapter 8. Under ordinary
least-squares estimation, the Fourier code of Eqn. (9.43) yields an estimate with twice
the variance of the Hadamard S matrix, meaning that the variance in estimates of Sn is

s 2
S¼ 8

s 2
g

N

¼ 8s 2
r

N
þ 4kpS (9:44)

where S is the mean of Sn integrated over one sampling period.
The function sr

2 represents the variance for a single detector measurement over a
fixed time window. An FT instrument is most easily compared to an instrument with a
tunable narrowband filter in front of the single detector. As indicated by Eqn. (9.44),
the variance of the FT instrument will be a factor of N/8 less than the variance of
the tunable instrument if read noise dominates. In shot-noise-dominated systems,
however, both approaches produce the same variance. Dispersive multiple detector
systems, in contrast, integrate each spectral channel over the entire measurement
window. In a simple model of such an instrument the read signal variance increases
in proportion to the length of the recording window. The mean signal value also
increases by the recording time, however. Since the single channel mean signal is
a N� less than the mean signal for the multiplex instrument, the photon noise per
measurement is about the same. Summarizing, a detector array based dispersive
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element measuring the same signal as in Eqn. (9.44) over the same total measurement
time window produces estimation variance of s 2

S ¼ s 2
r þ kpN�S on a mean signal

value of N�S. The dispersive system therefore achieves approximately 2
ffiffiffiffi
N
p
� better

SNR than does the FT system. As with the coded aperture system, changes in the relative
SNR may arise when denoising and application-specific measurements are considered.

The advantage of FT systems relative to narrowband filters in single-detector
systems dominated by read noise is termed the “multiplex advantage” [71,72].
This factor was a primary motivator in the development of FT systems from 1960
through the 1980s. The basic idea is that the spectral throughput of a single-detector
FT instrument is approximately 1

2, while the spectral througput of a single-spectral-
channel instrument is dl/Dl. For broadband measurements with additive noise,

the multiplex instrument achieves an SNR advantage of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dl=2dl

p
. The analysis is

more complex for signal-dependent noise, as discussed in Section 9.3.
Multiplexing remains attractive when detector arrays are unavailable, when the

object is diffuse, and when a spectral image is desired. When 2D detector arrays
are available, coded aperture systems have higher etendue, spectral throughput, and
mechanical stability than do FT systems. The development of large-scale micro-
mechanical modulator arrays has added further variety to multiplex system design.
Using a modulator array, it is possible to make a Hadamard, rather than Fourier,
coded system and thereby achieve a modest increase in SNR. Of course, this increase
comes at the cost of dramatically more complex micromechanical control require-
ments. On the other hand, one may use large modulator arrays to dynamically and
adaptively sample spectral channels. Increasing integration time on features of inter-
est and decreasing attention to null features could substantially improve SNR. This
type of approach was demonstrated, for example, by Maggioni et al. in an adaptive
spectral illumination system [163].

9.5 RESONANT SPECTROSCOPY

The introduction to optical elements way back in Section 2.2 lists four classes of
devices: refractive, reflective, and diffractive elements and interferometric devices.
By this point in the text, the reader is generally familiar with the nature and potential
utility of the first three categories. However, the two-beam interferometric systems
encountered thus far (the Michelson interferometer, the Michelson stellar interferom-
eter, and the rotational shear interferometer) are far from representative of the true
capabilities of interferometric devices. Resonant devices introduce qualitatively
novel features into optical systems. The next several sections provide a brief introduc-
tion to resonant devices in spectroscopy. Design, fabrication, and analysis tools for
these systems continue to evolve rapidly and radical system opportunities are emer-
ging. We cannot predict the ultimate nature of these devices, but we hope to motivate
their continued development.

The Fabry–Perot (FP) etalon, sketched in Fig. 9.9, is the simplest resonant inter-
ferometer. The instrument consists of two partially transmissive/partially reflective
surfaces separated by an dielectric gap of thickness d. An incident wave is partially
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reflected by the first surface and partially transmitted into the cavity. Once in the
cavity, the wave experiences an infinite series of partial reflection and transmission
events at each surface.

As always, we approach analysis of an optical element by first considering the
modulation that the device induces on a coherent input field. An FP resonator does
not produce a local modulation of the incident field, like a transmission mask or a
lens. Rather, the output field is a shift-invariant linear transformation of the input
field. As always, shift invariance means that if the field on the input aperture is
Ei(x, y), then the field on the output aperture is

E0(x0, y0, n) ¼
ð

h(x0 � x, y0 � y, n)Ei(x, y, n) (9:45)

The coherent transfer function ĥ(u, v, n) corresponding to the shift-invariant impulse
response is derived by considering the transmittance for the incident plane wave

Eie2pi(uxþvy)ei2pz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=l2)�u2�v2
p

. Assuming that the plane wave transmittance at each
interface is t and that the reflectance is r, the wave transmitted by the etalon is

Et(u, v)¼ t 2eif(u,v)Ei þ t 2r2ei3f(u,v)Ei þ t 2r4ei5f(u,v)Ei þ t 2r6ei7f(u,v)Ei þ � � �

¼ t 2eif(u,v)

1� r2ei2f(u,v)
Ei (9:46)

Figure 9.9 A Fabry–Perot etalon consists of a pair of partially transmissive surfaces separ-
ated by a gap of thickness d.
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where the phase delay in propagating through the etalon is f(u, v) ¼
2pnd

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l2 � u2 � v2

p
; n is the index of refraction of the cavity dielectric. We

find, therefore, that the transfer function between the field on the input aperture of
an etalon and the output aperture is

ĥ(u, v) ¼ t 2eif(u,v)

1� r2ei2f(u,v)
(9:47)

In deriving Eqn. (9.47) we have neglected the fact that t and r also depend on (u, v).
While it is not difficult to account for this dependence in numerical analysis, our
analytic discussion is simpler without it. If the surfaces of the etalon consist of
metal films or high-permitivitty dielectrics, then the (u, v) dependence of t and r is
relatively weak. The reflectivities of practical surfaces, as well as additional model
parameters such as surface smoothness, scatter, and finite etalon apertures are dis-
cussed in Ref. 117.

The coherent impulse response for the etalon is, of course, the inverse Fourier
transform of ĥ(u, v), and the incoherent impulse response is the squared magnitude
of the coherent impulse response. Figure 9.10 shows the incoherent impulse response
for various cavity thicknesses. Since the cavity thickness and the spatial scales are
given in wavelengths, one may imagine similar plots varying l rather than d. The
point of this exercise is to confirm that one obtains a PSF that is strongly dependent
on wavelength and a cavity thickness, although the structure is not yet particularly
promising for spectral analysis. Spectral analysis using the etalon requires insertion
of the device in more complex optical systems.

As illustrated in Fig. 9.11, a typical FP spectrograph places an etalon in the aper-
ture plane of a Fourier transform lens. As with the FT spectrometer, we model the
response of this instrument to a Schell model object. A spatially stationary object
transformed by a linear shift-invariant system remains a Schell model object after
transformation. Specifically, if W0(Dx, Dy, v) is the cross-spectral density at the input
to the etalon, immediately after the etalon

W(Dx, Dy, n) ¼
ð ð ð ð

W0[Dx� (x01 � x02), Dy� ( y01 � y02), n]

� h�(x01, y01, n)h(x02, y02, n) dx01 dy01 dx02 dy02 (9:48)

where h(x, y, n) is the coherent impulse response of the etalon. We find the cross-
spectral density at the focal plane of the spectrograph by substituting Eqn. (9.48)
in by Eqn. (6.56), which yields

S(x0, y0, n) ¼
ð ð

Ŵ0 u ¼ nx

cF
, v ¼ ny

cF
, n

� �
ĥ u ¼ nx

cF
, v ¼ ny

cF
, n

� �			
			2

� hic(x
0 � x, y0 � y, n) dx0 dy0 (9:49)
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where hic(x, y) is the PSF of the focusing lens. For the Gaussian–Schell model source
of Eqn. (9.33), we obtain

Ŵ0(u, v, n) ¼ S0(n)e�pw2
0(u2þv2) (9:50)

Typically, w0 will be of order l and Ŵ0(x=lF, y=lF) will be uniform over a region
comparable to F. In this case, S(x, y, n) in the focal plane is an image of the etalon
transfer function blurred by the optical PSF (as illustrated by the ring pattern in the
focal plane of Fig. 9.11). Efficient energy transfer from the input aperture to the

Figure 9.10 Transfer function and incoherent impulse response for a thin Fabry–Perot
etalon. The thickness d is given in wavelengths. The plots on the left show ĥ(u, v ¼ 0), and

the plots on the right show jh(x, y ¼ 0)j2.
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focal plane is ensured if we select the angular extent of the object to match the
numerical aperture of the focal system, which implies Du � l=w0 ¼ 1=f=#.

The ring pattern induced by the FP spectrograph is

q(x, y, n) ¼ ĥ
nx

cF
,
ny

cF
, n

� �			
			2

¼ (1� jrj2)2

1þ jrj4 � 2jrj2 cos 4p (nnd=c)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ((x2 þ y2)=F2)

p� �

¼ 1

1þ C sin2 2p (nnd=c)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� [(x2 þ y2)=F2]

pn o (9:51)

where we note that jtj2 ¼ 1� jrj2 and

C ¼ 4jrj2

(1� jrj2)2
(9:52)

As illustrated in Fig. 9.12(b), the ring pattern modulates the focal plane power spectral
density periodically in n. The period of these modulations is called the free spectral

Figure 9.11 A Fabry–Perot spectrograph combines an etalon and a Fourier transform lens.
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range (FSR). With reference to Eqn. (9.51), we see that

nr(x, y) ¼ c

2nd
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� [(x2 þ y2=F)]

p (9:53)

The variation in the FSR across the ring pattern is illustrated in Fig. 9.13, which plots
q(x, 0, n). Assuming a spatially homogeneous source, one may use the spatial vari-
ation in nr to remove order ambiguity and reconstruct over a broader spectral range.

The width of spectral and spatial features determines the spectral resolution of FP
instruments. The full-width at half-maximum (FWHM) of the peaks along the spec-
tral axis is

dn ¼ 2nr

p
sin�1 1ffiffiffiffi

C
p
� �

¼ nr

F
(9:54)

where we assume that C � 1 and F ¼ pjrj=(1� jrj2) is the finesse of the cavity. dn
is the approximate spectral resolution of the FP instrument. The resolving power is

R ¼ l

dl
¼ n

dn
¼ nF

nr
(9:55)

Figure 9.12 Cross sections of the Fabry–Perot ring pattern q(x, y, n): (a) plots q(x, 0, n0) as a
function of x=F for nd ¼ 50l0; (b) plots q(0, 0, n). The finesse is 10.
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Along the radial axis, the FWHM of the peaks near the edge of the focal plane is

Dx � F2nr

xFn

¼ Ff =#

R
(9:56)

Effective spatial sampling of the ring pattern thus seems reasonable to resolving
powers on the order of 1000, which would correspond to 10 mm features for a
1cm focal length.

The spectrum S0(n) is inferred from observations of spatial structure of the FP ring
pattern [51] and/or from observations of the variation of the ring pattern as the optical
thickness nd is modulated as a function of time. Over the range such that the optical,
pixel and longitudinal bandpass are sufficient to capture the signal, these observations
sample the function

g(u) ¼
ð

S0(n)

1þ (4=p2)F 2 sin2(pun)
dn (9:57)

Figure 9.13 Density plot of q(x, 0, n) for the etalon of Fig. 9.12.

360 SPECTROSCOPY



where u ¼ 1=vr . For the Fourier lens FP system of Fig. 9.11, the range of u is

u [
2
c

(nd)min

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1

( f=#)2

s
,

2
c

(nd)max

 !
(9:58)

For a static system (nd constant), the practical range of u might be 10–20% of 1=nr.
In presssure-scanned systems, n may be varied by 1–2%. Mechanically scanned
systems may change d by an octave or more. While we recognize that considerable
attention must be devoted to the fact that g(nFSR) is nonuniformly sampled in the
model spectrograph, we choose to neglect this issue for the moment and focus
instead on the process of estimating S0(n) from Eqn. (9.57).

The simplest and most commonly adopted approach to FP spectroscopy assumes
that the support of S0(n) is limited to a single free spectral range. Suppose that the
object illumination is prefiltered such that S(n) ¼ 0 for n 	 (N � 1=2)nr0 and for
n � (N þ 1=2)nr0, where nr0 is a baseline free spectral range for the etalon. As illus-
trated in Fig. 9.14, the instrument function is approximately shift-invariant in the over
the support of S0(n) for N � 1. The instrument function is given by

h(u, n) ¼ 1

1þ (4=p2)F 2 sin2 p[u0n� N(u=u0)]f g
(9:59)

Figure 9.14 Instrument function as a function of n and u for a Fabry–Perot spectrometer
with n0/nr ¼ 1000. u is increased by 1/F nr in each successive plot.
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The sampled spectrum for this instrument is

Sn ¼
ð

h(nDu, n)S0(n) du (9:60)

where Du is the sampling period over u. Simple Fourier analysis of the system transfer
function confirms the resolving power estimated in Eqn. (9.55) as well as the spectral
resolution

dl ¼ l2nr

cF
(9:61)

The etendue of the FP instrument, assuming that transverse spatial sampling
effectively captures the ring pattern, is L ¼ pA2=4( f=#)2, where A is the aperture
diameter. Substituting the resolving power from Eqn. (9.56), the efficiency

E ¼ pV

4( f=#)Dx
(9:62)

where Dx is the minimum feature size used in the focal plane. Comparing with Eqns.
(9.42), (9.23), and (9.11), we find that the FP spectrometer efficiency substantially
exceeds the slit and FT efficiency. Assuming that the order of the coded aperture is
N � V1/3/Dx, the efficiency of the FP and coded aperture instruments is approxi-
mately comparable.

As with previous systems, the efficiency does not tell the whole story for the FP
spectrometer. Operating over a single free spectral range, the etalon is effectively a
narrow-pass spectral filter. Only one spectral channel is detected for each value of
u. Thus, the spectrally averaged throughput is reduced by a factor of 1/F relative
to dispersive and multiplexed interferometric systems. An FP system thus needs F
times greater efficiency to achieve the same SNR as a dispersive system. This com-
parison is also not quite fair, however, because the spectral resolution that one can
obtain from an FP system is extraordinary, and the spectral range is typically quite
limited. The high spectral resolution is typical of resonant systems generally and of
systems resonant with modes oscillating along the longitudinal axis specifically.

Overcoming the limited spectral range of the FP spectrometer requires only that we
expand our mathematical horizons. Multiplex Fabry–Perot spectroscopy solves
Eqn. (9.57) for S0(n) spanning multiple free spectral ranges. We consider multiplex
instruments here from a somewhat different perspective than in previous studies
[52,117,231]. Equation (9.57) is a “Fredholm integral equation of the first kind”
with a symmetric kernel. Such equations may be inverted by standard methods
[134]. In spectroscopy, where one typically need estimate only a few thousand
channels, direct algebraic methods are convenient.
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We first suppose that our goal is to estimate S0(n) over two free spectral ranges.
Each measurement samples the sum of two spectral channels, for example

g(u1) � S na ¼
N

u1

� �
þ S nb ¼

N þ 1
u1

� �
(9:63)

In order to disambiguate S(na) from S(nb), we make a second measurement

g(u2) � S na ¼
M

u2

� �
þ S nc ¼

M þ 1
u2

� �
(9:64)

This measurement produces independent data if jnc � nbj . dn ¼ 1=u2F , where we
assume that u2 . u1. A very little algebra yields the constraint

1
u1
� 1

u2
.

1
u2F

(9:65)

or

nr1 � nr2 .
nr2

F
(9:66)

We find, therefore that the fractional change in the free spectral range between adja-
cent free spectral ranges must exceed 1/F if one hopes to measure across a span of
2nr. Similar analysis suggests that the fractional change in the free spectral range must
be M/F if one hopes to estimate the spectrum across a range of Mnr.

Alternative strategies for extending the spectral range of Fabry–Perot spectro-
scopy combine spatial dispersion and resonant devices. Historically, the most common
strategy uses a slit-based spectrometer as a pre- or postfilter on Fabry–Perot systems,
with a goal of using the dispersive system to limit the spectrum to a single free spec-
tral range. Alternatively, one may use a coded aperture in combination with a Fabry–
Perot to maintain the naturally high efficiency of the instrument while also obtaining
high spectral resolution. It is also possible to dispense with spatial filters altogether. If
one images the Fabry–Perot ring pattern through a diffraction grating with dispersion
rate a ¼ Fgc/L, the resulting system mapping

q(x, y, n) ¼ 1þ C sin2 2p
nnd

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� (x� a=n)2 þ y2

F2

s0
@

1
A

2
4

3
5
�1

(9:67)

is no longer ambiguous from one free spectral range to the next.
The nonuniformity and redundancy of the spatial distribution of spectral projec-

tions in the ring pattern is the primary disadvantage of the Fabry–Perot spectrometer.
We have seen in the present section that resonant devices offer extraordinary
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resolution, resolving power, efficiency, and integration. We have also seen, however,
that analysis of these devices is much more complex than simple dispersive or inter-
ferometric systems. Even though we have sidestepped most of the complexity of
sampling the Fabry–Perot ring pattern, our analysis of signal estimation has been
unusually complex and incomplete. On the other hand, the Fabry–Perot is the
simplest interferometric device. For better or worse, we turn to systems of greater
complexity in Section 9.6.

9.6 SPECTROSCOPIC FILTERS

We have compared spectroscopic instruments based on resolution, resolving power,
spectral throughput, and spectral efficiency as a function of volume. We are naturally
led to wonder whether the limits that we have derived thus far are close to fundamen-
tal physical limits. The answer to this question is “No.”

The volume, etendue, resolving power, and SNR of spectral sensors are not linked
by fundamental physical law. While readout poses obvious challenges, one can
imagine sensors consisting of individual atoms tuned to absorb each spectral line.
On the scale of the optical wavelength, such atomic absorbers may be arbitrarily
small. For example, the quantum dot spectrometer [127] uses electronic resonators
to create single-pixel devices with hundreds of spectral channels. Many other
examples of the design of the spectral response of molecular, semiconductor,
metal, and dielectric materials may be considered. These systems apply on the
micrometer or nanometer scale the same tools in diffraction, interferometry, and
resonance as the macroscopic spectrometers that we have thus far considered.

Given that the performance metrics of spectroscopic instruments are not limited by
physical law, one may wonder why large and inefficient systems have not been com-
pletely displaced by integrated devices. The answer to this puzzle lies in the complex-
ity of the design and fabrication of high-performance metamaterials and optical
circuits. Over time, instruments will become increasingly small. For the present it
is sufficient to explore the basic nature of structured devices.

Spectroscopic filters use microscopic structure to modulate the power spectral
density. Filters are constructed based on the following effects:

† Atomic and Molecular Resonance. These filters use the intrinsic spectral sensi-
tivity of quantum transitions. They may consist of semiconducting wafers, inor-
ganic color centers doped in solids or organic dyes in a polymer matrix.
Semiconductors yield long-pass filters; wavelengths above the band edge are
not absorbed and wavelengths below are. Color center and dyes yield filters
with modest spectral responsivity (10–100) due to the broad absorption
bands necessary to achieve high quantum efficiency in solids. They are the
basis of coarse spectroscopy, as indicated by their inclusion in the Bayer
pattern of RGB imaging. As indicated by the quantum dot spectrometer,
however, the responsivity of quantum systems can be dramatically increased
using artificial nanostructures.
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† Plasmonic Resonance. Plasmons are optical frequency electronic excitations in
conductors or semiconductors. Plasmons are quantized quasiparticles and, in
structure nanoparticles or nanowires, are limited to discrete states. The color
associated with stained glass windows are due to plasmonic resonances in
metal nanoparticles.

† Optical Resonance. Volume holograms and the Fabry–Perot resonator are just
two examples of many devices that filter light on the basis of optical resonances.
Filter design and manufacturing based on optical resonance is more advanced
than atomic or plasmonic resonance because design and manufacturing tools
for devices structured at optical wavelengths (e.g. mm) are much more advanced
than tools at electronic wavelengths (e.g., nm). The most common narrowband
optical filters are “thin film” filters consisting of layered dielectric and metal films.

† Polarization Filtering. Molecular and plasmonic structure modulates the polar-
ization of the light field as well as the spectrum. Spectral filters may be created
by exploiting dispersion in the polarization response. Liquid crystal devices
enable electrically tunable modulators and filters based on polarization effects.

For brevity, we limit our attention in this section to filters based on optical resonance.
We consider polarization filtering in Section 9.7. Filters considered in the present
section rely on optical structures modulated along one dimesion consisting of gratings
and layered materials. While thin-film and holographic filters have a long history,
research in artificially structured materials for spectroscopic filters has accelerated
dramatically since the mid-1990s with the development of photonic crystals, nano-
materials, and metamaterials. An understanding of 1D filters is essential to design,
but one expects that 2D and 3D metamaterials will be needed to fundamentally
advance spectrometer design. Multidimensional filters are briefly considered in
Section 9.8.

9.6.1 Volume Holographic Filters

Volume holograms are the simplest optical microstructure-based filters. We have
already implicitly assumed the use of holograms in our discussion of dispersive spec-
troscopy. Volume transmission holograms are attractive as devices for the diffraction
gratings illustrated in Figs. 9.2 and 9.4 because they achieve high diffraction efficien-
cies over broad spatial and spectral bandwidths. Etched or ruled reflection gratings
achieve similar efficiencies and spatial bandwidth, but are somewhat more challen-
ging to fabricate. While we do not include a detailed comparison here, it is useful
to note that in each case the spatial bandwidth and uniformity of the response are
critical factors.

The spectral–spatial response of a hologram may be analyzed using coupled mode
theory. For example, Fig. 9.15 shows the plane wave diffraction efficiency of a trans-
mission hologram appropriate for a dispersive spectrometer as a function of angle of
incidence and wavelength calculated using Eqns. (4.90) and (4.92). The wavelength
dependence of the diffraction efficiency is weak in this geometry, although the center
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angle of the hologram shifts with l. The approximately 108 width of the central
diffraction lobe is typical of volume phase gratings used in diffractive instruments.
The limited spatial bandpass of the hologram may be a major contributor in determin-
ing a spectrograph’s PSF. The tightest PSF for system based on a grating with angular
bandpass Du has an approximate width of w ¼ l/Du. Substituting in Eqn. (9.7), the
grating limited resolution is

dl ¼ l2
0

2DuF sin u
(9:68)

where u is the half-angle of the holographic deflection at the design wavelength and
we note that L ¼ l0=2 sin u. For the hologram of Fig. 9.15, this corresponds to a
resolution of approximately 11l2

0=F. The limited angular bandpass is a greater
issue for coded aperture instruments, which can utilize aperture features at resolution
approaching the optical limit, than for slit-based instruments, which typically use
spatial features on scales much larger than the PSF.

The response of a hologram to wavelength and angular shifts varies as a function
of the recording and reconstruction geometry. The holographic diffraction efficiency
falls as the Bragg mismatch increases. We first encountered the Bragg mismatch in

Figure 9.15 Plane wave diffraction efficiency of a transmission volume hologram as a func-
tion of angle of incidence and wavelength. The hologram is designed for a center wavelength
diffraction efficiency of 100% from a wave incident at 158 below to a diffracted wave 158 above
the surface normal, corresponding to L ¼ l0=2sin(p=12). Du is the deviation from the design
angle of incidence in degrees and dl ¼ l=l0 � 1. We assume D1=1 ¼ 5� 10�2, which yields
100% diffraction efficiency for a hologram thickness of 9.6 l0.
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Eqn. (4.90). Figure 4.22 illustrates the Bragg mismatch when the angle of incidence
of the reconstruction beam differs from the recording angle. In filter applications we
are particularly interested in the sensitivity of the hologram to spectral shifts,
Fig. 9.16 illustrates the Bragg mismatch arising from a change in the reconstruction
wavelength. The sensitivity of the hologram to changes in reconstruction angle and
wavelength depend on the reconstruction geometry. Figure 9.16 illustrates Bragg
matching when the reconstructing beam makes an angle u0 ¼ sin�1(K=k0) with
respect to the optical axis, where K is the grating wavenumber and kr ¼ 2pn/l0 is
the incident beam wavenumber. If the reconstruction beam is instead incident at an
angle u with wavelength l, then the Bragg mismatch is

Dk ¼ 2p
l

1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin u� 2l sin u0

l0

� �2

þ cos2 u

s						

						 (9:69)

A hologram is particularly insensitive to changes in incident angle or wavelength in
geometries where the Bragg mismatch changes slowly with respect to such variations.
The hologram is sensitive to wavelength if the mismatch changes rapidly with spec-
tral variation. Figure 9.17 plots the gradient of the Bragg mismatch with respect to
reconstruction angle and wavelength as a function of the Bragg-matched reconstruc-
tion angle u0. As illustrated in Fig. 9.17(a), the rate of change of the Bragg mismatch
with respect to l is maximal at u0 ¼ p/2, which corresponds to a reflection holo-
gram. The reconstruction and diffracted beams are counterpropagating in this geome-
try. As illustrated in Fig. 9.17(b), the rate of change of the Bragg mismatch with
respect to angle is maximal for u0 ¼ p/4, which corresponds to a 908 diffraction

Figure 9.16 Bragg mismatch arising from a change in the reconstruction wavelength. The
reconstruction wavevector is matched to the grating wavevector on the inner wave normal
surface, but reducing the wavelength such that the reconstruction wavevector lies on the
outer sphere produces the mismatch Dk.
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geometry. The maxima of the angular sensitivity in this geometry guides the design
of angularly multiplexed holographic data storage [28]. The maxima of the wave-
length sensitivity in the reflection geometry means that reflection holograms are pre-
ferred as spectral filters. It is also useful in filter applications that the reflection
geometry is a minima of angular sensitivity.

The basic geometry of a reflection hologram is illustrated in Fig. 9.18. The wave
equation for this system is

r2U þ mv2[1þ D1cos(Kz)] ¼ 0 (9:70)

One attempts a coupled wave solution to this equation under the assumption that
U ¼ R(z)ei(kxxþkzz) þ S(z)ei(kxx�kzz), which produces the coupled equations

ikz
dR

dz
þ

k2
z

2
D1

1
Sei(K�2kz)z ¼ 0 (9:71)

Figure 9.17 (a) Gradient of the Bragg mismatch with respect to wavelength @Dk=@l as a
function of the Bragg matched grating half-angle u0. The gradient is evaluated at the Bragg-
matched angle and wavelength; (b) gradient of the Bragg mismatch with respect to angle
@Dk=@u versus u0.
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�ikz
dS

dz
þ

k2
z

2
D1

1
Rei(2kz�K)z ¼ 0 (9:72)

Equations (9.71) and (9.72) are nearly identical to Eqns. (4.86) and (4.87) except for a
change in sign due to the counterpropagating diffracted beam. The boundary con-
ditions are also different; we still require that R(z ¼ 0) ¼ R0 but the second boundary
boundary condition is now S(z ¼ d ) ¼ 0. The solution to Eqns. (9.71) and (9.72)
satisfying these conditions is

R(z) ¼ ei(Dkz=2)R0
g cosh[g (z� d)]� i(Dk=2) sinh[g (z� d)z]

g cosh(g d)þ i Dk
2 sinh(g d)

" #

S(z) ¼ i

2
kzD1

1
e�i(Dkz=2)R0

sinh[g (z� d)]
g cosh(g d)þ i(Dk=2) sinh(g d)

(9:73)

where Dk ¼ K � 2kz and g ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

zD1
2=12 � Dk2

p
.

Figure 9.19 plots the diffraction efficiency of a reflection hologram as a function of
wavelength and angular detuning. Note that the hologram does not produce signifi-
cant diffraction at wavelengths longer than the retroreflected wavelength. Shorter
wavelengths are Bragg-matched for efficient reconstruction at detuned angles. The
critical point at the retroreflection wavelength creates a relatively broad angular
range with uniform spectral response. The spectral filtering properties of reflection
holograms makes them ideal for display holography. Transmission holograms are dif-
ficult to view in white light because angular ambiguity creates a blur of overlapping
diffracted orders. Reflection holograms, in contrast, reflect only frequencies above a
critical value. Accounting for interface refractive effects and relatively narrow illumi-
nation angles, reflection holograms in display applications are sharply colored and
easy to view under white light.

Figure 9.18 Reflection hologram geometry.
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Estimating the angular and spectral resolving power of a reflection hologram based
on the region over which g is real yields

dl � l
D1

1
(9:74)

and

Du �
ffiffiffiffiffiffiffiffiffi
2D1
1

r
(9:75)

Given that D1=1 may be 1025 or less, the resolving power of a holographic filter may
be extraordinary. The etendue is pA2Du 2=4 � pA2D1=1, where A is again the dia-
meter of the entrance aperture. The R–L product is thus

E ¼ pA2

2
¼ pVD1

l1
(9:76)

where we note that thickness required to achieve high efficiency is d � 2l1=pD1 and
that V ¼ pA2d=4. With E proportional to the aperture area, the spectral efficiency of a
holographic filter is approximately equivalent to a slit spectrometer and less than a

Figure 9.19 Density plot of diffraction efficiency versus wavelength and angular detuning
for a reflection volume hologram. The holographic modulation is D1=1 ¼ 5� 10�4, and the
thickness is d ¼ 41=k0D1 ¼ 1273l. The maximum diffraction efficiency for this thickness
is h ¼ 0.93. (Du is in degrees.)
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coded aperture or Fabry–Perot. As with the Fabry–Perot, one might increase the
spectral efficiency by using a Fourier lens to disambiguate spectral channels over a
wider angular range. It is also possible to increase the spectral efficiency of a holo-
graphic filter by creating holograms with focusing beams [182].

Holographic filters are most commonly used in applications that require one to
isolate a single narrow spectral line, such as laser line stabilization and mode selection
filters. The primary challenge in using holographic filters in other applications is the
difficulty associated with creating a filter that responds to more than one wavelength.
In principle, one can overcome this challenge by recording multiple-exposure holo-
grams, with each exposure recording a grating for a target wavelength, but materials
control issues associated with this approach favor filters fabricated by layered (non-
optical) methods [27].

9.6.2 Thin-Film Filters

As illustrated in Fig. 9.20, a thin-film filter consists layers of optical materials. While
spectral filtering by a thin film is known to anyone that has observed soap bubbles, the
technology of thin-film filter design and fabrication is extraordinarily sophisticated.
As discussed by Macleod [162], the modern thin-film filter emerged with the devel-
opment of advanced deposition technologies in the 1930s. Given that thin-film depo-
sition technologies are central to modern microelectronics as well as optics, the
current state of chemical and physical deposition systems is highly advanced for
metals and dielectrics. Subnanometer layer thicknesses and smoothness are com-
monly available. In optical applications filters may consist of over 100 layers.

Thin-film filter analysis follows the same strategy that we applied to the Fabry–
Perot etalon; we consider the field reflected and transmitted by the filter when the

Figure 9.20 A thin-film filter is formed from layers of different optical materials. The (poten-
tially complex) index of refraction of the nth layer is ni and the thickness is di.
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plane wave Eþ0 exp(ikxxþ ikzz) is incident. The thickness and index of refraction of
the lth layer are dl and nl. nl may be complex to account for absorption. The incident
field induces plane waves propagating in the positive and negative z directions in each
layer. Let the amplitudes of these fields at the left edge of the layer be El

þ and El
2. The

corresponding ampitudes at the right edges are Eþl exp(iklzdl) and E�l exp(�iklzdl),

where klz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2n2

l =l
2 � k2

x

q
.

The response of a thin-film filter depends on the polarization of the incident field.
One accounts for this dependence by separately considering the transverse electric
(TE) and transverse magnetic (TM) components. The TE (TM) wave is polarized
such that E (H) lies along the y axis. In each case the boundary condition that the
transverse components of E and H must be continuous across the interface is
applied to relate El

þ and El
2 and Elþ1

þ and Elþ1
2 . In the TE case, we note from Eqn.

(4.10) that Hx ¼ �i(v=m0)@Ey=@z. Continuity of Ey and Hx then yields

Eþl eiklzdl þ E�l e�iklzdl ¼ Eþlþ1 þ E�lþ1 (9:77)

klz Eþl eiklzdl � E�l e�iklzdl

 �

¼ k(lþ1)z Eþlþ1 � E�lþ1


 �
(9:78)

Equations (9.77) and (9.78) may be rearranged to form the difference equation [257]

Eþlþ1
E�lþ1

� �
¼Ml

Eþl
E�l

� �
(9:79)

where

Ml ¼
1
2

1þ klz

k(lþ1)z

� �
eiklzdl 1� klz

k(lþ1)z

� �
e�iklzdl

1� klz

k(lþ1)z

� �
eiklzdl 1þ klz

k(lþ1)z

� �
e�iklzdl

2
664

3
775 (9:80)

Equation (9.79) corresponds to Eqns. (9.71) and (9.72) and is solved under the same
boundary conditions.

Consider, as an example, a periodically layered structure such that dlþ2 ¼ dl and
nlþ2 ¼ nl. Defining M ¼M2M1, the difference equation in this case becomes

Eþlþ2
E�lþ2

� �
¼M

Eþl
E�l

� �
(9:81)

for odd l. M is the “characteristic matrix” of the thin-film structure. Among several
interesting properties, one may show show that jMj ¼ 1 [23].

Attempting a solution to Eqn. (9.81) of the form

Eþlþ2
E�lþ2

� �
¼ g

Eþl
E�l

� �
(9:82)
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yields the characteristic equation jM� gIj ¼ 0. The characteristic equation is
expressed in terms of the elements of M as

M11M22 � g(M11 þM22)þ g 2 �M21M12 ¼ 0 (9:83)

or, applying the fact that M is unimodular, as

g 2 � gTr(M)þ 1 ¼ 0 (9:84)

Multiplying M2M1 one finds the trace of M

Tr(M) ¼ 2 cos k1zd2 cos k2zd2 � sin k1zd1 sin k2zd2
k1z

k2z
þ k1z

k2z

� �
(9:85)

If k1z and k2z are real, then Tr(M) is also real. The eigenvalue of M is

g ¼ Tr(M)
2

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr Mð Þ2

4

s
� 1 (9:86)

Note that if Tr(M) , 2 then jgj ¼ 1. When jgj ¼ 1 the eigenvectors of M describe
modes that propagate through the layered structure without attenuation.

Values of l or u such that jgj= 1 lie in the stopband of the thin-film filter. The
eigenmodes in this region decay exponentially on propagation. The boundaries of the
stopband are described by the condition

cos k1zd2 cos k2zd2 �
1
2

sin k1zd1 sin k2zd2
k1z

k2z
þ k1z

k2z

� �
¼+1 (9:87)

At normal incidence with n2d2 ¼ n1d1 ¼ d, for example, the edges of the stopband
occur at l such that

cos2 2pd

l

� �
� 1

2
sin2 2pd

l

� �
n1

n2
þ n2

n1

� �
¼+1 (9:88)

Solutions to Eqn. (9.88) corresponding to a stopband take the form

sin2 2pd

l

� �
1þ 1

2
n1

n2
þ n2

n1

� �� �
¼ 2 (9:89)
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Equation (9.89) may be simplified in the case of weak modulation by assuming that
n1=n2 ¼ 1� Dn=nþ Dn2=n2 and n2=n1 ¼ 1þ Dn, which yields a band edge at

sin2 2pd

l

� �
� 1� Dn2

2n2
(9:90)

Stopbands are centered on the wavelengths

l ¼ 4d

2qþ 1
(9:91)

where q is an integer.
A thin-film filter consisting of alternating layers of thickness l=4ni is called a

quarter-wave stack, which is the discrete analog of the reflection volume hologram;
both are periodic with period l/2. Such a filter reflects wavelengths within the stop-
band and passes wavelengths outside the stopband. The approximate width of the
stopband is

dl ¼ l
2Dn

pn
(9:92)

which is roughly equivalent to the stopband width observed for a volume hologram in
Eqn. (9.74). Of course, a quarter-wave stack may achieve much greater index contrast
than a volume hologram. For example, Fig. 9.21 plots the stopband as a function of
the index ratio n2/n1 for normal incidence on a quarter-wave stack.

The angular response of a quarter-wave thin-film reflection filter is also similar to
volume reflection filter. As with the holographic filter, the angular range is proportio-
nal to the square root of the index contrast. As illustrated in Fig. 9.22, however, the
higher-index contrast available to thin-film devices produces a wider angular range
(and decreased spectral resolution).

The eigenvalues g+ corresponding to the positive and negative choices in Eqn.
(9.86) correspond to eigenvectors

E+ ¼
M12

g+ �M11

� �
(9:93)

The solution to Eqn. (9.81) is

Eþ2lþ1
E�2lþ1

� �
¼ ag l

þEþ þ bg l
�E� (9:94)

where a and b are constants determined from boundary conditions. Considering, for
example, a filter with L periods embedded in a substrate of index n1, the boundary
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conditions take the form

ag L
þ(gþ �M11) ¼ �bg L

�(g� �M11) (9:95)

and

Eþ0
E�0

� �
¼ aEþ þ bE� (9:96)

Solving for a and b in terms of Eþ0 , one finds that the reflectance and transmittance of
the quarter-wave stack are

r ¼ g� �M11

M12

1� (g�=gþ)L

1� g�=gþ

 �L

[(g� �M11)=(gþ �M11)]

t ¼ g L
�

gþ � g�

gþ �M11 � g�=gþ

 �L

(g� �M11)

(9:97)

In practice, of course, the filter is likely to be embedded in air rather than a dielectric
of index n1. This discrepancy is typically resolved by adding antireflection filters at

Figure 9.21 Stopband of a quarter-wave stack as a function of index contrast n2/n1. The
wavelength axis is plotted in units of the quarter-wave resonance wavelength. The dark
region corresponds to the stopband.
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the ends of the periodic layers. The antireflection filters consist of one or more
additional layers designed to match the impedance of the filter to the surrounding air.

Within the stopband, one can show that

g� �M11

M12

				
				 ¼ 1 (9:98)

and the ratio (g�=gþ)L goes to zero as L! 1. Finite L produces a finite reflectance,
as illustrated in Fig. 9.23 for a 30-period quarter-wave stack. The angular sensitivity
of the finite structure is well described by Fig. 9.22. Thin-film filters are generally
designed to operate in transmission rather than reflection. The filter of Fig. 9.23
is a band rejection filter, blocking a reasonably broad range of wavelengths
centered on l0. Much higher index contrast is readily available to create broader
band rejection filters.

Narrow-bandpass thin-film filters are created by putting layer dislocations in other-
wise periodic structures. For example, Fig. 9.24 illustrates a dislocation consisting of
a single l/2 layer in a quarter-wave stack. The dislocation creates a localized mode
(a “bound state”) within the stopband. Tunneling through the bound state creates a
sharp spectral feature in the transmission of the filter.

Figure 9.22 jg j as a function of dl ¼ l/l0 and DQ in degrees from normal for a quarter-
wave stack with n1 ¼ 1.7 and n2 ¼ 1.65.
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The Fabry–Perot analysis of Section 9.5 can be applied to obtain the transmission
characteristics of a periodic filter with a dislocation. Treating the periodic structure on
either side of the dislocation as a cavity mirror with reflectance and transmission
described by Eqn. (9.97), we can describe the transmittance of the overall filter
by Eqn. (9.47). As an example, Fig. 9.25 plots the transmittance of a resonator
formed from two quarter-wave stack dielectric mirrors. The curious aspect of this

Figure 9.23 Reflectance as a function of wavelength of a 30-period quarter-wave stack with
n1 ¼ 1.7 and n2 ¼ 1.65. As in Fig. 9.22, dl is in units of the quarter-wave design wavelength.

Figure 9.24 A quarter-wave stack with a l/2 dislocation layer.
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resonator with respect to our earlier discussion of the Fabry–Perot is that we even
though we include no resonant cavity layer between the mirrors, we observe a
sharp resonant transmission peak. The peak appears as a blip in full stopband
plotted in Fig. 9.25(a), but when we zoom in we see that the transmittance reaches
1 over a narrow spectral range in the center of the stopband.

The resonance occurs because the phase of the reflectance of a dielectric mirror
varies as a function of wavelength and angle of incidence. For example, Fig. 9.26
shows the phase of the reflectance as a function of wavelength detuning for the dielec-
tric mirrros used in Fig. 9.25. One finds in general that the phase varies approximately

Figure 9.25 (a) Absolute value of the transmittance of a quarter-wave stack resonator
with n1 ¼ 1.7 and n2 ¼ 2.2 as a function of wavelength detuning at normal incidence.
(b) Magnified plot of (a) focusing on the tunneling resonance. The resonator consists of two
20-period dielectric mirrors sandwiched back to back such that the center layer is of thickness
l/2 with index n1.
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linearly between 2p/2 and p/2 across the stopband. Replacing 1/nr with the rate of
phase variation p/2Dnsb, one substitutes in Eqn. (9.55) to find that the resolving
power of the bound-state resonator is

R ¼ l

dl
¼ 2F

p

l

dlsb
(9:99)

where Dnsb and dlsb are the widths of the stopband in n and l and F is the finesse. We
find, in short, that the resolving power associated with tunneling through the bound
state is 2F/p times greater than the resolving power of the quarter-wave stack. The
finesse for the mirrors of Fig. 9.25 is 2.3 � 104, which corresponds to the approxi-
mately 104 ratio between the widths of the stopband and the tunneling resonance
observed in Fig. 9.25. The tunneling resonance also increases the angular resolving
power of the filter, as illustrated in Fig. 9.27.

In comparison with a Fabry–Perot resonator, the tunneling resonance enables
thin-film filters to achieve comparable resolving power in a smaller volume and
without free spectral range ambiguity. The spectral efficiency limits for thin-film
filters are similar to those for a Fabry–Perot. The state of the art of thin film filter
design and manufacturing is extremely sophisticated. Filters with multiple complex
reflectance or transmittance resonances and wide angular performance are routinely
available. Even simple variations, like using asymmetric layers in a periodic stack,
introduce rich transmission and reflectance features. As thin-film devices continue
to improve, one expects their application in spectroscopy will greatly expand. In
particular, two- and three-dimensional resonant filters, as discussed in Section 9.8,
greatly increase the power of this technology.

Figure 9.26 Phase of the reflectance at normal incidence for the dielectric mirrors of
Fig. 9.25.
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9.7 TUNABLE FILTERS

Returning once again to the philosophy with which Girard opened this chapter, a
spectrometer is formed by measuring data dispersed over space or time. We have
briefly encountered each of these strategies for spectral filters in the form of tem-
porally varying Michelson and Fabry–Perot interferometers and in the form of
spatial modulation in the FP ring pattern. The present section and Section 9.8
discuss strategies for temporal and spatial modulation of spectral filters in more detail.

We focus in this section on strategies for creating narrow-bandwidth single-
channel tunable filters. Among the systems we have encountered thus far, the
Fabry–Perot etalon and the dispersive spectrometer offer the best hope for creating
such a device. As we have seen, however, the etalon is effective over only a single
free spectral range. The dispersive spectrograph working as a “monochromator” is
commonly used as a single-channel spectral filter, but it is an extremely bulky and
inelegant solution to this problem.

Polarization-based filters utilizing liquid crystal and acoustooptic devices have
emerged as compact and effective tunable filters since the mid-1980s. The liquid
crystal tunable filter utilizes a stack of polarization analyzers, birefringent crystals,
and liquid crystal layers to isolate spectral channels using wavelength-dependent
polarization rotation. The acoustooptic tunable filter uses polarization-dependent
Bragg scattering from acoustic waves. The acoustic grating wavevector selects the
scattered wavelength. This section reviews the basic design of these devices and
describes their resolving power, etendue, spectral throughput, and spectral efficiency.

Figure 9.27 Transmittance as a function of angular and wavelength detuning for the thin-film
resonator of Fig. 9.25.

380 SPECTROSCOPY



9.7.1 Liquid Crystal Tunable Filters

A liquid crystal is a homogeneous material formed of asymmetric molecules. The mol-
ecular state is defined by orientational and positional order parameters. In a normal
liquid the relative orientation and position of molecules decorrelates in just a few
molecular spacings. In a liquid crystal, however, the relative order spans macroscopic
domains. Figure 9.28 shows a typical visual model for a nematic liquid crystal. The
liquid crystal is a state of matter, similar to a liquid, solid, and gas, with phase transitions
between states as at critical temperatures and pressures. In the nematic phase the
long-range orientational order parameter is nonzero. Other phases include the
smectic phase, in which orientation and 1D translation are ordered, and the cholesteric
phase, in which orientation and 2D translation and rotation are ordered. The smectic
phase consists of layers of ordered molecules. In the cholesteric phase the orientation
of successive layers tends to rotate. The direction of the orientational order parameter
is often determined by boundary conditions or by an electric field.

The most significant optical implication of the order parameter is that liquid crys-
tals are birefringent. For nematic liquid crystals, the transmittance of a thin liquid
crystal layer for light polarized parallel to the order parameter differs from the trans-
mittance for light polarized orthogonally to the order parameter. The effect of a liquid

Figure 9.28 In an nematic liquid crystal the long-range order parameter for molecular align-
ment is nonzero. The molecules themselves must be asymmetric, as with the rod-like molecules
illustrated here. Alignment in real materials is not nearly as uniform as illustrated here; one
needs only a nonzero statistical correlation in the alignment to obtain long-range order.
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crystal layer on the optical polarization is more complex in cholesteric or twisted
nematic materials. The birefringent axis rotates in such materials and can rotate the
optical polarization with it. Twisted nematics and ferroelectric liquid crystals are
used to make displays, where one typically seeks simply to switch between a trans-
missive state and a nontransmissive state. Simple birefringent devices suffice for
liquid crystal filters, however.

The building blocks of a liquid crystal tunable filter, consisting of linear polarizers
and liquid crystal layers, are illustrated in Fig. 9.29. Devices may also include static
birefringent crystals. The order parameter of the nematic layer in the liquid crystal cell
is described by a 3D vector, the component of this vector in the boundary plane of the
liquid crystal layer defines the extraordinary axis. The transmittance of the liquid
crystal layer for a plane wave polarized along the extraordinary axis is

exp 2pned
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=l2 � u2 � v2

p� �
, where d is the layer thickness and ne is the extraordi-

nary index of refraction. The transmittance for a wave polarized along the ordinary
axis is similar with index no. In view of the polarization dependence of the device,
the transfer function for the liquid crystal layer generalizes from the scalar form of
Eqn. (9.47) to the matrix form

Ĥ(u, v) ¼ e2pinod
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=l2)�u2�v2
p

0

0 e2pined
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(1=l2)�u2�v2
p

 !
(9:100)

where Ĥ is the Jones matrix for the liquid crystal layer.

Figure 9.29 A liquid crystal tunable filter consists of electrically modulated birefringent
liquid crystal layers sandwiched between polarization analyzers and birefrigent crystals.
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Jones matrix calculus is commonly applied to describe the operation of polariz-
ation devices. The Jones matrix transforms the incident field E into the output field
according to Eo ¼ HEi. The two components of E correspond to the electric fields
polarized along the x and y axes. In writing a diagonal Jones matrix for the liquid
crystal layer in Eqn. (9.100), we assume that the liquid crystal axes are aligned
along x and y.

The Jones matrix for a linear polarizer is

1 0
0 0

� �
(9:101)

Propagation through this device blocks the Ey field component. The operation of a
Jones matrix depends on the orientation of a device relative to the polarization
axes of an incident beam. Rotating a device relative to fixed polarization axes
results in a transformed Jones matrix RHR21. For example, rotation of the linear
polarizer by p/2 produces the Jones matrix

0 0
0 1

� �
(9:102)

A liquid crystal tunable filter is designed by judicious application of linear polar-
ization analysis, birefringent filtering, and coordinate rotation. For example, the trans-
mittance for a plane wave normally incident on the simple cell illustrated in Fig. 9.29
with both analyzers oriented at p/4 with respect to the ordinary axis is

Ĥ(0, 0) ¼ 1
4

1 1

1 1

� �
e2pino(d=l) 0

0 e2pine(d=l)

 !
1 1

1 1

� �

¼ 1
2

epi(noþne)d=l cos p(no � ne)
d

l

� �
1 1

1 1

� �
(9:103)

Assuming that the incident light is unpolarized, the fraction of the normally incident
irradiance transmitted by this system is cos2 (pDnd=l)=2, where Dn ¼ no 2 ne. The
transmittance as a function of l for this cell is shown in one of the two curves in the
lower half of Fig. 9.30(a). The birefringence available in liquid crystals greatly
exceeds that of typical crystals; values of Dn may reach 0.5. A value of 0.2 is selected
in Fig. 9.30.

A Lyot filter is a cascade of alternating birefringent and analyzer stages [66,161].
One analyzes such a device by multiplying successive matrices as in Eqn. (9.103); the
resulting irradiance transmittance is

Q
i cos2 [pDn(di=l)]

2
(9:104)

where di is the liquid crystal thickness in the ith stage. The simplest Lyot filter uses
layer thickness increasing in powers of 2 (e.g., di ¼ 2i21d1). The thickness of the first
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Figure 9.30 Transmittance as a function of wavelength for a Lyot filter: (a) cos2[pDn(d=l)]
and cos2[2pDn(d=l)] in lower curves and product cos2[pDn(d=l)] cos2[2pDn(d=l)] in upper
curve, with birefringence Dn ¼ 0.2 and d ¼ 10nol; (b) composite transmittance for a stack
of d, 2d, 4d, 8d, and 16d filters; (c) a detail of the transmittance of (b) with tuning of Dn ¼
0.195, 0.2, 0.205.
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stage determines the free spectral range DnFSR ¼ c=Dnd1, and the thickness of the
final state determines the spectral resolving power

R ¼ l

dl
� Dn2N�1d1

l
(9:105)

Figure 9.30(b) shows the irradiance transmittance of a five-stage Lyot filter. The
filter is tuned by changing the birefringence Dn. An applied field moves the molecular
order parameter closer to the optical axis, thereby reducing the birefringence observed
by a wave propagating along the axis. Assuming that the birefringence of all layers is
simultaneously modulated the change required to move the resonance by one resol-
ution element is

dn ¼ Dn

R
¼ l

2N�1d1
(9:106)

The number of spectral channels one can resolve is the total range over which one can
vary the birefringence divided by dn. For the five-stage system of Fig. 9.30, R � 32
and the step change in Dn is about 3% of the baseline. A 50% range in birefringence
would enable approximately 15 distinct spectral channels.

As illustrated in Fig. 9.31, the angular sensitivity of a Lyot filter is essentially
similar to the response of thin-film, holographic, and Fabry–Perot filters and the

Figure 9.31 Angular sensitivity of a Lyot filter. Compare with Fig. 9.22 for a thin-film filter;
note, however, that the present figure plots a transmission resonance while Fig. 9.22 plots a
stopband (reflection resonance).
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Michelson interferometer. In each case, the physical effect filters on the effective
longitudinal wavelength, which is proportional to the cosine of the angle of inci-
dence. The spectral width of the filter dl is related to the change in the effective wave-
length with angle as

dl ¼ l(1� cosDu) � l
Du 2

2
(9:107)

meaning that for longitudinal filters and interferometers

Du 2 � 2
R

(9:108)

This approximation appears previously in Eqn. (9.75) and Eqn. (9.41). Considerable
effort in “wide field” thin-film and birefringent filter design focuses on pushing the
limits of this approximation. Indeed, since we are making a Taylor series expansion
on small angles, the approximation does not exactly hold, and design does help in
pushing the relationship between resolving power and acceptance angle. Such
efforts push a constant of proportionality; however, the basic link between R and
Du is intrinsic to longitudinal devices. We avoided this limit in our discussion of
Fabry–Perot spectroscopy by assuming that we could decode the ring pattern over
a wide angle rather than just using longitudinal filtering. We return to multidimen-
sional interferometry to avoid this limit in Section 9.8.

The etendue of a liquid crystal tunable filter is L ¼ pA2=4Du 2, and the spectral
efficiency is E ¼ pA2/2, the same as for a holographic or thin-film filter. For all
of the approaches considered thus far, except for the slit spectrometer, etendue and
efficiency increase in proportion to the aperture area rather than the aperture diameter.
The spectral efficiency is dl/Dl ¼ l/RDl. Spectral throughput inversely pro-
portional to resolving power is characteristic of narrow-pass spectrographs. For
broad-spectral-range systems, this leads to an increase in the signal acquisition
time necessary to achieve SNR targets.

The thickness required to obtain a given resolving power using a Lyot filter is
approximately 1/Dn times greater than the thickness required to reach the same resol-
ving power using a hologram or thin-film filter. One ought not discount, however, the
incredible utility of real-time tunablity. Liquid crystal tunable filters are wonderful
devices for fairly course but rapid single-color tuning. Current systems involve opti-
mized stage design, often using the Solc approach [227] of using only two polariz-
ation analyzers in a chain of birefringent elements. System design may include
static birefringent plates and thin-film elements in addition linear polarization filter-
ing, liquid crystal layer thickness, and axis rotation. One may also imagine multiplex
filter designs using liquid crystal devices.

9.7.2 Acoustooptic Tunable Filters

Acoustooptic tunable filters (AOTFs) also use polarization filtering, although
the motivation for polarization effects is much different. Acoustooptic devices are
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based on the scattering of optical fields from permitivitty gratings induced by acoustic
waves. Even though acoustic frequencies are much less than optical frequencies,
acoustic wavelengths may be small because the acoustic velocity in crystals is
about five orders of magnitude less than the speed of light. Unfortunately,
maximum acoustic frequencies range from 100 MHz to 1 GHz, about six orders of
magnitude less than optical frequencies. This means that the period of an acoustic
grating is at least an order of magnitude greater than the optical wavelength. With
reference to Eqn. (9.7) or to our plot of spectral selectivity versus Bragg angle in
Fig. 9.17(a), we see that long-period acoustic gratings are unlikely to be effective
spectral filters.

The solution to this problem is illustrated in Fig. 9.32, which is a wave matching
diagram for scattering from the ordinary polarization to the extraordinary polarization
in a birefringent crystal. The wave normal surfaces are scaled to the indices of
tellurium dioxide (TeO2), which is commonly used for visible and near IR filters.
An acoustic wave scattering light from one polarization to the other must satisfy
ka ¼ ke 2 ko, where ka is the acoustic wavevector and ke and ko are the wavevectors
of the extraordinary and ordinary optical waves. Assuming collinear beams, the
acoustic frequency is

f ¼ (ne � no)v
l

(9:109)

At l ¼ 633 nm in TeO2, ne ¼ 2.41 and no ¼ 2.26. The acoustic velocity is v ¼

620 m/s [103]. The acoustic frequency for colinear coupling is thus f ¼ 147 MHz,
which is well within practical limits.

The basic design of an AOTF is illustrated in Fig. 9.33. Incident signals are polar-
ized along the ordinary or extraordinary axis by an input polarizer. A radio frequency

Figure 9.32 Wave normal surfaces for TeO2. The ordinary index is 2.26; the extraordinary is
2.41. The optical axis is vertical in the figure at right. An acoustooptic tunable filter uses Bragg
scattering to diffract light from one surface to the other. Maximal angular bandwidth for the
scattering is obtained if the tangents to the ordinary wave sphere and the extraordinary wave
ellipsoid are parallel.
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acoustic wave launched by a piezoelectric transducer creates a diffraction grating in
birefringent crystal. This grating scatters the optical wave under Bragg selective con-
ditions from one polarization wave normal surface to the other. Undiffracted input
light is blocked by an output polarizer, which passes the Bragg-filtered diffracted
beam. In a noncollinear design, the angle of propagation of the diffracted beam is
shifted from the angle of incidence.

The acoustic wave changes the indices of refraction of a crystal via the photoelastic
effect, under which mechanical stress modulates the permittivity. The change in
refractive index is described by a photoelastic tensor. The utility of a material for
acoustooptic filtering depends on the structure and amplitude of coefficients in this
tensor. TeO2, for example, has strong photoelastic properties but lacks photoelastic
tensor coefficients to mix the ordinary and extraordinary waves copropagating in the
plane orthogonal to the optical axis. Off-axis designs would normally have limited
field of view, but if the propagation direction of the ordinary and extraordinary
beams differ such that the tangent planes to the wave normal surface are parallel, as
illustrated in Fig. 9.32, then the coupling will be relatively insensitive to angular
Bragg mismatch. For this reason, noncollinear geometries are preferred in AOTF
design. A designer generally must use computational methods to combine frequency
response data, photoelastic coefficients, and refractive geometries to optimize system
performance metrics such as spectral resolving power, spectral range, and field of view.

Equations (4.89) are easily modified to account for collinear polarization switch-
ing, for example

ike
dR

dz
þ k2

e

2
D1

1
~S ¼ 0 (9:110)

iko
d~S

dz
� ko(ke � ko � ka)~Sþ k2

o

2
D1

1
R ¼ 0 (9:111)

where we assume that S(z) describes the amplitude of the ordinary wave and R(z)
describes the extraordinary. D1 is a function of tensor coefficients coupling the

Figure 9.33 Optical system layout for an acoustooptic tunable filter.
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ordinary and extraordinary waves. Solutions take exactly the form of Eqn. (4.90) with
Dk ¼ ke 2 ko þ ka, where ka is again the acoustic wavevector. Dk is nonzero owing to
detuning of the input wavelength or angle of incidence. For example, the change in
Dk for wavelength detuning dl is Dk ¼ 2pDndl=l2, where Dn ¼ (ne � no). As
in Eqn. (4.91), substantial loss in diffraction efficiency occurs if Dk is comparable
to kD1/1. This implies that the spectral resolving power of the AOTF is

R ¼ Dn
1

D1
(9:112)

As a practical matter, AOTF resolution is limited by crystal size. One sets the
acoustic power entering the device to obtain a grating modulation consistent with
high diffraction efficiency (e.g., L ¼ p=g � 1l=2D1). The maximum value of L
available is determined by crystal growth and uniformity limitations. In terms of
the grating interaction length, the resolving power is [103]

R ¼ 2DnL

l
(9:113)

It is interesting to note that the period of the acoustic grating is l/Dn, so the resolving
power of the AOTF is proportional to the number of grating periods in the interaction
length. This result, and the similar result obtained for dispersive spectrometers, is, of
course, expected from Fourier uncertainty arguments.

As with volume holograms, thin-film filters and liquid crystal tunable filters
(LCTFs), the field of view of an AOTF is inversely proportional to the square root
of the resolving power and the spectral efficiency is proportional to the input aperture
area. AOTFs commonly achieve resolution in the nm range, corresponding to a spec-
tral resolving power of 100–1000. The field of view is typically 5–108. The spectral
throughput shares the l/RDl characteristic of all narrow-pass instruments, although
one can imagine implementing multiplex AOTF filtering. Tuning speed and spectral
range are particular advantages of AOTF technology, it is not uncommon for an
AOTF to tune from one wavelength to the next in ,10 ms, and crystals are available
for filters spanning the ultraviolet to longwave infrared.

9.8 2D SPECTROSCOPY

As we saw in Section 7.5, dimensionality may have many meanings in sensor
systems. In most spectroscopy literature, “two-dimensional” refers to molecular
analysis based on joint consideration of excitation and relaxation frequencies [6].
“N-Dimensional” and “hyperdimensional” strategies have evolved in nuclear mag-
netic resonance and optical vibrational spectroscopies as mechanisms for joint analy-
sis of molecular harmonics [142]. This sense of dimensionality points to the
incredible richness of spectroscopy, which ultimately focuses more on the nature
of the object than on the nature of the optical field. While it is fruitful to apply
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generalized sampling and signal analysis to excitation/relaxation spectroscopy, we
limit the present narrative to optical system analysis.

We focus, therefore, on a more prosaic meaning of 2D, specifically, “How can we
best take advantage of 2D detector arrays and 2D optical modulation to improve resol-
ving power, etendue, and spectral efficiency?” The most striking similarity between
the diffractive, interferometric, and resonant spectrographs that we have discussed is
that, with the notable exception of the coded aperture, all rely on one-dimensional
dispersion and coding strategies. The resolving power of the diffractive systems is
determined by the number grating periods transverse to the optical axis, and the resol-
ving power of the interferometric and resonant systems is determined by the scan
range or dielectric modulation along the optical axis. We did consider off-axis modu-
lation in the analysis of Fabry–Perot rings, but even in that case the basic spectro-
scopic pattern was one-dimensional in the radial coordinate. Given that 2D
detector arrays are readily available and that the cost of an optical system rises non-
linearly in the aperture diameter, it is unfortunate that spectroscopic designs do not
take advantage of the possibility of multidimensional optical elements.

Although 2D design does not improve the resolving power, etendue, and effi-
ciency limits described earlier in this chapter, it does enable substantial increases
in spectral range within a given volume. We are interested in systems, as illustrated
in Fig. 9.34, in which a spatially inhomogeneous optical element modulates an inci-
dent field. The incident field is typically specified by prior information; for instance,
the object may be a diffuse source radiating into a fixed solid angle, a plane wave,
a focal image, and so on. The purpose of the optical element is to spatially and

Figure 9.34 Field modulation by a multidimensional dispersive element.
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spectrally modulate the optical field such that one can accurately estimate the mean
power spectral density of the object.

We may make some general statements regarding optical processing with a multi-
dimensional element. First, the element cannot increase the maximum focal radiance
of any targeted spectral channel. We know from Section 6.6.3 that the brightest focal
spot one could produce in any color channel has irradiance proportional to the largest
coherent mode in that spectral channel. A passive optical element cannot violate this
principle. On the other hand, it is possible to imagine an optical element that imple-
ments arbitrary independent spectral projections on each object image pixel. By an
arbitrary spectral projection we mean a measurement of the form

gi ¼
ð

S(x, y, l)hj(x, y, l) dl (9:114)

Spectral projections gi and gj are independent if hi and hj are independent functions.
An optical fiber bundle provides an existence proof for a system capable of imple-

menting an array of independent spectral projections. If we collect the object field into
an array of fibers, we are free to implement complex holographic and interferometric
filters independently on the light in each fiber. The number of different fields samples
that we can process is limited by the fiber spacing, but once the light is in the fiber,
processing of each channel becomes completely independent.

Moving from existence proofs to practical design, the following sections describe
several strategies for efficient use of 2D detector arrays in spectrometer design. This
idea continues to evolve rapidly; Section 9.8.4 offers thoughts on future directions.

9.8.1 Coded Apertures and Digital Superresolution

As we saw in Eqn. (9.12), coded aperture systems produce a 2D sensor pattern. In the
model of Eqn. (9.19), a coded aperture implements dimension increasing generalized
sampling as the 1D spectrum is mapped onto 2D measurements. Depending on the
structure of the 2D code, each measurement may correspond to an independent pro-
jection. Assuming the uniformly pixelated aperture of Eqn. (9.14), however, the
instrument function of Eqn. (9.15) applies and the number of measurements is
typically much greater than the number of spectral channels captured. The purpose
of increased dimensions in this case is to enable signal averaging over many
pixels in order to increase SNR. An alternative interpretation of this system as a
dimension reducing generalized sampling strategy for spectral images is introduced
in Section 10.6.

One goal in the present section is to consider strategies whereby the number of
measurements in a 2D system is equal to or even less than the number of spectral
channels estimated. An example strategy arises in coded aperture systems where
the pixel sampling function is larger than the optical PSF and the coded aperture fea-
tures. We generally assume, of course, that the pixel pitch in a dispersive spec-
trometer is less than half the slit or aperture feature width. This sampling rate
ensures that the object spectrum is sampled at the Nyquist rate. It is possible,
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however, to use 2D sampling to antialias an undersampled 1D spectrum and make the
effective focal plane pixel size smaller.

Example transfer functions for this case are illustrated in Fig. 9.35. The plots
assume that the mask feature size is 4� smaller than the pixel feature size and that
the mask features are just at the optical resolution limit. As discussed in Chapters
5 and 7, the pixel pitch in modern visible and shortwave infrared focal planes is
usually much larger than the optical Nyquist limit of l f =#=2. Interpreting the
pixel pitch as the resolution limiting feature in Fig. 9.35 using the signal inference
strategies of Section 9.3, one predicts that the useful bandwidth limit is
umax ¼ 0:125F=Llf =#. Spectral features beyond this limit would be aliased,
meaning both that they would not be resolved and that they would add ambiguity
to features within the nonaliased band.

“Pixel superresolution” techniques using multiple nondegenerate samples of a
sampled image to overcome the aliasing limit are well established for multiaperture
and video imaging systems [195]. We considered a rough version digital superresolu-
tion in Section 8.4 and ask the reader to consider them again in Problem 9.14. We
discuss these techniques for imaging in Section 10.14. Pixel superresolution in the
current context consists of repeating rows of the coded aperture with a slight

Figure 9.35 Transfer functions for a coded aperture spectrometer with mask features of width
l f/# and focal plane pixels of width 4lf/#. As illustrated in (a), the system transfer function is
the product of the optical, pixel, and mask transfer functions. The dashed curve in (b) is the
system transfer function magnified along the vertical axis by a factor of 10. The aliasing
limit for single-channel sampling is u ¼ 0.125F/Ll f/#. The goal of nondegenerate 2D
sampling is to extend the effective system transfer function to the optical diffraction limit,
increasing the spectral resolution in this case by a factor of 4.
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horizontal shift from one row to the next. The sampling model of Eqn. (9.12) applies,
but by repeating rows of the code with a 1 code pixel shift from one row to the next,
one may collect data such that the sample pitch is Dl ¼ La=qF, where the code pitch
a is less than the FPA pixel pitch D.

In considering this sampling strategy, one observes the different impacts of the
pixel transfer function and the sampling aliasing limit on instrument design. The
pixel pitch in rectangularly sampled systems often leaves substantial system bandpass
beyond the aliasing limit, in part because a rectangular pixel has significant bandpass
beyond its corresponding Nyquist limit. Multichannel sampling of signals with
subpixel shifts enables one to create sampling systems with spatially overlapping
pixel sampling functions such that the aliasing limit corresponds to the full
pixel bandpass.

The instrument function for the pixel superresolution strategy described here
remains hlr(l) as defined in Eqn. (9.15), meaning that the system transfer function
is the STF illustrated in Fig. 9.35. As illustrated in the figure, the system transfer func-
tion remains potentially useful out to 0:5F=Llf =#, indicating an improvement in
resolution by a factor of 3–4 over the conventional limit. Signal improvements
arise from both the elimination of aliasing noise and the broadened bandpass.

With pixel superresolution one may imagine dispersive spectrometers with resol-
ving power at the diffraction limit. Substituting ax ¼ lf =# in Eqn. (9.8) yields

R ¼ A

L
(9:115)

where A is the aperture diameter and L is the grating period. However impressive this
result may be in comparison with many dispersive designs, the fact that the resolving
power is proportional to the aperture diameter rather than the aperture area means that
we have not achieved truly 2D coding.

The dispersive spectrographs in Figs. 9.2 and 9.4 consist of three major com-
ponents: the input aperture, the dispersive element, and the focal plane array. We
have found great success thus far in considering 2D structures on the input aperture
and the FPA. Our next step is to consider 2D dispersion. 2D dispersion requires that
we expand our stable of diffractive elements beyond the thin amplitude or phase
gratings of Section 4.5 and the volume phase gratings of Section 4.8. Because of
limitations of modeling, fabrication, and imagination, there is considerable room
for continuing diffractive element innovation. We describe just three examples in
this section to give a general idea of the possiblities.

9.8.2 Echelle Spectroscopy

Our first example is the echelle grating. In French, echelle refers to a ladder. The
echelle grating improved on the earlier concept of an echelon grating, which was a
staircase-shape stack of refractive elements, by adding a blaze angle to the stair
facets to enhance diffraction into targeted orders [113]. The basic structure of an
echelle grating is illustrated in Fig. 9.36. The grating itself consists of a reflective
surface into which periodic rulings have been etched. A “blazed grating” is a relief
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structure consisting of planar patches tilted with respect to the surface normal. The tilt
is at the “blaze angle.” As discussed momentarily, a blaze dramatically enhances dif-
fraction efficiency into targeted diffraction orders. One may regard a blaze as a form
of phase grating; blaze gratings have a longer history than do most diffractive optical
elements because they require relatively modest spatial resolution and can be fabri-
cated by diamond turning.

Rigorous analysis of diffraction from echelle gratings is a challenging problem;
any device with sharp discontinuities will tend to introduce strong scattering artifacts
[156]. As we are satisfied for the present purposes with a general idea of the echelle
function, we simply assume that the incident signal wave uniformly illuminates the
blaze surfaces, ignoring secondary scattering from the longer nearly horizontal sur-
faces. We focus on the Littrow geometry in which the incident and diffracted beams
are nearly parallel to the blaze. In this geometry the diffracted wave is nearly retro-
reflected and the effective grating period must be near l=2. Since echelle gratings
consist of rulings of period L�l, this means that the Littrow reflection is a high-
order diffraction mode.

As illustrated in Fig. 9.36, we select iz normal and ix parallel to the blaze facets.
ig ¼ cos ugiz þ sin ugix is a unit vector parallel to the grating wavevector. We
consider a plane wave incident on the grating with wavevector ki ¼ �k cos uiiz
þk sin uiix. The wave field on the nth grating facet is

Un(x) ¼ rect
x� nL sin ug

h

� �
e(2pi=l)[(x�nL sin ug) sin uiþnL cos ug cos ui] (9:116)

Observed in under the Fraunhofer diffraction approximation at range z ¼ R, we find
from Eqn. (4.42) that the wave field reflected from this facet is

Un(x 0) ¼ e2piR=lsinc
h

l

x0

R
� sin ui

� �� �

� exp
2pinL sin ug

l

x0

R
� sin ui

� �� �
exp

4p inL cos ug cos ui

l

� �
(9:117)

Figure 9.36 Geometry of an echelle grating mounted in a Littrow geometry. The z axis is
selected parallel to the blaze normal. The grating lies in a plane with surface normal ig.
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The scattered field radiates in a cone of angular width l=h centered on
ur ¼ x0=R ¼ ui. Summing over N grating facets, we may approximate the combined
diffracted field as

U(ur) ¼ U0sinc
ur � ui

uo

� �

�
sin p(N þ 1) (L sin ug=l)(ur � ui)þ (2L=l) cos ug cos ui

� � �
sin p (L sin ug=l)(ur � ui)þ (2L=l) cos ug cos ui

� � � (9:118)

for some constant U0. We define uo ¼ l=H and we assume sinui � ui.
The diffracted field consists of a series of diffraction orders satisfying the grating

equation

ur � ui ¼ q
l

L sin ug
� 2

cos ui

tan ug
(9:119)

The diffraction orders are modulated by the facet diffraction pattern
sinc[(ur � ui)=uo]. For the peak diffraction order corresponding to ur ¼ ui, we obtain

q ¼ 2
L

l
cos ui cos ug (9:120)

Anticipating that ui, ug 
 1 and that L� l, this means that the peak diffraction
order corresponds to the value of q� 1. Typical values of q for echelle gratings
range from 10 to 100; the actual value is determined in the selection of L and ug.
As expected, in the retroreflection geometry L=q � l=2.

The angular width of each diffraction order is du � l=Asinug, where A ¼ NL is
the aperture of the echelle. A sin ug is the cross section of the aperture as viewed
along the x axis. With l fixed, we find the angular separation from one order to
the next by increasing q by one, which leads to a shift in ur of l/Lsinug. With
ug 
 1, this shift may be comparable to uo ¼ l=h, meaning that we may observe
only one or two diffraction orders for a given l. The free spectral range of the
echelle is the change in n from one order to the next:

Dn ¼ c

2L cos ui cos ug
(9:121)

The wavelength range corresponding to one free spectral range, dl � l2=2L, may be
1–10 nm at visible wavelengths.

The ideal field scattered from an echelle consists of a set of diffraction orders sep-
arated in frequency by the free spectral range but all clustered around ur ¼ ui. These
diffraction orders must be separated to allow spectral analysis. As illustrated in
Fig. 9.37, this separation is achieved by including a cross-disperser. The figure
shows an echelle spectrograph in simplified form; a practical system includes
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imaging mirrors and lenses, neglected here for simplicity. The basic concept of the
design is identical to a grating spectrometer, where the input aperture is imaged
onto a detector array through a dispersion system. The use of different diffraction
orders for different free spectral ranges enables true 2D dispersion, however, and
allows one to use an effective grating period consistent with high resolving power
while also maintaining a broad spectral range. Notice that the figure assumes that
the echelle is illuminated at a nonzero azimuthal angle (e.g., ki has a iy component).
We neglected this possibility to simplify our narrative in describing the grating; azi-
muthal illumination simplifies separation of the incident and diffracted beams in a
Littrow system. Figure 9.38 is an image of echelle spectrometer data. Depending
on the cross-dispersion aperture, a given spectral channel may appear in more than
one diffraction order in an echelle. On this particular instrument (Optomechanics
Research SE 200) each spectral feature appears in two diffraction orders.

The spectral resolution of an angularly dispersive instrument is determined by the
rate of change of ur with respect to l:

Dur ¼
q

L sin ug
dl (9:122)

For an input aperture of width a imaged through a system with effective focal length
F, each spectral channel occupies an angular band of width Dur ¼ a=F. We find
therefore that the resolving power of an echelle spectrometer is

R ¼ qlF

aL sin uq
(9:123)

Figure 9.37 An echelle spectrograph that combines fast dispersion on the echelle grating
with coarse separation due to a cross-disperser to produce a 2D output mapping.
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As with the slit spectrometer, the diffraction limited resolving power is proportional
to the number of grating periods. Replacing a with lf =# and noting that the effective
system aperture is the cross-sectional aperture of the echelle, A sin ug, we find the
resolving power to be qNg. As an example, the SE 200 achieves resolving powers
ranging from 2000 to 6000, depending on grating geometry and pixel size.

To allow for order sorting by 2D dispersion, echelle instruments generally use
pinhole apertures, rather than slits. One might overcome this limitation using a 1D
coded aperture along the y axis. Under this strategy an echelle achieves spectral effi-
ciency comparable to a conventional grating spectrometer while also obtaining extra-
ordinary spectral range. Echelle systems are not amenable to 2D coded apertures
because the numerical aperture in x is limited. Assuming a pinhole aperture, one
replaces the input aperture area Aa in Eqn. (9.9) with a2 for an echelle instrument.
The resulting loss in spectral efficiency is balanced by the much shorter effective
grating period for the echelle, however, so the overall spectral efficiency is compar-
able to that for a slit spectrometer.

In summary, the echelle grating obtains the high spectral range and resolution of
true 2D coding but is generally limited to low-etendue input signals. It is interesting
to note that one could obtain similar advantages with much higher etendue with using
a dielectric mirror consisting of uniformly thick layers. However, the fabrication

Figure 9.38 A CCD image of the spectrum generated by a superposition of mercury and
deuterium–tungsten lamps. The spectrum was collected by the Optomechanics Research SE
200 echelle spectrometer using Catalina Scientific’s KestrelSpec software. The image was pro-
vided courtesy of Catalina Scientific Instruments.
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technology to make a dielectric stack with 20–40-mm layers to submicrometer uni-
formity is not currently available. When Harrison introduced the echelle grating, the
art of fabrication was a critical factor in system performance and design. The art of
blazed grating manufacturing has advanced considerably in the intervening half-
century, but system constraints due to manufacturing art remain a central theme of
spectrometer development.

9.8.3 Multiplex Holograms

Multiplex volume holograms are an example of a physically plausible technology
lacking the current manufacturing art for widespread integration in spectroscopy.
As discussed in Section 4.8, a hologram may be recorded between fields of arbitrary
complexity. For simplicity, we limit our discussion here to holograms recorded
between plane waves. Such holograms produce simple diffraction gratings described
by a grating wavevector K, as illustrated in Fig. 4.21. In a multiplex hologram,
multiple plane wave gratings are recorded in a single material. Two of the various
recording strategies for multiple grating holograms are illustrated in Fig. 9.39.
Figure 9.39(a) illustrates a strategy for recording grating wavevectors K1 and K2

using a single reference beam. As discussed in Ref. 27, recording with a single refer-
ence produces higher modulation depth and diffraction efficiency. The process of
reading the single-reference hologram at a shorter wavelength is illustrated by the
outer wave normal surface in Fig. 9.39(a). At the shorter wavelength, the Bragg-
matched reference angle for both recorded gratings changes.

Our goal in using a multiplex grating hologram in spectrometer design is to effi-
ciently map multiple spectral ranges from the angular field of the input aperture on
to the angular field of the output aperture, much like an echelle grating. The potential

Figure 9.39 Recording geometries on the wavenormal surfaces for multiple-grating holo-
grams: (a) recording of two grating wavevectors using a single reference beam—the cross-
grating between k1 and k2 is also recorded; (b) recording of two wavevectors between pairs
of beams at different wavelengths.
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advantage of the multiplex grating approach is that the input field of view will be
comparable to conventional instruments, allowing convenient use of coded apertures
or slits. Unfortunately, the multiplex grating hologram of Fig. 9.39(a) does not
achieve this objective because the recording field is Bragg-matched to both gratings
along the input wavevector. The shorter wavelength field is nearly Bragg-matched to
both gratings, but at a shifted input angle. If the input field scattered by all of the
grating orders, then one must increase the output field of view to capture all of the
grating orders, and the system resolving power is simply determined by the largest
value of K.

In the alternative recording geometry of Fig. 9.39(b), independent gratings are
recorded at two different wavelengths. In this case both recording wavelengths are
Bragg-matched at the same input and output angles. We also illustrate the Bragg match-
ing condition on the outer wave normal surface of the grating K1 recorded on the inner
wave normal surface and the Bragg matching condition on the inner wave normal
surface for the grating K2 recorded on the outer surface. The shift in the Bragg condition
can be used in combination with an angularly filtered input aperture to ensure that a
spectral band centered on k1 scatters from K1 while a spectral band centered on k2

scatters from K2 from the same input aperture into the same output aperture.
To use multiplex volume gratings in a diffractive spectrometer, one decreases D1

and increases L to increase the angular selectivity of the hologram. In a conventional
design, one seeks low angular selectivity to achieve reasonable etendue. In a multi-
plex design, one maintains etendue by adding grating components. Figure 9.40
shows the increased angular selectivity for a lower-index-modulation hologram.
Figure 9.40(a) is a density plot of the data shown in Fig. 9.15, showing the
angular selectivity of a high-modulation, thin hologram. Figure 9.40(b) shows the
decreased angular range of thicker and lower-modulation hologram. Figure 9.41
shows the diffraction efficiency as a function of angular and wavelength detuning

Figure 9.40 Diffraction efficiency versus angular and wavelength detuning for (a) the
volume hologram of Fig. 9.15 and (b) the same hologram geometry with D1/1 ¼ 5 � 1023,
which yields 100% diffraction efficiency for a thickness of 96l0.
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for a three-grating multiplex hologram. The wavevectors of the gratings have been
separated enough to permit one to see the three orders; in a practical system one
selects the orders such that at each wavelength one can see at least one order
within the numerical aperture of the system while also attempting to maximize the
overall photon efficiency and etendue.

Feller et al. [70] demonstrated a multiple-order volume holographic 2D spec-
trometer using a coded aperture to enable overlap in the spectral images on the detec-
tor plane. Figure 9.42 shows sensor data for a monochromatic input for this
instrument, illustrating the multiple diffraction orders of an order 37 MURA code.
The goal of Feller’s instrument was to create a 2D spectral mapping such that each
position on the plane corresponds to a single wavelength. Just as this mapping
restricts throughput for a pinhole camera, such a mapping restricts throughput for a
spectrometer if the input source is diffuse. Feller overcomes this issue using the
coded aperture strategy discussed in Section 2.5 by placing each spectral channel
on a 2D pattern matched to deconvolution. The vertical shift between the diffraction
orders in Fig. 9.42 is introduced by a tilt in the recorded grating K vectors rather than
by a cross-disperser.

In principle, one could imagine the use of highly multiplexed volume holograms
to create complex 2D spectral mappings. In practice, however, the art of creating mul-
tiplex gratings with even just a few gratings is undeveloped. As discussed in Ref. 27,
recording with M reference beams reduces the total diffraction efficiency of a holo-
gram by approximately M22 compared to a hologram recorded with only one refer-
ence. At the time of this writing there are no commercial sources for multiplex

Figure 9.41 Diffraction efficiency versus angular and wavelength detuning for a three-
grating multiplex hologram, each grating using the same parameters as in Fig. 9.40(b).
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gratings, although the use of commercial use of multiplex holograms in data storage
systems remains promising. Multiplexing could, of course, also be applied to great
effect for the volume reflection gratings of Section 9.6 to create multiple band rejec-
tion or isolation filters. At present, however, the art of 2D thin film filter and micro-
resonantor fabrication appears likely to dominate multiplex holography in
spectroscopic applications.

9.8.4 2D Filter Arrays

The echelle and multiplex volume hologram spectrographs demonstrate that disper-
sive instruments can utilize a 2D aperture. One may, of course, also encode interfero-
metric and resonant instruments over 2D sensor arrays. Early studies of spatially
distributed measurements with such instruments focused on designs that map data
that might otherwise be distributed in time onto 1D detector arrays, as in two-
beam interferometers with spatially varying phase delay [192,208] and spatially vari-
able thin-film filters [34,85,215]. More recently, technologies have been developed to
create 2D instruments using active interferometer arrays based on liquid crystal or
micromechanical filters [238] or using spatially patterned 2D arrays of thin-film
filters [34,245]. While these approaches are promissing in the near term, miniaturized
interferometers and filters are still subject to the same resolving power, etendue, and
efficiency scaling laws as their macroscopic cousins described earlier in this chapter.
As considered in our discussion of volume scaling laws, simply making an instru-
ment smaller often degrades performance. To achieve truly revolutionary perform-
ance, one must account for multidimensional structure; for example, it is not

Figure 9.42 2D image detector for a monochromatic source using the multiple-order coded
aperture spectrometer described by Feller et al. [70].
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enough to make 1D gratings or 1D filters smaller—one must make 3D optical
structures.

The seeds of 2D spectrometers with arbitrary etendue and resolving power are
apparent in two trends. In the first example, mentioned earlier in the chapter but gen-
erally beyond the scope of this text, one creates spectrally sensitive absorbing
materials. The Foveon X3 sensor, a visible focal plane consisting of a stack of red,
green, and blue photodiode layers, is the most widely known example of this
approach [193]. More recently, substantial progress has been made to extend this
concept using layered or electrically tunable materials in infrared devices
[127,140]. One may view this approach as an attempt to transfer spectral analysis

Figure 9.43 Images of a self-assembled opal illuminated by diffuse quasimonochromatic
light. The spatial axes are plotted in micrometers.
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from the optical domain to the electronic domain and thereby achieve smaller devices
based on the smaller electronic wavelength. One may also view it as an attempt to use
electronic nanostructures or metamaterials to create novel devices.

The second trend involves the use of 2D and 3D photonic metamaterials in spec-
troscopic analysis. Although there have been a few interesting demonstrations of this
approach [216,255], design and fabrication of spectroscopic instruments based on
multidimensional metamaterials is in its infancy. A simple example of the basic
idea is illustrated in Fig. 9.43, which shows a 3D photonic crystal illuminated by
diffuse quasimonochromatic light at frequencies ranging over the visible spectrum.
The photonic crystal is an “opal” formed by self-assembly of nanometer-scale dielec-
tric beads. If the beads were perfectly uniform in size, the transmission pattern would
be spatially uniform. Random defects in the crystal structure lead to complex 2D
spectral transmission patterns. By calibrating the spatial pattern for each wavelength,
one can invert the spatial pattern under broadband illumination to estimate the spec-
trum. A spectrometer based on this strategy consists simply of a thin photonic crystal
layer deposited directly on a 2D detector array.

While early demonstrations of photonic and electronic metamaterial-based
instruments are imperfect, the basic concept of nanoscale instruments based on
these technologies are sound. It seems clear that the story of spectrometer design
and miniaturization is just beginning.

PROBLEMS

9.1 Space–Bandwidth Product. Use Fourier uncertainty relationships to explain
why the resolving power of dispersive spectrometers and the AOTF is pro-
portional to the number of grating cycles in the instrument. How does this
result relate to the resolving power of a volume reflection hologram [Eqn.
(9.74)]? Can you make similar arguments regarding the resolving power of
a Fabry–Perot or thin-film filter?

9.2 Dispersive Spectroscopy. Design a slit spectrometer spanning the spectral
range 350–950 nm with a spectral resolution of 5 nm. Your design should
specify slit size, the focal lengths of any lenses or mirrors used and the
period of the grating used. What are the resolving power, etendue, and
volume of your system?

9.3 Coded Aperture Spectroscopy. Design and simulate a Hadamard S-matrix
spectrometer with N ¼ 128. The spectrometer should span the spectral
range 350–950 nm with 1 nm resolution. Specify the pixel pitch on the detec-
tor array, the coded aperture feature size, and grating and lens parameters.

(a) Use synthetic spectra consisting of 1–10 Lorentzian lines of various widths
to simulate data collection and processing. Evalutate the mean-square esti-
mation error under linear least-squares and nonnegative least-squares inver-
sion with various levels of additive Gaussian and Poisson noise.
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(b) Substitute a 127 � 127 random matrix for the S matrix. Compare recon-
structions using linear least squares and regularized least squares with
the results obtained with the Hadarmard code.

9.4 Spectroscopic Gratings

(a) Discuss the impact of grating efficiency on system volume and f/# for
spectrometers based on volume phase gratings and on echelle gratings.

(b) Datasheets for spectroscopic gratings are available from suppliers such as
Wasatch Photonics, Richardson Gratings, and Ondax. Compare quantum
efficiencies, spectral range, and angular range for available grating types
and geometries.

9.5 Interferometric Spectroscopy. Design an FT spectrometer spanning the spec-
tral range 2–20 mm with spectral resolution of 0.01 nm. What is the scanning
range and scan resolution required? What are the resolving power, etendue,
and volume of the system? What optics might be required? What detector
would you use?

9.6 Spectrometer Analysis. Compare limits on the resolving power, etendue, and
volume of spectrometer designs discussed in this chapter. On a graph of resol-
ving power versus etendue, mark the limits of coded aperture, slit, FT, multi-
beam interferometery, and 2D spectroscopy. Construct a similar graph of
resolving power versus volume.

9.7 Fabry–Perot Estimation. Design a spectrometer operating over the spectral
range 500–520 nm with 0.1 nm resolution using the dispersive Fabry–Perot
modeled by Eqn. (9.67). Select a region of the xy plane for sampling and
specify resonator thickness and index, grating and lens parameters, and
pixel pitch.

9.8 TM Modes of Thin-Film Filters. Derive the characteristic matrix M for TM
modes of a quarter-wave stack. Assuming n1 ¼ 2.25 and n2 ¼ 2.5, replicate
Fig. 9.22 for the TM modes over the range DQ ¼+308.

9.9 Thin-Film Eigenvectors. Prove that E+, as described by Eqn. (9.93), are eigen-
vectors of the characteristic matrix M.

9.10 Thin-Film Bandpass Filters. Replicate Fig. 9.25 using 10 period dielectric
mirrors. The center of the resonator for Fig. 9.25 is a l/2 dislocation.
Demonstrate tuning of the resonance across the stopband by varying the thick-
ness of the center layer.

9.11 Liquid Crystal Tunable Filters

(a) Design a Lyot filter with a resolving power exceeding 100 using a liquid
crystal with Dn¼ 0.2.

(b) Plot representative transmittance curves, similar to Fig. 9.30, for your
device as Dn is tuned from 0 to 0.2.
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9.12 Acoustooptic Tunable Filters. Estimate the range of acoustic frequencies used
to drive a TeO2 AOTF tuned to operate from l ¼ 0.5 to 1 mm. What factors
determine the spectral range of an AOTF?

9.13 Echelle Spectroscopy. Estimate the free spectral range for the echelle spectro-
graph illustrated in Fig. 9.38.

9.14 Pixel Superresolution. Design a “slit” spectrograph with ax ¼ lf =# ¼ D=4.
The goal of the system is to estimate the spectral density with an effective
sampling pitch Dl ¼ Lax=F. One achieves this objective by shifting the
center of the slit from one row to the next by D/4 and applying the pixel super-
resolution technique of Section 9.8. Plot the mask code tij that you would use
to achieve this goal. Is it possible to reduce the effective pixel size on both the
x and y axes? What is the maximum resolving power per unit volume for
this coding approach? Develop code to simulate measurement data on your
proposed system. Plot the measurement data for your mask code for the
spectral density

S(l) ¼ S0[1þ cos(2pul)] (9:124)

for u ¼ 0:125uc, 0:25uc, and 0:375uc, where uc ¼ F=Llf =#. Use a Wiener
filter to estimate the spectrum from each set of simulated data. Plot an esti-
mated spectrum for Poisson noise and for additive Gaussian noise, in each
case specifying the noise statistics used.
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10
COMPUTATIONAL IMAGING

Better results should be achieved by a procedure in which the image-gathering system is
designed specifically to enhance the performance of the image-restoration algorithm to
be used.

—W. T. Cathey, B. R. Frieden, W. T. Rhodes, and C. K. Rushforth [43]

10.1 IMAGING SYSTEMS

Optical sensor design balances performance metrics against system implementation
and operation constraints. Interesting performance metrics include angular, spatial,
or spectral resolution; depth of field; field of view; zoom capacity; camera volume;
sensed data efficiency; spectral or polarization sensitivity; and tomographic fidelity.
Constraints include fundamental, practical, and financial limits based on physical,
information-theoretic, and data processing issues. Examples include spatial and tem-
poral bandwidth, coherence and statistical properties, system model limitations, and
computational complexities.

Because of the complexity of system metrics and constraints and the embrionic
state of many design tools, none of the designs or design strategies we discuss in
this, or previous, chapters are in any sense optimal. While the pessimist may
disdain the ad hoc nature of current digital imaging and spectroscopy design, we
find promise in the rapidly evolving design landscape and hope that the student
finds frank discussion of design strategies illuminating and suggestive.

We may divide the optical sensor design process into

† Specification, consisting of a description of the class of objects and object
features that a system must measure, the nature of image and object data that
the system must produce, and performance specifications for measurement
and image generation. Specification may include the field of view, angular
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resolution, spectral range, depth of field, zoom, and spectral resolution.
Typically, the system designer begins with an application in microscopy,
telescopy, machine vision, or photography and seeks to achieve maximal per-
formance within a certain monetary and system form factor budget. Under
this scenario, specifications evolve under feedback from subsequent steps in
the design process. Initial system specification generally consumes less than
5% of a design cycle.

† Architecture, which consists of broad specification of system sensor and optical
components. The system architect decides whether and where to use pixel,
convolutional, and implicit coding strategies. The goal of system architecture
is to lay out a strategy for matching desired performance specifications with a
realistic engineering strategy. Architecture design typically consumes 10% of
the design cycle and may include idealized simulation of system performance.

† Engineering, consisting of detailed design of optical elements, detector arrays,
readout electronics, and signal analysis algorithms. Optical engineering gener-
ally accounts for 40% of a design cycle and will include computer simulation
of optical components and signal analysis algorithms as well as tolerancing
studies.

† Integration, which consists of optical component manufacturing, testing, and
optoelectronic systems and processing integration. Integration accounts for
about 40% of the design cycle.

† Evaluation, consisting of testing of prototype designs and confirmation of
system performance.

This text focuses exclusively on the architecture component of system design. The
skilled system architect will, of course, wish to complement this text with more
detailed studies in lens design, image processing, and optoelectronics. A system
architect uses high-level design concepts to make systems perform better than
naive design might predict. While an architect will in practice seek to balance
diverse performance specifications, we illustrate the design process in this chapter
by singly optimizing particular performance metrics. Subsequent sections consider
design under the constraints that we wish to optimize depth of field, spatial
resolution, field of view, camera volume, and 3D spatial or spatiospectral data
cube acquisition.

10.2 DEPTH OF FIELD

Focal imaging occurs only for object and image geometries satisfying the image con-
dition [Eqn. (2.17)]. As an object is displaced from the plane zo ¼ ziF/(zi 2 F ), the
image blurs owing to a broader PSF and narrower OTF. The range of distances zo over
which the object may be displaced without unacceptable loss of image fidelity is
called the depth of field. Section 6.4.3 described the defocus transfer function and
considered Hopkins’ criterion limiting the defocus parameter w20.
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Given a maximum acceptable value for w20, the object field is the range of zo

such that

� 2w20

A2
� 1

zo
þ 1

zi
� 1

F
� 2w20

A2
(10:1)

For simplicity, we limit our discussion to object fields extending from some near
point to zo ¼1. We set the distance between the lens system and the focal plane
zi, such that a point at infinity is defocused to the maximum acceptable blur. This
yields

zi ¼
FA2

A2 � 2w20F
(10:2)

Moving in from infinity, the defocus decreases until the thin-lens imaging law is
satisfied at zH ¼ A2/2w20, which is called the hyperfocal distance. Moving in from
the hyperfocal distance, the defocus increases up to the near point for acceptable
focus (e.g., the point such that 1=zo þ 1=zi � 1=F ¼ 2w20=A2). The near point for
a lens focused on the hyperfocal distance is zo ¼ zH/2.

Figure 10.1 illustrates a system imaging the plane at the hyperfocal distance. The
point at infinity focuses at the lens system focal point and is blurred at the sensor
plane, which is displaced approximately F2/zH from the focal plane. Using the simi-
larity of the triangle between the lens and the focal point at the bottom of Fig. 10.1

Figure 10.1 Geometry for imaging at the hyperfocal distance. Images formed from a point
source at zH/2 (top) or from a point source at infinity (bottom) are blurred. A well-formed
image is formed for a point source at the hyperfocal distance (center).
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and the triangle between the focal point at the sensor plane, one can see that A/F ¼
CzH/F2, where C is the extent of the blur spot for a point at infinity. C is called the
circle of confusion. In terms of the circle of confusion

zH ¼
F2

Cf=#
(10:3)

The conventional understanding of imaging systems observing from a near point
to infinity without dynamic refocusing is thus that the near point is zH/2, where zH is
as given by Eqn. (10.3). In conventional systems, one increases the depth of field
(e.g., reduces the range to the near point) by decreasing zH. One achieves this objec-
tive by increasing f/# or decreasing F. One increases f/# by stopping down an
imaging system with a pupil. This strategy sacrifices resolution, sensitivity, and
SNR, but is effective in increasing the depth of field.

Alternative strategies for increasing the depth of field by PSF engineering have
emerged since the early 1980s. In considering these strategies, one must draw a dis-
tinction between lens design and “wavefront engineering.” The art of lens design
plays an enormous role in practical imaging systems. A lens typically consists of mul-
tiple materials, coatings, and surfaces designed with a goal of obtaining an aberration-
free field with an approximately shift-invariant PSF. One may distinguish the lens
design, however, from the wavefront that the lens produces on its exit pupil for an
incident plane wave. In diffraction-limited systems this wavefront is parabolic in
phase and uniform in amplitude, as in Eqn. (4.64). In practical systems the pupil
function P(x0, y0) does not reflect the transmittance of any single lens surface;
rather, it is the distortion from uniform phase and amplitude on the exit aperture of
the lens. The remainder of this section reviews design strategies for P(x0, y0) aimed
at extending the depth of field. We do not consider lens design strategies to
produce the target pupil function.

Two pupil design strategies are particularly popular for systems with extended
depth of field (EDOF). The first strategy, referred to here as optical EDOF, empha-
sizes optical system design with a goal of jointly minimizing the extent of the PSF
and the rate of blur as a function of object range. The second approach, digital
EDOF, emphasizes codesign of the PSF and computational postprocessing to
enable EDOF in digital estimated images. The remainder of this section considers
and compares these strategies. Alternative strategies based on multiple aperture and
spectral coding are discussed in Sections 10.4 and 10.6.

10.2.1 Optical Extended Depth of Field (EDOF)

Optical EDOF aims to extend depth of field by designing optical beams with large
focal range. To this point we have explicitly considered four types of beams:

1. The plane wave

2. The 3D focal response, defined by Eqn. (6.74)
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3. Hermite–Gaussian and Lagurre–Gaussian beams, as described in Eqn. (4.39)
and Problem 4.2

4. Bessel beams, as described in Problem 4.1

Each type of beam is associated with a depth of focus and a focal concentration. The
depth of focus, which describes the range over which the image sensor can be
displaced while maintaining acceptable focus, is complementary to the depth of
field, which describes the range over which an object can be displaced while remain-
ing in acceptable focus. Since the transverse distribution of a plane wave does not
change on propagation, one might consider that plane waves have infinite depth of
focus. On the other hand, since the plane wave does not have a focal spot, one might
say that it has zero depth of focus. The Bessel beam, with localized maxima, is more
interesting but also fails to localize signal power in a finite spot.

An imaging system transforms light diverging from an object into a focusing
beam. In our discussion so far, the object beam has generally consisted of plane
waves, and the focusing beam has consisted of the clear aperture diffraction
limited Airy beam. One can imagine, however, optical systems that implement trans-
formations between more general beam patterns. Prior to considering such systems, it
is useful to consider whether the structure of the focusing beam makes a difference,
specifically, whether it is possible to focus light such that the rate of defocus differs
from conventional optical designs.

Referring to Eqn. (10.1), we can see that the depth of focus for the Airy beam
is Dzi ¼ 4w20( f =#)2. Recalling that the Airy spot size is approximately
Dx ¼ 1:2lf =#, the relationship between depth of focus and focal spot size is

Dzi ¼
2:78w20Dx2

l2 (10:4)

Figure 10.2 shows cross sections of the Airy focal intensity for various focal spot
sizes. As expected, the depth of focus grows as the square of the focal spot cross
section.

In the case of the Hermite–Gaussian beam, reference to Eqn. (4.40) yields the

beam waist as a function of defocus, w(Dzi) ¼ Dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2Dz2

i =Dx4
q

. Figure 10.3

shows the fundamental Gaussian beam irradiance distribution as a function of the
focal spot width. A tighter focus defocuses more rapidly than a defocused spot.
Assuming that defocus corresponds to an increase in the focal spot diameter by a
factor of N, the depth of focus for a Gaussian mode is

Dzi ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2 � 1
p Dx2

l

� �
(10:5)

In comparing Eqns. (10.4) and (10.5) and Figs. 10.2 and 10.3, one finds that while the
depth of focus for the Airy beam is comparable within a constant factor to the depth
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of focus for the Gaussian beam, the structure and rate of blurring near the focus is
substantially different for the two-beam patterns and that the depth of focus for the
Airy pattern exceeds the depth of focus for the Gaussian with similar waist size.

An increase in the depth of focus by just a few micrometers can lead to dramatic
increases in the depth of field. Given that the Airy beam outperforms the Gaussian
beam in certain circumstances, one may reasonably ask whether there exist beams
that outperform the Airy beam by a useful factor. Optical EDOF seeks to create
such beams by coding P(x, y) to balance depth of focus and resolution. Diverse
amplitude and phase modulations of the pupil function have been considered over
the long history of optical EDOF. The aperture stop is the simplest amplitude modu-
lation for EDOF; more sophisticated amplitude filters were pioneered by Welford
[247], Mino and Okano [178], and Ojeda-Castaneda et al. [189]. As optical fabrica-
tion and analysis systems have improved, phase modulation has become increasingly
popular. The potential advantage of phase modulation is that it does not sacrifice
optical throughput. In practice, of course, one may choose to use both phase and
amplitude modulation.

Suppose, as an example, that we wish to extend the depth of field using a radially
symmetric phase modulation of the pupil function. With reference to Eqns. (4.66)
and (6.24), the incoherent impulse response for a defocused imaging system with

Figure 10.2 Cross sections of the 3D irradiance distributions for the diffraction limited Airy
beam with focused beam waists of Dx of 2l, 4l, 8l, and 16l. The horizontal axis corresponds
to the longitudinal focal direction; the vertical axis is transverse to the focal plane.
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phase modulation f(r) is

huz (r, f) ¼
�����
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where we apply the Bessel identity from Problem 4.1 and, consistent with Chi and
George [46], we do not approximate the distance term in the denominator of the
Fresnel kernel. Assuming that the phase of the defocus and modulation terms are
rapidly varying over the aperture, we may evaluate Eqn. (10.6) using the method

Figure 10.3 Cross sections of the 3D irradiance distributions for fundamental Gaussian
beams with focused beam waists of 2l, 4l, and 16l. The horizontal axis corresponds to the
longitudinal focal direction; the vertical axis is transverse to the focal plane.
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of stationary phase [23], which yields

huz (r) ¼ r2
o

jf00(ro)þ (2puz=l)j(r2
o þ d2

i )
J2

0 2p
ror

ldi

� �
(10:7)

where ro is the stationary point of the integrand phase corresponding to

f0(ro) ¼ �2puzro

l
(10:8)

and we have neglected nonessential factors.
Various studies have adopted the design goal of making the on-axis PSF invariant

with respect to defocus, for example, rendering huz (0) independent of uz. To achieve
this goal, we select f(r) such that r2

o=jf00(ro)þ 2puz=lj(r2
o þ d2

i ) is independent of
uz. We use Eqn. (10.7) to eliminate uz from this ratio, but since ro varies as a function
of uz, the ratio must also be invariant with respect to ro to achieve our objective.
Selecting

f00(r)� f0(r)
r
¼ ar2

(r2 þ d2
i )

(10:9)

yields a solution

f(r) ¼ a(r2 þ d2
i )

4
log[b(r2 þ d2

i )] (10:10)

where a and b are constants. This solution is a variation on the “logarithmic asphere”
lens derived by Koronkevitch and Palchikova [139]. Figure 10.4 compares the PSF as
a function of defocus for this phase modulation with a conventional diffraction-
limited lens. As expected, the phase aberration produces a blurred PSF but is much
less sensitive to defocus than the conventional system. The lens in Fig. 10.4(a) is an
f/2 aperture with F ¼ 1000 l. The defocus varies from uz ¼ �0:0125=F to
uz ¼ 0:0175=F in steps of 0:0025=F from the bottom curve to the top. The best
focus is for the curve starting at 2.5 on the vertical axis. For the lens in Fig. 10.4(b),
b ¼ 4� 10�6=l2, b ¼ 4� 10�6=l2, and F ¼ 105l. The phase function of Eqn.
(10.10) includes a quadratic modulation such that best focus occurs approximately
at 1000l for these parameters.

A second perspective of the depth of focus of the logarithmic asphere is illustrated
in Fig. 10.5, which plots a cross section of the 3D PSF using the design of Chi
and George [46]. The lens parameters (in terms of the Chi–George design) are
radius a ¼ 16,000l, f ¼ 64,0000 l, and s1 ¼ 4� 107 l. The PSF produces non-
negligible sidelobes, but considerably greater depth of focus in comparison to
Figs. 10.2 and 10.3.
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Figure 10.4 PSF versus defocus for (a) a diffraction-limited lens and (b) the logarithmic
aspherical lens using the phase modulation of Eqn. (10.10). The range of defocus parameters
is the same in (b) as in (a). The PSF was calculated in each case by using the Fresnel kernel and
the fast Fourier transform.

Figure 10.5 Cross sections of the 3D PSF for a point at infinity for a logarithmic aspherical
lens. The irradiance was calculated using numerical integration of Eqn. (10.7) by Nan Zheng of
Duke University. The horizontal and vertical axes are both in units of l.
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The logarithmic asphere is effectively a lens with a radially varying focal length.
One may imagine the aspheric lens as effectively consisting of a parallel set of
annular lenses, each with a slightly different focal length. The reduced aperture of
the effective lenses produces a blur, but the net effect of all the focal lengths is to
extend the depth of field. While the log asphere is an interesting Fourier optics
design for this lens, one ought not to consider this solution ideal. In practice, lens
design involves optimization over multiple surfaces and thick optical components.
One may expect that computational design will yield substantially better results, par-
ticularly with regard to off-axis and multispectral performance.

Note that in attempting to keep the on-axis PSF constant, we have not attempted to
optimize spatial localization. Serious attempts at optical EDOF must address the
general nonlinear optimization problem of localizing the PSF and implementing a
3D lens design. Nonlinear optimization approaches are described, for example, in
Refs. 201 and 17. Our discussion to this point, however, should be sufficient to con-
vince the reader that optimization of the pupil transmittance and lens design to
balance resolution and depth of field is a rewarding component of system design.

10.2.2 Digital EDOF

While a very early study by Hausler combined PSF shaping with analog processing
[123], the first approach to digital EDOF focused on removing the blur induced by a
PSF designed for optical EDOF [190]. This approach then evolved into the more
radical idea that the defocus PSF should be deliberately designed (e.g., coded) for
digital deconvolution [60]. In general, an imaging system maps the 3D object spectral
density onto the 2D measurement plane according to

g(x, y) ¼
ð ð ð ð

S(ux, uy, uz, l)h(ux, uy, uz, l, x, y) duz dux duy dl (10:11)

In designing an EDOF system, one hopes that h(ux, uy, uz, l, x, y) can be designed
such that after digital processing one can estimate the projected image

f (ux, uy) ¼
ð ð

S(ux, uy, uz, l) duz dl (10:12)

from Eqn. (10.11). With optical EDOF, we have attempted to make a physical system
that isomorphically captures f (ux, uy). The goal of digital EDOF, in contrast, is to
enable computational estimation of f (ux, uy) from g(x, y). If the processing is based
on linear inversion methods, one must assume that all point sources along a ray cor-
responding to a specific value of ux, uy produce the same measurement distribution.
This is equivalent to assuming that the principal components of the measurement
operator (10.11) can be rotated onto the ray projections of Eqn. (10.12). One need
not make this assumption with nonlinear inversion methods; we comment briefly
on nonlinear digital EDOF at the end of this section.
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In general, it is not physically reasonable to expect an imaging system to assign an
arbitrary class of radiation to principal components. For example, one could desire a
sensor that would produce pattern A from light scattered from any part of “Alice,” but
produce pattern B from light scattered from any part of “Bob.” While the logical dis-
tinction between the radiation is clear, in most cases it is not possible to design an
optical system that distinguishes A and B light. However, we have previously encoun-
tered systems that assign the ray integrals f (ux, uy) to independent components in
pinhole and coded aperture imaging [see Eqn. (2.31)] and interferometric imaging
[see Eqn. (6.72)].

In the case of the rotational shear interferometer, for example, according to Eqn.
(6.46) all sources along the ray (ux, uy) produce the pattern

1
2

1þ cos
2pk
l

( yux þ xuy)

� �� 	
(10:13)

The RSI is thus an existence proof that an optical system can group light radiated from
anywhere along a ray onto a common pattern. The disadvantage of the coded aperture
and RSI systems is that the system response is everywhere nonnegative and that the
support of the response on the measurement space is large. As discussed in Sections
2.5 and 6.3.3, this means that reconstruction SNR is poor for complex objects. The
wavefront coding approach of Dowski and Cathey attempts to overcome this
problem via a patterned range invariant PSF with more compact support.

Dowski and Cathey [60] propose a “cubic phase” modulation of the pupil function
such that the modified pupil function is

~P(x, y) ¼ ei(a=l)x3
ei(a=l)y3

rect
x

A

� �
rect

y

A

� �
(10:14)

Referring to Eqn. (6.83), the rectangular cubic phase leads to the defocus transfer
function Huz (u, v, l) ¼ Hruz (u, l)Hruz (v, l) where

Hruz (u, l) ¼
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Equation (10.15) can be integrated by again applying the method of stationary phase,
which yields

Hruz (u, l) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p

12adiu

r
e�i(p=4)

� exp ia
l2d3

i u3

4

� �
exp �i

p2u2
z diu

3a

� �
(10:16)

for uz , aA=4p. Figure 10.6 shows the modulation transfer function for a cubic
phase distortion for various values of defocus. As expected, the MTF is relatively
insensitive to defocus.

With reference to Eqns. (10.14), (6.85), and (4.73), the one-dimensional coherent
impulse response for a cubic phase modulation is

hr(ux) ¼
1
ldi
F eip(uz=l)x2

ei(a=l)x3
rect

x

A

� �n o���
u¼(ux=l)

(10:17)

Neglecting the effect of the finite aperture and using the identity F{exp(iax3)} ¼
1=

ffiffiffiffiffi
3a3
p

Ai(�2pu=
ffiffiffiffiffi
3a3
p

), where Ai(x) is the Airy Ai function, hr(ux) reduces to [171]

hr(ux) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3al2di

3
p Ai �

2pux þ p2u2
z=3affiffiffiffiffiffiffiffiffiffi

3al23
p

� �
(10:18)

Figure 10.6 MTF for a cubic phase distortion with a ¼ 750l=A3. The top, middle, and
bottom plots show the MTF for a conventional diffraction-limited imaging system with
w20 ¼ 0l, 5l, and 10l. The three plots grouped across the center of the figure show the
MTF for the cubic phase system with the same defocus values. The cubic phase distortion
has MTF inferior to that of the well-focused system, but superior to that of the w20 ¼ 5l
system near the zeros of the conventional MTF and superior to that of the strongly defocused
system over most of the passband. The horizontal axis is in units of A=ldi.
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Since hr(ux) includes a range-dependent shift, the cubic phase code does not actu-
ally succeed in obtaining a range invariant PSF. However, if a corresponds to N
wavelengths of distortion across the aperture, the defocus must reach
w20 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
plAN
p

for the range-dependent shift to reach one. Clearly, the cubic phase
obtains substantial PSF invariance for modest values of a. The impulse response
for a ¼ 10�5l2 is presented in Fig. 10.7.

Our analysis of PSF coding has been monochromatic to this point. For optical
EDOF the impact of a finite spectral bandwidth is modest except to the extent that
materials dispersion may be more significant in aggressive optical designs. For
digital EDOF, spectral variation in the PSF, especially spectral scaling of high-
frequency features, may substantially degrade deconvolution performance. The

Figure 10.7 (a) Cross section of the cubic phase PSF hr(ux)2 and (b) density plot of the PSF
hr(ux)2 hr(uyx)2 for a ¼ 10�5l2.
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impact is not as bad as might be expected for the cubic phase pattern since the PSF
scales as l2=3 rather than linearly in l, but the effect is nevertheless significant.
Figure 10.8 shows the PSF as averaged over a 50% spectral bandwidth. The identifi-
able structure of the multispectral PSF is more localized [the long oscillation tail of
Fig. 10.7(a) is not present in Fig. 10.8], but the multispectral PSF does not average to
zero in the tail. The diffuse background scattering from spectral averaging at high fre-
quencies is prejudicial to the system MTF. This effect might be mitigated in color
imaging systems where the spectral bandwidth in each channel is reduced. Spectral
averaging also has the effect of blurring nulls in the MTF of imaging systems,
enabling more accurate deconvolution in some cases.

Figure 10.9 compares the image acquired in an experimental cubic phase camera
with the image acquired by a conventional focal camera. The object in this case con-
sists of two targets, the in focus target on the right is 2.5 m from the camera, and the
out-of-focus target on the left is 1.75 m away. For the conventional camera, one plane
is in focus and one is out of focus. Both targets are blurred by approximately the same
PSF for the cubic phase camera. The target was illuminated in this experiment by
white incandescent light, so the monochromatic PSF of Eqn. (10.18) is not directly
relevant. The broadband PSF was experimentally calibrated and used to construct a
slightly shift-variant digital filter [239]. The deconvolved EDOF image is shown in
Fig. 10.9(c).

While the highly distributed structure of the cubic phase PSF leads to problems
with the magnitude of the MTF, there are some particular advantages to this
approach: (1) the MTF has no zeros, which enables effective Wiener filtering for
reconstruction across the full system bandwidth—of course, this advantage is less
significant if one chooses nonlinear inversion methods; and (2) the PSF is separable
in Cartesian coordinates. This enables separable deconvolution and significant
reductions in computational complexity. As with other distributed PSF systems
(such as the RSI and the coded aperture), the reduced MTF associated with

Figure 10.8 Cross section of the polychromatic cubic phase PSF corresponding to Fig. 10.7,Ð
hr(ux)2dl, averaged over one octave of spectral bandwidth.
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multiplexing reduces SNR. Since the PSF is not global, however, this loss is less than
that for an RSI. As with most multiplexed systems, the cubic phase camera benefits
from nonlinear postprocessing.

To summarize discussion thus far, extended depth of field using PSF design is a
good idea. None of the PSFs described in this section are ideal, but they do show
that PSF design makes a difference in system performance. From this perspective,
joint optimization of defocus invariance and digital processing becomes a
detailed process of computer-aided lens and materials design, algorithm develop-
ment, and testing.

Before getting too caught up in design optimization, however, one does well to
consider whether one has selected the best design goals. Conventional EDOF
design focus simultaneously on three design objectives:

1. The PSF should be range-invariant.

2. The MTF should be broad and flat.

3. The PSF should be well suited to digital deconvolution, meaning that image
quality metrics (SNR, MSE, resolution) in the digital processed image
should be “good.”

Figure 10.9 Images acquired by (a) a conventional clear aperture imaging system and (b) a
cubic phase modulated system with no postprocessing. Panel (c) is the restored image generated
by digital deconvolution. The images on the right and left are at the same range for the
conventional and cubic phase systems. The right image is at the conventional focus. Both
images are recovered by the cubic phase system after deconvolution. (From van der Gracht
et al. [239] # 1996 Optical Society of America. Reprinted with permission.)
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Of course, objective 3 is not particularly precise; research into the meaning of this and
other aspects of the problem continues. One may imagine many alternative optimiz-
ation criteria for the defocus PSF. For example, Sherif and Cathey [222] reverse
Cathey’s earlier work in attempting to maximize the defocus variance of the PSF
to enable passive ranging. Alternatively, one might consider relaxing objective 1
while attempting to maintain objectives 2 and 3. Such a strategy might enable both
EDOF and computational ranging.

The challenges under this strategy are to design a lens that maintains MTF over a
wide defocus range and to design an image estimation algorithm that effectively com-
bines knowledge of the range-dependent PSF with object priors, such as smoothness
or sparsity. We do not attempt to resolve these open challenges here, but we do

Figure 10.10 Cross sections of the 3D irradiance produced by the field C(r, f) ¼
10~c1,1=3þ 2~c5,3 þ ~c9,5=16þ ~c13,7=312þ ~c17,9=6950 as a function of defocus. The horizon-
tal axes are in units of w0. Frames correspond to uniform defocus steps over the range
z ¼ [�3w2

0=l, 5w2
0=l]. ~cmnt is described in Eqn. (3.38) and Problem 4.2.
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suggest range-dependent PSFs that could serve as a starting point. Schechner et al.
describe a compact range variant PSF based on interference of Laguerre–Gaussian
modes [200,214]. Figure 10.10 illustrates an example of a “rotating PSF” produced
by a particular example of such a mode. In comparing this PSF with the zeroth-
order Gaussian (Fig. 10.11), one observes that while the support of the rotating
PSF is larger than the fundamental mode, the rotating version contains more
compact features than does the fundamental. Greengard et al. used a similar PSF in
an optical ranging system [105]. The PSF was encoded using a computer generated
hologram (see Problem 4.13). By deconvolving with the range-dependent PSF,
Greengard et al. “digitally focused” the reconstructed image to find both range and
the sharpened image.

More generally, a range-variant PSF with higher-frequency defocus MTF than the
clear aperture provides a mechanism for inversion of the 3D imaging transformation

Figure 10.11 Cross sections of the 3D irradiance produced by the fundamental Gaussian
mode over the same range of defocus and plotted on the same scale as in Fig. 10.10.
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[Eqn. (6.73)]. Of course, the 3D–2D mapping is compressive, but given the 3D PSF,
one may attempt inversion using EM algorithms as illustrated in Fig. 7.18 or may
utilize algorithms similar to the spectral data cube reconstructions described in
Section 10.6.

10.3 RESOLUTION

Imagers and spectrometers are bandlimited measurement systems. One generally
assumes that the resolution of such systems is determined by the Fourier uncertainty
relationship, meaning that the resolution is inversely proportional to the bandpass.
The bandpass is the width of the system transfer function (STF). As discussed in
Section 7.1, the STF is determined jointly by the optical transfer function and by
electronic sampling and processing. Of course, STF limited resolution is achieved
only if the sampling rate is sufficient to avoid aliasing. Aliasing has the effect of
both reducing the effective bandpass and introducing noise from aliased frequencies.
We discuss the use of multichannel sampling to recover aliased signals in
Section 10.4. Antialiasing using multiple apertures or exposures is called digital
superresolution.

Estimation of images at resolution beyond the Fourier uncertainty limit is called
optical superresolution. The limits of optical resolution are based on the relationship
between aperture size and system bandpass, which is expressed in its most basic form
by Eqn. (6.71). We repeat the equation using slightly different variables here

W(Dx, Dy, q, l) ¼
ð ð ð

S(ux, uy, uz, l)
u 2

z

l2

� e�i(2p=l)(uxDxþuyDyþquz)dux duy duz (10:19)

where ux¼x=z and uz¼1=z. The cross-spectral density across an aperture is the 3D
Fourier transform of the power spectral density of a remote object. According to
this equation, the support over which one samples the Fourier space of the object
is proportional to the system entrance aperture. The sampled frequencies along the
transverse components are u ¼ Dx=l and v ¼ Dy=l. The longitudinal frequency is
w ¼ q=l. The bandpass is determined by the limits of Dx, Dy, and q within the
aperture and cannot be increased by optical or electronic processing after the field
has passed through the aperture. For a circular aperture of diameter A, jujmax,

jvjmax ¼ A=l, and jwjmax ¼ A2=8l. The band volume covers the disk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

�
A=l in the w ¼ 0 plane. The extent along w depends on u and v. The structure of
the bandpass is discussed in Section 6.3, and the limits of the band volume are
sketched in Fig. 6.15.

On the basis of Fourier uncertainty, the bandlimits imply resolution in ux and uy of
approximately l=A and in uz of approximately 8l=A2. The corresponding resolutions
in object space x, y, z are lzo=A in the transverse coordinates and 8lz2

o=A2 in the
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longitudinal coordinate, where zo is the object range. These values are termed the
diffraction limits because one need only assume that the Fresnel kernel applies to
derive them. The spatial resolution of most imaging systems is worse than the diffrac-
tion limit owing to suboptimal sampling and processing of W(Dx, Dy, q, l).

Optical superresolution is a complex and profound subject with a long history of
mixed success and failure. Concomitant with the microprocessor revolution, work
since the mid-1990s has demonstrated modest success in computational resolution
enhancement, and there are suggestive ideas that future improvements are possible.
To date, however, the impact of computational processing is far greater in enabling
systems to achieve metrics approaching the diffraction limit over wider fields, with
wider depth of focus, and with greater specificity. There are, however, indications
that over the long-term systems violating the conventional diffraction limit may be
developed. For researchers at the limits of system performance there are many current
opportunities for superresolution studies. These opportunities may be grouped into
the following categories:

1. Strategies to increase the resolution for signals measured over bandlimited
channels. Examples mentioned below include channel coding and estimation
algorithms and multispectral encodings.

2. Strategies to increase the bandpass of optical systems. Examples mentioned
below include anomalous diffraction and nonlinear detection.

We briefly review these strategies in Sections 10.3.1 and 10.3.2.

10.3.1 Bandlimited Functions Sampled over Finite Support

The relationship between bandpass and resolution is widely accepted in many disci-
plines and applications. It is the basis of the Heisenberg uncertainty relationship in
quantum mechanics, information transmission limits in communication systems,
and diverse resolution limits in imaging and measurement theory. Despite its popu-
larity, however, the relationship is not inviolable. The Whittaker–Shannon sampling
theorem is a more precise statement of the link between bandwidth and resolution
than is the uncertainty relationship. As discussed in Section 3.6, the sampling
theorem tells us that the number of samples necessary to characterize a signal
restricted to the frequency band [�B, B] and the spatial support [�X, X] is 4BX.
The significance of this statement for the resolution of a continuous signal is not
entirely clear. Assuming that these samples are uniformly distributed, the sampling
theorem may suggest that the spatial resolution is equal to the sample spacing,
1/(2B). As discussed in Section 7.1, however, the sampling theorem also provides
a prescription for interpolation between samples, meaning that the effective spatial
resolution may be less than the sample period.

We address this paradox by considering more carefully the measurement model

g(x) ¼
ð

sinc[2B(x� y)] f ( y)dyþ n(x) (10:20)
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with noise n(x) under the assumption that g(x) is measured with arbitrary precision
over [�X, X]. Our use of the sinc(2Bx) sampling function means that the transform-
ation from f ( y) to g(x) is limited to the bandpass [�B, B]. In the following analysis
we argue that measurement of g(x) with arbitrary spatial precision on [�X, X] is
equivalent to the measurement of c ¼ 4BX discrete coefficients in an expansion of
f (x) in “prolate spheroidal wavefunctions.” c is termed the Shannon number or
space–bandwidth product. We relate this result to three resolution measures:

1. The information capacity for data transfer from f (x) to g(x)

2. The maximum spatial frequency umax that can be reliably estimated in the

Fourier transform f̂ (u)

3. The minimum resolvable separation d between two point objects f (x) ¼
d(x� d=2) and f (x) ¼ d(xþ d=2)

It is helpful to emphasize the relationship between Eqn. (10.20) and optical
systems. We saw in Eqn. (4.75) that coherent imaging systems are described by a
similar model in 2D. Of course, the focal model of incoherent imaging is more
complex, but we may regard the structure of the optical transfer function as an artifact
of analog processing. According to Eqn. (10.19), incoherent images could be
measured with uniform bandpass by direct characterization of W(Dx, Dy, q, l) over
an aperture. In view of these relationships, a sound understanding of optical super-
resolution is obtained by simply considering Eqn. (10.20).

Our first step in analyzing continuous forward models, such as Eqn. (10.20), has
been to transform them into discrete models by expanding f (x) on a basis. As dis-
cussed in Section 7.5, the measurement operator defines a linear space VH. In the
case of Eqn. (10.20), this space is VB. We have seen that VB is spanned by the
Shannon scaling function, such as sinc(2Bx). One may, however, choose different
bases for VB. The prolate spheroidal wavefunctions cn(x) form the basis of greatest
interest in analyzing bandlimited systems over finite spatial support. According to
Frieden [81], signal processing interest in cn(x) originated with a 1959 visit to Bell
Laboratories by C. E. Shannon. Shannon posed the question “What function
f(x) [ VB is most concentrated in the interval [�X, X]?” Bell Researchers Pollak,
Landau, and Slepian used cn(x) to answer this question [143,144,225].

As implied by the name, prolate spheroidal wavefunctions originate in the sol-
ution of the 3D wave equation in prolate spheroidal coordinates. The 3D solutions
are separable in spheroidal coordinates. The functions of interest in signal analysis
are the angular components of the separated solution. Our interest in these functions
arises from three facts:

1. cn(x) are orthogonal and complete over VB.

2. cn(x) are eigenfunctions, with eigenvalues ln, of Eqn. (10.20).

3. Expansion of g(x) in terms of cn(x) yields an approximately finite series, rather
than the infinite series on the Shannon basis.

426 COMPUTATIONAL IMAGING



The prolate spheroidal wavefunction cn(x) is a real function of x [ R defined by
the eigenvalue relation [81]

ðX

�X

cn(x)e2piuxdx ¼ in
ffiffiffiffiffiffiffiffi
Xln

B

r
cn

uX

B

� �
(10:21)

The eigenvalues ln are functions of both the order n and the Shannon number. The
right-hand constant is selected to simplify the Fourier transform of Eqn. (10.21) over
the bandlimit, which produces

2B

ðX

�X

cn(x) sinc[2B(x� y)] dx ¼ lncn( y) (10:22)

The functions cn(x) are orthogonal and complete over [�X, X] with the weighting
factor ln such that

ðX

�X

cm(x)cn(x) dx ¼ lndmn (10:23)

cn are also orthogonal over [�1, 1] with unit weighting; for instance

ð1

�1

cm(x)cn(x) dx ¼ dmn (10:24)

Taking the ratio of Eqns. (10.23) and (10.24), one finds that the eigenvalue ln is a
measure of the concentration of cn(x) in the interval [�X, X] in the sense that

ln ¼
Ð X
�X jcn(x)j2dxÐ1

�1
jcn(x)j2dx

(10:25)

Since they are real and positive, the eigenvalues may be arranged in descending order
such that

1 � l0 . l1 . l2 . � � � . 0 (10:26)

The ordering of the eigenvalues means that the bandlimited function that achieves
maximal concentration on [�X, X] is c0(x). As illustrated in the plots of c0(x) for
low Shannon numbers shown in Fig. 10.12, c0 is a unit area spike centered on the
origin. The spike becomes increasingly sharp as c increases.

The function c1(x) satisfies three constraints; it is the (1) eigenfunction of Eqn.
(10.21) that is (2) orthogonal to c0(x) that is (3) most concentrated on [�X, X].

Then, c2(x) is the function satisfying c1 constraints that is also orthogonal to c1,
and so on. As the area available for concentration is occupied for each successive
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value of n, ln must decrease. A series of cn from n ¼ 0 to n ¼ 8 for c ¼ 5 is shown
in Fig. 10.13. As n increases, nonvanishing components move away from the origin.
For n . c, the component of cn(x) within the [�X, X] support flattens and vanishes.
This effect is illustrated by the plot of c16(x) for c ¼ 2 in Fig. 10.14. The wavefunction
is very nearly zero over the range [�X, X], corresponding to ln ¼ 1:62� 10�36 [81].

Figure 10.12 Plots of c0(x) for c ¼ 2 to c ¼ 8. Successive plots are shifted vertically by 0.5.
The horizontal axis is in units of X. Only the positive axis is shown; c0 is an even function.

Figure 10.13 Plots of cn(x) for c ¼ 5. Values of n are rastered left to right from n ¼ 0 to 8.
As in Fig. 10.12, we show only the positive axis. cn has odd parity for n odd.
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Calculation of ln is somewhat more elegant using a normalized form of
Eqn. (10.21):

ð1

�1

cn(x)e(ipcxy)=2dx ¼ 2in
ffiffiffiffiffi
ln

c

r
cn( y) (10:27)

A particularly straightforward strategy for calculation of ln integrates Eqn. (10.27)
by Gauss–Legendre quadrature [145]. This approach reduces Eqn. (10.27) to the
discrete form

X
l

cn(xl)e
(ipcxlym)=2wl ¼ 2in

ffiffiffiffiffi
ln

c

r
cn( ym) (10:28)

where wl are the Gauss–Legendre weights and xl and ym are zeros of the Legendre poly-
nomials as specified by the Gaussian quadrature algorithm. The weights and zeros are
accessible in Mathematica via the GaussianQuadratureWeights function.
The prolate spheroidal wavefunction eigenvalues are proportional to the eigenvalues
of the homogeneous linear Eqn. (10.28). As illustrated in plots of eigenvalues calcu-
lated by this technique for various values of c shown in Fig. 10.15, ln � 1 for n � c
and ln approaches 0 very rapidly for n . c.

Completeness over VB means that any bandlimited function can be represented on
the cn(x) basis. In particular

sinc(2B(y� x)) ¼ 1
2B

X1
n¼0

cn( y)cn(x) (10:29)

Figure 10.14 c16(x) for c ¼ 2.
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for x, y [ R. Given that for f (x) [ VB

f (x) ¼ 2B

ð
f ( y) sinc[2B(x� y)] dy (10:30)

we may substitute Eqn. (10.29) in Eqn. (10.30) to obtain the expansion of f (x)
in cn(x)

f (x) ¼
X1
n¼0

fncn(x) (10:31)

where

fn(x) ¼
ð1

�1

f (x)cn(x) dx (10:32)

Alternatively, we may integrate Eqn. (10.31) over [�X, X] using Eqn. (10.23) to
obtain

fn(x) ¼ 1
ln

ðX

�X

f (x)cn(x) dx (10:33)

Having completed a brief tour of cn(x), we are now ready to consider the impli-
cations of these beautiful functions for bandlimited measurement. Returning to
Eqn. (10.20), we note that the portion of g(x) due to the signal is bandlimited regard-
less of whether the input signal f (x) is bandlimited. Accordingly, we may project g(x)

Figure 10.15 Eigenvalues ln of cn(x) for c ¼ 20, 40, and 60.
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on to the cn(x) basis by calculating the coefficients

gn ¼
1
ln

ðX

�X

g(x)cn(x) dx

¼ fn þ
1
ln

ðX

�X

n(x)cn(x) dx

¼ fn þ
nn

ln
(10:34)

where fn is the expansion coefficient on the cn(x) basis of the projection of f (x) on VB.
In choosing the finite window of integration to estimate g(x), we recall that the
measurement system only measures over [�X, X]. According to Eqn. (10.34), the
signal-to-noise ratio for estimation of fn is ln fn=nn. If the signal is stronger than
the noise and ln is 1, then reliable estimation may be expected. For high-order coef-
ficients, however, the signal must be at least 1=ln times stronger than the noise to
obtain meaningful data. Since, as illustrated in Fig. 10.15, ln ! 0 for n . c, the
Shannon number may be rigorously regarded as the maximum number of coefficients
that one may extract from a bandlimited measurement.

The Shannon number is often termed the number of degrees of freedom of a
bandlimited signal. If the value of each degree of freedom is uniformly and indepen-
dently distributed, then the number of degrees of freedom is a measure of the infor-
mation in the measurement. As one expects, the number of degrees of freedom is
exactly equal to the number of measurements that one would record under Nyquist
sampling. Toraldo di Francia analyzes the number of degrees of freedom for
various coherent and incoherent imaging systems [232]. In situations where data
are uniformly and independently distributed over the image support, one may reason-
ably argue that the resolution is 2X=c ¼ 1=ð2BÞ.

Although our analysis of bandlimited sampling has been 1D, extension to multiple
dimensions is straightforward. The most interesting difference in multidimensional
systems is that the support regions need not be rectangular. cn(x) are termed
“linear” prolate spheroidal wavefunctions in this context; circular prolate functions
were developed by Slepian shortly after the introduction of the linear functions
[224]. The circular functions are well matched to the circular bandlimits associated
with lens systems. As in the linear case, the number of degrees of freedom is equal
to the space–bandwidth product.

Turning now to more direct links between the degrees of freedom and resolution,
we note that analysis in terms of the prolate spheroidal functions is informative in two
distinct ways:

1. As we have noted, expansion of g(x) in terms of cn(x) involves c terms.

2. The Fourier spectra of the lowest c order terms ĉ n(u) are strongly concentrated
in the region juj , B.
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Although cn(x) is defined over a finite band, the function is analytic and may be con-
tinued over all space. Of course, a bandlimited function cannot have finite support.
We have already seen that for n . c, most of the signal energy is in the region
jxj . X. Given that cn is an eigenfunction, the continuation beyond the defining
band applies in both real space and Fourier space. One may derive from this continu-
ation an interpolation relationship that reintroduces frequencies beyond the bandlimit
and enables arbitrary resolution over the spatial support. However, estimation of fre-
quencies substantially above the bandlimit requires estimation of ln for n . c.

The fact that ĉ n(u) is concentrated within the band juj , B for n � c and within
the band juj . B for n . c tells us that B is generally the greatest frequency that one
may estimate in f (x) from measurements g(x). Thus, the prolate spheroidal functions
are central to both estimation of the information capacity of the measurement system
and to estimation of the limit of postcomputational system transfer function. While
the prolate spheroidal analysis greatly clarifies these limits, it also enables one to
explore the extent to which estimation of ln for n slightly bigger than c and/or extra-
polation into the range juj . B using cn(u) for n slightly less than c might enable
superresolution for very high-SNR systems.

Matson and Tyler present a recent and thorough review of “superresolution by data
inversion,” meaning extrapolation of measured Fourier data to regions outside the
measurement bandwidth [175]. They find that for reasonable SNR levels that the
inclusion of higher order terms in signal extrapolation may increase the mean band-
pass across the support region by a few percent for modest values of c. They also find,
however, that the effective bandpass near the edges of the support region may
increase by 10–30% of B. The literature on this topic is large, and demonstrable pro-
gress is modest.

Our third resolution metric, the separation at which distinct point objects are
recognized in an image as distinct, is the oldest and most commonly cited
measure. It is called “the Rayleigh criterion” after its originator. The Rayleigh cri-
terion is not directly addressed by prolate spheroidal analysis. The Rayleigh resol-
ution falls into the category of constrained statistical inference problems discussed
in Sections 7.5 and 8.5. We are given a constraint that the image consists of one or
more point sources and seek to infer parameters, such as the number of point
targets and their positions, from the measured data. Since the natural measurement
basis (e.g., the prolate functions) and the model basis (sparse spikes) are not strongly
correlated, one finds reasonable advantages for nonlinear image inference. Point
target images are particularly common in astronomical star field images, and substan-
tial success has resulted from nonlinear resolution enhancement, particularly for
systems limited by atmospheric rather than diffractive blur. Most typically, resolution
enhancement relies on iterative deconvolution methods [159]. The limits of the
Rayleigh criterion are more likely to be decided by statistical decision theory than
deconvolution, however. In a review of decision theory-based point target resolution,
Shahram and Milanfar argue that point target descrimination an order of magnitude or
more below the nominal diffractive resolution limit is achieved with 10–100 dB
SNR; scaling as the fourth root of the object separation [217]. A typical plot of
minimum detectable point object separation as a function of SNR is shown in
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Fig. 10.16. Point target estimation may be regarded as an example of the application
of generalized measurement theory. One may similarly imagine that prior constraints
to other model bases will yield images that exceed naive resolution limits. One may
also imagine that PSF coding might be jointly applied with nonlinear estimation
theory to further improve the Rayleigh resolution. Ashok and Neifeld describe the
use of coded PSFs for digital superresolution [5]. Similar codings in combination
with decision-theoretic estimators could yield optical superresolution, although the
need for extremely accurate physical PSF models would likely limit the practicality
of such methods.

In the vast majority of imaging applications that do not involve highly constrainted
objects and extremely carefully characterized physical systems, the frequency and
degree of freedom limits resulting from the prolate spheroidal analysis are hard
limits on the image resolution. A little thought leads to an immediate objection,
however. Most imaging systems transmit many more than c degrees of freedom;
one is allowed c degrees of freedom per resolvable spectral channel! The true
limit on the degrees of freedom that an imaging system can detect is the product of
the space–bandwith product and the time–bandwidth product. If one can imagine
a mechanism for sending independent information in diverse temporal and color

Figure 10.16 Minimum detectable point separation as a function of SNR using the general-
ized likelihoood ratio test. PD is the probability that the target is identified as two points; PFA is
the false alarm rate. The plots show the performance for the sampling rates indicated averaged
over sampling phases. The noise variance is assumed as prior knowledge. The system response
is the incoherent Airy PSF, which produces a conventional Rayleigh resolution of 1.22. (From
Shahram and Milanfar [217] # 2006 IEEE. Reprinted with permission.)
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channels, these degrees of freedom could be used to dramatically improve system
resolution.

Most imaging systems are designed either as though all spectral channels are com-
pletely correlated (as in black and white imaging) or as though all spectral channels
were completely independent (typical color imaging). The real structure of natural
images lies between these extremes; images in different color planes are not indepen-
dent but are also not identical. In most cases, differences between color planes reflect
differences in object composition or illumination rather than spatial structure.

Our current focus is on how to use the bounty of spectral degrees of freedom to
improve spatial resolution. Polychromatic superresolution strategies are illustrated
in Fig. 10.17. Multichannel encoding, as illustrated in Fig. 10.17(a), places optical
elements, such as diffraction gratings or microlenses, in the near field of an object.
The optical elements encode nonredundant object components on diverse spectrally
or temporally modulated channels. As a simple example, one might imagine that the
encoding element consists of a microlens array imaging different regions of the object
on different color channels. These image channels could then be multiplexed and
transmitted over an integrated channel. The basic idea of encoding diverse image fea-
tures on different spectral channels using optical encoders was first explored by

Figure 10.17 Encoding strategies for polychromatic superresolution: (a) superresolution via
optical multichannel encoding; (b) superresolution via dispersive scattering.
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Lukosz [160]. In an extreme version of this concept, Naulleau and Leith demonstrated
image transmission through optical fiber with polychromatic encoding [184]. Of
course, the same effect is achieved using optoelectronic sensors to capture images
that are then digitally transmitted over fibers. A thorough review of superresolution
via strategy (a) is presented by Zalevsky and Mendlovic [260].

Many alternative strategies arise if, as in Fig. 10.17(a), one is allowed to place
optical components in the near field of the object. Near-field scanning optical
microscopy is the most developed strategy in this class, but diverse schemes in
which known objects in the near field are used to encode unknown objects remain
unexplored. Rather than develop this approach, however, our focus in the remainder
of this subsection turns to the strategy illustrated in Fig. 10.17(b).

Systems based on Fig. 10.17(b) achieve superresolution without placing com-
ponents on the object side of the bandlimited channel. These systems are based on
the modulation of a known illumination signal on scattering from the object. The illu-
mination is encoded with spatial and/or spectral structure. In the case of spatially
structured illumination, the spatial pattern changes as a function of time to increase
the degrees of freedom beyond the static limit. A simple example of superresolution
arises from the illumination of the object with a high-frequency pattern, as illustrated
in Fig. 10.18. Limiting our discussion to 1D for simplicity, we consider object distri-
bution f (x) and illumination t(x). We assume that the object irradiance is the product

f (x)t(x). The spatial spectrum of the measured object is f̂ (u) � t̂(u). Analysis of the
measured data is particularly simple if t(x) is periodic with period L, in which
case f̂ (u) � t̂(u) takes the form illustrated in Fig. 10.19. f̂ (u) is replicated with

period 1=L across the Fourier space. While only the component of f̂ � t̂ within the
passband of the imaging system is observed, this region contains aliased components

of f̂ (u). From one observation it may be impossible to dealias these signals, but by
varying L one can obtain sufficient data for unambiguous reconstruction of f (u).
The maximum frequency that one can estimate by this method is Bþ Bt, where Bt

is the useful bandwidth of t(x) and B is the channel bandwidth. With reference to
our previous analysis of the object in angular coordinates the maximum frequency
is umax ¼ zo(Bþ Bt) ¼ A=lþ zoBt.

Figure 10.18 Encoding system for superresolution by object plane aliasing.
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The challenge with this approach is, of course, how to create the structured illumi-
nation. The bandwidth that one can optically project from an aperture is equal to the
bandwidth that one measures through the aperture. This means that active illumina-
tion from an aperture A can recover object frequencies umax ¼ 2A=l, but to more
than double resolution the effective illumination aperture must be larger than the
imaging aperture. One may also create effective object space modulation by
imaging through resonant devices, such as a Fabry–Perot filter. A resonator placed
in between the object and the imaging aperture or in the illumination system super-
imposes a ring pattern on the captured image. The effective system aperture after
dealiasing in this case can equal the resonator aperture, which may exceed the objec-
tive entrance aperture.

Particularly dramatic resolution is available in systems that combine nonlinear
optical effects with structured illumination, as in stimulated emission depletion
(STED) microscopy [116] and nonlinear structured illumination microscopy [107].
Of course, high-resolution illumination presents its own challenges. Where one
may reasonably assume the ability to project precise illumination patterns in
microscopy, illumination for remote sensing is limited by the same resolution
limits as image collection.

Turning to systems using spectrally structured illumination, we note that one can
project spectral or coherence patterns at arbitrary ranges independent of aperture size.
For simplicity we focus here on passive objects uniformly illuminated by spatially
coherent light with known power spectral density. Two types of optical superresolu-
tion may be achieved by spectrally dispersive scattering under such illumination

† Microscopic superresolution is achieved when sub-wavelength-scale object
features are resolved.

† Remote superresolution is achieved when subdiffraction limit angular features
are resolved.

A primary difference between these two cases lies in the sophistication of the scatter-
ing model required for analysis. Subwavelength features cannot be modeled by the
multiplicative transmittance functions that have formed the basis of secondary
source models in this text.

Figure 10.19 Fourier space f̂ (u) � t̂(u) for a perioidic aliasing optic.
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Basinger et al. consider dispersive encoding of subwavelength features in nondis-
persive conducting and dielectric materials using rigorous scattering models [9]. By
modeling scattering from diverse perfectly conducting and dielectric structures,
Basinger is able to characterize polychromatic principal components in the scattered
field, abstractly corresponding to the monochromatic eigenfunctions cn(x). As in
Fig. 10.15, one can plot the eigenvalues of these scattering modes. Figure 10.20
plots the eigenvalues assuming that one measures one to six frequencies distributed
over a 10% bandwidth. The single-frequency curve corresponds to the eigenvalues
for c � 10 for the prolate spheroidal system. As one increases the number of wave-
lengths observed, the number of degrees of freedom in the scattered light increases.
The “theoretical limit” curve plots the eigenvalues that one would obtain if each fre-
quency carried completely independent information, in which case one would repli-
cate the prolate spheroidal eigenvalues 6 times. As illustrated in the figure, while the
eigenvalues do not reach the theoretical limit, one polychromatic measurement does
obtain a substantial increase in the number of degrees of freedom relative to the
monochromatic case. In a subsequent experimental study of dielectric object analysis
using polychromatic principal components Basinger et al. characterized object pos-
ition with l=10 resolution [10].

With regard to remote object superresolution, recall that we assumed Schell model
illumination in briefly considering objects illuminated by sunlight in Section 6.2 and

Figure 10.20 Eigenvalues of the polychromatic principal components for scattering from a
1D patterned dielectric. The dielectric is 5 mm long and is illuminated by l ¼ 1 mm light, cor-
responding to an approximate Shannon number of 10. (From Basinger et al. [9] # 1995
Optical Society of America. Reprinted with permission.)
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in Problem 6.3. To simplify our current discussion, we assume that the illumination is
a spatially coherent plane wave incident along the i p direction with spectral density
S(n). The illuminating cross-spectral density is

W(x1, x2, n) ¼ S(n)e2pi(n=c)i p�(x1�x2) (10:35)

where x1 [ R3. Generalizing Eqn. (6.25) to a 3D object with scattering density
s(x, y, z) and substituting in Eqn. (6.17) using the Fraunhofer impulse response,
we find that the cross-spectral density in the far field of the object is

W(x01, y01, x02, y02, n) ¼ kS(n)
ð ð

e2pi(n=c)i p�(x1�x2)

� exp 2pin
x1x01 þ y1y01

cz1

� �
exp �2pin

x2x02 þ y2y02
cz2

� �

� s�(x1, y1, z1)s (x2, y2, z2) dx1 dx2

¼ kS(n)F�(x01, y01, n)F(x02, y02, n) (10:36)

where we group nonillustrative factors (including quadratic phase factors) in k, and
we note for the special case of spatially coherent illumination that the far field natu-
rally separates in the coherent mode

F(x, y, n) ¼ F (s(x, y, z))ju¼i px=lþx=lz, v¼i py=lþy=lz, w¼i pz=l
(10:37)

The coherent modes correspond to the singular vectors of W and may be isolated
by standard methods. F(x, y, n) corresponds to a particular point in the Fourier space
of the object. In practice, variation in x and y is helpful in isolating the phase of
F(x, y, n), but the range of x=z is much less than the range of ipx. As illustrated in
Fig. 10.17, ip is determined by the relative illumination or observation angles. In
the example of an object illuminated by sunlight, ip might change as the Sun transits
the sky. While a large range of ip corresponds to a large effective aperture, under
coherent or partially coherent illumination one can isolate F(x, y, n) without interfer-
ence across the full effective aperture. The process of determining F(x, y, n) as ip
varies is a form of synthetic aperture imaging.

Measurement of F(x, y, n) over the full range of ip at a single wavelength captures
the sphere in the object Fourier space corresponding to u ¼ ip=l. Varying l allows
one to fill out the volume of the Fourier space. Figure 10.21 shows that the band
volume captured when the illumination angles vary from p=6 to p=3 relative to iz
and from �p=6 to p=6 in the xy plane. The range of l is (l0, 2l0). With this illumi-
nation range, one highpass-filters the object within the band volume illustrated.
One often finds that highpass images may be restored by convex optimization and
regularization [33].

Measurement of F(x, y, n) over a broad range of incidence wavevectors ip without
focal apertures is the basis of x-ray crystallography. In such systems, one is able
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to achieve wavelength-scale near-field resolution from small-aperture far-field
measurements. The ability of focal interferometry to capture the phase of W provides
a potential advantage to optical synthetic aperture imaging relative to x-ray systems,
which more often must settle for measurement of jFj.

In the general case of an object illuminated with partially coherent light, one might
choose to analyze the scattered light by finding the independent coherent modes, as
discussed in Ref. 172. It is interesting to compare this process with optical coherence
tomography; one may consider OCT as a method for measuring F(x) using a refer-
ence wave. Synthetic aperture OCT is discussed in Ref. 209. Measurement of the
cross-spectral density in Eqn. (10.36) might similarly be considered as a form of
self-referencing OCT.

10.3.2 Anomalous Diffraction and Nonlinear Detection

To this point we have accepted Eqn. (10.19) as a valid description of field propagation
from an object to a sensor system. There are situations, however, that violate
Eqn. (10.19). The fundamental assumptions of Eqn. (10.19) are that (1) the Fresnel
transformation describes optical diffraction and (2) objects of interest radiate incoher-
ent power spectra characterized by irradiance sensors. This section considers systems
that violate these assumptions.

Figure 10.21 Band volume for synthetic aperture imaging.
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Field propagation in inhomogeneous media is not described by the Fresnel trans-
form. We are particularly interested in situations where the object field propagates
through an intermediate medium prior to the imaging system aperture. Of course,
the greatest benefit from an imaging perspective is derived if the intermediate
medium happens to be a large-aperture lens, but benefits may be derived from less
structured media. Various studies have suggested, for example, that propagation
through atmospheric turbulence might be used to increase imaging system bandwidth
and enable superresolution [44,90,257,261]. The greatest benefit might be expected
in cases where the atmosphere acts as a graded-index material or waveguide, as
might be expected for observations across a surface, but some benefit may be
expected from observations through random fluctuations.

Figure 10.22 illustrates a simple model of inhomogeneous propagation due to a
thin disturbance layer. The effect is similar to modulating the object plane as in
Fig. 10.18, although the increase in bandpass decreases as the modulation moves
from the object plane to the pupil plane. Diffraction through inhomogeneous or
turbulent media is often modeled using a random phase transmittance in an inter-
mediate plane [67,256]. We take an unusual approach here in assuming that the inter-
mediate transmittance is deterministically characterized. Assuming a 1D incoherent
imaging system for simplicity, the cross-spectral density at the phase distortion is
W(Dx, n) ¼ Ŝ(u ¼ Dx=l, n). The cross-spectral density at the imaging system aper-
ture is then

W(x1, x2, n) ¼
ð ð

Ŝ u ¼ x01 � x02
l

, n

� �
t�(x01)t(x02)

� exp ip
(x1 � x01)2 � (x2 � x02)2

ld

� �
dx01 dx02 (10:38)

where d is the range from the system aperture to the phase distortion. Our imme-
diate goal is to compare the maximum frequency umax in the Fourier transform of
S(u, n) observable in this system with the maximum frequency observable from
Eqn. (10.19). In pursuit of this goal we consider the response to the Fourier

Figure 10.22 Encoding system for superresolution by intermediate turbulence: (a) object;
(b) inhomogeneous medium; (c) lowpass fiter; (d) image.
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impulse Ŝ(u) ¼ d(u� u0), which yields

Wu0 (x1, x2, n) ¼
ð

t�(x01)t(x01 � lu0)

� exp ip
(x1 � x01)2 � (x2 � x02 þ lu0)2

ld

� �
dx01 (10:39)

Wu0 (x1, x2, n) is related to the ambiguity function of t(x) [see Eqn. (6.84)]. The ambi-
guity function is used in radar and sonar imaging to characterize the resolving power
of pulses. Design of t(x) to maximize resolution in radar is related to the optical
problem addressed here. The student may find it particularly instructive to consider
the case t(x) ¼ exp (�ipx2=lF).

For the case of a homogenous medium t(x) ¼ 1 and

Wu0 (x1, x2, n) ¼ d u0 �
x1 � x2

l

� �
(10:40)

Since (x1 � x2)max ¼ A, umax ¼ A=l. As another example, for t(x) ¼ e2piutxt�(x01)
t(x01 � lu0) ¼ e2pilutu0 and Wu0 is again described by Eqn. (10.40). Thus, a single-
order diffraction grating in the path does not increase the resolution of an imaging
system. If, however, t(x) pans a finite bandwidth Bt, we may estimate the impact
on the ambiguity by replacing t�(x01)t(x01 � lu0) with e2piBtx01 , which yields

Wu0 (x1, x2, n) ¼ d u0 �
x1 � x2

l
� Btd

� �
(10:41)

As with the object illumination example, we see therefore that the intermediate modu-
lation can alias signal frequencies in to the detection band, in this case enabling

umax ¼
A

l
þ Btd (10:42)

In typical remote sensing applications A/l may range from 104 to 106. For a
modulation layer at a range of 1 km with 1 cm feature sizes Btd � 105. The potential
increase in system resolution must be balanced against the substantial difficulty
of determining t(x) from measured data and decreased SNR due to multiplexing
noise. As with superresolution by structured illumination, one must assume that
t(x) varies as a function of time or wavelength to obtain sufficient data for dealiasing.
In turbulent systems t(x) will generally be highly dispersive such that the degeneracy of
the spectral channels will be broken. One may expect that multispectral sampling
of W(x1, x2, n) will enable joint estimation of t(x) and superresolved S(u). The
model of t(x) as a phase screen is unlikely to be satisfactory in highly turbulent environ-
ments, however.

We turn finally to the use of nonlinear detectors to increase the system bandwidth.
We have seen that irradiance detectors achieve twice the spatial frequency bandpass
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of Maxwell field detectors. Could detectors sensitive to higher-order field correlations
similarly achieve higher bandpass?

The greater bandpass of incoherent imaging systems relative to coherent systems is
due to the fact that the object information is contained in the irradiance rather than the
fact that detectors detect the irradiance. To understand this claim, consider a simple
measurement system

g(x) ¼
ð

f (x0)h(x� x0) dx0 (10:43)

Simply squaring measurement samples, for example, measuring

jg(x)j2 ¼
ð ð

f �(x00)f (x0)h(x� x0)h�(x� x00) dx dx00 (10:44)

does not increase the bandpass of this system. If, when one takes an ensemble
average, Eqn. (10.44) reduces to

kjg(x)j2l ¼
ð

kjf (x0)j2ljh(x� x0)j2 dx0 (10:45)

then, as we have seen (particularly in Problem 6.8), the system bandpass is increased.
The incoherence of the field is a property of the object unrelated to the fact that the
detector measures the time average of the square of the field.

A similar effect for higher-order field correlations would require that the irradiance
or power spectral density also be d-correlated. To a first approximation for most
objects, however, kS(x1, y1, n)S(x2, y2, n)l � S(x1, y1, n)S(x2, y2, n), meaning that
detectors that measure higher-order field correlations will not easily obtain higher
bandpass. There are objects and illumination strategies where higher-order corre-
lations play a significant role, however, and one might indeed expect to achieve
optical superresolution in these systems. The emerging discipline of quantum
imaging seeks to create and exploit higher order field correlations to obtain optical
superresolution [138].

10.4 MULTIAPERTURE IMAGING

Multiaperture imaging systems were of limited utility in the analog age because
photochemistry provides no mechanism for fusing two images into one, but the com-
bination of multiaperture imaging and digital image fusion is extremely attractive.
Multiaperture imaging is common in living systems, which use multiple apertures
to ensure against the failure of a single aperture, to provide parallax for 3D scene
analysis and to increase field of view. As an example, binocular imaging enables
the extraordinary human visual field of approximately 1808 in the horizontal plane
and approximately 1208 in the vertical plane. Emerging computational imaging
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systems achieve the performance advantages of biological systems while also using
multiple apertures to acquire multispectral, polarization, and multiscale data.
Multiaperture imaging also enables novel SNR, dynamic range, system power man-
agement, and physical packaging strategies.

As will become clear over the course of this section, there are many open research
and development issues in multiaperture systems. In considering the move from
cyclops to multiaperture design, one must answer the questions “Why more than
one?” and “How many apertures?” Sections 10.4.1–10.4.3 consider the following
three answers to “why.”

1. Image Quality and Field of View. As aperture size grows, one must either
decrease the effective f/# or increase optical system complexity to avoid aber-
ration and maintain image quality. For fixed complexity and system volume,
multiple apertures achieve superior effective Shannon numbers and larger
field of view.

2. Generalized Sampling. Multiple apertures enable multiplex image sampling.
Generalized sampling strategies provide design freedom for camera form
factor, focal plane pixel layout, and power management.

3. Multidimensional Sampling. As discussed in Section 7.3, the optical data cube
is multidimensional. Focal planes are unfortunately 2D. Multiaperture systems
enable intelligent sampling of three spatial dimensions as well as color, time,
polarization, coherence, and turbulence.

“How many” apertures is more subtle than “why.” We provide some guidance and
limits in subsequent discussion but anticipate that the answer to this question will
continue to evolve.

10.4.1 Aperture Scaling and Field of View

Depth of field, resolution, and field of view are the primary metrics of monochromatic
imager performance. Nominally, Section 10.2 reviewed depth of field, Section 10.3
reviewed resolution, and the present section covers field of view. The field of
view (FOV) is the angular range observable to the system. For a spatially
incoherent source described by S(ux, uy, n), the field of view is the range of
angles FOV ¼ umax –umin over which S is observed. To complete our acronym
stew, we note that the angular resolution is sometimes termed the instantaneous
field of view (ifov). The ifov is the field of view for a single pixel; the FOV is the
field of view for the entire image.

As we have already seen, DOF, FOV, and resolution are not independent. While
the relationship between depth of field and resolution discussed in Section 10.2 (an
aperture stop increases depth of field but cuts resolution) is particularly direct and
easy to understand, every aspect of optic design impacts all three metrics.

To understand the limits of these metrics, we briefly return to the cross-spectral
density on an aperture. If we could directly measure W as described by Eqn. (10.19),
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the the depth of field of the system would be infinite (the image at any range can be
calculated from W ); the resolution is determined by the aperture size according to
Du ¼ l=A, and the field of view is determined by the sampling rate in the Dx, Dy
space. Specifically, if one samples W to spatial resolution d, then the field of view
is approximately l/d. From this analysis, there is no fundamental relationship
between depth of field, resolution, and field of view.

In practice, however, optical system performance is limited by both aperture size
and the capabilities of optical and optoelectronic processing to condition and extract
data from the field passing through the aperture. For example, optical processing to
maximize resolution by focusing to the tightest possible PSF naturally leads to
poor depth of field. Field of view is ultimately reduced in high-resolution systems
because it is easier to optimize the PSF for resolution over a smaller field. Section
10.2 considered optical design strategies to increase depth of field by advanced
optical and digital processing. Similarly, one may imagine codesign of lens systems,
sampling, and processing strategies to balance increased field of view against loss of
resolution. Currently, however, digital image synthesis from multiple apertures is the
most promising approach to wide-field design.

The basic challenge of FOV and resolution in lens design is illustrated in
Fig.10.23, which is a ZEMAX ray trace of a simple lens. The lens consists of boro-
silicate crown glass with spherical surfaces of 1 cm radius. The lens is aligned to
produce a sharp focus at the center of the field. The spot diagram shows the locus
of ray crossings in the focal plane for a given field angle (see Problem 2.7). Ray
tracing programs use the spot size as a measure of the focal quality of the
lens. The spot size is a good measure of the focal spot area unless it is smaller
than lf/#, in which case diffractive analysis is necessary. As indicated by
Fig. 10.23, the spot size for this lens is far from diffraction-limited even at the
center of the field, and the spot size rapidly degrades as field angle increases.

Sophisticated lens designs are necessary to achieve diffraction limited resolution
across a reasonable field of view. As an example, Fig. 10.24 shows ray tracing and
spot diagrams for a lithographic lens assembly. Lithographic systems uniquely
require very high-resolution imaging over a very large field. As discussed in
Section 10.3.1, the number of degrees of freedom of a bandlimited system is c ¼
4BX. The Shannon number may also be interpreted as the ratio of field of view
and angular resolution. Since the resolution is inversely proportional to aperture
size and since there is no fundamental relationship between field of view and
aperture size, one naturally hopes that the Shannon number will grow linearly in
the aperture. This does not happen in practice, however, because the field of view
for a given lens design must be reduced as aperture size increases.

Simple analysis of the ray tracing diagrams in Figs. 10.23 and 10.24 explains why
this is the case. Ray tracing is “scale-invariant.” The diagrams in these figures were
sketched in units of millimeters, but if one changes the units to centimeters or meters,
the diagram is unchanged. Only the scale of the spot diagrams must be revised. The
77-mm center spot for the simple lens becomes a 77-mm spot when ray tracing units
are changed to meters, and the 255-mm spot becomes 0.25 m. Similarly, the 0.3-mm
spot for the lithographic system becomes a 0.3-mm spot, much larger than the
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Figure 10.23 Ray tracing and spot diagrams for a simple lens.
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Figure 10.24 Ray tracing and spot diagrams for a microlithographic lens system.
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diffraction limit. To counter this scaling problem, one must either increase lens com-
plexity or reduce the field of view when scaling to larger optical systems. In consid-
ering these scaling issues, Lohmann presents an empirical observation stating that the
effective f/# tends to increase as f 1=3, where f is the focal length in millimeters [157].
Under this rule, reasonable design for an f/1 system at 1 mm is reduced to f/3 at 1 cm
aperture and f/10 at 1 m aperture.

The alternate strategy of increasing system complexity is adopted to the maximum
extent in microlithographic systems. The development of microlithography is driven
by Moore’s law, which predicts that the number of transistors per integrated circuit
should double every 2 years. Moore’s law has been satisfied over many years by
increasing circuit area and by decreasing lithographic feature sizes. Figure 10.25
plots the normalized information capacity of state-of-the-art lithographic lens
systems since the early 1980s. The normalized information capacity is a measure
of the degrees of freedom encoded by the system [176]. The upper curve is
Moore’s law, doubling system performance every 2 years; the lower curves show
the information capacity actually achieved. TTIwave is the total transmitted infor-
mation relative to the 1980 baseline based on optical improvements alone. TTIk1 is
the improvement incorporating nonlinear processing strategies in photoresist and
exposure. TTItool is the improvement incorporating system factors in the integrated
lithographic tool. The break between the tool and k1 curves is due to the implemen-
tation of spatially scanned exposure strategies in 1995, effectively corresponding to
the introduction of multiaperture lithography. Factors driving improvements in
lithographic tools are illustrated in Fig. 10.26. Reduction in the wavelength from
.500 nm to ,200 nm is of obvious benefit to the Shannon number, as are advances
in k1. After substantial initial improvements the exposure field size has remained con-
stant over many years, suggesting that a technological or economic limit may be
reached in current systems. H is the overall effective etendue, including aperture
translation. The dramatic improvement in H since 1995 is due primarily to increased
numerical aperture (NA) and to aperture translation. The increased NA corresponds to
an extraordinarily high effective FOV.

The optical system improvements illustrated by Figs. 10.25 and 10.26 were
enabled by heroic optical design efforts. As illustrated in Fig. 10.27, the optical
layout of microlithographic systems from 1980 through 2004 involved massive
increases in lens size and complexity. Through these systems, one finds that it is poss-
ible to maintain Shannon number as system aperture grows, but only at the expense of
substantial increases in volume and manufacturing complexity. Surprisingly little is
known regarding the fundamental limits of the relationship between Shannon
number and system aperture, however.

In summary, one observes that the number of degrees of freedom predicted as a
function of aperture size in Section 10.3.1 is actually achieved for only very small
aperture sizes. It is not uncommon for a microscope objective with a submillimeter
aperture to have an f/# less than one and to achieve a Shannon number exceeding
100 in each dimension; 1-mm-aperture systems with f/# around 1 are reasonable.
As aperture size increases, however, f/# drops and the Shannon number increases
sublinearly in A (see Problem 10.8).
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Detailed analysis of the origin of Lohmann’s scaling law and the limits of lens per-
formance versus aperture size would take us much further into lens design and aber-
ration theory. As we are nearing the end of this text, we leave that analysis to future
work. We note, however, that one may increase the degrees of freedom of an imaging
system by adding more apertures until the field of view is fully covered. Typical
design selects aperture size to achieve resolution targets. Single-aperture field of
view is determined by the capabilities of reasonable optics and the size of available
focal planes. Additional apertures are added to fill the targeted field of view.

Figure 10.26 Evolution of factors determining the “extended” etendue of microlithographic
lens systems. (From Matsuyama et al. [176] # 2006 SPIE. Reprinted with permission.)

Figure 10.25 Information capacity of lithographic lens systems as a function of time. (From
Matsuyama et al. [176] # 2006 SPIE. Reprinted with permission.)
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Figure 10.27 Optical layouts over the history of microlithographic lens systems: (a) NA ¼ 0.3,
yi,max ¼ 10.6 mm, l ¼ 436 nm (g-line); (b) NA ¼ 0.54, yi,max ¼ 10.6 mm, l ¼ 436 nm (g-line);
(c) NA¼ 0.54, yi,max ¼ 12.4 mm, l ¼ 365 nm (i-line); (d) NA ¼ 0.57, yi,max¼ 15.6 mm, l ¼
365 nm (i-line); JP-H8-190047(A); (e) NA ¼ 0.55, yi,max ¼ 15.6 mm, l ¼ 248 nm (KrF) JP-
2000-56218(A); (f) NA¼ 0.68, yi,max ¼ 13.2 mm, l ¼ 248 nm (KrF) JP-2000-121933(A); (g)
NA ¼ 0.75, yi,max¼ 13.2 mm, l ¼ 248 nm (KrF) JP-2000-231058(A); (h) NA ¼ 0.85, yi,max ¼

13.8 mm, l ¼ 193 nm (ArF) JP-2004-252119(A). (From Matsuyama et al. [176] # 2006 SPIE.
Reprinted with permission.)
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10.4.2 Digital Superresolution

Multiaperture systems implement generalized sampling when the same object element
is observed through more than one aperture. Numerous studies have focused on 3D
imaging and resolution enhancement using multiaperture data. The concept of
fusing multiple images to increase resolution emerged from diverse sources since
the early 1980s. Park et al. present a relatively recent review of digital superresolution
[195]. Most historical interest has focused on “images of opportunity” collected as a
sequence of video frames from a single aperture. With the introduction of the “thin
observation module by bound optics” (TOMBO) microlens array imaging sytem in
2001 [229], however, interest has increasingly focused on computational imagers
deliberately designed for multiaperture processing. Of course, biology already had a
long history of multiaperture processing, and several previous studies had fabricated
compound optical systems based on biological analogies [188,213]. TOMBO-style
systems have been implemented by several groups [64,133,179,218].

The original TOMBO system, consisting of an array of microlenses integrated on a
single focal plane array, is shown in Fig. 10.28. As illustrated in Fig. 10.28(b) all the

Figure 10.28 TOMBO architecture: (a) system structure; (b) ray tracing. (From Tanida et al.
[229] # 2001 Optical Society of America. Reprinted with permission.)
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subimagers observe the same object. In practice, parallax leads to variation in the
relative object position on the subimagers as a function of range. Compensation of
this effect requires scene-dependent registration. Parallax may be neglected for
distant objects, however, in which case each camera samples the same image. For
distant objects the TOMBO sampling model comparable to Eqn. (7.4) is

gnmk ¼
ð1

�1

ð1

�1

ðX2

�X
2

ðY2

�Y
2

f (x, y)hk(x0� x, y0� y)

� p(x0 � nD, y0 � mD) dx0 dy0 dx dy (10:46)

where hk(x, y) is indexed by aperture number k and we anticipate variations in the
optical PSF from one aperture to the next. In the simplest case, the only difference
in the PSF from one subaperture to the next is a shift in the sampling phase, such
as hk(x, y) ¼ h(x� Dxk, y�Dyk). As discussed in Section 7.1, however, shifts in
sampling phase do not affect the overall system transfer function (STF), which in

this case is ĥ(u, v)p̂(u, v). What advantage, then, is obtained by the use of multiple
apertures? The answer, of course, is that a diversity of sampling phases changes
the aliasing limit and the multitude of apertures increases sensitivity. Prior to consid-
ering these points, however, we consider the STF in more detail.

System magnification is a central parameter in multiaperture design analysis.
Systems that choose to have a large number of short focal length apertures, like
TOMBO, will observe the object with low magnification where a single-aperture
system observing the same object will have higher magnification. The effect of
the different magnifications and multiple apertures is accounted for by modeling
the STF as

STF(u, v) ¼ KM2ĥ
u

M
,

v

M

� �
p̂

u

M
,

v

M

� �
(10:47)

where M is the relative system magnification and K is the number of apertures. We
assume that aperture size is proportional to M, in which case etendue will grow as M2.

Figure 10.29 plots STF(u, v) for this model for M ¼ 1 and for M ¼ 0.25, K ¼ 16
under the assumption that the focal plane pixel pitch is D ¼ 4l f=#. As discussed in
Section 7.1, this pitch undersamples by a factor of 8 relative to Nyquist. We assume
for the moment that f/# is independent of M. The topmost curve in Fig. 10.29(a) and
(b) is the optical modulation transfer function, the middle curve is the pixel transfer
function, and the bottom curve is the system transfer function (the product of the MTF
and PTF). The horizontal (u) axis plots the STF in the unit magnification Fourier
space.

With our assumption that KM2 ¼ 1, the systems in Fig. 10.29 have the same light
collection efficiency and identical STFs at low frequency. Because of multiplexing
noise, however, the STF of the multiaperture system in Fig. 10.29(b) degrades
faster than the isomorphic STF in Fig. 10.29(a). Figure 10.29 plots the “excess
noise factor” (e.g., the ratio of the multiaperture and single-aperture MSE) based
on the Wiener filter MSE described in Eqn. (8.22). We assume that the signal and
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noise power spectra are flat and that the SNR ¼ Sf (u, v)=Sn(u, v) ¼ 20 dB. At fre-
quencies near the nulls of the pixel sampling function, the MSE of the multiaperture
system is much worse than in the single-aperture system. In this particular case, the
multiaperture system has competitive SNR up to approximately 25% of the single
aperture bandpass, meaning that signal averaging over the apertures achieves reason-
able SNR at low frequency but little gain in system resolution is obtained by combin-
ing data from the M ¼ 0.25 systems.

The vertical lines in Fig. 10.29 represent the aliasing boundaries for each sampling
strategy. This boundary is easily calculated for the single-aperture system as
ualias¼1=(2D). The aliasing limit for the multiaperture system is determined by
shifts Dxk. With

ffiffiffiffi
K
p
¼M, the multiaperture and single-aperture systems achieve the

same aliasing limit for Dxk¼kD=
ffiffiffiffi
K
p

. We assume that this is the case in Fig. 10.29.
We observed in Section 7.1 that pixel pitch, f/#, aliasing, and SNR create a design

space from which no single magic design emerges. The focal plane designer has
motivations for maintaining a relatively large pixel pitch. For example, small
pixels may be difficult to manufacture and may produce excess crosstalk and noise
in comparison with larger pixels. The richness of the optical and optoelectronic
design space is greatly enhanced by multiaperture designs. A second example
design is illustrated in Fig. 10.30. The focal plane pixel pitch is the same as in
Fig. 10.29, but we use a 2 � 2 array of M ¼ 0.5 imagers rather than a 4 � 4 array.
We assume a larger SNR of 40 dB. This system achieves reasonable SNR to well

Figure 10.29 System transfer function for D ¼ 4l f =# with (a) unit magnification; (b) M ¼
0.25; and (c) excess noise factor for (b) assuming SNR ¼ 20 dB.
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over half of the frequency range of the single-aperture analog using optics with half
the focal length of the single aperture system.

Numerous challenges and opportunities remain unexplored in our discussion of
multiaperture systems to this point. Ever the optimists, let’s begin by considering
opportunities. First, as noted in Section 10.4.1, it is not really fair to scale M and
f/# independently. For optical systems on the millimeter–centimeter aperture
scale, however, the significance of this coupling impacts mass and complexity of
the optics rather than the STF. A factor of much greater significance may arise
from aliasing noise. In the worst case, the statistical power spectrum of the signal
is flat across the full range of imager sensitivity. Signal components at frequencies
above the aliasing limit must be added to the noise spectrum. The Wiener filter
MSE accounting for aliasing noise is

1(u, v) ¼ Sf (u, v)

1þ jĥ(u, v)j2fSf (u, v)=Sn(u, v)þ jĥa(u, v)j2[Sa(u, v)]g
(10:48)

where ha(u, v) is the STF for frequencies aliased into measured frequency (u, v).
Figure 10.31 compares MSE including aliasing noise for the systems of
Fig. 10.30(a) and (b). Recalling that the SNR for these systems is 40 dB, aliasing
is the dominant noise factor. The curve beginning near the origin in Fig. 10.31 cor-
responds to the MSE for the 2 � 2 multiaperture imager. Low-frequency aliasing

Figure 10.30 System transfer function for D ¼ 4l f =# with (a) unit magnification and (b)
M ¼ 0:5; (c) excess noise factor for (b) assuming SNR ¼ 40 dB.
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noise is weak for this system because the STF passes through a null at the aliasing
boundary. MSE increases monotonically to the boundary, where the null in the trans-
fer function makes the error equal to the expected signal value. The MSE for the
single-aperture system, in contrast, is high at low frequencies because of the high
STF at the aliasing boundary and falls to zero at the aliasing boundary owing to
the STF null at 2ualias. With this model, the MSE for the multiaperture system is sub-
stantially better than for the single-aperture system at frequencies below the crossing
point in Fig. 10.31. One typically counters aliasing noise in three ways: by assuming
that the object spectral density is not flat, by blurring the optical PSF, and by applying
denoising algorithms. In the first approach, compressive coding strategies in multi-
aperture systems may be considered. The second approach reduces the STF of the
single-aperture system to be more comparable with the multiplex multiaperture
system. To understand the third approach, we must consider image estimation from
multiple aperture data in more detail.

Tanida et al. [229] originally inverted TOMBO data using a truncated SVD
algorithm. Experimental results illustrated in Fig. 10.32 used 10 � 10 apertures
with 250-mm-diameter, 650-mm-focal-length lenses. The pixel size was 11 mm,
meaning that each aperture spanned a 22.7 � 22.7-pixel grid. The system response
was estimated by experimental characterization. The SVD was truncated to singular
values l . l1=7. While the reconstructed image is modestly improved relative to the
subaperture image, it is not clear that the result is superior to simple interpolation and
smoothing. Better results have been achieved by the Osaka University group and
others in subsequent studies using diverse linear, convex optimization, and expec-
tation maximization strategies [47,133,187,218].

Figure 10.31 Wiener filter MSE based on Eqn. (10.48). The MSE value on the ordinate is
relative to the signal spectral density.
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It is important to understand the SVD approach, however, as a baseline for chal-
lenges and opportunities in multiaperture systems. A central problem is that highly
accurate forward models are critically enabling but are relatively difficult to obtain.
Analyses of the sensitivity of multiaperture systems to model error are presented
by Prasad [207] and Wood et al. [254]. As an example of the system characterization
challenge, we consider data from the Phase II longwave infrared (LWIR) cameras
developed at Duke University through the Compressive Optical MONTAGE
Photography Initiative (COMP-I). The COMP-I imagers used a 3 � 3 array of com-
pound germanium and silicon lenses with a 5-mm center-to-center pitch. The effec-
tive focal length was 5.8 mm corresponding to f/1.16. The lenslet array was
positioned over a 640 � 480 vanadium oxide focal plane array with square 25-mm
pixels. The field of view of the image was limited to 208 such that each lenslet
actively utilized an 80 � 80 pixel grid. The ifov of the subapertures was 20/80 ¼
0.258¼ 4.4 mrad. Reconstructed images up sample by a factor of 3 to create a
240 � 240 image with 8.3 mm effective pixel size and an ifov of 1.5 mrad.

Image estimation requires a forward model and an inversion strategy.
Experimental characterization of the forward model is an attractive first step, but com-
pletely empirical forward models are rarely satisfactory. Accurate collection of an
empirical forward model requires precise knowledge and control of test targets, com-
pensation for background sources, and extremely stable image collection systems. As
an example, Fig. 10.34(a) shows the forward model for COMP-I imagers over a
subset of the image field. A point object, consisting of a pinhole in a copper plate,
illuminated the imager through a collimation system. A 50 � 50 grid of object pos-
itions evenly distributed over a 40.4-mrad field was sampled by rotating the imager
using precision stages.

A 15�15 grid of pixels from each subaperture was used as the output data for each of
the 50�50 input images. The resulting mapping can be presented as g ¼ Hf with g a
9�15�15 ¼ 2025-element measurement vector and f a 50 � 50 ¼ 2500-element

Figure 10.32 Images reconstructed from TOMBO data by truncated SVD: (a) a subaperture
image; (b) the reconstructed image. (From Tanida et al. [229] # 2001 Optical Society of
America. Reprinted with permission.)
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object vector. The subset of the 2025 � 2500 matrix H shown in Fig. 10.34(a) corre-
sponds to 500 measurement points and 1000 object points. Each column shows nine
points corresponding to the object point response over the nine subapertures. The per-
iodic banding in H is due to pixel nonuniformity and uncorrected background. Since
microbolometers measure the total thermal flux, there is considerable background in
uncooled IR imagery. Substantial nonuniformity correction and background substration
is necessary to form images from these systems. Data used to generate Fig. 10.34(a) have
already been processed for background subtraction, but, as indicated by the figure, it is
difficult to achieve absolutely uniform response from all subapertures.

The singular values of the measurement, illustrated for the first 300 values in
Fig. 10.33(a), further illustrate the nature of this problem. The largest singular value
is much greater than one would expect from our previous analysis of shift-coded

Figure 10.33 Singular values (a) and object space singular vectors (b) for point target
characterization of the COMP-I phase II LWIR imaging system.
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downsampling due to the substantial static background in the measurements. The first
100 object space singular vectors are illustrated in Fig. 10.33(b). In contrast with
previous results, the lowest-order singular vector contains relatively high-frequency
components corresponding to static nonuniformity. To compensate for this effect,
one may choose to form a reduced forward model truncating both high-order singular
vectors and a few low-order singular vectors to eliminate static bias. Figure 10.34(b)
shows a reduced system operator created using singular vectors 5–200. Systematic
banding is largely eliminated in this operator.

Having characterized the forward model, one may now attempt to form an image
by any of the methods discussed in Chapter 8. Figure 10.35 shows least-squares

Figure 10.34 Forward model (a) (H) and reduced forward model (b) (Hr) for point target
characterization of the COMP-I phase II LWIR imaging system.

Figure 10.35 Measurement data (a) and truncated SVD reconstruction (b) for the forward
model of Fig. 10.33.
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reconstruction using the truncated SVD forward model of Fig. 10.33. While the
image quality is poor, it is, of course, vastly superior to direct least squares.
Important lessons of this exercise include the difficulty of actually measuring the
forward model and an appreciation of the scale of the problem. This experiment
covered only a very small subset of the system aperture; characterization and algebraic
estimation based on the full-aperture system response is numerically intractable.
Although experimental forward model characterization is particularly challenging
for thermal imagers, these issues are significant for all computational imaging
systems. Accurate forward models are essential to virtually all of the spectrometer
and imager designs discussed in this text.

Needless to say, given the quality of the subaperture images in Fig. 10.35, the
quality of the synthesized image is extremely disappointing. More attractive results
are obtained using parameterized physical models rather than fully characterized
forward models. For the COMP-I cameras, parameterized models assume that the
same image is sampled in each subaperture with an unknown aperture to aperture
shift. Assuming the sampling model given by Eqn. (10.46), image synthesis is rela-
tively straightforward. Somewhat more detailed interpolation strategies are necessary
for irregular sampling, but if the sampling positions are well known, one may expect
to obtain STF-limited performance. The sampling phase for the COMP-I imager was
characterized by center-of-mass registration (although developing algorithms for
larger-scale imaging systems use dimensionality reduction-based registration
[115]). Samples from the registered subimages are then combined on an interpolation
grid to reconstruct the full-frame image using subpixel sample spacings determined
by the registration algorithm. For objects at infinity, registration data need not be
characterized for every image [132]. The final image is smoothed using the least-
gradient algorithm based on the null space of the shift coding operator over a finite
image window [218].

Figure 10.36 illustrates COMP-I imagery reconstructed by linear interpolation
with least-gradient smoothing. One expects the image reconstructed by this algorithm
to be subject to the STF described by Eqn. (10.47) for M ¼ 0.333 and D � 2:5lf =#.
A baseline image with M ¼ 1 is also illustrated. As expected, the zero-spatial-
frequency NEDT is approximately the same for the baseline and multiaperture
systems. More detailed experimental analysis yields an ifov equal to approximately
1.5� the baseline value but, as illustrated in the figure, is substantially better than
any of the individual lenslets. It is important to emphasize that the improvement in
image quality is due to high optical quality of the lenslets and to antialiasing as
well as digital superresolution. It is also interesting to note the dramatically improved
depth of field of the multiaperture system relative to baseline. According to Eqn.
(10.3), one anticipates a factor of 9 reduction in the near point due to the shorter
focal length lenses. This effect is illustrated in Fig. 10.36 by simultaneous imaging
of a hand inside the near point of the baseline system and a person at a well-
focused range.

Sampling on a 3 � 3 multiaperture system is essentially equivalent to 3 � 3 down-
sample shift operator. As mentioned in Sections 8.4 and 8.5, the structure of the
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sampling function substantially impacts the reconstruction performance. Relatively
simple studies have considered modifications to the optical PSF and the pixel
sampling function to improve multiaperture imaging performance [204,218], but
coding for multiaperture sampling system design remains an active area of research.
This topic is closely related to registration and system characterization. In particular,
our assumption that registration is range-invariant is incorrect. The effective sampling
phase is sensitive to parallax in 3D scenes. Of course, one may consider range-depen-
dent PSF coding to enable 3D image formation without scene-dependent registration.
One may also consider localized registration or range-dependent principal component
analysis. As always, such strategies require accurate forward models.

10.4.3 Optical Projection Tomography

Sections 10.5 and 10.6 discuss emerging computational imager designs with a par-
ticular focus on strategies for fully characterizing the spatial and spectral optical
data cube. We begin by considering systems designed to characterize the radiance.
As discussed in Section 6.7.1, the spectral radiance is the power density of the

Figure 10.36 Least gradient/linear interpolation reconstruction of COMP-I image data:
(a) raw image; (b) single-lenslet image; (c) baseline image; (d) reconstructed image. The
person is 3 m from the imagers; the hand in the near field is 0.7 m away. The images are cap-
tured simultaneously; the relative shift in the position of the hand and the person is due to
parallax between the imagers. (Images collected by Andrew Portnoy and Mohan Shankar.)
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field per unit solid angle and wavelength. The radiance is well-defined for quasi-
homogeneous fields as the Fourier transform of the cross-spectral density:

B(x, s, n) ¼
ð ð

W(Dx, x, n)e(2pin)=cs�Dxd Dx (10:49)

Under this approximation, measurement of the radiance on a surface is equivalent to
measuring W. Of course, we observe in Eqn. (6.52) that if W(Dx, Dy, �x, �y, n) is invar-
iant with respect to �x, �y over the aperture of a lens, then the power spectral density in
the focal plane is

S(x, y, n) ¼ 4n2
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where we set z ¼ F,H(u, v) is the optical transfer function and �x, �y can be taken as the
transverse position of the optical axis. Neglecting the OTF for a moment, we find
therefore that the power spectral density at the focus of a lens illuminated by quasi-
homogeneous source approximates the radiance, specifically

B x, sx ¼
x

F
, sy ¼

y

F
, n

� �
� S(x, y, n) (10:51)

The radiance emitted by a translucent 3D object is effectively the x-ray projection
described, for example, by Eqn. (10.12). We have encountered such projections in
diverse contexts throughout the text. One may ray-trace the radiance to propagate
the field from one plane to the next to construct perspective views from diverse
vantage points or apply computed tomography to radiance data to reconstruct 3D
objects. As mentioned in our discussion of tomographic reconstruction in Section
2.6, the 4D radiance over a surface containing a 3D object overconstraints the tomo-
graphic inverse problem. Reconstruction may be achieved over a 3D projection space
satisfying Tuy’s condition. Computed tomography from focal images [74,168], from
RSI EDOF images [170], and from cubic phase EDOF images [72] are discussed by
Marks et al. More recently, optical projection tomography has been widely applied in
the analysis of translucent biological samples [220,221].

Optical projection microscopy commonly applies full solid angle sampling to
obtain diffraction limited 3D reconstruction. Remote sampling using projection tom-
ography, in contrast, relies on a more limited angular sampling range. Projection tom-
ography using a camera array is illustrated in Fig. 10.37. We assume in Fig. 10.37 that
the aperture of each camera is A, that the camera optical axes are dispersed over range
D in the transverse plane, and that the range to the object is zo. The band volume for
tomographic reconstruction from this camera array is determined by the angular range
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Q ¼ D/zo. The sampling structure within this bandvolume is determined by the
camera-to-camera displacement and camera focal parameters.

Assuming that projections at angle u are uniformly sampled in l, one may identify
the projections illustrated in Fig. 10.38 from radiance measurements by the camera
array. The displacement Dl from one projection to the next corresponds to the trans-
verse resolution zol/A. According to Eqn. (2.52), the Fourier transform of the radi-
ance with respect to l for fixed s(u) yields an estimate of the Fourier transform of
the object along the ray at angle u illustrated in Fig. 10.39. The maximum spatial fre-
quency for this ray is determined by Dl such that ul,max ¼ A=zol. The spatial fre-
quency w along the z axis is ulsinQ. Assuming that the angular range D/zo

sampled by the camera array along the x and y axes is the same, the band volume
sampled by the array is illustrated in Fig. 10.40. The lack of z bandpass at low trans-
verse frequencies corresponds to the “missing cone” that we have encountered in
several other contexts. The z resolution obtained on tomographic reconstruction is
proportional to the transverse bandwidth of the object. For a point object, the
maximum spatial frequency wmax ¼ umaxsinQ ¼ AD=z2

ol occurs at the edge of the
band volume. The longitudinal resolution for tomographic reconstruction is

Dz ¼ 1
wmax

¼ z2
ol

AD
(10:52)

Comparing with previous analyses in Sections 10.3 and 6.4, we see that the longitudi-
nal resolution is improved relative to a single aperture by the ratio 8D/A. The factor of
8 improvement arises from the fact that the tomographic band volume is maximal at

Figure 10.37 Projection tomography geometry. An object is observed by cameras of aperture
A at range zo. The range of camera positions is D. The angular observation range is Q � D=zo.
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the edge of the transverse bandpass, while the 3D focal bandvolume falls to zero at
the limits of the transverse OTF. A multiple-camera array “synthesizes” an aperture of
radius D for improved longitudinal resolution.

Realistic objects are not translucent radiators such that the observed radiance is the
x-ray projection of the object density. As discussed by Marks et al. [168], occlusion

Figure 10.39 Fourier space recovered via the projection slice theorem from the samples of
Fig. 10.38.

Figure 10.38 Sampling of x-ray projections along angle u.
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and opaque surfaces may lead to unresolvable ambiguities in radiance measurements.
In some cases, more camera perspectives than naive Radon analysis may be needed to
see around obscuring surfaces. In other cases, such as a uniformly radiating 3D
surface, somewhat fewer observations may suffice.

The assumption that the cross spectral density is spatially stationary (homo-
geneous) across each subaperture is central to the association of radiance and focal
spectral density or irradiance. With reference to Eqn. (6.71), this assumption is equiv-
alent to assuming that Dq/lz	 1 over the range of the aperture and the depth of the
object. Dq ¼ A2/2 is the variation in q over the aperture. Thus, the quasihomo-
geneous assumption holds if A	

ffiffiffiffiffiffiffi
2zl
p

. Simple projection tomography requires
one to restrict A to this limit. Of course, this strategy is unfortunate in that it also
limits transverse spatial resolution to lz=A �

ffiffiffiffiffi
lz
p

.
Radiance-based computer vision is also based on Eqn. (10.51). For example, light

field photography uses an array of apertures to sample the radiance across an aperture
[151]. A basic light field camera, consisting of a 2D array of subapertures, samples
the radiance across a plane. The radiance may then be projected by ray tracing to esti-
mate the radiance in any other plane or may be processed by projection tomography
or data-dependent algorithms to estimate the object state from the field radiance.
While the full 4D radiance is redundant for translucent 3D objects, some advantages
in processing or scene fidelity may be obtained for opaque objects under structured
illumination. 4D sampling is important when W(Dx, Dy, �x, �y, n) cannot be reduced
to W(Dx, Dy, q, v). In such situations, however, one may find a camera array with
a diversity of focal and spectral sampling characteristics more useful than a 2D
array of identical imagers.

The plenoptic camera extends the light field approach to optical systems with non-
vanishing longitudinal resolution [1,153]. As illustrated in Fig. 10.41, a plenoptic
camera consists of an objective lens focusing on a microlens array coupled to a 2D
detector array. Each microlens covers an n � n block of pixels. Assuming that the
field is quasihomogeneous over each microlens aperture, the plenoptic camera
returns the radiance for n2 angular values at each microlens position. Recalling

Figure 10.40 Band volume covered by sampling over angular range D/zo ¼ 0.175 in units
of umax.
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from Section 6.2 that the coherence cross section of an incoherent field focused
through a lens aperture A is approximately lf/#, we find that the assumption that
the field is quasihomogeneous corresponds to assuming that the image is slowly
varying on the scale of the transverse resolution. This assumption is, of course, gen-
erally violated by imaging systems. In the original plenoptic camera, a pupil plane
distortion is added to blur the image to obtain a quasihomogeneous field at the
focal plane. Alternatively, one could defocus the microlenses from the image plane
to blur the image into a quasihomogeneous state. The net effect of this approach is
that the system resolution is determined by the microlens aperture rather than the
objective aperture and the resolution advantages of the objective are lost. In view
of scaling issues in lens design and the advantages of projection tomography dis-
cussed earlier in this section, the plenoptic camera may be expected to be inferior
to an array of smaller objectives covering the same overall system aperture if one’s
goal is radiance measurement.

This does not imply, however, that the plenoptic camera or related multiaperture
sampling schemes are not useful in system design. The limited transverse resolution
is due to an inadequate forward model rather than physical limitation. In particular,
the need to restrict aperture size and object feature size is due the radiance field
approximation. With a more accurate physical model, one might attempt to simul-
taneously maximize transverse and longitudinal focal resolution. This approach
requires novel coding and estimation strategies; a conventional imaging system with
high longitudinal resolution cannot simultaneously focus on all ranges of interest.

The plenoptic camera may be regarded as a system that uses an objective to create
a compact 3D focal space and then uses a diversity of lenses to sample this space.
Many coding and analytical tools could be applied in such a system. For example,
a reference structure could be placed in the focal volume to encode 3D features
prior to lowpass filtering in the lenslets, pupil functions could be made to structure
the lenslet PSFs and encode points in the image volume, or filters could encode
diverse spectral projections in the lenslet images.

The idea of sampling the volume using diverse apertures is of particular interest in
microscope design. As discussed in Section 2.4, conventional microscope design
seeks to increase the angular extent of object features. In modern systems,
however, focal plane features may be of nearly the same size as the target object

Figure 10.41 Optical system for a plenoptic camera: (a) object; (b) blur filter; (c) objective
lens; (d) image; (e) microlens array; (f) detector array.
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features. Thus, the goal of a modern microscope may be simply to code and transfer
micrometer-scale object features to a focal plane. Object magnification is then
implemented electronically.

Transfer of high-resolution features from one plane to another can be implemented
effectively using lenslet arrays. As an example, document scanners often exploit lens-
lets to reduce system volume [3]. The potential of lenslet image transfer is dramati-
cally increased in computational imaging systems, which may tolerate or even take
advantage of ghost imaging (overlapping image fields). A conventional camera or
microscope objective may be viewed in this context as an image transfer device
with a goal of adjusting the spatial scale of the image volume for multiple aperture
processing. The light field microscope is an example of this approach [153].

Tomographic imaging relies on multiplex sensing by necessity; there is no phys-
ical means of isomorphically mapping a volume field onto a plane. As we have seen,
data from multiple apertures observing overlapping volumes can be inverted by pro-
jection tomography. We further propose that tomographic inversion is possible in
systems that cannot be modeled by geometric rays. The next challenge is to design
the sampling strategy, optical system, and inversion strategy to achieve this objective.
While we do not have time or space to review a complete system, we do provide some
“big picture” guidance with regard to coding strategy in the next section.

10.5 GENERALIZED SAMPLING REVISITED

By this point in the text, it is assumed that the reader is familiar with diverse multiplex
sampling schemes. The present section revisits three particular strategies in light of
the lessons of the past several chapters. Our goal is to provide the system designer
with a framework for comparative evaluation of coding and sampling strategy. An
optical sensor may be evaluated based on physical (resolution, FOV, and depth of
field), signal fidelity (SNR and MSE), and information-theoretic (feature sensitivity
and transinformation) metrics. While detailed discussion of the information theory of
imaging is beyond the scope of this text, our approach in this section leans toward this
perspective.

We focus in particular on SVD analysis of measurement systems. As discussed in
Section 8.4, the singular vectors of a measurement system represent the basic struc-
ture of sensed image components, and the singular values provide a measure of how
many components are measured and the fidelity with which they can be estimated.
When two different measurement strategies are used to estimate the same object fea-
tures, SVD analysis provides a simple mechanism for comparison. Assuming similar
detector noise characteristics, the system with the larger eigenvalue for estimating a
particular component will achieve better performance in estimating that component.

While joint design of coding, sampling, and image estimation algorithms is central
to computational imager design, SVD analysis provides a basis for comparison that is
relatively independent of estimation algorithm. Evaluation of system performance
using the singular value spectrum is a generalization of STF analysis. Signal
Fourier components are eigenvectors of shift-invariant systems, with eigenvalues
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represented by the transfer function. SVD analysis extends this perspective to shift-
variant systems with the singular vectors playing the role of signal components
and the singular values playing the role of the transfer function.

Singular vector structure is central to the image estimation utility of measurements
for both shift-variant and shift-invariant systems. Where the singular vector structure
of two measurement schemes is different, the strategy with the “better” singular
vectors may provide superior performance even if it produces fewer or weaker singu-
lar values. “Better” in this context may mean that the strongest sensor singular vectors
are matched to the most informative object features or that the singular vectors are
likely to enable accurate object estimation or object feature recognition under non-
linear optimization. If a statistical model for the object is available, one may apply
the restricted isometry property [Eqn. (7.40)] to compare singular vector bases.

Multiaperture sampling schemes for digital superresolution provide a simple
example of comparative SVD analysis. As discussed in Sections 8.4 and 10.4.2,
the singular values and singular vectors for shift-coded systems provide useful
low-frequency response but do not produce the flat singular value spectrum of iso-
morphic focal measurement. Of course, the structure of the singular vectors actually
provides benefits in lowpass filtering for antialiasing.

The basic shift-coded multiaperture system is modeled as an N� downsampling
operator with variable sampling phase. The alternative shift codes suggested in
Section 8.4 could be implemented by PSF coding, with potential advantages in the
SVD spectrum as discussed previously. Portnoy, et al. propose an alternative focal
plane coding strategy based on pixel masking [204]. The basic idea is to alias high
resolution image features into the measurement passband by creating high-resolution
features on the pixels.

Portnoy implemented focal plane coding by affixing a patterned chrome mask to a
visible spectrum CCD with 5.2 mm pixel pitch. Figure 10.42(a) shows a micrograph of
achrome mask used in the experiments. The subpixel response of the focal-plane-coded

Figure 10.42 Mask for pixel coding (a) and point object response measurement (b) for four
adjacent pixels.
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system is illustrated by the pixel response curves in Fig. 10.42(b). These curves were
obtained by focusing a white point target on the coded focal plane. The output of
adjacent pixels is plotted as the target is scanned across the column. The extent
of the pixel response is somewhat greater than 5.2 mm because of the finite extent
of the target. The period of the pixel response curves is 5.2 mm. Although the
mask pattern was not precisely registered to the pixels in this experiment, subpixel
modulation of the response is indicated by the twin lobe structure of the pixel
response.

We analyze pixel mask-based focal plane coding by modeling each detector as an
n � n block of subpixels. The output of the ith detector is

gi ¼
X

hij fj (10:53)

where fj is the irradiance in the jth subpixel and hij is 1 if the mask is transparent over
the (ij)th subpixel and zero otherwise. A vector of measurements of the subpixels is
collected by measuring diverse coding masks over several apertures. As with the
shift-coded system, the irradiance available to each pixel in a K aperture imaging
system with each aperture observing the same scene is 1/K the single-aperture
value. Accordingly, the measurement model for binary focal plane coding is

g ¼ 1
K

Hf (10:54)

with hij [ [0,1].
For fixed K and independently and identically distributed noise in each measure-

ment, we know from Section 8.2.2 that H ¼ SK, where SK is the Kth-order Hadamard
S matrix, yields minimal variance on estimation of f from Eqn. (10.54). One may be
tempted, therefore, to replace the shift code commonly used for digital superresolu-
tion with Hadamard sampling implemented by appropriately masking pixels in each
subaperture. Under this approach, one assumes that the sampling phase is identical in
each subaperture. Each detector pixel may be regarded as a block of Hadamard
sampled subpixels. Figure 10.43 compares the singular value spectrum of 1 – S4

sampling with the shift codes of Fig. 8.9 (we use 1 – S4 rather than S4 to achieve
four-element codes). As illustrated in Fig. 10.43(a), pixel block sampling produces
localized singular vectors. Hadamard coding dramatically improves the singular
values for the weakest singular vectors, but over most of the spectrum Hadamard
singular values are substantially less than the shift code singular values (recognizing
that the S-matrix throughput is half the 100% throughput of the shift codes).

On the basis of our discussion of regularized and nonlinear image estimation as
well as aliasing noise (and experimental results), it is clear that the increase in the
singular values at the right side of the S-matrix spectrum does not justify the reduction
shown in Fig. 10.43(b). Part of the greater utility of the shift code arises from implicit
priority of low frequencies in image sampling. In assuming that image pixel values
are locally correlated, we are essentially assuming that low/moderate-frequency
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features may be more informative than features near the aliasing limit. Thus we are
generally satisfied with moderate lowpass filtering.

In an analysis of scaling laws for multiple aperture systems, Haney suggests that
for fixed integration time the mean-square error of estimated images scales linearly
in K for K � K downsampling [110]. This result is consistent with linear least-
squares estimation for S-matrix sampling, but it neglects lens scaling, aliasing
noise, and alternative coding and estimation strategies discussed in Section 10.4
Our comparison of STF and aliasing noise in Section 10.4.2 suggests, in fact, that
in the balance of passband shaping for resolution, field of view, and antialiasing,
multiaperture systems are competitive with cyclops strategies while also providing
dramatic improvements in system volume and depth of field.

Expanding on Eqn. (7.37), aliasing arises in a measurement system when the inner
product of two object features that one would like to distinguish (such as harmonic
frequencies) both produce the same distribution when projected on the object
space singular vectors. Design to avoid aliasing noise accordingly attempts to limit
the range of the measurement vector to an unambiguous set of object features.
Ideal codes must capture targeted features without ambiguity. As discussed in
Section 8.4, variations in shift codes may modestly improve image estimation.
Continuing research in this area will balance physical implementation, object
feature sensitivity, and antialiasing.

Singular value decomposition analysis may also be used to compare spectrometer
aperture codes. Figure 10.44, for example, compares a mask with binary elements
randomly selected from tij [ [0,1] with uniform probability with the S matrix S512

using the signal and the noise model of Fig. 9.7. While the first singular value is

Figure 10.43 Comparison of 1 – S4 block sampling with the shift codes of Fig. 8.9: (a)
singular value spectra; (b) Hadamard singular vectors.
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256 for both systems, the random measurement produces larger singular vectors over
the first half of the band and lower values in the second half. The Hadamard system,
by design, produces a flat singular value spectrum.

Figure 10.44(b) compares signal reconstruction from Hadamard and random
codes. The bottom curve is the true spectrum, the middle curve is the spectrum esti-
mated from a random code, and the upper curve is the Hadamard code spectrum. The
Hadamard spectrum is estimated using nonnegative least squares. The random code
spectrum is reconstructed by truncated least-squares estimation using the first 300
singular vector expansion coefficients. The random data are then smoothed using
the remaining 211 singular vectors as the null space for least-gradient estimation.
Figure 10.44(c) denotes the (b) spectra as in Fig. 9.7. The spectral feature at 650
nm is sharpened relative to Fig. 9.7 to test the resolution of the truncated random
SVD and to illustrate artifacts in the reconstruction. While the random code returns
inferior SNR in both the initial and denoised spectra, the discrepancy is much less
than least-squares analysis would suggest. There is also a strong possibility that the
random reconstruction could be substantially improved using nonlinear optimization
and/or code optimization. The fact that the random data spectrum improves less
under denoising is due to bias in the truncated SVD: this bias could be reduced by
shaping the singular vectors in code design and by enforcing l1, F, total variation
(TV), or similar constraints.

In view of this analysis, quasirandom (non-Hadamard) codes are extremely attrac-
tive in spectrometer design. Where the standard coded aperture design and inference

Figure 10.44 Singular values and reconstructed signal spectra for N ¼ 511 random and
Hadamard coded aperture spectroscopy: (a) singular value spectrum; (b) s 2

random ¼ 0:24,
s 2

Hadamard ¼ 0:067; (c) s 2
random ¼ 0:18, s 2

Hadamard ¼ 0:046:
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algorithm assumes that the aperture is uniformly illuminated by a homogeneous
power spectral density, quasirandom codes can accommodate spatially localized
reconstruction strategies that allow spatial variation in the input signal. This approach
is discussed in more detail in Section 10.6.2.

Singular value decomposition analysis may also be applied in considering com-
pressive imaging. As an example, we consider an compressive sampling system
under the following constraints:

† The image consists of N pixels.

† The image is sparse such that at most K pixels are nonzero.

† Ms measurements are recorded in Mt timesteps to produce M ¼ MsMt total data
points.

† The signal power is uniform during the recording process, meaning that the
signal energy available in one timestep is 1/Mt of the total recording energy.

† Pixels are measured in linear combinations with binary weights drawn from
[0,1]. Nonnegative weighting is, of course, required for optical irradiance
measurements.

As a first strategy, we consider a single-detector camera such that Ms ¼ 1 and Mt ¼

M. As in Ref. 63, measurement weights hij, where the index j refers to pixel number
and i to measurement number, are randomly selected from [0,1]. To maintain power
conservation, the measurement matrix must be normalized by 1/M such thatP

j hij � 1. For uniformly distributed weights, the quantum efficiency of this

sampling strategy is 1
2.

As a second strategy, we consider an Ms-detector camera. Each image pixel is ran-
domly assigned to one of the detectors in each of Mt timesteps. To maintain energy
conservation, the measurement matrix is normalized by Mt. While the total image
energy available is the same under strategies 1 and 2, the second strategy has a
quantum efficiency of 1.

Figure 10.45(a) shows the singular value spectra for these sampling strategies with
N ¼ 1024 and M ¼ 128. The upper curve shows the singular values for strategy 2
with Mt ¼ 8 (eight measurement times) using Mt ¼ 16 detectors. The lower curve
shows the singular values for the single-pixel detector. As illustrated in the figure,
the singular values under strategy 2 are 8� larger than those for strategy 1 over
most of the spectral range. As illustrated in Fig. 10.45(b), both sampling strategies
are effective, in the absence of noise, in reconstructing a sparse signal using l1 mini-
mization. The signal in this case consists of K ¼ 30 values randomly distributed over
[0,1] (again consistent with the nonnegativity of optical signals). The true signal is
shown at the bottom of Fig. 10.45(b); the middle curve is the strategy 1 reconstruc-
tion, and the upper curve is the strategy 2 reconstruction. Reconstruction was imple-
mented using Candes and Romberg’s l1eq_example.m code distributed at
www.acm.caltech.edu/l1magic [38].
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As a result of a flatter singular value spectrum, strategy 2 is much less susceptible
to noise than strategy 1. This effect is illustrated in Fig. 10.45(c), where zero mean
normally distributed noise with s ¼ 0.01 is added to each measurement. The lower
curve, corresponding to strategy 1, fails to capture the sparse signal. While the
upper strategy 2 reconstruction contains numerous noise features, the basic structure
of the signal is faithfully reproduced. While the 2� improvement in photon efficiency
of strategy 2 is partially responsible for this improvement, the primary improvement
comes from the superior singular value distribution.

Fresh from this success, one might push strategy 2 even further by setting Mt ¼ 1
and Ms þ ¼ 128. This approach produces orthogonal measurement vectors and a
completely flat singular value spectrum (each measurement records an orthogonal
set of image pixels). Unfortunately, this approach also fails to map different sparse
signals onto different measurements and thereby fails to satisfy the restricted isometry
property. If N/M pixels are captured in only one measurement, then each of those
pixels will produce the same measurement data no matter which is excited. The
goal of optical measurement design is to jointly optimize the structure of the singular
vectors to enable unambiguous signal reconstruction while also optimizing the singu-
lar value spectrum. In the present case, Mt ¼ 8 and Ms ¼ 16 appears to balance the
singular value advantages of a compact sampling kernel against the compressive
sampling advantages of multiplex measurement. None of the example strategies is
ideal, however. Continuing research in sampling code and strategy design is highly
likely to produce improvements.

Figure 10.45 Singular value spectra and sparse signal reconstructions for two optical com-
pressive sampling strategies: (a) singular value spectra; (b) noise-free reconstructions; (c)
reconstructions with noise variance s2 ¼ 1024.
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10.6 SPECTRAL IMAGING

A spectral image is a map of the power spectral density S(x, n) over a range of spatial
positions. We have assumed throughout this chapter that S(x, n) is a measurable quan-
tity. The present section reviews optical systems for characterizing S(x, n) with a par-
ticular focus on emerging generalized sampling strategies. We focus on systems that
characterize S(x, y, n) over an image plane; spectral images S(x, y, z, n) covering three
spatial dimensions may be formed from 2D spatial images using projection tomogra-
phy [167].

Spectral imagers are obviously useful for their declared purpose: forming a spatial
map of the spectral density in an image. Spectral imaging is commonly used in
environmental analysis and mineral detection in remote sensing and for molecular
imaging in biological and chemical research [22,104]. Beyond the obvious appli-
cations, however, spectral imagers are important sensor engines for improving
diverse imaging system metrics. We have already discussed several examples of spec-
tral encoding for superresolution in Section 10.3 and have assumed at all points in the
text that S(x, y, n) is a measurable function.

Spectral imaging may be used to extend depth of field by combining a spectral
imaging backplane with a chromatic objective lens. The wavelength-dependent
focal length of a chromatic lens may be programmed using materials dispersion or
diffractive structures. A spectral imager in combination with such a lens zooms in
on a particular focus by simply selecting the appropriate reconstruction wavelength.
Some of the most intriguing opportunities for spectral imaging combine focal coher-
ence sensing similar to the astigmatic coherence sensor [172] with emerging trends in
generalized sampling theory.

10.6.1 Full Data Cube Spectral Imaging

While one expects that spectral sensors based on the internal quantum dynamics of
engineered materials may eventually impact design [92,127,140], current spectral
imaging systems rely on optical filtering. Optical filters may be easily designed
with essentially arbitrary spectral response and may be adapted to diverse spectral
ranges and applications. Each spectrographic measurement strategy described in
Chapter 9 may be adapted to spectral imaging applications. The relative merits of
each approach are determined by resolving power and etendue as well as imager
specific metrics such as resolution, field of view, frame rate, and feature specificity.

Figure 10.46(a) shows the basic structure of the the spectral data cube, while (b)–
(e) illustrate common data cube sampling strategies. Pushbroom scanning, illustrated
in Fig. 10.46(b), captures spectral data along one spatial dimension in each timestep.
A typical pushbroom spectrometer relies on a dispersive slit spectrometer. A particu-
lar slice of the object is imaged on the input slit and spectrally characterized. The full
data cube is captured by translating the image across the slit. The system sampling
model for a pushbroom system adds spatial variation to Eqn. (9.5) to obtain

gnmk ¼
ð ð ð

S(x, y, l) hr(x� nDx, y� mD, l� kDl) dx dy dl (10:55)
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where, as in Section 9.2, D is the pixel pitch and Dl ¼ LD/F. Dx is the displacement
of the slit relative to the image from one recoding step to the next. The system
response derived from Eqn. (9.4) is

hr(x, y, l) ¼ t(x)
ð ð

h(x0 � x, y0 � y) p x0 � Fl

L
, y0

� �
dx0dy0 (10:56)

and the system transfer function is

ĥr(u, v, w) ¼ t̂ uþ Lw

F

� �
ĥ
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, v
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(10:57)

Figure 10.46 Spectral data cube measurement strategies: (a) data cube; (b) pushbroom scan-
ning; (c) tunable filter; (d) interferometric filtering; (e) pixel filters.
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where we assume for simplicity that the optical impulse response h(x, y) is indepen-
dent of l.

While the y resolution of the pushbroom spectrometer is determined by the stan-
dard imaging STF for the optics and the focal plane array, the x and l resolutions are
coupled through the slit scanning process. A hard limit on the spectral resolution is set
by the pixel size, but spatiospectral resolution may exceed the static limit of the slit in
a scanned system. One may regard this process as a form of digital superresolution.
This effect is illustrated in the cross section of the STF in the uw plane shown
in Fig. 10.47. System parameters in this example are ax ¼ 100 mm, L/F ¼ 1024,
D ¼ 10 mm, and l ¼ 1 mm. Since the slit width is 10� the pixel width, substantially
higher spatial frequencies are achieved in the scanned system.

The limits of the STF are achieved, of course, only if the scan is sampled without
aliasing. In most cases, one is likely to scan the pushbroom system such that Dx � a,
in which case the slit width a determines both the x and l resolutions. Pushbroom
systems are often deployed on moving platforms, such as aircraft, to take advantage
of natural scanning.

The significance of etendue is slightly different for an imaging system when com-
pared to a spectrometer. The etendue is a measure of the phase space of the instrument
and is proportional to the number of degrees of freedom or pixels that the imager can
abstract from the field. The etendue of a pushbroom instrument is the same as for the

Figure 10.47 Cross section in the uw plane of the STF for a f/2 slit-based pushbroom spec-
trometer. The u axis is in units of mm21 and the w axis is in units of nm21.
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underlying slit spectrometer [Eqn. (9.9)]. Expressed in terms of the resolving power,
we find

L � p 2A2l

LRf =#
(10:58)

For an ideal imager, L should approach A2. The reduction in L in proportion to the
resolving power reduces the optical signal collected by the instrument and requires
temporal scanning to achieve SNR and FOV objectives.

Coded aperture imaging spectrometers may be constructed using diverse filtering
and scanning strategies [86]. For example, the coded aperture design of Section 9.3
actually already functions as 1D spatiospectral imager. Of course, a slit spectrometer
is a 1D spatiospectral imager along the y (nondispersed) axis. An independent column
code spectrometer, in contrast, images along the x (dispersion) axis. The aligned spec-
tral reconstructions from each column of the aperture code, shown at the center right
of Fig. 9.4, correspond to independent spectra for each column of the input aperture.
To understand the operation of this instrument, imagine that the power spectral
density S(x, l) is uniform as a function of y but varies along the dispersion axis x.
Under this assumption, we generalize Eqn. (9.17) to define

Snj ¼
ð ð ð

S(xþ axj, lþ nDl)tx(x)hx(x0 � x)px x0 þ lF

L

� �
dx dx0dl (10:59)

Equation (9.19) generalizes in turn to

gnm ¼
X

i

timSn�axi,i (10:60)

For an independent column code there exists �t such that
P

m
�t jmtim ¼ dij, in which

case
X

m

�t jmgnm ¼ Sn�ax j, j (10:61)

A map of Snl for integer values of n – ax j and j is a 1D spatiospectral image of S(x,
l). Fourier analysis of Eqn. (10.60) with respect to n and i yields the STF

ĥr(u, w) ¼ t̂ uþ Lw

F

� �
ĥ

Lw

F

� �
p̂

Lw

F

� �
(10:62)

As in Chapter 9, the system response of the coded aperture system mimics that of the
slit spectrometer, with the code feature size playing the role of slit width.

A 1D spectral image for an N ¼ 32 Hadamard S-matrix spectrometer is shown in
Fig. 10.48. The object is an ethanol solution encasing an acetaminophen solution in a
cuvette 1 mm below the ethanol surface. The Raman spectrum of the return signal is
plotted on the horizontal axis, while the vertical axis corresponds to position (mask
column number). The ethanol Raman spectrum is evident at low wavenumbers on the
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left of the image. While the acetaminophen spectrum is also strong near x ¼ 0, it
grows in strength relative to ethanol at the edge of the field. This effect is known
as “spatially offset Raman spectroscopy” [174].

A potential problem in using a coded aperture system as a 1D spectral imager
arises when the power spectral density is not uniform as a function of y. This
problem also affects nonimaging coded aperture spectroscopy. For diffuse sources,
a Fourier transform lens or diffuser is typically added in front of the coded aperture
to ensure field uniformity. For the 1D imaging case, a cylindrical lens assembly may
be used to image along x while diffusing along y. Coded aperture pushbroom instru-
ments take another approach to achieving uniform y illumination [88]. For S(x, y, l)
we define

Snjm ¼
ð ð ð ð ð

S(xþ ax j, y� mD, lþ nDl)tx(x)ty( y)h(x0�x, y0�y)

� px x0 � lF

L

� �
py( y0) dx dx0dy dy0dl (10:63)

and the discrete measurement model [Eqn. (9.19)] becomes

gnm ¼
X

i

timSn�axi,i,m (10:64)

In contrast with the slit pushbroom, which sweeps along the dispersion axis, a coded
aperture pushbroom may sweep along the y axis. A sequence of measurements taken
as the image shifts along the y axis produces the data cube

gnm0m ¼
X

i

tim0Sn�axi,i,m (10:65)

Figure 10.48 Spatiospectral image for a coded aperture spectrometer.
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for m0 ¼ 1 to M. The data plane gnm0m for variable n and m0 and fixed m is identical to
the data that one would obtain for spectral density uniform with respect to y. Equation
(10.65) can be inverted using independent column coding to estimate Sn�axi,i,m for
integer n – ax i,i,m. Fourier analysis of Eqn. (10.63) yields an approximate transfer
function

ĥr(u, w) ¼ t̂x uþ Lw

F

� �
ĥ

Lw

F
, v

� �
p̂

Lw

F
, v

� �
(10:66)

where, as in Section 9.3, we have neglected diffractive crosstalk along y.
The reader may find a graphical recap useful in understanding coded aperture

imaging spectroscopy. As illustrated in Fig. 10.49, the basic function of a dispersive
spectrometer is to image the input object while shifting the color planes of the data
cube. Snj in Eqn. (10.59) refers to the nth color in the jth input column. As illustrated
in Fig. 10.49, a dispersive spectrometer images the nth spectral channel from the jth
input object column onto column ( j 2 1) þ n in the spectrally dispersed image.

The Nth column of the output image, therefore, consists of superimposed images
of lN from the first column of object, lN21 from the second column, lN22 from the
third column, and so on. For the coded aperture spectrograph of Section 9.3, one
assumes that the input object is spatially uniform in each column. The coded aperture
modulates each column with a unique spatial code such that the contribution of each
object column to the signal measured in each output column can be computationally
isolated. After decoding, the contributions S(lN) from the first column, S(lN21) the
second column, and so forth in the Nth output column are determined independently.

Figure 10.49 Dispersive imaging geometry.
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This process transforms the raw image in Fig. 9.5(a) into the 1D spectral image in
Fig. 9.5(d). In this particular case, the spectrum was uniform in all object columns,
and one may average the column spectra to produce the mean spectrum in
Fig. 9.5(e). If the spectra of the columns are different, one produces a 1D image,
as in Fig. 10.48.

Suppose, however, that the object varies as a function of y such that Snjm must be
indexed by row as well as column. In principle, this means that we can no longer use
independent column coding to isolate the column spectra. As discussed above,
however, one may sweep a pushbroom along the column to retrieve data consistent
with illuminating the entire column with Snjm. Since each row is recorded indepen-
dently, sampling Snjm when this object row illuminates the first row of the mask,
then the second, and so on until a particular row has scanned the entire mask produces
a data plane that enables imaging of the mth row.

A Hadamard coded aperture imager increases throughput relative to a slit with
similar resolving power by the factor N/2, where N is the order of the aperture
mask. Increased throughput may in turn enable more rapid scanning or improved
spectral resolution. If N is increased in proportion to R, then the throughput is inde-
pendent of resolving power. Noise tradeoffs with increasing throughput and multi-
plexing are similar to those discussed in Section 9.3.

Spectral imaging using a tunable filter is illustrated in Fig. 10.46(c). The system
model for tunable filters, introduced in Eqn. (7.18), is extremely simple

gnmk ¼
ð ð ð

S(x, y, l)hr(x� nD, y� mD)t(l� kDl) dx dy dl (10:67)

where hr(x, y) accounts for both optical blur and pixel sampling. Tunable filters are
typically implemented using liquid crystal and acoustooptic devices as discussed in
Section 9.7. The relationship between angular field of view and resolving power is
the primary limitation of these devices in imaging applications. The relationship
between Du and R derived in Chapter 9 limits the f/# through the filter to

f =# ,

ffiffiffi
R

2

r
(10:68)

For this reason, tunable filters are most popular in microscopy, where the image space
f/# is naturally large. The etendue for tunable filters is

L ¼ pA2

2R
(10:69)

where Nl is the number of wavelength channels. Tunable filters, especially acousto-
optic devices, may achieve scan rates in the microsecond range. In addition to the
relatively limited field of view, tunable filters also suffer from poor spectral through-
put. Depending on the inversion algorithm and the structure of the object, this may

478 COMPUTATIONAL IMAGING



not be an issue in shot-noise-limited systems, but it is a substantial drawback in
systems dominated by additive noise. As discussed in Section 9.7, the spectral
throughput is l/RDl, meaning that the spectral throughput–efficiency product is
inversely proportional to R2.

An interferometric filter captures linear combinations of the spectral data planes
in each timestep, as illustrated in Fig. 10.46(d). Interferometric imagers based on
scanning Michelson interferometers are common. The system model for an interfero-
metric system is identical to Eqn. (9.31) with spatially dependent mutual coherence
G(x, y, Dz). The etendue is similar to the tunable filter result of Eqn. (10.69), but the
spectral throughput is 1

2.
Pixel filters, as illustrated in Fig. 10.46(e), capture different linear combinations of

the spectral channels at each spatial pixel. The RGB sampling strategies discussed in
Section 7.3 are a form of pixel filtering, but this strategy may be extended to more
than three colors. Pixel filtering may be implemented using the spectroscopic filter
technologies described in Section 9.6. As discussed in Section 9.8.4, patterned
diachronic filters have become available for spectral imaging [35,245]. One
expects that such devices as well as continuing advances in photonic crystal and
metamaterial filters will eventually enable pixel filter integration directly on focal
plane arrays. At present, however, coded apertures provide the most direct and
easily programmed pixel-level filtering platform.

10.6.2 Coded Aperture Snapshot Spectral Imaging

The spectral data cube is generally “highly compressible,” meaning that image data in
different spectral bands tend to be redundant. Digital compression and feature extrac-
tion algorithms may be reasonably expected to compress spectral data cubes by
several orders of magnitude with little or no loss. One expects, therefore, that com-
pressive sampling will be effective in spectral imaging.

One uses compressive sampling in spectral imaging to reduce image acquisition
time, to increase throughput and sensitivity, and to simplify image acquisition hard-
ware. Full-data-cube sampling strategies discussed to this point each rely on temporal
scanning to fill in the 3D data cube using 2D detector arrays. These strategies fall in
the “conventional measurement” category discussed in Section 7.5.1. Compressive
measurement systems, on the other hand, need not preserve the dimensionality of
the object embedding space in measurement data. A compressive spectral imaging
system, in particular, can characterize the 3D data cube in a single snapshot on a
2D detector array.

One expects a successful compressive spectral imager design to have the following
characteristics:

† Multiplex Sampling. The goal of the system is to estimate a signal f [RN using
M measurements. While one might achieve this objective without measuring
many of the signal pixels, doing so would decrease quantum efficiency. One
supposes, therefore, that measurements will consist of linear combinations of
data cube voxels.
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† Flat SVD Spectrum. As discussed in Section 10.5, multiplex sampling strat-
egies may be evaluated according to the structure of the singular value spec-
trum. The effective number of measurements in a generalized sampling
system is more reasonably related to the number of singular values above a
noise floor than to the number of optoelectronic detector values recorded.

† Restricted Isometry Property (RIP). Where the singular value spectrum reflects
on the quantity of measurements recorded, the structure of the singular vectors
reflects on the quality of the data. Measurement systems must separate distinct
signals into distinct measurement data consistent with the RIP discussed in
Section 7.5.

With these principles in mind, the coded aperture spectrometer illustrated in Fig. 9.4
and discussed as a spectrometer in Section 9.3 and as a pushbroom imager in Section
10.6.1 is also an excellent candidate for compressive spectral imaging. To use the
system as a compressive imager, one need only reinterpret Eqn. (10.63). We term
instruments based on this approach as coded aperture snapshot spectral imagers
(CASSIs) [88,242]. The “snapshot” capability, such as the ability to estimate the
full spectral data cube from a single 2D frame of measurements, is the primary dis-
tinction of CASSI instruments relative to full-data-cube spectral imagers.

A CASSI instrument based on the spectrograph of Fig. 9.4 is most simply
described as a 2D imager in the x–l plane. As discussed above, this instrument is
a simple imager along the y (undispersed) axis with y image pixels mapping isomor-
phically to object pixels indexed by m in Eqn. (10.63). Accordingly, we focus on a
2D version of Eqn. (10.60)

gn ¼
X

i

tiSn�i,i (10:70)

where we assume for simplicity that ax ¼ 1. Defining i0 ¼ n� i, Eqn. (10.70) can be
rewritten

gn ¼
X

i

tn�i0Si0,n�i0 (10:71)

Measurement based on Eqn. (10.73) is simulated in Fig. 10.50. While, as dis-
cussed above, the sampling system mixes spatial and spectral structures, one may
roughly associate the n axis in Snj with the color spectrum and the j axis with
spatial position. Figure 10.50(a) plots an example slice Snj. To illustrate the coding
structure, we assume that the image consists of a rectangle in the nj plane.
Figure 10.50(b) plots tn�i0Si0,n�i0 when a pseudorandom binary code ti uniformly
drawn from [0,1] modulates the spectral image of Fig. 10.50(a). A CASSI system
integrates Fig. 10.50(b) along the vertical axis to produce the measurement data
shown in Fig. 10.50(c). The baseline is shifted to allow the sampling code to be
plotted beneath the measurement data.

480 COMPUTATIONAL IMAGING



A CASSI system seeks to estimate the full spectral image of Fig. 10.50(a) from the
data plotted in Fig. 10.50(c). The basic idea is that the high-frequency code structure
will be uncorrelated with natural image features. The code modulation is abstracted
to jointly estimate the spatial and spectral structure. Diverse code patterns may be
considered. While the code of Fig. 10.50 is a multiplex code in the sense that multiple
voxels are added in each data point, single-channel CASSI codes are also possible.
Since each spatiospectral voxel is assigned to a measurement with weight 1 or 0
CASSI codes are orthogonal. While this produces an absolutely flat singular value
spectrum the primary question is, of course; does the CASSI code separate distinct
objects into distinct measurement data?

Figure 10.50(d) is a reconstruction of the full (a) data plane using the measure-
ments of (c) and constrained total variation optimization implemented via the two-
step iterative shrinkage/thresholding (TWIST) algorithm [20]. The reconstruction

Figure 10.50 Simulated measurement data based on Eqn. (10.73): (a) x–l spectral data
plane; (b) data plane after punch and shear operations; (c) “smashing” of the modulated data
plane to produce the measurement vector; (d) estimation of the true data plane from the
measurements using Bioucas-Dias and Figueiredo’s TWIST algorithm [20] with t ¼ 0.1.
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quality is poor, but one may alternatively choose to be amazed by the similarity to the
original image when one considers that the reconstruction is based on 16� com-
pressed data using a single projection. The basic reconstruction problem is very
similar to Radon reconstruction from limited projections, although the sampling
code is used to create a data prior and higher-frequency response. Results are some-
what better for the sparser data plane illustrated in Fig. 10.51.

While the 2D CASSI projection would not be effective in reconstructing
complex Snj data planes, spectral data cubes are highly correlated. Reconstruction
algorithms enforcing wavelet sparsity [242] and total variation constraints in the
xy plane for a modest number of spectral channels are effective full-data-cube
estimation from CASSI data. For example, Fig. 10.52 shows a spectral data cube
reconstructed in an experimental CASSI system from the measurements illustrated
in Fig. 10.53. The object consists of several plastic models illuminated by standard

Figure 10.51 Data plane (a), punch-and-shear plane (b), measurements (c), and reconstruc-
tion (d), using the the same code and estimation algorithm as in Fig. 10.50.
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fluorescent lighting. The illumination spectrum includes a blue band at 495 nm,
green at 550, yellow at 590, and red above 600. This spectrum is modulated in
turn by the color of the objects, including a blue stapler and a variety of plastic
fruit (a yellow banana, red apple, and green pineapple). One also observes
both specular and diffuse reflection from the objects. As expected, the banana and
pineapple are more apparent in the yellow and green bands, and the apple is clear
in the red band. This experiment used a 2D pseudorandom code with reconstruc-
tion with the TWIST algorithm under a TV constraint with regularization parameter
t ¼ 0.1 [20].

Diverse reconstruction and coding approaches may be applied to the basic CASSI
architecture. A monochromatic object illuminating a CASSI system produces a clean
image of the object shifted in proportion to the wavelength and modulated by the
code. In this case, simple correlation may be used to find the shift and identify the

Figure 10.52 Spectral data cube reconstructed from CASSI measurements using TV mini-
mization with the TWIST algorithm. (Figure generated by Ashwin Wagadarikar.)
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wavelength. The code modulation might then be removed by denoising. More gener-
ally, one finds that images of natural scenes captured at different wavelengths tend to
look very similar, in which case a separable model is appropriate. The separable
model S(x, l) ¼ f (x)S(l) may be parameterized with 1D coefficients such that
Eqn. (10.73) admits algebraic solutions. One anticipates, however, that most scenes
are not fully separable. More likely, a sconce consists of a sparse array of locally
separable features.

To this point we have focused on pseudorandom aperture codes. In practice, one is
likely to optimize the CASSI code ti to eliminate long sequences of 1 or 0 and to
improve object feature separation. The question naturally arises, however, “Why
use codes at all?” CASSI systems incorporate

† “Punch” operations in which voxels are removed from the object data cube by a
transmission mask or modulator array

† “Shear” operations in which spatial dispersion is used to translate spectral data
planes relative to each other [as in Fig. 10.50(b)]

† “Smash” operations in which a detector array is used to integrate the signal
along the spectral axis

The smash operation is intrinsic to the detector operation, shear and punch operations
are added to enable data cube estimation. The simplest strategy is conventional black-
and-white imaging. A black-and-white image is formed by integrating Fig. 10.50(a)
along the spectral axis. The black-and-white code also has a flat singular value spec-
trum with singular vectors consisting of columns of 1s at each spatial pixel. One may
well ponder why the black-and-white measurement is less effective than the CASSI

Figure 10.53 Black-and-white image (a) and CASSI data plane (b) for the object of
Fig. 10.52.
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system in producing the full data cube. The answer, of course, is that the black-and-
white system does not produce different measurement data for images with similar
spatial features but different spectra. The idea of CASSI coding is to create noise-
like features in the measurement data to more effectively exploit the information
capacity of the detector array.

Multiple punch and shear operations may be implemented in various orders to
vary the system model and sampling strategy. One might, for example, apply the
sparse periodic CASSI code

ti ¼
1 if mod(i, Nl) ¼ 1
0 otherwise



(10:72)

Figure 10.54 CASSI sampling with a sparse periodic code. The data plane (a) is the same as
in Fig. 10.50 and is again reconstructed using the TWIST algorithm, although in this case each
measurement corresponds to a single (nonmultiplexed) voxel in the data cube. The full data
cube might be reconstructed by interpolation within aliasing limits similar to those discussed
in Section 7.3.
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With this code, each measurement gn returns the power spectral density Sni for a
single value of n and i. The full data cube is then reconstructed by interpolation
from the known voxels. Figure 10.54 samples and reconstructs the data of Fig.
10.50 using a sparse code. A sparse code CASSI system is effectively an array of
slit spectrometers, although better results are obtained if the input features are dis-
persed from row to row (e.g., along y) rather than aligned in slits. This approach
enables spatial sampling of Nl color channels with period

ffiffiffiffiffi
Nl
p

in the x–y plane.
Analysis of sparse sampling is similar to the RGB color sampling of Section 7.3
with Nl color channels rather than just three. This sampling strategy may be preferred
in shot-noise-dominated systems imaging weak spectral features, as discussed in
Section 9.3.

Figure 10.55 CASSI sampling with a dual-disperser design.
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Another approach uses a shear–punch–shear operation in which the spectral data
planes are sheared prior to modulation and then restored to original relative positions.
This “dual disperser” design produces well-registered spectral data planes at the
detector [87]. The dual-disperser sampling model is

gn ¼
X

i

tn�iSi,n (10:73)

Dual-disperser sampling with using the same random code as in Fig. 10.50 is
illustrated in Fig. 10.55. The data plane is the same rectangle as in Figs. 10.50(a)
and 10.54(a). The code modulation comparable to Fig. 10.50(b) is shown in
Fig. 10.55(a). Figure 10.55(b) shows the measured data corresponding to (a) and
(c) as the TWIST reconstruction comparable to Fig. 10.50(d). A dual disperser
produces periodic spectral projections on the measured image similar to Bayer
pattern RGB sampling and sparse periodic CASSI. Figure 10.55(d) is a least-
squares reconstruction of the (b) data generated using a neighborhood of 20 points
around each x position in the measurement vector. Of course, a more compact neigh-
borhood could be used in a fully 3D spectral imager. While image interpolation
is similar in each case, the dual disperser produces a multiplex code with Nl/2
greater throughput than Bayer or sparse coded aperture sampling strategies.

As of this writing, code, sampling, inference algorithm, and system design for
CASSI architectures and more general 2D spectral imaging filter arrays is evolving
rapidly. The reader may be better advised to focus on the opportunity of generalized
and compressive measurement rather than the details of current implementations.
One may reasonably expect that many of the spectral modulation technologies
described in Chapter 9 will eventually be integrated in snapshot spectral imaging
systems. Some imagination will be necessary, however, as emerging designs
expand the range of spectral filtering components beyond those covered in
Chapter 9. For example, since the number of spectral channels is modest and high
image quality and quantum efficiency is paramount, current CASSI designs use
prism-based dispersion elements rather than diffractive gratings [242]. One antici-
pates that novel materials, mathematics, and manufacturing technologies will con-
tinue to drive rapid innovation.

PROBLEMS

10.1 Depth of Field and Depth of Focus. A lens system with effective focal
length F and aperture A is aligned to image objects at range zo.

(a) For circle of confusion C, what is the depth of focus Dz for this system?

(b) Assuming a circle of confusion C ¼ 10 mm, compare numerical values
for the depth of focus for Airy and Gaussian PSFs with Dx ¼ 3 mm
and l ¼ 1 mm.
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10.2 Logarithmic Aspherical Lenses

(a) Assuming that the logarithmic aspherical lens pupil modulation of
Fig. 10.4 is implemented using refractive components, plot the lens
SAG.

(b) Numerically calculate and plot the PSF for this lens for u z varying from
20.05/F to 0.05/F [e.g., calculate the plots of Fig.10.4(b) over a wider
range of defocus].

(c) The Strehl ratio for a lens is the ratio between the peak value of the inco-
herent PSF and the peak value for a diffraction-limited PSF using the
same aperture. Plot the Strehl ratio as a function of defocus for lens of
Fig.10.4(a) and for the lens of Fig.10.4(b). (Hint: Use Fresnel propa-
gation and FFT analysis to numerically calculate the PSFs.)

10.3 Cubic Phase Coding for Extended Depth of Field. Consider the model PSF
for a cubic phase EDOF system with finite spectral bandwidth

hr(ux) ¼ 1
ldi
F eip(uz=l)x2

ei(a=l)x3
rect

x

A

� �n o���
u¼(ux=l)

e�1000u2
x (10:74)

(a) Simulate the detected image for this PSF for an image of your choosing.
Describe your sampling parameters and resolution. Specify a reasonable
value for a and discuss physical implementation of a cubic phase modu-
lation with the targeted a.

(b) Assuming normally distributed additive noise with SNR ¼ 20 dB, simu-
late Wiener filter and Richardson–Lucy image estimation with this PSF.

10.4 Range-Variant PSFs. Plot the MTF as a function of defocus for the funda-
mental Gaussian mode and for the rotating PSF of Fig. 10.10. Compare
the rotating PSF with the PSFs of the constituent higher-order Laguerre–
Gaussian modes.

10.5 Prolate Spheroidal Wavefunctions

(a) Use Gauss–Legendre integration to calculate the eigenvalues of cn(x)
for c ¼ 100. Compare your result with the plots shown in Fig. 10.15.

(b) Use the Mathematica function Spheroidal PS[n, 0, c, x] to
plot c5(x) for c ¼ 2, c ¼ 5, and c ¼ 10.

10.6 Polychromatic Superresolution in Remote Imaging. Suppose that one illumi-
nates a remote object over a 0.1 steradian (sr) cone offset by 1 radian from the
optical axis. The optical system collects 10�4 sr. Assuming one octave spec-
tral bandwdith, describe the band volume for measurement of s (x) based on
Eqn. (10.37). Estimate the object space imaging resolution.

10.7 The Rayleigh Criterion. Two closely spaced point sources are imaged by
a diffraction-limited imaging system. Assume that the angular separation is
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l/4A. Develop a sensor model, assuming Nyquist or better optoelectronic
sampling. Implement and compare Wiener filter, Richardson–Lucy, and
l1 minimization strategies for deconvolution and object estimation. Assume
normally distributed additive noise with SNR varying from 100 to 10,000.

10.8 Degrees of Freedom. Accepting Lohmann’s [157] observation that
f =#/ f 1=3, derive scaling laws for imager volume and image degrees of
freedom as a function of f. Compare your scaling laws with currently avail-
able imagers.

10.9 Longitudinal Resolution. On the basis of the bandpass limits for focal
imaging, plot the aperture size A as a function of range zo necessary to
obtain longitudinal resolution Dz ¼ zo=100 for l ¼ 1mm for 100 mm ,

z0 , 100 m. Assuming that A ¼ 100 mm, plot the aperture displacement
necessary to achieve similar longitudinal resolution using optical projection
tomography.

10.10 Shower Curtains. An observer (Bob) standing close to, although not immedi-
ately against, a phase diffuser has trouble seeing objects through it. An obser-
ver (Alice) at some distance on the other side of the diffuser sees Bob
relatively clearly. The ability of Alice to observe Bob and the inability of
Bob to observe Alice is called the “shower curtain effect.”

(a) With reference to the discussion of superresolution through phase modu-
lation in Section 10.3.2, explain this effect.

(b) Suppose that Alice and Bob each know the transmittance of the
curtain. Who finds it more useful for superresolved imaging? How
useful is it?

10.11 Digital Superresolution. Consider a 1D signal f (x) ¼ [(1þ cos(20px1:25)]=2
on the range x [ (0, 1).

(a) Plot the measurement data when f (x) is sampled uniformly with period
D ¼ 0:1 with pixel sampling function p(x)¼ rect(x=D). Interpolate a
display signal using cubic spline and Shannon sampling.

(b) Repeat (a) using the same pixel function with D ¼ 0:05.

(c) Repeat (a) using p(x) ¼ rect(x=2D) and D ¼ 0:05.

(d) Discuss the relationship between this problem and multiple aperture
digital superresolution.

10.12 Optical Projection Tomography. A digital camera with 408 FOV observes
an object at a range of 1 m. The camera aperture is 1 cm, and the focal
length is 2 cm. The object rotates by 3608 around an axis normal to the
optical axis of the camera. Plot the band volume observed by the camera,
labeling all axes in SI units. Assuming diffraction-limited resolution, esti-
mate the resolution with which the object can be estimated in all three
spatial dimensions.
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10.13 Pixel Coding. Consider a 256 � 256 image, such as the “cameraman” image
distributed with Matlab. Develop model measurements for 4� downsam-
pling with perfectly registered subpixel shifts and for Hadamard pixel
sampling as described in Section 10.5. Assume normally distributed additive
noise in each measurement with s ¼ 0:01m (where m is the mean measure-
ment value). Compare least squares and Tikhonov regularized reconstruction
for each measurement model.

10.14 Noise and Compressive Sampling. You are given 10 detectors. Your goal is
to characterize a signal consisting of 128 elements on the canonical basis. At
most 10 of these elements are nonzero. The mean value of the nonzero
elements is m. You must make your measurement in time T. Each measure-
ment produces standard deviation s ¼ 0:01mdt=T , where dt is the duration of
the measurement. Use numerical simulation to compare measurement fidelity
for the following strategies:

(a) Measure each channel individually. This strategy makes 128 measure-
ments, each of duration 10T/128.

(b) Make 40 measurements, each of duration T/4, using random multiplex
projections. In each time period, the energy from each signal channel
is assigned to one of the 10 detectors. Estimate the signal using ll
minimization.

(c) Divide the signal into two groups of 64 elements. Make 20 measure-
ments on each group, each measurement of duration T/4. In each time
period, the energy from each signal channel is assigned to one of the
five detectors assigned to the corresponding group. Estimate the signal
using ll minimization.

Can you devise a measurement strategy with signal estimation fidelity better
than that of any of the three strategies listed here?

10.15 Pushbroom Coded Aperture Spectroscopy

(a) Prove that Eqn. (10.66) accurately describes the STF of the 1D coded
aperture imaging system.

(b) Plot the cross section of the STF in the uw plane for ax ¼ 30 mm,
L=F ¼ 10�3, D ¼ 10 mm and l ¼ 0:5 mm.

(c) Suppose that

S(x, l) ¼ exp
(x� 20D)2

400D2 S1(l)þ exp
(xþ 20D)2

400D2 S2(l) (10:75)

where, as in Problem 9.3, S1(l) and S2(l) consist of 1–10 Lorentzian
lines. Simulate the forward model and image reconstruction for a
127 � 127 1D spectral image of S(x, l) using a Hadamard S-matrix
code.
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10.16 2D CASSI. Consider a CASSI system imaging in the x–l plane.

(a) Design a CASSI system with 1 nm spectral resolution and 1 mrad angular
spatial resolution operating over the 500–700 nm spectral band. Specify
mask feature sizes, focal lengths, grating or prism dispersion rates, and
focal plane pixel pitch.

(b) The signal

S(ux, l) ¼ f0
ux

sx

� �
S(l) (10:76)

is imaged using this system. s x spans 15 mrad and S(l) is a Lorentizan
line of width 2 nm centered on 575 nm. Replicate Figs. 10.50, 10.54, and
10.55 for this image using the system design of (a).

10.17 3D CASSI. Use a 128 � 128 RGB image of your choosing to generate a
synthetic 16-spectral-channel image by modeling the red channel with a
Gaussian spectrum centered on 600 nm of width 75 nm, the green channel
with a Lorentizian spectrum centered on 550 nm, and width 50 nm, and
the blue channel with a Lorentzian spectrum centered on 500 nm and
width 10 nm.

(a) Generate synthetic CASSI measurements for your image on the bases of
random sampling in the single disperser and dual-disperser architectures
and 16-channel sparse sampling.

(b) Use TV minimization in the xy plane to estimate full data cubes from your
measurements. For the dual-disperser and sparse sampling systems,
compare your result with interpolated estimation.
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ABCD matrix, 27
Active pixel sensor, 176
Airy Ai function, 418
Airy disk, 66
Algebraic coding theory, 299–300
Algorithm

basis pursuit, 292
convolution-backprojection, 44
expectation-maximization, 329
least gradient, 321
Richardson–Lucy, 329
two-step interative shrinkage and

thresholding, 327
Aliasing, 256–268, 281
Ambiguity function, 225
Ampere’s law, 104
Anomalous diffraction, 439
Approximation

Fraunhofer, 113
Fresnel, 111
paraxial, 26, 125
quasi-homogeneous, 246
radiance field (see quasi-homogeneous),

464
semiclassical, 152
slowly varying envelope, 137
Stirling’s 167
thin lens, 121, 217

Astigmatic coherence sensor, 214

Bad pixel correction, 272
Bandgap, 155
Bandlimited function, 74
Band volume, 212
Basis, 72
Battle–Lemarie wavelet, 97–99
Bayer filter, 270
Beam

Airy, 223, 411
Airy Ai, 418
Bessel, 141
Hermite–Gaussian, 111
Lauguerre–Gaussian, 142

Bessel beam, 141
Biorthogonal basis, 95
Black level correction, 272
Blooming, 175
Bolometer, 179
Boson, 156
Boundary conditions (electromagnetic), 115
Bragg condition, Bragg matching, 138,

366–370
B-spline functions, 89
Buried channel CCD, 171

Camera obscura, 31
Carrier frequency, 134
Carrier lifetime, 158
Characteristic matrix (thin film), 372
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Charge coupled device (CCD), 170
Charge transfer efficiency, 175
Circle function, 32
Circle of confusion, 410
Code

Hadamard, 306, 468
MURA, URA, 37
pseudo-random, 292, 468–471, 480
shift, 312–319, 451

Coded aperture
imaging, 31
spectroscopy, 341

Coded aperture snapshot spectral imaging
(CASSI), 479

Coherence
between bases, 289
optical, 187

Coherence cross section, 193
Coherent impulse response, 127
Coherent mode decomposition, 235
Coherent transfer function, 128
Completeness, 71
Compressive Optical MONTAGE

Photography Initiaitve (COMP-I), 455
Compressive sampling, 278
Computer generated hologram, 144
Condition number, 311
Conduction band, 156
Cone beam tomography, 47
Conjugate mirror filter, 99
Constant radiance theorem, 247
Convex function, 323–325
Convex optimization, 325
Convolution, 60
Convolution–backprojection algorithm, 44
Correlated double sampling, 176
Coupled wave analysis, 137
Cross spectral density, 189
Crosstalk (pixel), 276
Cubic phase coding, 417

D�, 165
Data space, 311
Defocus, 225
Defocus transfer function, 224
Degrees of freedom, 431
Denoising, 348
Density of states, 152
Depletion region, 159

Depth of field, 408
Detectivity, 165
Diffraction, 109

anomalous, 439
order, 119

Diffraction limited impulse response, 127
Diffusion current, 159
Digital hologram, 131, 144
Dilation, 60
Dimensionality reduction, 291
Dirichlet kernel, 361
Discrete Fourier transform (DFT), 75
Dispersion relationship, 106
Dynamic range, 164

Echelle grating, 394
Efficiency (spectrometer), 340

coded aperture, 345
echelle spectrograph, 397
Fabry–Perot, 362
Fourier transform, 352
holographic filter, 370
liquid crystal tunable filter, 386

Entropy (modal), 242
Ergodic process, 188
Etendue, 243, 337

coded aperture, 345
slit spectrograph, 340

Expectation-maximization (EM)
algorithm, 329

Extended depth of field (EDOF),
410–423

f/#, 127
Fabry–Perot etalon, 355–364
Fan beam tomography, 43
Faraday’s law, 104
Fast Fourier transform (FFT), 79
Fermion, 155
Filter

Bayer, 270
conjugate mirror, 99
high pass, 129
low pass, 129
order sorting, 339
Wiener, 309

Finesse, 359
Floquet–Bloch modes, 143
Focal plane array (FPA), 170

506 INDEX



Focal interferometry, 209
Forward model, 301
Fourier series, 72
Fourier transform, 59
Frame transfer CCD, 174
Fraunhofer approximation, 114
Free spectral range, 358
Fresnel approximation, 111
Fresnelet, 233
Fresnel transform, 67
Full frame CCD, 174
Function

ambiguity, 225
bandlimited, 74
basis, 72
B-spline, 89
circle, 32
convex, 323
generating, 80
Haar, 81
Hermite–Gaussian, 66
instrument, 399
jinc, 65
Lauguerre–Gaussian, 71
objective, 320
pixel, 34
point spread, 217
prolate spheroidal, 426
pupil, 123
rectangular, 35
sampling, 80
scaling, 80
sinc, 65
transfer, 64

Gabor frames, 233
Gauss’s law, 104
Gaussian spectrum, 200
Gauss–Legendre quadrature, 429
Gauss–Markov theorem, 306
Generating function, 80
Grating (diffraction), 119
Grating equation, 120
Green–red compensation, 273
Ground sample distance, 266
Group testing, 285–288

Haar function, 81
Hadamard matrix, 307

Hadamard S-matrix, 307
Hamiltonian operator, 149
Hankel transform, 64
Hermite–Gaussian function, 66
High pass filter, 129
Hilbert space, 73
Hill determinant, 140
Hole, 156
Holography, 130

Leith–Upatnieks, 134
off axis, 131
volume, 136, 365

Homogeneous broadening, 152
Homogeneous material, 106
Hopkins criterion, 225
Hyperfocal distance, 409

Impulse response, 58
coherent, 127
diffraction-limited, 127
free space diffraction, 110
incoherent, 194

Incoherent source, 192
Independent column coding, 343
Inhomogeneous broadening, 152
Instantaneous field of view (ifov), 443
Instrument function, 339
Integrated sensing and processing, 302
Interferometer, 198, 349

Michelson, 199
Michelson stellar, 204
multibeam, 354
rotational shear, 204
two-beam, 349

Interline CCD, 174
Interpolation (from sample data), 259
Inverse model, 301
Inverse problems, 304
Irradiance, 189
Isomorphic mapping, 7
Isotropic material, 105

Jinc function, 65
Johnson noise, 168
Jones matrix, 382
Jones (unit of detectivity), 165

Karhunen–Loeve decomposition, 282
k-sparsity, 290
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l1 magic, 326
l1 minimization, 290
Lambertian surface, 182
Laguerre–Gaussian function, 71
Law

Ampere, 104
Faraday, 104
Gauss, 104
Moore, 447
Snell, 15

Least gradient algorithm, 321
Least square estimator, 305
Leith–Upatnieks holography, 134
Lens, 17, 121–124
Lens maker formula, 21, 123
Lenticular array, 174
Light field photography, 463
Linearity, 164
Linear transformation, 58
Liquid crystal, 381
Littrow geometry, 394
Localization, 61
Logarithmic asphere, 414
Long wave infrared (LWIR), 178
Lorentzian spectrum, 200
Low pass filter, 129
L–R product, 340
Lyot filter, 383

Magnification
microscope, 29
telescope, 30

Mathieu equation, 139
Maxwell equations, 104
Michelson interferometer, 199
Michelson stellar interferometer, 204
Microlens array, 273
Minimum resolvable temperature

difference (MRTD), 182
M-number, 400
Mobility, 157
Modified uniformly redundant array

(MURA), 37
Modulation transfer function

(MTF), 218
Moore’s law, 447
Moore–Penrose pseudoinverse, 311
Multibeam interferometry, 354

Multiple order coded aperture spectroscopy
(MOCA), 400

Multiplex advantage, 354
Multiplex holography, 398
Mutual coherence, 187
Mutual intensity, 190

National Television System Committee
(NTSC) standard, 173

Near infrared (NIR), 178
Near point, 409
Noise, 165

additive, 169
Johnson, 168
Poisson, 167
read-out, 167
shot, 167

Noise equivalent power (NEP), 165
Noise equivalent temperature difference

(NETD), 182
Noise power spectrum, 309
Noiselets, 291
Nonredundant array, 37
Nonuniformity correction, 273
Numerical aperture [1/( f/#)], 447
Nyquist sampling, 75

Objective function, 320
Object space, 311
Obscurant, 48
Optical coherence tomography, 227
Optical data cube, 268
Optical projection tomography, 459
Optical transfer function (OTF),

218
Order sorting filter, 339
Ordinary least squared (OLS)

estimator, 305

Parallel beam tomography, 43
Paraxial approximation, 26, 107
Passive ranging, 423
Pauli exclusion principle, 156
Perfect sequence, 37
Phase diversity, 216
Photoconductor, 157
Photon, 149
Photonic crystal, 141

filter, 403
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Photovoltaic device, 159
Pixel crosstalk, 276
Pixel function, 34
Pixel masking, 466
Pixel pitch, 256–266
Pixel transfer function, 256
Plancherel’s theorem, 60
Planck constant, 149
Planck radiation formula, 149
Plenoptic camera, 463
p–n junction, 159
Point spread function (PSF), 217
Poisson distribution, 167
Poisson summation formula, 92
Polarization, 106
Power spectral density, 189
Poynting vector, 152
Principal component analysis, 282
Prism, 15, 116
Projection slice theorem, 44
Prolate spheroidal function, 426
Pseudoscopic field, 133
Punch, 484
Pupil function, 123
Pushbroom scanning, 472

Quantum efficiency, 157
Quarter-wave stack, 374

Radiance, 246
Radon transform, 42
Range variant PSF, 423
Ranging (passive), 422–424
Rayleigh criterion, 432
Ray tracing, 51
Read-out integrated circuit, 179
Reciprocal lattice, 271
Rectangular function, 32
Reflection hologram, 367
Regularization, 310, 315
Resolution, 424

pinhole, 32
Resolving power (spectral), 336

acousto-optic filter, 389
echelle spectrograph, 396
Fabry–Perot, 359
Fourier transform, 352
holographic filter, 370
liquid crystal filter, 385

slit spectrograph, 340
thin film filter, 379

Responsivity, 163
Restricted isometry property, 282
RGB interpolation, 272
Richardson–Lucy algorithm, 329
Riesz basis, 93
Rotating PSF, 423
Rotation, 63
Rotational shear interferometer (RSI), 204

Sampling, 253
compressive, 278
multiscale, 79
phase, 259
theorem, 75

Scaling function, 80
Schell model (source), 407
Schrödinger equation, 149
Sellmeier equation, 50
Shading, 275
Shannon basis, 80
Shannon number (c), 426
Shear, 484
Shift coding, 312
Shift invariant, 59
Short wave infrared (SWIR), 178
Shot noise, 166
Shower curtain problem, 489
Signal to noise ratio (SNR), 164

coded aperture imaging, 39
Signature, 48
Sinc function, 65
Single pixel camera, 291, 470
Singular value decomposition (SVD), 311
Skin depth, 154
Slowly varying envelope approximation,

137
Smash, 484
Snell’s law, 15
Space

data, 311
Hilbert, 73
object, 311
vector, 72

Spatial light modulator, 293
Spatially incoherent, 192
Spectral image, 472
Spectral throughput, 337
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Spot diagram, 51, 444
State function, 145
Stationary process, 188
Stimulated emission depletion (STED)

microscopy, 436
Stopband, 141
Sun (coherence of), 193
Superresolution

digital, 450
optical, 424

Surface relief grating, 120
Synthetic aperture imaging, 438
System transfer function, 256

Talbot effect, 142
Thermal coefficient of resistance (TCR),

181
Thermocouple, 179
Thin film filters, 380
Thin observation module by bound optics

(TOMBO), 450
Throughput advantage, 352
Tikhonov regularization, 315
Time reversal, 233
Toeplitz matrix, 312
Tomography

cone-beam, 47
fan-beam, 43
optical coherence, 227
parallel beam, 43
projection, 41, 459
reference structure, 47

Total transmitted information (TTL), 447
Total variation (objective function), 326
Transfer function, 64

optical, 218
pixel, 256
system, 256
volume, 212

Transform
fast Fourier, 79
Fourier, 59
Fresnel, 67

Hankel, 64
linear, 56
radon, 42
X-ray, 45

Translation, 60
Transmittance, 117

coded aperture, 33, 342
grating, 118
hologram, 132
lens, 121

Truncated SVD reconstruction, 312
Two-beam interferometry, 349
Two-step interative shrinkage/thresholding

(TWIST) algorithm, 327

Uncertainty relationship, 61
Fresnel, 68

Uniformly redundant array (URA), 37
Uniquely decipherable code, 288

Valence band, 156
van Cittert–Zernike theorem, 222
Vanderlught correlator, 145
Vector space, 72
Vertex path, 46
Virtual image, 24
Visibility, 11
Volume holography, 135
Volume transfer function, 212

Wavelet, 83
Wave normal surface, 106
Weighing design, 304
Well capacity, 171
White balance, 273
White light hologram, 135
Wiener filter, 309
Wiener–Khintchine theorem, 190
Wigner distribution function, 247
Work function, 145

X-ray transform, 45
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