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Preface

The first publication about the discovery of a diffraction grating by the American
astronomer D. Rittenhouse dates back to 1786. It was not noticed by the scientific
community of the day, and in the history of science the optician J. Fraunhofer was
considered to be the creator of the diffraction grating (1821). Theoretical studies
of this device, characterized by amazing dispersion properties were started by F.M.
Schwerd in 1835. In those days, spectral analysis was coming into being. The needs
from this new area stimulated making gratings with progressive enhancement of the
resolution, and they encouraged relevant theoretical and experimental studies. The
outstanding achievements of H.A. Rowland must be mentioned here. He developed
a machine capable of making quite fine diffraction gratings (1882). Also, he sug-
gested making ruling lines on a concave spherical surface and as a result spectrum
dispersion and sharpness were elevated to a level that had not been seen before.

The progress in several scientific and technological fields is to a large extent
guided by the performance of the presently available gratings which are so sophisti-
cated that sometimes they seem to have little to do with their predecessors from the
19th century. Polarization converters and phase changers, filters and multiplexers,
quantum and solid state oscillators, open quasi-optical dispersion resonators, and
power compressors – these are only a few applications of periodic structures, which
astonish us (up to now!) by their capabilities for controlled polarization, spatial and
frequency selection of signals.

Different operating frequency ranges call for gratings differing in characteristic
size (length of a period), and in their way of achieving the operating mode. The
range is so wide that, say, if one end is a standard echelette optical reflection grating
(3600 lines per millimeter on a 40 [cm] × 40 [cm] aluminium sheet) the other could
be the antenna array of the unique decameter radio telescope UTR-2 developed and
fabricated by the academician S.Ya. Braude’s team at the Institute of Radio Physics
and Electronics of the Ukrainian Academy of Sciences in 1966. This antenna field is
developed by two multicomponent arrays. The first one, 1800 [m] long and 53 [m]
wide, consists of 1440 wideband components making up 6 meridian aligned rows.
The other, 900 [m] long and 40 [m] wide, is normal to the first one and carries 6
rows of 600 dipoles. All the dipoles (wire cylinders 8 [m] long and 1.8 [m] across)
are horizontally arranged at a height of 3.5 [m] and east–west oriented.

v
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Few countries could afford equipment for ruling optical gratings with thou-
sand lines per millimeter. This process, expensive and time-consuming, failed to
satisfy growing practical requirements. Rather good results have been achieved
in making replicas of mechanically produced originals. An idea that diffrac-
tion gratings can be manufactured with the aid of holography was suggested by
Yu.N. Denisyuk in 1962. The idea has been developed into holographic gratings
intensively used in the making of spectral instruments. The advantages of holo-
graphic gratings consist in the fact that such gratings are free from grating ghosts
(i.e., high orders caused by periodicity deviation), they are characterized by little
occasional light diffusion and are easy to produce. Naturally, to get desired diffrac-
tion characteristics from holographic gratings is more difficult than, e.g., getting
them from ruled echelette gratings whose geometry uniquely depends on the so-
called blaze angle. Holographic gratings rank below ruled gratings in diffraction
efficiency but, according to many authors, their wavefront quality in a working order
(harmonic) is better. In addition, several observation were made in the 1980s that the
employment of certain schemes of hologram recording and subsequent photoresist
processing opened the way for design of blazed gratings, including echelettes.

Evidently effective employment of diffraction gratings cannot be achieved with-
out thorough theoretical and experimental research into their diffraction properties.
These investigations began early in the 20th century. R.W. Wood improved the
diffraction grating by shaping the grooves to specific geometries. On this basis, he
launched systematic studies of the energy distribution among different harmonics
and experimentally found the property of anomalous scattering. Lord Rayleigh was
the first to expand the field scattered from the grating into a series of plane waves.
Studying the echelette wave diffraction in theoretical terms, he developed an approx-
imate technique (known as the Rayleigh method) which has been one of the most
widely used until rigorous techniques became available.

In the evolution of grating theory, one can identify several key periods. One
falls within the last decades of the 20th century, characterized by the fact that
relevant theoretical problems were approached using classical mathematical dis-
ciplines: mathematical physics, computational mathematics, theory of differential,
and integral equations, etc. That the grating became a subject of adequate mathe-
matical simulation has opened up new opportunities for reliable physical analysis
and also new avenues of attack, on a rigorous theoretical base, on numerous applied
problems. At this stage, the modern electromagnetic theory of gratings was greatly
contributed by the scientific schools of Marseille, France (R. Petit, D. Maystre,
M. Neviere, P. Vincent, A. Roger, J. Chandezon, et al.) and Kharkov, Ukraine
(V.P. Shestopalov, L.N. Litvinenko, S.A. Masalov, V.G. Sologub, A.A. Kirilenko,
et al.). The key chapters of the book largely proceed from their achievements from
the early 1960s and onwards. Obviously, the growth of the research in the above-
mentioned schools was heavily influenced by the results from other scientific centers
the world over. We will address the most significant of them.

The methodology of modern radio physics is based on mathematical simulation
and numerical experiment and it is realized by solving boundary value (frequency
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domain) and initial boundary value (time domain) problems for Maxwell’s equa-
tions. Time domain approaches (see, e.g., Chapter 4) offer more versatility and are
more suited for the analysis of sophisticated electromagnetic structures of interest
for applications. As a rule, the calculations here are reduced to implementation of
explicit schemes (the schemes with the sequential passage of the time layers). There
is a good agreement between the calculated results (results from analysis of electro-
magnetic field space–time transformations) and general human perception – the time
domain is free of some idealizations, which are peculiar to the frequency domain.
Moreover, time domain results are easy to change into the amplitude–frequency
characteristics in the prescribed range of the frequency parameter k = 2π

/
λ, where

λ is the free space wavelength. However, time domain methods are not used as
extensively as one would expect for getting physical results proper. Thus, for exam-
ple, all the power of the most popular at the moment FDTD-method is mainly
applied to solution of particular engineering problems.

Far more examples of systematic and fruitful theoretical treatments can be met in
time harmonic electromagnetics whose problems have been addressed much earlier
in rigorous formulation. The last decades of the 20th century have brought some
special powerful techniques for analysis and synthesis of various electromagnetic
features. Numerous physical phenomena accompanying processes of monochro-
matic wave’s radiation, propagation, and scattering have been identified, interpreted,
and implemented into design of novel devices. Such advances have been assured
by the fact that new theoretical methods have been developed being oriented to
the solution to the specific applied problems. They have accounted the peculiar-
ities of problems of interest and hence have provided with not only quantitative
information, but they created also the base for qualitative analysis with further
generalization. As an example, one may consider the authentic analytic regulariza-
tion procedures (see Chapter 2) outperforming other frequency domain techniques
in resonance situations. Actually, nearly all profound physical results gained
from electromagnetic theory of gratings are due to use of analytic regularization
procedures.

The long-wave specific case (κ = l
/
λ � 1, l is the grating period length),

ending up with solutions of simple analytic representations and convenient approxi-
mations, has been understood most comprehensively by frequency domain methods.
Here, the approach based on equivalent boundary conditions, possessing in the gen-
eral case anisotropic properties, is widely applied (B.Ya. Moyzhes, L.A. Vainshtein,
V.M. Astapenko and G.D. Malyuzhinetz; Ye.I. Nefedov, and A.N. Sivov, et al.). The
theory of dense gratings based on this approach takes into account the influence of
shape and relative size of the grating elements, the presence of sharp boundaries in
the dielectric filling and allows one to make a correct limit transition as the con-
ductors come infinitely close. A key point in the solution of the diffraction problem
based on this theory is a search for the reflection and the propagation coefficients in
terms of powers of a small parameter κ via considering a relevant static problem. The
long-wavelength diffraction is implemented in many modern superhigh-frequency
devices and units, thus the relevant theoretical studies are of current importance.
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Simple and convenient analytic representations are very useful for the designers
and, at the same time, they are an aid to general nature interpretations contributing
to the electromagnetic theory of gratings. An example is the effect observed by G.D.
Malyuzhinetz in the 1940s: given a certain angle of incidence on a dense grating
arranged by metal bars of nonzero thickness, a plane H-polarized wave propagates
through it with no reflection.

Of tremendous interest for physics and applications and a great problem for
analysis is the resonance case κ = O (1), i.e., the case when the wavelength
is comparable with the grating period. When computer resources were limited,
the research into the resonance domain had been restricted to some specific or
limiting situations. They were studied by V.S. Ignatovskiy, E.A.N. Whitehead,
F. Berz, J.F. Carlson, A.E. Heins, G.L. Baldwin, L.A. Vainshtein, V. Twersky,
Yu.P. Lysanov, and others. These researchers laid a solid ground for the mod-
ern theory of resonant wave scattering by periodic structures. Indeed, the ideas
and achievements gained in the 1940s–1960s are traced in almost every present-
day method of mathematical modeling oriented to numerical experiments. First
of all, it is the method of partial domains (or mode matching method) whose
first fruitful implementation can be seen in L.N. Deryugin’s works. Next are the
potential-theory-based methods (integral equation techniques) whose present tech-
nique (N. Amitay, V. Galindo, and C.P. Wu; A.S. Il’inskiy and T.N. Galishnikova;
A.I. Sukhov; Z.T. Nazarchuk, and others) is based on the quasi-periodic Green’s
function derived by V. Twersky. At a point of equivalent reformulation of the origi-
nal boundary value problem, the authors of some analytic numerical methods (Ye.V.
Avdeev and G.V. Voskresenskiy; R. Mittra and T. Itoh; S.M. Zhurav, and others)
address, either implicitly or not, the technique and the results of the analytic solution
to canonic diffraction problems similar to those considered by E.A.N. Whitehead,
F. Berz, and others. Only few such problems have been solved rigorously. The most
popular ones (see, e.g., works by E. Luneburg and K. Westpfahl; V.D. Luk’yanov;
L.A. Vainshtein and V.I. Vol’man) have always been those about half-plane grat-
ings and planar strip gratings. The enduring interest in elementary structures whose
diffraction characteristics have long been thoroughly studied for arbitrary geomet-
rical parameters and frequencies, from the long to the short wave regions, is indeed
reasonable. The main significance of these considerations and the most valuable
aspects of the outcomes consist in the search for new ideas and approaches and
proving their potentials to be used in more sophisticated situations, which are far
from standard.

In closing the issue of succession, it should be mentioned that the numerical
solution of the problems concerning the plane wave diffraction by periodic corru-
gated surfaces has been the most frequently attempted by invoking the Rayleigh
method (Rayleigh hypothesis). There are methods that take the Rayleigh represen-
tations for the scattered field and extend them in a straightforward manner from
their region of validity directly to the grating surface. Furthermore, there are meth-
ods, prompted by the Rayleigh hypothesis, but resting on the fundamental results of
I.N. Vekua about completeness of some systems of functions on curved contours.
In the first case, difficulties in the proof of the principal step (it is necessary to
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study singularities of the analytic continuation of the Rayleigh representation as a
function of space coordinates) can be overcome only for shallow gratings, with the
groove profile described by a sufficiently smooth one-valued function (see works of
A.G. Kyurkchan). And even then a correct truncation of the resulting infinite sys-
tem of algebraic equations for unknown amplitudes of the field space harmonics
is not possible. In the other case, a principal feasibility exists to construct special
linear combinations of functions that are asymptotically close to the solutions of
the corresponding diffraction problems throughout the whole scattering domain.
The central problem – development of stable computation schemes – is solved
then with the adaptive (assignable by the groove shape and κ value) collocation
technique.

In many works of electromagnetic theory of gratings the modern scientific
methodology chain “object → mathematical model → algorithm → numerical
experiment → physical interpretation of the results → formulation of general con-
clusions and recommendations” breaks down somewhere in the middle, at a level of
standard illustrations of the efficiency of the algorithm. But nevertheless, after L.N.
Deryugin’s work who analyzed (in terms of some particular cases) the surface and
double surface resonances on the comb gratings, issues do appear, which inform of
experimental, analytic, and numerical results, concerning

• threshold phenomena (A. Hessel and A.A. Oliner; B.M. Bolotovskiy and
A.N. Lebedev; E.A. Yakovlev and M.V. Robachevskiy);

• semitransparent grating effects of total resonant transition and reflection
of plane waves (Ye.V. Avdeev and G.V. Voskresenskiy; A.F. Chaplin and
A.D. Khzmalyan; R.S. Zaridze and G.M. Talakvadze; Yu.P. Vinichenko,
A.A. Lemanskiy, and M.B. Mityashev);

• effects of total nonspecular wave reflection by reflective structures (E.V. Jull and
G.R. Ebbeson; J.R. Andrewarsha, J.R. Fox, and I.J. Wilson; S.N. Vlasov and
Ye.V. Koposova; and others).

Some authors (see, for example, works of E.V. Jull, D.C.W. Hi, N.C. Beaulieu,
and P. Facq) have raised a very important question about the differences between
the ideal (infinitely extending structure in the plane wave field) and actual (finite
excitation field spot on the infinite periodic structure or finite structure in the plane
wave field) operating modes of the grating.

Also nowadays the diffraction grating is still one of the central objects of
electromagnetic analysis. Independent of how comprehensive the progress in our
understanding of the grating is, continued research in this direction remains very
important, indeed practical needs and the intrinsic logic of development of the
modern grating theory present us with new problems, sending us to seek and
hopefully find ways to their solution. Just so was formed during the recent
years a new line of investigation, which is partially considered in this book (see
Chapter 5) and associated with the analysis, synthesis, and determination of equiv-
alent parameters of artificial materials – layers and coatings, which have a periodic
structure and properties exhibited by natural materials in exceptional cases only.
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Generally speaking, the book reflects those results which, in our opinion, are
able to further pursue electromagnetic theory of gratings in pace with today’s
requirements of fundamental and applied science. The book gives the reader quite a
comprehensive idea of:

• spectral theory of gratings (Chapter 1) giving reliable grounds for physical anal-
ysis of space–frequency and space–time transformations of the electromagnetic
field in open periodic resonators and waveguides;

• authentic analytic regularization procedures (Chapter 2) that, in contradistinction
to the traditional frequency domain approaches, fit perfectly for the analysis of
resonant wave scattering processes;

• parametric Fourier method and C-method (Chapter 3) oriented on the effec-
tive numerical analysis of transformation properties of periodic interfaces and
multilayer conformal arrays;

• new rigorous methods for analysis of spatial–temporal transformations of elec-
tromagnetic field that are grounded on the construction and incorporation into the
standard finite-difference computational schemes, the so-called exact absorbing
boundary conditions (Chapter 4);

• new solution variants to the homogenization problem (Chapter 5) – the central
problem arising in the synthesis of metamaterials and metasurfaces;

• new physical and applied results (Chapters 2–5) about pulsed and monochromatic
wave resonant scattering by periodic structures, including structures loaded on
dielectric layers or chiral and left-hand medium layers, etc.

The authors hope that the reader will find that the discussed physical and applied
results are presented in an illuminating way. Thus, for example, some figures in
Chapter 4 are accompanied by .exe files which enable to watch in dynamics the
space–time transformations of the electromagnetic field close to finite and infi-
nite periodic structures. The archive with these files is open for downloading at
http://www.ire.kharkov.ua/downloads/Figures_EXE_Files.zip.

The book is intended for researchers and graduate students in computational elec-
trodynamics and optics, theoretical and applied radio physics. The material is also
suitable for undergraduate courses in physics, computational physics, and applied
mathematics.

The authors are representatives of a series of large European scientific and edu-
cational centers: Royal Institute of Technology, Stockholm, Sweden (Staffan Ström,
the editor and the co-author of Chapter 4); Blaise Pascal University, Clermont-
Ferrand, France (Jean Chandezon and Gerard Granet – Chapter 3); Usikov Institute
of Radio Physics and Electronics of the National Academy of Sciences of Ukraine,
Kharkov, Ukraine (Petr Melezhik – Sections 2.2, 2.4, 2.5; Anatoliy Poyedinchuk –
Sections 2.1, 2.2, 2.4, 2.5, 3.6; Yuriy Sirenko – the editor, the author and co-author
of Chapters 1, 4, and Section 2.3; Yury Tuchkin – Sections 2.1, 2.6; and Nataliya
Yashina – Chapter 4 and Sections 2.4, 2.5, 3.6); Lund University, Lund, Sweden
(Daniel Sjöberg – Chapter 5).
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In this book, they are united by their profound interest in periodic structures, an
area whose study has always been associated with burning scientific and engineering
problems for the last one and a half hundred years.

Kharkov Yuriy Sirenko
Stockholm Staffan Ström
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Chapter 1
Basic Statements

Abstract The principal results of modern electromagnetic theory of gratings are
reviewed briefly in this chapter. The model initial boundary value problems and
boundary value problems are formulated and supplied with basic equations, domains
of analysis, boundary and initial conditions, and the condition providing their unam-
biguous resolution are determined. The analytic relations between problems in time
and frequency domains are found out. The problems connected with the consider-
ation of gratings as open periodic resonators and waveguides are formulated and
analyzed. The actual essential results of spectral theory of gratings and resonant
scattering theory by periodic structures are presented in concise form.

1.1 The Formulation of Boundary Value and Initial Boundary
Value Problems in the Theory of Diffraction Gratings

1.1.1 Fundamental Equations

The initial boundary value problems and boundary value problems for the system of
differential Maxwell equations form the corner stone of time domain and frequency
domain electromagnetic theory. The solutions to these problems provide us with
results, describing physical phenomena of spatio–temporal and spatial–frequency
transformations of electromagnetic fields occurring in a large variety of structures:
gratings, wave-guiding units, open resonators, radiating elements in antennas, etc.
The adequacy and accuracy of the results depend in an essential way on the qual-
ity of the mathematical problems formulation and on the possibility of detailed
analytic investigation of the solutions before the start of their numerical determina-
tion. In this chapter, we describe the problems of electromagnetic theory of gratings
resulting from following system of equations:

η0rot �H = ε
∂ �E
∂t

+ σ�E + �J, rot�E = −η0μ
∂ �H
∂t

, (1.1)

div
(
μ �H) = 0 , div

(
ε�E) = ρ, (1.2)

1Y.K. Sirenko, S. Ström (eds.), Modern Theory of Gratings, Springer Series in Optical
Sciences 153, DOI 10.1007/978-1-4419-1200-8_1,
C© Springer Science+Business Media, LLC 2010
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div�J + div
(
σ�E)+ ∂ρ

∂ t
= 0. (1.3)

This is a complete system of Maxwell equations for electromagnetic waves prop-
agating in stationary, locally inhomogeneous, isotropic, and nondispersive media.
The system has to be supplemented with the equation of conservation of charge.
Here, �E ≡ �E (g,t) = {Ex,Ey,Ez

}
and �H ≡ �H (g,t) = {Hx,Hy,Hz

}
are the vectors

of the electrical and magnetic field strengths; η0 = (μ0/ε0)1/2 is the free space
impedance; ε0 and μ0 are the electric and magnetic vacuum constants; �J = η0�j,�j ≡ �j (g,t) is the extraneous current density; σ = η0σ0, σ0 ≡ σ0 (g) ≥ 0 is the
specific conductivity of a locally inhomogeneous medium; ε ≡ ε (g) ≥ 1 and
μ ≡ μ (g) ≥ 1 are its relative permittivity and magnetic permeability; ρ =
ρ0
/
ε0, ρ0 (g,t) is the volume density of the inducted and external electric charges;

g = {x,y,z} is a point in the space R3; x, y, and z are the Cartesian coordinates.
We use SI for all physical parameters except t that is measured in meters ([m]) –
it is the product of the natural time and the velocity of the propagation of light in
vacuum.

If ρ in (1.2) and (1.3) is presented as the sum of two terms ρ1 and ρ2, denoting
correspondingly the induced and external electric charge, then the continuity equa-
tion can be rewritten for each term separately: the induced charge ρ1 corresponds
to the conductivity current σ�E, external charge ρ2 corresponds to external current �J.
In the absence of external charges and currents, the induced electric charges and
currents in homogeneous conducting media disappear rather quickly.

The first equation in (1.2) follows from the second one in (1.1), only if
div
(
μ �H) = 0

∣∣
t=0. The second equation in (1.2) follows from the first equation

in (1.1) and equation (1.3), only if div
(
ε�E) = ρ

∣∣
t=0. Equation (1.3) follows from

the first equation in (1.1) and the second one in (1.2). That means the divergence
equations in (1.1), (1.2), and (1.3) are, in essence, conditions imposed on the initial
data of the problem, but initial data for �E and ρ have to be consistent [1]. Equation
(1.3) makes the sources consistent (external electric charges and electric currents)
for all observation times t. Generally, there are no formal reasons to assume that all
the above-mentioned conditions are satisfied. That is why the system of equations
describing electromagnetic processes is conventionally written in its complete form
(1.1), (1.2), and (1.3).

If the problem is formulated correctly, all six components of the vectors �E and �H
are defined by curl equations (1.1), which in Cartesian coordinates have the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Hz

∂y
− ∂Hy

∂z
= εη−1

0
∂Ex

∂t
+ σ0Ex + jx

∂Hx

∂z
− ∂Hz

∂x
= εη−1

0
∂Ey

∂t
+ σ0Ey + jy

∂Hy

∂x
− ∂Hx

∂y
= εη−1

0
∂Ez

∂t
+ σ0Ez + jz

,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂Ez

∂y
− ∂Ey

∂z
= −η0μ

∂Hx

∂t

∂Ex

∂z
− ∂Ez

∂x
= −η0μ

∂Hy

∂t
∂Ey

∂x
− ∂Ex

∂y
= −η0μ

∂Hz

∂t

. (1.4)
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When the sources, that generate the field, and the structures, in which this
field propagates, are homogeneous along the x-axis, we get ∂/∂x ≡ 0, and the
general problems for (1.1) splits into two mutually complementary problems: for
E-polarized (Ey = Ez = Hx = jy = jz ≡ 0) and H-polarized (Hy = Hz = Ex = jx ≡
0) fields. In the case of E-polarization for μ (g) = const we get

[
−εμ

∂2

∂t2
− σμ

∂

∂t
+ ∂2

∂y2
+ ∂2

∂z2

]
Ex (g,t) = F (g,t) ≡ μ

∂Jx

∂ t
, (1.5)

∂Hy

∂t
= − (η0μ

)−1 ∂Ex

∂z
,
∂Hz

∂t
= (η0μ

)−1 ∂Ex

∂y
. (1.6)

When ε (g) = const and σ (g) = const, equations of the same kind can be derived
also for the components of the H-polarized field:

[
−εμ

∂2

∂t2
− σμ

∂

∂t
+ ∂2

∂y2
+ ∂2

∂z2

]
Hx (g,t) = F (g,t) ≡ ∂ jy

∂ z
− ∂ jz

∂ y
, (1.7)

ε
∂Ey

∂t
+ σEy + Jy = η0

∂Hx

∂z
, ε

∂Ez

∂t
+ σEz + Jz = −η0

∂Hx

∂y
. (1.8)

In the general case, the vector functions �E and �H can be found either directly from
(1.1) or from the equations, following from the system (1.1) after certain transforma-
tions (introducing various potentials, etc.). In this chapter, we consider the following
vector problems that are equivalent (for μ (g) = const) to (1.1):

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
Δ− grad div − ε (g)μ

∂2

∂ t2
− σ (g)μ

∂

∂ t

]
�E (g,t) =

= μ
∂

∂ t
�J (g,t) ≡ �F (g,t)

∂

∂ t
�H (g,t) = − 1

η0μ
rot �E (g,t) ; g ∈ R3

. (1.9)

Here, Δ is the Laplace operator, which in Cartesian coordinates has the form

Δ ≡ ∂2

∂ x2
+ ∂2

∂ y2
+ ∂2

∂ z2
.

1.1.2 Domains of Analysis, Boundary and Initial Conditions

Equations (1.5), (1.7), and (1.9) are of hyperbolic type [2]. The initial boundary
value problems for them have to include initial (at t = 0) and boundary (at all
external and internal boundaries of the analysis domains Q) conditions. In 3-D or
2-D (for case of ∂/∂x ≡ 0) vector or scalar problems the domain of analysis Q is part
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of the space R3 or the plane R2, bounded by surfaces S or by contours Sx that are
the boundaries of the domains int S or int Sx (Sx is the trace of the surfaces S on the
plane x = const), filled with a perfect conductor: Q = R3\int S or Q = R2\int Sx.
In so-called open problems, the analysis domains Q may extend to infinity along
one or several space directions.

The system of boundary conditions for initial boundary value problems is
formulated in the following way [3]:

• On a perfect conductor surface S the tangential component of the electric field
density vector is equal to zero for all observation times t:

Etg (g,t)
∣
∣
g∈S = 0, t ≥ 0. (1.10)

From (1.10) and (1.1) follows:

Hnr (g,t)|g∈S = 0,
∂Htg (g,t)

∂�n
∣∣
∣∣
g∈S

= 0, t ≥ 0;

�n is the outward normal with respect to the domain intS. The function
Htg (g,t)

∣
∣
g∈S defines so-called surface currents, generated on S by external

electromagnetic field
{�E (g,t) , �H (g,t)

}
.

• On the surfaces Sε,σ of discontinuities of the material properties of the medium,
as well as all over the domain Q, the tangential components Etg (g,t) and
Htg (g,t) of the vectors of strength of the electrical ( �E ) and magnetic ( �H ) fields
should be continuous. The normal components εε0Enr (g,t) and μμ0Hnr (g,t)
of the vectors of electric and magnetic flux density are also continuous here.

• In the vicinity of singular points of the boundaries of the domain Q (points where
the tangent and normal vectors are not defined) the density of the field energy has
to be spatially integrable.

• If the domain Q is not bounded and the field
{�E (g,t) , �H (g,t)

}
is generated by

sources with supports that are bounded in Q then for any of finite time interval
(0;T) one can construct a virtual boundary M ⊂ Q sufficiently remote from the
sources, such that

{�E (g,t), �H (g,t)
}∣∣

g∈M, t∈(0;T)
= 0. (1.11)

Initial conditions (at the moment t = 0) give the starting state of the system, vary-
ing after (at times t > 0) according to the differential equations and the boundary
conditions. The reference states �E (g,0) and �H (g,0) in the system (1.1) are the same
as �E (g,0) and

[
∂ �E (g,t) /∂t

]∣∣
t=0 ( �H (g,0) and

[
∂ �H (g,t)

/
∂t
] ∣∣

t=0 ) in the differ-
ential forms of the second order (in the terms of t), to which (1.1) is transformed
if the vector �H (vector �E) is eliminated. Thus, (1.9) should be complemented with
initial conditions of the kind
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�E (g,0) = �ϕ (g) ,
∂

∂t
�E (g,t)

∣∣∣∣
t=0

= �ψ(g), g ∈ Q̄. (1.12)

The functions �ϕ (g), �ψ (g), and �F (g,t), t > 0 (the instant and current source
functions), usually have limited support in the closure of the domain Q. Current
sources can be divided into hard and soft [4]: soft sources do not have material sup-
ports and thus they are not able to scatter electromagnetic waves. Instant sources are
used conventionally for pulsed excitation waves �Ui (g,t) setting: �ϕ (g) = �Ui (g,0)

and �ψ (g) = [∂ �Ui (g,t)
/
∂t
]∣∣∣

t=0
. The pulsed signal �Ui (g,t) itself should satisfy

the corresponding wave equation and the causality principle. One should also make
sure that until the time t = 0 the pulsed signal does not make contact with the
scattering object.

The latter is obviously impossible if infinite structures (gratings, for example)
are excited by plane pulsed waves that propagate in a direction different from the
normal to certain infinite boundary. Such waves are able to “sweep up” a part of
the scatterer’s surface by any moment of time. As a result, a mathematically correct
modeling of the process becomes impossible: the input data required for the initial
boundary value problem formulation are defined, as a matter of fact, by the solution
of this problem.

1.1.3 Time Domain: Initial Boundary Value Problems

The vector problems describing the transient states of the field nearby the gratings
with the geometry presented in Fig. 1.1a can be written in the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
Δ− grad div − ε (g)μ (g)

∂2

∂ t2
− σ (g)μ (g)

∂

∂ t

]
�E (g,t) = �F (g,t) ;

g = {x,y,z} ∈ Q, t > 0

�E (g,0) = �ϕ (g) ,
∂

∂t
�E (g,t)

∣
∣∣∣
t=0

= �ψ(g); g ∈ Q̄

Etg (g,t)
∣∣
g∈S = 0; t ≥ 0

. (1.13)

Here, μ (g) is a piecewise constant function and the surfaces S are assumed
to be sufficiently smooth. It is also assumed (here and in consideration of other
initial boundary value problems) that continuity conditions for tangential com-
ponents of the vectors of electromagnetic fields density are satisfied, if required.
The analysis domain Q = R3\int S comprises essentially all of the space R3.
For such domain the problems can be resolved efficiently only for two following
cases:
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Fig. 1.1 The geometry of model problems in a right-handed coordinate system: (a) Three-
dimensional grating; (b) semitransparent; and (c) reflecting plane gratings. Structures (b) and (c)
are homogeneous along the x-axis

• The problem (1.13) degenerates into a conventional Cauchy problem (int S = ∅,
medium is homogeneous, and the supports of the functions �F (g,t), �ϕ (g), and
�ψ(g) are bounded). With some inessential restriction for the source functions, the
classical and generalized solution of the Cauchy problem does exist, is unique,
and is described by the well-known Poisson formula [2].
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• The functions �F (g,t) , �ϕ (g) , and �ψ(g) have the same displacement symmetry
as the periodic structure. In this case, the domain of analysis can be reduced
to Qnew = {g ∈ Q : 0 < x < lx;0 < y < ly

}
, completing problems (1.13) with

periodicity conditions [1] on lateral surfaces of the rectangular Floquet channel
R = {g ∈ R3 : 0 < x < lx;0 < y < ly

}
.

The domain of analysis can be reduced to Qnew in more general case also.
The objects of analysis are in this case not quite physical (complex sources,
waves, and fields). However, by simple mathematical transformations, all the results
can be presented in the customary, physically correct form. There are many rea-
sons why the modeling of physically realizable situations in the electromagnetic
theory of gratings should start with the analysis of initial boundary value prob-
lems for the images f new

(
g,t,Φx,Φy

)
of the functions f (g,t) describing the true

sources:

f (g,t) =
∞∫

−∞

∞∫

−∞
f̃ (z,t,Φx,Φx) exp

(
2πiΦx

x

lx

)
exp

(
2πiΦy

y

ly

)
dΦxdΦy

=
∞∫

−∞

∞∫

−∞
f new (g,t,Φx,Φy

)
dΦxdΦy. (1.14)

From (1.14) it follows that

f new
{

∂ f new

∂ x

}
(x + lx,y,z,t,Φx,Φx) = e2πiΦx f new

{
∂ f new

∂ x

}
(x,y,z,t,Φx,Φx) ,

f new
{

∂ f new

∂ y

} (
x,y + ly,z,t,Φx,Φx

) = e2πiΦy f new
{

∂ f new

∂ y

}
(x,y,z,t,Φx,Φx) .

The use of the foregoing conditions restricts the analysis domain to the domain
Qnew, which is a part of the Floquet channel R, and this allows us to rewrite the
problems (1.13) in the following form:

�E (g,t) =
∞∫

−∞

∞∫

−∞
�Enew (g,t)

(
g,t,Φx,Φy

)
dΦxdΦy,
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Δ− grad div − ε (g)μ (g)

∂2

∂ t2
− σ (g)μ (g)

∂

∂ t

]
�Enew (g,t) = �Fnew (g,t) ;

g ∈ Qnew, t > 0

�Enew (g,0) = �ϕnew (g) ,
∂

∂t
�Enew (g,t)

∣
∣∣∣
t=0

= �ψnew(g); g ∈ Q̄new

Enew
tg (g,t)

∣∣∣
g∈S

= 0; t ≥ 0

�Enew

{
∂ �Enew

∂ x

}

(lx,y,z,t) = e2πiΦx �Enew

{
∂ �Enew

∂ x

}

(0,y,z,t) ; t ≥ 0

�Enew

{
∂ �Enew

∂ y

}
(
x,ly,z,t

) = e2πiΦy �Enew

{
∂ �Enew

∂ y

}

(x,0,z,t) ; t ≥ 0

.

(1.15)

Let us present the scalar problems for spatial–time transformations of E- and H-
polarized field in near zone of a 1-D periodic grating (see Fig. 1.1b; ∂

/
∂x ≡ 0) in

the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pε,μ,σ [U] ≡
[
−εμ

∂2

∂t2
− σμ

∂

∂t
+ ∂2

∂y2
+ ∂2

∂z2

]
U (g,t) = F (g,t) ;

g = {y,z} ∈ Q, t > 0

U (g,0) = ϕ (g) ,
∂

∂t
U (g,t)

∣∣∣∣
t=0

= ψ(g); g ∈ Q̄

Etg (p,t)
∣
∣
p={x,y,z}∈S = 0; t ≥ 0

. (1.16)

Here, in the case of E-polarization – U (g,t) = Ex (g,t) and μ (g) is a piecewise
constant function. In the case of H-polarization – U (g,t) = Hx (g,t) and now the
functions ε (g) and σ (g) have to be piecewise constant. The surfaces S = Sx ×
[|x| ≤ ∞] of the perfectly conducting elements in the geometry of the gratings are
assumed to be sufficiently smooth. The domain of analysis in the problems (1.16)
coincides with a part of the plane R2 limited by the contours Sx: Q = R2\int Sx.
We carry out its contraction to the domain Qnew = {g ∈ Q : 0 < y < l}, which is the
part of the parallel-plane Floquet channel R = {g ∈ R2: 0 < y < l

}
, by going over

in the analysis to the initial boundary value problems for the images f new (g,t,Φ) of
the functions f (g,t) describing the true sources:

f (g,t) =
∞∫

−∞
f̃ (z,t,Φ) e2πiΦ(y/l)dΦ =

∞∫

−∞
f new (g,t,Φ) dΦ ↔

↔ f new (g,t,Φ) = exp
(
2πiΦy

/
l
)

l

∞∫

−∞
f (ȳ,z,t) e−2πiΦ(ȳ/l)dȳ.

(1.17)
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In terms of the functions f new (g,t,Φ), the problems (1.16) can be rewritten in the
form:

U (g,t) =
∞∫

−∞
Unew (g,t,Φ) dΦ,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−εμ

∂2

∂t2
− σμ

∂

∂t
+ ∂2

∂y2
+ ∂2

∂z2

]
Unew (g,t) = Fnew (g,t) ;

g = {y,z} ∈ Qnew, t > 0

Unew (g,0) = ϕnew (g) ,
∂

∂t
Unew (g,t)

∣∣∣∣
t=0

= ψnew(g); g ∈ Q̄new

Enew
tg (p,t)

∣∣∣
p={x,y,z}∈S

= 0; t ≥ 0

Unew
{

∂ Unew

∂ y

}
(l,z,t) = e2πiΦUnew

{
∂ Unew

∂ y

}
(0,z,t) ; t ≥ 0

. (1.18)

In the case of the classical statement of the problems (1.13), (1.15), (1.16), and
(1.18) (all the equations are satisfied in each point of the relevant domain), the solu-
tions should have as many continuous derivatives as are present in the equations and
that implies strict limitations on the smoothness for all the entries. The generalized
solutions and statements are more suitable for a description of physical phenom-
ena that are governed by differential equations and they make the analysis of the
problem much simpler.

A generalized function is a generalization of the classical concept of a function.
Roughly speaking, the generalized function is determined by its average values
near each point, and this enables us to get a mathematically correct description
of many idealized notions, e.g., intensity of a instant point source. A generalized
function denotes any linear continuous functional ( f , γ) on the space of functions
D = D (Rn), i.e., on the space of all finite infinitely differentiable functions γ in Rn.
The linear set D̃ = D̃ (Rn) of all generalized functions, with weak convergence of
sequences of functionals, becomes a complete space.

The generalized function f vanishes in the domain G⊂Rn if ( f, γ)=0 for all
γ∈D(G). According to this definition, we introduce the definition of equal func-
tions and generalized solutions to differential equations, boundary value, and initial
boundary value problems. Thus, for instance, for the generalized solutions U
of (1.16), the values of the functional

(
Pε,μ,σ [U] − F,γ

)
should vanish for all

γ∈D(Q×(0;∞)). A consistent, detailed, and comprehensive description of the prop-
erties of generalized functions and operations with them is given in [2]. Hereafter,
we are going to refer frequently to this book.

Among all the generalized functions, our interest mostly concerns the simplest of
them, i.e., the regular generalized functions. There is a one-to-one correspondence
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between locally integrable functions and regular generalized functions. Therefore,
the latter can be treated as conventional point functions, which is more suitable
for the purposes of functional analysis and the theory of boundary value problems
[5]. In the class D̃r (G) of regular generalized functions, not all of the elements are
infinitely differentiable. Due to their differential properties, they can be considered
as elements of different functional spaces, in particular, the spaces Wl

m (G) , con-
sisting of functions f (g) ∈ Lm (G) ; g ∈ G, that have generalized derivatives up to
the order l from Lm (G), and others (see the Appendix for a list of the symbols and
abbreviations).

Among all the singular generalized functions (viz., nonregular ones), we use only
the Dirac δ-function (δ (g)) and its generalized derivatives. However, we should
make the following reservation. In cases when the standard mathematical operations
(numerical implementation of computational schemes, finite-difference approxima-
tion of the initial boundary value problems, etc.) cannot be performed correctly
because of the presence of such functions, then the regularization is achieved
by substituting an appropriate locally integrable δ-approximating function for the
δ-function (the “cap” function ωε (g), etc.; see [2]).

In some chapters of this book we often refer to the notion of a fundamental
solution (principal function, Green’s function) of the differentiation operator B [U]:
the generalized function G (g) ∈ D̃ (Rn) is a fundamental solution of the operator
B [U] , if B [G] = δ (g). Using the generalized function G, one can construct
the solution of the equation B [U] = f with an arbitrary right-hand part f: U =
(G ∗ f ). This scheme can also be applied to a partial inversion of the differentiation
operator of a problem, followed by an equivalent presentation of the latter as an
integro-differential equation. Fundamental solutions to classic differential operators,
connected with the problems of electromagnetic theory are presented in the books
[1, 2, 6, and 7] in a clear and useful way.

It is known [1, 2, 5] that initial boundary value problems for equations (1.5),
(1.7), and (1.9) in the domain Q can be formulated in such way that they will be
unambiguously resolved in Sobolev’s space W1

2

(
QT
)
, QT = Q × (0;T), (0;T) =

{t: 0 < t < T < ∞}. Let us assume, for example, that the source functions ϕ (g),
ψ (g), and F (g,t) (for all t > 0) of the problem (1.16) are finite in Q̄ and that
the functions ∂

[
ε (g)μ (g)

]/
∂y , ∂

[
ε (g)μ (g)

]/
∂z , and σ (g)μ (g), g ∈ Q are

bounded. Then the following statement is true [5].

Statement 1.1 Let F (g,t) ∈ L 2,1
(
QT
)
, ϕ(g) ∈

◦
W1

2 (Q), ψ(g) ∈ L2 (Q), QT =
Q × (0;T). Then problem (1.16) in the E-case for all t ∈ [0;T] has a gener-
alized solution from the energy class, and the uniqueness theorem is true in this
class.

By a generalized solution from the energy class we understand a function U (g,t),

belonging to
◦

W1
2 (Q) for any t ∈ [0;T] and depending continuously on t in the

norm of W1
2(Q). Furthermore the derivative ∂U

/
∂t should exist as an element of

the space L2 (Q) for any t ∈ [0;T] and vary continuously with t in the norm

of L2 (Q). The initial conditions should be continuous in the spaces
◦

W1
2 (Q) and
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L2 (Q), respectively, and telegraph equation should be satisfied in terms of the
identity

∫

QT

{
εμ
(

∂
∂ t U
) (

∂
∂ tγ
)− σμ

(
∂
∂ t U
)
γ−
(

∂
∂y U
) (

∂
∂yγ
)
−
(

∂
∂z U
) (

∂
∂zγ
) }

dgdt +

+ ∫
Q

ε μψγ (g,0) dg = ∫
QT

F γ dgdt.

Here γ = γ (g,t) is an arbitrary element from W1
2,0

(
QT
)

such that γ (g,T) = 0.
This equality is derived in a formal way from the following identity

(
Pε,μ,σ [U] − F, γ

) =
∫

QT

(
Pε,μ,σ [U] − F

)
γ dg dt = 0

by means of a single partial integration of the terms, containing second-order deriva-
tives of the function U (g,t). It has been proved in [5] that such a definition makes
sense and is actually a generalized notion of the classic solution.

The class of generalized solutions, that has been called the energy class, is some-
what narrower than W1

2

(
QT
)
. It is worth a more detailed study because this class

is the only one where the following specific feature of hyperbolic equations can be
determined: the solution U (g,t) has the same differential features that are assumed
to be satisfied at the initial moment of time (continuable initial conditions).

The initial boundary value problems for equations (1.5), (1.7), and (1.9) correctly
formulated can be solved by the finite-difference method. The central difference
approximation applied to these problems leads to explicit computational schemes
without inversion of any matrix operators [5]. The correct choice of the steps of
the grids over spatial and time variables guarantee the robustness of such schemes
and the convergence of the sequences of solutions of grid problems to the solution
of original problems. In corresponding criteria, the dimension of the problem and
constants ξ and ζ, limiting the intervals of the variation of function

[
ε (g)μ (g)

]−1

in the domain of computation Q or Qnew [1, 5], are the principal parameters.

1.1.4 Frequency Domain: Boundary Value Problems

The statements about the solutions of initial boundary value problems for equations
(1.5), (1.7), and (1.9) (see, for example, Statement 1.1) can be formulated [5, 8] in
terms of spaces of the type

W1
2

(
Q∞,β

) ≡
{
{U (g,t)} : U (g,t) exp (−βt) ∈ W1

2

(
Q∞) ; β ≥ 0

}
.

These results provide the background [2, 5, 8] for connection of the time domain
and frequency domain solutions by means of the Laplace transform (image↔
original)
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f̃ (s) = L
[
f
]
(s) ≡

∞∫

0

f (t)e−stdt ↔ f (t) = L−1
[
f̃
]
(t) ≡ 1

2πi

α+i∞∫

α−i∞
f̃ (s)estds.

(1.19)

Thus, the initial boundary value problems (1.18) can be juxtaposed with the
boundary value problems

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
∂2

∂y2
+ ∂2

∂z2
+ ε̃μk2

]
Ũ (g,k) = f̃ (g,k) ; g = {y,z} ∈ Qnew

Ẽtg (p,k)
∣∣
p={x,y,z}∈S = 0

Ũ

{
∂ Ũ

∂ y

}

(l,z,k) = e2πiΦŨ

{
∂ Ũ

∂ y

}

(0,z,k)

. (1.20)

Here s = −ik, k is a wave number (frequency parameter or just frequency);
Ũ (g,k) ↔ Unew (g,t); Ẽtg (g,k) ↔ Enew

tg (g,t); F̃ (g,k) ↔ Fnew (g,t);

ε̃ (g) = ε (g) + iσ (g)
/

k; f̃ (g,k) = F̃ (g,k) + ikε̃ (g)μ (g)ϕ (g) − ε (g)μ (g)ψ (g).
It is known [5, 8–11] that for values of k with positive imaginary part (k: Imk >

0) and for any f̃ (g,k) ∈ L2 (Qnew), the problems (1.20) are unambiguously solvable
in W1

2 (Qnew); their resolvents in upper half-plane of the plane C of the complex
variable k are analytic operator-functions. If Imk > β ≥ 0, and the function Ũ (g,k)
is absolutely integrable over Rek along the axis Imk = α > β, then the solutions
Unew (g,t) to the problems (1.18) from the space W1

2

(
(Qnew)∞ ,β

)
and solutions

Ũ (g,k) to the problems (1.20) from the space W1
2 (Qnew) are related according to

Unew (g,t) = 1

2π

iα+∞∫

iα−∞
Ũ (g,k)e−iktdk, Ũ (g,k) =

∞∫

0

Unew (g,t)eiktdt. (1.21)

The answer to the question about the unambiguous solvability of the problem
(1.20) for real values k (the domain of classic diffraction theory) may be found
within the frame of one of three principles: radiation, limit absorption, or limit
amplitude [1, 10, 12, 13]. Further, we shall consider only the radiation principle as
it is more often used formally in papers devoted to the theory of diffraction gratings.

Let us divide the analysis domain Qnew of problems (1.20) into two parts:
Qnew

a = {g ∈ Qnew: |z| < a} – all scattering objects and sources are concentrated
inside this domain – and aQnew = {g ∈ Qnew: |z| > a}. Obviously, the field Ũ (g,k)
in the domain aQnew has to be free from waves coming from infinity z = ±∞. The
representation [10]

Ũ (g,k) =
∞∑

n=−∞

{
An (k)
Bn (k)

}
ei[Φny±Γn(z∓a)];

{
z ≥ a
z ≤ −a

}
, Imk ≥ 0,
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Φn = Φn (Φ)= 2π (Φ+ n)
/

l, Γn = Γn (Φ) =
√

k2 −Φ2
n,

ReΓnRek ≥ 0, ImΓn ≥ 0, (1.22)

meets such requirements. It is sometimes called a partial radiation condition. Here,
An (k) and Bn (k) are the complex-valued amplitudes of plane homogeneous and
nonhomogeneous waves constituting the field Ũ (g,k).

Statement 1.2 (radiation principle) Let σ (g) > 0 on an arbitrary set in Qnew
a =

{g ∈ Qnew: |z| < a} with nonzero measure. Then the radiation conditions (1.22)
provide a unique solution to (1.20) for every k: Imk ≥ 0 . If σ (g) ≡ 0, then the
solution to (1.20) and (1.22) exists and is unique for every k: Imk ≥ 0 , with the
possible exception of not more than the countable set

{
k̄n: Imk̄n = 0

} ∈ Ωk without
finite accumulation points.

The following statement [8, 11, 14, 15] allows us to examine in detail the question
of solvability of the problems (1.20) and (1.22).

Statement 1.3 The resolvent A−1 (k) of the problem (1.20) and (1.22)

A (k)
[
Ũ
(

g,k,f̃
)]

= f̃ (g,k) , g ∈ Q̄new is a meromorphic (in local variables on

the surface K ) operator-function of complex parameter k . For the resolvent’s prin-
cipal part Ξ

[
A−1 (k)

]
in the vicinity of the pole k = k̄ (in the vicinity of the

characteristic number k = k̄ of the operator-function A (k) ), that does not coincide
with the branch point k±n of the surface K , the following expansion

Ξ
[
A−1 (k)

]
=

J∑

j=1

M(j)∑

m=1

(
k − k̄

)−m
M(j)−m∑

l=0

w(j)
l (·) u(j)

M(j)−m−l (1.23)

is valid. Here,

u(j)
0 (g) , u(j)

1 (g) , ... , u(j)
M(j)−1 (g) , j = 1,2,...,J

is the canonical system of eigen and adjoint elements of the operator-function A (k) ,
relevant to characteristic number k̄ . Its choice unambiguously defines the canonic
system

w(j)
0 (g) , w(j)

1 (g) , ... , w(j)
M(j)−1 (g) , j = 1,2,...,J

of eigen and adjoint elements of operator-function Ā (k) = [A (k∗)
]∗

( ∗ denotes
complex conjugation), relevant to the characteristic number k̄∗.

The surface K, mentioned in Statement 1.3, is a surface of analytic continuation
of the canonical Green’s function

G̃0 (g,g0,k,Φ) = − i

2 l

∞∑

n=−∞
ei[Φn(y−y0)+Γn|z−z0|]Γ−1

n (1.24)
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that is the fundamental solution to canonical problem (1.20) and (1.22), i.e., the
problem, where intS = ∅, ε̃ (g)μ (g) ≡ 1, and Imk = 0. It is an infinite sheet
Riemann surface consisting of the planes k ∈ C cut along the directions of (Rek)2−
(Imk)2 − Φ2

n = 0, n = 0, ± 1, ± 2,..., Imk ≤ 0 (see Fig. 1.2a). The first sheet of
the surface K is unambiguously determined by the radiation conditions (1.22), i.e.,
by the choice of the values ReΓnRek ≥ 0 and ImΓn ≥ 0, n = 0, ± 1, ± 2,..., at
the axis Imk = 0. On this sheet, in the domain 0 < arg k < π, we have ImΓn > 0,

Im k
Re 0nΓ >Re 0nΓ <

Re 0nΓ <

Re 0nΓ <Re 0nΓ >

Re 0nΓ >

nk −
nk +

Im k

Re kIm 0nΓ >Im 0nΓ >

Im 0nΓ <

Im 0nΓ >Im 0nΓ >

Im 0nΓ <

Im Φ

ReΦ–1.0 –0.5 0.5           1.0

Re 0nΓ >
Im Φ

Re 0nΓ >

Re 0nΓ <

Re 0nΓ < κ
−κ Im 0nΓ >

Im 0nΓ >

Im 0nΓ >

Im 0nΓ > ( )Re n + Φ

Im 0nΓ <

Im 0nΓ <

A

B

Re k

Im k

nk ±

β

P

Fig. 1.2 The natural variation domains for the spectral parameters k, Φ and Γn (k), Γn (Φ) values
distribution: (a) First sheet of the K surface; (b) first sheet of the F surface
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and ReΓn ≥ 0 for 0 < arg k ≤ π
/

2 and ReΓn ≤ 0 for π
/

2 ≤ arg k < π. In the
domain 3π

/
2 ≤ arg k < 2π for finite number of functions Γn (k) (with relevant n

such that (Rek)2 − (Imk)2 − Φ2
n > 0) the relations ImΓn < 0 and ReΓn > 0 hold;

for the rest of these functions we have ImΓn > 0 and ReΓn ≤ 0. In the domain
π < arg k ≤ 3π

/
2, the situation is similar only if the signs of ReΓn are opposite.

The next sheets (each of them with its own set of relevant pairs {k → Γn (k)}) have,
unlike the first one, opposite signs (root branches) of Γn (k) for a finite number of
values of the index n. The cuts (solid lines in Fig. 1.2a) originate from the real
algebraic branch points k±n : Γn

(
k±n
) = 0 or k±n = ± |Φn|, n = 0, ± 1, ± 2,...

Analytic continuation of the function G̃0 (g,g0,k,Φ) preserves on the surface K
all properties of the Green function for the canonical problem (1.20) and (1.22). It
is easy to show also [10, 11] that on the first sheet of the surface K

G̃0 (g,g0,k,Φ) = G̃0 (g0,g,k, −Φ) = G̃∗
0

(
g,g0, − k∗, −Φ

)
. (1.25)

Let us come back now to the Fig. 1.1b and make one comment connected with
formulation of 2-D initial boundary value problems for 1-D periodic structures.
Sometimes these problems are considered (see, for example, Section 2.6) in the
system of nondimensional time and spatial coordinates ȳ = 2πy

/
l, z̄ = 2πz

/
l,

t̄ = 2πt
/

l, according to which the period of gratings is equal to 2π [1, 10, 16–
18]. Such a trick simplifies certain mathematical expressions and allows us in the
analysis to keep focus on the dimensionless parameter κ, characterizing the ratio
between length of the period l and wavelength λ of the incident field. Many physi-
cal results of electromagnetic theory of gratings are formulated in terms of κ = l

/
λ,

δ = h
/

l, and other dimensionless parameters. Formally, the transition to the formu-
lation corresponding to dimensionless parameters can be performed by means of the
following substitutions in the conventional formulas: y → ȳ, z → z̄, t → t̄, l → 2π,
k → κ, and h → 2πδ.

1.2 The General Physical Picture: Principal Definitions and
Consequences from Conservation Laws and Reciprocity
Theorems

1.2.1 The Diffraction Problems for Plane Waves

Let us carry off the source f̃ (g,k) in problems (1.20) into infinity (z = ∞) and
suppose that it generates in the reflection domain z > 0 (in the domain A) a
plane homogeneous (p: ImΓp = 0) or inhomogeneous (p: ImΓp > 0) wave
Ũi

p (g,k) = exp
[
i
(
Φpy − Γpz

)]
that excites a semitransparent, 1-D periodic struc-

ture (see Fig. 1.1b). If the source f̃ (g,k) is replaced by the incident plane wave
Ũi

p (g,k), the problems (1.20) and (1.22) can be written as follows:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
∂2

∂y2
+ ∂2

∂z2
+ ε̃μk2

]
Ũ (g,k) = 0; g = {y,z} ∈ Qnew

Ẽtg (q,k)
∣∣
q={x,y,z}∈S = 0

Ũ

{
∂ Ũ

∂ y

}

(l,z,k) = e2πiΦŨ

{
∂ Ũ

∂ y

}

(0,z,k)

Ũ (g,k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ũi
p (g,k) +

∞∑
n=−∞

RAA
np exp

[
i (Φny + Γnz)

]
; z ≥ 0

∞∑

n=−∞
TBA

np exp
[
i (Φny − Γn (z + h))

]
; z ≤ −h

. (1.26)

Here, in the case of E-polarized field, μ (g) is a piecewise constant function,
Ẽy = Ẽz = H̃x = 0, Ẽx = Ũ, and

Hy = 1

ikη0μ

∂Ũ

∂z
, Hz = − 1

ikη0μ

∂Ũ

∂y
. (1.27)

For the H-case, ε̃ (g) is a piecewise constant function, H̃y = H̃z = Ẽx = 0,
H̃x = Ũ, and

Ey = − η0

ikε̃

∂Ũ

∂z
, Ẽz = η0

ikε̃

∂Ũ

∂y
. (1.28)

The surfaces S are assumed to be sufficiently smooth. The analysis domain
Qnew coincides with the part of the parallel-plane Floquet channel R ={
g ∈ R2: 0 < y < l

}
, limited with the contours Sx: Qnew = R\int Sx.

The amplitudes RAA
np = RAA

np (k,Φ) and TBA
np = TBA

np (k,Φ) [see the last equa-
tion in (1.26)] form the so-called generalized scattering matrices of the grating:

the reflection matrix RAA =
{

RAA
np

}∞
n,p=−∞ and the transmission matrix TBA =

{
TBA

np

}∞
n,p=−∞. The elements of these matrices specify the spatial–frequency dis-

tribution of the energy of the incident wave Ũi
p (g,k) in reflected and transferred

via grating field. The rules for the upper indices are clear: from the domain whose
identifier is on the right, into the domain with the identifier on the left. For the dis-
tribution over the modes (the lower indices) we have similarly: on the right there is
the mode number of the incident wave, on the left there is the mode number of wave
from the secondary field.

The elements of the generalized scattering matrices are connected by energy-
balance relations
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∞∑
n=−∞

[∣∣∣RAA
np

∣∣∣
2 +
∣∣∣TBA

np

∣∣∣
2
]{

ReΓn

ImΓn

}
=
{

ReΓp + 2ImRAA
pp ImΓp

ImΓp − 2ImRAA
pp ReΓp

}
− k2

lβ0

{
W1
W2

}
,

p = 0, ± 1, ± 2,....
(1.29)

and by reciprocity relations

RAA
np (Φ)

Γp (Φ)
= RAA−p,−n (−Φ)

Γ−n (−Φ)
;

TBA
np (Φ)

Γp (Φ)
= TAB−p,−n (−Φ)

Γ−n (−Φ)
, n,p = 0,±1,±2,..., (1.30)

that are consequences from the complex power theorem (Poynting theorem) and the
Lorentz lemma [10, 16, 18, 19].

Here,

W1 =
∫

G

Imε̃ε0
∣
∣�E∣∣2dg = 1

k

∫

G

σε0
∣
∣�E∣∣2dg,

W2 =
{+
−
}∫

G

[
μμ0
∣∣ �H∣∣2 − Reε̃ε0

∣∣�E∣∣2
]

dg =
{+
−
}∫

G

[
μμ0
∣∣ �H∣∣2 − εε0

∣∣�E∣∣2
]

dg,

β0 =
{
ε0
μ0

}
;

{
E − case
H − case

}
,

and �E = {Ẽx,Ẽy,Ẽz
}

, �H = {H̃x,H̃y,H̃z
}

, G = {g ∈ Qnew: − h ≤ z ≤ 0} .

Let now k be a real positive frequency parameter, and let an arbitrary semitrans-
parent (Fig. 1.1b) or reflecting (Fig. 1.1c) grating be excited from the domain A by a
homogeneous E- or H-polarized plane wave Ũi

p (g,k). The first term in the last equa-
tion in (1.26) for the reflection zone z > 0 corresponds to a wave incident on the
grating. The infinite series for the zones A and B determine the secondary (scattered)
field. The terms of these series are usually referred to as partial components of the
spatial spectrum of the structure or as spatial (diffraction) harmonics of a scattered
field. The complex amplitudes RAA

np and TBA
np of the spatial harmonics composing the

diffraction field in the reflection (A) and transmission (B) zones are complicated
functions of k and Φ, as well as of the geometry and the material parameters of the
grating. Every harmonic for which ImΓn = 0 and ReΓn > 0 is a homogeneous
plane wave, propagating away from the grating at the angle αn = − arcsin

(
Φn
/

k
)

in the reflection zone and at the angle αn = π + arcsin(Φn/ K) in the grating’s
transmission zone (all the angles are measured in the plane y0z, anticlockwise
from the z-axis, see Fig. 1.1b). The angle αi

p = arcsin
(
Φp
/

k
)

is an angle of inci-

dence of the excitation wave Ũi
p (g,k) on the grating. It is obvious that the direction

of propagation of the homogeneous harmonics of the secondary field depends on
their number n and on the values of k and αi

p. According to (1.29), the values

WR
np =

∣
∣∣RAA

np

∣
∣∣
2

ReΓn
/
Γp, WT

np =
∣
∣∣TBA

np

∣
∣∣
2

ReΓn
/
Γp, and so on, determine energy

content of the harmonics, that is, the relative part of the energy that is directed by
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the structure into the relevant spatial radiation channel. The channel corresponding
to the nth harmonic, we shall call “open” if ImΓn = 0. The regime when only one
channel for spatial harmonics is open (n = p) we shall call the single mode regime.
For such a regime, the basic (or principal) spatial harmonic in the reflection zone is
called the specular one, and its amplitude (RAA

pp ) is called the reflection coefficient

(clearly, TBA
pp is called the transmission coefficient).

The angle between the directions of propagation of the primary and the minus
mth reflected plane wave αi

p − α−m = 2α is determined from the equation

kl sin
(
αi

p − α
)

cos α = π (p + m). Particularly, at α=0 or at

kl sin
(
αi

p

)
= π (p + m) (1.31)

the corresponding harmonic propagates toward the incident wave. The creation of
such a nonspecular reflecting mode is called autocollimation.

Not all the amplitudes RAA
np and TBA

np are equally useful for the physical analysis
– in the far zone, the secondary field is formed only by the propagating harmonics
with the numbers n such that ReΓn ≥ 0. But the radiation field in the immediate
proximity of the grating requires taking into account the contribution of evanes-
cent harmonics (n: ImΓn > 0). Moreover, in some situations (resonance mode) this
contribution is the dominating one.

The number of propagating harmonics N = ∑
n

ReΓn
/|Γn| determines the num-

ber of channels that are open for radiation into free space and is the most general
characteristic of the diffraction process. If the grating geometry is such that the
channels in region G with the known wave propagation conditions can be chosen,
then it is possible to introduce one more analogous identifier M which denotes the
number of electromagnetically open channels at one period of the structure. These
channels connect the domains of reflected and transferred via grating field. The joint
qualitative characteristic {N, M} taking into account the most common properties of
gratings that are described by the consequences of the complex power theorem and
the Lorentz lemma, enables us, in some cases, to predict, rather precisely, the fea-
sibility of one or other scattering modes, whose specifics are determined by purely
quantitative energy parameters. Thus, for example, it can easily be shown [18] that in
the area of parameter values that corresponds to the vector {N, M} with N = M = 1,
a countable number of values h �= 0 can always be found such that

∣∣∣RAA
00

∣∣∣ = 0,
∣∣∣TBA

00

∣∣∣ = 1 (1.32)

independent of the general configuration of the boundaries of a semitransparent
structure. If (1.32) is fulfilled in some point in the region {1,1}, it means that the
primary wave propagates entirely (without reflection) into the zone B. The value
of arg TBA

00 determines the equivalent phase incursion caused by the presence of the
grating. The effect of complete transition is usually accompanied by an increased
field strength in G and neighboring region, and the more pronounced it is, the
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narrower the coupling channels and the higher the structure. Such observations sug-
gested to many researchers the idea of a resonant nature of such fully transparent
modes. However, this suggestion has been strictly proven only in [16]. This fact
became the first in the chain of the results that afterward constituted the spectral
theory of gratings (see Section 1.3).

1.2.2 The Simplest Physical Consequences from the Poynting
Theorem and the Lorentz Lemma

From the relations (1.29) and (1.30), having rather general character, several simple
and complex corollaries follow [18, 20]. Their usage allows controlling the results
of numerical experiments and makes their physical interpretation easier. Sometimes
these corollaries considerably reduce the volume of calculations or reduce the solu-
tion to one problem to the solution of another one that is mere simple or already
resolved. Further, we shall list several of them relying for the most part on the results
presented in [18]:

• The first line in (1.29) is the energy conservation law for propagating waves. In
the case, when ImΓp = 0 , the energy of scattered field is connected in natural
way with the energy of the incident wave. The energy of the wave Ũi

p (g,k) is
partially absorbed by the grating (only if W1 �= 0), and the remaining part is
distributed between spatial harmonics propagating in the domains A and B (it is
reradiating into the directions z = ±∞). In the case of incidence by a plane
inhomogeneous wave, the total (reradiated and absorbed) energy is defined by
the imaginary part of reflection coefficient which in this case cannot be negative:
ImRAA

pp ≥ 0 .
• The relations in the second line in (1.29) restrict the value of density of near field

of plane gratings (h = 0 and W2 = 0); it cannot be big at frequencies remote from
branch points of the surface K (far from grazing points k±n or threshold points).
In the case of incidence by a plane homogeneous wave, density of near field of
plane gratings is defined by imaginary part of reflection coefficient which in this
case cannot be positive: ImRAA

pp ≤ 0.
• For a perfect (σ (g) ≡ 0) semitransparent grating that is symmetric with respect

to the plane z = −h
/

2, when ReΓ0 > 0 and ImΓn > 0, n �= 0, it follows from
(1.29) that

∣∣
∣RAA

00

∣∣
∣
2 +
∣∣
∣TBA

00

∣∣
∣
2 = 1,

{∣∣RAA
00 − TBA

00

∣∣2 = 1; E − case
∣∣RAA

00 + TBA
00

∣∣2 = 1; H − case
,

or

Re RAA
00 ReTBA

00 = −Im RAA
00 Im TBA

00 . (1.33)
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The equality (1.33) means that the difference between arguments of complex
reflection and transmission coefficients can differ from the value π

/
2, only by

a value that is multiple of π. We arrive at the same conclusion on estimating
the values of arg RAA

00 − arg RAA−1,0 for perfectly reflecting gratings with planes
of symmetry y = const + nl, n = 0, ± 1, ± 2,..., that is operating in regime of
autocollimation reflection on minus first spatial harmonic (ImΓn > 0, n �= 0,−1).

• Apparently, for periodic gratings with planes of symmetry y = const + nl, n =
0, ± 1, ± 2,..., RAA

np (Φ) = RAA−n,−p (−Φ) and TBA
np (Φ) = TBA−n,−p (−Φ). In this

case, the following equalities hold together with (1.30):

RAA
np (Φ)Γn (Φ) = RAA

pn (Φ)Γp (Φ) , TBA
np (Φ)Γn (Φ) = TAB

pn (Φ)Γp (Φ) .
(1.34)

• The relation WR
n0 (Φ) = WR

0,−n (−Φ) is known in optics [19] as the reciprocity
theorem for reflecting gratings. It follows from (1.30) that more general result
takes place:

WR
np (Φ) = WR−p,−n (−Φ) , (1.35)

which holds for all p and n, corresponding to propagating harmonics, and for all
semitransparent and reflecting gratings.

• When n = p = 0 we derive from (1.30)

RAA
00

(
αi

0

) = RAA
00

(−αi
0

)
. (1.36)

That means that even in the case of an excitation of a semitransparent or reflecting
grating that is nonsymmetric with respect to the planes y = const + nl, the
reflection coefficient does not depend on the sign of the incidence angle. When
ImΓn > 0, n �= 0 and σ (g) ≡ 0, it follows from (1.29) that the value of

∣∣TBA
00

∣∣ is
also independent of the sign of αi

0.
• Consider the strip jalousie-type grating that is put in the field of H-polarized plane

wave Ũi
0 (g,k) incoming at an angle of αi

0 = −ϑ (see Fig. 1.3a). This field is
not disturbed by the grating, as the vector �E (g,k) is perpendicular to infinitely
thin, perfectly conducting strips. Hence for such a grating RAA

00

(
αi

0

) = 0 and∣
∣TBA

00

(
αi

0

)∣∣ = 1 . It follows from (1.36) and (1.29) that in the case αi
0 = ϑ there

is no specularly reflected wave either, and in the frequency range where only
principal harmonics are propagating ( ImΓn > 0, n �= 0) the total energy is still
concentrated in the first transmitted spatial harmonic.

• An echelette grating with rectangular mounts has the ability to perform total
reflection of H-polarized plane wave directly back in the case when incidence
angle of the wave Ũi

0 (g,k) is equal to the blaze angle (see Fig. 1.3b; αi
0 =

90◦ −ϑ ) and one higher-order harmonic (let it be n = −m) is in autocollimation
mode (kl sin

(
αi

0

) = πm). This ability is widely exploited in numerous optical
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Fig. 1.3 Nontrivial consequences from reciprocity theorem: The effects of (a) total transmission
and (b) total autocollimation reflection of the H-polarized plane wave

and microwave devices. The obvious geometrical resonance (the total field meet-
ing all requirements of the problem (1.26) has the form of a sum of the fields for
incident and reflected waves that are propagating in strictly opposite directions)

allows one to write in this case:
∣∣∣RAA−m,0

(
αi

0

)∣∣∣ = 1, RAA
n0

(
αi

0

) = 0, n �= −m. Let

m = 1 and the value of k is such that ReΓn
(
αi

0

) = 0 for all n �= 0, − 1. Then
from (1.36) and (1.29), we obtain

RAA
00

(
αi

0

) = RAA
00

(−αi
0

) = 0,
∣∣∣RAA+1,0

(−αi
0

)∣∣∣ = 1. (1.37)

The change of the angle αi
0 to the angle −αi

0 is equivalent to turning the
grating for 180◦ with respect to the z-axis (see Fig. 1.3b). It follows from (1.37)
that as the case stands, echelette preserves the ability to reflect incident wave into
back direction in spite of the distortion of the geometrical resonance relations.

• When n = p = 0, we derive from (1.30) the equality TBA
00 (Φ) = TAB

00 (−Φ),
that is, for any semitransparent grating the transmission coefficient stays the same
when the direction of incident for wave Ũi

0 (g,k) is changed to its opposite.
• The relations (1.29) and (1.30) give the possibility to formulate the following

regularities for the theory of ideal asymmetrical reflecting gratings (see Fig. 1.1c).
Let the parameters k and Φ be such that ReΓ0 (Φ) > 0 and ReΓn (Φ) = 0,
n �= 0. If the incident wave is an inhomogeneous plane wave Ũi±p (g,k, ±Φ),
then
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∣∣
∣RAA

0,±p (±Φ)

∣∣
∣
2

ReΓ0 (±Φ) = 2ImRAA±p,±p (±Φ) ImΓ±p (±Φ). (1.38)

In view of RAA
pp (Φ) = RAA−p,−p (−Φ), we derive from (1.38)

∣
∣∣RAA

0p (Φ)

∣
∣∣ =

∣∣∣RAA
0,−p (−Φ)

∣∣∣ and

∣∣∣RAA
p0 (Φ)

∣∣∣ =
∣∣∣RAA−p,0 (−Φ)

∣∣∣ ,
∣∣∣RAA

p0 (0)

∣∣∣ =
∣∣∣RAA−p,0 (0)

∣∣∣ , p = ±1, ± 2,.... (1.39)

It is easy to get the physics that is described by equalities (1.39). The case of
symmetrical incidence (Φ = 0) is of specific interest: within the frequency range
where only principal spatial harmonic can propagate, the absolute values of higher
damped positive (n = 1,2,...) and negative (n = −1, − 2,...) harmonics are equal
to each other even for asymmetric gratings. Asymmetry only results in distortion
of the phase symmetry of higher harmonic amplitudes. The symmetry of absolute
values of amplitudes becomes invalid as k grows, just after the appearance of higher
propagating modes.

1.3 The Spectral Theory of Gratings

1.3.1 Introduction

Every next book on the subject [16–19, 21] closed a certain further stage in the
development of electromagnetic theory of gratings. The advancement has never
been monotonous but it has provided results, which have spurred our interest, and it
has furnished a basis for opening new scientific frontiers where we have managed to
make progress and consolidate positions. The accomplishments have been accumu-
lating, and so have certain inevitable problems whose thoughtful analysis has taken
a long time. In our swift movement forward, we have always set them aside for the
time being.

For the most part, the troubles we refer to have centered around the question
of the uniqueness of the solution of the initial model boundary value problems,
namely elliptic problems in nonclassical domains extended to infinity along one
or more directions. To extract a unique physical solution, we must invoke some
additional conditions. Their applicability (efficiency) is tested via one of the three
classical principles – the radiation, limiting absorption, and limiting amplitude prin-
ciples. For grating problems, it is common to take either partial radiation conditions
or Rayleigh radiation conditions, suggesting a general analytic representation of
the secondary field in terms of outgoing homogeneous and inhomogeneous plane
waves in the reflection and transmission zones of the structure. The unique solv-
ability of the boundary value problem completed with conditions of the above kind
has been rigorously proved only in the absorbing medium case [16, 22]. In actual-
ity, the model problems are formulated and solved in the limiting case of a lossless
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medium. The existence and uniqueness of the solution is presumed (without hes-
itation), even if there are facts which speak against it [16]. These are weak spots
in the theory of gratings, which reduce the sturdiness of the numerical algorithms
for solving model boundary value problems and shake the reliability of the physical
interpretation of the obtained numerical results. Owing to the so-called spectral the-
ory of gratings [10] many questions have been cleared up. The topics of the spectral
theory are

• research into characteristic features of the analytic continuation of the solutions
to the elliptic boundary value problems to a complex (nonphysical) range of
parameters;

• recognition of these peculiarities’ role in the formation of a resonant response of
a periodic structure to an external excitation by a monochromatic quasi-periodic
or a compact source, or a wideband signal.

All mathematical models of resonant electromagnetic scattering are in conflict,
bigger or smaller, with major physical principles. Abstract mathematical analy-
sis concerned, for one, with the completion of the physical range of frequency,
distance, energy, and other considered quantities offers expedients that can partly
compensate for the conflict. The first trial of such an abstraction in classical elec-
trodynamics – the transition to complex amplitudes, not existing in nature – was
readily acknowledged, the benefits of dealing with these handy representations were
promptly recognized. Complex functions (components of the field strength vectors)
of real variables (frequency and spatial coordinates) have long been standard objects
in the theory of stationary wave processes. Yet those who looked into the physics of
resonant processes (spatial–frequency and spatial–temporal transformations of the
field, with wave resonant scattering expected) were the first to feel uncomfortable
in these frames. Also, problems were faced by those making efforts to justify the
use of singular expansion technique or to get rid of idealizations like “a grating
in the plane wave field or in the quasi-periodic source field” and to go over more
practical situations, such as “a grating in the field of a plane waves beam or in the
field of a finite duration signal.” So, it was time to have the arguments (frequency
and geometry parameters, the parameter Φ of the Floquet channel) complex-valued
too, and to trace the features of the analytic continuation of the complex-valued
solutions of the model boundary value problems. The motivation was quite clear –
locally the behavior of a function of complex variable is completely determined by
the character of singular points nearby. Yet it was not easy to realize. An obstacle
arises when we try to come to nothing more than simple domains if we continue the
classical boundary value problems in theory of gratings to the complex parameter
range. As a result, the so-called continuous spectrum appears, an object unrelated to
the physics of the processes analyzed. To avoid this difficulty, we have been seek-
ing the analytic continuation within its natural boundaries, which gave rise to so
exotic (at first glance) domains of complex frequency k and complex parameter Φ

as infinite-sheeted Riemannian surfaces with algebraic branch points of the second
order [10]. In these areas, the functions describing fields and complex amplitudes of
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the fields are found to be usual meromorphic functions of the parameter k or Φ. The
branch points only affect the appearance of the local (Riemannian surface-related)
variable. This fact, that was shown by using the Fredholm theorem for compact
finite-meromorphic operator-functions [15, 23, 24], opened for us a diversity of
additional possibilities for the effective quantitative and qualitative examination of
both steady-state and transient fields produced by gratings [1, 10].

1.3.2 The Grating as an Open Periodic Resonator

Let Φ have a fixed value. Then the following Statements 1.4–1.6 that qualitatively
characterize the grating as an open periodic resonator are true [1, 10, 25–27].

Statement 1.4 (definition and qualitative characteristics of the frequency spectrum;
see also Statement 1.3) The analytic continuation of the solutions Ũ (g,k) of the
problems (1.20), (1.22), and (1.26) into the domain of complex (nonphysical) k val-
ues produces the functions Ũ (k) with a natural domain of definition, K. The sets of
poles

{
k̄n
} = Ωk of the functions Ũ (k), which are meromorphic in the local vari-

ables on the surface K (just a countable sets without finite accumulation points)
determine the complete frequency spectra of the gratings as the open periodic res-
onators: if k = k̄n, the homogeneous problems (1.20) and (1.22) (f̃ (g,k) ≡ 0),
and (1.26) (Ũi

p (g,k) ≡ 0) are resolvable in a nontrivial way in K, and the corre-

sponding solutions u(j)
0

(
g,k̄n
)
, j = 1,2,...,J have the meaning of free states (natural

oscillations) of the structures field at the eigenfrequency k̄n.

Reliable algorithms for the numerical solution of the spectral problems (the
search of free oscillation eigenfrequencies and eigenfields) for open periodic res-
onators are conventionally [10, 28] based on the equivalent substitution of the homo-
geneous boundary value problems of (1.20) and (1.22) type by the homogeneous
operator equations

B (k) b = 0; B (k) : l2 → l2, b = {bn} ∈ l2, k ∈ K, (1.40)

l2 is the space of the infinite sequences a = {an} :
∑

n
|an|2 < ∞. It is important that

the infinite matrix B (k) should have the representation B (k) = E + C (k), where
E is the identity matrix and C (k) is the finite-meromorphic matrix-valued function
producing the kernel operator or the Koch matrix. Only in this case it is safe to
believe that det [B (k)] [29] exists and an algorithm for finding the eigenfrequencies
k̄ ∈ Ωk can proceed from an approximate solution of the rigorous characteristic
equation

d (k) = det [B (k)] = 0, k ∈ K. (1.41)

Assume that a certain root k̄ of the scalar equation (1.41) does not coincide with
certain pole of the matrix-valued function B (k). This root multiplicity determines
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the multiplicity M = M (1)+M (2)+ ...+M (J) of the eigenvalue k̄ of the operator
equation (1.40), where (see also Statement 1.3) J is the number of linearly indepen-
dent eigenfunctions u(j)

0

(
g,k̄
)

(the number of different free oscillations of the field)
related to the eigenvalue (eigenfrequency) k̄ and M (j)−1 is the number of the asso-
ciated functions u(j)

m
(
g,k̄
)
, m = 1,2,...,M (j)− 1 for the eigenfunction u(j)

0

(
g,k̄
)
. The

pole order of the resolvent A−1 (k) (the Green function G̃ (g,g0,k,Φ) or the funda-
mental solution of problems (1.20) and (1.22) at the point k = k̄ is given by the
maximum value M (j).

In numerical experiments, problems (1.40) were separately solved for differ-
ent symmetry classes of considered free oscillations, and no roots of above-unit
multiplicity were found [10]. Under the assumption that the poles of the resolvent
A−1 (k) are simple (see, e.g., Statement 1.6), the multiplicity increase means the
eigenfrequency k̄ degeneration – one eigenfrequency corresponds to several lin-
early independent free oscillations of the open periodic resonator field. Normally
there is little chance that changes of geometrical or constitutional parameters within
their physical range will create a degeneration of this kind. Although a possibility
exists for sufficiently close, in the metric of the corresponding complex space, rel-
ative position of two eigenfrequencies (for instance, k̄1 and k̄2) corresponding to
free oscillations of different types but the same symmetry class. As some eigenfre-
quencies get close, the spectral characteristics of the “interacting” free oscillations
experience local or global changes (see Section 1.3.4 and [1, 10, 30, 31]). A dis-
turbance interferes in the regular run of the spectral curves k̄ (η) realizing the zero
lines of the function d (k,η) as the mapping d (k,η) : K × R1 → C, where C is
the complex plane and R1 is the real space of some varied parameter η of the prob-
lem. This means [32–34] that the trajectories k̄ (η) pass near the isolated singular
point {k0,η0} of the mapping d (k,η) : C × C → C (here, as in the numeri-
cal experiment, the range of spectral parameter k is narrowed, while the physical
range of the parameter η is expanded). The quantity γ = d (k0,η0) evaluates
the measure and the character of the mutual influence (coupling) of the oscilla-
tions as their eigenfrequencies come close. Also, it determines principal parameters
of the anomalous and the resonant spatial–frequency transformations of the field
Ũ (g,k,η) with real k and η values falling into the effective area of the critical point
{k0,η0} [31].

Statement 1.5 (rough localization of the spectrum Ωk) The spectrum Ωk (η) of an
open periodic resonator given by certain generalized parameter η is not empty in
the bounded domain of the surface K . The only exception may be the isolated points
ηm from continuous range of parameter η at which all components of the spectrum
Ωk (ηm) tend to infinity.

For volume gratings (h �= 0) with an ideal dielectric loading (σ(g)≡0), the
following statements are true.

• For Imk �= 0, Re k �= 0, the homogeneous problem (1.20) and (1.22) has no
nontrivial solutions such that ImkRe k

∑

n

(|An|2 + |Bn|2
)
ReΓn > 0. In particular,
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there are neither outgoing (ReΓnRek > 0 for all n) solutions in the areas, where
Imk > 0 nor arriving (ReΓnRek < 0 for all n) solutions, where Imk < 0.

• For Imk = 0, Re k �= 0, there are no nontrivial solutions such that∑

n

(|An|2 + |Bn|2
)
ReΓn �= 0. This specifically means that for both not arriving

(ReΓnRek ≥ 0 for all n) and not outgoing (ReΓnRek ≤ 0 for all n) solutions, only
those amplitudes An and Bn can be nonzero that are corresponding to ReΓn = 0.

• For Imk �= 0, Re k = 0, there are no nontrivial solutions such that ImΓn > 0 for
all n = 0, ± 1, ± 2,...

• For |Imk| ≥ |Re k|, there are no nontrivial solutions such that∑

n

(|An|2 + |Bn|2
)
ImΓn ≥ 0. In particular, there are no solutions with ImΓn ≥ 0

for all n.

For plane gratings (h= 0), the homogeneous problems (1.20) and (1.22) have no
nontrivial solutions such that

∑

n

(
|An|2 + |Bn|2

)
ReΓn �= 0 and (or)

∑

n

(
|An|2 + |Bn|2

)
ImΓn �= 0.

The spectrum of these gratings at the first sheet of the surface K can include only
the points k̄ = k±n : Γn

(
k±n
) = 0.

For any parameter values, the domains 0 < arg k < π and (5/4)π < arg k <

(7 /4)π on the first sheet of K (the cross-hatched area in Fig. 1.2a minus the segment
|Rek| ≤ |Φ0|) do not contain points from the spectrum Ωk. If σ (g) ≡ 0 and k̄ ∈ Ωk,
the surface K has a sheet whose point −k̄ will also belong to the set Ωk.

Statement 1.6 Let σ (g) ≡ 0 and no real-valued eigenfrequency k̄ on the first sheet
of the surface K coincides with any branch point k±n . Then all poles of the Green
function G̃ (g,g0,k), that is the kernel of the resolvent A−1 (k) , or the fundamental
solution to the problems (1.20) and (1.22) are simple at the points k̄.

Let us return to Statements 1.2–1.5. In general, the spectral theory results partly
mentioned here make many previously obtained solutions ambiguous and enable
us to study problems of the dynamic theory of open periodic resonators in terms
of formally correct analytic and computational procedures, suggesting an optimal
way to the goal. Thus, due to the fact that Ũ (g,k) (as well as G̃ (g,g0,k); A (k) and
B (k); RAA

np (k) and TBA
np (k)) are meromorphic functions, one should inevitably, while

studying any kind of singularity of the behavior of the relevant functions in the real
frequency domain, pay attention first of all to singular points of the analytic con-
tinuation of the functions into the complex frequency domain. The analysis of local
anomalous effects and phenomena is based on fundamental results of the theory of
functions. In this way, it becomes possible to describe analytically the mechanisms
of the resonant response of the structures in the form of local representations and
expansion theorems. There are several simple examples [1, 10, 26, 35] confirming
this statement.

The threshold effects in classical electromagnetics (first reported by R.W. Wood
in 1902) have been studied intensively in numerous papers. However, it was the
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analytic continuation of the solutions Ũ(g, k) of the elliptic boundary value prob-
lems (1.26) into the complex frequency domain that described in a most natural way
the behavior of the complex amplitudes RAA

np (k) and TBA
np (k) of partial components

of the diffraction field near the points k±n where new homogeneous (propagating)
waves emerge (see, for example, ref. [26]). This approach can lend itself well to the
treatment of other local effects associated with electromagnetic radiation, propaga-
tion, and scattering. It is good enough to merit application to various methodological
problems in theoretical radio physics. Take as an example problems related to the
analysis of characteristic features of the field near singular points (edges) in the
geometry of the structures or those concerned with the justification of the Rayleigh
hypothesis. In the first case, the analytic continuation over the distance up to the
edge will be natural. In the second, it is worth doing over spatial coordinates. So,
different as they are, these problems share a common idea: in order to get rigorous
results, one should abandon the framework of the conventional representations and
set off for areas of physically unrealizable parameters in order to take advantage in
full measure, of a mathematical apparatus adequate to the physics of the considered
phenomena.

Let now a reflective grating (see Fig. 1.1c) be excited by an E- or H-polarized
wave Ũi

0 (g, k) in a regime with |Φ| ≤ 0.5 (principal range of Φ). Assume that the
scattered field possesses only one – principal – propagating harmonic (ReΓ0 > 0
and ImΓn > 0 for n = ±1, ± 2,... – it is the single-wave mode). For a reflec-
tive structure in such a regime

∣∣RAA
00 (k)

∣∣ = 1, i.e.,
[
RAA

00 (k)
]∗

RAA
00 (k) = 1

(hereafter the asterisk ∗ indicates complex conjugation). We continue RAA
00 (k) into

the domain of complex values of k on the first sheet of the surface K. From

ln
[[

RAA
00 (k)

]∗
RAA

00 (k)
]
= 0 for Imk = 0, using the symmetry principle [36],

we obtain ln RAA
00 (k∗) = − ln

[
RAA

00 (k)
]∗

or RAA
00 (k∗)

[
RAA

00 (k)
]∗ = 1 . If the

function RAA
00 (k) has a simple pole in the point k = k̄, then RAA

00

(
k̄∗
) = 0. If only

the first two terms in the expansion of RAA
00 (k) into the Laurent series are nonzero,

we get, in view of the above, the following representation that is valid in a certain
vicinity D of the point k̄:

RAA
00 (k) = r−1

k − k̄
+ r0 = ei arg r0

k − k̄∗

k − k̄
= ei

(
arg r0−2 arg

(
k−k̄
))

; Imk = 0. (1.42)

From (1.42) it follows that, if Imk̄ � 1, by varying the real frequency parameter
k in a small interval containing the point k = Rek̄, the phase of the reflection coeffi-
cient RAA

00 (k) changes approximately by 2π. This dynamic phase effect can be used
in the design of tunable dispersive open resonators with selective grating mirrors
and other radio-engineering devices in the millimeter and submillimeter wave range.
From this effect one can also obtain reliable information about the eigenfrequency
k̄ of the structure.

Multipole representations like (1.42) are valid (see [1, 10, 35]) almost on the
whole single-wave domain for both reflective and semitransparent structures sym-
metric about the z=−h/2 plane when the RAA

00 (k) (or TBA
00 (k)) analytic continuation
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from the corresponding real k interval into the K first sheet reveals a finite number
of eigenfrequencies of free field oscillations. Any analytic error estimation is impos-
sible for the solutions of the diffraction problems obtained by this method. But the
error, according to computational experiments, is usually not over several percent
throughout the whole single-wave domain. A most essential disagreement with rig-
orous results is far from the real parts of complex eigenfrequencies. The resonant
behavior of the diffraction characteristics is described very accurately.

1.3.3 The Grating as an Open Periodic Waveguide

Change now the roles of the parameters k and Φ (k > 0 is fixed, Φ becomes a
spectral parameter) and consider the grating as an open periodic waveguide. The
following Statements 1.7–1.12 are true [10, 37, 38].

Statement 1.7 (definition and qualitative characteristics of eigenwaves) The ana-
lytic continuation of the solutions Ũ (g,k,Φ) of the problems (1.20), (1.22), and
(1.26) into the complex domain of Φ yields the meromorphic functions Ũ (Φ) whose
natural domain of definition F is the infinite-sheeted Riemann surface consisting of
planes Φ ∈ C cut along the directions

κ2 − (n + ReΦ)2 + (ImΦ)2 = 0,

n = 0, ± 1, ± 2,..., ImΦRe (n +Φ) ≥ 0, κ = kl/2π.
(1.43)

The systems
{
Φ̄n
} = ΩΦ of poles of the functions Ũ (Φ) (no more than count-

able sets with no finite accumulation points) determine the complete spectra
(eigenvalues) of the gratings as open periodic waveguides: if Φ = Φ̄n , the homo-
geneous problems (1.20), (1.22), and (1.26) have nontrivial solutions in F, and
corresponding solutions u(j)

0

(
g,Φ̄n
)

are eigenwaves of the periodic structures.

The first sheet of the surface F (values of pairs {Φ → Γn (Φ)}, n = 0,±1,±2,...)
is determined by the radiation condition (1.22), which appears to be ImΓn (Φ) ≥ 0,
ReΓn (Φ) ≥ 0, n = 0, ± 1, ± 2,... on the axis Im Φ = 0 (see Fig. 1.2b). Here,
Γn (Φ) = Γ−n (−Φ). The distinction of the next sheets is that for the finite number
of values of the index n, the signs (root branches) of Γn (Φ) change to the opposite
ones. The cuts (1.43) originate from the real algebraic branch points Φ±

n :Γn
(
Φ±

n

)

= 0 or Φ±
n = ±κ− n. On these curves, |ReΓn (Φ)| = |ImΓn (Φ)|.

The properties of the eigenwaves of an open periodic waveguide are governed by
the position on the surface F of the relevant propagation constants. Their fields in A
and B domains can carry (in various combinations):

• harmonics not arriving onto the grating from |z| = ∞ (ReΓn ≥ 0) or not outgoing
from it (ReΓn ≤ 0);

• harmonics not incrementing (ReΓnImΓn ≥ 0) or not decrementing
(ReΓnImΓn ≤ 0) in the propagation direction z;
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• harmonics that do not increment (Re (n +Φ) ImΦ ≥ 0) and do not decrement
(Re (n +Φ) ImΦ ≤ 0) in the y-propagation direction.

Eigenwaves whose field decays exponentially away from the grating are known
to be the surface waves. If not, the leaky waves take place. Eigenwaves whose field
does not change in a direction perpendicular to the grating plane are piston waves.
Waves whose eigenvalues Φ̄ are situated on the real axis of the first sheet of the
surface F will be called real waves. Waves with complex eigenvalues Φ̄: ImΦ̄ �= 0
will be called complex waves. Real waves fall into the slow (max

n

∣∣k
/
Φn
∣∣ < 1)

and the fast (max
n

∣∣k
/
Φn
∣∣ ≥ 1) waves. Here, of course, only those n are considered

whose eigenwave field amplitudes An and Bn in the domains A and B are not zero.

Statement 1.8 If there is an eigenwave u0
(
g,Φ̄
)

, there will also be an eigenwave
u0
(
g,Φ̄+ p

)
, with p being an arbitrary integer and u0

(
g,Φ̄
) = u0

(
g,Φ̄+ p

)
.

It means that all information about the eigenwaves associated with eigenvalues Φ

arbitrarily located on the surface F is available from the solution to the homoge-
neous problems (1.20), (1.22), or (1.26) in some spaces belonging to F sheets and
separated by an arbitrary strip whose range of ReΦ equals unity. One possible
version of the selected strip is shown in Fig. 1.2b .

Statement 1.9 The spectrum ΩΦ (η) of an open periodic waveguide given by a
generalized parameter η is not empty in a bounded part of the surface F . The only
possible exception can be the isolated points ηm from the continuous range of the
parameter η. At them, all components of the spectrum ΩΦ (ηm) tend to infinity.

Statement 1.10 (rough localization of the spectrum ΩΦ) Let ImΦ̄ = 0. Then there
exist no eigenwaves u0

(
g,Φ̄
)

such that

∞∑

n=−∞

[
|An|2 + |Bn|2

] {ReΓn
(
Φ̄
)

ImΓn
(
Φ̄
)
}

�= − k2

lβ0

{
W1
(
Φ̄
)

W2
(
Φ̄
)
}

;

W1
(
Φ̄
) = 1

k

∫

G

σε0
∣∣�E∣∣2dg,

W2
(
Φ̄
) =
{+
−
}∫

G

[
μμ0
∣∣ �H∣∣2 − εε0

∣∣�E∣∣2
]

dg, β0 =
{
ε0
μ0

}
;

{
E − case
H − case

}
,

G = {g ∈ Qnew: − h ≤ z ≤ 0
}

.

This statement suggests the following conclusions.

• For σ (g) �≡ 0, the real axis of the first sheet of the surface F does not contain
eigenvalues Φ. Eigenvalues Φ of a plane grating (h = 0) can coincide here only
with the branch points Φ±

n = ±κ− n.
• If an ideal volume grating (σ (g) ≡ 0 and h �= 0) supports a real eigenwave

u0
(
g,Φ̄
)
, then the amplitudes An

(
Φ̄
)

and Bn
(
Φ̄
)

of the partial components of
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this wave field vanish for n such that ReΓn
(
Φ̄
)

> 0. In the E (H)-polarization
case, the electric field energy of this wave in the domain G is always greater
(smaller) than the magnetic field energy.

• All eigenwaves whose eigenvalues belong to the real axis on the first sheet and do
not coincide with branch points are the surface waves. Those propagating along
the grating can only be the slow waves.

• For σ (g) �≡ 0, there are no surface waves u0
(
g,Φ̄
)

that transfer energy in the
positive (for ImΦ̄ < 0) or negative (for ImΦ̄ > 0) directions of the y-axis.

• For σ (g) ≡ 0, there are no complex (ImΦ̄ �= 0) surface waves u0
(
g,Φ̄
)

that
transfer energy along the structure.

• If u0 (g) =∑
m

u0
(
g,Φ̄m

)
, where u0

(
g,Φ̄m

)
are different real surface waves, then

ReP
[
u0 (g) ,�y,ỹ

] = ∑
m

ReP
[
u0
(
g,Φ̄m

)
,�y,ỹ
]
. Here, P

[
u0 (g) ,�y] is the �y-directed

flux of the Poynting vector of the wave field u0 (g) crossing the complete y = ỹ
section of the periodic structure.

Statement 1.11 For perfect gratings (σ (g) ≡ 0) symmetric about the planes
y = const + nl, n = 0, ± 1, ± 2,..., points of the spectrum ΩΦ are quadrupled,{
Φ̄, − Φ̄,Φ̄∗, − Φ̄∗}, which is to say that if some point Φ̄ is located, for instance,

on the first sheet of the surface F, the points −Φ̄, Φ̄∗, − Φ̄∗ situated on a certain
(the same or another) sheet of F also belong to the set ΩΦ.

A peculiar feature of the approach whose results have been partly formulated in
Statements 1.7–1.11 distinguishes it from the previously used methods. Namely, the
relevant boundary value problems are considered over the natural range of Φ. The
complete Riemannian surface formulation of the spectral problems with a prop-
erly extended radiation conditions eliminates subjective elements inevitable in an
effort to limit the Φ range to simple, physical regions. This approach is capa-
ble of dealing with any eigenwave type – surface, leaky, or piston. The classical
method of formulating and solving self-adjoint problems (L2-theory) has similar
possibilities. However, their realization imposes some additional difficulties, e.g.,
the continuation through continuous spectrum [39].

The results stated above qualitatively characterize the physical discrete spectrum
ΩΦ. Also, they substantially simplify the numerical analysis, reducing the search
for eigenconstants and suggesting characteristic features of their dynamics under
changes of parameters, providing thereby the necessary basis for constructing rig-
orous and efficient computational procedures [10]. Thus, e.g., from Statement 1.11
follows that the propagation constants Φ̄ of the eigenwaves move over the surface
F in quadruples. If the imaginary part of Φ̄ is zero, then, in order for the respective
eigenwave to be able to turn from a real into a complex one by variation of parame-
ters, this wave should collide with another real eigenwave: only two waves from the
point Φ̄ = Φ̄1, ImΦ̄1 = 0, where their propagation constants coincide, can simulta-
neously enter the domain of complex values of the spectral parameter Φ̄. Or, rather,
only the projections of the propagation constants on the first sheet of the surface
F coincide; the points Φ̄1 themselves that are corresponding to both waves can in
the general case belong to different sheets of F. The collided real waves turn into
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complex ones in different half-planes of the sheets of the surface F: the propagation
constants have increments to the imaginary part that are equal in the absolute value,
but with opposite signs.

We address some result from [1] (see Fig. 6.4 in [1]). In a rectangular metal grat-
ing, two real H013-waves collide at the point Φ̄ = Φ̄1 = 0.5 as parameter k varies.
Having collided, they turn into the complex waves, with the ReΦ̄ values unchanged,
both equal to 0.5, and the ImΦ̄ values have opposite signs. The eigenwave field
transformations also go in opposite directions until they take the H021-wave typical
appearance. Then, at a larger k, the waves collide again, the complex waves turn into
the real ones classified as slow H021-waves: on a short range of frequency parameter
k, both waves change from H013 to H021. All these behavioral features of grating
spectrum ΩΦ components reflect certain general regularities revealed by the quali-
tative analysis of spectral characteristics of open periodic waveguides [10, 37, 38].
However, the interaction of two eigenwaves whose eigenvalues come close in the
complex space is of particular interest. The point is that usually the “interaction”
either locally changes the wave modes (pure mode → hybrid mode → recovering
of the preceding pure mode) or results in a wave mode exchange (two different pure
modes → hybrid modes → exchange of the pure modes) [1, 10, 40]. The com-
ponents of the spectrum ΩΦ cannot vanish anywhere in the finite part of F under
changes of the material and geometric parameters of the grating (see Statement 1.9
and [10, 11]). Hence, slow eigenwaves should, without exception, manage to pass
the nontransmission zones of an open periodic waveguide. Turning for a while from
real into the complex waves, they implement the only possible variant of a smooth
transition into the domain of parameter values, where they can propagate again in
their inherent mode.

Let now G̃ (g,g0,Φ) be the Green’s function of a grating in the field of a quasi-
periodic point source

f̃ (g,Φ) =
∞∑

n=−∞
δ (y − y0 − nl,z − z0) ei2πnΦ; 0 < y0 < l, g0 = {y0,z0} ∈ Qnew

a .

In other words, let G̃ (g,g0,Φ) be the fundamental solution of problems (1.20) and
(1.22).

Using the superposition principle and taking into account the representation

δ (y − y0, z − z0) =
0.5∫

−0.5

f̃ (g,Φ)dΦ, (1.44)

we obtain

G̃◦ (g,g0) =
0.5∫

−0.5

G̃ (g,g0,Φ) dΦ. (1.45)
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Here, G̃◦ (g,g0) is the Green’s function of the grating in the field of a point source

(1.44), i.e., the fundamental solution of the operator of the problem of infinite
periodic structure excitation by a compact source or a plane wave beam. These
are the key problems in model synthesis of various quasi-optical devices (beam
formers, absorbing and rescattering coatings, open dispersive resonators with sub-
stantially rarefied spectrum), where gratings act as resonant elements to efficiently
select signals in frequency, polarization, and space [40, 41]. A correct analysis of
these problems is only possible when the radiation condition has been taken into
account, which provides, first, a physically valid solution and, second, admits the
passage from differential to integral representations in standard methods of potential
theory.

The formal approach to the problem using the transformation (1.45) does not
yield quite accurate results [42, 43], as it is necessary to have some information on
the singularities of the integrand (the function G̃ (g,g0,Φ)) along the pass of integra-
tion, about acceptable ways of going around these singularities, etc. The information
of the kind can be only obtained in terms of the spectral theory considering gratings
as open periodic waveguides (see the previous results of the section and [10, 37,
38]). To simplify the case, the statement justified in [10] and based on results from
[44] is presented below to fit the reflective grating geometry such as the one shown
in Fig. 1.1c.

Statement 1.12 Assume that the frequency k > 0 is not critical for a 1-D periodic
waveguide, i.e., the section |Φ| ≤ 0.5 does not contain any eigenvalues of Φ̄ cor-
responding to eigenwaves u0

(
g,Φ̄
)

that do not transfer energy along the structure.
Assume also that among the elements of the set ΩΦ there are no branch points of
the surface F. Then, if r → ∞ (|α| < π/2) and |y| → ∞ (|α| = π/2),

G̃◦ (g,g0) = l
2π

(
2πk

r

)1/2
ei(rk−π/4)

{
∑

n: |κ sin α+n|≤0.5
ηnAn (g0,−κ sin α− n)

}

cos α+

+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

πi
∑

Φm∈M+
ηmRes G̃

(
g,g0,Φm

)
; y > 0

−πi
∑

Φ̄m∈M−
ηmRes G̃

(
g,g0,Φm

)
; y < 0

+ O
(

r−1
)

. (1.46)

Here, z − a = r cos α and y = −r sin α; ηm is a number (1 or 0.5) that is used for
differentiating the contribution of poles and points of stationary phase depending
on their location (inside or at the end of the integration interval); An (g0,Φ) are
the amplitudes of the Green’s function G̃ (g,g0,Φ) harmonics in the expressions like
(1.22); M+ and M− are the finite sets of the real eigennumbers

∣∣Φ̄m
∣∣ ≤ 0.5 corre-

sponding to eigenwaves which transfer the energy along the grating in the positive
and negative y directions, respectively.

By exciting the grating by a compact source (in the plane R2) and by scattering of
plane waves, plane wave packets, and eigenwaves of a periodic open waveguide in
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a system “grating – compact discontinuity,” the radiation conditions following from
relations like (1.46) single out the unique solution of the corresponding diffraction
problems. This solution satisfies the physically valid requirement due to which the
scattered field should be free from waves arriving from infinity into the zone where
the sources and efficient scatterers are concentrated.

The first set of terms in the right-hand side of (1.46) represents a diverging
cylindrical inhomogeneous wave with the amplitude (field pattern)

D (α) = cos α
∑

n: |κ sin α+n|≤0.5

ηnAn (g0, − κ sin α− n). (1.47)

Owing to (1.47), the field pattern in the far zone is completely determined by
the amplitudes of the propagating harmonics of the quasi-periodic Green function
G̃ (g,g0,k,Φ) for Φ = −κ sin α− n, |Φ| ≤ 0.5. In [43] a similar result was obtained.
It is complemented here by the fields of real eigenwaves available from (1.46). They
decrease exponentially for z>a but have the order O(1) for bounded z and |y|→∞.

1.3.4 Some Physical Results of Spectral Theory

In a number of cases, the spectral and scattering characteristics of different type
gratings, thought of as open periodic resonators and waveguides, can be qualita-
tively analyzed by using results reported in Sections 1.3.2 and 1.3.3. However, the
main tool for studying wave and oscillation processes in these structures, treated in
terms of complex boundary value problems, is numerical experiment. The employed
models enable us to obtain all necessary information quickly and with a desired
accuracy. Physical results [1, 10, 40] based on the spectral theory have been obtained
by numerical experiments on analytic regularization models (see [10, 11, 16, 17,
22, 45] and Chapter 2) for waveguide-type semitransparent and reflective grat-
ings. Consideration was mostly given to free and forced oscillations for the case of
E-polarization and for the structures with μ (g) ≡ 1, σ (g) ≡ 0, and piecewise con-
stant ε (g). Often the joint qualitative characteristic {N,M} (see Section 1.2.1) was
invoked, which was readily calculated in those cases for any geometrical parameters
and real-valued k and Φ. Thus, for the grating from Fig. 1.4, N =∑

n
ReΓn

/|Γn| and

M = ∑
m

Reγm
/|γm|. Here, γm =

√
k2ε− (mπ

/
d
)2, m = 1,2,..., and Reγm ≥ 0,

Imγm ≥ 0 are the propagation constants of the H0m-waves within the −h ≤ z ≤ 0
section of a regular plane parallel waveguide (in channel G).

Let us briefly review the physical results from [1, 10, 40] for model structures
like semitransparent rectangular metal gratings. The guiding channels G are filled
with a homogeneous dielectric (see Fig. 1.4). Of concern will be free oscillations
(E-polarization, 0 ≤ Φ ≤ 0.5) whose eigenfrequencies are situated on the first
sheet of the surface K, more specifically, within 0 < k < k+0 = Φ0, where all
the radiation channels into the free space are closed (N = 0), and in the area
Imk ≤ 0 under segments of the real axis corresponding to the values N = 1
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Fig. 1.4 A grating formed by rectangular metal bars

(k+0 < k < k−−1 = −Φ−1) and N = 2. These oscillations are identified as the
H0mn-oscillations, where H0 m is the G channel wave dominating in the oscillation
field, and n is the number of the field variations present along the structure height.
The same-m oscillations belong to one and the same family, and n, the oscillation
ordinal number in the family, determines its class of symmetry about the plane
z = −h

/
2 (depending on whether the oscillation field configuration is symmet-

ric or asymmetric with respect to this plane). For Φ = 0 and Φ = 0.5, the planes
y = pl, p = 0, ± 1, ± 2..., also act as symmetry planes. The distribution of free
oscillations between the two new symmetry classes is determined by the evenness
of index m.

When solving spectral problems within 0 < k < Φ0 (N = 0), where it can
be that M = 0 (0 < k < k1, km is the cutoff point of the H0m-wave), M = 1
(k1 < k < k2), and M = 2 (k2 < k < Φ0 ≤ k3) and h values vary over a sufficiently
wide range (0 < h < H), one finds that the number of free oscillation families
is exactly equal to M, and each has its own bundle of the spectral curves k̄mn (h),
m = 1,2. So, the domain (0;k1) × (0;H) carries no eigenfrequencies of an open
periodic resonator. In the domain (k1;k2) × (0;H), we observe the bundle

{
k̄1n (h)

}

(see Fig. 6.5 in [1]) all of whose components tend, as h → ∞, to the cutoff point of
the H01-wave dominating in the field of the first-family free oscillations. The curves
k̄1n (h) run one above the other in order of increasing index n. For a given h, a larger
n corresponds to a higher k̄1n eigenfrequency. Quite rarefied when the grating height
is small, the spectrum condenses as h increases.

When Φ = 0.5, the bundle
{
k̄2n (h)

}
of spectral curves for oscillations of the

second family in the domain (k2;Φ0)× (0;H) appears as the bundle
{
k̄1n (h)

}
in the

domain (0;k1)× (0;H). As h → ∞, all its components tend to the H0 2-wave cutoff
point k2, which is the boundary of the domain given by the vector {N,M} with N = 0
and M = 2 (that is, plainly a {0,2} vector). The spectral curves of the first- and the
second-family oscillations meet. At their meeting points, one eigenfrequency corre-
sponds to the two oscillations from two different symmetry classes (eigenfrequency
degeneration): the field of one of them is symmetric about the plane y = pl and the
other oscillation field is asymmetric. When the symmetry provided by some special
value of the parameter Φ disappears, the oscillations H01n and H02n of the same
evenness of index n are found to share the same class of symmetry about the plane
z = −h

/
2. Now their spectral curves go apart rather than meeting. In the space of
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the expected meeting, they draw a Vienne-type chart (see, for example, Figs. 3.1 and
3.2 in [10]) that is characteristic of the “interacting” oscillations (responding to that
their eigenfrequencies tend to come close). For small variations of h, the “interact-
ing” oscillations exchange by their major spectral characteristics: by the dynamics
of the eigenfrequency behavior and the mode type. Oscillations entering the inter-
action zone experience the following dynamic changes of their field structure: “two
different pure modes → hybrid modes → exchange of the pure modes.”

An approximate mathematical model of this phenomenon (the intermode cou-
pling effect) for oscillations in closed resonators with excited boundaries was first
given in [46]. There the results of classical excitation theory of self-adjoint operators
are used. For gratings, the analysis of spectral characteristics is based on the solution
of nonself-adjoint problems, i.e., eigenvalues in the general case are complex, and
the eigenfunctions do not form a basis. Therefore, since the model from [46] cannot
be applied, the main research tool here is the computational experiment. The results
from [34, 47–52] prove the general character of the analyzed effect. Evidently, the
conditions required for the existence of the effect can be created in almost any open
resonator: waveguide, periodic, with compact or infinitely expanded boundaries.
The effect of intermode coupling allows the spectral lines of the oscillations that are
comparable regarding the diffraction Q-factor go apart in the complex space without
intersecting, avoiding, in this way the degeneration, i.e., the possibility of existence
of different oscillations from one symmetry class at one frequency k̄. In [46], the
deviation at the resonator boundaries and in its material parameters from ideal ones
are considered to be necessary conditions for realization of this phenomenon. On
the other hand, [53] proves the instability of degenerate states. The combination of
these two results allow us to consider the intermode coupling effect as a reaction
of an imperfect system (in our case – free field oscillations in an open periodic res-
onator) as it approaches an unstable state. The intermode coupling points out the
possibility of degeneration of the oscillations in a certain ideal case that cannot be
achieved by varying the values of parameters in the physical domain (real Φ, h,
d, and so on). The search for degenerate states in open systems is normally asso-
ciated with the requirement of analytic continuation of the solutions of the model
spectral problems into the domain of complex (nonphysical) values of nonspectral
parameters. In the simplest cases, the disappearance of degeneration and passage to
the intermode coupling can be modeled in terms of parameters having conventional
physical meaning, the same as discussed above in the case Φ = 0.5 and real-valued
eigenfrequencies k̄ ∈ (0;Φ0).

Solving the spectral problems for h ∈ (0;H) in the area Imk ≤ 0 under the real
axis segment Φ0 < k < −Φ−1 corresponding to N = 1 and carrying one (M = 1),
two (M = 2), or three (M = 3) cutoffs of the H0 m-waves, we obtain the spectral
curves k̄mn (h) for one (m = 1), two (m = 1,2), or three (m = 1,2,3) families
of free field oscillations in the grating. As h increases indefinitely, all these curves
tend to meet at the cutoff points km of the H0 m-waves. As generally Imk̄mn (h) �= 0
while Imkn = 0, we can state that the oscillation quality Qmn = Rek̄nm

/
2
∣
∣Imk̄nm

∣
∣

infinitely increases as h does so. To simplify the situation, assume that 0 < Φ < 0.5,
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i.e., all oscillations represent only two symmetry classes specified by the evenness
of index n.

If Φ0 < k1 < k2 < −Φ−1 and k3 > −Φ−1, the bundles
{
Rek̄1n (h)

}

and
{
Rek̄2n (h)

}
of spectral curves of the first and second families in the domain

(k1; −Φ−1) × (0;H) appear as the bundles
{
k̄1n (h)

}
and
{
k̄2n (h)

}
of real-valued

eigenfrequencies in the domain (0;Φ0) × (0;H) when Φ = 0.5 and 0 < k1 <

k2 < Φ0 < k3 (see above). The Q-factor of the second-family oscillations is
approximately two to three orders higher. That is why eigenfrequencies split up
in the complex plane even where the curves Rek̄ (h) corresponding to oscillations
from different families meet at certain h values. Before and after the intersec-
tion of Rek̄ (h) curves, all characteristic features of the related oscillations remain
unchanged. However, near the coincidence of the real values of eigenfrequencies of
the first- and second-family oscillations (and only for oscillations of similar symme-
try classes), the field geometry of second-family oscillation gets essential distortions
(hybrid mode), and its Q-factor increases rapidly and in some places seemingly
toward infinity (see, for example, Fig. 6.6 in [1]). According to Statement 1.5 and a
physically clear understanding of the case, at this moment, the amplitudes A0 and B0
of the partial components in the field of the corresponding H02n-oscillation should
become zero – the energy should not be radiated into the far zone. This fact has been
verified numerically.

In the case considered, the Q-factors of the oscillations of the first and second
families (let us denote the corresponding eigenfrequencies by k̄1 and k̄2, respec-
tively) are determined by the radiation losses due to the radiation of both H01- and
H02-waves. For distant k̄1 and k̄2, the radiation losses are dominating, which are
integrally determined by the resonating waveguide wave (H01-wave for the first
family and H02-wave for the second family). When Rek̄1 and Rek̄2 are close to
each other, the H01- and H02-waves even up their related excitation levels in the
oscillation fields, and so do their radiation loss contributions. This may reduce the
resultant losses (and increase the Q-factor) when the phases of the contributors dif-
fer by π. Exactly such a mechanism, implying a compensation of contributions,
results in an increased Q-factor of the oscillation of the second family under con-
ditions that are close to those for existence of the oscillation of the first family.
The fact that at this stage there are no significant changes in the oscillation of
the first family is to be attributed to the incommensurability of the absolute val-
ues of its average radiation losses with the compensating contribution due to the
intensified influence of H02-waves. Note that super-high-Q oscillations occur in
the region k > Φ0, where N = 1. Here the structure is generally open: har-
monics propagating toward |z| → ∞ can carry the field energy away without
attenuation.

In regular situations, the oscillation mode described by the identifier H0mn is
a sufficiently stable characteristic provided that parameter variations are smooth.
As mentioned above, the passage to the real axis of the eigenfrequency k̄2 (h) of
the H02n-oscillation when the spectral curves Rek̄1 (h) and Rek̄2 (h) meet (k̄1 (h) is
the H01n-oscillation eigenfrequency) causes the chain of the transformations “pure
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modes → hybrid modes → recovery of the previous pure modes” that take place for
the parameter h varying within small intervals. In anomalous situations occurring
due to the eigenfrequency convergence of several free oscillations of one sym-
metry class in the corresponding complex space metric (clearly the Q-factors of
these oscillations must be comparable), the “interacting” oscillation modes can be
changed fundamentally. In the concerned situation, the realization of intermode
coupling effect requires one more (the third) family of free oscillations with a bun-
dle
{
k̄3n (h)

}
of eigenfrequencies under the real axis segment Φ0 < k < −Φ−1

(Φ0 < k1 < k2 < k3 < −Φ−1). The components of the bundles
{
Rek̄2n (h)

}
and{

Rek̄3n (h)
}

of different-evenness n indices will meet, and the corresponding oscil-
lations having different classes of symmetry about the plane −h

/
2 will never

respond to the convergence of their complex eigenfrequencies. The spectral curves
Rek̄2n (h) and Rek̄3n (h) for equal-evenness n indices will go apart over the space
(k3; −Φ−1) × (0;H). Their divergence starts in a small vicinity of the point {k,h},
which could have been a point of their meeting (see, for example, Figs. 2.12, 2.13,
2.14 in [10]). One of the curves Imk̄2n (h) or Imk̄3n (h) will go upward, coming to
the real axis at the point h (super-high-Q oscillation in the region k > Φ0, where
N = 1 and M = 3). The other will go down to the area Imk < 0. The “interacting”
oscillations exchange all their characteristics under changes of the parameters near
the point {k,h}. Having crossed the interaction zone, their field structure changes
in the same way as in the real eigenfrequency case: “two different pure modes →
hybrid modes → exchange of the pure modes.”

Several general remarks on the super-high-Q oscillations in open resonators are
in order. If we disregard the trivial case when the energy-radiating channels are elec-
tromagnetically closed (for gratings at |Φ| ≤ 0.5 it is the region k < |Φ0|), one can
say that the super-high-Q oscillations are only possible in structures whose radiation
field always contains only a finite number of “energy-consuming harmonics” (i.e.,
waves carrying energy to infinity). This illustrates the qualitative difference between
the spectra of open periodic and waveguide resonators on the one hand and compact
open resonators on the other. The latter can maintain on physical sheet of their own
K surface the only attenuating (Imk̄ �= 0) oscillations of the field [8, 9, 11].

The super-high-Q oscillations (Imk̄ = 0 on the first sheet of K) are, at the same
time, the grating real (or slow) surface waves that propagate without attenuation
toward the direction where the structure is periodical (see Statements 1.4 and 1.7).
The area with one or several radiation channels open is given by the inequality
k > |Φ0| and classified in the literature as “forbidden” for these waves. If the chan-
nel is open only on principal harmonics (ReΓn > 0 only for n = 0), then the
amplitudes A0 and B0 of the plane waves – the partial field components of the real
surface wave in the domains A and B (see (1.22)) – vanish (see Statements 1.5 and
1.10). In this case, the region k > |Φ0| does not differ from the region k < |Φ0|
(the traditional region where real surface waves are present) as regards the energy
exchange between the near grating zone and the free space, and here the existence
of real waves is no more considered as an unusual effect. Thus, since super-high-Q
oscillations have been revealed in a grating with open energy-radiating channels, the
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traditional idea about the boundaries of the region of real surface wave existence for
open periodic waveguides has been essentially extended. This result can be useful
for solving many applied problems. It expands the area of applications of gratings
as slowing and directing structures in various devices in microwave engineering,
electronics, and optics.

The analytic continuation of the resolvents of diffraction problems (1.20), (1.22),
and (1.26) into the domain of complex values of k reveals a certain set of singular-
ities
{
k̄n
} = Ωk, which according to Statement 1.4 may be qualified as isolated

(for |k| < ∞) finite order poles of relevant operator-functions of local variables
on the surface K. This fundamental result of spectral theory allows us, in par-
ticular, to formulate a consistent and well-justified approach to the study of local
anomalous changes of the diffraction grating electromagnetic field (see, for exam-
ple, the dynamic phase effect described in Section 1.3.2). The changes of this type
usually take place within extremely short intervals of variations of the free param-
eters and attended by sharp limiting (as much as possible) changes of the values of
the principal diffraction characteristics. Below we will show several results of the
spectral theory concerning analysis and treatment of most pronounced phenomena,
including the total transition and the total reflection of electromagnetic waves (see

Fig. 1.5 The effects of (a) total transmission, (b) total reflection, and (d) total autocollimation
reflection of an incident plane wave. The polarization selection of the signals by (c) semitransparent
and (e) reflecting gratings. (f) The effect of total conversion of plane waves packets
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Fig. 1.5) arising in the diffraction by semitransparent structures, the total conver-
sion of wave packets by open periodic resonators and others [1, 10, 40, 54]. We do
not dwell here on general (let us say regular) behavior of diffraction characteristics
described rather explicitly in [16, 18, 19].

Let k be a real positive frequency parameter, and let an arbitrary semitransparent
(Fig. 1.1b) or reflecting (Fig. 1.1c) structure be excited by E- or H-polarized plane
wave Ũi

0 (g,k), 2πΦ
/

kl = sin αi
0,
∣∣αi

0

∣∣ < π
/

2. The complex amplitudes RAA
n0 , TBA

n0
of the spatial harmonics composing the diffraction field in zones A and B [see prob-
lems (1.26)] are complicated functions of k and αi

0, geometrical and constitutive
parameters of the grating. The methods aimed at the numerical solution of problems
(1.26) [11, 16, 17, 19, 21, 43] suggest us regular patterns and characteristic features
of these amplitudes as applied to a diversity of classical grating geometries. They
have revealed and thoroughly analyzed a series of effects of both theoretical and
practical importance [10, 16, 18, 19, 40]. Specifically there have been revealed:

• domains where grating ghosts exert anomalously large influence on the diffrac-
tion characteristics;

• conditions for periodic structures to act as a perfect selective system, with
total transition or total reflection of the primary wave, total nonspecular reflec-
tion and total conversion of waves and wave packets, radical decomposition of
cross-polarized fields to be separated into different spatial radiation channels;

• structures as candidates for diffraction electronics and antenna technique, solving
the problems of effective surface to space wave conversion and so on.

These have inspired in large measure renewed interest in gratings as simple and
versatile instruments for controllable frequency, and for spatial and polarization
selection of signals. Abundant information is available now about what phenom-
ena go on in the periodic structures. However the question “Why is it so?” has not
been answered often enough. In this context, the spectral theory [1, 10, 40] serves
the purpose of improving the situation. Thus, it has been able to uniquely associate
some resonant wave-scattering regimes with a capability of periodic structures to
maintain free oscillations of the field. In some simple cases, an analytic description
could be obtained of mechanisms providing the grating resonant response to the
external excitation by monochromatic or wideband signals.

By way of illustration, we return to the total transition effect briefly described in
Section 1.2.1. The phenomenon is characteristic of any semitransparent structure in
the area of parameter values that corresponds to the vector {N,M} with N = M = 1.
In the domain (k1; −Φ−1) × (0;H) (Φ0 < k1 < −Φ−1 < k2; 0 ≤ Φ ≤ 0.5), the
curves

∣∣TBA
00 (k,h)

∣∣ = 1 define the locus {k,h} where a rectangular metal grating
(see Fig. 1.4) transmits the incident E-polarized plane wave into zone B without
any reflection. Figure 6.9 in [1] plots these curves together with the spectral curves
Rek̄1n (h) for the first-family free H01n-oscillations of the field in the structure. The
higher the Q-factor of free oscillations, the closer the spectral lines overlap with
the curves

∣∣TBA
00 (k,h)

∣∣ = 1. The Q-factor of the H0 11-oscillation for a small h
does not suffice to change the indicated at some h = h1 behavioral trends of the
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corresponding curve
∣∣TBA

00 (k,h)
∣∣ = 1. This curve at h < h1 is almost parallel to the

k-axis, thus indicating a minimum grating height that still allows the total transition,
which here cannot be called resonant anymore. In any other case, the total transition
effect in the region {1,1} is due to those oscillations that are close (by one’s own
structure) to the eigenoscillations.

The correspondence between spectral and anomalous diffraction characteristics
has been established, but the mechanism which creates this correspondence has not
yet been understood. The modeling of such a mechanism is in general quite intri-
cate. However, in the case considered, it will not be so [10]. The application of a
single pole representation of the type (1.42) to a structure symmetric about the plane
z = −h

/
2 gives [10]

2RAA
00 (k) = exp (i arg (r0 ∓ t0)) + exp

(
i
[
arg (r0 ± t0) − 2 arg

(
k − k̄

)])
, Imk = 0,

∣∣k − k̄
∣∣� 1. (1.48)

Here, the upper sign is chosen if pole k̄ stands for a symmetric free oscilla-
tion, and the lower sign is for an asymmetric one. The grating becomes completely
transparent, when the contributions to the radiation field in the zone A (into only
one propagating harmonic of the spatial spectrum of the structure), caused by
the reflection of an incident wave from the grating aperture in plane z = 0
and the radiation of the propagating wave of the coupling channel G, are equal
in magnitude but opposite in sign. As follows from (1.48), a full compensation
is possible if the dynamic phase effect holds in the small neighborhood of the
eigenfrequency k̄.

A large number of practically interesting modes of the plane wave scattering
by gratings are due to open-resonator complex eigenfrequencies situated on the
first physical sheet of the surface K. In the case below, the scattered field from
the grating is uniquely determined by the analytic continuation features of the
resolvents of the diffraction problems (1.26), lying on upper, nonphysical sheets
of the surface K [10, 54]. Since they usually have complex eigenfrequencies,
open periodic and waveguide resonators have specific sets of real eigenfrequen-
cies directly associated with the effects of total conversion of waves and wave
packets.

Assume that at certain parameter values, one eigenfrequency k̄ of a periodic
open resonator comes to the real axis in the region Rek > 0 of one of the
higher-order sheets of the surface K. Consider the partial components of the free
oscillation

u0
(
g,k̄
) =

∞∑

n=−∞

{
Rnexp

[
i (Φny + Γnz)

]

Tnexp
[
i (Φny − Γn (z + h))

]
}

;

{
z ≥ 0
z ≤ −h

}
(1.49)

corresponding to the spectral point k̄ (of the nontrivial solution of homogeneous
problem (1.26) at k = k̄). According to Statements 1.4 and 1.5, some of these
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n- numbered partial components such that k̄ < |Φn| are inhomogeneous plane
waves that either attenuate exponentially (ImΓn

(
k̄
)

> 0) or increase exponentially
(ImΓn

(
k̄
)

< 0) with growth of |z|. A set of partial components (1.49) complemen-
tary to this set with n such that k̄ > |Φn| combines homogeneous plane waves
arriving at the grating (if ReΓn

(
k̄
)

< 0) or propagating away from it into the free
space (if ReΓn

(
k̄
)

> 0).
The expression (1.49) suggests the two wave packets u01

(
g,k̄
)

and u02
(
g,k̄
)

that
never meet at the set n=0,±1,... Thus,

u0j
(
g,k̄
) =
∑

n∈Nj

{
Rnexp

[
i (Φny + Γnz)

]

Tnexp
[
i (Φny − Γn (z + h))

]

}

;

{
z ≥ 0
z ≤ −h

}
, j = 1, 2.

(1.50)

Here, N1 + N2 = {n}∞−∞, N1 = {
n:ImΓn

(
k̄
)

< 0 or ReΓn
(
k̄
)

< 0
}
, N2 ={

n:ImΓn
(
k̄
)

> 0 or ReΓn
(
k̄
)

> 0
}
, i.e., u01

(
g,k̄
)+ u02

(
g,k̄
) = u0

(
g,k̄
)
.

Now consider the existence of the free field oscillation of the grating at the
eigenfrequency k̄ in terms of the problem of plane wave diffraction by a 1-D peri-
odic structure [see problems (1.26)]. The grating is excited by a plane wave packet
u01 (g,k) at frequency k = k̄ (here k is the projection of k̄ onto the first sheet of the
surface K). From (1.50) it follows that the secondary (scattered) field coincides with
the plane wave packet u02 (g,k). Thus, the point k̄ ∈ Ωk determines the frequency
at which the grating transforms one plane wave packet into the other. These packets
are composed of different harmonics of the spatial spectrum of the structure.

Hence, the total conversion problem can be reduced to the search for the real
eigenfrequency k̄ on nonphysical sheets of the Riemann surface K. The character-
istics of the packets u01

(
g,k̄
)

and u02
(
g,k̄
)

suggest the following search area: the
surface sheet and the real axis segment (between two adjacent branch points). The
efficiency of the spectral approach to the problem of synthesis of a structure, which
is able to totally convert the wave packets of several harmonics propagating in dif-
ferent directions, is provided by its ability to obtain comprehensive data about the
scattering process. These are the total diffraction field (free oscillation field), ampli-
tudes of wave packets components (amplitudes of the partial field components in
the radiation zones A and B), the working frequency (the projection of the real fre-
quency k̄ onto the first sheet of the surface K), and the structure parameters to realize
the desired mode.



Chapter 2
Analytic Regularization Methods

Abstract The chapter is devoted to analytic regularization method, which main
advantage is the ability to reduce equivalently in the mathematical sense the ill-
conditioned problems to the well-conditioned ones.

In spite of its almost half a century history, the method seems to be not very well
known in the West scientific community. It has been developed in Kharkov scientific
school due to constant concern and inspiration of V.P. Shestopalov. Here we outline
the key issues of the method and focus our attention at most recent results.

2.1 General Description and Classification of the Analytic
Regularization Methods: History, Provenance, and Survey

The growth in qualitative analysis of boundary value problems in mathematical
physics is among most pronounced trends in today’s mathematics. Various practical
needs have spurred the development of numerical techniques for solving problems
of this kind. Yet a vast gap exists between the practical engineering and the experi-
mental physics on one side and the capabilities of today’s numerical techniques on
the other. In radio physics, the same situation is found.

Among other factors, purely psychological reasons stand behind this gap. After
the solvability of the boundary value problem has been proved and other qualita-
tive characteristics of the problem operator have been revealed, mathematicians are
often just bored with the further numerical solution of the problem. The background
of engineers is, as a rule, not in mathematics. And if they make themselves employ
numerical methods for solving boundary value mathematical physical problems and
even take up the invention of new methods, they are simply not aware of the gen-
uinely mathematical nature of the encountered numerical difficulties, even though
the diffraction problem to solve is seemingly elementary, and therefore cannot cope
with them.

For the past decades, the situation has been changing for the better due to a series
of brilliant works [55, 56] (see also the references used there) spelling out why the
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innocent use of the method of moments or others fail to give a physically valid
solutions.

In today’s radio-physical community, a practice has spread that a numerical tech-
nique is not evaluated by criteria of its intrinsic features but via comparisons of
the computation results with a full-scale experiment, as if geometrical theorems
were proved by geodesic surveys. It is thought that the things should be quite the
reverse. And if the physical adequacy of the employed mathematical model is cer-
tain, it is the numerical simulation results that must serve a standard for experiment
accuracy estimations. In actual practice, however, one can see that the numerical
solution techniques are so insecure that the authors and users of the methods pre-
fer the measured results to the theoretical predictions and take the former as being
accurate.

Another popular way of numerical method verification relies upon a comparison
of computing results with analogous data owing to another author’s technique. But
if the techniques have the same-nature intrinsic instability, their numerical results,
close or not, will be wrong. In particular, it is safe to say that every technique (the
method of moments and others) based on the direct discretization of an integral
equation of the first kind produces false solutions. Equations of this nature arising
in some diffraction problems will be exemplified below.

A technique that works well for solving boundary value problems in diffrac-
tion theory and yet is little known in the West is the analytic regularization method
[10, 11, 16, 17, 21, 22, 45, 48, 57–68] which, as we strongly believe, has capacity to
bridge the above-mentioned gap between the qualitative and the quantitative means
of boundary value problem analysis in radio physics. In cases, first of all for two-
dimensional and axially symmetric problems, this method can satisfactorily solve
by far the majority of engineering problems today. The conversion of the initial
boundary value problem to the second-kind equation in the space l2 is a character-
istic feature of the method guaranteeing computational stability with any desired
accuracy of the solution.

To be more specific, address the integral equation of the form

[D + S] z = f ; z = z (θ) ; f = f (θ) ; θ ∈ [−π;π] ,

where

[Dz] (θ) = 1

2π

π∫

−π

[
1 − 2 ln

∣
∣∣∣2 sin

θ− τ

2

∣
∣∣∣

]
z (τ) dτ; θ ∈ [−π; π] ,

[Sz] (θ) = 1

2π

π∫

−π

K (θ,τ) z (τ) dτ;θ ∈ [−π;π] .

Here, z = z (θ), θ ∈ [−π;π] is the unknown function, the right-hand side
f = f (θ), θ ∈ [−π;π] is given, and the K (θ,τ), θ, τ ∈ [−π;π], is the kernel. The
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kernel K(θ,τ) is assumed to be smoother than the function ln
∣∣2 sin

(
(θ− τ)

/
2
)∣∣, say,

suppose that it is continuously differentiable with respect to θ and τ.
This equation models essential features of the integral equations appearing in

simplest two-dimensional diffraction problems.
We start with the problem formulation for this equation in the space L2[–π,π],

assuming that z, f ∈ L2 [−π;π]. Let the solution z0 = z0(θ) to this equation
exist for the right-hand side f0(θ) given. Consider the family of functions
eN (τ) = N1/2 exp (iNτ), N = 1,2,3. Obviously the functions zN = z0 + eN will
be solutions to the equations

[D + S] zN = fN ; fN = f0 + ẽN + eS
N , ẽN = DeN , eS

N = SeN .

In the L2 ( [−π; π] × [−π;π] ), the kernel of the operator D can be written in
the form of its Fourier series

1− 2 ln

∣∣∣∣2 sin
θ− τ

2

∣∣∣∣ =
∞∑

n=−∞

ein(θ−τ)

τ2
n

; θ,τ ∈ [−π;π] , τn = max
(

1, |n|1/2
)

.

Therefore ẽN (θ) = N−1/2 exp (iNθ). The continuous differentiability of the ker-
nel K(θ,τ) lends eS

N = O
(
N−1
)
. Thus, ‖fN − f0‖ → 0, N → ∞ but ‖zN − z0‖ →

∞, N → ∞.
So, even if there is an infinitely small error in the right-hand side, the solution of

the considered integral equation can be affected to an infinitely large extent. And,
similarly, an infinitesimal in the L2 metric error in the K(θ,τ) kernel calculation can
infinitely affect the solution z = z(θ). Notice that the described instability of the
solution toward f(θ) and K(θ,τ) is not related to a particular solution technique but
to the nature of the equation itself.

From a functional analysis standpoint, the discussed instability is easily
explained. That the kernel of the integral operator D + S is square integrable
and entails the operator D + S being compact in L2[–π,π]. Hence the equation
[D + S]s = f is ill conditioned (ill posed or incorrect, according to A.N. Tikhonov).

The problem with the numerical solution of the considered equation consists
in the following. Whatever the algorithm, the numerical solution of this integral
equation is subject to rounding-off errors caused by a finite-length mantissa of the
arithmetic processor. These errors can be considered random, and the equivalent
disturbances δf and δK belong to L2, but we cannot think of them as smooth any-
more. Hence, beginning with a certain size of the system, the errors of this sort can
fully destroy the solution (as it was already seen), and they really do it, which is
confirmed by numerical experiment.

The solution practice of the considered integral equation consists in putting it
through one or another discretization scheme and reducing it to the linear algebraic
equation of a finite size. The condition number of the system tends to infinity as the
system size grows, and so does a level of the solution error, which is proportional
to the condition number. Thus, beginning with some critical size of the system,
the numerical solution not only does not improve as a number of the equations
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increases but, on the contrary, the error grows fast, ending up with a full collapse.
This suggests that there exists an optimum size of the algebraic system with the
solution accuracy at its best (actually not very good). Unfortunately this critical size
is usually unknown.

In the theory of incorrect problems [69], the correctness set of the operator
A:H→H is the pair H1 H2 of sets or spaces on which the operator A:H1→H2 is
bounded and has a bounded inverse operator. As a rule, H1 and H2 are built, respec-
tively, as an extension and a contraction of H, with H2 ⊆ H ⊆ H1. At the same
time, a choice of H and, consequently, H1 and H2 is not unique and dictated by the
problem’s physical sense.

Consider a Sobolev space Hs[–π;π] as a space of (generalized) functions ϕ(θ),

θ∈[–π;π], with the norm ‖ϕ‖Hs =
{ ∞∑

n=−∞
τ4s (ϕn)

2
}1/2

, where {ϕn}∞n=−∞ are the

Fourier coefficients of the function ϕ(θ). One easily sees that the operator D realizes
the isometric isomorphism of the spaces Hs and Hs+1 for any real s according to the
rule

ψ = Dϕ; ϕ (θ) =
∞∑

n=−∞
ϕneinθ, ψ (θ) =

∞∑

n=−∞
τ−2

n ϕneinθ, ‖ψ‖Hs+1 = ‖ϕ‖Hs .

Hence the operator D:Hs→Hs+1 has its bounded inverse D–1:Hs+1→Hs and

ϕ = D−1ψ; ψ (θ) =
∞∑

n=−∞
ψneinθ, ϕ (θ) =

∞∑

n=−∞
τ2

nψneinθ, ‖ψ‖Hs+1 = ‖ϕ‖Hs .

Correspondingly, the pair Hs, Hs+1 is the correctness set of the operator D.
For diffraction problems, picking s = –1/2 is most natural. Hence, the problem

of solving the integral equation is formulated as

[D + S] z = f ; z ∈ H−1/2 [−π;π] , f ∈ H1/2 [−π;π] .

It should be mentioned that Sobolev’s spaces are very convenient for the theo-
retical analysis of the problem. However, for practical computational purposes, the
sets H1 = H−1/2 [−π;π] ∩ C0,α [−π;π] and H2 = H1/2 [−π;π] ∩ C1,α [−π;π] are
far more suitable. Moreover, taking H2 in the form H1/2 ∩ Cm,α with an arbitrary
m=2,3,. . . and even H2 = H1/2 ∩C∞ is still better (here the standard notation Cm,α

is used to indicate the class of m-times continuously differentiable functions whose
mth derivative satisfies the Hölder condition with index α, see [9]). The designation
H1/2 ∩ Cm,α means that the space Cm,α is considered with the metric of the space
H1/2 (Cm,α is not complete in this metric). Two factors stand behind the choice
H2 = H1/2 ∩ C∞. First, the more is m, the more effective can be the algorithm
of the integral equation solution. Second, in all practical diffraction problems, the
function f is governed by the incident field, which, being a solution of Helmholtz
or Maxwell’s equations, is infinitely differentiable (and even real analytic) in the
spatial variables.
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From the indicated structure of the operator D it follows that the numerical solu-
tion of the considered integral equation cannot in principle be stable on only one of
the H spaces. The immunity of the solution to input data errors requires a pair of the
spaces (or linear manifolds) H1 and H2 forming the correctness set of the consid-
ered equation operator. Broadly speaking, the latter means that the linear manifold
H2 consists of all the derivatives of the functions from H1, and the norms of H1 and
H2 are matching each other as shown above.

Returning to our instability example, it should be noticed that eN does not
increase in the H1 metric and ẽN does not decrease in the H2 metric. To be specific,
‖eN‖H−1/2 = ‖ẽN‖H1/2 ≡ 1. As a consequence, the described instability example
collapsed in the new problem formulation.

It is needless to say that the discussed change in the problem formulation leaves
the actual process of the computation of the solution unaffected. Therefore the next
step, which is the analytic regularization, has to transform the considered integral
equation in such a way that the input data inserted into the computer be a stable sys-
tem of equations of the second kind in the space l2 of square-summable sequences.
It is in the space l2 where the system stability is important. As it was already seen
and it will be shown still further, the theoretical stability in any other space or a pair
of spaces other than the l2 inevitably leads to the numerical instability.

Having finished with the stability analysis of the previous simplest integral
equation, consider the situation from a more general point of view.

Lots of publications are devoted to the numerical solution of boundary value
problems in the stationary diffraction theory. In great many of them, the approximate
solution depends on the reduction of the initial boundary value problem to the finite
linear algebraic system of the kind

ANxN = bN

with the matrix operator AN of size N. This system, directly or indirectly, is the
truncation result of the corresponding infinite system of the first kind in the form

Ax = b

or, which is the same, is the result of the algebraization of some functional (for
one, integral) equation of the first kind. To decide whether this finite-dimensional
system solution is worth solving at all, it is reasonable to answer the following two
questions:

• Does the solution xN of this system tend to the solution x∞ of the initial infinite
system?

• Will (or not) the “numerical catastrophe”
∥∥xN − x̄N

∥∥/∥∥xN
∥∥ > 1 come with N

growing, where x̄N is the approximate solution of the ANx = bN system computed
of necessity of a finite mantissa which carries only a finite mc number of binary
digit?
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Clearly the second question is reasonable to consider only if the first question
is answered positively, implying that xN→x∞ in a relevant metric coordinated with
the metric of the functional space where the initial boundary value problem solution
is sought. In its turn, in view of the applied aspect of the study, this metric has to be
coordinated with the physical nature of the phenomenon modeled by the boundary
value problem.

It is known [70] that in the general case, the first question is answered negatively.
Broadly speaking, in any metric, a solution x̄N of the system of the first kind does
not tend to x∞ as N grows. For boundary value diffraction problems, this situation
is typical (see [56]).

Nevertheless let us assume that by virtue of some specific properties of the oper-
ator A this convergence somehow takes place, and, what is more, it does so in a
desired metric. The standard definition (see [70, 71]) of condition number νN of the
operator AN is

νN = ‖AN‖2 ×
∥∥∥A−1

N

∥∥∥
2

,

where the operator norm ‖...‖2 is produced by the Euclidean metric of vectors
of some N-dimensional space. Systems of the first kind are characterized by that

‖AN‖2 → ∞ or
∥∥
∥A−1

N

∥∥
∥

2
→ ∞ as N→∞. That is, the operator A or A–1 is

unbounded in the operator norm produced by the vector norm of the space l2.
Correspondingly vN→∞ as N→∞.

It has been verified [71] that a number of right binary digits in components of the
solution x̄N does not exceed the value

mr = mc − log2 νN ,

where mr is the number of right digits of the maximum-module component of the
vector x̄N . Correspondingly, a relative error of components smaller in module is far
larger. And if these components decrease fast, only a few of the first of them can
carry right significant digits, the rest cannot be computed at all.

Thus, if mr ≤ 0, the solution x̄N has none of significant digits right. In this case,
the discrepancy δN ≡ ANx̄N − bN will be

∥∥δN
∥∥

2 ≈ N2−mc
∥∥x̄N
∥∥

2 in the order of the
value, which is evidently quite small. The accurate solution xN rounded to mc binary
digits shows the same-order discrepancy.

It must be emphasized that a unique practical way to recognize that a “numerical
catastrophe” is coming is through a straightforward νN and mr calculation. Various
indirect criteria such as energy balance (as δN is small, the energy conservation
law can be satisfied with a very high accuracy even with mr < 0 and x̄N having no
significant digits right) or stabilization of solution x̄N with N (after mr < 0 is reached,
the x̄N solutions can be either indifferent to N changes or varying very slowly, in
compliance with the arithmetic processor rounding procedures) can, as a rule, only
give an illusion of solution correctness of the initial boundary value problem.
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Notice that the selection of the norm ‖...‖2 in the νN definition is not random, and
there exist certain arguments behind the A or A–1 unboundedness in just the space
l2 operator norm. Though, as known [70], all finite-dimensional space norms are
equivalent, their equivalence constants depend on N. And in some valuable sense
the computer acts as if it modeled a metric close to the Euclidean metric [71]. That
is, in the limit N→∞, it simulates the metric of the l2. That is why the existence and
the boundedness of the operators A and A–1 on the relevant pairs of spaces, mathe-
matical justifications of the x̄N convergence to x̄∞ in the metrics of these spaces and
such like are of no concern to the actual computation process: the computer inter-
prets the algebraic system as if it were given on the l2, demonstrating every delight
of the “numerical catastrophe” as vN→∞.

It is known that the “numerical catastrophe” can be delayed to large N by a
proper choice of the basis in the method of moments, calling on special quadratic
formulas, enhancing the arithmetic accuracy and such like. Yet these impediments
cannot cancel characteristic features of equations of the first kind. Sooner or later the
“numerical catastrophe” comes, excluding any possibility to solve the initial bound-
ary value problem with an accuracy desired and cutting down possible intervals of
variation of problem parameters.

It is a lack of understanding of the indicated difficulties and, first of all, the igno-
rance of the arithmetic routine of a particular machine (including such a bore as
its specific rounding-off scheme), underestimating the difficulties preventing a sta-
ble numerical realization of many theoretically correct – in precision arithmetic –
computational algorithms that seem to accompany a great body of publications
inventing more and more methods intended for the numerical solution of bound-
ary value problems in diffraction theory. And frequently the authors do not even
mention the condition numbers of the algebraic schemes they use.

Let us turn to an alternative situation. Suppose that the original boundary value
problem is equivalently reduced to the infinite system of algebraic equations of the
form Ax = b; x, b∈l2. The operator A takes the form A=E + H, where operator H is
compact on the l2 and E is the identity operator. A reasonably formulated boundary
value problem has, as a rule, a unique solution, whence, by virtue of the indicated
equivalence, it follows that the operator A–1 = (E + H)–1 bounded on the l2 space
exists with a correct determination of the value

ν∞ = ‖E + H‖2 ×
∥∥
∥(E + H)−1

∥∥
∥

2
< ∞.

As in the procedure above, consider the truncated systems

(E + HN) xN = bN ,

and in view of the compactness of H, the sequence of the finite-dimensional
operators HN can be chosen as

‖H − HN‖2 → 0; N → ∞.
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It readily follows that the condition numbers νN tend to ν∞: νN = ‖E + HN‖2 ×∥∥(E + HN)−1
∥∥

2 → ν∞ as N→∞, and, hence, νN are uniformly bounded for any N
large enough. In all practical situations of our knowledge that arise in the solution
of a wide class of diffraction problems, the value νN varies within several tens or at
most hundreds of units. Hence νN � 2mc for most modern computers.

So, compared to equations of the first kind, the second-kind equations have none
of the indicated principal disadvantages preventing their effective solution. In par-
ticular, xN→x∞ and

∥∥x̃N − xN
∥∥ /
∥∥xN
∥∥→ ν∞2−mc+1 as N→∞ (see [70, 71]). The

value ν∞2−mc+1 is so small that practically any accuracy can be achieved when N is
large enough. The iterative refinement procedure [70] allows

∥∥x̃N − xN
∥∥

2 /
∥∥xN
∥∥

2 ≈
2−mc for any ν∞ < 2mc .

Thus, the equivalent conversion of the boundary value problem to an equation
of the second kind in the l2 can guarantee effective solution algorithms for this
problem.

The techniques reducing the original boundary value problem to second-kind
equations are built around the regularization of the problem operator. In functional
analysis terms, this idea is well known and simple enough [72]. Let the linear oper-
ator A:M1→M2 be defined on a pair of functional (say, Banach) spaces M1 and
M2. Additionally on some known space M, the pair L:M2→M and R:M→M1 of
bounded linear operators is given such that the inverse bounded operators L–1 and
R–1 exist. It is evident that LAR:M→M. If the relationship LAR = E + H holds, with
the operator H compact on M, the pair L, R is referred to as a two-sided regularizer
of the operator A.

This definition can be evidently extended to the case when the operators L, A,
and R are only given on dense sets of the corresponding spaces. Then by LAR =
E + H is meant an operator obtained by the closure of the initial LAR.

When M = M1 and R = E, the operator L is called a left-sided regularizer, and
when M = M2 and L = E, the operator R is a right-sided regularizer.

Take up the functional equation of the first kind Ax = b; x∈M1, b∈M2. Since
the operator R–1 is bounded, any element x∈M1 is available in the form x = Ry for
some y = R–1x∈M. The usage of this representation yields ARy = b. Acting by the
operator L on the left-hand side of this equation gives LARy = Lb. And in so far
as the pair L, R is a two-sided regularizer of the operator A, we come up with the
equation

(E + H) y = Lb; y, Lb ∈ M

in the new unknown, y. With y constructed, the former unknown is expressed in the
form x = Ry.

By the regularizer definition given right above, the equations Ax = b and (E + H)y
= Lb are equivalent in the sense of the one-to-one correspondence existing between
their solutions due to the operator R. At the same time, the second of these two is a
second-kind equation.

Furthermore, let M be a Hilbert space. Having chosen a suitable basis there, we
can match the Fourier coefficients in the left- and right-hand sides of the equation
(E + H)y = Lb. By virtue of the well-known isomorphism of all Hilbert spaces, the
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obtained equation is a second-kind equation belonging to the space l2 and taking the
form

(
E + H̃

)
ỹ = b̃, where ỹ, b̃ ∈ l2 and H̃: l2 → l2 is a compact operator with

necessity.
Thus, the analytic regularization method can be understood as a set of analytic

transfoms coming up with a two-sided closed-form regularizer L, R in order for the
first-kind equation Ax = b to be analytically transformed to the equivalent second-
kind equation

(
E + H̃

)
ỹ = b̃; ỹ, b̃ ∈ l2 with the operator H̃ compact in l2. Of

course, this is only an abstract sketch of the analytic regularization method. It does
not answer the question how the procedure should be built for one or other bound-
ary value diffraction problem, including specifications of functional spaces where
the operator A should be defined (the boundary value problem formulation) in cor-
respondence with a particular physical problem under modeling. The construction
of the operators L and R in closed form is not in a priori evidence all the more.
Therefore, any extension of the analytic regularization method to a further class of
problems is an intellectual challenge.

Notwithstanding all gained experience, we cannot offer a readymade recipe but
information about building blocks composing the analytic regularization method.
They are:

• reduction of the initial boundary value problem to the integral or integral dif-
ferential equation based on a more or less standard technology of Green’s
functions;

• singularity analysis of the obtained equation kernel, derivation of the so-called
singular expansion as a finite sum of the leading singularities of the kernel;

• extraction of the leading singularities from the kernel until the rest becomes suf-
ficiently smooth (the additive decomposition of the integral equation operator);

• conversion of the integral equation to the canonical form whose regularization
algorithm is available or is known how to build;

• construction of a proper family of two-sided regularizers and selection of the best
one out of them by criteria of computational efficiency.

In so far as the book is mainly concerned with the theory of periodic structures,
we have little possibility to enlarge on these principal points of the method providing
a successful solution of a great variety of problems. Yet in Section 2.6, we fill in
many details about periodic structures. Now let us return to the elementary integral
equation whose analysis has already been started.

So, we understand the analytic regularization method as a philosophy of numeri-
cal modeling as applied to sophisticated problems in diffraction theory rather than a
set of theoretical formulas and technical expedients, even though we stock a whole
arsenal of mathematical tools and computational algorithms. It is due to this philos-
ophy that high-efficiency numerical models have been built, coming up with a wide
diversity of diffraction problems solvable today. This philosophy directs our efforts
to attack increasingly more difficult problems in diffraction theory.
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For the reader’s convenience, we will continue with the elementary equation
taken up earlier, planning to construct one (simplest) of possible families of two-
sided regularizers and discuss how the most suitable regularizer of this family should
be chosen.

The Fourier series of the operator D kernel (the function 1−2 ln |2 sin (θ− τ) /2|)
was previously given. The Fourier series of the functions K(θ,τ), z(τ), and f(θ) are

K (θ,τ) =
∞∑

s=−∞

∞∑
n=−∞

Ksnei(sθ+nτ), z (τ) =
∞∑

n=−∞
zneinτ,

f (θ) =
∞∑

n=−∞
fneinθ; θ, τ ∈ [−π;π] .

Substitute the functions involved in the equation [D + S]z = f by their Fourier
series, interchange the orders of summation and integration and integrate them
term by term on account of the orthogonality property of trigonometric functions
(all the operations are legitimate for corresponding classes of functions). Matching
the obtained coefficients in the left- and right-hand sides yields the algebraic
system

zs

τ2
s
+

∞∑

n=−∞
Ks,−nzn = fs; s = 0, ± 1, ± 2, ...

in the unknowns {zn}∞n=−∞. The obtained infinite algebraic system is evidently
a first-kind equation since the diagonal matrix

{
δn

sτ
−2
s

}∞
s,n=−∞ (δn

s being the
Kronecker symbol) produces an operator compact in l2. The same is clearly true
for the matrix operator K̃ = {Ks,−n

}∞
s,n=−∞.

For the considered equation, the following regularizer scheme seems evident.
First, introduce the new unknowns zγn = τ

−γ
n zn, where γ is some parameter to

determine. Second, multiply each of the obtained equations of the number s =
0,±1,±2. . . by the factor τ

2−γ
s . Finally,

zγs +
∞∑

n=−∞

(
τ2−γ

s τγnKs,−n

)
zn = τ2−γ

s fs; s = 0, ± 1, ± 2, ...

The obtained system appears to be (I + Kγ)zγ = fγ, where zγ = {zγn
}∞

n=−∞ ,

f γ =
{
τ

2−γ
n fn

}∞
n=−∞, and Kγ = T2−γK̃Tγ, with T being a diagonal matrix oper-

ator of the form T = {τnδ
n
s

}∞
s, n=−∞. Is this system a second-kind equation in l2?

Or, which is the same, is the operator Kγ compact in l2? One easily verifies that
the compactness of the operator Kγ depends, first, on how fast the coefficients Ks,n

decrease as s,n→±∞, which, in turn, depends on the smoothness of the kernel
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K(θ,τ) as a function that is 2π-periodic in both arguments. Second, one should prop-
erly choose a parameter γ according to the decrease character of the coefficients Ks,n

as s,n→±∞.
It is easy to see that the factor τ

2−γ
s τ

γ
n degrades the decrease of the Ks,–n coef-

ficients for any γ. Therefore, it may happen that the operator Kγ is not compact
whatever γ we use. This means that the logarithmic singularity removal from
the kernel of the operator D + S is inadequate to remedy this. And we have
to derive such a leading singularity K0(θ,τ) from the function K(θ,τ) that, first,
the remainder K(θ,τ)–K0(θ,τ) will be sufficiently smooth and, second, the kernel

1 − 2 ln
∣∣∣2 sin θ−τ

2

∣∣∣ + K0 (θ,τ) will have a sufficiently simple matrix (diagonal one

is the best) of the Fourier coefficients. This expedient is employed for solving the
diffraction problem of a corrugated surface in Section 2.6.

Now assume that the kernel K(θ,τ) is so smooth as to have γ = γ0 for which the
operator Kγ is compact. Then it can be proved that there is a vicinity (γ1;γ2) that
contains γ0 and provides compactness of the operator Kγ for any γ∈(γ1;γ2). Thus,
we get a family of regularizers rather than a single one and one of them is providing
the fastest convergence of the reduction procedure for the relevant algebraic system.

Let us consider some examples. Let K(θ,τ) be a continuous 2π-periodic function
of its variables. If there is no more information about it, we cannot say that operator
Kγ will be compact in l2. Accept an extra assumption that the function K(θ,τ) is con-
tinuously differentiable with respect to τ for any θ. Then the operator compactness
will be provided by the choice γ = 2. In this case, zγn = τ−2

n zn. Analogously, if the
function K(θ,τ) is continuously differentiable with respect to θ (and is not differen-
tiable with respect to τ), the operator Kγ is compact under the choice γ = 0, with
zγn = zn. Finally, if K(θ,τ) is continuously differentiable with respect to θ and τ, then
any γ∈[0;2] will be good enough to provide the operator Kγ compactness. To choose
the best γ out of them, the differential properties of the K(θ,τ) function should be
studied in greater depth. For most (but not all) diffraction problems reduced to the
equation of the concerned type, γ = 1 is an optimum choice.

At this stage of our explanation, the reader may feel disappointed about the sim-
plicity of the analytic regularization scheme we have constructed (much ado about
nothing). If so, we have to remind that, first, a most elementary integral equation
was treated, coming up with a simplest-structure regularizer. Second, the disappoint-
ment, if any, should become amazement because we have so easily gained in such a
vital characteristic as computational algorithm stability.

Concerning the evolution of the analytic regularization idea as applied to
boundary value problems in diffraction theory (in particular, electrodynamical
theory of gratings) and the relevant techniques for building regularizing opera-
tors, the following points are worth noting. The earliest boundary value problems
solved substantially in terms of the above-described regularization idea were
2-D coordinate problems of wave diffraction by infinitely thin, perfectly conducting
nonclosed screens (see [73–75] and the references used there), where the so-called
semi-inversion method used to be employed. This method is a variant of the left-
hand-sided regularization discussed here. Here, by coordinate problems we mean



54 2 Analytic Regularization Methods

boundary value problems proceeding from the Helmholtz equation and character-
ized by the fact that the boundary surface (or the contour), where the boundary
conditions are applied, coincide with a part of the coordinate surface of one of the
such special coordinate systems that the variables of the Helmholtz (or Maxwell’s)
equation can be separated.

By the partial domain (or sewing, or mode matching) method the coordi-
nate problems are naturally reduced to the functional equations of the kind Ax
= b, where the operator A depends on the excitation wave frequency and, of
course, on other parameters, including the problem geometrical properties. The
key point of the semi-inversion method is finding such an operator A0 that,
first, the bounded operator A0

–1 exists in a suitable functional space and, sec-
ond, A0

–1A = E + H, where H is a compact operator and E is the identity
operator. For grating diffraction problems, one of the most common ways of
building the operators A0 and A0

–1 consists in the development of the opera-
tor part established by a single element of the grating to be extracted then from
the operator A. When the considered diffraction problem for a single element
can be solved in explicit form (for an arbitrary excitation field) or reduced to
the equation of the second kind, one always arrives at the regularized equation
x + Hx = b. It is easily understood that the resulting operator equation of the second
kind is most suitable when periodic grating components are sufficiently spaced apart
[16, 76–78].

One more variant of the semi-inversion method was originally suggested in [79]
to solve diffraction problems of plane strip gratings. The key point is the develop-
ment of the operator A0 corresponding, conventionally speaking, to the electrostatic
problem. In terms of the Riemann–Hilbert problem in theory of analytic functions
[80] or using the integral transform method like the fractional integration (dif-
ferentiation) technique [81], it was succeeded to explicitly construct the operator
A0

–1 as a left-hand regularizer of the functional equations in the sewing method
(some generalizations of this approach are discussed in Sections 2.2, 2.4, and 2.5).
In this way, a wide class of diffraction problems for multielement and multilayer
gratings, variously arrayed circular cylindrical screens, spherical segments, etc.,
has been examined (see [16, 18, 45, 74, 82] and references therein). In [22], the
semi-inversion method was designed upon the development of the operator A0 cor-
responding to the limiting value of one of the parameters of the initial diffraction
problem. Thus, for instance, in the case of wave diffraction by jalousie-type grat-
ings, the operator corresponding to the grating of semi-infinite planes was extracted
from the sewing method operator. This operator inversion (A0

–1) was due to the
Wiener–Hopf method. In general, this variant of the semi-inversion method is based
on the inversion of matrix convolution-type equations [17]. The employed math-
ematical technology is based on Mittag–Leffler’s theorem about a meromorphic
function representation (some aspects of the approach are given in Section 2.3).
The results of this semi-inversion method variant are surveyed in [16–18].

An original variant of the semi-inversion method is suggested in references
[83–85], where the wave diffraction is solved for a finite number of strip screens
located in the same plane. The method develops from an explicit solution of the
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Riemann–Hilbert problem for a finite number of real-axis segments [80], coming
up with a single integral Fredholm equation of the second kind (for an arbitrary
number of strip screens) with a smooth kernel of quite a simple appearance.

It seems that the most valuable methodological result concerning the semi-
inversion method is that the so constructed regularization algorithms covering a
wide diversity of model problems are unique in their speed, accuracy, efficiency,
and reliability. With no additional expedients, these algorithms are capable of study-
ing physical properties of different types of gratings from the long-wavelength and
resonance regions to the really short-wave end of spectrum when the grating period
measures several tens of the wavelengths.

It is these capabilities of the semi-inversion method that encouraged a lot of effort
going into the further enhancement of the analytic regularization method. At the
time when most algorithms for solving coordinate problems had been designed or
so, the reasons providing their success were not clear enough. And soon it was dis-
covered that the class of coordinate problems solved in this technology terms was
coming to an end. In any event, the difficulties of further progress were enormous.
It used to seem that a high computational efficiency of the developed algorithms
had much to do with their specialization: each variant of the semi-inversion method
used to be tailored for analyzing objects of essentially similar geometry. And, for
instance, the solution of the electrostatic part x0 = A0

–1b owing to the operator
A0

–1 used to consider a specific character of a particular boundary value problem so
comprehensively that the computation of the dynamical addition to the exact solu-
tion used to be a simple and effectively solved problem. Hence, the abandonment of
narrow specialization had to lead to a severe decrease in efficiency.

With the things commonly adopted at that time, one could hardly expect a prin-
cipal possibility for equally efficient and, at the same time, rather universal solution
techniques for boundary value diffraction problems. Certain intellectual effort has
been spared to overcoming this stereotype of thinking, recognition, and analysis
of the key reasons providing a high quality of algorithms for coordinate diffrac-
tion problems, to elaboration of more general methods considering these reasons.
Eventually far more general regularization procedures have come into being for
quite an extensive class of boundary value diffraction problems. And the algorithms
based on these principles are highly competitive in their computational efficiency
with those commonly used for solving coordinate problems.

To this end, the regularization scenario suitable for coordinate problems had
to be essentially modified [11]. First of all, it was no more possible to use the
sewing (partial domain) method and enjoy the former simplicity of the algorithms
as applied to arbitrarily shaped contours associated with the boundary conditions.
It was found that the best alternative is the method of boundary integral equa-
tions based on familiar Green’s functions (see, e.g., [86]). And in this case, both
for closed and especially unclosed contours, the original boundary value problem
should be reduced to integral equations of the first kind (see Section 2.6) rather
than seemingly more convenient equations of the second kind. The next, and maybe
the most important, is the idea of closing of the unclosed contour by imbedding it
in some smooth closed configuration. This closure largely predetermines a principal
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feasibility of a high computational efficiency of the developed algorithms (see [11]).
The parametrization of the closed contour and analysis of the kernels of the con-
structed integral operators for the singular structure (differential properties) allow,
via a relevant Fourier transform, reducing these integral equations to special-form
dual series equations (some of them are examined in Section 2.2). The regularization
of these dual series equations eventually gives the operator equations of the second
kind.

A mention should be made that against the coordinate diffraction problems, we
generally have to build the two-sided regularizer L and R whose analytic (closed
form) derivation is closely related to the structure of kernel singularities of the
above-mentioned integral operators and, also, to some properties of the closed
contour parametrization. The computational efficiency of the outlined algorithmic
scheme largely depends on the realization of the contour-closure procedure, choice
of optimum (in a way) parametrization of the closed contour, method of compu-
tation of Fourier coefficients of integral operator kernels, summation procedures of
slowly converging series for limiting values of the fields and their normal derivatives
(i.e., for currents), etc. The mentioned range of ideas was originally applied in [63,
64] to the 2-D diffraction problem of infinitely thin perfectly conducting cylindrical
screens. A detailed description of this approach to diffraction theory problems is the
subject matter of book [11].

This brief schematic description of the analytic regularization method shows
that the development of relevant computational algorithms and their computer real-
ization are not a trivial activity. Therefore, the basic mathematical expedients and
approaches will be considered in Sections 2.2, 2.3, 2.4, 2.5 and 2.6.

2.2 The Riemann–Hilbert Problem Method
and Its Generalization

This subsection essentially portrays an approach (added on in subsequent sections)
to solve boundary value problems of single-periodic gratings and different media
interfaces (anisotropic dielectrics, chiral composites, metamaterials, etc.) in wave
diffraction and propagation theory. In it, certain generalizations (modifications) are
presented in regard to the classical variant of the Riemann–Hilbert problem method
[45, 74] to deal with a wide class of dual series equations involving the functions
exp(inϑ), n = 0,±1, . . . . It is these dual series equations that appear, e.g., in the elec-
tromagnetic wave diffraction by strip gratings located on an anisotropic dielectric
interface (see Sections 2.4 and 2.5).

By means of regularization procedures specially designed for the case, all dual
series equations considered in this section are equivalently reduced on a relevant
l2 space of quadratically summable sequences to the infinite system of linear alge-
braic equations of the form x + Hx = b, x,b∈l2, with the operator H being compact
on l2. These systems are known to be effectively solved by various numerical
methods.
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Some of the results in this section (in a little different appearance), their modifi-
cations and relationships with corresponding boundary value problems in diffraction
theory can be found in [75, 87–92].

2.2.1 Classical Dual Series Equations and
the Riemann–Hilbert Problem

In this subsection, according to the major ideas of the references [45, 79], a study is
conducted for one type of dual series equations, the simplest ones arising in mod-
eling 2-D coordinate problems of the wave diffraction by systems of nonclosed
infinitesimally thin screens, such as, in particular, single-periodic strip gratings [74].
From this point on, by a coordinate diffraction problem is meant a boundary value
problem such that the structure interface coincides with a coordinate surface part
referring to an orthogonal coordinate system enabling the separation of variables for
the Helmholtz (Maxwell’s) equation. The separation of variables (partial domain, or
sewing method) reduces the coordinate problems to the dual series equations of the
form

∞∑

n=−∞
γnxneinϑ = F

(
eiϑ); |ϑ| < ϑ0, (2.1)

∞∑

n=−∞
xneinϑ = G

(
eiϑ); |ϑ| > ϑ0. (2.2)

for the unknowns x = {xn}∞n=−∞. Here, F(exp(iϑ)) and G(exp(iϑ)) are given func-
tions, ϑ∈[–π;π], {γn}∞n=−∞ is a given sequence of complex numbers, and ϑ0∈[0;π]
is a parameter.

Assume that the following conditions are satisfied:

• as |n|→∞, the values γn take on the form

γn = |n| (1 − δn), (2.3)

where δn = O
(
n−2
)

;
• the given right-hand sides F(exp(iϑ)) and G(exp(iϑ)) are expanded into the

Fourier series

F
(
eiϑ) =

∞∑

n=−∞
fneinϑ, G

(
eiϑ) =

∞∑

n=−∞
gneinϑ; (2.4)

• all the series in (2.1) and (2.2) are the Fourier series of their sums: the series in
(2.2) and (2.1) are Fourier series of the functions belonging, respectively, to the
L2[–π;π] and L1[–π;π] spaces. The space Lp[–π;π], p = 1,2, is defined, e.g., in
[70] (see also Appendix).
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A solution of equations (2.1) and (2.2) will be sought in the infinite-sequence
space l2(1), assuming that the Fourier coefficients of the functions F(exp(iϑ)) and
G(exp(iϑ)) belong to the spaces l2(1) and l2(3), respectively. From here on, the
infinite-sequence space l2(η) is defined as

l2 (η) =
{

{xn}∞n=−∞ :
∞∑

n=−∞
|xn|2 (1 + |n|)η < ∞

}

. (2.5)

The infinite series in the left-hand sides of (2.1) and (2.2) converge slowly (below

one can see that xn = O
(
|n|−3/2

)
as |n|→∞), making the dual series equations of

little use for the direct analytic or numerical search of x = {xn}∞n=−∞.
Let us show that the previous assumptions enable one to equivalently reduce

these equations to an infinite system of linear algebraic equations of the second
kind in the space l2 = l2(0) (one easily finds that l2(1) ⊂ l2).

Introduce the new unknowns y = {yn}∞n=−∞ by the formula

yn = xn − gn; n = 0, ± 1, . . . . (2.6)

Then equations (2.1) and (2.2) will take the appearance

∞∑

n=−∞
|n| yneinϑ =

∞∑

n=−∞
ψneinϑ; |ϑ| < ϑ0, (2.7)

∞∑

n=−∞
yneinϑ = 0; |ϑ| > ϑ0, (2.8)

where

ψn =
{

f0 − γ0 (y0 + g0) ; n = 0
fn + |n| δnyn + |n| (δn − 1) gn; n �= 0

. (2.9)

Assume for a while that the function ψ (exp (iϑ)) =
∞∑

n=−∞
ψnexp (inϑ) is avail-

able and construct a solution to equations (2.7) and (2.8) in explicit form (express
yn via ψn).

Differentiating equation (2.8) and taking zn = nyn gives

∑

n �=0

zneinϑ = 0; |ϑ| > ϑ0, (2.10)

∑

n �=0

zn
|n|
n

einϑ = ψ
(
eiϑ) ; |ϑ| < ϑ0. (2.11)

Equations (2.10) and (2.11) will be equivalent to equations (2.7) and (2.8) on the
addition of the equality
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∑

n �=0

(−1)n zn

n
= −y0, (2.12)

coming from (2.8) at ϑ = π.
Now let us show that the dual series equations (2.10) and (2.11) represent the

well-known Riemann–Hilbert problem in the theory of analytic functions [79].
Indeed, according to [80], define the functions

X+ (z) =
∞∑

n=1

znzn, X− (z) = −
−1∑

n=−∞
znzn, (2.13)

analytic, respectively, on inside and outside the circle |z| ≤ 1.
From (2.10),

X+ (eiϑ)− X− (eiϑ) = 0 (2.14)

on the arc P1 of the unit circle connecting the points exp(–iϑ0) and exp(iϑ0) through
the point z = –1. Hence, the function

X (z) =
{

X+ (z) ; |z| < 1
X− (z) ; |z| > 1

(2.15)

is analytic in the complex plane with a cut along the arc P2 complementary to the
arc P1. In view of (2.7), on the complementary arc P2,

X+ (eiϑ)+ X− (eiϑ) = ψ
(
eiϑ) ; |ϑ| < ϑ0 , (2.16)

where X+(exp(iϑ)) and X–(exp(iϑ)) are the function X(z) limiting values, respec-
tively, inside and outside the circle |z| ≤ 1. Hence, equations (2.10) and (2.11) have
been reduced to the problem of the function of the X(z) determination by the sum of
its limiting values on the arc P2. This is the Riemann–Hilbert problem whose simple
solution was developed by T. Carleman [93].

The solution to this problem will be sought in the class of functions that have
an integrable singularity at the points z±0 = exp (±iϑ0) and decrease as |z|→∞.

The sought function X(z) and the function R (z) =
√(

z − z+0
) (

z − z−0
)

are analytic
and unique in the complex plane cut along the arc P2. For R(z), a root branch is
chosen such that R(0) = 1. From (2.13), X (z) = X− (z) = z−1 (−z−1 + O (1))

as |z|→∞. Therefore, the function X(z)R(z) is bounded as |z|→∞, and upon the
Cauchy theorem [94], we have

X (z) R (z) = 1

2πi

∮

Γ

X (τ) R (τ)

τ− z
dτ+ C. (2.17)
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Here, Γ is a sufficiently smooth closed contour to enclose the cut along the arc
P2 and S is some constant proportional to the residue of the function X(z)R(z) at an
infinitely distant point z =∞.

Refer to (2.17) and contract the contour Γ toward the arc P2. Considering (2.16),
we obtain

X (z) R (z) = 1

2πi

∫

P2

ψ (τ) R+ (τ)

τ− z
dτ+ C, (2.18)

where R+(τ) is the R(z) limiting value on the arc P2 as z→τ from inside of the unit
circle.

Formula (2.18) is a solution to the Riemann–Hilbert problem (2.16), and this
formula is sufficient to solve equations (2.7) and (2.8). Applying the Sokhotskyi-
Plemelj formulas [94] for limiting values of functions represented by the Cauchy-
type integrals, from (2.18) it follows that

∑

n �=0

zneinϑ = K
(
eiϑ)

⎡

⎢
⎣

1

πi

∫

P2

ψ (τ)

K (τ)
(
τ− eiϑ

)dτ+ 2C

⎤

⎥
⎦ . (2.19)

on the unit circle |z| = 1. Here the integral is understood as the Cauchy principal
value, and

K
(
eiϑ) =

{
1

R+(eiϑ)
; |ϑ| < ϑ0

0; |ϑ| > ϑ0
. (2.20)

Passing to the Fourier coefficients in (2.19) and removing the C constant in view
of (2.12), one arrives at

y0 = W0ψ0 +
∑

n �=0

ψn
V−1

n−1

n
, (2.21)

ym =
+∞∑

n=−∞
ψn

V n−1
m−1

m
(2.22)

with the notations [45, 74]

Vn(eiϑ) = 1
πi

∫

P2

τndτ
K(τ)(τ−eiϑ)

, Vn
m = 1

2π

π∫

−π

Vn
(
eiϑ
)

K
(
eiϑ
)

e−imϑdϑ and

W0 = 1
2π

π∫

−π

ϑK
(
eiϑ
)

dϑ.

The values W0,Vn
m have been calculated in [45] by making use of the formulas
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V n−1
m−1 = 1

2

⎧
⎨

⎩

m
m−n

[
Pm−1 (u) Pn (u) − Pm (u) Pn−1 (u)

]
; m �= n

n∑

s=0
ρn−s (u) Ps−n (u); m = n ≥ 0 ,

V−n−1
−n−1 = −Vn−1

n−1 ; n ≥ 1, W0 = − ln 1+u
2 .

(2.23)

Here u = cosϑ0 and Pn(u) are the Legendre polynomials [95], which for negative
n indices are defined by the formula

Pn (u) = P|n|−1 (u) .

The functions ρn(u), n = 0,1,2,. . ., are expressed via the Legendre polynomials
(see (2.66) below).

So, assuming that the Fourier coefficients {ψn}∞n=−∞ of the function ψ(exp(iϑ))
[see (2.11)] are known, we have solved equations (2.10) and (2.11) in explicit form
[see (2.21) and (2.22)]. Let us show how on the basis of this solution the infinite
system of linear algebraic equations equivalent to equations (2.1) and (2.2.) should
be derived. Evidently {yn}∞n=−∞ and {ψn}∞n=−∞ in (2.21) and (2.22) should be sub-
stituted by their representations via {xn}∞n=−∞ and {gn}∞n=−∞, {fn}∞n=−∞ [see (2.6)
and (2.9)]. After some elementary manipulations,

xm =
∞∑

n=−∞
amnxn + bm; m = 0, ± 1, ..., (2.24)

with the matrix elements amn and the right-hand sides bm being

amn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−W0γ0; m = n = 0
|n|
n δnV−1

n−1; m = 0, n �= 0

−γ0
V−1

m−1
m ; m �= 0, n = 0

|n|
m δnV n−1

m−1 m �= 0, n �= 0

, (2.25)

bm =

⎧
⎪⎪⎨

⎪⎪⎩

g0 + W0f0 + ∑
n �=0

V−1
n−1
n (fn − |n| gn) ; m = 0

gm +
+∞∑

n=−∞
V n−1

m−1
m (fn − |n| gn) ; m �= 0

. (2.26)

Express the system of equations in vector form. For this, introduce the infinite-
dimensional matrix A = {amn}∞m, n=−∞ and the column vectors x = {xn}∞n=−∞,
b = {bm}∞m=−∞. In these denotations, (2.24) has the form

x = Ax + b. (2.27)

Equation (2.27) will be considered on the sequence space l2. Let us show that the
matrix A gives a compact operator on the space l2, with the column vector b∈l2. To

this end, it is sufficient to ensure the convergence of the series
∞∑

m, n=−∞
|amn|2 < ∞
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and
∞∑

m=−∞
|bm|2. As it is known [95], Legendre polynomials obey the inequality

|Pn (u)| <
2

√
π |n| (1 − u2

) ; n = ±1, ± 2, ... . (2.28)

In view of (2.28), expression (2.23) readily gives as |n|, |m|→∞ the inequalities

∣∣
∣V n−1

m−1

∣∣
∣ <

C1
√|m|√|n| |m − n| ; m �= n,

∣∣
∣Vm−1

m−1

∣∣
∣ < C2, (2.29)

where C1, C2 are constants independent of m and n.
Now, considering (2.29) and upon the fact that δn = O(n–2) [see (2.3)], we obtain

|amn| <
C3√|m| |n|3/2 |m − n| ; m �= n, |amm| <

C4

m2
. (2.30)

Here C3, C4 are some constants. From (2.30) follows the convergence of the

series
∞∑

m, n=−∞
|amn|2 < ∞. Previously we assumed that the Fourier coefficients of

the functions F(exp(iϑ)) and G(exp(iϑ)) satisfy the conditions {fn}∞n=−∞ ∈l2 (1) and
{gn}+∞

n=−∞ ∈ l2 (3). On this account and in view of (2.23) and (2.29), we have from
(2.26) that as |m|→∞

bm = A0
Pm−1 (u)

m
+ A1

Pm (u)

m
+

�
bm

|m|3/2
, (2.31)

where As = (−1)s

2

∞∑
n=−∞

(fn − |n| gn) Pn−s (u), s = 0,1, and
�
bm are some values

with
∞∑

m=−∞

∣
∣∣
�
bm

∣
∣∣
2

< ∞. Hence the series
∞∑

m=−∞
|bm|2 < ∞ converges, which is the

required result.
From the above discussion, it follows that equation (2.27) is a second-kind

equation in the space l2.
So, the initial dual series equations (2.1) and (2.2) have been reduced to the

infinite system of linear algebraic equations of the second kind. These systems
guarantee their numerical solution with any desired accuracy. Besides, the estab-
lished properties of equation system (2.4) suggest the solvability and the uniqueness
of the solution using, for instance, the corresponding Fredholm theory for oper-
ator equations of the second kind [70]. Furthermore, using (2.24), one arrives at
an asymptotical estimation of the unknowns xm as |m|→∞, which is identical to
asymptotical estimation (2.31). Namely,
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xm = B0
Pm−1 (u)

m
+ B1

Pm (u)

m
+

�x m

|m|3/2
, (2.32)

where Bs = As + Cs, Cs = 0.5 (−1)s
[
−γ0x0 +

∞∑
n=−∞

xnδn |n|Pn−s (u)

]
, s = 0,1,

and the values �xm satisfy the condition
∞∑

m=−∞

∣∣∣�xm

∣∣∣
2

< ∞.

We will not go into details of the demonstration of (2.32) but only mention that
the derivation of this asymptotic estimate rests on the explicit expression of V n−1

m−1
through the Legendre polynomials, inequality (2.28), and representation (2.3) for
γn. Asymptotic estimates of this kind are found very useful in the summation of the
xm involving series, in particular, the series of the type (2.1) and (2.2). In diffrac-
tion theory (electrodynamics), they play the part of currents or charge densities, etc.
These series, as seen from (2.1) and (2.2), have a slow rate of convergence so that
their summation presents a problem. An evident means of the convergence improve-
ment of these series is recognizing the xm asymptotic behavior as |m|→∞ for the
explicit summation of the asymptotic terms. The latter is possible in so far as in
actual practice, the values γm, fm, gm usually satisfy stronger conditions than those
above.

2.2.2 Classical Dual Series Equations with “Matrix
Perturbation”

The elementary dual series equations discussed in the previous paragraph allow
some generalizations. One such is the dual series equations

∞∑

n=−∞

[
γnxn + (Vx)n

]
einϑ = F (ϑ) ; |ϑ| < ϑ0, (2.33)

∞∑

n=−∞

[
xn + (Ux)n

]
einϑ = G (ϑ) ; ϑ0 < |ϑ| ≤ π, (2.34)

where x = {xn}∞n=−∞ is the column vector of the unknowns, U = {Upq
}∞

p,q=−∞ and

V = {Vpq
}∞

p,q=−∞ are some given infinite-dimensional matrix operators with matrix
elements Upq and Vpq decreasing fast enough as |p|,|q|→∞. (Ux)n and (Vx)n are the
nth components of the vector columns Ux and Vx, respectively, F(ϑ) and G(ϑ) are
given functions, and ϑ0∈(0;π) is a fixed parameter. Concerning the given sequence
γn, n = 0,±1,±2. . ., it is assumed that

γn = |n|
{

C+ [1 + O
(
n−2
)]

; n → ∞
C− [1 + O

(
n−2
)]

; n → −∞ (2.35)

with C ± being some n-independent constants. In the general case, C + �= C –.
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Below, the problem formulation for some classes of series equations is elaborated
to recognize the spaces of the column vector h and the functions F(ϑ), G(ϑ), the
sense of equations (2.33) and (2.34), and other specific points.

By the commonly accepted terminology, expressions (2.33) and (2.34) are dual
series equations involving exp(inϑ) functions. We will call them standard equations
when U = V = 0. If U �= 0 and (or) V �= 0, then (2.33) and (2.34) are matrix pertur-
bation equations. And, finally, they are equations with diagonal matrix perturbation
when U and V represent diagonal matrices.

It is not difficult to see that multiplying (2.33) and (2.34) by exp(imϑ), m =
0,±1,. . ., and integrating between (–ϑ0;ϑ0) and (–π,ϑ0), (ϑ0;π), respectively, yields
the infinite system of linear algebraic equations, which is a functional equation of
the first kind for x, with all notorious disadvantages of the equations of that kind.

Clearly any other straightforward algebraization of equations (2.33) and (2.34)
will end up with a similar result, forcing us to invent a proper regularization proce-
dure in an effort to solve equations (2.33) and (2.34). In this section, a regularization
procedure of the kind will be developed for equations (2.33) and (2.34) in the case
C + = C – [see (2.35)] [75, 92]. The regularization procedure described below is
based on the development of a closed-form solution to the standard (U = V = 0) dual
series equations by means of the Riemann–Hilbert boundary value problem theory
[80]. With this knowledge, system (2.33) and (2.34) can be equivalently reduced to
an infinite system of linear algebraic equations of the second kind to be effectively
numerically solved by truncation.

If C + = C –, dual series equations (2.33) and (2.34) appear to be

ax0 +
∞∑

n=−∞
xn |n| einϑ+

∞∑

n=−∞

[(
V̄x
)

n − fn
]

einϑ = 0; |ϑ| < ϑ0, (2.36)

∞∑

n=−∞
xneinϑ+

∞∑

n=−∞

[
(Ux)n − gn

]
einϑ = 0; |ϑ| > ϑ0, (2.37)

where a = γ0/C+, f = {fn}∞n=−∞ and g = {gn}∞n=−∞ are the Fourier coefficients of
the functions (1/C+)F(t) and G(t), respectively. The matrix operator V̄ is related to
V as

V̄ = V + D, (2.38)

where D = {dpδ
q
p
}∞

q,p=−∞ is a diagonal matrix operator, dp = γp
/

C+ − |p|,
p = ±1,±2,. . ., d0 = 0 and δ

q
p is the Kronecker delta. From (2.35) it follows that

dp = O
(|p|−1). As to the unknown column vectors h and the coefficients f and g,

we assume that

x ∈ l2 (1) ; (2.39)

g ∈ l2 (1) , f ∈ l2 (−1) . (2.40)
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In addition, all the series in (2.36) and (2.37) are assumed to be the Fourier series
of their sums. That is, the series in (2.36) and (2.37) are [according to (2.39)] the
Fourier series of the relevant functions belonging, respectively, to L1[–π;π] and
L2[–π;π]. Regarding the matrix operators V̄ , assume that the operators T−1V̄T−1

and TUT –1 are compact as long as they act in the l2 space, where the diagonal
operator T is given by the matrix

T = {τnδ
n
m

}∞
m,n=−∞ ; τ0 = 1, τn = |n|1/2 , n �= 0. (2.41)

Introduce the column vectors ψ,ϕ by the formulas

ϕ = {ϕn}∞n=−∞ ,ψ = {ψn}∞n=−∞ , (2.42)

ψn = (Ux)n − gn, ϕn = ax0δ
n
0 +
(
V̄x
)

n − fn; n = 0, ± 1, ± 2,... (2.43)

With this notation, equations (2.36) and (2.37) take the form

∞∑

n=−∞
xneinϑ+

∞∑

n=−∞
ψneinϑ = 0; |ϑ| > ϑ0, (2.44)

∞∑

n=−∞
xn |n| einϑ+

∞∑

n=−∞
ϕneinϑ = 0; |ϑ| < ϑ0. (2.45)

Now put aside formulas (2.42) and (2.43), assuming that the column vectors ϕ,ψ
are known. Our immediate task is to construct for (2.44) and (2.45) a closed-form
solution that satisfies condition (2.39). We will begin with a formal scheme for the
derivation of the solution, ending with a brief mathematical justification (for details,
see [11, 92]).

Introduce the new unknowns y = {yn}∞n=−∞

y0 = x0 +ψ0, yn = n (xn +ψn) ; n = ±1, ± 2,... (2.46)

Differentiate (2.44) with respect to ϑ term by term and, making use of (2.46),
obtain from (2.44) and (2.45) the following system of equations:

∑

n �=0

yneinϑ = 0; |ϑ| > ϑ0, (2.47)

∑

n �=0

|n|
n

yneinϑ =
∞∑

n=−∞
(|n|ψn − ϕn) einϑ; |ϑ| < ϑ0, (2.48)

∑

n �=0

(−1)n n−1yn = −y0. (2.49)

Equation (2.49) comes directly from (2.44) at ϑ = π owing to (2.46). The fact is
that the differentiation of (2.44) loses the zeroth Fourier coefficient information. To
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avoid this error and guarantee an equivalent passage from (2.44), (2.45) to (2.47),
(2.48), equation (2.44) is applied at some ϑ point, |ϑ| > ϑ0, e.g., ϑ = π. One eas-
ily checks that the solution of equations (2.44) and (2.45) does not depend on a
particular choice of this point.

According to [92], the dual series equations (2.47), (2.48), and (2.49) can be
converted to some Riemann–Hilbert boundary value problem. Indeed, define some
two functions of the complex variable z as

X+ (z) =
∞∑

n=1

ynzn, X− (z) = −
∞∑

n=1

y−nz−n. (2.50)

The functions X+(z) and X–(z) are analytic inside and outside, respectively, the
circle |z| = 1. Let some arc P2 on the circle |z| = 1 connect the points exp(–iϑ0) and
exp(iϑ0) through z = –1, with arc P1 complementing |z| = 1 to the full circle. With
these functions, equations (2.47) and (2.48) take on the appearance (z = exp(iϑ0))

X+ (z) − X− (z) = 0; z ∈ P2, (2.51)

X+ (z) + X− (z) =
∞∑

n=−∞
(|n|ψn − ϕn) zn; z ∈ P1. (2.52)

From (2.51) it follows that the function

X (z) =
{

X+ (z) ; |z| < 1
X− (z) ; |z| > 1

(2.53)

continues as a function analytic in the complex plane with a cut along P1 arc and
decreases as |z|→∞ according to (2.50). Namely,

X (z) = −y−1z−1 + O
(

z−2
)

. (2.54)

As (2.36) and, consequently, (2.48) are assumed to be the series of their sums on
L1[–π;π], the limiting X(z) values on the circle |z| = 1 belong to L1[–π;π] as well.
In this case, equations (2.47) and (2.48) are equivalent to the problem of the X(z)
reconstruction by the sum of its limiting values on arc P1, where the function X(z) is
not analytic. This problem represents an elementary variant of the Riemann–Hilbert
boundary value problem (see [80]). Its solution is well known and available in the
form (see [80])

X (z) = 1

2πiR (z)

∫

P1

F (τ) R (τ)

τ− z
dτ+ y−1

R (z)
, (2.55)
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where

F (τ) =
∞∑

n=−∞
(|n|ψn − ϕn) τn, (2.56)

R (z) = [(z − eiϑ0
) (

z − e−iϑ0
)]1/2 . (2.57)

The function R(z) is analytic in the complex plane cut along arc P1, the root
branch R(0) = 1 chosen.

Now let us show how dual series equations (2.47), (2.48), and (2.49) should be
solved using (2.55). By virtue of the Sokhotskyi-Plemelj formulas (see [94]), from
expression (2.55), it follows that for |z| = 1

X+ (eiϑ)− X− (eiϑ) = K
(
eiϑ
)

πi

∫

P1

F (τ) R+ (τ)

τ− eiϑ
dτ+ 2y−1K

(
eiϑ), (2.58)

where the integral is regarded as the Cauchy principal value, R+(τ) denotes the
limiting value of R(z) on the inside of unit-circle arc P1: at z = τ(1–ε) and ε→+0,
and

K (τ) =
{ 1

R+(τ)
; τ ∈ P1

0; τ ∈ P2
. (2.59)

Match the Fourier coefficients on both sides of equation (2.58) and on account of
(2.56), get the relations

ym =
∞∑

n=−∞
(|n|ψn − ϕn) Vn

m + 2y−1Rm; m = ±1, ± 2,..., (2.60)

0 =
∞∑

n=−∞
(|n|ψn − ϕn) Vn

0 + 2y−1R0, (2.61)

with Vn
m and Rm given below [see (2.63) and (2.64)]. Equations (2.60) and (2.61)

should be completed with equation (2.49), which on the substitution of the right-
hand side of equation (2.60) for ym becomes

− y0 =
∞∑

n=−∞
(|n|ψn − ϕn) Vn

σ + 2y−1Rσ. (2.62)

The coefficients Vn
m, Rm, Vn

σ , Rσ originally calculated in [45] are expressed via
Legendre polynomials Pn(u), (see [95] for their definition P0(u) = 1, P1(u) = u,. . .)
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Vn
m =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

m+1
2(m−n)

[
Pm (u) Pn+1 (u) − Pm+1 (u) Pn (u)

]
; m �= n

1
2

m+1∑

p=0
ρm+1−p (u) ; n = m ≥ 0

−V |m|−2
|m|−2 (u) ; n = m ≤ −2

0; n = m = −1

, (2.63)

⎧
⎨

⎩

Rm = 1
2 Pm (u) ; m = 0, ± 1, ± 2,...

P−n−1 (u) = Pn (u) ; n = 0,1,2,...
Rσ = − 1

2 ln 1+u
2

, (2.64)

Vn
σ =

⎧
⎪⎨

⎪⎩

1
2ρn̄ (u) ln 1+u

2 + 1
2|n|
[
P|n| (u) − P|n|−1 (u)

]
; n �= 0, − 1

u−1
2

(
ln 1+u

2 + 1
)

; n = −1
1+u

2 ln 1+u
2 ; n = 0

, (2.65)

where u = cosϑ0, n̄ =
{

n + 1; n > 0
−n; n < −1

, ρ0(u) = 1, ρ1(u) = –u, and

ρn (u) = Pn (u) − 2uPn−2 (u) + Pn−2 (u) ; n = 2,3,... (2.66)

In order to get ym, m = 0,±1,. . ., in explicit form (recall that ϕn, ψn are assumed
to be known), one only needs, on account of (2.61), to discard y–1 from (2.60) and
(2.62). Indeed, substitute the expression

y−1 = 0.5R−1
0

∞∑

n=−∞
(|n|ψn − ϕn) Vn

0 (2.67)

obtained from (2.61) into the right-hand sides of (2.60) and (2.62) to obtain

⎧
⎪⎪⎨

⎪⎪⎩

ym =
∞∑

n=−∞
(|n|ψn − ϕn)

(
Vn

m − R−1
0 RmVn

0

)
; m = ±1, ± 2,...

y0 =
∞∑

n=−∞
(|n|ψn − ϕn)

(
R−1

0 RσVn
0 − Vn

σ

) . (2.68)

With formulas (2.63), (2.64), (2.65), and (2.66), it is not difficult to check the
identities

V n−1
m−1 = Vn

m − R−1
0 RmVn

0 , R−1
0 RσVn

0 − Vn
σ =
{− ln 1+u

2 ; n = 0
n−1V−1

n−1; n �= 0
. (2.69)

Substitute (2.69) into (2.68) and return to the unknowns {xm}∞m=−∞. Then the
solution to equations (2.44) and (2.45) with ψn, ϕn known is

x0 = W0ϕ0 −ψ0 +
∑

n �=0

(|n|ψn − ϕn) n−1V−1
n−1, (2.70)
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xm = −ψm +
∞∑

n=−∞
(|n|ψn − ϕn) m−1V n−1

m−1; m = ±1, ± 2,...,

W0 = ln
1 + u

2

(2.71)

Thus, formulas (2.70) and (2.71) lend a closed-form solution to the standard dual
series equations (2.44) and (2.45). On this basis, we will build an infinite system
of linear algebraic equations of the second kind equivalent to the initial dual series
equations (2.33) and (2.34) with matrix perturbation. For this, pass from the column
vectors x, ϕ, ψ (see 2.43) assumed to satisfy the conditions [see (2.39) and (2.40)]
x∈l2(1), ψ∈l2(1), and ϕ∈l2(–1), to the column vectors

�x =
{�xn

}∞
n=−∞ = Tx ∈ l2,

�
ψ =
{

�
ψn

}+∞

n=−∞
= Tψ ∈ l2,

�ϕ =
{�ϕn

}∞
n=−∞ = T−1ϕ ∈ l2

lying on the l2 space, the operator T is defined in (2.41).
Relations (2.70) and (2.71) are readily transformed to become

�xm =
∞∑

n=−∞
Wmn

(
�
ψn − �ϕn

)
+

∞∑

n=−∞
Pmn

�
ψn − �

ψm m = 0, ± 1,... (2.72)

with

Wmn =

⎧
⎪⎪⎨

⎪⎪⎩

−W0; m = n = 0
τnV−1

n−1
n ; n �= 0, m = 0

τnτmV n−1
m−1

m ; m �= 0

, Pmn =
⎧
⎨

⎩

W0; m = n = 0
−Wm0; m �= 0, n = 0
0; n �= 0

. (2.73)

Thus, by virtue of (2.73) with the matrix operators

W = {Wmn}∞m,n=−∞ , P = {Pmn}∞m,n=−∞ , (2.74)

formulas (2.72) become

�x = W

(
�
ψ−�ϕ

)
+ (P − E)

�
ψ , (2.75)

where E is the identity matrix operator.
Armed with formula (2.75) for solving equations (2.44) and (2.45) with ϕ, ψ

known, proceed to the regularization of equations (2.73) and (2.37) on account of
expressions (2.42) and (2.43) relating ψn, ϕn and fn, gn, xn. To this end, define the
column vectors
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f = {fn}∞n=−∞ , g = {gn}∞n=−∞ , (2.76)

�
f =
{

�
f n

}∞

n=−∞
= T−1f , �g =

{�gn

}∞
n=−∞ = Tg. (2.77)

Consequently, formulas (2.43) become

�
ψn =

(�
U �x
)

n
− �gn,

�ϕn = aδn
0

�x n +
(�

V �x
)

n
− �

f n, (2.78)

where
�
U and

�
V are the matrix operators

�
U = TUT−1,

�
V = T−1V̄T−1 (2.79)

which are compact, by assumption, on the space l2. Then relations (2.78) in the
vector form are

�
ψ = �

U �x −�g ,
�ϕ = a

�
E �x + �

V �x − �
f (2.80)

with the matrix operator �
E defined as �

E = {δ0
mδ0

n

}∞
m,n=−∞.

Considering (2.75) and (2.80) as a system of equations for the unknowns �x ,
�ϕ,

�
ψ and removing the unknowns

�ϕ,
�
ψ from (2.75) in view of (2.80), one arrives after

some elementary transformations at the equation for �x

(E + H)
�x = �

b , (2.81)

with the matrix operator H and the column vector
�
b in the form

H = −aP + (E − P)
�
U +W

(�
V − �

U
)

, (2.82)

�
b = (E − P)

�g +W

(
�
f −�g

)
. (2.83)

Now let us prove that the operator H available from (2.82) is compact on l2 and,
hence, equation (2.81) is a second-kind equation on l2. In this case, we will assume

that the matrix operators
�
U,

�
V defined by formulas (2.79) are compact on l2.

First of all we will show that the operator W is bounded on l2. Put the column
vector x = {xn}∞n=−∞ ∈ l2 and prove that the column vector y = {ym}∞m=−∞ such
that y=Wx belongs to l2 for any x∈l2. Indeed, in view of (2.73) and (2.63), we have

y0 = ∑
n �=0

W0nxn = −W0x0+ ∑
n �=0

τnn−1V−1
n−1xn =

= −W0x0 + 1
2

∑

n �=0
τnn−1

[
Pn−1 (u) − Pn (u)

]
xn.
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On account of the inequality [see (2.60)]

|Pn (u)| <
2

√
π |n| (1 − u2

) ; n = ±1, ± 2, ... (2.85)

together with the Cauchy–Bunyakowsky inequality, the absolute convergence of the
series (2.84) is ensured. Next let m �= 0. Then

ym =
∞∑

n=−∞
Wmnxn = m−1τ2

mVm−1
m−1 xm + Pm−1(u)

2 τm
∑

m�=n

τnPn(u)
m−n xn−

−Pm(u)
2 τm

∑

m�=n

τnPn−1(u)
m−n xn; m = ±1, ± 2,...

(2.86)

Make use of the fact that the matrix

{αmn}∞m,n=−∞ : αmn =
{

0; m = n
1

m−n ; m �= n

produces the bounded operator (see [70]) on l2. Considering the estimate (2.85), we
obtain from (2.86) that ym can be written as

ym = m−1τ2
mVm−1

m−1 xm + τmPm−1 (u) f 1
m + τmPm (u) f 2

m, (2.87)

where
{
fmj
}∞

m=−∞, j = 1,2, are some vector columns belonging to l2. In view of the
inequality

∣∣
∣Vm−1

m−1

∣∣
∣ < 2; m = ±1, ± 2,...

it immediately follows that the values ym, m = ±1,±2,. . ., are quadratically
summable.

The finite-valuedness of y0 has been shown, proving, in turn, that the matrix W
produces a linear operator defined everywhere on l2. From the definition of Wmn

[see (2.73)] it follows that the matrix W is self-adjoint. The previously established
facts suggest, according to [70], that the operator W is bounded on l2.

Now let us prove that the matrix {Pmn}∞m,n=−∞ produces a Hilbert–Schmidt oper-
ator on l2. For this purpose, the convergence of

∑

m,n
|Pmn|2 will suffice (see [70]).

From (2.73),

∑

m,n

|Pmn|2=
∑

m

∣∣Pm0

∣∣2=W2
0 +
∑

m�=0

m−2τ2
m

(
V−1

m−1

)2
<W2

0 + const
∞∑

m�=0

m−3/2<∞.

Hence it immediately follows that the operator N defined by formula (2.82) is
compact on l2. Indeed, the operator R is compact as a Hilbert–Schmidt operator.

Also, we have already shown that operator W is bounded, while the operators
�
U
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and
�
V are compact by assumption. Hence, the operator W

(�
V − �

U
)

is compact, too,

which is what we set out to prove.
Based on the properties of operators R and W, one finds that, in view of (2.77)

and (2.83), the column vectors
�
b and �x belong to l2.

Thus, (2.81) represents an infinite system of linear algebraic equations of the
second kind on l2.

It is not difficult to extend the validity of the analytic regularization procedure
designed for dual series equations (2.36) and (2.37) to the coupled system of a finite
number of these equations below

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ajx
j
0 +

∞∑
n=−∞

|n| xj
neinϑ +

M∑

p=1

∞∑
n=−∞

[(
Vjpxp

)
n − f j

n

]
einϑ = 0; |ϑ| < ϑj

∞∑
n=−∞

xj
neinϑ +

M∑

p=1

∞∑
n=−∞

[(
Ujpxp

)
n − gj

n

]
einϑ = 0; |ϑ| > ϑj, j = 1,2,..., M

(2.88)

in the unknowns xj =
{

xj
n

}∞
n=−∞, j = 1,2,. . ., M.

Both the values involved in (2.88) and the requirements imposed on them are the
same as for equations (2.36) and (2.37), and therefore we avoid repetition of the
details.

The regularization of equations (2.88), in other words, their reduction to an
infinite system of linear algebraic equations of the second kind obeys the scheme
developed for equations (2.36) and (2.37). First, the vectors

ψj =
M∑

p=1

Ujpxp − g j, ϕj = a j �
E x j +

M∑

p=1

Vjpx p − f j (2.89)

are assumed to be known and possessing the properties desired. By analogy with the
previous case, equations of (2.44) and (2.45) type are obtained for every j = 1,2,. . .,
M. In view of (2.89), they are transformed to the analog of equation (2.81) in the
form

�x j +
M∑

p=1

Hjp �xp = �
b j; j = 1,2,..., M, (2.90)

where

Hjp = −ajPj + (E − Pj
) �

Ujp + Wj
(�

Vjp − �
Ujp
)

,

�
bj = (E − Pj

)�gj + Wj
(

�
f j − �gj

)
.

In equations (2.90), �x j,
�
f j, �gj for all j = 1,2,. . ., M are expressed, respectively,

through x j, f j, g j via (2.76) and (2.77). The operators U jp and V jp are related to
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U jp and V jp by formulas (2.79). Finally, the operators Pj, Wj for every j = 1,2,. . .,M
come from formulas (2.63) to (2.66), (2.73), and (2.74), with ϑ0 substituted by ϑj.

By construction, all the vectors in (2.90) belong to the l2 space. It is easily proved
that all the matrix operators involved in (2.90) and considered as operators acting
on l2 are compact. Hence, (2.90) is a system of equations of the second kind.

In closing mention should be made that the two-dimensional problem of elec-
tromagnetic (acoustic) wave diffraction by a grating consisting of finite-number
elements like nonclosed arbitrarily shaped cylindrical screens is reduced to the
systems of equations of (2.88) type [11].

2.2.3 Dual Series Equations with the Nonunit Coefficient
of Conjugation

In this paragraph, the dual series equations (2.33) and (2.35) are examined in the
case C ± �= C – [see (2.35)]. Equations of this nature appear, to give one example,
in problems of wave diffraction by a single-periodic perfectly conducting grating
located on the interface of a gyrotropic medium (magnetoactive plasma, anisotropic
dielectric, ferrite, etc.).

The regularization algorithm of these equations is designed to use the relevant
standard equations solved in analytic (explicit) terms by considering the boundary
value Riemann–Hilbert problem in theory of analytic functions. Suppose that we are
given constants C± from (2.35) as complex numbers with the imaginary part other
than zero (Im C± �= 0). The dual series equations (2.33) and (2.34) then take on the
appearance

ax0 +
∞∑

n=1

nxneinϑ − b
−1∑

n=−∞
nxneinϑ +

∞∑

n=−∞

[(
V̄x
)

n − fn
]

einϑ = 0; |ϑ| < ϑ0,

(2.91)

∞∑

n=−∞
xneinϑ+

∞∑

n=−∞

[
(Ux)n − gn

]
einϑ = 0; |ϑ| > ϑ0, (2.92)

where a = γ0/C+, b = C–/C+.
Evidently for b=1 (C+ = C–), these equations coincide with (2.36) and (2.37).

Hereafter the parameter b will be called the conjugation coefficient of the dual series
equations of the type (2.91) and (2.92). Assume that the imaginary part of the conju-
gation coefficient does not vanish (Im b �= 0) and the column vectors x = {xn}∞n=−∞,
f = {fn}∞n=−∞, and g = {gn}∞n=−∞ are such that

x ∈ l2 (η) , (2.93)

g ∈ l2 (η) , f ∈ l2 (−η) , (2.94)
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where η = 1+(arg b)
/
π, –π < arg b < π, and the space l2(η) is defined in (2.5). The

matrix operators �
T U

�
T−1 and �

T−1V̄
�
T−1 are assumed to be compact in the space l2,

the matrix operator �
T is given by the formula

�
T =
{�τnδ

n
m

}∞
m, n=−∞ ; �τ0 = 1, �τn = |n|η/2 ; n �= 0. (2.95)

Besides, the matrix operator V̄ , as opposed to (2.38), is

V̄ = V + D. (2.96)

Here,

D = {dnδ
n
m

}∞
m, n=−∞ ; d0 = 0, dn =

⎧
⎪⎨

⎪⎩

γn

C+ − n; n > 0

γn

C+ + n
C−

C+ ; n < 0
.

The remaining requirements imposed on the values in (2.91) and (2.92) and, also,
the Fourier series convergence are the same as for equations (2.31) and (2.37).

In view of (2.42) and (2.43), transform equations (2.91) and (2.92) to be similar
to (2.47), (2.48), and (2.49) as follows:

∑

n �=0

yneinϑ = 0; |ϑ| > ϑ0, (2.97)

∞∑

n=1

yneinϑ − b
−1∑

n=−∞
yneinϑ =

∞∑

n=−∞
(|n|ψnδn − ϕn) einϑ; (2.98)

∑

n �=0

(−1)n n−1yn = −y0, (2.99)

where

yn = δ0
n (x0 +ψ0) + n (xn +ψn) , δn =

{
1; n ≥ 0
b; n < 0

.

Suppose that we are given the column vectors ψ = {ψn}∞n=−∞, ϕ = {ϕn}∞n=−∞
and check that equations (2.97), (2.98), and (2.99) are uniquely solvable for any
value of the conjugation coefficient b, Im b �= 0. For this purpose, one only needs to
know if the corresponding homogeneous equations (ψn = ϕn = 0; n = 0, ± 1,...)
possess the trivial yn=0, n = 0,±1,. . ., solution. Introduce the two functions

F1 (ϑ) =
∑

n �=0

yneinϑ, F2 (ϑ) =
∞∑

n=1

yneinϑ − b
−1∑

n=−∞
yneinϑ (2.100)



2.2 The Riemann–Hilbert Problem Method and Its Generalization 75

on the interval [–π;π]. Insofar as for x = {xn}∞n=−∞, condition (2.93) must hold and
the corresponding series in (2.91) and (2.92) are the Fourier series of their sums;
functions (2.100) obey the Parseval equation

π∫

−π

F∗
1F2dϑ = 2π

∞∑

n=−∞
f ∗1n f2n, (2.101)

where ∗ indicates complex conjugation, f1n and f2n are the Fourier coefficients
of the functions F1(ϑ) and F2(ϑ), respectively. From (2.97), (2.98), and (2.101),
∞∑

n=−∞
f ∗1n f2n = 0. Therefore,

∞∑

n=1

|yn|2 − b
−1∑

n=−∞
|yn|2 = 0. (2.102)

After separation of the imaginary part

−1∑

n=−∞
|yn|2Imb = 0.

Hence
−1∑

n=−∞
|yn|2 = 0 and

∞∑
n=1

|yn|2 = 0. That is, yn = 0, n = 0,±1,±2. . ..

From (2.99), y0 = 0. And it has been shown that equations (2.97), (2.98), and (2.99)
possess only a trivial solution for ψn = ϕn = 0, n = 0,±1,. . ..

Now let us build a solution of these equations assuming that the column vectors
ϕ = {ϕn}∞n=−∞ and ψ = {ψn}∞n=−∞ are known. To this end, reduce (2.97), (2.98),
and (2.99) to the boundary value Riemann–Hilbert problem. Let y = {yn}∞n=−∞ be
the sought solution. Similar to (2.50) and (2.53), give the function X(z) of a complex
variable z by the formula

X (z) =

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
n=−1

ynzn; |z| < 1

−
−1∑

n=−∞
ynzn; |z| > 1

. (2.103)

As follows from (2.97), this function is analytic on the complex plane with a cut
along the unit-circle arc P connecting the points exp(–iϑ0) and exp(iϑ0) through the
point z = 1. Denote by X+(z) and X–(z) the limiting values of X(z) on the arc P,
correspondingly, inside and outside the unit circle |z| ≤ 1. Then from (2.98),

X+ (z) + bX− (z) =
∞∑

n=−∞
(|n|ψnδn − ϕn) zn; z ∈ P. (2.104)
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We have arrived at the boundary value Riemann–Hilbert problem: it is needed to
construct the X(z) function that is analytic everywhere but on the arc P and whose
limiting values on this arc satisfy condition (2.72). The solution to this problem will
be sought in the class of functions having an integrable singularity at the ends of the
arc P and decreasing as |z|→∞. By the techniques suggested in [80], this problem
solution is easily obtained in the form

X (z) = G (z)

⎡

⎣ 1

2πi

∫

P

F (τ) dτ

G+ (τ) (τ− z)
+ C

⎤

⎦ ; z /∈ P, (2.105)

where F (τ) =
∞∑

n=−∞
(|n|ψnδn − ϕn) τ

n and C is an arbitrary constant.

The function G(z) from (2.105) is a solution of the homogeneous boundary value
Riemann–Hilbert problem (ψn = ϕn = 0, n = 0, ± 1,. . .). It belongs to the above-
mentioned class of functions and can be expressed in the form

G (z) = (z − eiϑ0
)−1

exp

⎛

⎝
(

1

2
− id

)∫

P

dτ

τ− z

⎞

⎠ , (2.106)

where d = lnb/2π, ln b = ln |b| + i arg b, –π< argb < π. The function G+(τ) in
(2.105) is the limiting value of the function G(z) on the arc P inside the circle
|z| ≤ 1.

Straightforward calculations show that the G(z) function satisfies the following
differential equation:

dG (z)

dz
= 2d sin ϑ0 + cos ϑ0 − z

z2 + 1 − 2z cos ϑ0
G (z) ; z �= e±iϑ0 , G (0) = −e2ϑ0d. (2.107)

On this basis, the G(z) and G–1(z) functions can be expressed as the following
series in terms of powers of the variable z:

G (z) =

⎧
⎪⎪⎨

⎪⎪⎩

−e2ϑ0d
∞∑

n=0
Pn (d,ϑ0) zn; |z| < 1

∞∑
n=0

Pn (d, − ϑ0) z−n−1; |z| > 1
, (2.108)

G−1 (z) =

⎧
⎪⎪⎨

⎪⎪⎩

e−2ϑ0d
∞∑

n=0
Qn (d, − ϑ0) zn; |z| < 1

∞∑
n=0

Qn (d,ϑ0) z−n+1; |z| > 1
. (2.109)

Here the function Pn(d,ϑ0) satisfies the recurrence formulas
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P0 (d, ϑ0) = 1, P1 (d, ϑ0) = cos ϑ0 + 2d sin ϑ0,
nPn (d, ϑ0) = [(2n − 1) cos ϑ0 + 2d sin ϑ0] Pn−1 (d, ϑ0)−

− (n − 1) Pn−2 (d, ϑ0) ; n = 2,3,...
(2.110)

and the functions Qn(d,ϑ0) are expressed via Pn(d,ϑ0) as follows:

Q0 (d, ϑ0) = 1,Q1 (d, ϑ0) = − cos ϑ0 + 2d sin ϑ0,
Qn (d, ϑ0) = Pn (d, ϑ0) − 2 cos ϑ0Pn−1 (d, ϑ0) + Pn−2 (d, ϑ0) ;
n = 2,3,...

(2.111)

Remark. For the conjugation coefficient b = 1, it is easy to see that the functions
Pn(d,ϑ0) coincide with the Legendre polynomials and, furthermore, the function
G(z) is no different from the function R–1(z) [see (2.55), (2.56), and (2.57)].

For the next step toward the solution of equations (2.97), (2.98), and (2.99), take
the Sokhotskyi-Plemelj formulas [94] for the Cauchy-type integral. The application
of these formulas to (2.105) finally gives

∑

n �=0

yneinϑ= b − 1

b
�
F
(
eiϑ)+ �

G
(
eiϑ)
⎡

⎣ 1

2πi

∫

P

F (τ) dτ

G+ (τ)
(
τ−eiϑ

)+C

⎤

⎦ ; − π≤ t≤π,

(2.112)
where

�
G
(
eiϑ
) = G+ (eiϑ

)− G− (eiϑ
)

; �
F
(
eiϑ
) =
{

0; |ϑ| > ϑ0

F
(
eiϑ
)

; |ϑ| < ϑ0
and

G− (eiϑ
) = lim

ξ→+0
G
(
eiϑ (1 + ξ)

)
.

Calculate the singular integral in (2.112) (say, by using the Cauchy residue theo-
rem [94] and expanding the functions G(z) and G–1(z) from (2.108) and (2.109) into
power series) and match the Fourier coefficients to have

y0 = �
W0ϕ0 +

∑

n �=0

n−1 �
V−1

n−1 (d,ϑ0) (|n|ψnδn − ϕn) , (2.113)

ym =
∞∑

n=−∞
�
V n−1

m−1 (d,ϑ0) (|n|ψnδn − ϕn); m = ±1, ± 2, ... (2.114)

The values
�
W0 and

�
V n−1

m−1 (d,ϑ0) are expressed via the functions Pn(d,ϑ0) and
Qn(d,ϑ0) by the formulas below. If m = n,
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�
Vm−1

m−1 (d,ϑ0) =
(

1 + e2πd
)−1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0; m = 0

m∑

n=0
Qm−n (d,ϑ0) Pn−m (d, − ϑ0) ; m ≥ 1

−
|m|∑
n=0

Q|m|−n (d, − ϑ0) Pn+m (d,ϑ0) ; m ≤ −1

.

(2.115)
If m �= n,

�
V n−1

m−1 (d,ϑ0) =
(
1 + e2πd

)−1 ×

×
⎧
⎨

⎩

e2dϑ0 m

m − n
[Pm−1 (d,ϑ0) Pn (d,ϑ0) − Pm (d,ϑ0) Pn−1 (d,ϑ0) ]; n �= 0

e2dϑ0 Pm−1 (d,ϑ0) − Pm (d,ϑ0) ; n = 0
,

(2.116)

�
W0 = (1 + e2πd

)−1 ∞∑
n=1

(−1)n

n [e2dϑ0Pn−1 (d,ϑ0) + e−2dϑ0 Pn−1 (d, − ϑ0)+
+Pn (d, − ϑ0) + Pn (d,ϑ0) ].

(2.117)
By definition, for the Pn(d,ϑ0) functions with negative n indices, we have

Pn (d,ϑ0) = e−2dϑ0 P|n|−1 (d, − ϑ0) ; n = −1, − 2,... (2.118)

So, formulas (2.113), (2.114), and (2.115), (2.116), (2.117), and (2.118) give a
closed-form solution to equations (2.97), (2.98), and (2.99). This solution makes
it possible to reduce the initial equations (2.91) and (2.98) to an infinite system of
linear algebraic equations of the second kind.

Indeed, pass to the unknowns x = {xn}∞n=−∞ in (2.113) and (2.114) and introduce

the new column vectors �x =
{�x n

}∞
n=−∞,

�
ψ =

{
�
ψn

}∞

n=−∞
,

�ϕ =
{�ϕn

}∞
n=−∞

according to the formulas

�x = �
T x,

�
ψ = �

T ψ,
�ϕ = �

T−1ϕ. (2.119)

Let us remind that the operator �
T is defined in (2.95). Then (2.113) and (2.114)

can be expressed in the vector form

�x = �
W

(
�
D

�
ψ−�ϕ

)
+
(�

P−E
)�
ψ . (2.120)
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The matrix operators
�
W , �

D , �
P are defined as

�
W =

{�
Wmn

}∞
m,n=−∞,

�
P =
{�

Pmn

}∞
m,n=−∞, �

D = {δnδ
m
n

}∞
m,n=−∞, with

�
Wmn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− �
W0; m = n = 0

�τ n
�V −1

n−1(d,ϑ0)

n ; n �= 0, m = 0
�τ n

�τ m
�V n−1

m−1(d,ϑ0)

m ; m �= 0

, �
Pmn =

⎧
⎪⎨

⎪⎩

�
W0; m = n = 0

− �
Wm0; m �= 0, n = 0

0; n �= 0

,

and

δn =
{

1; n ≥ 0
b; n < 0

, �τn =
{

1; n = 0
|n|η/2 ; n > 0

, η = 1 + arg b

π
.

In view of (2.80), exclude
�ϕ and

�
ψ from (2.120) to obtain the following equation

for the unknown column vectors �x :

(
E + �

H
)�x = �

b , (2.121)

where

�
H = −a

�
P+
(

E − �
P
) �

U + �
W
(�

V − �
D

�
U
)

,
�
b =
(

E − �
P
)�g + �

W

(
�
f − �

D
�g
)

.

The compactness of the matrix operator �
H in the space l2 is shown using the

asymptotic estimates of the functions Pn(d,ϑ0) at a large index |n|→∞, the same
as it was done in the case when the conjugation coefficient is b = 1, saving us from
having to go into the details. A mention should be only made that the asymptotic
estimates of the Pn(d,ϑ0) function can be obtained by the method of generating
functions [94]. For n→+∞,

Pn (d,ϑ0) =
[
Γ

(
1

2
+ id

)]−1 (
1 − ei2ϑ0

)−1/2+id
e−inϑ0 n−1/2+id

(
1 + O

(
1

n

))
,

(2.122)

where d = (lnb)/2π and Γ(. . .) is the gamma function. The asymptotical estimation
for n→–∞ comes directly from (2.118). It is easily checked that for b = 1, formula
(2.122) agrees with the Legendre polynomial asymptotical estimation Pn(cosϑ0).

Thus, it has been demonstrated that the dual series equations (2.91) and (2.92)
are reduced to an infinite system of linear algebraic equations of the second kind
of the type (2.121). In the subsequent sections, this fact will be used for designing
numerical algorithms to solve the problem of plane electromagnetic wave diffraction
by perfectly conducting strip gratings located on the interface of a magnetoactive
plasma-type medium.
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2.2.4 The System of Dual Series Equations and Riemann–Hilbert
Vector Problem

So far, we have dealt with such dual series equations whose regularization algorithm
is effectively constructed using the explicit solution of the conjugation (Riemann–
Hilbert) problem in theory of analytic functions. However, in diffraction problems
of single-periodic gratings one often faces systems of dual equations whose nature
differs from what was discussed in Sections 2.2.1, 2.2.2, and 2.2.3. Generally, they
can be written in the form

∞∑

n=−∞
xneinϑ = 0; |ϑ| < ϑ0, (2.123)

∞∑

n=−∞
|n| (bxn + yn) einϑ +

∞∑

n=−∞

[(
V11x
)

n
+
(

V12y
)

n
− f1n

]
einϑ = 0; |ϑ| < ϑ0,

(2.124)

∞∑

n=−∞
yneinϑ = 0; |ϑ| > ϑ0, (2.125)

∞∑

n=−∞
|n| (ayn + xn) einϑ +

∞∑

n=−∞

[(
V21x
)

n
+
(

V22y
)

n
− f2n

]
einϑ = 0; |ϑ| > ϑ0.

(2.126)

Here, x = {xn}∞n=−∞, y = {yn}∞n=−∞ are the unknown column vectors, Vpq ={
Vpq

mn
}∞

m,n=−∞, p,q = 1,2, are the given infinite-dimensional matrix operators, (Vpqx)
(Vpqy) are the nth components of the column vectors (Vpqx)n and (Vpqy)n, respec-
tively, f1 = {f1n}∞n=−∞ and f2 = {f2n}∞n=−∞ are some given column vectors,
ϑ0∈(0;π), and a and b are, in general, some complex numbers.

The assumptions about the Fourier series convergence in (2.123), (2.124),
(2.125), and (2.126) are identical to those in Section 2.2.2. The matrix operators
Vpq, p,q = 1,2, meet the condition that the operators T–1VpqT–1 are compact in the
space l2, with operator T defined by formula (2.41). A solution of system (2.123)–
(2.126) will be sought in the space l2(1) [see (2.37)], the known column vectors are
assumed to be f1, f2∈l2(–1). The standard equation system corresponding to (2.123),
(2.124), (2.125), and (2.126) is provided by putting Vpq = 0, p,q = 1,2. The nearest
task is to derive an analytic solution to the standard equations, the column vectors
x and y expressed explicitly via the column vectors f1 and f2. After that it will be
shown how the infinite system of linear algebraic equations of the second kind,
equivalent to system (2.123), (2.124), (2.125), and (2.126), should be constructed.

The basic idea of the explicit solution of the system of standard dual series equa-
tions is the conversion to some Riemann–Hilbert vector problem (the conjugation
problem in theory of vector analytic functions). Generally speaking, this problem
cannot be explicitly solved for arbitrary values of the parameters a and b, which
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forces us to restrict the consideration to the case 0 ≤ ab < 1 [see (2.124) and (2.126)].
Later on, we will see that this condition is actually satisfied for problems of wave
diffraction by a single-periodic grating located on the chiral plane layer interface
(Section 2.6).

The interested reader can easily check that system (2.124), (2.125), and (2.126)
with a = b = 0 is identical to equations (2.33) and (2.34), which makes it possible
to use the results from Section 2.2.2 as such.

Proceed to the case a �= 0 and b �= 0. The first thing to do is to verify the
unique solvability of the system of standard equations in the space l2(1) [see (2.124),
(2.125), and (2.126) with Vpq = 0].

Let f1 = f2 = 0. To prove the unique solvability of the system of standard equa-
tions, the existence of the trivial solution x = 0 and y = 0 will suffice. Assume the
contrary, implying that a solution of the standard equations is x �= 0, y �= 0 rather
than x, y= 0. Introduce the functions

F1 (ϑ) =
∞∑

n=−∞
|n| (ayn + xn) einϑ, F2 (ϑ) =

∞∑

n=−∞
|n| (bxn + yn) einϑ, (2.127)

F3 (ϑ) =
∞∑

n=−∞
xneinϑ, F4 (ϑ) =

∞∑

n=−∞
yneinϑ. (2.128)

Complying with the previous assumptions about the Fourier series appearing in
(2.124), (2.125), and (2.126), these functions obey the equality

π∫

−π

F1 (ϑ) F∗
4 (ϑ) dϑ = 0,

π∫

−π

F2 (ϑ) F∗
3 (ϑ) dϑ = 0. (2.129)

As before, the asterisk ∗ indicates complex conjugation. Substituting (2.127) and
(2.128) into (2.129) yields

∞∑

n=−∞
|n|
(

aynx∗n + |xn|2
)
= 0,

∞∑

n=−∞
|n|
(

bxny∗n + |yn|2
)
= 0 (2.130)

whence

b
∞∑

n=−∞
|n| |xn|2 = a

∞∑

n=−∞
|n| |yn|2. (2.131)

Now it will suffice to address the Cauchy–Bunyakowsky inequality

∣∣∣∣
∣

∞∑

n=−∞
|n| xnyn

∣∣∣∣
∣

2

≤
∞∑

n=−∞
|n| |xn|2

∞∑

n=−∞
|n| |yn|2,

which, in view of (2.131), leads to the inequality ab ≥ 1 for a and b values.
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Thus, the assumption x �= 0 and y �= 0 results in a contradiction, which affirms
that the system of standard equations is uniquely solved for 0 ≤ ab < 1.

To construct an analytic solution to these equations, write the standard equations
as

∞∑

n=−∞
nxneinϑ = 0; |ϑ| < ϑ0, (2.132)

∞∑

n=−∞
|n| (bxn + yn) einϑ =

∞∑

n=−∞
f1neinϑ; |ϑ| < ϑ0, (2.133)

∞∑

n=−∞
nyneinϑ = 0; |ϑ| > ϑ0, (2.134)

∞∑

n=−∞
|n| (ayn + xn) einϑ =

∞∑

n=−∞
f2neinϑ; |ϑ| > ϑ0, (2.135)

∑

n �=0

xn = −x0,
∑

n �=0

(−1)n yn = −y0. (2.136)

They are evidently equivalent to (2.123), (2.124), (2.125), and (2.126) for Vpq =
0, p,q = 1,2.

Let us show that (2.132), (2.133), (2.134), and (2.135) can be reduced to the
Riemann–Hilbert vector problem in the theory of analytic functions [80]. Introduce
some piecewise analytic vector functions Φ±(z) as follows:

Φ± (z) =
{

X± (z)
Y± (z)

}
, (2.137)

with

X+ (z) =
∞∑

n=1
nxnzn, Y+ (z) =

∞∑
n=1

nynzn, X− (z) = −
−1∑

n=−∞
nxnzn.

Y− (z) = −
−1∑

n=−∞
nynzn.

The functions Φ+(z) and Φ–(z) are clearly analytic, respectively, inside and out-
side the unit circle. From (2.132), (2.133), (2.134), and (2.135), it follows that the
limiting values of these functions on the circle |z| = 1 satisfy the conditions

Φ+ (eiϑ) = G1Φ
− (eiϑ)+ F1

(
eiϑ) ; |ϑ| < ϑ0, (2.138)

Φ+ (eiϑ) = G2Φ
− (eiϑ)+ F2

(
eiϑ) ; |ϑ| > ϑ0 (2.139)
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with G1, G2 being quadratic matrices of the appearance

G1 =
{

1 0
−2b −1

}
, G2 =

{−1 −2a
0 1

}
(2.140)

and with the vector functions

F1
(
eiϑ) =

{
0

f1
(
eiϑ
)
}

, F2
(
eiϑ) =

{
f2
(
eiϑ
)

0

}
,

where

f1
(
eiϑ) =

∞∑

n=−∞
f1neinϑ and f2

(
eiϑ) =

∞∑

n=−∞
f2neinϑ.

So, we have arrived at the Riemann–Hilbert vector problem to determine the two
vector functions Φ+(z) and Φ–(z) that are analytic, respectively, inside and outside
the circle |z| < 1. On the circle, the limiting values of these functions satisfy con-
ditions (2.138) and (2.139). With the restriction 0 < ab < 1 imposed on the a and b
values, the solution to this problem is available in explicit form. Let us derive it on
the assumption that the sought vector functions Φ±(z) have an integrable singular-
ity at the discontinuity points of the matrix coefficients G1 and G2, that is, at z =
exp(±iϑ0).

Introduce the new vector functions

�
Φ+ (z) = Φ+ (z) − F+

2 (z) ,
�
Φ− (z) = G2Φ

− (z) + F−
2 (z) ;

F±
2 (z) =

{
f±2 (z)
0

}
,

(2.141)

where f+2 (z) =
∞∑

n=0
f2nzn for |z| ≤ 1 and f−2 (z) =

−1∑

n=−∞
f2nzn for |z| ≥ 1. With these

�
Φ± (z) functions, relations (2.106) and (2.107) become

�
Φ

+ (eiϑ) = G1G2
�
Φ

− (eiϑ)+ �
F
(
eiϑ) ; |ϑ| < ϑ0, (2.142)

�
Φ

+ (eiϑ) = �
Φ

− (eiϑ) ; |ϑ| > ϑ0, (2.143)

where

�
F
(
eiϑ) = F1

(
eiϑ)− F+

2

(
eiϑ)− G1G2F−

2

(
eiϑ) .

Direct calculations suggest that the square matrix G1G2 can be written

G1G2 = PDP−1, (2.144)
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with

D =
{
λ+ 0
0 λ−

}
; λ± = 2ab − 1 ± i2

√
ab − a2b2

and the matrices

P =
{

1 − 2a
1+λ−

− 2b
1+λ− 1

}

, P−1 = (1 − λ+)−1

{
1 2a

1+λ−
2b

1+λ− 1

}

.

In view of representation (2.144), introduce the vector functions Φ̃± (z) =
P−1 �

Φ± (z). Then (2.142) and (2.143) take on the appearance

Φ̃+ (eiϑ) = DΦ̃− (eiϑ)+ F̃
(
eiϑ) ; |ϑ| < ϑ0, (2.145)

Φ̃+ (eiϑ) = Φ̃− (eiϑ) ; |ϑ| > ϑ0, (2.146)

where

F̃
(
eiϑ) = P−1 �

F
(
eiϑ) = P−1F1

(
eiϑ)− P−1F+

2

(
eiϑ)− DP−1F−

2

(
eiϑ) .

Thus, by equivalent transformations, we arrived at the Riemann–Hilbert vector
problem (2.145) and (2.146), with the conjugation coefficient being the diagonal
matrix D. Clearly this problem falls into the two Riemann–Hilbert scalar problems
similar to those considered in Section 2.2.3. Namely,

X̃+ (eiϑ) = λ+X̃− (eiϑ)+ f̃1
(
eiϑ) ; |ϑ| < ϑ0, (2.147)

X̃+ (eiϑ) = X̃− (eiϑ) ; |ϑ| > ϑ0, (2.148)

Ỹ+ (eiϑ) = λ−Ỹ− (eiϑ)+ f̃2
(
eiϑ) ; |ϑ| < ϑ0, (2.149)

Ỹ+ (eiϑ) = Ỹ− (eiϑ) ; |ϑ| > ϑ0. (2.150)

Here, X̃± (exp (iϑ)), Ỹ± (exp (iϑ)) and f̃1 (exp (iϑ)), f̃2 (exp (iϑ)) are components
of the vector functions Φ̃± (exp (iϑ)) and F̃ (exp (iϑ)), respectively.

The solution to problems (2.147), (2.148), (2.149), and (2.150) is [80]

X̃ (z) = Gx (z)

⎡

⎣ 1

2πi

∫

P

f̃1 (ϑ) dϑ

G+
x (ϑ) (ϑ− z)

+ Cx

⎤

⎦ , (2.151)

Ỹ (z) = Gy (z)

⎡

⎣ 1

2πi

∫

P

f̃2 (ϑ) dϑ

G+
y (ϑ) (ϑ− z)

+ Cy

⎤

⎦ , (2.152)

where P is the arc connecting z = exp(–iϑ0) and z = exp(iϑ0) points through the
point z = 1 on the circle |zô = 1, Cx and Cy are arbitrary constants. The functions
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Gx,y(z) are solutions of the homogeneous Riemann–Hilbert problems (f̃1 = f̃2 = 0)
coming from (2.106) upon the substitution d = d± = ln(–λ±)/2π. The functions
G+

x,y(ϑ) give the limiting values of Gx,y(z) on the arc P inside the circle, |z| < 1.
Now let us show how a solution of standard equations (2.132), (2.133), (2.134),
(2.135), and (2.136) should be constructed using (2.151) and (2.152).

First of all, take advantage of the relationship between the vector functions Φ+(z)
and Φ̃± (z)

Φ+ (z) = PΦ̃+ (z) + F+
2 (z) ; |z| ≤ 1, (2.153)

Φ− (z) = G2PΦ̃− (z) + G2F−
2 (z) ; |z| ≥ 1. (2.154)

Substituting the expressions of quadratic P and G2 matrices into (2.153) and
(2.154) and making some equivalent transformations, one gets the difference
Φ+(exp(iϑ))–Φ–(exp(iϑ)) of the vector function limiting values on the unit circle
as follows:

⎧
⎪⎨

⎪⎩

X+ (eiϑ
)− X− (eiϑ

)= X̃+ (eiϑ
)− λ+X̃− (eiϑ

)− 2a
1+λ−

(
Ỹ+ (eiϑ

)−λ−Ỹ− (eiϑ
))

+f+2
(
eiϑ
)− f−2

(
eiϑ
)

Y+ (eiϑ
)− Y− (eiϑ

)= Ỹ+ (eiϑ
)− Ỹ− (eiϑ

)− 2b
1+λ−

(
X̃+ (eiϑ

)− X̃− (eiϑ
)) .

(2.155)
Matching the Fourier coefficients in (2.155) yields

{
xm = δ+m

m x̃m − 2aδ−m
(1+λ−)m ỹm + f2m|m|

ym = ỹm
m − 2bx̃m

(1+λ−)m

; m �= 0, (2.156)

x̃0 = − f20

1 − λ+
, ỹ0 = − 2bf20

λ− − λ+
. (2.157)

Here {x̃m}∞m=−∞ and {ỹm}∞m=−∞ are the Fourier coefficients of the functions
X̃+ (exp (iϑ))− X̃− (exp (iϑ)) and Ỹ+ (exp (iϑ))− Ỹ− (exp (iϑ)), respectively, and

δ±m =
{

1; m ≥ 0
λ±; m < 0

.

Now, determine the Fourier coefficients {x̃m}∞m=−∞ and {ỹm}∞m=−∞ from (2.151)
and (2.152). For this, it is sufficient to implement the results from Section 2.2.3 [see
(2.113), (2.114), (2.115), (2.116), and (2.117)]. Finally,

x̃m =
∞∑

n=−∞
f̃1n

�
V n−1

m−1 (d+,ϑ0) + x̃0Pm (d+,ϑ0), (2.158)

ỹm =
∞∑

n=−∞
f̃2n

�
V n−1

m−1 (d−,ϑ0) + ỹ0Pm (d−,ϑ0); m = ±1, ± 2,..., (2.159)
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where the values
�
V n−1

m−1 (d−,ϑ0) come from (2.115) and (2.116), and the functions
Pm(d±,ϑ0) are found by formula (2.78) upon the substitution d = d±= ln(–λ±)/2π.

The sequences
{

f̃1n

}∞
n=−∞ and

{
f̃2n

}∞
n=−∞ in {f1n}∞n=−∞ and {f2n}∞n=−∞ terms are

f̃1n = − δ+n f2n

1 − λ+
+ 2af1n

λ− − λ+
, f̃2n = − 2bδ−n f2n

λ− − λ+
+ f1n

1 − λ+
. (2.160)

Substitute (2.160) and (2.158), (2.149) into (2.156), (2.155) in view of (2.136).
Then

xm =
∞∑

n=−∞
W11

mn f1n +
∞∑

n=−∞
W12

mn f2n, (2.161)

ym =
∞∑

n=−∞
W21

mn f1n +
∞∑

n=−∞
W22

mn f2n; m = 0, ± 1, ± 2,..., (2.162)

the coefficients Wpq
mn, p,q = 1,2 are available from the formulas

W11
mn = 2a

λ− − λ+

{
1
m

[
δ+m

�
V n−1

m−1 (d+,ϑ0) − δ−m
�
V n−1

m−1 (d−,ϑ0)
]

; m �= 0

Wn1 (d−,ϑ0) − Wn1 (d+,ϑ0) ; m = 0
,

W12
mn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δmn|m| − 1
m

[
δ+mδ+n �V n−1

m−1(d+,ϑ0)

1−λ+ + δ−mδ−n �V n−1
m−1(d−,ϑ0)

1−λ−

]

−

− δ0n
m

[
δ+mPm(d+,ϑ0)

1−λ+ + δ−mPm(d−,ϑ0)

1−λ−

]
; m �= 0

δ+n Wn1(d+,ϑ0)

1−λ+ + δ−n Wn1(d−,ϑ0)

1−λ− − 1
|n| ; m = 0, n �= 0

W01(d+,ϑ0)+R1(d+,ϑ0)
1−λ+ + W01(d−,ϑ0)+R1(d−,ϑ0)

1−λ− ; m = 0, n = 0

W21
mn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
m

[
�V n−1

m−1(d+,ϑ0)λ+
λ+−1 +

�V n−1
m−1(d−,ϑ0)λ−

λ−−1

]

; m �= 0

Wn2(d+,ϑ0)
λ+−1 + Wn2(d−,ϑ0)

λ−−1 ; m = 0
,

W22
mn = 2b

λ−λ+
,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
m

[
δ+n

�
V n−1

m−1 (d+,ϑ0) − δ−n
�
V n−1

m−1 (d−,ϑ0)
]
+

+ δn
0

m

[
Pm (d+,ϑ0) − Pm (d−,ϑ0)

]
;m �= 0

δ−n Wn2 (d−,ϑ0) − δ+n Wn2 (d+,ϑ0) ; m = 0, n �= 0

W02 (d−,ϑ0) − W02 (d+,ϑ0) + R2 (d−,ϑ0) − R2 (d+,ϑ0) ;
m = 0, n = 0

.

Here Wnp(d±,ϑ0), Rp(d±,ϑ0), p = 1, 2, represent the series
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Wn1 (d±,ϑ0) = ∑
m�=0

δ±m �V n−1
m−1(d±,ϑ0)

m , Wn2 (d±,ϑ0) = ∑
m�=0

(−1)mV n−1
m−1(d±,ϑ0)

m ,

R1 (d±,ϑ0) = ∑
m�=0

δ±mPm(d±,ϑ0)

m , R2 (d±,ϑ0) = ∑
m�=0

(−1)mPm(d±,ϑ0)
m .

Formulas (2.161) and (2.162) provide an explicit solution of the system (2.132),
(2.133), (2.134), (2.135), and (2.136) of standard dual series equations. Now this
solution will be used to derive the infinite system of linear algebraic equations of
the second kind for the unknown column vectors x = {xn}∞n=−∞, y = {yn}∞n=−∞,
which is equivalent to system (2.91), (2.92), (2.93), and (2.94).

The algebraic scheme of this derivation is as follows. In the first place, we intend
to express (2.161) and (2.162) in vector form. Introduce the infinite-dimensional
matrices Wpq = {Wpq

mn
}∞

m,n=−∞, p, q= 1,2, and the column vectors fp = {fpn
}∞

n=−∞,
p = 1, 2. Then, taking care of the multiplication of a matrix by a column vector, we
have expressions (2.161) and (2.162) in the form

x = W11f1 + W12f2, (2.163)

y = W21f1 + W22f2. (2.164)

Rewrite (2.123), (2.124), (2.125), and (2.126) to get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

xneinϑ = 0; |ϑ| < ϑ0

∞∑
n=−∞

|n| (bxn + yn) einϑ =
+∞∑

n=−∞
g1neinϑ; |ϑ| < ϑ0

∞∑
n=−∞

yneinϑ = 0; |ϑ| > ϑ0

∞∑
n=−∞

|n| (axn + xn) einϑ =
∞∑

n=−∞
g2neinϑ; |ϑ| > ϑ0

,

where g1n = f1n −
(
V11x
)

n −
(
V12y
)

n, g2n = f2n −
(
V21x
)

n −
(
V22y
)

n.
Let us solve these equations as if the column vectors g1 = {g1n}∞n=−∞, g2 =

{g2n}∞n=−∞ were known. In view of (2.163) and (2.164),

x = W11g1 + W12g2, (2.165)

y = W21g1 + W22g2. (2.166)

Now one only needs to replace g1, g2 in (2.165) and (2.166) by their expressions
in f1, f2 and x, y terms. The result is

x = −
(

W11V11 + W12V21
)

x −
[(

W11V12 + W12V22
)

y + W11f1 + W12f2
]

,

(2.167)
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y = −
(

W21V11 + W22V21
)

x −
[(

W21V12 + W22V22
)

y + W21f1 + W22f2
]

.

(2.168)

Let us show how equation system (2.167) and (2.168) should be transformed to
the system of equations of the second kind in the space l2. Seeking a solution to
system (2.123), (2.124), (2.125), and (2.126) in the l2(1) space makes us use the
column vectors

�x = Tx, ỹ = Ty, (2.169)

with the matrix operator T given by (2.41). One easily finds that �x , �y ∈ l2.

Introduce the new matrices
�
Wpq and the column vectors

�
b1,

�
b2

�
Wpq = TWpqT ,

�
Vpq = −T−1VpqT−1; p,q = 1,2, (2.170)

�
b1 = �

W11T−1f1 + �
W12T−1f2,

�
b2 = �

W21T−1f1 + �
W22T−1f2 (2.171)

and substitute (2.169) into (2.167) and (2.168) in view of (2.170) and (2.171). Then

�x =
(�

W11 �
V11 + �

W12 �
V21
)�x +

(�
W11 �

V12 + �
W12 �

V22
)�y +�

b1, (2.172)

�y =
(�

W21 �
V11 + �

W22 �
V21
)�x +

(�
W21 �

V12 + �
W22 �

V22
)�y +�

b2. (2.173)

Make sure that the matrix operators in (2.172) and (2.173) are compact in l2.

Indeed, the operator
�
Vpq, p, q = 1, 2, is compact by assumption, and the matrix

�
Wpq

produces the bounded operator in l2. The latter follows from the analytic estimates
of the function Pn(d±,ϑ0) as |n|→∞ [see (2.122)] and formulas (2.116) and (2.117)

for
�
V n−1

m−1 (d±,ϑ0). Hence, the matrix operator
�
Wp̄q̄ �

Vpq, p, p̄, q, q̄ = 1,2 is compact
as a product of bounded and compact operators [70].

Thus, system (2.172) and (2.173) is an operator equation of the second kind in
the space l2, which guarantees that the solution of this equation can be obtained with
any preassigned accuracy by truncation [70]. It means that infinite system (2.172)
and (2.173) can be replaced by the finite system for the N unknowns. This method is
used in working relevant diffraction problems of single-periodic gratings and yields
solid numerical results.

2.3 Inversion of Convolution-Type Matrix Operators in System
of Equations in the Mode Matching Technique

The analytic regularization procedure for the inversion of convolution-type matrix
operators of infinite system of equations obtained by the mode matching (partial



2.3 Inversion of Convolution-Type Matrix Operators 89

Fig. 2.1 The geometry of
gratings: (a) Lamellar (or
knife) grating and (b) grating
of perfectly conducting
half-planes

domain) method was originally suggested in [22]. Thus, the problem of plane-wave
diffraction by a grating made up of vertical metal strips (see Fig. 2.1a) has been
solved, and any improvement of that solution does not seem possible. The solution
obtained in this way (see Section 2.3.1) is easy to transform to closed-form analytic
expressions [16, 18], whether k be small or large or related to the long-wave piece
of the resonant range. It can be numerically obtained by the truncation method, with
the error decreasing exponentially whatever values the dimensionless parameter kl
takes.

The method has been intensively promoted in electrodynamical theory of grat-
ings. Thus, effective solutions to diffraction problems have been built for jalousie-
type gratings [16, 17, 97, 98] and echelette gratings [16, 17, 99], lamellar gratings
with a sophisticated periodic pattern [17, 100] and echelette gratings with obtuse
and acute teeth [17, 101, 102], for dielectric echelettes with one interface met-
allized [17, 103] and echelettes with two absorbing interfaces [104]. The studies
of these structures mainly kept in focus the resonant frequencies and had to rely
on computers with limited resources. That is why every algorithmic and compu-
tational detail was elaborated very carefully. Such operating characteristics of the
method as its actual convergence rate, compliance with the problem conditions,
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etc., which were less open to analytic inspection, were examined by means of spe-
cially invented procedures during numerical experiments. Great efforts went into
the computational realization of the algorithms. In parallel, intensive studies were
conducted for their comprehensive mathematical justification [17, 105], including
development of a qualitative theory of ill-posed infinite systems of linear algebraic
equations resulted from the mode matching method [17, 106–108] and extension of
the scope of canonical structures for which the diffraction problem solution is avail-
able in explicit analytic form [109]. The new analytic solutions essentially add to
the capability of the considered method and extend its possible area of application
(see Section 2.3.2).

All these results have been summarized in the books [17, 18]. The first one fully
concentrates on approaches, algorithms, and relevant computational schemes. The
other one presents the physical results of the theory of wave scattering by diffraction
gratings achieved within 1972–1985. The present book is focused on a thorough
analysis of various diffraction phenomena. It traces general, common nature sce-
narios of resonant and nonresonant wave scattering processes and, also, carefully
studies some specific situations of both fundamental and applied significance. The
main body of the book is composed of authors’ original works performed in coop-
eration with their fellow contributors. It includes analysis of the plane-wave total
transition through semitransparent structures and the total reflection from them,
threshold effects (Wood’s anomalies), “ghosts of grating” phenomena, regimes of
the total nonspecular (autocollimation, in particular) wave reflection from non-
transparent structures, analysis and synthesis of grating polarization converters for
half-plane and semi-sphere scanning, etc.

2.3.1 Lamellar Gratings: Systems of First-Kind Equations and
Analytic Regularization of the Problem

Let a lamellar grating (see Fig. 2.1a) be illuminated by a plane E-polarized wave
Ũi

p (g, k) = exp
[
i
(
Φpy − Γpz

)]
, k > 0 and let p be an integer. The general solution

of boundary value problem (1.26) in domains A, B, and G is

Ũ (g, k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ũi
p (g, k) +

∞∑
n=−∞

RAA
np exp

[
i (Φny + Γnz)

]
; g = {y,z} ∈ A

∞∑
m=1

[
ampexp

[−iγmz
]+ bmpexp

[
iγm (z + h)

]]
sin
(mπy

l

)
; g ∈ G

∞∑
n=−∞

TBA
np exp

[
i (Φny − Γn (z + h))

]
; g ∈ B

.

(2.174)

Here, Ũ (g, k) = Ẽx (g, k), γm =
√

k2 − (mπ
/

l
)2, m = 1,2,. . ., are the propa-

gation constants of the H0m-waves in the regular parallel-plate waveguide segment
–h ≤ z ≤ 0 (channel G) connecting the reflection and transition zones of the periodic
structure, and Reγm ≥ 0, Imγm ≥ 0.
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Matching the tangential components Ẽx (g, k) and H̃y (g, k) of the field strength
vectors on the partial domain boundaries z = 0 and z = –h yields the infinite system
of linear algebraic equations of the first kind

∞∑

n=−∞

S±np

Γn − γm
= 1

Γp + γm
∓ eiγmh

[ ∞∑

n=−∞

S±np

Γn + γm
− 1

Γp − γm

]

; m = 1,2,...

(2.175)
with the recalculation formula

(
amp ± bmp

) γml2

mπ
[
1 − (−1)m exp (i2πΦ)

] = 1

Γp − γm
−

∞∑

n=−∞

S±np

Γn + γm
; m = 1,2,...

(2.176)

Here, S±np = RAA
np ± TBA

np .

A part of the solution
{

S±np

}

n
of problem (2.175) will be extracted that satisfies

the system of equations

∞∑

n=−∞

Snp

Γn − γm
= 1

Γp + γm
; m = 1,2,... (2.177)

and determines the generalized reflection matrix RAA (∞) = {Snp
}∞

n,p=−∞ of the
knife grating for h→∞. Let the amplitudes Snp be determined by the residual cal-
culation technique [42] based on the Mittag-Leffler theorem about the expansion
of a meromorphic function into a series of principal parts [36]. Assume that in the
plane C of a complex variable w, there exist functions fp(w) such that:

• fp(w) have simple poles at the points w = Γn, n = 0,±1,±2,. . ., and w = –Γp;
• fp(γm) = 0, m = 1,2,. . .;
• Res fp(–Γp) = 1;
• fp(w)→0 on a regular system of closed contours C|w| in the plane C if |w|→∞.

Under these assumptions,

Snp = Res fp (Γn) ; n = 0, ± 1, ± 2,... (2.178)

Indeed, as for all m = 1,2,. . . [36],

lim|w|→∞
1

2πi

∮

C|w|

[
fp (w)

w − γm

]
dw =

∞∑

n=−∞

Res fp (Γn)

Γn − γm
+ Res fp

(−Γp
)

−Γp − γm
+ fp (γm) = 0,

(2.179)
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the set
{
Snp
}

n from (2.178) lends a solution to problem (2.177). The functions fp(w)
possessing all the above-mentioned properties will be expressed as [16, 17]

fp (w) = ei ln 2(w+Γp)l
/
π

(
Γ0 + Γp

)

(
w + Γp

)
(Γ0 − w)

∞
Π

s=1

(γs − w)
(
Γs + Γp

) (
Γ−s + Γp

)

(
γs + Γp

)
(Γs − w) (Γ−s − w)

.

For large |w| and |n|, one arrives at the following estimations:

fp (w) = O
[(

w + Γp
)−1

w−1/2
]

and Snp = Res fp (Γn) = O
(

n−3/2
)

.

An examination of the integral

lim|w|→∞
1

2πi

∮

C|w|

[
fp (w)

w + γm

]
dw =

∞∑

n=−∞

Res fp (Γn)

Γn + γm
+Res fp

(−Γp
)

−Γp + γm
+fp (−γm) = 0,

yields

∞∑

n=−∞

Snp

Γn + γm
− 1

Γp − γm
= −fp (−γm) ; m = 1,2,... (2.180)

Introduce the new unknowns S̄±np = S±np − Snp, n = 0, ± 1, ± 2,. . ., and change
via (2.177) and (2.180) from problems (2.175) and (2.176) to the problem

∞∑

n=−∞

S̄±np

Γn − γm
= ∓eiγmh

[ ∞∑

n=−∞

S̄±np

Γn + γm
− fp (−γm)

]

= eiγmh/2β±mp; m = 1,2,...,

(2.181)

(
amp ± bmp

) γml2

mπ[1−(−1)m exp(i2πΦ)] = fp (−γm) −
∞∑

n=−∞
S̄±np

Γn+γm
= ±β±me−iγmh/2;

m = 1,2,...
(2.182)

It has not been possible to identify a pair of infinite-sequence spaces on which the
operators of problems (2.175), (2.177), and (2.181) are bounded and have bounded
inverses [17, 105, 108]. That is, algorithms for an approximate solution of these
infinite systems of linear algebraic equations of the first kind (truncation solution
algorithms, for one) withstand justifications [110]. Yet there have been obtained
results [17, 42, 106, 107] sufficiently interesting to expect that in some cases an
approximate solution of the operator equation of the nature can converge weakly (in
coordinate-wise fashion) to the exact solution. Thus, for instance, the values S̄±np (N)

found from system (2.181) truncated to the order N (m = 1,2,. . .,N) converge to the
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exact S̄±np values for each n = −M, − M + 1,...,N − M − 1 with increasing N. Yet
the convergence rate essentially depends on:

• the n value;
• whether a module or a phase of the complex amplitude S̄±np (N) is calculated;
• a choice of the main diagonal of the system constituted by a finite number of

equations (a choice of M).

When passing from lamellar gratings to jalousie gratings (see, for example, Fig.
1.3a; ϑ �= 0), the information provided by the truncated first-kind equation systems
corresponding to these asymmetrical structures will be, at best, relatively true only
for amplitude modules of several fundamental spatial harmonics.

A rigorous solution of boundary value problems (and, specifically, problems
in electromagnetic theory of gratings) proposes algorithms where an approximate
problem solution converges to the exact solution in the metric of an appropriate
Hilbert space. Thus, for instance, if the solution represented by the amplitude sets{

RAA
np

}

n
and
{

TBA
np

}

n
, the analysis is most conveniently carried out in the infinite-

sequence space l̃2 =
{

a = {an} : ‖a‖2
l̃2
=∑

n
|an|2 (1 + |n|) < ∞

}
. It acts as an

energy space in processes relative to the plane-wave scattering by periodic struc-
tures [see, for example, relations (1.29)]. And the fulfillment of the conditions{

RAA
np

}

n
∈ l̃2,
{

TBA
np

}

n
∈ l̃2 provides the uniqueness of the solution to the (1.26) type

of problems for gratings with edges like interface segments where both tangents and
normals are undetermined [16, 17, 42].

Return to problem (2.181) to seek its rigorous solution via the analytic inversion
of the operator part given by the matrix A = {(Γn − γm)−1}∞

m=1, n=−∞. Assume the
existence of meromorphic functions ϕr(w) such that:

• ϕr(w) have simple poles at points w = Γn, n = 0,±1,±2,. . .;
• ϕr (γm) = −δr

m, m,r = 1,2,..., δr
m is the Kronecker delta;

• ϕr(w)→0 on some regular system of closed contours C|w| in the plane C if
|w|→∞;

• the series
∑

r
ϕr (w) eiγrh/2β±rp converges uniformly within the analyticity domain

of the functions ϕr(w).

Let us show that by these assumptions, the operator equation (2.181) is equivalent
to the following operator equation of the second kind:

S̄±np =
∞∑

r=1

Res ϕr (Γn) eiγrh/2β±rp; n = 0, ± 1, ± 2,... (2.183)
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Indeed, since

lim|w|→∞
1

2πi

∮

C|w|

[
(w − γm)−1

∞∑
r=1

ϕr (w) eiγrh/2β±rp

]
dw =

=
∞∑

n=−∞

( ∞∑
r=1

Res ϕr (Γn) eiγrh/2β±rp

)
1

(Γn−γm)−1 +

+
∞∑

r=1
ϕr (γm) eiγrh/2β±rp = 0; m = 1,2,...,

each solution of the operator equation (2.183) will be a solution of equation (2.181).
Additionally, the regularization on the left (as the previous operation is called) does
not lose any solution from the solution set [111]. That is, each solution of equation
(2.181) will also simultaneously be a solution of equation (2.183).

The functions ϕr(w) that possess all the mentioned properties take the appearance
[16, 17]

ϕr (w) = −eiln 2(w−γr)l/π (Γ0 − γr)

(Γ0 − w)

∞ (r)
Π

s=1

(γs − w) (Γs − γr) (Γ−s − γr)

(γs − γr) (Γs − w) (Γ−s − w)
.

Here, the index (r) over the sign of the infinite product indicates that the term
(γs − w) (γs − γr)

−1 corresponding to s = r is discarded. Large |w| and r values
satisfy the estimate [17]

ϕr (w) = O

[
γ

1/2
r

(w − γr) w1/2

]

. (2.184)

From (2.181) and (2.183), in view of the equality

lim|w|→∞
1

2πi

∮

C|w|

[
ϕr (w)

w + γm

]
dw =

∞∑

n=−∞

Res ϕr (Γn)

Γn + γm
+ ϕr (−γm) = 0; m = 1,2,...,

one obtains

β±mp = ∓eiγmh/2
[ ∞∑

n=−∞
S̄±np

Γn+γm
− fp (−γm)

]
=

= ∓eiγmh/2
[ ∞∑

n=−∞

[
1

Γn+γm

∞∑
r=1

eiγrh/2Res ϕr (Γn) β
±
r

]
− fp (−γm)

]
=

= ∓eiγmh/2
[ ∞∑

r=1
eiγrh/2β±r

∞∑
n=−∞

Res ϕr(Γn)
Γn+γm

− fp (−γm)

]
=

= ±eiγmh/2
[ ∞∑

r=1
eiγrh/2β±r ϕr (−γm) + fp (−γm)

]
; m = 1,2,...

(2.185)
So, the initial problem has been reduced [see (2.181), (2.182), and (2.185)] to the

infinite systems of linear algebraic equations of the second kind
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β±mp = ±eiγmh/2
[ ∞∑

r=1

eiγrh/2β±rpϕr (−γm) + fp (−γm)

]

; m = 1,2,... (2.186)

(to the operator equations
[
E + B± (k)

]
β±(p) = b±(p), where E is the

identity matrix, B± (k) = {
B±

mr = ∓ei(γm+γr)h/2ϕr (−γm)
}∞

m,r=1, b±(p) =
{

b±mp = ±fp (−γm) eiγmh/2
}

m
, and β±(p) =

{
β±mp

}

m
are the unknown vectors) with

the recalculation formulas

RAA
np ± TBA

np =
∞∑

r=1

Res ϕr (Γn) eiγrh/2β±rp+Res fp (Γn) ; n = 0,± 1,± 2,..., (2.187)

(
amp ± bmp

) = ±β±mp
e−iγmh/2mπ

[
1 − (−1)m exp (i2πΦ)

]

γml2
; m = 1,2,... (2.188)

The estimates

B±
mr = O

[

e−π(m+r)h/2 l r1/2

(m + r) m1/2

]

, b±mp = O
[
e−πmh/2 lm−3/2

]
; m,r → ∞

(2.189)
suggest [70] that the operator equation (2.186) is a Fredholm equation in the
sequence space l̃2. This means that for all k/∈Ωk (see Section 1.3.2), bounded inverse
operators

[
E + B± (k)

]−1 do exist, the unknown vectors β±(p) ∈ l̃2, and infinite sys-

tems (2.186) can be solved by the truncation method converging in l̃2 space norm.
The evident equality

β±(p) − β±(p) (N)=(E + B± (k)
)−1
[(

B± (k)−B± (k,N)
)
β±(p) (N)+

(
b±(p) − b±(p) (N)

)]

and estimates (2.189) suggest that

∥∥∥β±(p) − β±(p) (N)

∥∥∥
l̃2
= O
[
e−π(N+1)h/2 l

]
; N → ∞,

RAA
np , TBA

np = O
(
|n|−3/2

)
; |n| → ∞,

amp, bmp = O
(

m−3/2
)

; m → ∞.

Here, β±(p) (N) =
{
β±mp (N)

}N

m=1
is the solution of the system of equations (2.186)

truncated to order N (
[
E + B± (k,N)

]
β±(p) (N) = b±(p) (N)), B± (k,N) = {B±

mr

}N
m,r=1,

and b±(p) (N) =
{

b±mp

}N

m=1
.
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2.3.2 Matrix Scheme of Analytic Regularization Procedure

The algorithmization of the problems in terms of the discussed analytic regulariza-
tion procedure can be fairly simplified by the application of generalized scattering
matrix technique [16, 17, 42, 112]. Let us confirm this statement by two simple
examples.

First, assume the availability of the scattering matrices (see Section 1.2.1)

RAA (∞) =
{

RAA
np (∞)

}∞
n,p=−∞, TGA (∞) =

{
TGA

mp (∞)
}∞

m=1,p=−∞, RGG (∞) =
{
RGG

ms (∞)
}∞

m,s=1, and TAG (∞) = {TAG
ns (∞)

}∞
n=−∞,s=1 that provide through the

relationships

A = RAA (∞) α+ TAG (∞) β, B = TGA (∞) α+ RGG (∞) β;
A = {An} , B = {Bm} , α = {αp

}
, β = {βs}

all the amplitude–frequency characteristics of a grating made up of thin metal half-
planes (see Fig. 2.1b) in the field of the E-polarized waves

Ũi (g, k) =

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
p=−∞

αpexp
[
i
(
Φpy − Γpz

)]
; g = {y,z} ∈ A, k > 0

∞∑
s=1

βsexp (iγsz) sin
( sπy

l

)
; g ∈ G

.

(2.190)

Here, A = {An} and B = {Bm} are the amplitudes of the secondary field

Ũs (g, k) =

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
n=−∞

Anexp
[
i (Φny + Γnz)

]
; g ∈ A

∞∑
m=1

Bmexp (−iγmz) sin
(mπy

l

)
; g ∈ G

(Ũ (g, k) = Ũi (g, k)+ Ũs (g, k)) in the grating reflection zone (A) and in the regular
parallel-plate waveguide (G).

Now, return to the lamellar grating problem (see Fig. 2.1a) considered in Section
2.3.1. Evidently (see [42, 112]) all amplitudes of waves composing the field (2.174)
are related as

⎧
⎪⎪⎨

⎪⎪⎩

RAA
(p) = RAA (∞)

[
α(p)

]+ TAG (∞) E (h)
[
b(p)

]

a(p) = TGA (∞)
[
α(p)

]+ RGG (∞) E (h)
[
b(p)

]

b(p) = RGG (∞) E (h)
[
a(p)

]

TBA
(p) = TAG (∞) E (h)

[
a(p)

]
. (2.191)

Here, RAA
(p) =

{
RAA

np

}

n
, TBA

(p) =
{

TBA
np

}

n
, a(p) = {

amp
}

m, b(p) = {
bmp
}

m,

α(p) =
{
δ

p
n
}

n, and E (h) = {δs
meiγmh

}∞
m,s=1. Formula (2.191) describes all the stages
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of the formation of the response of the periodic structure to the excitation by the
plane E-polarized wave Ũi

p (g, k) = exp
[
i
(
Φpy − Γpz

)]
(by signal α(p)). Thus, for

instance, the first equation of system (2.191) can be interpreted in the following

way. The signal RAA
(p) (the waves

{
RAA

np exp
[
i (Φny + Γnz)

]}

n
) is a sum of two sig-

nals. One of them is caused by the reflection of the primary signal α(p) from the
aperture z = 0 of the half-plane grating. The other is defined by the signal b(p)
(by the waves

{
bmpexp

[
iγm (z + h)

]
sin
(
mπy
/

l
)}

m) that have arisen in the plane
z = –h, experienced (during the propagation from the plane z = –h to the plane
z = 0) the action of the regular domain G (operator E(h)), and after that partly
penetrated through the aperture z = 0 into domain A. From (2.191),

RAA
(p) ± TBA

(p) = RAA (∞)
[
α(p)

]± TAG (∞) E (h)
[
a(p) ± b(p)

]
, (2.192)

a(p) ± b(p) = TGA (∞)
[
α(p)

]± RGG (∞) E (h)
[
a(p) ± b(p)

]
. (2.193)

Let us introduce by the relations

a(p)±b(p) = ±E
(−h
/

2
)

E (Φ)
[
β±(p)

]
; E (Φ) =

{

δs
m

mπ
[
1 − (−1)m ei2πΦ

]

γml2

}∞

m,s=1
(2.194)

[(2.194) is a matrix form of expressions (2.188)] the new unknowns β±(p) =
{
β±mp

}

m
and pass from (2.192) and (2.193) to the equations

RAA
(p) ± TBA

(p) = RAA (∞)
[
α(p)

]+ TAG (∞) E
(
h
/

2
)

E (Φ)
[
β±(p)

]
, (2.195)

β±(p) = ±E
(
h
/

2
)

E−1 (Φ)
{

TGA (∞)
[
α(p)

]+ RGG (∞) E
(
h
/

2
)

E (Φ)
[
β±(p)

]}
.

(2.196)

Invoking familiar representations [17] of the operators RAA(∞), TGA(∞), etc.,
one finds that equations (2.195) and (2.196) coincide with (2.187) and (2.186). The
final result obtained in the matrix scheme formalism becomes the same but takes, at
the same time, less analytic efforts.

Such a good rate of convergence as in the previous example is not always the case
when the final operator equations obtained via the analytic regularization procedure
are solved by the truncation method. The errors in the determination of the field
amplitudes are exponentially small only when elementary scatterers in the structure
geometry are separated by regular wave propagation regions, such as Floquet chan-
nel segments or segments of parallel-plate waveguides. Here those scatterers are
called elementary whose diffraction problem solution is available in closed (explicit)
form (see, for example [17, 104, 109, 113]). These are:
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Fig. 2.2 (a) Gratings made
of vertical and inclined
half-planes, (b) plane strip
gratings, and (c) grating with
two half-planes in the period

• gratings of vertical or oblique half-planes, both perfectly conducting and absorb-
ing (see Figs. 2.1b and 2.2a);

• planar half-filling strip gratings (l = 2d) and gratings with two half-planes per
period (see Fig. 2.2b and c) – the half-integer Φ case;

• bifurcation of a parallel-plate waveguide;
• lateral (across Floquet channel or parallel-plate waveguide) interfaces, etc.

The analysis of the final operator equations of the type [E + B(k)]β = b in the
method gets much more complicated when the elementary inhomogeneities carried
by the considered periodic structure cannot be spaced out with a regular wave prop-
agation domain between them. In this case, a simpler, matrix-formalism scheme
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of the analytic regularization procedure is more efficient for the following facts.
The spectrum and the norm of the operators produced by the generalized scatter-
ing matrices of elementary inhomogeneities and defining [by relations like (2.192),
(2.193), (2.194), (2.195), and (2.196)] all the qualitative characteristics of the prob-
lem [E + B(k)]β = b can be evaluated in terms of the energy balance and the
reciprocity relations (see Section 1.2.1 and works [17, 42, 105, 108, 114]). By func-
tional analysis techniques [70, 110, 115], this information can be translated into the
knowledge needed to prove that the operator equations [E + B(k)]β = b are cor-
rect and solvable by truncation. It is the route that will be taken to solve the next
problem.

Let an echelette grating with perfectly conducting interfaces and a
90◦ tooth angle (see Fig. 2.3a) be excited by a plane E-polarized wave
Ũi

p (g, k) = exp
[
i
(
Φpy − Γpz

)]
, with k > 0, and p an integer. Imagine the

echelette wider wall shifted down along the perfectly conducting half-planes
{g = {y,z} : y = ztgϑ + nl; n = 0, ± 1, ± 2,..., z ≤ 0}. The regular domain
obtained in this way is denoted as G (see Fig. 2.3b). The general solution of
boundary value problem (1.26) for this new structure is

Ũ (g, k) =

⎧
⎪⎪⎨

⎪⎪⎩

Ũi
p (g, k) +

∞∑
n=−∞

RAA
np exp

[
i (Φny + Γnz)

]
; g = {y,z} ∈ A

∞∑
m=1

[
ampexp

[−iγ̄mz̄
]+ bmpexp

[
iγ̄m
(
z̄ + h̄

)]]
sin
(

mπȳ
l cos ϑ

)
; g ∈ G

.

(2.197)

Fig. 2.3 Echelette with rectangular tooth: (a) original geometry and (b) modified geometry
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Here, γ̄m =
√

k2 − (mπ
/

l cos ϑ
)2, m = 1,2,. . ., Reγ̄m ≥ 0, Imγ̄m ≥ 0 are the

propagation constants of the H0m-waves in the segment −h̄ ≤ z̄ ≤ 0 of the regu-
lar parallel-plate waveguide (domain G). The generalized scattering matrix method
relates the amplitudes of the field (2.197) as follows:

⎧
⎨

⎩

RAA
(p) = RAA (I)

[
α(p)

]+ TAG (I) E
(
h̄
) [

b(p)

]

a(p) = TGA (I)
[
α(p)

]+ RGG (I) E
(
h̄
) [

b(p)

]

b(p) = −E
(
h̄
) [

a(p)

] . (2.198)

Here, E
(
h̄
) =
{
δs

meiγ̄mh̄
}∞

m,s=1
, RAA

(p) =
{

RAA
np

}

n
, a(p) =

{
amp
}

m, b(p) =
{
bmp
}

m,

and α(p) = {δp
n
}

n, TGA (I) =
{

TGA
mp (I)

}∞
m=1,p=−∞, RGG (I) = {RGG

ms (I)
}∞

m,s=1,

etc., are the scattering matrices defining all amplitude–frequency characteristics of
elementary inhomogeneity I (grating of oblique perfectly conducting half-planes).
The explicit form of these matrix operators examined by the methods of the com-
plex variable function theory can be found in the books [16, 17] including also the
estimations

RAA
np (I) = O

[
p1/2

(|n|+|p|)n1/2

]
, TGA

mp (I) = O
[

p1/2

(m/2 cos ϑ−|p|)m1/2

]
,

RGG
ms (I) = O

[
s1/2

(m+s)m1/2

]
, TAG

ns (I) = O
[

s1/2

(s/2 cos ϑ−|n|)|n|1/2

]
;

|n| , |p| , m, s → ∞.

(2.199)

They suggest that for h̄ > 0 and k/∈Ωk, the system of equations (2.198) is
uniquely solvable in the space l̃2 and numerically solvable by the truncation method
converging in l̃2 space norm [70, 110]. The error in the determination of the
amplitude set RAA

(p) in the metric of this space is equal to O
[
e−π(N+1)h/l cos ϑ

]
.

Letting h̄ → 0 in (2.198) (returning to the initial structure geometry) yields the
second-kind operator equation

a(p) + RGG (I)
[
a(p)

] = TGA (I)
[
α(p)

]
(2.200)

and the recalculation formula

RAA
(p) = RAA (I)

[
α(p)

]− TAG (I)
[
a(p)

]
. (2.201)

It is essential to show the invertibility of the operator
[
E + RGG (I)

]
: l̃2 → l̃2,

or the existence and boundedness of the operator [E + RGG(I)]–1. There are no other
ways to guarantee an orthonormalized basis of the l̃2 space in which the infinite
equation system (2.200) can be solved by truncation [110]. However, the opera-
tor RGG(I) is not totally continuous, being a Hilbert-type operator in the l̃2 space
[see [116] and estimations (2.199)], it is only bounded in this space. Also, there
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hardly exists a direct way to get the estimate
∥∥RGG (I)

∥∥ < 1 justifying (the same
as the total continuity of the operator RGG(I)) the unique solvability of problem
(2.200). The last possibility is to prove that the full spectrum of the operator RGG(I)
is enclosed by the circle |w|=1 in the plane C of complex variable w. This pos-
sibility is realized via the energy relationships that are obtained as a result of the
complex power theorem applied to the volume of elementary inhomogeneity I [17,
42, 114].

Thus, it has been shown that for k/∈Ωk, the spectrum of the operator RGG(I) is
enclosed by the circle |w|=1, w∈C. Hence [70, 115], the operator [E + RGG(I)] is
invertible, the sets a(p) and RAA

(p) belong to the space l̃2 (all scattering operators of the

inhomogeneity I are bounded on the pair of spaces l̃2 → l̃2 [116]), and a solution
of the operator equation (2.200) can be obtained for any parameters l and ϑ by the
successive approximation approach:

a(p) (M) =
M∑

m=0

(
−RGG (I)

)m
TGA (I)

[
α(p)

]
; M → ∞.

One more consequence of the invertibility of the operator [E + RGG(I)] refers to
the possibility to solve equation (2.200) by the truncation method converging in l̃2
space norm. Indeed, the use of the evident equality

a(p) − a(p) (N) = −
[
E (N) + E (N) RGGE (N)

]−1
E (N) RGG [E − E (N)]

[
a(p)

]
,

yields ∥∥a(p) − a(p) (N)
∥∥ ≤ const

∥∥[E − E (N)]
[
a(p)

]∥∥ . (2.202)

Here, E (N) = {δs
m

}N
m,s=1 and a(p)(N) is the solution of the truncated system

a(p) (N) + E (N) RGG (I) E (N)
[
a(p) (N)

] = E (N) TGA (I)
[
α(p)

]
.

Since for any a(p) ∈ l̃2,
∥∥[E − E (N)]

[
a(p)

]∥∥→ 0 as N→0, then

∥∥a(p) − a(p) (N)
∥∥→ 0; N → 0.

The scattered field of the grating meets the Meixner condition near the singular
points in the structure geometry (near the points where the tangents and the normals
to the contour Sx are not defined). In the considered case of an echelette grating with

a 90◦ tooth angle, this means that amp = O
(
m−5/3

)
, RAA

np = O
(
|n|−5/3

)
for m and

|n| large enough [42]. Knowing the rate of decrease of the secondary field amplitude
and addressing (2.202), one can estimate the rate of convergence of the truncation
method as follows:

∥∥a(p) − a(p) (N)
∥∥ = O

[
(N + 1)−2/3

]
; N → 0.
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2.4 Electromagnetic Wave Diffraction by Gratings in
Presence of a Chiral Isotropic Medium

Chiral composites possessing spatial dispersion have unusual electromagnetic char-
acteristics, such as optical activity and circular dichroism [117, 118]. Certain
advances in the technologies used to manufacture chiral materials open up new fields
for their application, including effective microwave absorbers, microstrip antenna
substrates, chirally filled waveguides, switches, and modulators. In these applica-
tions, it is the presence of chiral materials that allow us to vary, and in some cases
essentially improve, the characteristics of electrodynamical systems beyond those
based on more conventional materials.

Thus, for example, a chiral substrate in place of a dielectric one in a microstrip
antenna suppresses the surface wave power [119], and so enhances radiation effi-
ciency, widens the transmission band, and reduces mutual coupling between the
antenna elements. Results demonstrating the behavior of chiral materials as sub-
strates and covers for antenna applications are found in [120, 121]. In [120], a
chiral substrate is reported to be reducing the pattern size of the patch antenna for
a given frequency. The chirality of a microstrip antenna cover makes the antenna
more compact, increases gain performances, magnifies the radiation resistance and
the antenna efficiency, and also reduces the radar cross-section around the reso-
nance [121]. The analysis carried out in [122] of the scattering by a chiral periodic
structure showed that the structure can be used as both a frequency-selective device
and a mode-conversion device. Using their polarization properties, chiral materials
can be used for filters, polarization converters, and lenses. In view of the circu-
lar polarization of chiral medium eigenwaves, a chiral medium couples both linear
polarizations of the field, and so gives rise to new and interesting polarization
effects.

A chiral inclusion may impart novel properties also in well-known structures.
For example, when a linearly polarized wave is normally incident on a perfectly
conducting strip grating attached to an isotropic chiral half-space, it is shown in this
chapter (see also [123]) that the reflected field contains cross-polarized harmonics;
the diffracted field character depends on the direction of the elliptic polarization of
the incident wave, and the nature of chiral media losses is responsible for specific
features of the diffracted field, which correspond to dichroism.

The phenomenon of nearly total transformation of an elliptically polarized wave
into a linearly polarized wave is described herein (also see [124]). It is achieved
by reflection from a structure comprising a perfectly conducting ground plate over-
laid with a chiral layer and a magnetodielectric layer, and topped off with a perfectly
conducting strip grating. This reflecting structure has potential application in various
microwave devices. The complete transformation of an obliquely incident linearly
polarized wave to a specularly reflected cross-polarized wave may be achieved
with this structure [125]; also regimes of essential autocollimation reflection and
nearly total nonspecular reflection, with a high-telescopicity factor, have been
found [126, 127].
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Fig. 2.4 The nonspecular
reflection with polarization
conversion: (a)
autocollimation reflection and
(b) high-telescopicity
reflection (telescopicity factor
is rt = cos αi

0/cos α−1)

In the autocollimation regime (see Fig. 2.4a), the minus first harmonic of cross-
polarization propagates in a direction opposite to the primary incident wave of linear
polarization. Thus, in this regime, the structure acts as a frequency-selecting mirror
with polarization conversion. The nonspecular reflection regime with a high tele-
scopicity factor (see Fig. 2.4b) is characterized by a quasi-complete conversion of
the nearly normally incident wave into the minus first cross-polarized harmonic,
which almost skims above the grating surface. In this regime, the energy flux den-
sity of the wave is greatly increased and a high-purity polarization transformation is
obtained. Thus, the structure can be used as an antenna component.

The determination of those structure parameters, which give the desired reflec-
tion regime, faces serious computational difficulties, even ignoring the polarization
conversion. While an optimization may be carried out by examining the controlling
parameters in a wide band of variation, it must be recognized that the phenomena
occurs within narrow limits and often has a resonance nature. The phenomena asso-
ciated with the polarization transformation are even more narrowly limited and have
a striking resonance nature. Therefore an effective and reliable numerical procedure
is required.

The presence of a chiral medium complicates the problem mathematically, mak-
ing it a fully vectorial problem. The analysis of the diffraction in presence of chiral
materials has been recently carried out using a variety of numerical methods, such
as the finite difference frequency domain formulation [128] used for scattering from
arbitrarily shaped chiral objects; the hybrid finite element-boundary integral method
[129] applied to scattering of three-dimensional chiral objects above a perfect con-
ducting plane; the T-matrix analysis [130] used to model semicircular channels
filled with chiral materials in a conducting plate; etc. Approaches based on these
methods are widely used because of their high flexibility when applied to scatter-
ers of different, rather complicated shapes. Although, as a rule, they require high
memory and computer resources (in other words, they are computationally expen-
sive), recent developments in computer systems have made the use of such methods
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efficient. Actually only one problem, but an essential one, remains. These con-
ventional approaches are based on the numerical solution of a first-kind Fredholm
equation which is ill posed, and often displays unpredictable accuracy and possible
instability with an increase in the number of iterations. That is why, for example,
the authors of [130] stress how carefully their empirical choice of proper trunca-
tion number must be followed to get acceptable accuracy in their T-matrix method.
The primary concern with these disadvantages is that they most strongly feature in
the areas of greatest interest in technical applications, namely, the resonant domain
characterized by energetically pronounced effects.

Thus, it is highly desirable to transform this equation into a second-kind
Fredholm equation, which provides a stable and fast-converging computational
algorithm with the required accuracy of computation. For a certain class of scat-
terers this transformation can be implemented by the idea of analytic regularization
described above (see Section 2.2, and [57]). The use of an analytic regularization
[57, 61] allows us to obtain an effective and reliable calculation procedure that over-
comes the difficulties mentioned; this procedure solves the optimization problems
for obtaining desired characteristics of diffracted field in the resonance regimes.

2.4.1 Field Presentation in Chiral Medium

The unusual electromagnetic characteristics of chiral medium are caused by the
essential spatial dispersion which cannot be neglected as in conventional media.
The spatial dispersion leads to the results that the field in the chiral medium, i.e.,
the vectors of electromagnetic induction (�D and �B), is defined not only by the cor-
respondent strength vectors (�E and �H), but as well by the rotors of these vectors.
The constitutive relations, determining the electromagnetic induction in a homoge-
neous reciprocal chiral medium for harmonic temporal dependence exp(–ikt), are
presented in the following form [117]:

�D = ε0 ε̃ �E + iγ
√

ε 0μ 0 �H, �B = μ 0μ̃ �H − iγ
√

ε 0μ 0 �E. (2.203)

Here, ε0 and μ0 are the electric and magnetic constants, respectively; ε̃ = ε̃′ + iε̃′′
and μ̃ = μ̃′+iμ̃′′ are the relative permittivity and permeability of the chiral medium;
and γ = γ′ + iγ′′ is the chirality parameter responsible for the magnetic–electric
interaction. We consider an isotropic medium, i.e., ε̃, μ̃, and γ are scalars. Due to
the composite nature of the artificial chiral medium all its constitutive parameters
exhibit frequency dispersion.

In view of the constitutive relations (2.203), we rewrite the system of Maxwell’s
equations for time-harmonic fields �E ≡ �E (g, k) = {Ẽx, Ẽy, Ẽz

}
and �H ≡ �H (g, k) ={

H̃x, H̃y, H̃z
}
, p = {x,y,z} in the form

{
rot �H = a11 �E + a12 �H
rot �E = a21 �H + a22 �E , (2.204)

where a11 = −ikη−1
0 ε̃ , a12 = kγ, a21 = ikη0 μ̃, a22 = kγ.
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The field analysis in an unbounded homogeneous chiral medium is usually based
on the introduction of new vectors [131] that allow decoupling of the Maxwell’s
equations into two independent systems of differential equations of the first order.

Separate the vector of magnetic field strength in (2.204):

{ �H = 1
a21

(
rot�E − a22 �E

)

rotrot�E = a11a21 �E − a12a22 �E + a12 rot�E + a22 rot�E .

Introducing the operator M = rotrot− a12rot− a22rot− a11a21 + a12a22, we arrive
at the vector Helmholtz’s equation

M �E = 0. (2.205)

Taking into account a12 = a22, the operator of the second-order M can be rewritten
as

M = [rot − a12] 2 − a11a21 = [rot − (√a11a21 + a12
)] [

rot + (√a11a21 − a12
)]

= M+M−.

Thus, the operator M can be represented as a product of two operators of the first
order M+ and M–, which commute. Seeking for solution of equation (2.205) in the
form of sum �E = �E+ + �E −, we have

M+M− (�E+ + �E−) = 0.

Since the operators M+ and M– commute, this equation is split into the equations
M+�E+ = 0, M−�E− = 0 or

rot�E+ = −k+�E+, rot�E− = k−�E−. (2.206)

Here, k± = − (√a11a21 ± a12
) = −k

√
ε̃ μ̃ (1 ± η) and η = γ

/√
ε̃ μ̃ is the relative

chirality parameter.
Thus, the factorization of the vector wave equation (2.205) allowed reducing

the problem to the two equations of the first order (2.206). Express the vector of
magnetic strength �H in terms of the vectors �E±:

�H = 1

a21

(− (k+ + a22
) �E+ + (k− − a22

) �E−) = − i

ρ

(�E+ − �E−) = �H+ + �H−,

where ρ =
√

μ0 μ̃
/
ε0 ε̃.

Therefore, the electromagnetic field in the chiral medium is defined by the linear
combinations of the so-called wave fields �E±. Uncoupled plane waves �E+, �H+ and
�E−, �H− of left- and right-hand circular polarizations with propagation constants k+

and k– are shown to be eigenwaves of the unbounded homogeneous chiral medium.
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In the case of two-dimensional problems (when, for example, ∂/∂x ≡ 0), we
obtain the following field representation in the chiral medium:

�E = �E+ + �E−, �H = �H+ + �H− = − i
ρ

(�E+ − �E−) ,
Ẽ±

x = Ũ±, Ẽ±
y = ∓ 1

k±
∂Ũ±
∂z , Ẽ±

z = ± 1
k±

∂Ũ±
∂y

(2.207)

and

[
∂2

∂y2
+ ∂2

∂z2

]
Ũ± (g, k±

)+(k±)2 Ũ± (g, k±
) ≡ Δy,zŨ

±+(k±)2 Ũ± = 0; g = {y,z} .

Thus, the components Ẽ±
x are those through which all the other field components

can be represented. In the case of a bounded chiral medium, the wave fields �E± are
connected to meet the corresponding boundary conditions for total fields �E and �H.
Even for the two-dimensional case, the equations for the sought field show that all
the components are coupled, so the problem is a vectorial one.

2.4.2 Formulation of the Problem

At first, let us consider the model problem of electromagnetic wave diffraction from
a strip grating placed above (or on) a chiral half-space. The problem geometry is
shown in Fig. 2.5a. A periodic grating of infinitely thin and perfectly conducting
strips parallel to the x-axis lies in the plane z = h1. The grating period is l, the
slot width is d. The interface between the chiral z < 0 and nonchiral z > 0 media is

Fig. 2.5 (a) The structure profile and (b) the secondary field harmonics



2.4 Electromagnetic Wave Diffraction by Gratings 107

given by the plane z = 0; ε̃1 and μ̃1 are the relative permittivity and permeability
of the magnetodielectric filling the upper half-space (z > 0), and ε̃3, μ̃3, and η =
γ
/√

ε̃3 μ̃3 are the constitutive parameters of the chiral half-space.

A plane electromagnetic wave normally incident on the grating from above is
characterized by �Ei = �E0 exp (−i (k1z + kt)) and �Hi = �H0 exp (−i (k1z + kt)),
where k1 = k

√
ε̃1 μ̃1 is the wave number of the upper half-space. The diffracted

field is to be found.
We will seek the solution in the form of a total field equal to the sum of the inci-

dent and secondary fields. Since the incident field is independent of the x-coordinate
and the grating is uniform with respect to the x-axis, the desired field is indepen-
dent of this coordinate. Thus, the problem is the two-dimensional (∂/∂x ≡ 0) one.
Concerning the orientation of the incident wave, the original problem can be reduced
to special cases of an E-polarized field where �E0 = {ẽ,0,0} or a H-polarized field

where �H0 =
{

h̃,0,0
}

.

For the existence and uniqueness of the solution, it is necessary [45] that the solu-
tion obeys the Maxwell equations, the boundary conditions, the radiation condition
at infinity, the quasi-periodicity condition, and the condition that the field energy is
finite within any bounded volume of space.

2.4.3 The Systems of Dual Series Equations

The geometry of the structure allows us to solve the considered boundary value
problem by the method of separation of variables. Assuming that the solution exists,
we will seek it in the form of a Fourier series expansion for domains Dj (j = 1,2,3),
where D1:h1 < z, D2:0 < z < h1, and D3:z < 0. Substituting the series into Helmholtz’s
equation (ΔyzŨ(g) + k2

1Ũ (g) = 0 for z > 0 and Δy,zŨ± (g)+ (k±)2 Ũ± (g) = 0 for
z < 0), we can represent the field components as follows (see Fig. 2.5b):

⎧
⎪⎪⎨

⎪⎪⎩

Ẽ1
x = ẽexp (−ik1z) +

∞∑
n=−∞

an exp
(
iΓ 1

n (z − h1)
)

exp
(
i Φny

)

H̃1
x = h̃exp (−ik1z) +

∞∑
n=−∞

bn exp
(
iΓ 1

n (z − h1)
)

exp
(
i Φny

) ; z > h1,

⎧
⎪⎪⎨

⎪⎪⎩

Ẽ2
x =

∞∑
n=−∞

[
c+n exp

(
iΓ 2

n z
) + c−n exp

(−iΓ 2
n (z − h 1)

)]
exp
(
i Φny

)

H̃2
x =

∞∑
n=−∞

[
d+n exp

(
iΓ 2

n z
)+ d−n exp

(−iΓ 2
n (z − h 1)

)]
exp
(
i Φny

) ; 0 < z < h1,

⎧
⎪⎪⎨

⎪⎪⎩

Ẽ3
x =

∞∑
n=−∞

[
xn exp

(−iΓ+
n z
) + yn exp

(−iΓ−
n z
)]

exp
(
iΓ 1

n h 1
)

exp
(
iΦny
)

H̃3
x = −i

ρ3

∞∑
n=−∞

[
xn exp

(−iΓ+
n z
) − yn exp

(−iΓ−
n z
)]

exp
(
iΓ 1

n h 1
)

exp
(
iΦny
) ; z < 0.

(2.208)
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Here, we have denoted the propagation constant of the nth field harmonic by Φn

in the y-direction and by Γ
j
n; j �= 3, Γ±

n ; j = 3 in the z-direction for the domain Dj:

Φn = 2π

l
n , Γj

n =
√

k2
j − (Φn)

2, Γ±
n =
√(

k±
)2 − (Φn)

2. (2.209)

The root branches with Im
(
Γ

j,±
n

)
≥ 0 are chosen to fit the radiation condition at

infinity, kj = k
√

ε̃jμ̃j, and ρj =
√

μ0 μ̃j
/
ε0 ε̃j, j = 1,2,3.

The obtained field representation (2.208) satisfies the quasi-periodicity condition
and corresponds to the Rayleigh expansion of the diffracted field in a superposition
of partial harmonics of spatial spectrum. This superposition, which consists of a
finite number of plane uniformly propagating waves (for which Γ

j
n , Γ ±

n are real)
and an infinite number of slow nonuniform surface waves (with Γ

j
n , Γ ±

n complex),
is localized near the inhomogeneity planes z = h1, z = 0. The propagation direction
and decay character of these waves are given by (2.209), while the wave amplitudes
and phases are determined by the unknown Fourier coefficients: an, bn, c±n , d±n ,
and xn, yn. It is possible to show that each number n in the series describing the chiral
medium field is assigned to a couple of circularly polarized waves with amplitudes
xn, yn and wave vectors �k±n = {0,Φn, − Γ±

n

}
. Note that, complex coefficients an, c±n

correspond to E-polarization and bn, d±n to H-polarization. Thus, the problem is to
find these coefficients.

Satisfying the boundary condition, that the tangential components of the electric
field are equal over the grating period gives

an = c+n exp
(
iΓ 1

n h1
)+ c−n − δn

0 ẽ exp (−ik1h1) and

bn = d+n exp
(
iΓ 1

n h1
)− d−n + δn

0 h̃ exp (−ik1h1) .
(2.210)

Using the obtained relations (2.210) and applying the boundary condition that
the magnetic field components are continuous over the grating slot yields the series
equation valid on the interval |y| < d/2

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
n=−∞

Γ 1
n c−n exp

(
iΦny
) = ẽk1 exp (−ik1h1)

∞∑
n=−∞

d−n exp
(
iΦny
) = h̃ exp (−ik1h1)

; |y| < d
/

2.

Imposing the boundary condition that the electric field tangential components
vanish on the metal strips results in another couple of the series equation valid on
the interval d/2 < |y| < l/2. Thus, the boundary conditions corresponding to the strip
grating at z = h1 allows us to obtain two systems of functional equations
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⎧
⎪⎪⎨

⎪⎪⎩

∞∑
n=−∞

Γ1
n c−n exp

(
iΦny
) = ẽk1 exp (−ik1h 1) ; |y| < d

/
2

∞∑
n=−∞

{
c+n exp

(
iΓ1

n h1
)+ c−n

}
exp
(
iΦny
) = 0; d

/
2 < |y| ≤ l

/
2

, (2.211)

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
n=−∞

d−n exp
(
iΦny
) = h̃ exp (−ik1h1) ; |y| < d

/
2

∞∑
n=−∞

Γ1
n

{
d+n exp

(
iΓ1

n h1
)− d−n

}
exp
(
iΦny
) = 0; d

/
2 < |y| ≤ l

/
2

.

(2.212)

System (2.211) of dual series equations is for E-polarization, and system (2.212)
for H-polarization. The continuity of the tangential components of the field at z = 0
enables us to determine c±n , d±n via the complex amplitudes xn, yn of the field in the
chiral medium:

c+n = 1

2
exp
(

iΓ1
nh 1

) [(
A11

n − A12
n

)
xn +

(
A21

n − A22
n

)
yn

]
,

c−n = 1

2

[(
A11

n + A12
n

)
xn +

(
A21

n + A22
n

)
yn

]
,

d+n = − i

2ρ3
exp
(

iΓ1
nh1

) [(
B11

n − B12
n

)
xn +

(
B21

n − B22
n

)
yn

]
,

d−n = i

2ρ3

[(
B11

n + B12
n

)
xn +

(
B21

n + B22
n

)
yn

]
.

Here, we have introduced the coefficients

A11
n = 1, A12

n = μ̃1

μ̃3 (1 + η)

Γ+
n

Γ1
n

, A21
n = 1, A22

n = μ̃1

μ̃3 (1 − η)

Γ−
n

Γ1
n

,

B11
n = − ε̃1

ε̃3 (1 + η)

Γ+
n

Γ1
n

, B12
n = −1, B21

n = ε̃1

ε̃3 (1 − η)

Γ−
n

Γ1
n

, B22
n = 1.

Systems (2.211) and (2.212) for the coefficients xn, yn take the form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

Γ1
n

{
xn
[
A11

n + A12
n

]+ yn
[
A21

n + A22
n

] }
exp
(
iΦny
) =

= 2k1ẽ exp (−ik1h1) ; |y| < d
/

2
∞∑

n=−∞
{

xn
[
Ω+

n A11
n +Ω−

n A12
n

]+ yn
[
Ω+

n A21
n +Ω−

n A22
n

] }
exp
(
iΦny
) =

= 0; d
/

2 < |y| ≤ l
/

2

,

(2.213)
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

{
xn
[
B11

n + B12
n

]+ yn
[
B21

n + B22
n

] }
exp
(
iΦny
) =

= −2iρ3h̃ exp (−ik1h1) ; |y| < d
/

2
∞∑

n=−∞
Γ1

n

{
xn
[
Ω+

n B11
n +Ω−

n B12
n

]+ yn
[
Ω+

n B21
n +Ω−

n B22
n

] }
exp
(
iΦny
) =

= 0; d
/

2 < |y| ≤ l
/

2

,

(2.214)

where Ω±
n = 1±exp

(
i2Γ1

n h1
)
. Systems (2.213) and (2.214) of dual series equations

involving exponential functions are equivalent to an operator equation of the first
kind in the Hilbert space given by the Meixner condition [132].

The obtained systems are coupled, and describe fields of both linear polariza-
tions. Let, for example, the grating be excited by an E-polarized wave (h̃ = 0), then
without chirality (γ= 0), i.e., when lower half-space (z < 0) is magnetodielectric, we
have k+ = k– and A11

n = A21
n , A12

n = A22
n and also B11

n = −B21
n , B12

n = −B22
n . Then

systems (2.213) and (2.214) become decoupled, and the homogeneous equations of
system (2.214) imply xn = yn. If so, the H-polarized field disappears, and system
(2.213) gives the solution to the scalar diffraction problem in the E-polarization case.
The presence of chirality (γ �= 0) will give rise to additional field polarization. The
appearance of additional polarization is attributed to the fact that the chiral medium
eigenwaves represent circularly polarized waves produced by the superposition of
E- and H-polarized fields. So despite the two-dimensional problem formulation, the
sought field contains components of both polarizations, which are coupled in this
problem. Therefore, the vector problem is considered.

2.4.4 An Algebraic System of the Second Kind

In order to separate a series with slow convergence rate, we introduce the new
unknown coefficients

Xn = xn
[
B11

n + B12
n

]+ yn
[
B21

n + B22
n

]+ δn
02iρ3h̃ exp (−ik1h1) and

Yn = xn
[
Ω+

n A11
n +Ω−

n A12
n

] + yn
[
Ω+

n A21
n +Ω−

n A22
n

]
.

Now, in the case of h1 �= 0, i.e., for the grating placed above the chiral half-space,
systems (2.213) and (2.214) can be represented in the following form:

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
n=−∞(n �=0)

|n|Xn exp (inϑ) = F1 (ϑ ; Xn,Yn) ; |ϑ| > ϑ0

∞∑
n=−∞

Xn exp (inϑ) = 0; |ϑ| < ϑ0

, (2.215)

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
n=−∞

Yn exp (inϑ) = 0; |ϑ| > ϑ0

∞∑
n=−∞(n �=0)

|n| Yn exp (inϑ) = F2 (ϑ; Xn,Yn) ; |ϑ| < ϑ0

, (2.216)
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where ϑ = 2πy/l and ϑ0 = πd/l. Then the inequality |ϑ| < ϑ0 indicates the grating
slot and ϑ0 < |ϑ| refers to the strip. The right-hand sides of the systems

F1,2 (ϑ; Xn,Yn) =
∞∑

n=−∞
f 1,2
n (Xn,Yn) exp (inϑ) are sufficiently smooth functions of

ϑ, belonging to the L2[–π;π] space. Their Fourier coefficients are:

f 1
0 = iκ1

{
X0 +

(
x0
[
B11

0 − B12
0

]+ y0
[
B21

0 − B22
0

] )
exp (i2k1h 1)

}

+2χ 1ρ 3 h̃ exp (−ik1h 1) ,

f 1
n = |n|

{
ξn Xn − (1 − ξn)

(
xn

[
B11

n − B12
n

]
+ yn

[
B21

n − B22
n

] )
exp
(

i2Γ1
nh 1

) }
,

f 2
0 = iκ1

{
Y0 −

(
x0
[
A11

0 − A12
0

]+ y0
[
A21

0 − A22
0

])
exp (i2k1h 1)

}

−2iκ1ẽ exp (−ik1h 1) ,

f 2
n = |n|

{
ξnYn + (1 − ξn)

(
xn

[
A11

n − A12
n

]
+ yn

[
A21

n − A22
n

] )
exp
(

i2Γ1
nh 1

)}
.

Here, ξn = 1 + i
√(

κ1
/

n
)2 − 1 is the smallness parameter, κ1 = lλ−1

√
ε̃1μ̃1,

and λ is the wavelength in vacuum.
The asymptotic estimates of the coefficients Ars

n = O (1), Brs
n = O (1), r, s = 1,2,

and the smallness parameter ξn = O(n–2) show that as |n|→∞

f 1,2
n =

|n|→∞
σ1,2

n

|n| + O (|n| exp (−σ |n|)) ,

where σ = 4πh1l−1
[
1 − 0.5

(
κ1n−1

)2]
> 0, and the sequences

{
σ1,2

n

}∞
n=−∞ belong

to l2 space with weight (|n| + 1). Therefore, the systems’ right-hand sides, containing
the Fourier expansions of the functions F1,2, converge well. The left-hand sides
of the systems are the series with slow convergence rate; they correspond to the
principal part of the problem operator possessing the singularity. Taking the right-
hand sides of (2.215) and (2.216) as known allows us to assume that the obtained
functional systems are decoupled. Thus, we have not only extracted the singularity
in the left-hand sides of the equations but also managed to decouple the systems in
terms of the principal part of the operator.

It should be stressed that such decoupling is possible only for h1 �= 0, i.e., in the
case of the grating placed above the chiral half-space. For h1 = 0, the decoupling of
the systems is impossible, and we have to solve the systems jointly. This required
the development of an essentially new mathematical approach described above in
Section 2.2.4.

For the case h1 �= 0, systems (2.215) and (2.216) are equivalent to a scalar
Riemann–Hilbert boundary value problem (see [45] and Section 2.2.1). Applying
this well-known method to the solution of this problem for each system individually
yields the following infinite system of linear algebraic equations [133]:



112 2 Analytic Regularization Methods

⎧
⎪⎪⎨

⎪⎪⎩

Ym =
∞∑

n=−∞
Vmn(u) {αnYn + βnXn} + bm

Xm =
∞∑

n=−∞
Ṽmn(ũ)

{
α̃nYn + β̃nXn

}
+ b̃m

; m = 0, ± 1,... (2.217)

The values Vmn(u), Ṽmn (ũ), and αn, βn, bm; α̃n, β̃n, b̃m that appears in system
(2.217) have the form

u = cos δ, V00 = − ln
1 + u

2
, V0n = 1

n
V−1

n−1 (u) , Vmn = 1
V n−1

m−1 (u) ,

ũ = cos δ̃, Ṽ00 = − ln
1 + ũ

2
, Ṽ0n = (−1)n

n
V−1

n−1 (ũ) ,

Ṽmn = (−1)m+n

m
V n−1

m−1 (ũ) , α0 = iκ1
R+

0

T+
0

,

αn = |n|
{
ξn

R+
n

T+
n

+ R−
n

T+
n

exp
(

i2Γ1
nh 1

)}
, β0 = 2iκ1

A0

T+
0

exp (i2k1h 1) ,

βn = −2 |n| (1 − ξn)
An

T+
n

exp
(

i2Γ1
nh 1

)
, α̃0 = 2iκ1

B0

T+
0

exp (i2k1h 1) ,

α̃n = −2 |n| (1 − ξn)
Bn

T+
n

exp
(

i2Γ1
n h 1

)
, β̃0 = iκ1

C0

T+
0

,

β̃n = |n|
{
ξn

Cn

T+
n

− T−
n

T+
n

exp
(

i2Γ1
nh 1

)}
,

bm = −2iκ1Vm0 (u)

[

ẽ exp (−ik1h 1) + 2iρ3h̃
A0

T+
0

exp (ik1h 1)

]

,

b̃m = 2ρ3h̃κ1Ṽm0 (ũ)

[

exp (−ik1h 1) + T−
0

T+
0

exp (ik1h 1)

]

,

where the matrix Vn
m (u) is defined in Section 2.2.1, and

An = A11
n A22

n − A12
n A21

n , Bn = B11
n B22

n − B12
n B21

n ,

Cn = [Ω+
n A11

n +Ω−
n A12

n

] [
Ω+

n B21
n +Ω−

n B22
n

]− [Ω+
n A21

n +Ω−
n A22

n

]

[
Ω+

n B11
n +Ω−

n B12
n

]
,
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R±
n =
[
A11

n ± A12
n

] [
B21

n + B22
n

]
−
[
A21

n ± A22
n

] [
B11

n + B12
n

]
,

T±
n =
[
Ω+

n A11
n +Ω−

n A12
n

] [
B21

n ± B22
n

]
−
[
Ω+

n A21
n +Ω−

n A22
n

] [
B11

n ± B12
n

]
.

The asymptotic estimates of the coefficients αn, β̃n = 1
/|n|; α̃n, βn =

|n| exp (−σ |n|) as |n|→∞, and the behavior of Vn
m for |m|, |n|→∞, allow us to

conclude that (2.217) is a Fredholm-type system of the second kind. This system
is the rigorous solution to the formulated vector problem, it finds Xn and Yn and
consequently all the unknowns.

Now we turn to the case when the grating is placed on the chiral half-space,
i.e., h1 = 0. We will show herein that the system of equations (2.213) and (2.214)
is reducible to the form of the system of equations (2.123), (2.124), (2.125),
and (2.126) described in Section 2.2.4. Really, after elementary transformations,
equations (2.213) and (2.214) can be represented as

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
n=−∞

Xn exp (in ϑ) = 0; |ϑ| < ϑ0

∞∑
n=−∞(n �=0)

Γ1
n c̄n
(
b̄nXn + Yn

)
exp (in ϑ) + k1

(
ρ1+ρ3

ρ3
Y0 + 2ẽ

)
= 0; |ϑ| < ϑ0

,

(2.218)

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
n=−∞

Yn exp (inϑ) = 0; |ϑ| > ϑ0

∞∑
n=−∞(n �=0)

Γ1
n d̄n (Xn + ānYn) exp (in ϑ) + k1ρ3

ρ1+ρ3

(
X0 − i2ρ1h̃

)
= 0; |ϑ| > ϑ0

.

(2.219)

Here, we introduced the coefficients

ān = B11
n + B21

n

B21
n − B11

n
, b̄n = A22

n − A12
n(

1 + A12
n

) (
1 + B21

n

)+ (1 + A22
n

) (
1 − B11

n

) ,

c̄n =
(
1 + A12

n

) (
1 + B21

n

)+ (1 + A22
n

) (
1 − B11

n

)

2 + B21
n − B11

n
, d̄n = B21

n − B11
n

2 + B21
n − B11

n
.

(2.220)

Using the explicit expressions for Apq
n and Bpq

n , it is possible to obtain the
following asymptotic estimates for (2.220) as |n|→∞:



114 2 Analytic Regularization Methods

ān = η+ O
(
n−2
)

, b̄n = ε̃3μ̃1η

(ε̃1 + ε̃3) (μ̃1 + μ̃3) − ε̃3μ̃3η2
+ O
(

n−2
)

,

c̄n = (ε̃1 + ε̃3) (μ̃1 + μ̃3) − ε̃3μ̃3η
2

μ̃3
(
ε̃1 + ε̃3

(
1 − η2

)) + O
(

n−2
)

,

d̄n = ε̃1

ε̃1 + ε̃3
(
1 − η2

) + O
(

n−2
)

.

(2.221)

Now, taking into account the estimates (2.221) and that
Γ1

n = |n| 2π i
l

[
1 + O

(
n−2
)]

as |n|→∞, we write the system of equations
(2.218) and (2.219) in the following form:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

Xn exp (inϑ) = 0; |ϑ| < ϑ0

∞∑
n=−∞

|n| (bXn + Yn) exp (inϑ)+

+
∞∑

n=−∞
(
V11

n Xn + V12
n Yn − f1n

)
exp (inϑ); |ϑ| < ϑ0

, (2.222)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞

Yn exp (inϑ) = 0; |ϑ| > ϑ0

∞∑
n=−∞

|n| (Xn + aYn) exp (inϑ)+

+
∞∑

n=−∞
(
V21

n Xn + V22
n Yn − f2n

)
exp (inϑ) ; |ϑ| > ϑ0

. (2.223)

Here,

a = η, b = ε̃3μ̃1η

(ε̃1 + ε̃3) (μ̃1 + μ̃3) − ε̃3μ̃3η2
. (2.224)

The coefficients Vpq
n (p,q = 1,2) can be expressed in terms of Apq

n , Bpq
n , and Γ1

n.
As |n|→∞ they satisfy the conditions

Vpq
n = O

(
|n|−1

)
, p, q = 1,2. (2.225)

Coefficients f1n and f2n are of the form

f1n = − iκ1μ̃3
(
ε̃1 + ε̃3

(
1 − η2

))

(ε̃1 + ε̃3) (μ̃1 + μ̃3) − ε̃3μ̃3η2
ẽδn

0, (2.226)

f2n = −2κ1ρ1ρ3
(
ε̃1 + ε̃3

(
1 − η2

))

ε̃1 (ρ1 + ρ3)
h̃δn

0. (2.227)



2.4 Electromagnetic Wave Diffraction by Gratings 115

It follows from expressions (2.225), (2.226), and (2.227) that the coefficients
of dual series equations (2.222) and (2.223) meet the conditions for applying the
analytic regularization method which uses the explicit solution of the vectorial
Riemann–Hilbert boundary value problem, described in detail in Section 2.2.4.
Namely, the asymptotic estimates (2.225) for the elements Vpq

n show that the matrix
operators Vpq = {Vpq

n δn
m

}∞
m, n=−∞ specify compact operators in l2 space. From

formulas (2.226) and (2.227), it follows that vector columns f1 = {f1n}∞n=−∞ and
f2 = {f2n}∞n=−∞ belong to the space l2(–1) (see Section 2.2).

In addition, in the case of real-valued constitutive parameters ε̃j, μ̃j, and η =
γ
/√

ε̃3 μ̃3, the coefficients a and b satisfy the inequality 0 ≤ ab < 1. Let us prove

it. From (2.224) we have

ab = ε̃3μ̃1η
2

(ε̃1 + ε̃3) (μ̃1 + μ̃3) − ε̃3μ̃3η2
. (2.228)

It is known [117], that η < 1, therefore (ε̃1 + ε̃3) (μ̃1 + μ̃3) − ε̃3μ̃3η
2 >

0. Suppose, that ab ≥ 1, then from (2.228) we have ε̃3 (μ̃1 + μ̃3)η
2 ≥

(ε̃1 + ε̃3) (μ̃1 + μ̃3) and consequently η ≥
√

1 + (ε̃1
/
ε̃3
)
. Thus, the inequality 0

≤ ab < 1 holds.
Thus, on the basis of the results described in Section (2.2.4.), the system of dual

series equations (2.222) and (2.223) is equivalent to the system of linear algebraic
equations of the second kind, which has the form as that of (2.172) and (2.173).

2.4.5 Numerical Analysis for Grating and Chiral Half-Space

Introduce the reflection coefficients (ax
0, ay

0) and the transmission coefficients (bx
0,

by
0) for the x- and y-components of the electric field as follows: ax

0 = a0 and ay
0 =

−ρ1b0 for z > h1; bx
0 = (x0 + y0

)
exp (ik1h1) and by

0 = −i
(
x0 − y0

)
exp (ik1h1)

for z < 0. These coefficients determine the field averaged over the grating period.
The upper indices x and y relate, respectively, to the field of E-polarization and H-
polarization. The incident field polarization is called the principal polarization, and
the polarization perpendicular to the principal is called the cross-polarization. Using
the boundary conditions, one obtains the following relations:

ax
0 + ẽ exp ( − ik1h1) = Ωbx

0, ay
0 + ρ1h̃ exp ( − ik1h1) = Ωby

0,

where

Ω = 1

2

[(
1 − ρ1

ρ3

)
exp (ik1h1) +

(
1 + ρ1

ρ3

)
exp ( − ik1h1)

]
.

Note that the coefficients introduced are related by the functional dependence
imposed by the boundary conditions.
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The distinctive feature of the behavior of reflection coefficients as functions of
the frequency parameter κ = l/λ is the presence of peculiarities analogous to the

classical Wood anomalies [45] at the so-called grazing points κ1n = n
/√

ε̃1μ̃1

and peculiarities in the vicinity of the points κ±3n = nRe
(

1
/(√

ε̃3μ̃3 ± γ
))

where

n = 0,±1,. . .. It is seen from the field representation that the quantities κ1n and
κ±3n determine the frequency parameter values for which the nth harmonic of the
nonchiral and chiral half-spaces, respectively, becomes propagating. Figure 2.6a
shows the reflection coefficients of the principal-polarized field as a functions of κ.
If κ±31 < κ < κ11, then the number of waves propagating in the chiral medium,
which is assumed to be optically denser, is greater than that in the nonchiral
medium. For small h1, the surface harmonics decaying with distance from the
grating become propagating upon entering the chiral medium and carry away a frac-
tion of the energy. Such an energy redistribution explains the distinctive features
of the reflection coefficients of the principal-polarized field in the vicinity of the
points κ±3n.

Fig. 2.6 The reflection coefficients versus frequency κ = l/λ for (a) principal polarization field
(h1/l = 0.05) and (b) cross-polarized field (the solid and the dashed curves refer to the left and
right vertical axes, respectively; γ = 0.6): ε̃1 = 1, μ̃1 = 1, ε̃3 = 4, μ̃3 = 1, d/l = 0.5
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The frequency dependences of the reflection coefficients of cross-polarized
waves are shown in Fig. 2.6b. The appearance of new propagating circularly polar-
ized waves in the chiral medium at κ±3n explains the increase in the reflection
coefficients of the cross-polarized field at these points. The magnitudes of these
coefficients depend on the amount of energy transferred by decaying surface waves
to the chiral medium. For small distances, these coefficients decrease with increas-
ing h1. For

∣∣Γ1
1

∣∣ h1 � 1, the surface field of the grating does not enter the second
medium and the zero-order principal-polarized wave propagating normally does not
produce the reflection of the cross-polarized field. Hence, the cross-polarized field
is absent until the harmonic of the order n = 1, propagating at an angle to the z-axis,
appears in the upper half-space for κ > κ11.

Now we analyze the frequency dependences of the reflection coefficients in the
case where the E- and H-polarized waves are incident simultaneously (see Fig. 2.7).

The difference of the phases of the E- and H-polarized waves is δφ = arg
(
ρ 1h̃
/

ẽ
)

.

The superposition of the incident waves will have different polarizations for dif-

ferent values of δφ. Let |ẽ| = 1 and
∣∣
∣ρ 1h̃
∣∣
∣ = 1. In-phase waves yield a linearly

polarized wave, whereas for δφ = ±π/2, we have waves with right- and left-hand
circular polarizations, respectively.

If a wave with right-hand circular polarization is incident, then the peculiarity
in the vicinity of κ−31 is more pronounced than the one in the vicinity of κ+31. This
is explained by the efficient energy transfer in the case when the frequencies and
polarizations of the incident wave and the propagating harmonic appearing in the
chiral medium in the vicinity of κ−31, having also a right-hand circular polarization,
are identical. In the vicinity of κ+31, the incident wave and the corresponding har-
monic of the chiral medium interact weakly due to the fact that their field vectors
rotate in opposite directions, although they both have circular polarization. For an
incident linearly polarized wave, the above-mentioned features in the vicinity of κ+31
are equally pronounced.

Fig. 2.7 The reflection coefficients versus frequency κ = l/λ at the simultaneous incidence of E-
and H-polarized waves: ε̃1 = 1, μ̃1 = 1, ε̃3 = 4, μ̃3 = 1, d/l = 0.5, h1/l = 0.05
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Fig. 2.8 The reflection
coefficients versus frequency
in the case of (a) principal
and (b) cross-polarizations
with damping presence:
ε̃1 = 1, μ̃1 = 1, ε̃3 = 4 + ie,
μ̃3 = 1 + im, γ = 0.6 + ig,
d/l = 0.5, h1/l = 0.05

Figure 2.8 shows the frequency dependences of the reflection coefficients in the
presence of damping. Presence of losses results in decreasing and smoothing the
absolute values of the reflection coefficients. In this case, the effect of losses on the
principal-polarized field (Fig. 2.8a) is weaker than that on the cross-polarized field
(Fig. 2.8b). The complex-valued chirality parameter stipulates that waves with right-
and left-hand circular polarizations propagate with different attenuations since the
waves with right- and left-hand circular polarizations have a greater attenuation for
γ" > 0 and γ" < 0, respectively. Therefore, the wave diffraction at the parameter
values for which the propagating harmonics are less attenuated is affected by losses
to a smaller degree.

Figure 2.9 shows the reflection coefficients as functions of the relative chirality

parameter η = γ
/√

ε̃3 μ̃3 for κ = κ−31 (η) in the case when H-polarized wave

is incident. An increase in η leads to an increase in κ−31 (η), and results in the
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Fig. 2.9 The reflection
coefficients as the functions
of relative chirality parameter
η = γ/

√
ε̃3μ̃3 for κ = κ−31:

the solid and the dashed
curves refer to the left and
right vertical axes,
respectively; ε̃1 = 1, μ̃1 = 1,
ε̃3 = 4, μ̃3 = 1, d/l = 0.5,
h1/l = 0.05

transition to the short-wavelength range where the considered reflection coeffi-
cient of principal polarization

∣∣ay
0

∣∣ is generally increasing. The amplitude
∣∣ax

0

∣∣ of
the cross-polarized field caused by the chiral medium is increasing monotonically
with increasing η in the single-wave region of the nonchiral half-space (κ < κ11).
The reflection coefficients

∣∣ax,y
0

∣∣ exhibit distinctive features at the points of appear-
ance of new propagating harmonics, i.e., under the condition κ−31 (η) = κ1n (see
Fig. 2.9).

Figure 2.10 shows the reflection coefficient of the cross-polarized field as func-
tion of the grating transparency Θ = d/l for the case when an H-polarized wave is
incident. If κ < κ11 and

∣∣Γ1
1

∣∣ h1 < 1, then the excitation of the cross-polarized field
is related to the existence of the higher-order spatial harmonics of the grating. In

Fig. 2.10 The reflection
coefficients versus the grating
transparency Θ = d/l in the
cross-polarization case:
ε̃1 = 1, μ̃1 = 1, ε̃3 = 4,
μ̃3 = 1, γ = 0.6, h1/l = 0.05
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this situation, the value of
∣∣ax

0

∣∣ has a maximum if Θ = 0.5 since this coefficient is
mainly determined by the spatial harmonic of order n = 1, whose amplitude has a
maximum if Θ = 0.5 [45].

2.4.6 Strip Grating with Layered Medium

Consider the diffraction problem for the layered structure composed of a strip grat-
ing, a magnetodielectric layer, a chiral layer, and a screen (see Fig. 2.11). Let the
grating lie in the plane z = h1, and a perfectly conducting screen is placed in the
plane z = –h2. The domains D1: h1 < z and D2: 0 < z < h1 are magnetodielectric
with relative permittivities ε̃1, ε̃2 and permeabilities μ̃1, μ̃2; the domain D3: –h2
< z < 0 is a chiral layer with the chirality parameter γ and relative permittivity and
permeability ε̃3, μ̃3.

Fig. 2.11 The structure profile and the wave incidence

Suppose, that the monochromatic elliptically polarized plane wave �Ei =
�E0 exp

(
i
[(�k · �r

)
− kt
])

, �Hi = �H0 exp
(

i
[(�k · �r

)
− kt
])

is obliquely incident

on the grating such that

�E0 =
{

ẽ, ρ1 h̃ cos αi
0 , ρ1 h̃ sin αi

0

}
and �H0 =

{
h̃, − ẽ

ρ1
cos αi

0, − ẽ

ρ1
sin αi

0

}
.

Here, �k = k
√

ε̃1μ̃1
{
0,sin αi

0, − cos αi
0

}
, αi

0 is the angle between the incident wave
vector �k and the z-axis (see Fig. 2.11); the values ẽ, h̃, and ρ1 have the same meaning
as defined above.

As before, we present the diffracted field in the form of a Rayleigh expansion, i.e.,
an infinite series of the spatial harmonics. In the case of an oblique wave incidence
that is under consideration, the propagation constant of the nth harmonic in the y-

direction is Φn = 2πl−1
(

n − κ
√

ε̃1μ̃1 sin αi
0

)
, and the field components have a

form similar to the representation (2.208). For example, in the chiral layer (D3) the
x-components of the field may be represented as:
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{
Ẽ3

x
H̃3

x iρ3

}
=

∞∑
n=−∞

[(
x+n exp

(
iΓ+

n z
)+ x−n exp

(−iΓ+
n z
)) ±

± (y+n exp
(
iΓ−

n z
)+ y−n exp

(−iΓ−
n z
))]

exp
(
i Φny

)
; − h2 < z < 0 .

(2.229)
The boundary conditions at each inhomogeneity planes relates the sought com-

plex amplitudes of the Rayleigh harmonics in all domains of the structure. Also the
boundary conditions allow us to obtain two coupled systems of dual series equations
to determine the unknown coefficients. The obtained systems being some general-
ization of systems (2.213) and (2.214) are equivalent to an operator equation of the
first kind. It was shown in [123] that these systems can be reduced to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞ n �=0

Xn exp (inϑ) + θ X0 = 0; ϑ0 < |ϑ| < π

∞∑
n=−∞ n �=0

|n|
n Xn exp (inϑ) + θ X0 =

∞∑
n=−∞

f 1
n exp (inϑ) ; |ϑ| < ϑ0

∞∑
n=−∞ n �=0

(−1)n

n+θ
Xn + X0 = 0; ϑ = π

,

(2.230)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∞∑
n=−∞ n �=0

Yn exp (inϑ) + θ Y0 = 0; ϑ̃0 < |ϑ| < π

∞∑
n=−∞ n �=0

|n|
n Yn exp (inϑ) + θ Y0 =

∞∑
n=−∞

f 2
n exp (inϑ) ; |ϑ| < ϑ̃00

∞∑
n=−∞ n �=0

(−1)n

n+θ
Yn + Y0 = 0; ϑ = π

.

(2.231)

Here, ϑ̃0 = π − ϑ0; the value θ∈[–0.5; 0.5) is chosen so that θ = −m0 + κ sin αi
0,

where m0 is the nearest integer to κ sin αi
0; Xn and Yn are certain linear combinations

of the unknowns x−n , y−n which are the Fourier coefficients describing the complex
amplitudes of the nth order spatial spectrum harmonics in the chiral medium (see
(2.229)). The rest of the Fourier coefficients can be expressed in terms of x−n , y−n ;
the coefficients f 1,2

n are linear combinations of Xn and Yn.
Using the asymptotic estimates, it is possible to show that

f 1, 2
n =

|n|→∞ σ1, 2
n n−2 + O (exp (−σ |n|)) ,

where σ ≈ 4π
(
h1
/

l
)

> 0, and the values σ1, 2
n satisfy the conditions

∞∑
n=−∞

∣∣σ1,2
n

∣∣2 <∞. These representations show that the series in the right-hand sides

of (2.230) and (2.231) are uniformly and rapidly convergent series. So for the given
problem the singularities, which correspond to the principal part of the operator of
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the problem, have been isolated on the left-hand sides of the equations. The obtained
functional systems are coupled only through the right-hand sides.

In the form (2.230) and (2.231), the systems are equivalent to the well-known
scalar Riemann–Hilbert problem [45]. The method for its solution allows us to
obtain the system of linear algebraic equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θX0 =
∞∑

p=−∞
V0p

{
α0

pXp + βpYp

}
+ b0

Xn =
∞∑

p=−∞
Vnp

{
αn

pXp + βpYp

}
+ bn

θY0 =
∞∑

p=−∞
Ṽ0p

{
α̃pXp + β̃0

pYp

}
+ b̃0

Yn =
∞∑

p=−∞
Ṽnp

{
α̃pXp + β̃n

pYp

}
+ b̃n

, (2.232)

where the values Vnp, Ṽnp; αn
p, βp; and α̃p, β̃n

p are given in [123]. From the asymp-

totic estimates of the coefficients αn
p, β̃n

p = O
(
p−2
)

and α̃p, βp = O (exp (−σ |p|)),
and from the behavior of Vnp, Ṽnp as |n|, |p|→∞ it follows that (2.232) is equivalent
to a Fredholm system of the second kind. Such a system can be effectively solved
by appropriate truncation to meet any preassigned accuracy.

2.4.7 Electromagnetic Properties of a Strip Grating with
Layered Medium in the Resonant Frequency Range

The diffraction grating changes the incident field into a superposition of spatial spec-
trum waves. This superposition consists of a finite number of propagating harmonics
and an infinite number of surface harmonics decaying in the z-direction. The mth
surface harmonic of the jth domain becomes a propagating wave once the frequency
parameter κ is such that Γ

j
m (κ) = 0, j = 1,2, and Γ±

m (κ) = 0 (j = 3). We denote
such value of parameter κ by κjm for j = 1,2, and κ±3m for the chiral domain (j = 3).

Due to the presence of the grating, different harmonics from all domains can
interact with each other, and an energy redistribution between harmonics takes
place. For certain values of the structure parameters, significant energy redistribu-
tion may be achieved, in which the field of one polarization dominates over the field
of other polarizations. Such essential energy redistribution is caused by the resonant
interaction of harmonics in all domains of the structure.

The far field of the structure is represented as a sum of a finite number of prop-
agating harmonics. Let us introduce the efficiencies in the n-order of the spectrum
Rx

n, Ry
n, determining the relative fraction of scattered energy density that is spread

from the structure to the upper half-space by propagating harmonics of nth order
that has the wave vector �k1

n = {0, Φn,Γ1
n

}
. The superscript x corresponds to the

E-polarized field and the superscript y to the H-polarized field.
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Our interest is focused on the diffraction properties associated with the conver-
sion of the incident field of principal polarization into the cross-polarized reflected
field. Also the phenomenon of nearly total transformation of an elliptically polarized
incident wave into a linearly polarized reflected wave is investigated. The efficiency
Rx, y

n as a function of the frequency parameter κ and the relative thickness of the
chiral layer H2 = h2/l will be studied numerically in the cases of specular and
nonspecular reflections.

2.4.7.1 Specular Reflection

Figure 2.12 presents efficiency Rx,y
0 in the case of normal incidence of the E-

polarized wave. For the upper half-space h1 < z, the single-mode region (when

Fig. 2.12 (a) The principal and (b) cross-polarization efficiency in the normal incidence case:
ẽ = 1.0, h̃ = 0, αi

0 = 0, ε̃1 = 1.0, μ̃j = 1.0, ε̃2 = ε̃3 = 4.0, η = 0.3, d/l = 0.5, h1/l = 0.03
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N1 = 1) is determined by the condition –κ < κ11, κ11=1, when αi
0 = 0 and

ε̃1 = μ̃1 = 1. In this region, the minima of efficiency Rx
0 of the principal polar-

ization correspond to the maxima of the efficiency Ry
0 of the cross-polarization, and

the equality Rx
0+Ry

0 = ẽ2+
(
ρ 1h̃
)2

holds. In the parameter region of existence of the

higher propagating harmonics of the first medium, i.e., when κ ≥ κ11, this picture
is changed because of the energy redistribution between the higher harmonics. The
vicinities of frequencies κ±3n are characterized by effective polarization conversion,
which is most pronounced in the interval κ∈[0; κ11].

In the case of the oblique incidence (αi
0 �= 0) of the E-polarized wave, the

cross-polarization efficiency Ry
0 is presented in Fig. 2.13. A linearly polarized wave

normally incident on a chiral medium produces the left- and right-hand circularly

Fig. 2.13 The cross-polarization efficiency in the oblique incidence case: ẽ = 1.0, h̃ = 0, ε̃1 = 1.0,
μ̃j = 1.0, ε̃2 = ε̃3 = 4.0, η = 0.3, d/l = 0.5, h1/l = 0.03, (a) αi

0 = 15◦ and (b) αi
0 = 30◦
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polarized waves in it. For normal incidence, they propagate in the same direction as
the incident wave, and their superposition would be a linear-polarized wave, with the
rotation of polarization plane as the propagation proceeds inside the chiral medium.
In the case of oblique incidence, the circularly polarized waves propagate in the dif-
ferent directions, and their superposition is not a linearly polarized wave. In the case
of normal incidence, the nth and (–n)th harmonics appear at the same frequency. But
they do not behave like that in the case of the oblique incidence. As αi

0 increases,
the points of appearance of the higher harmonics move away from κjn = κj(–n),
j = 1,2, and κ±3n = κ±3(−n): to the left for the positive harmonics and to the right for
the negative. The phase velocities of the plus and minus nth harmonics are different
when αi

0 �= 0. Hence the resonances split, and their number is doubled. The splitting
is most evident at small angles. Since at the oblique incidence, the higher harmonics
of the chiral medium appear before those at αi

0 = 0; the polarization conversion
region extends along κ to the left (to the low frequency region) as αi

0 grows. The
most broadband conversion is observed at αi

0 = 0. The efficiency in the zeroth order
of spectrum for the cross-polarization is the same, whether an E- or H-polarized
wave is incident.

The performed numerical analysis [125] shows that the incident linearly polar-
ized wave can be nearly completely converted into the specularly reflected wave of
cross-polarization almost at any incident angle αi

0.
The combination of the nth propagating harmonics of E- and H-polarization

generally gives an elliptically polarized wave. Now our concern will be with
the diffraction features associated with the change of the incident elliptically
polarized wave into a specularly reflected zero-order harmonic of linear (E- or
H-) polarization. The value ΔR0 = Rx

0 − Ry
0 as a function of the structure

parameters will be considered. Let the energy density of the incident ellip-

tically polarized wave, which is proportional to ẽ2 +
(
ρ1h̃
)2

, equal 100%.

Thus, when ΔR0 = 100%, the total transformation from an incident ellipti-
cally polarized wave into a specularly reflected zero-order harmonic of linear
E-polarization with the energy density 100% occurs. Similarly, ΔR0 = –100%
means a total transformation into an H-polarized wave with the density 100%.
Thus, the value ΔR0 measures the efficiency of elliptical to linear polarization
transformation.

The complex amplitudes ẽ, h̃ define a character of elliptical polarization of inci-

dent wave. For example, if | ẽ| =
∣∣∣ρ1h̃
∣∣∣ and δφ = arg

(
ρ 1h̃
/

ẽ
)
= ±π

/
2, the

resultant is a right-handed or left-handed circularly polarized incident wave; when
ẽ = 0 or h̃ = 0, then the incident wave, respectively, has linear H- or E-polarization.

The value ΔR0 as a function of κ and H2 = h2/l for the different relations of the
E- and H-polarized field components in three incident wave of elliptical polarization
is presented in Fig. 2.14. The domains of high-purity polarization transformation,
in which |ΔR0| > 90%, may be identified for different polarizations in the inci-
dent wave [124]. The domains of transformation into E- and H-polarized specularly
reflected waves are situated close to each other, and their extent depends on the con-
tent of E- and H-polarized field components in the incident wave. These domains
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Fig. 2.14 The polarization
transformation efficiency
ΔR0 versus κ and H2 for
different polarizations of the
incident wave: ε̃1 = 1.0,
μ̃j = 1.0, ε̃2 = ε̃3 = 4.0, η =
0.3, d/l = 0.5, h1/l = 0.015,
αi

0 = 15◦, δφ = –π/2; (a)

|ẽ| =
∣
∣∣ρ1h̃
∣
∣∣; (b)

|ẽ| = 4
∣∣
∣ρ1h̃
∣∣
∣; and (c)

4 |ẽ| =
∣∣
∣ρ1h̃
∣∣
∣

as a whole are rather wide and their location depends on the elliptical polarization
parameters of the incident wave.

When the efficiency of elliptical to linear polarization transformation does not
take extreme values (ΔR0 �= ±100%, i.e., the scattered field has both E- and H-
polarized components), a wave of some elliptical polarization is specularly reflected
from the structure. Its elliptical polarization may be described by the Stokes param-
eters [134]. These parameters for the reflected elliptically polarized wave of zero
order may be expressed in terms of ΔR0 and the phase difference ΔF0 between the
zero-order harmonics of E- and H-polarizations.

The efficiency of the polarization transformation for different incident wave
angles is illustrated in Fig. 2.15. Nearly total polarization transformation (|ΔR0|
> 97%) is seen to take place in a wide range

(
Δαi

0 ≈ 20◦
)

of incident wave angles.
Considering the values of ΔR0 and ΔF0, one can analyze how the reflected field
polarization depends on frequency.
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Fig. 2.15 The polarization transformation efficiency ΔR0 and the phase difference ΔF0 versus κ

for different incident angles: ε̃1 = 1.0, μ̃j = 1.0, ε̃2 = ε̃3 = 4.0, η = 0.3, d/l = 0.5, h1/l = 0.015,

|ẽ| =
∣∣
∣ρ1h̃
∣∣
∣, δφ = –π/2; (a) H2 = 0.448; and (b) H2 = 0.354

The dependence of the transformation of the elliptical to linear polarization on
geometrical and constitutive parameters of the considered structure was studied. It
was found that the polarization transformation might be effectively controlled by
an appropriate choice of the structure parameters. For instance, a small decrease
of the magnetodielectric layer thickness increases the polarization transformation
bandwidth, and a change of the grating slot width allows frequency tuning.

2.4.7.2 Nonspecular Reflection

The information about the direction of the wave vector �k1
n allows us to define a

difference between the angles of the primary wave arrival and the secondary nth har-
monic departure. Given the angle difference, we can specify the κ to αi

0 relationship.
In particular, from the condition �k1

n = −�k, we derive the relation

αi
0 = −arc sin

(
n
/

2κ1
)

,

which defines the autocollimation reflection regime of the nth spatial harmonic. In
the regime, the nth wave of the upper half-space propagates in the direction opposite
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to the primary wave, that is, αi
0 = αn, where αn is the nth harmonic angle of prop-

agation. An energy concentration in this nth wave may be achieved by optimizing
the structure parameters.

Denote by Nj the number of the propagating waves in jth domain harmonics with
different propagation constants. The scattering regime can be characterized by the
vector N(κ) = {N1, N2, N3}.

Further on, nonspecular reflection accompanied by polarization conversion will
be traced [127] as applied to the minus fist propagating harmonic with the wave
vector �k1−1 = {0, Φ−1,Γ1−1

}
.

For an incident H-polarized wave, the cross-polarization efficiency Rx
−1 in the

autocollimation regime is illustrated in Figs. 2.4a and 2.16. As seen, within 1.283 <
κ < 1.289 (which matches 22◦56′ > α–1>22◦50′) and 0.760 < H2 < 0.767, there
exists a zone where the efficiency for cross-polarization exceeds 0.9. The Rx

−1
maximum reaches 0.933, it is found to be at κ = 1.285 (α–1=22◦54′) and H2 =
0.765. This effect takes place in the frequency zone specified by N(κ) = {2,6,9}.
A similar regime can be also observed for the E-polarized wave incidence. The
autocollimation regime with no polarization conversion may have both explicit and
implicit resonance character. But the autocollimation regime with the polarization
conversion has sharp resonances.

The excitation of the structure at αi
0 = 87◦ when the incident H-polarized wave

nearly skims the structure is illustrated in Figs. 2.4b and 2.17a. In this regime, one
observes a quasi-complete conversion of the incident, nearly surface-parallel wave
into the n = –1 cross-polarized harmonic propagating at α–1 = 8◦12′. The telescop-
icity coefficient (rt = cos α−1

/
cos αi

0) amounts to 18.925. The maxima of Rx
−1 is

0.99 at κ = 0.876 and H2 = 0.313. The zone of this effect at a level of Rx
−1 > 0.9

Fig. 2.16 The cross-polarization efficiency in the autocollimation regime: ẽ = 0, ρ1 h̃ = 1.0,
αi

0 = − arcsin (1 2κ), ε̃1 = 1.0, μ̃j = 1.0, ε̃2 = ε̃3 = 4.0, η = 0.3, d/l = 0.448, h1/l = 0.015
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Fig. 2.17 The cross-polarization efficiency in enhanced-telescopicity regime: ẽ = 0, ρ1 h̃ = 1.0,
αi

0 = 87◦, ε̃1 = 1.0, μ̃j = 1.0, ε̃2 = ε̃3 = 4.0, η = 0.3, d/l = 0.9, (a) H1 = h1/l = 0.015, and (b)
H2 = 0.313

with the telescopicity coefficient rt from 18.827 to 19.009 lies within 0.853 < κ <
0.904 and 0.287 < H2 < 0.340. In this case, the number of the harmonics propagat-
ing in the media is {2,3,7}. For the E-polarized wave incidence, the telescopicity
regime has not been found.
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The broadband property of the regimes of polarization transformation is effec-
tively controlled by the distance h1 (H1 = h1/l) between the grating and the chiral
layer (see, for example, Fig. 2.17b). The value of this distance defines the electro-
magnetic coupling between the grating and the chiral layer via the higher harmonics.
As h1 increases, the higher surface harmonics of the grating cannot reach the chiral
layer. Only when h1 is small, such that

∣
∣Γ2

1h1
∣
∣� 1, the higher harmonics localized

near the grating are able to participate in the energy transport and redistribution
actions essential for the discussed processes. In this case, the magnetodielectric
layer thickness is too small (h 1 � λ) to have any valuable effect on the location
of the considered regimes in the plane κ, H2. As h1 increases, the grating to chiral
layer coupling weakens, the quality of the resonance effects goes up, and the zones
of existence of the effects shrink. Thus, the broadband property of the regime can
be effectively controlled by small h1 variations.

The phenomenon of polarization transformation is caused by the presence of
the chiral medium. The discussed structure can be considered as an open resonator
where the grating and the screen act as the mirrors and the chiral and dielectric
layers are the resonator fillings. On the one hand, being a periodical inhomogeneity,
the grating converts the incident wave into a superposition of an infinite number of
spatial harmonics and thus excites higher order oscillations in the resonator layers.
On the other hand, the grating makes different oscillations interact with each other
and so establishes electromagnetic coupling between different Floquet harmonics
both inside and outside the resonator.

Due to the circular polarization of a chiral medium eigenwaves, the E- and
H-polarized waves are coupled in the chiral layer, and that makes possible the
polarization transformation. At a given frequency and with a suitable choice of
the structure parameters, the wave interference redistributes the energy between
the propagating harmonics so that the discussed regimes of polarization transfor-
mation occur. Effective polarization transformation occurs when the number of the
harmonics propagating in the “resonator layers” is more than in free space. This phe-
nomenon is of resonance character, and it is a response to the oscillatory excitations
which are close to the structure eigenmodes that are described in [135].

2.5 Resonant Scattering of Electromagnetic Waves by Gratings
and Interfaces Between Anisotropic Media and
Metamaterials

This section is concerned with the boundary value diffraction problem of a strip
grating located on different media interfaces: anisotropic dielectric, ferrite, meta-
material, etc. The solution strategy begins with the partial domain (sewing) method
to reduce the initial boundary value problem in terms of Helmholtz (Maxwell’s)
equations to dual series equations. Owing to the regularization theory of dual series
equations outlined in Section 2.2, we arrive at an infinite system of linear alge-
braic equations of the second kind solvable by truncation to any accuracy desired.
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Examples illustrating the computation of various physical characteristics (transition
and reflection coefficients, eigenfrequencies, diffraction fields, etc.) are given. For
more details about the processes of the electromagnetic wave interaction with a strip
grating located on a medium interface, we refer to the original papers [18, 136–148].

2.5.1 Resonant Wave Scattering by a Strip Grating Loaded
with a Metamaterial Layer

The knowledge of characteristic features of wave processes in metamaterial-loaded
open structures (open resonators and waveguides, diffraction gratings, etc.) will
lend us fresh opportunities in forming new physical principles of electromagnetic
wave generation, amplification, and channeling. A very important stage is explo-
rations into resonance phenomena occurring when monochromatic electromagnetic
waves interact with single-periodic metamaterial-loaded structures. The present sec-
tion is concerned with resonant effects arising during the electromagnetic wave
scattering by a strip grating backed by a metamaterial layer such that its effective
permittivity depends on the excitation wave frequency. It is shown that in the fre-
quency region where the real part of the metamaterial effective permittivity takes
on negative values, the open structure of this kind has an infinite number of com-
plex eigenfrequencies with a finite accumulation point. These frequencies match
eigenoscillations whose amplitudes decay exponentially with time. When the fre-
quency of the monochromatic linearly polarized incident wave coincides with the
real part of one of the eigenfrequencies of the structure, effects of nearly total
reflection and transition of the wave energy arise.

The process of monochromatic plane-wave interaction with a strip grating
located on a metamaterial surface will be modeled in terms of the following
boundary value problem:

Let the layer –h < z < 0 (Fig. 2.18) be filled with some isotropic metamaterial
whose effective permittivity depends on frequency as follows

ε̃ (ω) = 1 − ω2
p

ω (ω+ iν)
, (2.233)

where ω = kc is the circular frequency, k = 2π/λ, c and λ are the velocity of light
and wavelength in a vacuum, ωp is the characteristic frequency established by the
parameters of the metamaterial constituents, and ν ≥ 0 is the frequency responsi-
ble for the losses. The permeability is μ = 1. The metamaterial boundary (z = 0)
supports an x-infinite and x-homogeneous perfectly conducting strip grating with
d-wide grooves and a period l (see Fig. 2.18). We assume that the excitation wave
and the diffraction field are also x-independent. The time dependence is exp(–ikt).
From the half-space z > 0 and along the z-axis, an H-polarized unit-amplitude plane
electromagnetic wave



132 2 Analytic Regularization Methods

Fig. 2.18 The problem geometry

H̃i
x = e−ikz, Ẽi

y = e−ikz, Ẽi
x = Ẽi

z = H̃i
y = H̃i

z = 0

is incident.
The diffraction field

{�Es, �Hs
}

satisfies the homogeneous system of Maxwell’s
equations and satisfies the Meixner condition, radiation condition at infinity
(z→±∞), periodicity condition, boundary condition on perfectly conducting grat-
ing strips, and the conjugation condition on the metamaterial surface. Under these
assumptions, the diffraction field

{�Es, �Hs
}

is governed by the unique nonzero
component H̃s

x of the magnetic field as follows:

Ẽs
y = − 1

ikε̃

∂H̃s
x

∂z
, Ẽs

z =
1

ikε̃

∂H̃s
x

∂y
.

The other components of the field
{�Es, �Hs

}
vanish, suggesting that the diffraction

field is H-polarized.
Introduce the function Ũ (g, k), g = {y, z}, coinciding with the magnetic compo-

nent of the total field H̃i
x + H̃s

x. As follows from Maxwell’s equations, everywhere
but on the grating strips and the metamaterial surface this function satisfies the
Helmholtz equation

Δy, zŨ (g, k) + k2 (z) Ũ (g, k) = 0; k2 (z) =
{

k2; z > 0 and z < −h
k2ε̃; − h < z < 0

.

(2.234)

In addition, the Ũ (g, k) function is periodic with period l along the y-axis and
meets the radiation condition in the half-spaces z > 0 and z < –h. The func-
tions Ũ (g, k) and (k (z))−2 ∂Ũ (g, k)

/
∂z are required to be continuous across the

grating slots
{
g: z = 0,

∣∣2πyl−1 + n
∣∣ > π

(
1 − dl−1

)
; n = 0, ± 1, ± 2,....

}
and

across the interface between the metamaterial and the free space at z = –h. On
the grating strips

{
g: z = 0,

∣∣2πyl−1 + n
∣∣ < π

(
1 − dl−1

)
; n = 0, ± 1, ± 2,....

}
,

they satisfy the boundary conditions
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∂Ũ (g, k)

∂z

∣∣∣∣∣
z=0+0

= 0,
∂Ũ (g, k)

∂z

∣∣∣∣∣
z=0−0

= 0. (2.235)

On this basis, the sought function Ũ (g, k) can be expressed via its Fourier series
in the Y-variable in the three domains: the half-spaces A (z > 0) and B (z < –h) and
the layer –h < z < 0, taking the appearance

Ũ (g, k) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

e−ikz +
∞∑

n=−∞
RAA

n0 ei(Φny+Γ1nz); z > 0

∞∑
n=−∞

eiΦny
(
C1neiΓ2n(z+h) + C2ne−iΓ2nz

)
; − h < z < 0

∞∑
n=−∞

TBA
n0 ei(Φny−Γ1n(z+h)); z < −h

.

(2.236)

Here Γ1n = √k2 −Φ2
n, Γ2n = √k2ε̃−Φ2

n, Φn = 2πn/l. The root branches are
chosen via the radiation condition (sf. Section 1.1.4) to have kReΓ1n ≥ 0, ImΓ1n ≥
0. Notice that any branch of the root Γ2n can be adopted. For definiteness sake, let
kReΓ2n ≥ 0, ImΓ2n ≥ 0.

Now we will reduce the boundary value diffraction problem to dual series equa-
tions for the unknown coefficients

{
RAA

n0

}∞
n=−∞ of the Ũ (g, k) expansion into

the Fourier series in the half-space z > 0 [see (2.236)]. Indeed, using (2.236)
and applying the conjugation conditions on the metamaterial boundaries yields
the relationships between the coefficients

{
Cpn
}∞

n=−∞, p = 1,2,
{
TBA

n0

}∞
n=−∞, and

{
RAA

n0

}∞
n=−∞ in the form

TBA
n0 = 2ε̃Γ1n exp (iΓ2nh)

Γn

(
RAA

n0 − δn
0

)
. (2.237)

C1n = ε̃Γ1n (Γ2n − ε̃Γ1n)

Γ2nΓn

(
RAA

n0 − δn
0

)
(2.238)

C2n = ε̃Γ1n (Γ2n + ε̃Γ1n)

Γ2nΓn

(
RAA

n0 − δn
0

)
(2.239)

Here, Γn = exp (i2Γ2nh) (Γ2n − ε̃Γ1n) − Γ2n − ε̃Γ1n and δn
m is the Kronecker

delta.
Satisfying the strip and slot boundary conditions yields

1 +
∞∑

n=−∞
RAA

n0 eiΦny =
+∞∑

n=−∞

(
C1nei2Γ2nh + C2n

)
eiΦny; |y| >

l − d

2
, (2.240)

k −
∞∑

n=−∞
RAA

n0 Γ1neiΦny = 0; |y| <
l − d

2
. (2.241)
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Having denoted ϑ= 2πy/l and ϑ0 =π(1–d/l) and substituting (2.238) and (2.239)
into (2.240), we finally obtain

1 + d0 +
∞∑

n=−∞
RAA

n0 (1 − dn) einϑ = 0; |ϑ| > ϑ0, (2.242)

k −
∞∑

n=−∞
RAA

n0 Γ1neinϑ = 0; |ϑ| < ϑ0, (2.243)

where

dn = ε̃Γ1n
[
exp (i2Γ2nh) (Γ2n − ε̃Γ1n) + Γ2n + ε̃Γ1n

]

Γ2n
[
exp (i2Γ2nh) (Γ2n − ε̃Γ1n) − Γ2n − ε̃Γ1n

] . (2.244)

Let us demonstrate that equations (2.242) and (2.243) are dual series equations
of the same type as equations (2.36) and (2.37) in Section 2.2.2. Represent the
coefficients Γ1n and dn from (2.242) and (2.243) in the form

Γ1n = i
2π

l
|n| (1 + δ1n) ; n �= 0, (2.245)

dn = −ε̃+ δ2n. (2.246)

It is easily seen that as n→±∞, the coefficients δ1n and δ2n are

δ1n = O
(

n−2
)

, δ2n = O
(

n−2
)

. (2.247)

Indeed, from (2.245),

δ1n = lΓ1n

i2π |n| − 1 =
√

1 − κ2

n2
− 1 = − κ2

n2

(√
1 − κ2

n2 + 1

) = O
(

n−2
)

.

Here, κ = lk/2π = l/λ. Substitute (2.245) and (2.246) into (2.242) and (2.243).
Finally,

∞∑

n=−∞
RAA

n0 einϑ −
∞∑

n=−∞
RAA

n0
δ2n

1 + ε̃
einϑ + 1 + d0

1 + ε̃
= 0; |ϑ| > ϑ0, (2.248)

∞∑

n=−∞
|n|RAA

n0 einϑ +
∞∑

n=−∞
RAA

n0 |n| δ1neinϑ + iκ
(

1 − RAA
00

)
= 0; |ϑ| < ϑ0.

(2.249)

To make it clear that equations (2.247) and (2.248) are similar to equations (2.36)
and (2.37) in Section 2.2.2, introduce the matrix operators V = {Vmn}∞m, n=−∞ and
U = {Umn}∞m, n=−∞ by the formulas
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Vmn = |n| δ1nδ
n
m, Umn = − δ2n

1 + ε
δn

m, (2.250)

and the column vectors f = {fn}∞n=−∞ and g = {gn}∞n=−∞; fn = −iκδn
0, gn =

− 1+d0
1+ε̃

δn
0. With these notations, equations (2.248) and (2.249) are written as

aRAA
00 +

∞∑

n=−∞
RAA

n0 |n| einϑ +
∞∑

n=−∞

[
(VR)n − fn

]
einϑ = 0; |ϑ| < ϑ0, (2.251)

∞∑

n=−∞
RAA

n0 einϑ +
∞∑

n=−∞

[
(UR)n − gn

]
einϑ = 0; |ϑ| > ϑ0, (2.252)

where a = –iκ and R = {RAA
n0

}∞
n=−∞.

Asymptotical formulas (2.247) suggest that the matrix operators T–1VT–1 and
TUT–1 are compact in the space l2, and the column vectors f and g are such that
g∈l2(1), f∈l2(–1) (see definitions for matrix T and space l2(η) in Section 2.2).

Hence the dual series equations (2.251) and (2.252) allow the analytic regulariza-
tion procedure outlined in Section 2.2.2. The application of this procedure provides
the infinite system of linear algebraic equations

(1 + ε̃) RAA
m0 +

∞∑

n=−∞
HmnRAA

n0 = bm; m = 0, ± 1, .... (2.253)

The matrix H = {Hmn}∞m,n=−∞ of this system and its right-hand side b =
{bm}∞m=−∞ are given by the expressions

bm = (1 + ε̃)

⎧
⎪⎪⎨

⎪⎪⎩

1 + d0

d0 − 1
+ iκW0 (1 + ε̃)

1 − d0
; m = 0

− iκV−1
m−1

m
; m �= 0

, (2.254)

Hmn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iκW0 (1 + ε̃)2

1 − d0
; m = n = 0

δn |n| (1 + ε̃)

(d0 − 1) n
V−1

n−1; m = 0, n �= 0

− iκ

m
V−1

m−1; m �= 0, n = 0
|n| δn

m
V n−1

m−1; m, n �= 0, m �= n

dm + ε̃+ |m| δm

m
Vm−1

m−1 ; m = n, m �= 0

, (2.255)

where δn = −δ2n − δ1n (1 + ε̃), and the coefficients W0, V n−1
m−1 are calculated in

Section 2.2. From the asymptotic formula (2.247), δn = O(n–2) as n→±∞. Hence,
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based on the results from Section 2.2.2, one finds that the matrix operator H of
system (2.253) is compact in the l2 space.

Thus, with R = {RAA
n0

}∞
n=−∞ coming from system (2.253) and using formu-

las (2.236), (2.237), (2.238), and (2.239), the initial diffraction problem has been
solved. Here an important point should be mentioned. For a lossless metamaterial
layer (v = 0), the solution of the initial diffraction problem readily comes from
(2.253) for all excitation wave frequencies but ω = ωp/

√
2, which is equivalent to

ε̃ = −1. In some sense, this frequency is especial. As ω → ωp/
√

2, the matrix oper-
ator
[
(ε̃+ 1) E + H

]
of system (2.253) becomes compact, having, consequently, no

bounded inverse and thus forbidding a direct application of the truncation method to
system (2.253). By a solution is meant the limit to which the solution

{
RAA

n0

}∞
n=−∞

of system (2.253) proceeds as the metamaterial becomes lossless, v→0.
Now turn to the spectral problem describing peculiar features of the analytic con-

tinuation of the diffraction field to the complex frequency domain. The mathematical
formulation of the spectral problem differs from the statement of the diffraction
problem. In the first place, the former is independent of the excitation wave. Second,
the function Ũ (g, k) in (2.236) forms accounting for the radiation condition is ana-
lytically continued from the real-valued frequency domain to the corresponding
infinite-sheeted Riemannian surface (see, for instance, Section 1.3). So, the spec-
tral problem of the grating backed by the metamaterial layer with the effective
permittivity in (2.233) form is a problem about eigenfrequencies and eigenoscil-
lations bearing an l-periodic dependence on the grating spatial coordinate y. The
sought spectral parameter is the wave number k (or normalized frequency κ = l/λ
= kl/2π) belonging to the Riemannian surface K (or Kκ). From this point on, the
metamaterial is assumed lossless (v = 0), its effective permittivity is

ε (ω) = 1 − ω2
p

ω2
,

and the spectral parameter κ belongs to the first – physical – sheet of the Riemannian
surface Kκ (see Section 1.3).

The discussed spectral problem is equivalent to equation (2.253) with b = 0 (the
excitation wave is absent), the matrix elements in the (2.254) form are considered
as a function of the spectral parameter κ varying on the physical sheet of the sur-
face Kκ. The problem of the kind means finding the characteristic numbers and the
eigenvectors of the operator-function E + B(κ), where B(κ) = (1 + ε̃)−1H(κ). The
results from Section 1.3 let us establish that the matrix operator B(κ) is a finite-
meromorphic kernel operator-function of the complex variable κ on the physical
sheet of the Riemannian surface excepting the points κ = 0 and κ = ±κp/

√
2 (κp

= ωpl/2πc) and, also, the branch points κ±n :Γ1n(κ±n ) = 0; n = ±1, ± 2,.... The
poles of the operator-function E + B(κ) coincide with the point κ = 0 and the roots
of the equations

exp (i2Γ2nh) (Γ2n − εΓ1n) − Γ2n − ε̃Γ1n = 0; n = 1,2,.... (2.256)
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Then the characteristic numbers and, hence, the eigenfrequencies are roots of the
equation

det [E + B (κ)] = 0, (2.257)

where det[. . .] is the infinite determinant of the operator E + B(κ). Evidently the
function det[E+B(κ)] is meromorphic in any bounded domain not carrying the points
κ = 0, κ = ±κp/

√
2 and the branch points κ = κ±n . Hence the set of the roots of

equation (2.257) is nothing more than a denumerable set on the physical sheet of
the surface Kκ with probable accumulation points coinciding with either κ = 0,
κ = ±κp/

√
2, or the poles coming from (2.256).

Consider some qualitative properties of the root set of equation (2.257). Suppose
that the grating strips are sufficiently small, 1 − d/l � 1 (at d/l = 1 the grating dis-
appears). Represent the operator-function B(κ) as a sum of two operator-functions
so that B(κ) = B1(κ)+B2(κ), where B1(κ) = {δn

mγm
}∞

m,n=−∞, γ0 = 0, γm = dm+ε̃
1+ε̃

for

m �= 0. Estimating the values of W0, V n−1
m−1 when d/l→1 (see, e.g., [45]) one finds

that the operator-function B2(κ) obeys the condition

‖B2(κ)‖ < const sin

[
π

(
1 − d

l

)]
, (2.258)

where ‖...‖ is the norm of the operator-function B2(κ) in l2. Hence as d/l→1, the
norm of B2(κ) tends to zero in any bounded domain of κ values except for κ =
0, κ = ±κp/

√
2 the branch points, and the poles. It is easy to check that the

characteristic numbers of the operator-function E + B1(κ) match the roots of the
equations

exp (iΓ2nh) (Γ2n − ε̃Γ1n) ± (Γ2n + ε̃Γ1n) = 0; n = 1,2,... (2.259)

Next it can be shown that the κ domain where Re(ε̃) < 0 allows real-valued roots
of equation (2.259). Figure 2.19 plots results from (2.259) computed for different
n = 1,2,. . ... (squares for the plus and circles for the minus). As n→∞, these roots
asymptotically tend to κ = κp/

√
2 (Fig. 2.19, dotted line), indicating that κ =

κp/
√

2 is the accumulation point. It is notable that equation (2.259) suggests some
metamaterial characteristic frequency κ̃p = x0l/2πh, where x0≈1.325 satisfies the
equation

xe−0.5
√

x2+4 + 2 −
√

x2 + 4 = 0.

For κp ≤ κ̃p, some finite number of the roots of equation (2.259) exceed κp/
√

2
(Fig. 2.19) and for κp > κ̃p, no one is over κp/

√
2 (Fig. 2.19b).
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Fig. 2.19 The roots κ̄n of equation (2.259) for different n values: h/l = (2π)–1, (a) κp = 0.5, and
(b) κp = 1.45

Now let 1–d/l be a small number and κ̄0 be a characteristic number of the
operator-function E + B1(κ), i.e., det [E + B1(κ̄0)] = 0. Evidently there is a cir-
cle with the point κ̄0 as center and a radius so small that the operator-function [E +
B1(κ)]–1 is bounded on the circumference line. Then from (2.257) it follows that if
1–d/l is small enough, the inequality

∥∥∥[E + B1(κ)]−1 B2(κ)
∥∥∥ < 1

is true on the circumference line. Through the operator generalization provided by
the Rouche theorem [15], one finds that the mentioned circle carries a characteristic
number of the operator-function E + B1(κ) + B2(κ), suggesting, at least phenomeno-
logically, that the characteristic numbers of the operator-function E + B(κ) and,
hence, the characteristic numbers of the examined electrodynamical structure (a
grating loaded with a metamaterial layer) have the accumulation point κ = κp/

√
2.

The eigenfrequency computation for 0 < d/l ≤ 1 follows the algebraic scheme
outlined below. Let a finite-dimensional matrix operator-function BN(κ) represent
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the N × N truncation of the matrix B(κ). In view of the compactness of B(κ) for any
δ > 0 as small as desired and in any bounded domain of κ (excluding κ= 0, ±κp/

√
2

and the branch points κ = κ±n ), a natural number N exists such that

‖B (κ) − BN (κ)‖ < δ. (2.260)

The eigenfrequencies of the finite-dimensional operator-function E + BN(κ) can
be sought as roots of the determinant-function det[E + BN(κ)]. By virtue of (2.260),
each solution κ̄m of spectral problem (2.257) is approximated to any desired accu-
racy by the solution κ̄N

m of the equation det[E + BN(κ)] = 0 provided that N is large
enough. Using the compactness property of the operator-function B(κ), one easily
verifies [11] that the procedure described right above is computationally stable as N
rises.

To analyze the solution of the spectral problem (2.257), the domain Re(κ) > 0 of
the spectral parameter will suffice. From formulas (2.238), we have

det [E + B (κ)] = (det
[
E + B( − κ∗)

])∗ ,

where the ∗ indicates complex conjugation. Therefore, if κ̄ is an eigenfrequency
with Re(κ) > 0, then −κ̄∗ is an eigenfrequency with Re(κ) < 0 (for details, refer
to Section 1.3). From the considered structure symmetry with respect to the plane
y = 0 (see Fig. 2.18) it follows that there are two classes of eigenoscillations: even
and odd with respect to y variable. Besides, when the metal strips of the grating
disappear, leaving the metamaterial layer alone, the structure acquires an additional
symmetry about the plane z = –h/2, thus giving rise to two more solution types:
even and odd in the coordinate z about the plane z = –h/2. They correspond to the
characteristic equations (2.259) with the minus and the plus signs, respectively.

Figures 2.20 and 2.21 illustrate the dependence of the real and imaginary parts of
the first three eigenfrequencies κ̄ on the geometrical parameter d/l (grating slot nor-
malized width). These were obtained by the numerical solution of equation (2.257),
with specially designed algorithms and programs. The eigenfrequencies of the oscil-
lations which in the limiting case d/l = 1 are symmetric about the plane z = –h/2
[minus in equation (2.259)] are shown in Fig. 2.20. The eigenfrequencies of the
oscillations asymmetric about the plane z = –h/2 [plus in (2.259)] are shown in
Fig. 2.21. The solid line plots the eigenfrequencies of oscillations symmetric with
respect to the plane y = 0, the dashed line is for asymmetric oscillations. Notice
that the imaginary parts of the eigenfrequencies of oscillations asymmetric about
the plane y = 0 practically vanish and are not visible in Figs. 2.20b and 2.21b.
The dotted curves in Figs. 2.20a and 2.21a correspond to κp/

√
2. As seen from

Figs. 2.20 and 2.21, for d/l = 1 (i.e., the grating is absent), the imaginary parts of
eigenfrequencies vanish (the metamaterial layer is lossless, v = 0).

The real parts of the eigenfrequency oscillations symmetric and asymmetric with
respect to the plane z = –h/2 for prescribed κp = 0.5 < κ̃p are, as shown above,
located on different sides of the point κ = κp/

√
2 and match at d/l = 1, the cor-

responding κ̄n values presented in Fig. 2.19a. In Fig. 2.22, one observes the equal
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Fig. 2.20 The eigenfrequencies κ̄n versus d/l for oscillations cophasal about z = –h/2: (a) Real
and (b) imaginary parts; κp = 0.5, h/l = (2π)–1

module
∣∣H̃x
∣∣ = const and the equal phase arg

(
H̃x
) = const lines of the unique

nonzero component H̃x (y,z) of the magnetic field for some eigenoscillations of the
grating backed by the metamaterial layer. The oscillation with the eigenfrequency
κ̄ = 0.36565 − i10−12 in Fig. 2.22a is asymmetric about the plane y = 0 and in
phase at d/l = 1 with respect to the plane z = –h/2 (the same oscillation phase
on both interfacial sides of the metamaterial). The oscillation with the eigenfre-
quency κ̄ = 0.35173 − i7.079 · 10−5 in Fig. 2.22b is symmetric about the plane
y = 0 and opposite in phase with respect to the plane z = –h/2 at d/l = 1 validating
the above-made division of the examined structure eigenoscillations into classes of
symmetry.

Interestingly also that as d/l→1 (the grating changes into a perfectly conducting
plane), the real parts of some eigenfrequencies tend to the poles of the operator-
function E+B(κ), which are the roots of equation (2.256), the imaginary parts
vanishing. This numerical result resists analytic justification because the d/l depen-
dence of the matrix elements [see (2.255)] of the operator-function H(κ) and, hence,
of B(κ) = (1 + ε̃)−1H(κ) is singular at d/l = 0.
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Fig. 2.21 The eigenfrequencies κ̄n versus d/l for oscillations antiphasal about z = –h/2: (a) Real
and (b) imaginary parts; κp = 0.5, h/l = (2π)–1

Next we consider the eigenfrequency behavior as the metamaterial characteristic
frequency varies. As the characteristic frequency κp→0, the eigenfrequencies of all
oscillation types tend to zero (see Fig. 2.23). This is attributed to the fact that the
grating has no eigenfrequencies in free space (at κp = 0, the effective permittivity
of our metamaterial is ε̃ = 1) [10]. The increase κp→∞ leads to different results
for eigenfrequencies of different oscillation types. Thus, the real parts of eigenfre-
quencies corresponding to oscillations opposite in phase with respect to the plane
z = –h/2 asymptotically tend to the branch point κ+±1 = 1 (see Fig. 2.23a). They

asymptotically tend to the line Reκ̄ = κp/
√

2 for oscillations in phase with respect
to the plane z = –h/2. In this case, for both oscillation types, the imaginary parts of
the eigenfrequency tend to zero as κp→∞ (see Fig. 2.23b). For other values of the
metamaterial layer normalized thickness and the grating slot width, the indicated
eigenfrequency behavior persists.

Examine the eigenfrequency behavior as the normalized thickness h/l of the
metamaterial layer changes, whereas the grating slot width d/l = 0.5 and the char-
acteristic frequency κp=0.5 are fixed. Begin with the case d/l ≈ 1, where the roots
of equations (2.259) approximate the real parts of the eigenfrequency rather well.



142 2 Analytic Regularization Methods

Fig. 2.22 The structure of some eigenoscillation types for (a) κ̄ = 0.36565 − i10−12; and (b)
κ̄ = 0.35173 − i7.079 · 10−5: κp = 0.5, h/l = (2π)–1, d/l = 0.5

At a sufficiently small layer thickness h̄ = 2πh/l � 1 and for κp < 1, we arrive at
the following eigenfrequency approximations:

κ̄n+ ≈ κp

√
nh̄

2
, κ̄n− ≈ κp(1 − n2h̄

2
√

n2 − κ2
p

). (2.261)

Here, κ+n and κ−n are the roots of equations (2.259) for the minus and plus signs,
respectively. As seen, κ̄n+ → 0 and κ̄n− → κp as h̄ → 0. It has been shown numer-
ically that this eigenfrequency behavior is also typical for d/l �= 1 (see Fig. 2.24a).
When the real parts of eigenfrequencies κ̄ satisfy Reκ̄ > κp/

√
2, they asymptoti-

cally tend to κp as the layer becomes thin and to κ̄ = κp/
√

2 as it becomes thick. It
was already mentioned that the eigenfrequency accumulation point is κ = κp/

√
2. If

for the indicated κp and d/l values, the eigenfrequencies are such that Reκ̄ < κp/
√

2,
they tend to zero as h/l→0 and approach the relevant eigenfrequencies of the grating
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Fig. 2.23 The eigenfrequencies κ̄n versus κp: (a) Real and (b) imaginary parts; h/l = (2π)–1,
d/l = 0.5

backed by a metamaterial half-space as h/l→∞ [145]. When h/l→0, the imag-
inary parts typically tend to zero for both oscillation types Reκ̄ > κp/

√
2 and

Reκ̄ < κp/
√

2 (Fig. 2.24b). As the layer thickness grows, the imaginary parts of
eigenfrequencies such that Reκ̄ < κp/

√
2 approach those of the grating backed by

a metamaterial half-space [145]. For other values of the characteristic frequency κp

and the grating slot width, this dependence of the structure eigenfrequency on the
metamaterial layer thickness still remains.

We proceed to a description of the solution of the diffraction of a plane
H-polarized wave by a strip grating placed on a metamaterial layer surface. We
consider the case that the normalized frequency κ of the excitation wave is less
than κp. First of all, we mention again that the real part of the metamaterial per-
mittivity in this frequency region is negative, Reε̃ < 0. Second, it is a region that
contains real parts of the eigenfrequencies of the spectral problem. Assume that
κp/

√
2 ≤ 1, which is actually realized by a proper choice of the grating period. Then

from (2.236) it follows that the diffraction field in the reflection (A) and the transi-
tion (B) zones is a superposition of the traveling zeroth harmonic and an infinitely
large number of surface harmonics exponentially decaying away from the grating
along the z-axis (z→±∞). Hence the diffraction field away from the grating is
solely governed by the zeroth traveling harmonic characterized by the amplitude
RAA

00 (reflection coefficient) in the reflection zone (z > 0) and the amplitude TBA
00
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Fig. 2.24 The eigenfrequencies κ̄n versus h/l: (a) Real and (b) imaginary parts; d/l = 0.5,
κp = 0.5. The dotted curves in (a) correspond to κp/

√
2

(transition coefficient) in the transition zone (z < –h). In the case of plane electro-
magnetic wave incidence, Fig.2.25a plots the transition coefficient module versus
frequency for: a metamaterial layer and a grating with κp = 0.5, v = 10–5, d/l = 0.5,
h/l = 1/(2π) (solid line), a metamaterial layer single with κp = 0.5, v = 10–5, d/l =
0.5, h/l = 1/(2π) (dashed line), and a grating in a vacuum with κp = 0, d/l = 0.5
(dotted line).

It is seen that neither the grating nor the metamaterial layer exhibits resonance
properties in the indicated domain 0.3 ≤ κ ≤ 0.41 of the normalized frequency
parameter. The incident plane-wave energy is practically completely transmitted
with
∣∣TBA

00

∣∣ > 0.9. But the incorporation of the grating with the metamaterial layer
makes a clearly resonant structure in the indicated κ region, and a discrete set of
κ values exists when this construction either almost completely reflects the excita-
tion field energy,

∣∣TBA
00

∣∣ ≈ 0 or practically completely transmits it,
∣∣TBA

00

∣∣ ≈ 1. A
comparison of these κ values with the real parts of the eigenfrequencies at corre-
sponding problem parameters (Figs. 2.20a and 2.21a) indicates that the resonances
of the transmission coefficient module keep pace with the excitation of structure
eigenoscillations. The excitation fields at some resonance κ values are illustrated in
Fig. 2.25b and c. Figure 2.22 demonstrates that the oscillation structure at the reso-
nances of the transmission coefficient

∣∣TBA
00

∣∣ resembles the eigenoscillation field of
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Fig. 2.25 (a) The transition coefficient module
∣
∣TBA

00

∣
∣ versus normalized frequency κ = l/λ. (b

and c) The excitation field structure at resonance frequencies: κp = 0.5, v = 10–5, d/l = 0.5, h/l =
(2π)–1, (b) κ = 0.34576; and (c) κ = 0.36106

an open electrodynamical structure – a strip grating backed by a metamaterial layer.
Owing to the fact that the excitation field is symmetric about the y = 0 plane, only
eigenoscillations symmetric about the plane y = 0 are excited.

2.5.2 The Plane-Wave Diffraction from a Strip Grating with
Anisotropic Medium

In this section, the analytic regularization method (see Section 2.2.3) will be dis-
cussed as applied to the monochromatic plane-wave diffraction from a perfectly
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conducting strip grating located on the boundary of an anisotropic dielectric half-
space. The sewing (partial domain) method is adopted to reduce this problem to the
dual series equations of (2.91) and (2.92) type (see Section 2.2.3). The regulariza-
tion procedure turns them into an infinite system of linear algebraic equations of the
second kind in the space l2, which can be solved effectively.

Let us formulate the diffraction problem. A plane wave is incident along the
z-axis on an infinite grating composed of infinitely thin perfectly conducting strips as
that in Fig. 2.26. The incident field is assumed to be H-polarized in the x-direction. If
so, the magnetic field of the incident wave has only the H̃i

x = exp (−ikz) component.
The electric field components lie in the plane x=const. The time dependence is
exp(–ikt). Also, it is assumed that the grating is located in the plane z = 0 and
extends infinitely along the x-axis. The half-space z < 0 is filled with a homogeneous
anisotropic medium whose permeability is μ = 1 and whose permittivity is given
by the second-rank tensor

ε̃ =
⎛

⎝
ε3 0 0
0 ε1 − iε2
0 iε2 ε1

⎞

⎠ . (2.262)

It is required to find the diffraction field
{�Es, �Hs

}
governed by a homogeneous

system of Maxwell’s equations and meeting the radiation condition at infinity
z→±∞, the Meixner condition, the periodicity condition, the boundary conditions
on the grating perfectly conducting strips, and the field conjugation condition on the
anisotropic half-space boundary. The incident wave is x-independent. So, in view of
the uniqueness theorem for the solution and the infinity and the homogeneity of the
grating in the x-direction, the diffraction field is also x-independent, suggesting us a
two-dimensional problem, ∂/∂x ≡ 0.

Fig. 2.26 The problem geometry

Using (2.262) and considering the listed assumptions, one easily verifies that
the diffraction field components

{�Es, �Hs
}

are expressed via the unique nonzero
component H̃s

x of the magnetic field as follows:
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Ẽs
y =

1

ikε⊥

(

i
ε2

ε1

∂H̃s
x

∂y
− ∂H̃s

x

∂z

)

, Ẽs
z =

1

ikε⊥

(
∂H̃s

x

∂y
+ i

ε2

ε1

∂H̃s
x

∂z

)

, (2.263)

where ε⊥ = (ε2
1 − ε2

2

)
ε−1

1 is the effective permittivity of the anisotropic half-space.
For the half-space z > 0, put ε1 = 1, ε2 = 0. From (2.263) it follows that the
diffraction field is H-polarized.

For the sake of convenience, introduce the function Ũ (g, k)

Ũ (g, k) =
{

H̃i
x + H̃s

x; z > 0
H̃s

x; z < 0
. (2.264)

By the Maxwell’s equations, everywhere but at the anisotropic half-space
boundary this function satisfies the Helmholtz equation

Δy,zŨ (g, k) + k2 (z) Ũ (g, k) = 0; g = {y,z} , k2 (z) = k2
{

1; z > 0
ε⊥; z < 0

. (2.265)

Rewrite the boundary condition on the grating strips and the conjugation condi-
tion on the anisotropic half-space boundary in terms of the function Ũ (g, k). On the
perfectly conducting grating strips the tangential electric field component Ẽy has to
vanish, giving

∂Ũ (g, k)

∂z

∣∣∣∣∣
z=0+0

= 0,

(
∂Ũ (g, k)

∂y
+ i

ε2

ε1

∂Ũ (g, k)

∂z

)∣∣∣∣∣
z=0−0

= 0 (2.266)

for |2πy/l + n| < π (1 − d/l) ; n = 0, ± 1, ± 2, ...
As the tangential components H̃x and Ẽy are continuous across the grating slots,

the relationships (2.263) yield

Ũ(g, k)
∂z

∣∣∣
z=0+0

= 1
ε⊥

(
∂Ũ(g, k)

∂z − i ε2
ε1

∂Ũ(g, k)
∂y

)∣∣∣
z=0−0

,

Ũ (g, k)
∣∣
z=0+0 = Ũ (g, k)

∣∣
z=0−0

(2.267)

for |2πy/l + n| > π (1 − d/l) ; n = 0, ±1, ±2, .... Here, l and d are, respectively,
the period and the width of the grating slots (see Fig. 2.2b).

Take the Fourier series expansion of the function Ũ (g, k) in the variable y for the
half-spaces z > 0 (domain A) and z < 0 (domain B). Considering that Ũ (g, k) must
satisfy equation (2.265) and implying the radiation condition, we have

Ũ (g, k) =

⎧
⎪⎪⎨

⎪⎪⎩

e−ikz +
∞∑

n=−∞
RAA

n0 ei(Φny+Γ1nz); z > 0

∞∑
n=−∞

TBA
n0 ei(Φny−Γ2nz); z < 0

. (2.268)
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Here,
{
RAA

n0

}∞
n=−∞ and

{
TBA

n0

}∞
n=−∞ are the sought unknown coefficients and

Γ1n = √k2 −Φ2
n, Γ2n = √k2ε⊥ −Φ2

n. The choice of the root branches Γ1n

and Γ2n is governed by the radiation condition (see Section 2.5.1): kReΓpn ≥ 0,
ImΓpn≥0, p = 1,2, n = 0,±1,±2,. . .

So, we have arrived at the problem of finding the coefficients
{
RAA

n0

}∞
n=−∞ and

{
TBA

n0

}∞
n=−∞ in the Fourier series expansion of the function Ũ (g, k). Use boundary

conditions (2.266) and (2.267) and derive the equations these coefficients satisfy.
Substitute (2.268) into (2.266) and (2.267) to arrive at the dual series equations

∞∑

n=−∞
TBA

n0

(
in

2πε2

lε1
+ Γ2n

)
einϑ = 0; |ϑ| < ϑ0, (2.269)

∞∑

n=−∞

(
RAA

n0 − TBA
n0 + δn

0

)
einϑ = 0; |ϑ| > ϑ0, (2.270)

where ϑ = (2πy) /l, ϑ0 = π (1 − d/l).
From (2.266) and (2.267), one easily finds that the coefficients

{
RAA

n0

}∞
n=−∞ and

{
TBA

n0

}∞
n=−∞ are related as

RAA
n0 = δn

0 −
in 2πε2

lε1
+ Γ2n

ε⊥Γ1n
TBA

n0 ; n = 0, ± 1, ± 2, ... (2.271)

Introduce the new unknowns x = {xn}∞n=−∞ by the formula

xn = RAA
n0 − TBA

n0 + δn
0; n = 0, ± 1, ± 2, ... (2.272)

Use (2.271) and bring equations (2.269) and (2.270) to the form

∞∑

n=−∞
xnγneinϑ − 2κ

1 +√
ε⊥

= 0; |ϑ| < ϑ0, (2.273)

∞∑

n=−∞
xneinϑ = 0; |ϑ| > ϑ0. (2.274)

Here, as before, κ = kl/2π = l/λ and

γn =
Γ1n

(
in ε2

ε1
+ l

2πΓ2n

)

ε⊥Γ1n + Γ2n + in 2πε2
lε1

. (2.275)

Let us show that equations (2.273) and (2.274) can be expressed in the form of
equations (2.91) and (2.92) (see Section 2.2.3). First of all, notice that Γ1n and Γ2n

obey the following asymptotical formulas as n→±∞ [see (2.245) and (2.247)]:
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Γ1n = i
2π

l
|n| (1 + δ1n) , (2.276)

Γ2n = i
2π

l
|n| (1 + δ2n) , (2.277)

where δpn = O
(
n−2
)

; p = 1, 2. Using (2.276) and (2.277) one finds that the
coefficient γn from (2.275) can be written as

γn = i |n|
{

C+ [1 + O
(
n−2
)]

; n → +∞
C− [1 + O

(
n−2
)]

; n → −∞ , (2.278)

where C+ = (1 + ε1 − ε2)
−1 , C− = (1 + ε1 − ε2)

−1. Now substitute (2.278)
into (2.273). After some elementary manipulations, one obtains

ax0 +
∞∑

n=1
nxneinϑ − b

−1∑

n=−∞
nxneinϑ +

∞∑
n=−∞

|n| δnxneinϑ + i2κ(1+ε1−ε2)
1+√

ε⊥ = 0;

|ϑ| < ϑ0
(2.279)

∞∑

n=−∞
xneinϑ = 0; |ϑ| > ϑ0. (2.280)

Here,

a = − iκ (1 + ε1 − ε2)

1 +√
ε⊥

; (2.281)

b = 1 + ε1 − ε2

1 + ε1 + ε2
, (2.282)

δn =

⎧
⎪⎨

⎪⎩

γn

i |n|C+ − 1; n > 0

γn

i |n|C+ − C−

C+ ; n < 0
. (2.283)

From (2.278) it follows that δn = O(n–2) as n→±∞. Introduce the matrix oper-
ator V = {Vmn}∞m, n=−∞ and the column vector f = {fn}∞n=−∞ by the formulas

Vmn = |n| δnδ
n
m, fn = − i2κ (1 + ε1 − ε2)

1 +√
ε⊥

δn
0. (2.284)

Substituting (2.284) into (2.279) yields

ax0 +
∞∑

n=1

nxneinϑ − b
−1∑

n=−∞
nxneinϑ +

∞∑

n=−∞

[
(Vx)n − fn

]
einϑ = 0; |ϑ| < ϑ0,

(2.285)
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∞∑

n=−∞
xneinϑ = 0; |ϑ| > ϑ0. (2.286)

One easily checks that equations (2.284) and (2.285) match (2.91) and (2.92)

with U = 0 and g = 0. Now it will suffice to verify that the matrix operator
�
V =

�
T−1V

�
T−1 =

{�
Vmn

}∞
m, n=−∞ is compact on the space l2, where the operator �

T is

given by (2.95). From (2.284) and (2.91), it follows that the matrix elements of the

operator
�
V have the appearance

�
Vmn = |n|1−η δnδ

n
m; n �= 0 and

�
V00 = 0, (2.287)

where η = 1 + arg b/π, –π≤ argb < π.

As soon as δn = O(n–2), then
�
Vnn → 0 for n→±∞, suggesting that the operator

�
V is compact on the l2 [70].

So, the analytic regularization method outlined in Section 2.2.3 is acceptable for
the dual series equations (2.285) and (2.286). As a result, they are equivalent to the
infinite system of linear algebraic equations of the second kind on the space l2 and
can be written in the form

(
E + �

H
)�x = �

b , (2.288)

where the operator �
H = −a

�
P+ �

W
�
V is compact on the l2,

�
b = �

W
�
f , �x = �

T x,
�
f = �

T−1f , and the matrix elements of the operators �
P and

�
W are available from

(2.115), (2.117), and (2.121). System (2.288) can be solved with any preassigned
accuracy by truncation [144].

Owing to the discussed technique, we have obtained a vast collection of
numerical results. Some of them are published in references [144, 145].

Let us analyze some results coming from the numerical solution of equation
(2.282). For an anisotropic dielectric medium, we will take a cold electron plasma
confined in a constant magnetic field �H0 = {H0,0,0} aligned with the x-axis ( �H0 is
parallel to the grating edges). Then the components of the permittivity tensor are

ε1 = 1− ω2
p (ω+ iν)

ω
[
(ω+ iν)2 − ω2

c

] , ε2 = − ω2
pωc

ω
[
(ω+ iν)2 − ω2

c

] , ε3 = 1− ω2
p

ω (ω+ iν)
.

(2.289)

Here ωp is the plasma frequency, ωc = eH0/mc is the electron cyclotron fre-
quency, v is the effective collision frequency of electrons, with e and m being,
respectively, the electron charge and mass, and c is the speed of light in vacuum.
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In the subsequent discussion it will be convenient to use the dimensionless
parameters κ = lω/2πc =l/λ, κp = ωpl/2πc, κc = ωpl/2πc (we recall that l is the
grating period).

The computations mainly refer to the excitation frequency band 0 < κ < 3. In this
case, as follows from (2.268), the field in the half-space z > 0 is a superposition of
the incident field and the diffraction field consisting of an infinite series of spatial
harmonics of the form Ũs

n (g, k) = RAA
n0 exp

[
i (Φny + Γ1nz)

]
, n = 0,±1,±2,. . .. A

finite number of harmonics whose numbers satisfy the condition |n| < κ are plane
H-polarized waves outgoing away from the grating. When κ < 1, only one wave
Ũs

0 (g, k) = RAA
00 exp (ikz) goes out from the grating. An infinite number of har-

monics with numbers |n| ≥ 1 are surface waves decaying exponentially as z→±∞
and traveling along the grating with phase velocities whose absolute values are less
than the speed of light. Hence far away from the grating (the half-space z > 0), the
diffraction field is governed only by the principal spatial harmonic Ũs

0 (g, k). The
principal harmonic amplitude RAA

00 normalized to the incident wave amplitude is a
complex coefficient representing the reflection of the field from the grating lying on
the boundary of the anisotropic half-space (z > 0).

Consider the behavior of the reflection coefficient depending on the excitation
wave frequency, grating parameters, and the characteristic frequencies κp, κc of
the anisotropic half-space. For definiteness sake, suppose that κp < 1 and κc < 1
(this is always possible via a reasonable choice of the grating period). The calcu-
lations from the numerical solution of (2.288) reveal the frequency range α– < κ <

κc; α± = 0.5
(√

κ2
c + 2κ2

p ± κc

)
where even if grating slots are very narrow, the

electromagnetic field almost completely transmitted to the anisotropic medium (the
reflection coefficient module is

∣∣RAA
00

∣∣ ≤ 0.3). Typical dependences of the reflection
coefficient module are given in Fig. 2.27a and b, showing a pronounced negative
peak of the reflection coefficient amplitude. Thus, at the excitation wavelength more
than 103 times as large as the grating slot width, the reflection coefficient module is∣∣RAA

00

∣∣ ≈ 0.3. Compare it with the module of the reflection coefficient of a grating
free from the anisotropic medium (κp = κc = 0; dashed line).

As is known [45], a metal strip grating is practically transparent to plane
H-polarized waves in the long-wavelength part (κ � 1) of spectrum. The reflection
coefficient grows fast as κ increases (κ→1) (see Fig. 2.27a). With the anisotropic
half-space present, there is a range of variation of κ (κ < 1) when even for very nar-
row slots (λ/d ∼ 103), the reflection coefficient module can be substantially less than
that of a grating in free space. Also, it is interesting that the characteristic frequency
κc can effectively control the reflection coefficient (see Fig. 2.27b).

Consider now the behavior of the reflection coefficient in the resonance range
κ ≈ 1 (the excitation field wavelength is comparable with the grating period). In
this case the well-known resonances (Wood’s anomalies) [45] coexist with the reso-
nances caused by the anisotropic medium. In support of this, see Fig. 2.27c for

∣∣RAA
00

∣∣
curves corresponding to various characteristic frequencies κp of the anisotropic
medium. The first resonance, κ ≈ 1 (the excitation field wavelength equals the
grating period) does not depend on κp (Wood’s anomaly). The second occurs at
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Fig. 2.27 (a) The reflection
coefficients

∣
∣RAA

00

∣
∣ versus

frequency κ = l/λ for
different structure parameters:
(b) κp = 0.1, d/l = 0.01; (c)
κc = 0.1, d/l = 0.5

κ ≈ 1/
√

ε⊥, where ε⊥ = (ε2
1 − ε2

2

)
/ε1 is the effective permittivity of the anisotropic

half-space. And it disappears when κp→0 and κc→0. Attention is drawn to the fact
that as κp (the plasma frequency) increases, the frequency at which this resonance
is possible moves toward the short-wavelength end. This behavior of the reflection
coefficient can be used for the determination of the physical characteristics (such as
κp) of an anisotropic medium. Indeed, knowing the grating geometrical parameters
(d and l), the cyclotron frequency κc and the frequency κres at which the reflection
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coefficient module is at a maximum, one finds the plasma frequency

ωp = 2πc

l

√√√√2κ2
res − 1 +

√
1 + 4κ2

c

(
κ2

res − 1
)

2
,

and, consequently, the cold electron plasma density from κres
√

ε⊥ ≈ 1.
Now, examine the features of the reflection coefficient behavior with the

anisotropic lossy medium [see (2.289), v �= 0]. Figure 2.28 shows characteristic
dependences of the module of the reflection coefficient in frequency bands where
the real part of the effective permittivity takes on positive values. By numerical cal-
culations it was found that these frequency bands carry particular frequencies κ =
α± in whose vicinities the reflection coefficient can exhibit resonances, and these
are due to the surface waves existing on the anisotropic half-space boundary (with
the grating absent). At the frequency κ = α±, the phase velocities of these surface
waves become zero. The resonances are most pronounced when the grating slots are

Fig. 2.28 The reflection coefficient module versus frequency and the field structure at resonance
frequencies: (a) κp = 0.5, κc = 0.2; and (b) κp = 0.5, κc = 0.6
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sufficiently wide (d/l ≥ 0.5). Figure 2.28 shows the H̃x component distribution at
some resonance frequencies, d/l = 0.5. As seen, the field is concentrated near the
grating slots.

Another resonance type is due to the surface wave supported by the interface
between the perfectly conducting metal and an anisotropic half-space. The fre-
quency at which the phase velocity of this wave vanishes matches the cyclotron
frequency κc. In its vicinity, the reflection coefficient can be resonant (Fig. 2.29). In
this frequency region, the real part of the effective permittivity takes on negative val-
ues. Therefore with losses absent (v = 0), the reflection coefficient module equals
unity (

∣∣RAA
00

∣∣ = 1). The situation changes completely when the anisotropic half-
space is lossy. Namely, the reflection coefficient module as a function of frequency
demonstrates clear negative peaks (see Fig. 2.29a) which are most pronounced when
the grating slots are sufficiently narrow (d/l ≤ 0.1). For the field structure at some

Fig. 2.29 (a) The reflection coefficient module versus frequency for d/l = 0.01, κp = 0.5, κc =
0.6, and κc = 0.61; and (b) the field structure at some resonance frequencies
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frequencies corresponding to minima of the amplitude of the reflection coefficient,
see Fig. 2.29b. The resonance field is concentrated in the anisotropic medium near
the grating metal strips.

At this point, our presentation of numerical results obtained with the aid of
the analytic regularization method has come to an end, in the present context.
We hopefully appreciate that the cited results provide at least a partial answer to
the long-standing question of what is the practical use of all these analytic regu-
larization procedures with their sometimes complicated transformations and bulky
constructions.

2.6 Diffraction of Quasi-Periodic Waves by Obstacles with
Cylindrical Periodical Wavy Surfaces

The purpose of this section is the demonstration of the simplest initial technique
of the analytic regularization method. That is why the subject of our consideration
herein is mathematical modeling of simple, but key problems of electromagnetic
wave diffraction by obstacles with infinite and smooth one-dimensional periodical
wavy surfaces (see Fig. 2.30). We study these problems in the system of nondimen-
sional time and spatial coordinates ȳ = 2πy

/
l, z̄ = 2πz

/
l, t̄ = 2πt

/
l, according to

which the period of gratings is equal to 2π.
Such a cylindrical surface S̄ is supposed to be 2π-periodical with respect to the

space variable ȳ and homogeneous in the longitudinal x̄-direction. The cross-section
S̄x of S̄ by the plane x̄ = const can be described as the set of contours:

S̄x = ∞∪
j=−∞

S̄x, j ∈ C∞; S̄x, j =
{
ḡj = {ȳ + 2πj,z̄} : ḡ = {ȳ,z̄} ∈ S̄x, 0; 0 ≤ ȳ ≤ 2π

}
.

(2.290)
We assume that contour S̄x is nonself-crossing and (just for simplicity) infinitely

smooth. Contour S̄x,0 is supposed to be of finite length.
Corresponding parameterizations of contours S̄x and S̄x,0 play an essential

role in our future explanation. Necessary constructions and assumptions can be
summarized as follows.

Fig. 2.30 Perfectly conducting metallic 2π-periodic grating of arbitrary profile
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• The vector function

η0 (ϑ) ≡ {ȳ (ϑ) , z̄ (ϑ)} ; ϑ ∈ [−π;π] (2.291)

is assumed to be given as a smooth parameterization of the contour S̄x, 0. It means
that ȳ (ϑ) and z̄ (ϑ) are such functions that for every ϑ∈[–π;π] they give corre-
sponding to this ϑ point ḡ = {ȳ, z̄} = {ȳ (ϑ) , z̄ (ϑ)} ∈ S̄x,0 with the property

that function l (ϑ) ≡
{[

dz̄ (ϑ)
/

dϑ
]2 + [dȳ (ϑ)

/
dϑ
]2}1/2

is finite and strongly

positive (one-to-one mapping condition):

0 < l (ϑ) < ∞. (2.292)

• The parameterization ηj (ϑ) ≡ {
ȳj (ϑ) , z̄j (ϑ)

}
, j = 0,±1,±2,. . ., for every

contour S̄x, j is constructed according to (2.290) and (2.291):

ȳj (ϑ) = ȳ (ϑ− 2πj) , z̄j (ϑ) = z̄ (ϑ− 2πj) ; ϑ ∈ [−π+ 2πj;π+ 2πj
]

. (2.293)

• The parameterization η(ϑ) of the contour S̄x is

η (ϑ) ≡ ηj (ϑ) ; ϑ ∈ [−π+ 2πj;π+ 2πj
]

, ȳ (ϑ+ 2π) = ȳ (ϑ) + 2π,
z̄ (ϑ+ 2π) = z̄ (ϑ) ,

(2.294)

and, due to the construction,

η: (−∞;∞) ↔ S̄x (2.295)

is a one-to-one mapping of (–∞;∞) to S̄x.
• The parameterization η(ϑ) thus obtained is infinitely smooth:

η (ϑ) ∈ C∞ (−∞;∞) . (2.296)

We will say that the function f(ϑ) is a 2π-quasi-periodical one (with respect to
variable ϑ) if the function satisfies the condition

f (ϑ+ 2π) = ei2πΦf (ϑ) (2.297)

for each ϑ in the domain of the function definition. Parameter Φ is introduced in
Section 1.1.3 and it is known as the parameter of quasi-periodicity. According to
(2.291), Φ in (2.297) can be always chosen (by means of adding or extraction of an
integer number) satisfying the inequalities that we assume to be valid below:

−1
/

2 < Φ ≤ 1
/

2. (2.298)

For concreteness, we assume also that the surface S̄ = S̄x × [−∞ < x < ∞] is
excited by an electromagnetic plane wave
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Ũi
p(ḡ, κ) = exp

[
i
(
Φ̄pȳ − Γ̄pz̄

)]
; ḡ ∈ R2 (2.299)

(p is integer), which is 2π-quasi-periodical with respect to ȳ, does not depend on x̄,
and comes from the upper half-space. Here [see also (1.22)], Φ̄n = Φ + n, Γ̄n =√

κ2 − Φ̄2
n, ReΓ̄nReκ ≥ 0, and ImΓ̄n ≥ 0. As well, Ũi

p (ḡ, κ) can be, in principal,
any 2π-quasi-periodical in respect to ȳ, not depending on x̄, and smooth in some
vicinity V of S̄ function.

The incident field, the obstacle’s material parameters, and the geometrical struc-
ture do not depend on the space variable x̄, then, evidently, the scattered field
Ũs (ḡ, κ) does not depend on x̄ either. Consequently, the electromagnetic fields
can be expressed by means of two scalar functions Ẽx (E-polarization) and H̃x

(H-polarization) satisfying homogeneous Helmholtz equations. Thus, the problems
under consideration are scalar and two-dimensional ones.

There are three typical kinds of boundary conditions on the surface S̄, namely,
Dirichlet, Neumann, and transmission ones. When S̄ is the surface of a perfectly
conducting screen, we have Dirichlet or Neumann boundary value problems (BVPs)
for E- or H-polarization, respectively. For the case when the surface separates two
media with different material parameters (it will be the surface S̄ε,μ,σ), we arrive at
transmission problems (for both polarizations).

In this section, we restrict ourselves at rather brief consideration of the Dirichlet
and Neumann problems only. There is a big similarity in construction of analytic
regularization method for the other BVPs mentioned above. Also, it is neces-
sary to have much more room for going into all details even for a Dirichlet BVP
only. That is why we recommend our reader to look at the publications [10,
11, 57, 58, 63, 64, 149, 150], where similar and more complicated problems are
investigated.

In Section 2.6.1, we consider a Dirichlet BVP. Section 2.6.2 is devoted to reduc-
ing the BVP to a standard integral equation of the first kind. Differential and singular
properties of the transformed integral equation kernel are the subject of the analysis
in Section 2.6.3. In Section 2.6.4, we discuss the splitting of the integral equation
kernel and the requirements for the result of the splitting. In Section 2.6.5, we reduce
the integral equation to an infinite system of the first kind. In Section 2.6.6, we
use the splitting constructed for obtaining the algebraic system of the second kind,
which forms functional equations of the type (E + H) x = b, x, b∈l2 with identity
operator E and compact operator H in the space l2 of square-summable sequences.
Section 2.6.7 outlines the difference in application of the analytic regularization
method for the Neumann BVP in comparison with the Dirichlet one. Here we obtain
similar result: the Neumann BVP is reduced to the algebraic system of the second
kind, which is qualitatively the same as one mentioned above for the Dirichlet BVP.

As it is well known, solving such an algebraic system of the second kind by
means of the reduction method is numerically stable process that gives principal
possibility to obtain the solution with any predetermined accuracy (in contrast to
many popular, but unstable methods like the family of Galerkin and the other direct
methods).
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2.6.1 The Dirichlet Diffraction Problem

The initial version of the algorithm explained herein can be found in publication
[149]. Similar problem, but for semitransparent grating, is the subject of publication
[150].

Let the above-mentioned S̄ be a surface of a perfectly conducting screen, which
is illuminated by an E-polarized wave with given 2π-quasi-periodical component
Ẽi

x (ḡ, κ) = Ũi
p (ḡ, κ) [see formula (2.299) and the next paragraph].

We pose the Dirichlet BVP in the same way as it is explained in Chapter 1 – see
(1.20) and (1.22). Nevertheless, some details of the boundary conditions and their
exact mathematical sense must be added. We use the problem posing in the classical
sense similar to [9]. That is why we assume that unknown and seeking for 2π-quasi-
periodical function Ũs (ḡ, κ), ḡ ∈ R2, i.e., scattering field, belongs to the following
functional class:

Ũs (ḡ, κ) ∈ C2
(

R2\S̄x

)
∩ C1,α

(
R2(+)

)
∩ C1,α

(
R2(−)

)
. (2.300)

Here, R2(±) are open parts of R2 placed over and under the contour S̄x corre-
spondingly, and R2(±) are their closures. This description (2.300) of the class of
functions means, in particular, the existence of the following limits, uniform on S:

Ũs(±) (ḡ, κ) = lim Ũs (ḡ ± h�nḡ,κ
)

h→+0
; ḡ ∈ S̄x, (2.301)

∂Ũs(±) (ḡ, κ)

∂�nḡ
= lim

h→+0

∂Ũs(±)
(
ḡ ± h�nḡ,κ

)

∂�nḡ
; ḡ ∈ S̄x, (2.302)

where �nḡ is unit outward (directed from R2(+) to R2(−)) normal to S̄x in point ḡ ∈ S̄x,
and, in general, the (±) limits are not equal, but can be equal, of course [as this takes
place, for example, in condition (2.303)].

We assume also that Dirichlet boundary condition is satisfied, which corresponds
to E-polarized wave diffraction by a perfectly conductive cylindrical wavy surface
S̄x:

Ũs(±) (ḡ, κ) + Ũi
p (ḡ, κ) = 0; ḡ ∈ S̄x. (2.303)

As follows from (1.24), the canonic Green function G̃0 (ḡ, ḡ0, κ,Φ) becomes infi-
nite for Γ̄n = 0 (that corresponds to branch points of the BVP operator). That is
why we will assume below that κ and Φ are chosen in such a way that Γ̄n �= 0.

2.6.2 Reduction of the Dirichlet BVP to the Integral Equations

It can be proved by standard technique of Green’s formulas that the scattered field
Ũs (ḡ, κ) has the following representation:
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Ũs (ḡ1,κ) =
∫

S̄x,0

G̃0 (ḡ1,ḡ2,κ,Φ) MD (ḡ2) dlḡ2 ; ḡ1 ∈ R2\S̄x. (2.304)

Here,

MD (ḡ) = ∂Ũs(+) (ḡ, κ)

∂�nḡ
− ∂Ũs(−) (ḡ, κ)

∂�nḡ
; ḡ ∈ S̄x, (2.305)

and MD (ḡ) is quasi-periodic function satisfying the integral identity

∫

S̄x,0

G̃0 (ḡ1, ḡ2, κ, Φ) MD (ḡ2) dlḡ2 = −Ũi
p (ḡ1, κ) ; ḡ1 ∈ S̄x,0. (2.306)

G̃0 (ḡ1, ḡ2, κ, Φ) is the canonic Green’s function (1.24) of free space for
Helmholtz equation and for 1-D periodical structures, but written with respect to
nondimensional normalized spatial coordinates ḡ = {ȳ, z̄} and points ḡj, j = 1, 2.
Here, κ = l/λ, where l is the realistic grating period and λ is the wavelength of
the incident wave. This function has view (1.24), but value l in factor –i/2l before
the symbol of the sum must be changed by –i/4π, because the grating period in
respect to normalized value ȳ is equal to 2π (value l in (1.24) has nothing com-
mon with function l(ϑ) in (2.292) that should not be a cause of any confusion,
because nowhere below in this section notation l is used as the grating period, but
only function l = l(ϑ) may appear in formulas).

It is noteworthy that series (1.24) is absolutely useless for numerical calculation
of G̃0 (ḡ1, ḡ2, κ, Φ) in domain |z̄1 − z̄2| � 1, because of the series’ slow conver-
gence. In a number of papers their authors used extraction of the main asymptotic
part of the common term of the series in the form ρn/n, where |ρ| ≤ 1. Thus, the
series need not any acceleration, if |ρ| � 1, i.e., |z̄1 − z̄2| � 1. In the same
time, series

∑
ρn/n can be summarized analytically and the sum is an elementary

function, which has analytic singularity proportional to ln(1–ρ). The series similar
to
∑

ρn/n can be extracted term by term from the right-hand side of (1.24) and
the result is series of the kind

∑
p(1)

n , where p(1)
n are some numbers possessing

property p(1)
n = O

(
ρn/n2

)
. Only the last series needs numerical calculation after

that. This is essential progress, because the last series is at least absolutely conver-
gence. Nevertheless, its convergence is still too slow for to be called the summation
efficient. The above-explained extraction can be continued with terms ρn/nm, m =
2,3,4,. . ., but, unfortunately, the series

∑
ρn
/

nm are not representable by elemen-
tary functions for m ≥ 2. Perhaps, this fact prevented the mentioned above authors
from such extraction and based on it acceleration of series (1.24) convergence.

Nevertheless, we managed (see [11]) to obtain for any fixed m = 2,3,4,. . . the
representation of the kind G̃0 (ḡ1,ḡ2,κ,Φ) = Sm + ∑ p(m)

n , where Sm and p(m)
n

are expressed by means of elementary functions of ḡ1, ḡ2, κ and Φ, and p(m)
n =

O (ρn/nm). Actually, we even found the relevant recurrent algorithm, which avoids
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the necessity of knowing and direct calculation of (rather bulky for big m) analytic
expressions of Sm. As well, the number m of the extracted terms, as it is explained
above, is regulated dependently on value |z̄1 − z̄2|: it is maximal for |z̄1 − z̄2| = 0
(i.e., when |ρ| = 1), and any extraction is not necessary for |z̄1 − z̄2| � 1. Thus,
the problem of fast calculation of G̃0 (ḡ1, ḡ2, κ,Φ) (and its derivatives of any finite
order) is completely solved.

From modified as above-mentioned formula (1.24) and from (2.305) and (2.304),
it follows immediately that G̃0 (ḡ1, ḡ2, κ, Φ) and MD (ḡ1) are 2π-quasi-periodic
function with respect to ḡ1 – in the sense of (2.297) – and G̃0 (ḡ1, ḡ2, κ, Φ) is 2π-
quasi-periodic function in the same sense, but with the negated (i.e., –Φ) parameter
of quasi-periodicity:

MD (ȳ + 2π, z̄) = ei2πΦMD (ȳ, z̄) ; ḡ = {ȳ, z̄} ∈ S̄x, (2.307)

G̃0(ȳ1 + 2πj, z̄1, ȳ2 + 2πs, z̄2, κ, Φ)= ei2π(j−s)ΦG̃0(ȳ1, z̄1, ȳ2, z̄2, κ, Φ);

{ȳ1, z̄1} , {ȳ2, z̄2} ∈ R2. (2.308)

In accordance with the standard approach, we will consider (2.306) from now as
the integral equation for the unknown function MD (ȳ, z̄). It can be proved that if this
function has been found, then one can obtain the scattered field in every point by
means of the integral representation (2.304).

Using the parameterization η (ϑ) ≡ {ȳ (ϑ) , z̄ (ϑ)} of contour S̄x, one can easily
reduce the integral equation (2.306) on contour S̄x,0 to an ordinary integral equation
on interval [–π;π] by means of the substitutions

ȳ1 = ȳ (τ) , z̄1 = z̄ (τ) ; τ ∈ [−π;π] , (2.309)

ȳ2 = ȳ (ϑ) , z̄2 = z̄ (ϑ) ; ϑ ∈ [−π;π] (2.310)

and direct definition of new functions

μ0 (τ) = MD (ȳ (τ) , z̄ (τ)) ; τ ∈ [−π;π] , (2.311)

G0 (ϑ,τ) = l (τ) G̃0 (ȳ (ϑ) , z̄ (ϑ) , ȳ (τ) , z̄ (τ) , κ, Φ) ; ϑ,τ ∈ [−π;π] , (2.312)

where the fixed parameters κ and Φ are omitted for the sake of brevity. Such a direct
way has the following drawback. Due to formulas (2.307) and (2.308), these new
functions μ0(τ) and G0(ϑ,τ) are 2π-quasi-periodical ones and are not 2π-periodical,
in general. We are going to use Fourier series of these functions. Unfortunately,
Fourier coefficients of a function μ0(τ), defined in the way (2.311), tend to zero
very slowly (due to the nonperiodicity of the function), and, which is the most
important, the same holds for the function G0(ϑ,τ) that brings a very strong lim-
itation on the efficiency of any algorithm thus constructed. Moreover, the behavior
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of Fourier coefficients of function G0(ϑ,τ) does not allow us to obtain anyhow an
algebraic system of the second kind, which is our final goal.

That is why, we define other – just 2π-periodic – functions:

μ̃ (τ) = e−iΦτMD (ȳ (τ) , z̄ (τ)) , (2.313)

G̃ (ϑ,τ) = eiΦ(τ−ϑ)G̃0 (ȳ (ϑ) , z̄ (ϑ) , ȳ (τ) , z̄ (τ) , κ, Φ) , (2.314)

f̃ (ϑ) = −e−iΦϑŨi
p (ȳ (ϑ) , z̄ (ϑ) , κ) . (2.315)

Using formulas (2.313), (2.314), and (2.315) one can rewrite equation (2.306)
after some obvious transformations into the following integral equation of the first
kind for the unknown function μ̃ (τ):

π∫

−π

μ̃ (τ) G̃ (ϑ,τ) l (τ) dτ = f̃ (ϑ) ; ϑ ∈ [−π;π] . (2.316)

One can consider the function μ̃ (τ) on the interval (–∞;∞) as the result of its
2π-periodic continuation from [–π;π]. As it follows from formulas (2.314), (2.315),
(2.312), (2.308), and (2.315), functions G̃ (ϑ,τ), μ̃ (τ), and f̃ (ϑ) are 2π-periodical
ones for ϑ,τ∈(–∞;∞).

2.6.3 Investigation of the Differential Properties of the Integral
Equation Kernel

Before any attempt to solve the integral equation (2.316) and a choice of a proper
method for such a purpose, it is necessary to investigate the differential and singular
properties of the kernel G̃ (ϑ,τ) l (τ).

First of all, G̃ (ϑ,τ) is an infinitely smooth function for 0 < |ϑ–τ| < 2π, because
G̃0 (ȳ1, z̄1, ȳ2, z̄2, κ, Φ) is infinitely smooth for {ȳ1,z̄1} �= {ȳ2,z̄2} as a solution of
the homogeneous Helmholtz equation. An explanation of the differential proper-
ties of G̃ (ϑ,τ) for small |ϑ–τ| and |2π− |ϑ− τ|| requires the formulation of a few
definitions as follows.

The function ψ(ϑ), ϑ∈[–π;π] belongs to class Cm
Q

(
R1
)
, if it is m times contin-

uously differentiable after its 2π-periodic continuation on (–∞;∞) (in particular,
ψ(k) (−π+ 0) = ψ(k) (π− 0), k = 0,1,. . .,m).

The function ψ(ϑ,τ), ϑ,τ∈[–π;π] belongs to class Cm
Q

(
R2
)
, if all its partial and

mixed derivatives of orders k = 0,1,. . .,m exist and are continuous after the function
2π-periodic continuation with respect to both variables on (–∞,∞) × (–∞,∞).

The function ψ(ϑ), ϑ∈[–π;π] belongs to the Hölder-like 2π-periodical class
Cm,α

Q

(
R1
)
, if ψ ∈ Cm

Q

(
R1
)

and such fixed constants α∈(0;1) and C > 0 exist that
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∣
∣∣ψ(m) (ϑ1) −ψ(m) (ϑ2)

∣
∣∣ ≤ C

∣∣
∣∣2 sin

ϑ1 − ϑ2

2

∣∣
∣∣

α

; ϑ1, ϑ2 ∈ [−π;π] , (2.317)

where ψ(m)(ϑ) is the derivative of order m of function ψ(ϑ).
The function ψ(ϑ,τ), ϑ,τ∈[–π;π] belongs to the Hölder-like 2π-periodical class

Cm,α
Q

(
R2
)
, if ψ ∈ Cm

Q

(
R2
)

and such fixed constants α∈(0;1) and C > 0 exist that

∣∣
∣∣
∂m [ψ (ϑ1,τ1) −ψ (ϑ2,τ2)]

∂m1ϑ ∂m2τ

∣∣
∣∣ ≤ C

∣∣
∣∣2 sin

ϑ1 − τ1

2

∣∣
∣∣

α ∣∣
∣∣2 sin

ϑ2 − τ2

2

∣∣
∣∣

α

, (2.318)

for any m1 ≥ 0 and m2 ≥ 0 that m = m1 + m2.
The corresponding classes C∞

Q

(
R1
)

and C∞
Q

(
R2
)

are defined in standard way:

C∞
Q

(
R1
)
= ∞∩

m=0
Cm

Q

(
R1
)

and C∞
Q

(
R2
)
= ∞∩

m=0
Cm

Q

(
R2
)

. (2.319)

For any p = 0,1,2,. . ., we introduce 2π-periodical functions:

�
Φ2p (τ) = − (−1)p (2p)!

∞∑

n=1

cos nτ

n2p+1
, (2.320)

�
Φ2p+1 (τ) = − (−1)p (2p + 1)!

∞∑

n=1

sin nτ

n2p+2
. (2.321)

In particular,

�
Φ0 (τ) = ln

∣∣∣2 sin
τ

2

∣∣∣ . (2.322)

The functions
�
Φm (τ) possess the properties

�
Φm (τ) ∈ Cm−1

Q

(
R1
)

; m ≥ 1;
�
Φm (τ) −

(
2 sin

τ

2

)m
ln |2 sin

τ

2
| ∈ Cm+1

Q

(
R1
)

,

(2.323)

d

dτ
�
Φm (τ) = m

�
Φm−1 (τ) . (2.324)

Thus, functions
�
Φm (τ), m = 0,1,2,. . ., form a sequence of functions, where each

next function is more smooth than the preceding one.
It can be shown that for any fixed finite number N = 2,3,4,. . . the following

singular expansion of the function G̃ (ϑ,τ) is valid:

G̃ (ϑ,τ) − 1

2π

N∑

n=1

An (ϑ)
�
Φn (δ) ∈ CN

Q

(
R2
)

. (2.325)
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Here, δ = τ–ϑ and An(ϑ) are some infinitely smooth functions:

An (ϑ) ∈ C∞ (−∞;∞) . (2.326)

After some calculation one can obtain the analytic form of the first few functions
An(ϑ). In particular,

A0 (ϑ) ≡ 1, A1 (ϑ) = iΦ = const, A2 (ϑ) = −Φ2

2
− κ2 l2 (ϑ)

4
. (2.327)

This singular expansion completely describes the singular properties of G̃ (ϑ,τ).
In particular, from it follows that G̃ (ϑ,τ) has singularities in points {ϑ,τ} where
ϑ–τ = 0 or ϑ–τ = ±2π and in these points only.

Having constructed the singular expansion as above, we can try to derive the
analytic regularization method similar to the construction in Section 2.1, because
the principal singularities of the kernels are similar. This idea encounters an obsta-
cle in the form of the function l(τ) appearing as a factor in the integral equation
kernel. The simplest remedy for this is the introduction of a new unknown function
μ̃γ (τ) by the relation μ̃ (τ) = μ̃γ (τ) [l (τ)]γ−1 for any number γ, and multiplica-
tion of both sides of integral equation (2.316) by [l(ϑ)]–γ. This leads to a similar
integral equation with unknown function μ̃γ (τ), but with a new kernel of the form
[l (τ)]γ [l (ϑ)]−γ G̃ (ϑ,τ). According to (2.325), (2.327), and (2.322), the principal
singularity of this kernel is (1/2π) ln

∣∣2 sin (ϑ− τ)
/

2
∣∣, and the same algorithm as

the one in Section 2.1 (given for the example in that section) for the analytic regular-
ization method construction is applicable, in principle. Nevertheless, a much better
algorithm can be constructed. Indeed, as we see, A1(ϑ) �= 0. That is why applica-
tion of the mentioned algorithm has a strong limitation on the rate of decay of the
Fourier coefficients of the kernel. Thus, if it is possible to include the subordinate
singularity (1/2π) A1 (ϑ)

�
Φ1 (δ) into the principal one (extracted from the kernel –

see below), then a much more efficient algorithm can be constructed. The coefficient
A1(ϑ) in (2.325) is constant, and for such a singularity its necessary inclusion can be
achieved easily – see below. At the same time, for any γ �= 0, the corresponding term
(1/2π) A1 (ϑ)

�
Φ1 (δ) of the singular expansion of kernel [l (τ)]γ [l (ϑ)]−γ G̃ (ϑ,τ)

will include functions l(ϑ) and dl(ϑ)/dϑ that are not constants in general. That
is why, it is necessary to take γ = 0 and to introduce the new unknown
function

μ̃0 (τ) = l (τ) μ̃ (τ) , (2.328)

and consider it as a solution of integral equation

π∫

−π

G̃ (ϑ,τ) μ̃0 (τ) dτ = f̃ (ϑ) ; ϑ ∈ [−π;π] , (2.329)
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with μ̃0 and f̃ belonging to the relevant sets:

μ̃0 ∈ H−1/2 ∩ C0,α
Q

(
R1
)

, f̃ ∈ H1/2 ∩ C1,α
Q

(
R1
)

. (2.330)

The sets H−1/2 ∩C0,α
Q

(
R1
)

and H1/2 ∩C1,α
Q

(
R1
)

are defined in the same manner

as sets H−1/2 ∩ C0,α [−π;π] and H1/2 ∩ C1,α [−π;π] in Section 2.1, with the only
difference that here we directly request the 2π-periodicity of μ̃0 and f̃ functions. As
it follows from the below, instead of H−1/2 ∩ C0,α

Q

(
R1
)

and H1/2 ∩ C1,α
Q

(
R1
)

in

(2.330) we can, as well, use corresponding Sobolev spaces H–1/2 and H1/2 of 2π-
periodical functions for the integral equation (2.329) posing, and this change does
not influence anyhow the algorithm of the equation solving. Nevertheless, we will
use posing (2.330) for simplicity and convenience of our reader.

2.6.4 Additive Splitting of the Integral Equation Kernel into a Sum
of Main Singular Part and Some More Smooth Function

The kernel G̃ (ϑ,τ) can be additively splitted now into a sum of the principal
singularity and a relatively smooth part as follows:

G̃ (ϑ,τ) = 1

2π

{[(
−1

2
+ ln

∣∣∣∣2 sin
ϑ− τ

2

∣∣∣∣

)
+ iΦ

�
Φ1 (τ− ϑ)

]
+ K0 (ϑ,τ)

}
.

(2.331)
The expression in round brackets is the main singularity, the next term in square

brackets is the subordinate singularity, and the next term in figure brackets is the
relatively smooth part of the kernel.

Formally, we can now construct the analytic regularization method for equation
(2.329) with its kernel splitting (2.331), and the construction is simple because dou-
ble Fourier series for both principal and subordinated extracted singularities have
diagonal form (see Section 2.1 and below). Nevertheless, something more should

be done for calculation efficiency. Namely, the function
�
Φ1 (τ− ϑ) is known to be

nonrepresentable in elementary functions. That is why, its calculation requires some
extra effort, which is not necessary if we can construct another function having
equivalent singular behavior, but representable itself by means of elementary func-
tions, and with its Fourier coefficients also representable by means of elementary
functions.

To this end, let us consider the simplest function Ψ(ϑ) of the necessary kind:

Ψ1 (ϑ) = −
∞∑

n=2

Ψn sin nϑ = i
1

2

∞∑

n=−∞
Ψnsign (n) einϑ; ϑ ∈ [−2π;2π] , (2.332)

Ψn =
{

0; |n| ≤ 1
(
n2 − 1

)−1
; |n| ≥ 2

, sign (n) =
⎧
⎨

⎩

1; n > 0
0; n = 0

−1; n < 0
. (2.333)
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The Fourier coefficients (i/2)Ψnsign(n) of function Ψ1(ϑ) are expressed by means
of elementary functions already. As well, the function Ψ1(ϑ) itself can easily be
expressed by means of elementary functions (we leave this calculation to the reader).

It is evident that Ψ1,
�
Φ1 ∈ C0,α

Q

(
R1
)
, but Ψ1 − �

Φ1 ∈ C2,α
Q

(
R1
)
, and substitution

of Ψ1(ϑ) instead of
�
Φ1 (τ− ϑ) in the singular expansion (2.325) does not influence

the next term of the expansion, but changes only the term n = 3.
Let us make a splitting of the kernel G̃ (ϑ,τ) similar to (2.331), but now with

−Ψ1 (ϑ− τ) = Ψ1 (τ− ϑ) instead of
�
Φ1 (τ− ϑ):

G̃ (ϑ,τ) = 1

2π

{[(
−1

2
+ ln

∣∣∣∣2 sin
ϑ− τ

2

∣∣∣∣

)
− iΦΨ1 (ϑ− τ)

]
+ KD (ϑ,τ)

}
.

(2.334)

One can consider formula (2.334) as definition of the function KD(ϑ,τ). From
singular expansion (2.325) and formulas (2.332) and (2.334) it immediately follows
that:

KD (ϑ,τ) ∈ C1 ((−∞;∞) × (−∞;∞)) , (2.335)

∂2KD (ϑ,τ)

∂ϑ∂τ
,

∂2KD (ϑ,τ)

∂ϑ2
,

∂2KD (ϑ,τ)

∂τ2
∈ L2 ([−π;π] × [−π;π]) . (2.336)

Using formula (2.334), one can reduce integral equation (2.329) to the view:

1
2π

π∫

−π

μ̃0 (τ)
{
ln
∣∣2 sin ϑ−τ

2

∣∣− iΦΨ1 (ϑ− τ) + KD (ϑ,τ)
}

dτ = f̃ (ϑ) ;

ϑ ∈ [−π;π] .
(2.337)

2.6.5 Reduction of the Integral Equation to an Infinite System of
Linear Algebraic Equations of the First Kind

Now one can make Fourier transform of all functions in formula (2.337). According
to formulas (2.334) and (2.335), function K(ϑ,τ) can be expanded into its double
Fourier series and is representable by this series:

KD(ϑ,τ) =
∞∑

s=−∞

∞∑

j=−∞
KD

sj e
i(sϑ+jτ); ϑ, τ ∈ [−π;π] . (2.338)

The following identity can be proved:

− 1

2
+ ln

∣∣∣∣2 sin
ϑ− τ

2

∣∣∣∣ = −1

2

∞∑

n=−∞

ein(ϑ−τ)

τ2
n

; τn = max
(

1,|n|1/2
)

. (2.339)
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The unknown and given functions μ(ϑ) and f(ϑ), respectively, are representable
by their Fourier series:

μ̃0 (τ) =
∞∑

n=−∞
μn exp (inϑ); ϑ ∈ [−π;π] , (2.340)

−2f̃ (ϑ) =
∞∑

n=−∞
fn exp (inϑ); ϑ ∈ [−π;π] . (2.341)

We define infinite vector columns μD and fD of Fourier coefficients of unknown
and given functions and of the infinite matrix WD, which is formed by Fourier
coefficients of function K(ϑ,τ), as follows:

μD = {μn}∞n=−∞ , f D = {fn}∞n=−∞ , WD = {wD
sn

}∞
s,n=−∞ ,wD

sn = −2KD
s,−n. (2.342)

Substituting series (2.338), (2.339), (2.340), and (2.341) into equation (2.437)
and using the orthogonality properties of the system of functions {exp (isτ)}∞s=−∞
on [–π;π], one obtains after simple manipulation the following series equation:

∞∑

n=−∞
μn
(
τD

n

)−2
einϑ+

∞∑

n=−∞

(
WDμD)

n einϑ =
∞∑

n=−∞
fneinϑ; ϑ ∈ [−π;π] . (2.343)

Here,

τD
n = τn (1 −Φnψn)

−1/2 ; τD
n = |n|1/2

[
1 + O

(
n−1
)]

for n → ∞, (2.344)

and (WDμD)n is the nth component of the infinite vector column WDμD. According
to (2.298), |Φ| ≤ 1/2. From here and definitions (2.332) and (2.339) of ψn and
τn, respectively, one can conclude that τn > 0 and 1–Φnψn > 0. Consequently, the
values τD

n > 0 are correctly definite for every n = 0,±1,±2,. . ..
Taking into account the equality of Fourier coefficients of left- and right-hand

sides in equation (2.343), one obtains the following infinite set of linear algebraic
equations:

μs
(
τD

s

)−2 + (WDμD)
s = fs; s = 0, ± 1, ± 2,... (2.345)

The system of linear algebraic equations (2.349) is evidently one of the first kind
[see (2.344)]. Our next purpose is to transform it to an equation of the second kind
in the space l2 of square-summable sequences.
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2.6.6 Construction of an Infinite System of Linear Algebraic
Equations of the Second Kind

Let us define new unknown and known coefficients

�μs = μs/τ
D
s ,

�
f s = τD

s fs, (2.346)

�wD
s,n = τD

s τD
n wD

sn = −2τD
s τD

n KD
s,−n, (2.347)

and corresponding vector columns �μ and
�
f and matrix operator

�
W:

�μ =
{�μn

}∞
n=−∞ ,

�
f =
{

�
f n

}∞

n=−∞
;

�
WD =

{�wD
sn

}∞
s,n=−∞ . (2.348)

Multiplying every equation (2.345) by τD
s and using the new coefficients �μs and

�
f s, one obtains after a simple transformation the new algebraic system of the kind

�μs +
(�

WD �μ
)

s
= �

f s; s = 0, ± 1, ± 2,..., (2.349)

which can be rewritten in the operator form

[
E + �

WD
]�μ = �

f ; �μ ,
�
f ∈ l2. (2.350)

It follows (see [11]) from (2.335) and (2.336) that
�
W is a compact operator in l2

and even more: the coefficients of the matrix operator
�
W satisfy the inequality

∞∑

s=−∞

∞∑

n=−∞
(1 + |s|) (1 + |n|)

∣∣∣�wD
sn

∣∣∣
2

< ∞. (2.351)

Thus, the Dirichlet BVP considered is reduced to the infinite algebraic system
(2.350), which forms a functional equation of the second kind in the space l2 with

the compact in l2 operator
�
WD.

2.6.7 The Neumann Diffraction Problem

The Neumann BVP posing is the same as the one for the Dirichlet BVP, but with
the replacement of the Dirichlet boundary condition (2.305) by the Neumann one:

∂Ũs(±) (ḡ, κ)

∂�nḡ
+ ∂Ũi

p (ḡ, κ)

∂�nḡ
= 0; ḡ ∈ S̄x. (2.352)
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By means of standard technique of Green’s formulas, one obtains that the
scattering field Ũs(±) (ḡ, κ) has the following representation:

Ũs(±) (ḡ1, κ) =
∫

Sx,0

∂G̃0 (ḡ1,ḡ2, κ, Φ)

∂�nḡ2

MN (ḡ2) dlḡ2 = 0; ḡ1 ∈ R2\S̄x, (2.353)

MN(ḡ) = Ũs(−) (ḡ, κ) − Ũs(+) (ḡ, κ) ; ḡ ∈ S̄x. (2.354)

The contour S̄x is assumed to be smooth. Consequently, there are such a number
H > 0 and an open vicinity VH of S̄x such that S̄x ⊂ VH and for any point ḡh ∈ VH

the point ḡ ∈ S̄x (which is known as the projection of ḡh onto S̄x) and the number h
with |h| < H exist that ḡh has the unique representation of the kind

ḡh = ḡ + h�nḡ; ḡ ∈ S̄x. (2.355)

Here, �nḡ is unit outward (oriented from R2(+) to R2(–)) normal to S̄x in the point
ḡ ∈ S̄x. Thus, any point ḡh ∈ VH has view (2.355) with �nḡ uniquely defined by ḡ.
That is why, derivative ∂

/
∂�nḡ is correctly defined in VH.

Applying this derivative to both sides of (2.353), one obtains that

∂Ũs(±)(ḡh, κ)
∂�nḡ

= ∂
∂�nḡ

∫

Sx,0

∂G̃0(ḡh, ḡ2, κ, Φ)
∂�nḡ2

MN (ḡ2) dlḡ2 ;

ḡh ∈ (VH\S̄x
)

.
(2.356)

According to (2.302), there exist uniform on S̄x limits lim
h→±0

∂Ũs(±) (ḡh,κ)
/
∂�nḡ.

Consequently, substitution of (2.356) for h→±0 into boundary conditions (2.352)
brings the identity

lim
h→±0

∂

∂�nḡ

∫

Sx,0

∂G̃0 (ḡh, ḡ2, κ, Φ)

∂�nḡ2

MN (ḡ2) dlḡ2 = −∂Ũi
p(ḡ, κ)

∂�nḡ
; ḡ ∈ S̄x. (2.357)

Using parameterization η (ϑ) ≡ {ȳ (ϑ) , z̄ (ϑ)} of the contour S̄x [see (2.291),
(2.292), (2.293), (2.294), and (2.295)] and being based on the analogy to the treat-
ment made above for the Dirichlet problem, one can define the following functions:

D̃h (ḡ, ḡ2) = ∂2G̃0
(
ḡ + h�nḡ, ḡ2, κ, Φ

)

∂�nḡ∂�nḡ2

; ḡ, ḡ2 ∈ S̄x,0, (2.358)

Dh (ϑ,τ) = eiΦ(τ−ϑ)D̃h (ḡ, ḡ2)

∣∣∣
ḡ=η(ϑ), ḡ2=η(τ)

, (2.359)

ν (τ) = e−iΦτMN (η (τ)) , (2.360)
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g̃ (ϑ) = −e−iΦϑ
∂Ũi

p (ḡ, κ)

∂�nḡ

∣∣∣∣∣
ḡ=η(ϑ)

. (2.361)

Functions Dh(ϑ,τ), v(τ), and g̃ (ϑ) are periodical ones, as this evidently follows
from their definitions.

Using formulas (2.359), (2.360), and (2.361), one can rewrite identity (2.357) in
parameterized form:

lim
h→±0

π∫

−π

Dh (ϑ,τ) ν (τ) l (τ) dτ = g̃ (ϑ) ; ϑ ∈ [−π;π] . (2.362)

Identity (2.362) is not suitable for further analysis and transformation, because
it involves limits h→±0. Direct substitution of h = 0 in (2.362) is illegal even
because the integral in (2.362) is divergent for h = 0. Thus, the problem of analytic
“calculation” of these limits, i.e., of their expression in terms of some elementary
operations arises. It is clear that function D0(ϑ,τ) (i.e., Dh(ϑ,τ) for h = 0) must
somehow appear in any result of such limit “calculation.” That is why we need an
investigation of the differential and singular properties of D0(ϑ,τ).

First of all, D0(ϑ,τ) is evidently smooth function everywhere on [–π;π] ×
[–π;π], but with exception of the points {ϑ,τ} under relations ϑ = τ or |ϑ–τ| =
2π. Detailed investigation results into the singular expansion

D0 (ϑ,τ) − 1
2πl(ϑ)l(τ)

{
1

4 sin2 ϑ−τ
2

+ iΦ 1
2 ctg τ−ϑ

2 +

+
M∑

m=0
Bm (ϑ)

�
Φ (τ− ϑ)

}
∈ CM

Q

(
R2
)

,
(2.363)

which is valid for any fixed M = 0,±1,±2,. . ., and where Bm(ϑ) are some functions
of the kind Bm ∈ C∞

Q

(
R1
)
. In particular,

B0 (ϑ) = [κl (ϑ)]2

2
, B1 (ϑ) = 1

4

d [κl (ϑ)]2

dϑ
+ iΦ

[κl (ϑ)]2

2
. (2.364)

Taking into account formulas (2.320) and (2.322), one obtains after elementary
calculations that

1

4 sin2 ϑ−τ
2

= d2

dϑ2
ln

∣∣∣
∣2 sin

ϑ− τ

2

∣∣∣
∣ , (2.365)

d2

dϑ2
ln

∣
∣∣∣2 sin

ϑ− τ

2

∣
∣∣∣ ≈

1

2

∞∑

n=−∞
|n|ein(ϑ−τ); (2.366)

1

2
ctg

ϑ− τ

2
= −1

2
ctg

τ− ϑ

2
= − d

dϑ
ln

∣∣
∣∣2 sin

ϑ− τ

2

∣∣
∣∣ , (2.367)
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− d

dϑ
ln

∣∣∣
∣2 sin

ϑ− τ

2

∣∣∣
∣ ≈ i

1

2

∞∑

n=−∞
sign (n) ein(ϑ−τ). (2.368)

The series (2.366) and (2.368) are formal ones, because they are divergent.
Nevertheless, the sense of the Fourier series of corresponding 2π-periodical gen-
eralized functions (distributions) can be given to them, and most right-hand sided
expressions in (2.365) and (2.367) have sense of the regularization of these gener-
alized functions. Without going into such far from the main topic details, we note
only herein that these series are really useful for better understanding of the features
of D0(ϑ,τ) as the kernel of the differential integral equation that we will consider
below.

One can conclude from (2.363) that D0(ϑ,τ) has nonintegrable singularity of the
type (τ–ϑ)2, and consequently, the exchange of the order of limiting operation and
integration in (2.362) is indeed illegal.

It follows from (2.360), (2.354), and (2.300) that ν (ϑ) ∈ C1,α
Q

(
R1
)
. As the result

of rather bulky and nontrivial calculation, based on the relevant singular expansion
of the function similar to Dh(ϑ,τ), h ≥ 0, but generated by nonperiodical Green’s
function (−i/4) H(1)

0 (κ |g − g0|), and under the same assumption for v(ϑ), the limit
of the type (2.362) has been calculated – see [11] and the references therein. The
similar, in some respect, calculation of the limits (2.362) results into the relation of
the kind:

lim
h→±0

π∫

−π

Dh (ϑ,τ) ν (τ) dτ = 1
2πl(ϑ)

{[
1
2

π∫

−π

ν (τ) dτ +

+
(

d2

dϑ2 − iΦ d
dϑ

) π∫

−π

ln
∣∣2 sin ϑ−τ

2

∣∣ ν (τ) dτ

]

+
π∫

−π

KN (ϑ,τ) ν (τ) dτ

}

;

ϑ ∈ [−π;π] .

(2.369)

Here, function KN(ϑ,τ), ϑ,τ∈[–π;π], is defined by the following equality:

D0 (ϑ,τ) = 1

2πl (ϑ) l (τ)

{
1

2
+ 1

4 sin2 ϑ−τ
2

+ iΦ
1

2
ctg

τ− ϑ

2
+ KN (ϑ,τ)

}

.

(2.370)

Substitution of (2.369) into (2.362) and multiplying the result by l(ϑ) bring the
identity:

1
2π

{[
1
2

π∫

−π

ν(τ)dτ +
(

d2

dϑ2 − iΦ d
dϑ

) π∫

−π

ln
∣∣2 sin ϑ−τ

2

∣∣ ν(τ)dτ

]

+

+
π∫

−π

KN (ϑ,τ) ν (τ) dτ

}

= l (ϑ) g (ϑ) ; ϑ ∈ [−π;π] .

(2.371)
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In accordance with standard approach, we will consider identity (2.371) from
now as the differential–integral equation to unknown function v(τ) under assump-
tions:

ν (τ) ∈ H1/2 ∩ C1,α
Q

(
R1
)

, l (ϑ) g (ϑ) ∈ H−1/2 ∩ C0,α
Q

(
R1
)

. (2.372)

It can be proved that if the equation is solved and function v(ϑ) is found, then
one can obtain the scattered field by means of the integral representation (2.353),
where function MN (ḡ) is given by inversion of formulas (2.360), namely, MN (ḡ) =[

eiΦτν (τ)
]∣∣

τ=η−1(ḡ)
– function η(τ) is constructed above as an invertible one.

As one can see, domains of definition and image of the differential operator in
(2.371) are exchanged in comparison with the same domains, but for integral oper-
ator generated by the Dirichlet BVP – see (2.330) for comparison. This exchange
is in the proper agreement with physical and mathematical senses of functions v(τ)
and μ(τ) correspondingly – see (2.305) and (2.354) also. It is possible to say that
operators of equations (2.329) and (2.371) have somewhat opposite qualities: the
kernel of the first one is too smooth, but the kernel of the second is too singular for
making the operators boundedly invertible in space L2[–π,π].

The structure of the differential–integral equation in (2.371) is in some respects
similar to one of (2.337). Namely, the expression in square brackets in (2.371) is the
singularity extracted from the operator and, as well as in (2.337), it involves the first
two principal singularities as corresponding derivatives of logarithmic singularity
(the very first integral in (2.371) is extracted for the only convenience to have the
extracted singularity to be formally invertible).

The rest of the necessary transforms is almost the same as for the Dirichlet prob-
lem. Namely, let us expand v(ϑ), l (ϑ) g̃ (ϑ), and KN(ϑ,τ) into their Fourier series:

ν (ϑ) =
∞∑

n=−∞
νneinϑ, l (ϑ) g̃ (ϑ) =

∞∑

n=−∞
gneinϑ, (2.373)

KN (ϑ,τ) =
∞∑

s=−∞

∞∑

n=−∞
KN

snei(sϑ+nτ). (2.374)

Substituting these series into (2.371), making term by term integration, and term
by term differentiation, when necessary (all these operations can be mathematically
justified – see [11]), one arrives into the series equation similar to (2.343), from
which (2.345) follows. Exactly in the same manner, one derives from the series
equation just obtained an algebraic equation similar to (2.345), but of the kind:

(
τN

s

)2
νs +

∞∑

n=−∞
wN

snνn = gs; s = 0, ± 1, ± 2... (2.375)
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Here,

τN
s = τs

[
1 −Φsign (n) /τ2

n

]1/2 =
{

1; n = 0

τn
[
1 −Φ/n

]1/2 ; n = ±1, ± 2,...
,

(2.376)

wN
sn = 2KN

s,−n. (2.377)

Values τN
s > 0 for any s = 0,±1,±2,. . ., due to the same reason as τD

s > 0 (see
the previous section), and τN

n = O (|n|) for n→±∞. The last means evidently that
equation (2.375) is one of the first kind in space l2, where its matrix operator is
unbounded.

The analytic regularization of equation (2.375) is trivial now. Indeed, let us define
vector columns

�v =
{�vn

}∞
n=−∞ ; �vn = τN

n νn, �g =
{�gs

}∞
s=−∞ ; �gs = gs/τ

N
s (2.378)

and matrix operator

�
WN =

{�wsn

}∞
s,n=−∞ ; �wsn = (τN

s τN
n

)−1
wN

sn, (2.379)

and divide each equation (2.375) by τN
s . As the result, we obtain an algebraic

equation in l2 of the kind

[
E + �

WN
]�ν = �g ; �ν , �g ∈ l2. (2.380)

It can be shown that

∞∑

s=−∞

∞∑

n=−∞
(1 + |s|) (1 + |n|) ∣∣wN

sn

∣∣2 < ∞. (2.381)

It is noteworthy that matrix operator for
�
WN satisfies exactly the same inequality

(2.381) as matrix operator
�
WD does – see (2.351).

Thus, the Neumann BVP considered is reduced to the infinite algebraic sys-
tem (2.380), which forms functional equation of the second kind in space l2 with

compact in l2 operator
�
WN .

We wish to emphasize again that more complicated transmission BVP can be
solved in similar way.



Chapter 3
C-Method: From the Beginnings to Recent
Advances

Abstract C-method – is simple and rather clear for code implementation and it
enables to resolve efficiently diverse applied problems of optics and spectroscopy.
Although the method cannot be treated as completely mathematically rigorous, in
the case when the principal characteristics of grating are required, the C-method
provides the data of applied interest with engineering accuracy.

In this chapter the principal ideas making the background of classical C-method
and its latest modifications have been described concisely. The physical results
demonstrating the considerable potentialities of the method for resolving actual
fundamental and applied problems of electromagnetic theory of gratings are also
presented.

3.1 Introduction

The C-method was developed in the 1980s in Clermont-Ferrand, France, from the
need to solve rigorously diffraction problems at corrugated periodic surfaces in the
resonance regime. The main difficulty of such problems is the matching of bound-
aries conditions. It is obvious that any method aimed at solving Maxwell’s equation
is all the more efficient since it is able to fit the geometry of the problem. For that
purpose, J. Chandezon et al. [151, 152] introduced the so-called translation coor-
dinate system u, v, w deduced from the Cartesian coordinate system x, y, z by
the relations u = x, v = y, and w = z − f (y), where z = f (y) is a continu-
ously differentiable function describing the surface profile. Since the boundary of
the physical problem coincides with coordinate surface w = 0, writing boundary
conditions is as simple as it is for classical problems in Cartesian, cylindrical, or
spherical coordinates. This is the first ingredient of C-method. The second one is to
write Maxwell’s equation under the covariant form. This formulation comes from
relativity where the use of curvilinear nonorthogonal coordinate system is essential
and natural. The main feature of this formalism is that Maxwell’s equations remain
invariant in any coordinate system, the geometry being shifted into the constitutive
relations. J. Chandezon et al. derived their 3-D formulation from the general 4-D

173Y.K. Sirenko, S. Ström (eds.), Modern Theory of Gratings, Springer Series in Optical
Sciences 153, DOI 10.1007/978-1-4419-1200-8_3,
C© Springer Science+Business Media, LLC 2010
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relativistic Post’s formalism [153] and evidently used tensorial calculus. Although
it is with no doubt the most elegant and efficient way to deal with electromag-
netic field in general curvilinear coordinates it is also probably the reason why the
theory appeared difficult to understand to many scientists. The third ingredient of
C-method is that it is a modal method. This nice property is linked with the transla-
tion coordinate system in which a grating diffraction problem may be expressed as
an eigenvalue–eigenvector problem with periodic boundary conditions. The last fea-
ture of C-method is that it is a numerical method. The matrix operator is obtained by
expanding field components into Floquet–Fourier or spatial harmonics and by pro-
jecting Maxwell’s equations onto quasi-periodic exponential functions. The above
four features may be resumed by saying that C-method is a curvilinear coordinate
modal method by Fourier expansion.

Since the original papers, the C-method has gone through many stages of exten-
sion and improvement. The original theory was formulated for uncoated perfectly
conducting gratings in classical mount. Various authors extended the method to con-
ical diffraction mountings [154–156]. G. Granet et al. [157], T.W. Preist et al. [158],
and L. Li et al. [159] allowed the various profiles of a stack of gratings to be dif-
ferent from each other, although keeping the same periodicity. Solving the vertical
faces case in a simple manner, J.P. Plumey et al. [160] have showed that the method
can be applied to overhanging gratings. T.W. Preist et al. obtained the same results
by applying the usual coordinate transformation to oblique coordinates [161]. In the
numerical context, L. Li [162] and N.P.K. Cotter et al. [163] improved the numerical
stability of the C-method by using the S-matrix propagation algorithm for multilayer
gratings.

It is seen that C-method has been applied to a large class of surface relief gratings
and multilayer coated gratings. In this chapter, we concentrate on two main points.
On the one hand, we present C-method in a simple way without tensorial calculus
and on the other hand, we show that the motivation for choosing a coordinate system
may be dictated by other reasons than pure geometrical ones. It may be a rather
simple tool to improve effectiveness of existing methods.

Sections 3.2 and 3.3 of this chapter are devoted to the presentation of C-method in
an easy understandable way so that it can become more useful to a large community.

Section 3.4 considers parametric C-method and adaptive spatial resolution.
The subject of Section 3.5 is to show how the ideas of the C-method can be

applied to perfectly conducting curved strip gratings.
In Section 3.6, we discuss several mathematical issues concerning the C-method

that are in the focus of the present book: the continuation of diffraction problems
into the complex plane of frequency parameters and a comparative investigation of
diffraction and spectral problems.

3.2 Classical C-Method

In this section, we introduce all the steps of the C-method from the change of coor-
dinates to the formulation in terms of an eigenvector–eigenvalue problem and its



3.2 Classical C-Method 175

numerical solution in truncated Fourier space. We assume a time dependence of
exp (−ikt), k = 2π

/
λ, λ is the wavelength in a free space, t is the time parameter –

it is the product of the natural time and the velocity of the propagation of light in
vacuum. The problem of finding the electromagnetic field in a source-free, homo-
geneous, isotropic region is solved once general solutions to the scalar Helmholtz
equation are known. The main feature of C-method is to make surfaces of break
of properties of medium coincide with coordinate surfaces. Therefore the solution
of a modulated surface diffraction problem with C-method shares many common
steps with the solution of a similar planar problem. In the next sections we will
solve Helmholtz equation in Cartesian coordinates and in translation coordinates.
For simplicity, we restrict our analysis to two-dimensional problems (∂/∂x = 0).

3.2.1 Modal Equations in Cartesian Coordinates and
Quasi-periodic Green Function

In Cartesian coordinates and in a medium with the relative complex-valued per-
mittivity ε̃, the E- and H-polarized quasi-periodic (with respect to y-axis) fields
described by the following boundary value problem in Floquet channel R ={
g ∈ R2: 0 < y < l

}
[see also formula (1.20)]:

⎧
⎨

⎩

[
∂2

∂y2 + ∂2

∂z2 + ε̃k2
]

Ũ (g,k) = f̃ (g,k) ; g = {y,z} ∈ R

Ũ
{

∂ Ũ
∂ y

}
(l,z,k) = e2πiΦŨ

{
∂ Ũ
∂ y

}
(0,z,k)

. (3.1)

Here, Φ is some real-valued parameter (Floquet channel parameter), Ũ = Ẽx for
E-polarization (Ẽy = Ẽz = H̃x = 0) and Ũ = Ẽx for H-polarization (H̃y = H̃z =
Ẽx = 0), �E = {Ẽx,Ẽy,Ẽz

}
, and �H = {H̃x,H̃y,H̃z

}
are the vectors of electromagnetic

field (factor exp (−ikt) is omitted). Within the strip R the support of function

f̃ (g,k) : f̃

{
∂ f̃

∂ y

}

(l,z,k) = e2πiΦ f̃

{
∂ f̃

∂ y

}

(0,z,k) , (3.2)

that gives current sources of the field, is bounded.
Let f̃ (g,k) ≡ 0. Then general solution to the problem (3.1) and (3.2) can be

presented (see Section 1.1.4) in the form

Ũ (g,k) = Ũ+ (g,k) + Ũ− (g,k) , (3.3)

where

Ũ± (g,k) =
∞∑

n=−∞

{
A+

n (k)
A−

n (k)

}
ei[Φny±Γnz]; Φn = 2π (Φ+ n)

/
l, Γn =

√
k2ε̃−Φ2

n,

Re Γn Re k ≥ 0, Im Γn ≥ 0. (3.4)



176 3 C-Method: From the Beginnings to Recent Advances

Relations (3.3) and (3.4) are derived by the means of separation of variables in
the problem (3.1). The orthonormal (at the interval [0;l]) system {μn (y)}∞n=−∞ of
the transversal functions μn(y) = l−1/2 exp (iΦny), complete in the space L2 (0;l),
is determined by nontrivial solutions to the homogeneous (spectral) problem

⎧
⎪⎪⎨

⎪⎪⎩

[
d2

dy2 +Φ2
n

]
μn (y) = 0; 0 < y < l

μn

{
dμn
dy

}
(l) = e2πiΦμn

{
dμn
dy

}
(0)

, (3.5)

while the spatial amplitudes {un (z)}∞n=−∞: un (z) = exp (±iΓnz) of the field Ũ (g,k)
are given by the solutions of the following differential equations:

[
∂2

∂z2
−Φ2

n + k2ε̃

]
un (z) = 0, n = 0, ± 1, ± 2,... (3.6)

The word “orthonormal” relative to the system {μn (y)}∞n=−∞ means that

〈μn,μm〉 =
l∫

0

μn (y)μ∗
m (y) dy =

{
0; n �= m
1; n = m

. (3.7)

The relations (3.4) are called Rayleigh expansions and the Γn are referred to as
Rayleigh eigenvalues. Since the eigenvalues are deduced from their squared number,
there are two sets of modes, the number of which are equal: those propagating or
decaying in the positive direction of z and those propagating or decaying in the oppo-
site direction. We denote these modes by the superscripts + (plus) and − (minus),
respectively. Hence, A+

n (k) and A−
n (k) are constant modal-field amplitudes that cor-

respond to forward and backward waves, respectively. In the context of concrete
boundary value problem, such amplitudes are determined from boundary condi-
tions. Unfortunately, expansions of (3.4) type do not allow to calculate Rayleigh
coefficients A+

n (k) and A−
n (k) directly from boundary conditions when they have to

be written at some modulated surface. This is the reason why we are seeking other
expansions and other approaches for their realization.

In the case that the field is radiated by a known quasi-periodic distribution of
sources, it may be calculated with the help of Green function G̃0 (g,g0,k,Φ), which
is the solution of the problem (3.1) with

f̃ (g,k) = δ (z − z0)

∞∑

n=−∞
δ (y − y0 − nl) e2πinΦ; 0 ≤ y0 < l, (3.8)

where δ (...) is the δ-Dirac function. In addition to (3.1), G̃0 (g,g0,k,Φ) has to satisfy
the radiation conditions for z → ±∞ – only outgoing waves may participate in
Fourier series expansion
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G̃0 (g,g0,k,Φ) =
∞∑

n=−∞
gn (z) eiΦny.

It can be proved (see, for example [10]), that function

G̃0 (g,g0,k,Φ) = − i

2 l

∞∑

n=−∞
ei[Φn(y−y0)+Γn|z−z0|]Γ−1

n . (3.9)

meets all above-mentioned conditions.

3.2.2 New Coordinate System

In Euclidean space with origin in zero and basis vectors �x, �y, and �z, let us consider an
infinite cylindrical surface Sε,μ,σ whose generatrices are parallel to the x-axis. This
surface separates two linear homogeneous and isotropic media denoted I and II. In
Cartesian coordinates x, y, z, such a surface can be described by equation z = f (y).
Any electromagnetic field interacting with this particular geometry obstacle satisfies
some boundary conditions. For instance, the tangential (relative to Sε,μ,σ) compo-
nents of the electric field vector and the magnetic field vector are continuous at
the surface. The point is that boundary conditions involve quantities that obviously
depend on the position at which they are considered on the surface. We are thus led
to think about a coordinate system that fit the problem and make it more readily sol-
uble than it is in Cartesian coordinates framework. One such system is the so-called
translation coordinate system u, v, w introduced by J. Chandezon and defined from
the Cartesian coordinate system x, y, z by the direct and inverse transformations

u = x, v = y, w = z − f (y) (3.10)

and

x = u, y = v, z = w + f (y) . (3.11)

It makes the surface Sε,μ,σ coincide with the coordinate surface w = 0. A point
p = {x,y,z = f (y)} on the surface Sε,μ,σ is now referenced by the triplet ptr =
{u,v,0}. The coordinate surface w = const is obtained by translating each point
on surface Sε,μ,σ with vector w�z, hence the name given by J. Chandezon to this
particular coordinate system: translation coordinate system. The Jacobian matrices
of the inverse and direct transformation are inverse one of the other. Let us denote
by J the Jacobian matrix of the direct transformation. Then
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J = ∂(x,y,z)

∂(u,v,w)
=

⎡

⎢⎢⎢
⎢⎢⎢
⎣

∂x

∂u

∂x

∂v

∂x

∂w
∂y

∂u

∂y

∂v

∂y

∂w
∂z

∂u

∂z

∂v

∂z

∂w

⎤

⎥⎥⎥
⎥⎥⎥
⎦

=
⎡

⎣
1 0 0
0 1 0
0 f ′ 1

⎤

⎦ (3.12)

and

J−1 = ∂(u,v,w)

∂(x,y,z)
=

⎡

⎢⎢
⎢⎢⎢⎢
⎣

∂u

∂x

∂u

∂y

∂u

∂z
∂v

∂x

∂v

∂y

∂v

∂z
∂w

∂x

∂w

∂y

∂w

∂z

⎤

⎥⎥
⎥⎥⎥⎥
⎦

=
⎡

⎣
1 0 0
0 1 0
0 −f ′ 1

⎤

⎦ . (3.13)

Here and below, f ′ = df (y)
/

dy.

3.2.3 Modal Equation in the Translation Coordinate System

In this section, we derive the main operator of C-method by following the same
steps as in [164]. The new coordinates u, v, w are linked to the Cartesian coordinates
x, y, z by the transformation that may be considered as a change of variable. For the
change of variables u = x, v = y, w = z − f (y) the rule of chain for derivatives has
the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂x
= ∂u

∂x

∂

∂u
+ ∂v

∂x

∂

∂v
+ ∂w

∂x

∂

∂w
= ∂

∂u

∂

∂y
= ∂u

∂y

∂

∂u
+ ∂v

∂y

∂

∂v
+ ∂w

∂y

∂

∂w
= ∂

∂v
− f ′ ∂

∂w

∂

∂z
= ∂u

∂z

∂

∂u
+ ∂v

∂z

∂

∂v
+ ∂w

∂z

∂

∂w
= ∂

∂w

. (3.14)

Substituting derivatives (3.14) into the homogeneous (f̃ (g,k) ≡ 0) problem (3.1)
gives

[
∂2

∂v2
− ∂

∂v
f ′ ∂

∂w
− f ′ ∂

∂w

∂

∂v
+
[
1 + (f ′)2

] ∂2

∂w2
+ k2ε̃

]
Ũtr (gtr,k) = 0,

gtr = {v,w} ∈ Rtr = {gtr: 0 < v < l} , (3.15)

Ũtr (l,w,k) = e2πiΦŨtr (0,w,k) and

[
∂

∂v
− f ′ ∂

∂w

]
Ũtr (v,w,k)

∣
∣∣∣
v=l

= e2πiΦ
[

∂

∂v
− f ′ ∂

∂w

]
Ũtr (v,w,k)

∣
∣∣∣
v=0

.
(3.16)
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Let Ũ (g,k) = Ũ+ (g,k) + Ũ− (g,k) be a general solution of (3.1) (see formula
(3.4)). Substituting in it y for v, and z for w + f (v), we obtain

Ũ (gtr,k) = Ũ+ (gtr,k) + Ũ− (gtr,k) , (3.17)

where

Ũ± (gtr,k) =
∞∑

n=−∞

{
A+

n (k)
A−

n (k)

}
ei[Φnv±Γn(w+f (v))]; Φn = 2π (Φ+ n)

/
l,

Γn =
√

k2ε̃−Φ2
n, Re Γn Re k ≥ 0, Im Γn ≥ 0. (3.18)

Functions (3.17) and (3.18) give the general solution to problem (3.15) and
(3.16). It is not difficult to check that each component of this solution respondent to
any index n satisfies the boundary conditions at the walls v = 0 and v = l of the
Floquet channel Rtr. Indeed, if in (3.17) one replaces values ±Γn for arbitrary values
Γ±

n,N these conditions are still valid. But expansions (3.18) are infinite and one may
wonder if they are still valid when only a finite number of spatial Fourier harmonics
is retained. In other words, is Ũ (gtr,k), as expressed by (3.17) and (3.18), with n
running from −N to N, where N is some integer, still a solution of (3.15) and (3.16)
when Γ2

n + Φ2
n = k2ε̃? The response is negative, but elementary quasi-periodical

“solutions” to (3.15) do exist

Ũ±
n (gtr;N) = Vn (v;N) W±

n (w;N) , W±
n (w;N) = exp

[
iΓ±

n,Nw
]

,

Vn (v;N) =
N∑

m=−N

vnmμm (v) , μn (v) = l−1/2 exp (iΦnv) ,

Φn = 2π (Φ+ n)
/

l. (3.19)

Functions Ũ±
n (gtr;N) from (3.19) do not meet the second boundary condition

from (3.16), but with N increasing this discrepancy decreases and Γ±
n,N → ±Γn.

The solution to the spectral problem

[(
∂2

∂v2 + k2ε̃
)

0

0 1

][
V (v)
ΓV (v)

]
= Γ

[
i
(
f ′ ∂

∂v + ∂
∂v f ′
) +
[
1 + (f ′)2

]

1 0

][
V (v)
ΓV (v)

]

(3.20)

brings the proof of this statement. We derive the homogeneous functional equation
(3.20) from (3.15) by substituting the unknown function in the form

Ũ (gtr) = V (v) exp (iΓw) , V (v) =
N∑

m=−N

vmμm (v) . (3.21)
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In terms of Fourier coefficients v = {vm}N
m=−N of unknown function V (v) the

problem (3.20) can be reduced to the following matrix form:

[
k2ε̃E − EΦEΦ 0

0 1

] [
v
Γv

]
= Γ

[−F′EΦ − EΦF′ E + F′F′
1 0

] [
v
Γv

]
. (3.22)

Here, E is identity matrix, EΦ = {Φnδ
n
m

}N
n,m=−N , F′ = {f ′nm

}N
n,m=−N – is

the Toeplitz matrix formed by the Fourier coefficients of f ′ (v) according to the
following rule:

f ′nm =
l∫

0

f ′ (v)ei(Φn−Φm)vdv. (3.23)

In the above relations, we have added a number N to indicate the truncation
dependence. Indeed, in practice, the truncation number in (3.22) has to be chosen
large enough so that the computed eigenvalues Γ±

n,N that respond to eigenvectors
v±n = {vnm}N

m=−N coincide with a great accuracy with their Rayleigh counterparts
±Γn. In that case, provided that the eigenvalue is not degenerated, up to a multi-
plicative constant coefficient, the associated computed eigenvector Ũ±

n (gtr;N) tend
to the corresponding plane wave expressed in terms of variables v and w.

In conclusion, we may write the common solution of the propagation equation in
translation coordinates and in truncated Fourier space as

Ũ (gtr,k;N) = Ũ+ (gtr,k;N) + Ũ− (gtr,k;N) ;

Ũ± (gtr,k;N) =
N∑

n=−N

{
A+

n (k)
A−

n (k)

}
exp
[
iΓ±

n,Nw
] N∑

m=−N

v±nmμm (v) , (3.24)

or, in matrix form, as

Ũ (gtr,k;N) = γ+ (w) V+μ (v) + γ− (w) V−μ (v) . (3.25)

Here, V± = {
v±nm

}N
n,m=−N is the (2N + 1) × (2N + 1) matrix, μ (v) =

{μm (v)}N
m=−N the (2N + 1) × 1 matrix (column vector), and γ± (w) =

{
A±

n exp
(
iΓ±

n,Nw
)}N

n=−N
the 1 × (2N + 1) matrix (row vector).

3.3 Diffraction of a Plane Wave by a Modulated Surface Grating

3.3.1 Formulation of the Problem

In Cartesian coordinates x, y, z, we consider an infinite cylindrical surface Sε,μ,σ

(or S) whose generatrices are parallel to the x-axis and give in the crossing with the
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plane x = 0 the line z = f (y): max f (y) = 0, min f (y) = −h. The periodic
function f (y) of period l is assumed to be continuously differentiable. Surface Sε,μ,σ

separates an air and a homogeneous isotropic medium with relative permittivity ε̃.
The particular case when the cylindrical surface is the perfectly conducting surface S
will also be considered. Let one of these surfaces be illuminated from air with a unit
amplitude monochromatic plane wave Ũi

0 (g,k) = exp
[
i (Φ0y − Γ0z)

]
, Im Γ0 = 0

of wavelength λ = 2π
/

k. The Cartesian components of vector �k are

ky = k sin αi
0 and kz = −k cos αi

0, αi
0 = arcsin

(
Φ0
/

k
)

. (3.26)

Since the incident plane wave and the geometry of the system are x invariant,
Maxwell’s equations for total field

{�E, �H} are split into two independent systems of
equations with unknown functions Ẽx, H̃y, H̃z and H̃x, Ẽy, Ẽz, respectively. In grating
theory these two sets are referred to as E- and H-polarization set, respectively. They
are given below for the nonmagnetic medium (see also Section 1.1.1):

∂Ẽx

∂z
= ikη0H̃y,

∂Ẽx

∂y
= −ikη0H̃z,

∂H̃z

∂y
− ∂H̃y

∂z
= −ikε̃η−1

0 Ẽx (3.27)

(E-polarized field) and

η0
∂H̃x

∂z
= −ikε̃Ẽy, η0

∂H̃x

∂y
= ikε̃Ẽz,

∂Ẽz

∂y
− ∂Ẽy

∂z
= ikη0H̃x (3.28)

(H-polarized field). Here η0 = (μ0/ε0)1/2 is the free space impedance, ε0 and μ0
are electric and magnetic vacuum constants, respectively.

It is elementary to show that Ẽx and H̃x obey the same Helmholtz equation:

(
∂2

∂y2
+ ∂2

∂z2
+ k2ε̃

)
Ũ (g,k) ≡

(
Δy,z + k2ε̃

)
Ũ (g,k) = 0, g = {y,z} , (3.29)

where Ũ (g,k) designates Ẽx or H̃x (accordingly, Ũi
0 (g,k) = Ẽi

x or Ũi
0 (g,k) = H̃i

x).
In order to write easily boundary condition we move to the translation coordinate
system u, v, w [see (3.10), (3.11), (3.12), (3.13), and (3.14)] where we have derived
the expression of Ũ (gtr,k), gtr = {v,w}, in terms of a linear combination of eigen-
vectors of a finite-size matrix, the amplitude coefficients of which have to calculated
from the boundary conditions at surface Sε,μ,σ (or S). Boundary conditions involve
the tangential components of vector fields �E and �H. So far, for E-polarization,
(respectively, for H-polarization) we have the tangential component of electric field
(respectively, magnetic field). The subject of next section is the derivation of the
missing tangential components.
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3.3.2 Tangential Component of a Vector Field at a Coordinate
Surface

Let �V (p), p = {x,y,z}, be a vector field with components Vx, Vy, Vx. The tangential
components of �V (p) at point ps on coordinate surface are the perpendicular projec-
tions of �V (ps) onto this surface. At this point, the unit vectors of the tangent to the
curve z = f (y) are �x and �η = �y cos ϕ+ �z sin ϕ with

tgϕ = f ′, cos ϕ = 1
√

1 + (f ′)2
, sin ϕ = f ′

√
1 + (f ′)2

.

Then the two tangential components of �V (p) at point ps are Vx and Vη = (�V · �η).
The first one corresponds to the only component of the vector �V (p), whereas the
other one mixes components Vy and Vz:

Vη = Vy cos ϕ+ Vz sin ϕ = 1
√

1 + (f ′)2
(
Vy + f ′ Vz

)
. (3.30)

In practice, it is more suitable to introduce another quantity proportional to Vη

W̃ = Vη

√
1 + (f ′)2 = Vy + f ′ Vz. (3.31)

In tensorial formulation of C-method, the W̃-function is a covariant component
of the electric or magnetic field. We have to express Vy and Vz in terms of Ũ (g,k).
Consider E-polarization. Then Ũ (g,k) is Ẽx, while Vy and Vz [see (3.30) and (3.31)]
are H̃y and H̃z, respectively. Starting from Maxwell’s equations [see (3.27) and
(3.28)] and using chain rules for partial derivatives (3.14), we get:

W̃ = H̃y + f ′ H̃z = − i

kη0

∂Ẽx

∂z
+ i

kη0
f ′ ∂Ẽx

∂y
=

= − i

kη0

[
∂

∂w
− f ′

(
∂

∂v
− f ′ ∂

∂w

)]
Ẽx (v,w) .

(3.32)

Similar expression holds for H-polarization:

W̃ = Ẽy + f ′ Ẽz = iη0

kε̃

[
∂

∂w
− f ′
(

∂

∂v
− f ′ ∂

∂w

)]
H̃x(v,w). (3.33)

Taking into account the modal expansion (3.25) for Ũ (gtr,k;N), W̃ may be
written under the form:

W̃ = W̃ (gtr,k;N) = a
[
γ+ (w) Ṽ+μ (v) + γ− (w) Ṽ−μ (v)

]
. (3.34)
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Here (see also Section 3.2.3),

Ṽ± = {ṽ±nm

}N
n,m=−N = E±

Γ V± (E + F̃′F̃′)− V±EΦF̃′, (3.35)

EΦ = {
Φnδ

n
m

}N
n,m=−N and E±

Γ = {
Γ±

n,Nδn
m

}N
n,m=−N

are the diagonal matrices,

V± = {
v±nm

}N
n,m=−N is the (2N + 1) × (2N + 1) matrix, μ (v) =

{μm (v)}N
m=−N the (2N + 1) × 1 matrix, γ± (w) = {A±

n exp
(
iΓ±

n,Nw
)}N

n=−N
the

1 × (2N + 1) matrix, and F̃′ =
{

f̃ ′nm

}N

n,m=−N
the (2N + 1) × (2N + 1) matrix

with the elements

f̃ ′nm =
l∫

0

f ′ (v)ei(Φm−Φn)vdv = f ′mn,

a = (kη0)
−1 for E-polarized field and a = −η0 (kε̃)−1 for H-polarized field.

3.3.3 Boundary Conditions

Since we have modal expansions in truncated Fourier space for every tangential
components in medium I and II, writing boundary conditions at coordinate surface
w = const (see Section 1.1.2) is elementary. In the previously derived expressions,
we add an index I or II to indicate the medium. Boundary conditions at Sε,μ,σ (the
boundary between free space and medium with the permittivity ε̃) or at S (the bound-
ary of the perfect conductor), we write [see formulas (3.32), (3.33), (3.34), and
(3.35)] in such a form:

{
ŨI (gtr,k;N) = ŨII (gtr,k;N)

W̃I (gtr,k;N) = W̃II (gtr,k;N)

∣∣∣∣
gtr∈Sε,μ,σ

and (3.36)

ŨI (gtr,k;N) = 0
∣∣∣
gtr∈S

(3.37)

for E-polarization, and

{
ŨI (gtr,k;N) = ŨII (gtr,k;N)

W̃I (gtr,k;N) = W̃II (gtr,k;N)

∣∣∣∣
gtr∈Sε,μ,σ

and (3.38)

W̃I (gtr,k;N) = 0
∣∣∣
gtr∈S

(3.39)

for H-polarization.
From relations (3.36), (3.37), (3.38), and (3.39), we may calculate the scattering

matrices
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Sε,μ,σ =
[

S11 S12
S21 S22

]
and S = S11 (3.40)

for boundaries Sε,μ,σ and S, respectively. These matrices defined in the following
way:

[
A+

I
A−

II

]
=
[

S11 S12
S21 S22

] [
A−

I
A+

II

]
and A+

I = SA−
I . (3.41)

Here, A±
I = {A±

n (I)
}N

n=−N and A±
II = {A±

n (II)
}N

n=−N are the (2N + 1) × 1
matrices (column vectors).

The result is

Sε,μ,σ =
[

V+
T (I) − V−

T (II)
Ṽ+

T (I) − bṼ−
T (II)

]−1 [−V−
T (I) V+

T (II)
−Ṽ−

T (I) bṼ+
T (II)

]
and

S = − [V+
T (I)
]−1

V−
T (I) (E − case) or

S = − [Ṽ+
T (I)
]−1

Ṽ−
T (I) (H − case). (3.42)

Here, V±
T and Ṽ±

T are the transposed matrices V± and Ṽ± (see the previous
section), b = 1 for E-polarized field and b = ε̃−1 for H-polarized field.

Let us recall that in presentation (3.24) for total field Ũ (gtr,k;N) the components
Ũ±

n (gtr,k;N) = A±
n exp

[
iΓ±

n,Nw
]

Vn (v;N), n = 0, ± 1,...., ± N describe the plane
waves propagating without (Im Γ±

n = 0) or with (Im Γ±
n > 0) decay toward increas-

ing (sign +) or decreasing (sign –) values of w, then we can see clearly that formulas
(3.40), (3.41), and (3.42) give the most complete solution to the problem, connected
with determination of diffraction characteristics of the surfaces Sε,μ,σ and S.

In this solution by wavepackets,
{
A−

n (I) exp
[
i (Φny − Γnz)

]}N
n=−N , z > 0

(domain A), and
{
A+

n (II) exp
[
i (Φny + Γn (z + h))

]}N
n=−N , (domain B), are

defined the waves coming onto the boundary z = f (y) from above and
from below. By wavepackets,

{
A+

n (I) exp
[
i (Φny + Γnz)

]}N
n=−N , z > 0 and

{
A−

n (II) exp
[
i (Φny − Γn (z + h))

]}N
n=−N , z < − h, are defined the scattered field

in reflection (domain A) and transmission (domain B) domains of periodic structure.
In the case when A−

n (I) = δn
0 and A+

n (II) = 0 for all n = 0,±1,....,±N, we arrive
to the problem formulated in Section 3.3.1. Complex amplitudes A+

n (I) = RAA
n0 and

A−
n (II) = TBA

n0 , that are the solutions to it, are called conventionally coefficients of
reflection and transition, respectively.

3.4 Adaptive Spatial Resolution

Among the existing grating methods the C-method and the modal method by Fourier
expansion (MMFE) are certainly the simplest because they involve only elementary
mathematics and numerical techniques. Indeed, the solution of Maxwell’s equations
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is reduced to the solution of an algebraic eigenvalue problem in discrete Fourier
space. The derivation of the matrix operator involves two steps: the electromag-
netic field is expanded into Floquet–Fourier series and the periodic coefficients of
boundary value problem for Maxwell’s equations are expanded into Fourier series.
In the MMFE, the periodic coefficient is the permittivity function, whereas in the C-
method it is the derivative of the grating profile function. When the above-mentioned
functions are discontinuous, the Fourier method is known to converge slowly. In the
MMFE, this happens with high-contrast permittivity profiles and in the C-method
with profiles that have sharp edges. This weakness remains even when the correct
Fourier factorization of products of discontinuous periodic functions, as given by
L. Li, is applied. The reason for slow convergence is that the spatial resolution of the
Fourier expansion remains uniform within a grating period whatever the permittivity
or the grating profile function may be. In this section, we overcome this limitation
by choosing a coordinate system in such a way that the mapping of space fits the
variation of the periodic function of interest. Then, the matrix operator takes into
account the new information, and truly dramatic improvement of the convergence
rate is achieved [165–167]. So, a new reason for choosing new coordinates is to real-
ize adaptive spatial resolution. We will show the effectiveness of this new approach
by considering a trapezoidal grating modeled with C-method and a lamellar grating
with high-contrast permittivity function modeled with MMFE.

We consider the electromagnetic problem in which a grating, periodic in the
y-direction, is illuminated from above by a linear polarized monochromatic plane
wave with vacuum wavelength λ and wave number k = 2π

/
λ. The incident

medium is assumed to be air, and the wave vector inclined at αi
0 to the z-axis

has the following Cartesian components: ky = k sin αi
0 and kz = −k cos αi

0. Time
dependence is expressed by the factor exp (−ikt). Such a problem is reduced to
the study of the two fundamental cases of polarization, and the unknown function
Ũ (g,k), g = {y,z}, is the x-component of the electric or the magnetic field for E- and
H-polarization, respectively.

3.4.1 Trapezoidal Grating

We have believed for a long time that sharp edges were an intrinsic limitation of
the C-method. Here we present the contrary example. The chosen grating is shown
in Fig. 3.1. Its profile function z = f (y) is described by five parameters: period l,
groove depth h, and the abscissas of three vertices, assuming that one of the lower
vertices is located at the origin of the rectangular Cartesian coordinate system. The
slow convergence observed for deep gratings can be easily understood from the
following simple explanation. When the slope of f (y) becomes steeper, the portion
of the graph of f ′ (y) that corresponds to the slope becomes narrower and taller
(or deeper). Therefore, the accurate representation of f ′ (y) requires more and more
terms of the Fourier series. Since f ′ (y) is an intrinsic characteristic of the profile,
the only way to make its spectrum narrower is to modify the representation of y by
introducing a new function y = g (v) : g (0) = 0, g (l) = l. Let us present the
coordinate y as a function of v and denote the transition points by yp in the y-space
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0 y1 y2 y3 l
y

z

h

z = f (y)

Fig. 3.1 Trapezoidal grating

and by vp in v-space. Between transitions p and p− 1, we use the function yp (v) for
the mapping between spaces:

yp(v) = yp−1 + yp − yp−1

vp − vp−1

[

1 − η
vp − vp−1

2π
sin

2π
(
v − vp

)

vp − vp−1

]

; p = 1,2,3,4.

(3.43)

The distance between two transition points in v-space is proportional to the length
of the corresponding facet:

vp − vp−1 = Lp

L
; p = 1,2,3,4, (3.44)

where Lp is the length of the pth facet and L is the total length of the surface profile,
L = L1 + L2 + L3 + L4. Function z (v) becomes:

z1(v) = h

v1
y1(v), z2 (v) = h, z3 (v) = h − h

v3 − v2
y3(v), z4 (v) = 0. (3.45)

The η parameter between 0 and 1 controls the density of coordinate lines around
the transition points. It allows to stretch space thinner where discontinuities of
coefficients in Maxwell’s equations occur.

Let us now derive the new propagation equations when the translation coordinate
system is obtained by

x = u, y = g(v), z = w + h(v), h (v) = f
[
g (v)
]

. (3.46)

The Jacobian matrices of the direct transformation and of the inverse transforma-
tion are
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J = ∂(x,y,z)

∂(u,v,w)
=

⎡

⎢⎢⎢⎢
⎢
⎣

∂x

∂u

∂x

∂v

∂x

∂w
∂y

∂u

∂y

∂v

∂y

∂w
∂z

∂u

∂z

∂v

∂z

∂w

⎤

⎥⎥⎥⎥
⎥
⎦
=
⎡

⎣
1 0 0
0 g′ 0
0 h′ 1

⎤

⎦ (3.47)

and

J−1 = ∂(u,v,w)

∂(x,y,z)
=

⎡

⎢⎢⎢⎢⎢
⎣

∂u

∂x

∂u

∂y

∂u

∂z
∂v

∂x

∂v

∂y

∂v

∂z
∂w

∂x

∂w

∂y

∂w

∂z

⎤

⎥⎥⎥⎥⎥
⎦
=
⎡

⎢
⎣

1 0 0

0
(
g′
)−1 0

0 −h′
(
g′
)−1 1

⎤

⎥
⎦ ,

(
g′
)−1 = 1

/(
∂g (v)

/
∂v
)
. (3.48)

For the change of variables (3.46), (3.47), and (3.48), the rule of chain for
derivatives has the form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂

∂x
= ∂u

∂x

∂

∂u
+ ∂v

∂x

∂

∂v
+ ∂w

∂x

∂

∂w
= ∂

∂u

∂

∂y
= ∂u

∂y

∂

∂u
+ ∂v

∂y

∂

∂v
+ ∂w

∂y

∂

∂w
= (g′)−1 ∂

∂v
− h′
(
g′
)−1 ∂

∂w

∂

∂z
= ∂u

∂z

∂

∂u
+ ∂v

∂z

∂

∂v
+ ∂w

∂z

∂

∂w
= ∂

∂w

. (3.49)

Substituting these derivatives into the homogeneous (f̃ (g,k) ≡ 0) equation of
problem (3.1) gives

{[
(
g′
)−1 ∂

∂v

]2

+
[

h′
(
g′
)−1 ∂

∂w

]2

+ ∂2

∂w2
− (g′)−1 ∂

∂v
h′
(
g′
)−1 ∂

∂w
−

−h′
(
g′
)−1 ∂

∂w

(
g′
)−1 ∂

∂v
+ k2ε̃

}
Ũ (gtr,k) = 0, gtr = {v,w} .

(3.50)

Starting from (3.50) we may iterate all operations carried out in Sections 3.2.3
and 3.3 and construct the effective algorithm for calculation of the diffraction
characteristics of the considered periodic surface. The crucial stage in construc-
tions of this kind is the conversion of the new propagation equations in translation
coordinates [see, for example, (3.50)] to the spectral problems for eigenvectors
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Ũ (gtr) = V (v) exp (iΓw) , V (v) =
N∑

m=−N

vmμm (v) (3.51)

and eigenvalues Γ in truncated Fourier space. In case under consideration such a
problem may be produced in the following form:

Γ

⎡

⎣ i

((
g′
)−1 ∂

∂v
h′
(
g′
)−1 + h′

(
g′
)−1 (

g′
)−1 ∂

∂v

) ([
h′
(
g′
)−1
]2 + 1

)

1 0

⎤

⎦×

×
[

V (v)
ΓV (v)

]
=
⎡

⎢
⎣

([(
g′
)−1 ∂

∂v

]2

+ k2ε̃

)

0

0 1

⎤

⎥
⎦

[
V (v)
ΓV (v)

]
.

(3.52)

In order to illustrate the improvement in terms of convergence rate of the present
formulation compared with the usual one, let us consider the following grating
configuration: h = l = 2λ, y1 = 0.25λ, y2 = λ, y3 = 1.25λ, αi

0 = 45◦,
ε̃ = (0.3 + i7.0)2. The η parameter is set to zero. Figure 3.2 shows the convergence
of the specularly reflected order in H-polarization versus the inverse of truncation
order when classical formulation is used and when the distance between transition
points in the transformed coordinates is proportional to the length of the facets. The
improvement of convergence with the new formulation is remarkable. We suggest
a geometrical interpretation. Suppose that the profile is to be represented by some
samples. Then the present parametric representation allows us to put samples with
a density proportional to the length of the facets, whereas in the classical repre-
sentation, the steeper the slope, the fewer the points on it. Figure 3.3 shows the
importance of having a η parameter that permits the discontinuities of the derivative
of the profile to be taken into account. When η is close to one, samples are accu-
mulated in the neighborhood of the vertices. Here, we have modified the vertices
y1 and y2 in order to have two nearly vertical facets. By choosing y1 = 0.001λ
and y2 = y3 − 0.0001λ the slope is 89.9 degrees. Another code based on modal
method by Fourier expansion in Cartesian coordinates shows that the reflected spec-
ular efficiency in H-polarization is WR

00 = 0.129 for a true lamellar grating (values

WR
n0 = ∣∣RAA

n0

∣∣2 Re Γn
/
Γ0 and WT

n0 = ∣∣TBA
n0

∣∣2 Re Γn
/
Γ0 determine energy content

of the harmonics, that is the relative part of the energy that is directed by the struc-
ture into the relevant spatial radiation channel; see Section 1.2.1). From the practical
point of view, one can say that C-method with adaptive spatial resolution is able to
handle vertical facets.

3.4.2 Lamellar Grating and Adaptive Spatial Resolution

In this section, we consider the case of a lamellar grating configuration as
shown in Fig. 3.4. A grating layer separates the vacuum ε̃1 = 1 and an
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Fig. 3.2 Convergence of specular reflected order calculated without parametric representation of
the trapezoidal profile (dashed line) and with parametric representation of the trapezoidal profile
(solid line)
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Fig. 3.3 Convergence of specular reflected order in the case of nearly vertical facets. Dashed
line – calculation without parametric representation; solid line – calculation with parametric
representation
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Fig. 3.4 Geometry of a
lamellar diffraction problem

homogeneous isotropic media with refractive index ε̃3. The layer consists of a
piecewise homogeneous medium with thickness h, characterized by a x-invariant,
y-periodic with period l, and permeability function
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ε̃2(y) =
{
ε21; 0 < y < y1
ε22; y1 < y < l

.

The unknown function Ũ (g,k) is the x-component of the magnetic field in the
case of H-polarization of the electric field in the case of E-polarization. In each
region, which we refer to by the index j = 1,2,3, the field Ũj (g,k) can be represented
by superposition of eigenfunctions

Ũ±
nj (g,k) = A±

nj (k) exp
(±iΓnjz

)
μnj (y) , n = 0, ± 1, ± 2,..., g = {y,z} (3.53)

computed from the following spectral problems (see also Section 3.2.1):

⎧
⎪⎨

⎪⎩

[
Lj + ∂2

∂z2

]
Ũj (g,k) = 0; g = {y,z} ∈ R2

Ũj

{
∂ Ũj
∂ y

}
(y + l,z,k) = e2πiΦŨj

{
∂ Ũj
∂ y

}
(y,z,k)

. (3.54)

Here,

Lj ≡ ∂2

∂y2
+ ε̃jk

2 (E − case), and Lj ≡ ε̃j
∂

∂y

1

ε̃j

∂

∂y
+ ε̃jk

2 (H − case). (3.55)

In deriving operator Lj for j = 2 we have to take care of the representation of the
permittivity coefficient in truncated Fourier space. Indeed, let us assume functions
f (y) and h (y) be linked by a third one g (y) that acts as a multiplicative operator.
Provided that g (y) is nonnull, the two relations

f (y) = g(y)h(y) and
1

g(y)
f (y) = h(y) (3.56)

are completely equivalent. In truncated Fourier space this is not the case. Here, the
equivalent pairs are

F = GH, G−1F = H and G̃F = H, F = G̃−1H;

G = {gpm
}N

p,m=−N , G̃ = {g̃pm
}N

p,m=−N , F = {fm}N
m=−N ,

H = {hm}N
m=−N , . . . .gpm = 〈g (y) ,μm−p (y)

〉
, g̃pm =

〈
g−1 (y) ,μm−p (y)

〉
,

but G �= G̃−1 and G−1 �= G̃.

Let f (y) and h (y) in (3.56) represent the field components and the function
g (y) – the properties of the piecewise homogeneous medium. At some coordinate
surface y = const, functions f (y) and h (y) satisfied some boundary conditions
according to whether they are tangential components or normal components at that
surface. We postulate that matrix operator that links two components and respond
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to the function g (y) should always be defined in such a way that it operates on the
continuous component. Thus, for example, in the case that ε̃ is a function of y, the
relation between vectors �D (vector of electric flux density) and �E we write:

D̃x(y) = ε0ε̃(y)Ẽx(y),
1

ε̃(y)
D̃y(y) = ε0Ẽy(y), D̃z(y) = ε0ε̃(y)Ẽz(y).

We are seeking now some change of variable y = g(v) that realizes adaptive
spatial resolution. The function of v is chosen in such a way that spatial resolution is
increased around y = 0 and y = y1 where the permittivity function is discontinuous.
Around these points a given variation Δv of v should result in a very much lower
variation Δy of y. A possible change of variable is the one that was successfully
used in the case of trapezoidal grating and C-method (see Section 3.4.1):

yp(v) = yp−1 + yp − yp−1

vp − vp−1

(

v − vp − η
vp − vp−1

2π
sin

2π
(
v − vp

)

vp − vp−1

)

; p = 1,2.

The new defined function v is periodic with the same period as the permittivity
function and its derivative is minimum at the discontinuities.

To show the improvement in terms of convergence of the present formulation
over the usual one, let us consider the geometry depicted in Fig. 3.4 with the follow-
ing parameters: v1 = 0.4, αi

0 = 29◦, l = 1.0, λ = 1.0, ε21 = 4.0, and ε22 = 25. The
convergence behavior of the second-smallest eigenvalue is illustrated in Fig. 3.5 for
the case of H-polarization. The error log10

∣∣Γexact − ΓN
/
Γexact

∣∣ is plotted versus the
truncation order N for three values of the η parameter. The exact value Γexact of Γ is
computed by use of a transcendental eigenvalue equation.

η = 0

η = 0.5

η = 0.995

10log exact N exactΓ − Γ  Γ–2

–4

–6

–8

–10

20 40 60 80 N

Fig. 3.5 Convergence of the second-smallest real eigenvalue for H-polarization. The exact
eigenvalue is found to be 2.81329903403930
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Fig. 3.6 Groove width dependence of the minus first-order diffraction efficiency. Computation
is done by using classical Fourier modal method with a truncation order N = 15: ε21 = −100,
ε22 = 1.0, ε̃3 = −100, H-polarization

We consider another example that has been investigated in the literature (see
papers [167, 168]). It consists of a lossless grating with a negative permittivity
ε21 = −100 for which classical MMFE produces noisy data due to apparition of
spurious modes in the numerical calculation (see Fig. 3.6 that reproduces the numer-
ical results obtained in [167]). The grating period l and depth h are 500 [nm], the
wavelength λ is 632.8 [nm], and the incidence angle αi

0 = 30◦. Figure 3.7 shows
the same configuration computed with Fourier modal method and adaptive spatial
resolution. It is seen that all instabilities have disappeared.

3.5 Curved Strip Gratings

Strip gratings can model such devices as photolithographic masks or frequency-
selective surfaces either in the optical or in the microwave domain. Likewise, by
deposition of a periodic strip at the surface of a dielectric or a metal, one obtains a
selective surface waveguide or even in certain conditions new materials with nega-
tive refractive index, the so-called metamaterials. This last application has renewed
the interest for numerical modeling of strip gratings. The problem of the diffrac-
tion of electromagnetic waves by strip gratings has been extensively studied in
the past. A possible way to obtain the solution is to express the fields in terms
of the Rayleigh expansions above and below the strips and to apply the com-
bined boundary conditions method (CBCM) introduced in [169]. The key feature
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Fig. 3.7 Groove width dependence of the minus first-order diffraction efficiency. The physical
parameters are the same as in Fig. 3.6. Adaptive spatial resolution is achieved with v1 = 0.5 and
η = 1. The truncation number is N = 40

of this differential approach is that it combines the continuity equations of the
electric and magnetic fields in a unified equation that holds over one full period.
The advantage of this method is its simplicity due to the use of Fourier series.
Furthermore, it offers the numerical possibility to easily mix strip gratings and other
gratings provided that they share the same periodicity and they are analyzed with
any method that uses Fourier expansions. However, the main drawback of most
Fourier-based methods is that they are not able to describe efficiently electromag-
netic fields with sharp variations. As a consequence, convergence is achieved with
rather huge matrices. Here, the tangential component of the field that points toward
the axis of periodicity is singular at the edge of the strips! Of course, such prob-
lems can be overcome by intricate mathematics [45, 74, 79, 170] but also by the
very simple technique of adaptive spatial resolution [171]. By using a nonuniform
sampling scheme that places more points around the edge of the strip, we have
shown that the convergence speed was dramatically improved. Our purpose in the
present section is to further demonstrate the versatility, the effectiveness, and the
complementarily of C-method, adaptive spatial resolution, and combined boundary
conditions.

The structure under study is depicted in Fig. 3.8. It consists of a 1-D periodic
surface Sε,μ,σ, with period l, separating the air (the medium I) and the dielectric
(with relative permittivity ε̃) homogeneous and isotropic medium II and over which
is deposited an infinitely thin perfectly conducting strip grating S of the same shape
and period. The surface Sε,μ,σ is invariant along the x-direction, and described by
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Fig. 3.8 Geometry of a strip grating diffraction problem

the function z = f (y): max f (y) = 0, min f (y) = −h. The part of the grat-
ing covered by the strip is within the interval

[
y1;y2
]
. The grating is illuminated

from the upper domain A (z > 0) with a unit amplitude monochromatic plane
wave Ũi

0 (g,k) = exp
[
i (Φ0y − Γ0z)

]
, ImΓ0 = 0, of wavelength λ = 2π

/
k.

The Cartesian components of vector �k are ky = k sin αi
0 and kz = −k cos αi

0;
αi

0 = arcsin
(
Φ0
/

k
)
. The unknowns of the problem are the reflected (to domain

A) and transmitted (to domain B: z < −h) fields.
The ingredients of the method that we use to solve the present problem have

already been presented elsewhere but never combined together in the context of
strip gratings. Before going into details, we briefly recall the two main ideas behind
our formalism. Any numerical method aimed at solving Maxwell’s equations is all
the more efficient since it is able to fit the geometry of the problem. One way to
do so is to use a coordinate transformation. The C-method that was developed in
the 1980s is precisely one such method. Following, the C-method, we introduce a
new coordinate system u, v, w deduced from the Cartesian coordinate system by the
relations u = x, v = y, and w = z − f (y). Hence, the surface profile of the grating
becomes the coordinate surface w = 0. Then we have to write Maxwell’s equation
in terms of the new variables. The boundary conditions at w = 0 impose that:

• the tangential components of the electric field must be continuous over a whole
period;

• the tangential components of the electric field must be null over the strips;
• the tangential components of the magnetic field must be continuous over the

complementary of the strips.

In order to introduce adaptive spatial resolution, we adopt a parametric represen-
tation of the profile function z = f (y):

x = u, y = g(v), z = w + f (g(v)), g (v) : g (0) = 0, g (l) = l. (3.57)
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Here,

g (v) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4v1
l

(
v + l

4π sin
(

4πv
l

))
; 0 ≤ v ≤ 0.25 l

v1 + 2(v2−v1)
l

(
(v − 0.25 l) − l

4π sin
(

8π(v−0.25 l)
l

))
;

0.25 l ≤ v ≤ 0.75 l

v2 + 4(l−v2)
l

(
(v − 0.75 l) − l

4π sin
(

4π(v−0.75 l)
l

))
; 0.75 ≤ v ≤ l

(3.58)
The above change of coordinates introduces a metric factor ∂y/∂v along the

y-direction. Hence, the width of the strip becomes v2 − v1 instead of y2 − y1.
Furthermore, at the edges of the strip (v = v1 and v = v2) where a singularity
of the field occurs, the metric factor is null. Therefore spatial resolution is infi-
nite and an accurate representation of the field at these points is possible. It is also
to be emphasized that the transition points in v-space are equally spaced. Modal
solution of Maxwell’s equations in a similar coordinate system and in truncated
Fourier space has already be given in Section 3.4.1. The only remaining task is to
write boundary conditions.

These conditions write (see Section 3.3.3):

⎧
⎪⎨

⎪⎩

ŨI (gtr,k;N) = ŨII (gtr,k;N)
∣∣
gtr∈Sε,μ,σ

ŨI (gtr,k;N) = ŨII (gtr,k;N) = 0
∣∣
gtr∈S

W̃I (gtr,k;N) = W̃II (gtr,k;N)
∣∣
gtr∈Sε,μ,σ\S

(3.59)

(in the case of E-polarization) and

⎧
⎪⎨

⎪⎩

W̃I (gtr,k;N) = W̃II (gtr,k;N)
∣∣
gtr∈Sε,μ,σ

W̃I (gtr,k;N) = W̃II (gtr,k;N) = 0
∣
∣
gtr∈S

ŨI (gtr,k;N) = ŨII (gtr,k;N)
∣∣
gtr∈Sε,μ,σ\S

(3.60)

(in the H-case). Equations (3.59) and (3.60) can be recast to the following sets of
two relations:

{
ŨI (gtr,k;N) = ŨII (gtr,k;N)

ŨI (gtr,k;N)χ (v) + [1 − χ (v)]
[
W̃I (gtr,k;N) − W̃II (gtr,k;N)

] = 0

∣∣∣
∣
gtr∈Sε,μ,σ

(3.61)

(in the case of E-polarization) and

{
W̃I (gtr,k;N) = W̃II (gtr,k;N)

W̃I (gtr,k;N)χ (v) + [1 − χ (v)]
[
ŨI (gtr,k;N) − ŨII (gtr,k;N)

] = 0

∣
∣∣∣
gtr∈Sε,μ,σ

(3.62)

(in the H-case). Here, χ (v) is the characteristic function of the strips, i.e., χ (v) = 1
over the strip and zero elsewhere.
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The conditions (3.61) and (3.62) have the same form as conditions (3.36), (3.37),
(3.38), and (3.39). That is why, for constructing the generalized scattering matrixes
in truncated Fourier space in order to resolve the problem (to find out the sets of
complex amplitudes A+

n (I) = RAA
n0 i A−

n (II) = TBA
n0 , n = 0, ± 1,..., ± N, of

scattered field in domains A and B) it is necessary to repeat all those steps that we
have already done in Section 3.3.3 going to (3.42). Indeed, by defining scattering
matrix Sgrt by relations

Sgrt =
[

S11 S12
S21 S22

]
;

[
A+

I
A−

II

]
=
[

S11 S12
S21 S22

] [
A−

I
A+

II

]
,

from (3.61) and (3.62) we derive:

Sgrt =
[

V+
T (I) − V−

T (II)[
C+

T (I) + D̃+
T (I)
] − D̃−

T (II)

]−1 [ −V−
T (I) V+

T (II)
− [C−

T (I) + D̃−
T (I)
]

D̃+
T (II)

]

(for E-polarized field) and

Sgrt =
[

Ṽ+
T (I) − ε̃−1Ṽ−

T (II)[
C̃+

T (I) + D+
T (I)
]

− D−
T (II)

]−1

×

×
[ −Ṽ−

T (I) ε̃−1Ṽ+
T (II)

−
[
C̃−

T (I) + D−
T (I)
]

D+
T (II)

]

(for H-polarized field). Here, V±
T and Ṽ±

T are the transposed matrices V± and Ṽ±
(see Section 3.3.3); C±

T , C̃±
T , D±

T , and D̃±
T are the transposed matrices C± = V±K̄,

C̃± = Ṽ±K̄, D± = V±K, and D̃± = Ṽ±K; K̄ = {χ̄nm}N
n,m=−N and K =

{χ
nm
}N
n,m=−N ; and

χn,m =
l∫

0

χ(ν)ei(Φm−Φn)νdν, χ
n, m

=
l∫

0

[1 − χ(ν)] ei(Φm−Φn)νdν.

Now we provide some numerical results to illustrate the effectiveness of the
presented method. Let us first emphasize that the convergence of the method has
been checked against usual criteria such as energy conservation (up to 10−9) and
reciprocity laws (see Section 1.2.1). We begin by considering flat gratings, and
ascertain, that we have managed to repeat [171] the rigorous results obtained with
the method of the Riemann–Hilbert problem (see [45] and Section 2.2). For E- and
H-polarization, for various angles of incidence αi

0 within wide range of frequency
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Fig. 3.9 Schematic view of a nonplanar strip grating

κ = l
/
λ, the absolute values of the difference RAA

n0 − R̃AA
n0 between the present

method (RAA
n0 ) and rigorous analysis (R̃AA

n0 ) are less than 6 · 10−4.
In the second example, and for the purpose of validation, we compare our

results to those obtained by an integral approach [172]. The profile is trapezoidal as
depicted in Fig. 3.9 and the metal is deposited along the lateral sides of the trapez-
ium. As can be seen from Fig. 3.10, where the reflected efficiencies are drawn as
functions of the parameter κ = l

/
λ, our results coincide exactly with those of

[172]. Furthermore, we verified that by setting the strips on one horizontal part
of the trapezium we recover the results computed by use of the classical planar
CBCM.
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Fig. 3.10 E-polarization. Evolution of the square root of the reflected efficiencies WR
n0, n =

0, ± 1 versus κ = l/λ, αi
0 = 0.1◦. The structure is depicted in Fig. 3.9. The strips are assumed

to be deposed on the inclined facets of a trapezoidal profile with y2 = y1 = l − y3 = l/3 and
y1 = h tg (π/6)
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3.6 Several Issues of Spectral Theory Relevant to C-Method
Formalism

Here we shall discuss several mathematical issues concerning the C-method that
are in the focus of the present book: the continuation of diffraction problems into
the complex plane of frequency parameters and a comparative investigation of
diffraction and spectral problems.

There is a wide set of different possibilities to formulate the spectral problems.
From mathematical point of view, all of them have equal rights for existence. But,
as it often happens in theoretical physics, the correctness of one or another models
can be justified by its mathematical consequences only, i.e., by mathematical results
following from the formulation, by possibility of their reasonable physical interpre-
tation and their utility level for modeling of corresponding physical processes, as
well as for profound understanding of the processes’ inner nature. Just this origi-
nates the principal reason that made us to choose (among many possibilities) such
posing of spectral problem, which is, from one side, strictly connected with excita-
tion problem and, from the other side, is based on the idea of analytic continuation
of operator of this excitation problem in relevant complex-valued frequency domain.

It is clear that any correctly formulated diffraction problem (for real-valued fre-
quencies) should have the solution, which is unique. From the other side, there
are well-known resonant phenomena, which become apparent, when frequency of
excitation field is varying. It is natural to think these phenomena as a result of
an existence of some eigenoscillations of electromagnetic field round the obsta-
cle. If such eigenoscillations cannot exist for real frequencies, relevant question
arises: do they exist in a domain of complex-valued frequencies? Moreover, are
they allowed and are they able to exist? What mathematical object can be treated
as such eigenoscillation? It is necessary to outline that within the scope of one of
the possible and even traditional way of spectral problems formulation (when eigen-
functions supposed to be square integrable in the space R2 or R3) the answers are
negative: eigenoscillations are forbidden for complex-valued frequencies.

That is why we have chosen the formulation of spectral problem in which
eigenoscillations are allowed to exist and they are in strong connection with
solutions of diffraction problem for real-valued frequencies. This strong connec-
tion is based on the idea of analytic continuation of diffraction boundary value
problem operator from real frequencies into the relevant domain (Riemannian
surface) of complex-valued frequencies (see Section 1.3). More exactly, it is nec-
essary to construct the relevant formulation of diffraction problem considered for
complex-valued frequencies.

The procedure of analytic continuation of resolvent of corresponding opera-
tor in complex-valued domain of spectral parameter, which is frequency in our
case, is well known in functional analysis and in the theory of boundary value
problems. The presence of poles of this continuation means the absence of unique-
ness and existence of nontrivial solution of corresponding homogeneous functional
equation for such values of spectral parameter, the residuals of resolvent in
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these poles are strictly connected with eigenvectors of the direct initial operator
and so on. It can be shown (see [11]) that the approach of analytic continua-
tion of direct operator of boundary value problem, which we are using here, is
essentially equivalent to analytic continuation of the above-mentioned operator
resolvent.

Thus, the principal step in our way of construction of spectral theory is the for-
mulation of diffraction boundary value problem in relevant domain (infinite-sheeted
Riemannian surface) of complex-valued frequencies. We would like to point out
once again that the formulation chosen has predetermined the mathematical conse-
quences and the utility for understanding of physical essence of the real diffraction
problem – the problem with real-valued frequencies.

3.6.1 The Diffraction Problem Formulation for Real-Valued
Frequencies

In this section, we consider the standard formulation of diffraction problem for
real-valued wave number k = 2π

/
λ, where λ is a wavelength of incident

field in vacuum, doing in the way similar to [19] (see also Section 1.2.1). After
that, in the next section, we discuss the necessary changes in formulation for
complex-valued k.

We consider the structure of two dielectric media, which both together fill whole
space R3 (see Fig. 3.11). The structure is homogenous along the x-axis as well as
the boundary surface Sε,μ,σ between the two media. The smooth and one-connected
contour Sε,μ,σ

x is a generator of surface in the plane x = 0 (i.e., Sε,μ,σ
x is the boundary

line between two media). Contour Sε,μ,σ
x is given by l-periodic function z = f (y),

−h ≤ f (y) ≤ 0, its maximum deviation from the y-axis is equal to h < ∞. The
upper medium is assumed to be a vacuum and the lower medium have constant
complex-valued material parameters ε̃ and μ̃.

The incident time harmonic field Ũi
0 (g,k) = exp

[
i (Φ0y − Γ0z)

]
, g = {y,z}, is

given in the domain A (in the domain z > 0) and is supposed to be E-polarized:

Fig. 3.11 Presentation of the problem
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Ũi
p (g,k) = Ẽi

x (g,k) and Ẽi
y = Ẽi

z = H̃i
x = 0 (the case of H-polarized incident field

can be investigated in a very similar way). The time factor is chosen as exp (−ikt),
and it is omitted everywhere below. It is evident and can be shown easily that the
total field Ũ (g,k) is E-polarized too: Ẽx = Ũ, Ẽy = Ẽz = H̃x = 0, and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
∂2

∂y2 + ∂2

∂z2 + ε̃ (g) μ̃ (g) k2
]

Ũ (g,k) = 0; g = {y,z} ∈ R2

Ũ
{

∂ Ũ
∂ y

}
(l,z,k) = e2πiΦŨ

{
∂ Ũ
∂ y

}
(0,z,k)

Ũ (g,k) =

⎧
⎪⎪⎨

⎪⎪⎩

Ũi
0 (g,k) +

n=∞∑
n=−∞

RAA
np exp

[
i
(
Φny + ΓA

n z
)]

; z ≥ 0

n=∞∑
n=−∞

TBA
np exp

[
i
(
Φny − ΓB

n (z + h)
)]

; z ≤ −h

, (3.63)

H̃y = 1

ikη0μ̃ (g)

∂Ũ

∂z
, H̃z = − 1

ikη0μ̃ (g)

∂Ũ

∂y
. (3.64)

Here, Φn= 2π (Φ+ n)
/

l, ΓA
n = √k2 −Φ2

n, ΓB
n = √k2ε̃μ̃−Φ2

n, Φ is some real-
valued parameter, ε̃ (g) and μ̃ (g) are relative permittivity and magnetic conductivity
of corresponding dielectric medium, respectively, and is free space impedance. The
angle αi

0 = arcsin
(
Φ0
/

k
)

is an angle of incidence of the excitation wave Ũi
0 (g,k)

on the grating (see Fig. 3.11). The standard boundary conditions on the boundary
surface between two media are requirement of continuity of the tangential com-
ponents of the total electromagnetic field. By means of the formulas (3.64), these
conditions can be written in the following standard form:

Ũ(+) (g,k) = Ũ(−) (g,k) ,
∂Ũ(+) (g,k)

∂�ng
= 1

μ̃

∂Ũ(−) (g,k)

∂�ng
, g ∈ Sε,μ,σ

x . (3.65)

Here, subscripts (+) and (−) denote (uniform on the contour Sε,μ,σ
x ) limits of

functions Ũ (g,k) and ∂Ũ (g,k)
/
∂�ng of arguments g ± r�ng when r → +0, �ng is

the unit normal to the contour Sε,μ,σ
x in a point g ∈ Sε,μ,σ

x , which is the direction
arbitrarily chosen for the contour and fixed after that.

The essential part of diffraction boundary value problem definition is a radiation
condition formulation. Several comments worth to be done about the philosophy
and the history of the question before the radiation condition formulating.

We would like to remind the reader that a radiation condition from mathematical
point of view is a kind of such closure of the boundary value problem formula-
tion, which guarantees the uniqueness of the solution to the diffraction boundary
value problem. At the same time, the radiation condition should be chosen in such a
form that this unique solution has reasonable physical sense. Standard choice of the
radiation condition is that one, which corresponds to the presence in the secondary
(scattered) field of outgoing waves only, without waves coming from the infinity.
The last statements above look like something trivial and well known. Nevertheless,
it looks like the meaning of the words “outgoing waves” should be explained in
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more thoroughly. One of the most fundamental physical principle is the energy con-
servation law. Thus, outgoing waves, in this context, means that energy of scattered
field must always go to the infinity (and never comes from the infinity) independent
of the fact in what kind of the medium we are considering the scattering process.
The values of the square roots of ΓA

n = √k2 −Φ2
n and ΓB

n = √k2ε̃μ̃−Φ2
n in for-

mula (3.63) are chosen according to this conception, both for ordinary (Re ε̃ (g) > 0,
Re μ̃ (g) > 0) and for double-negative (Re ε̃ (g) < 0, Re μ̃ (g) < 0) materials.

The physical meaning of radiation conditions for domains A (z > 0) and B
(z < −h)

Ũ (g,k) =

⎧
⎪⎪⎨

⎪⎪⎩

Ũi
0 (g,k) +

n=∞∑
n=−∞

RAA
np exp

[
i
(
Φny + ΓA

n z
)]

; z ≥ 0

n=∞∑
n=−∞

TBA
np exp

[
i
(
Φny − ΓB

n (z + h)
)]

; z ≤ −h
(3.66)

is the restriction of scattering field by outgoing and decaying waves only, i.e., elimi-
nation of plane waves that bring energy from infinity to some vicinity of the contour
Sε,μ,σ

x . If the contour Sε,μ,σ
x is piecewise smooth only and, for example, some point

g0 ∈ Sε,μ,σ
x is an edge point of Sε,μ,σ

x , then boundary conditions (3.65) cannot be
applied in point g0 (even because normal vector in g0 is not defined). Without going
into too deep mathematical details (connected with the theory of generalized func-
tions and Sobolev’s spaces) for more general mathematical posing of the diffraction
problem, one may use in the neighborhood V of point g0 the condition of field
energy finiteness

∫

V

{∣∣Ũ (g,k)
∣∣2 + ∣∣gradŨ (g,k)

∣∣2
}

dv < ∞. (3.67)

3.6.2 Diffraction Problem for Complex-Valued Frequencies

In this section, we discuss the necessary changes in the problem formulation
for complex k. For better understanding the situation, one can consider canonic
quasi-periodic Green function (see also Section 3.2.1)

G̃0 (g,g0,k,Φ) = − i

2 l

∞∑

n=−∞
ei[Φn(y−y0)+Γn|z−z0|]Γ−1

n . (3.68)

The points g and g0 belong to free space R2 where ε = μ = 1 and, respectively,
Γn = ΓA

n = √k2 −Φ2
n. For the real-valued k, we have

Re Γn Re k ≥ 0 and Im Γn ≥ 0 (3.69)

that correspond to the radiation condition for outgoing waves.
It can be proved (see Section 1.1.4) that function (3.68), considered as one of

argument k, can be analytically continued [by means of the same formula (3.68)]
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from real axis Im k = 0 onto Riemannian surface K with complex plane cuts, which
are starting in points k±n = ± |Φn|, n = 0, ± 1, ± 2,..., and going to infinity like, for
example, curves

(Re k)2 − (Im k)2 −Φ2
n = 0, n = 0, ± 1, ± 2,..., Im k ≤ 0 (3.70)

that are represented in Fig. 1.2a. The function thus obtained is an analytic function
for any k �= k±n in any sheet of Riemannian surface K. The only singular points of
this function are k±n , n = 0,±1,±2,..., and for local (in vicinity of k = k±n ) variable

τn = τn (k) of the kind τn =
√

k2 − (k±n
)2

the function has the only simple poles
in τn = 0 [10]. The first sheet (which sometimes is referred as the physical one)
of Riemannian surface K is defined by conditions (3.69) and complex plane cuts
(3.70). The consequent sheets differ from the first one by opposite choice of signs
of Γn for a few corresponding indices n.

It is necessary to underline that the function G̃0 (g,g0,k,Φ) gives the solu-
tion to the “diffraction problem” for the system of quasi-periodic point sources
in the absence of obstacles. The question arises: what new quality should one
expect in the presence of boundary surface, which separates two different media,
when both media are extending to infinity (in the way half-space like)? It is clear
that two Green functions are naturally involved now, namely, G̃0 (g,g0,k,Φ) and

G̃0

(
g,g0,k

√
ε̃μ̃,Φ

)
, which satisfy radiation conditions (3.66) in the upper and the

lower half-spaces, respectively. Due to this the Riemannian surface K̄ of analytic
continuation of the corresponding boundary value problem operator with respect
to k be somehow doubled Riemannian surface K. More exactly, it is necessary to
consider two sets of branch points

k±n (A) = ± |Φn| and k±n (B) = ±|Φn|
nB

, n = 0, ± 1, ± 2,...,

where nB = √ε̃μ̃ is a number calculated according to conception of outgoing waves
in the medium whose parameters are ε̃ and μ̃ [10, 173–175]. That is why, it is natu-
ral to generalize the formulation of diffraction problem (considered in the previous
section for real-valued k) for the case of complex-valued k in the following way. At
first, we suppose that wave number k belongs to Riemannian surface K̄. At second,
radiation conditions (3.66) for each given k ∈ K̄ have the same form, but the signs
of square roots of ΓA

n = √k2 −Φ2
n and ΓB

n = √k2ε̃μ̃−Φ2
n must be taken accord-

ing to the rule of sheet, which k is belonging to. At third, all the other conditions are
exactly the same as ones for real-valued k.

Thus, the only formal difference in the diffraction problems formulation for
complex- and real-valued k is that now we consider k belonging to relevant
Riemannian surface, instead of the previous case for Im k = 0. We would like to
emphasize the significant difference between the diffraction problem considered
and diffraction problem for finite obstacles, where well-known Sommerfeld radi-
ation conditions are traditionally applied. The procedure of analytic continuation
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into the domain of complex-valued k requires changing of Sommerfeld condition
by Reichardt radiation condition (see details in [10, 11]). However, for the infinite
periodic structure under consideration the radiation conditions in form (3.66) are
valid (see below) for both real- and complex-valued k as described above. The rea-
son of such difference is that Sommerfeld condition is one of a kind of asymptotic
requirement, but Reichardt condition as well as conditions (3.66) are the exact series
representations in a vicinity of the infinite point.

As we have had already mentioned earlier, the usefulness of one or another for-
mulation of diffraction problem for complex-valued k is based on the mathematical
consequences from such posing, namely, on qualitative properties of the solution
and on its connection with the solutions for real-valued k. The detailed explanation
of such qualitative mathematical consequences requires a lot of space, and we shall
not dwell on it here. We restrict ourselves here by brief explanation of the several
facts that justify the formulation chosen above.

Taking into account radiation condition (3.66) and using standard Green’s for-
mulas technique, one can represent total field Ũ (g,k), g ∈ R2\Sε,μ,σ

x , as an integral
over one period of the boundary contour Sε,μ,σ

x with integrand formed by the linear
combination of the functions

G̃0 (g,g0,kn,Φ)
∂Ũ (g0,k)

∂�ng0

and

∂G̃0 (g,g0,kn,Φ)

∂�ng0

Ũ (g0,k) , g0 ∈ Sε,μ,σ
x , n = nA = 1 or n = nB.

Substitution of this representation into the boundary conditions (3.65) gives the
system of two integro-differential equations of the first kind. Analytic regularization
method reduces this system to functional equation of the second kind in the way
similar to one described in [10, 11]. After that the technique similar to one described
in [10] gives the result that a resolvent of a diffraction boundary value problem
operator treated as a function of k ∈ K̄ is a finite-meromorphic operator-function
in surface K̄. Function Ũ (g,k), k ∈ K̄, may have poles of finite multiplicity only,
and upper half-plane of first sheet of K̄ has no singularity at all (see more details
in Section 1.3). Thus, the diffraction problem formulation that is chosen for the
complex-valued k really gives natural analytic continuation of diffraction problem
for real-valued k.

Unfortunately, the Riemannian surface K̄ constructed in such way has rather
complicated structure, especially if one takes into account complex-valued and (or)
negative material parameters ε̃ and μ̃. This leads to the rotation of the branch points
as well as to the rotation of the contours of the corresponding cuts and, consequently,
to crossing of such curves generated by the first (upper) and the second (lower)
medium. Thus, it is necessary to change the cuts curves, and it is not easy to make
this in a uniform way. From formal mathematical point of view, the positions and
shapes of cuts are out of any importance (if the cuts have the same starting and
ending points), because all Riemannian surfaces thus obtained are equivalent. But
the complexity or the simplicity of the system of these cuts is very important from
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practical and, in particular, numerical points of view. The simpler the better, espe-
cially when complexity is higher than the limits of our ability to understand, and
it seems to us that for cuts structure of a two media we are very near to these lim-
its. That is why we call the formulation of diffraction problem in complex domain,
which is described above, as the global one with the only one frequency parameter
for both media. The alternative posing is the local one, when for each medium its
own spectral parameter is chosen and all others parameters of the other medium are
frozen, i.e., are fixed in physical domain of their definition [135]. The local formu-
lation has a few evident advantages in comparison with the global one. The first
of them is the simplicity: corresponding Riemannian surface has much more sim-
ple structure. The second advantage is that it is possible to investigate influence of
the corresponding medium that may essentially simplify the understanding of inner
nature of diffraction processes.

3.6.3 Spectral Problem and Its Solution: Some Physical Results

In this section, we formulate and solve numerically the spectral problem for
complex-valued k. The spectral problem is strictly connected with corresponding
diffraction problem considered in the previous section. As shown in [1, 10] (see
also Section 1.3), the diffraction problem for complex-valued k always has the solu-
tion and the solution is unique, if only k /∈ Ωk, where Ωk = {k̄n

}
is the frequency

spectrum of the grating as an open periodic resonator. If k = k̄n, the homogeneous
diffraction problem (Ũi

0 (g,k) ≡ 0) is solvable in a nontrivial way in K̄, and the

corresponding solutions u(j)
0

(
g,k̄n
)
, j = 1,2,...,J, have the meaning of free states

(oscillations) of the field in the structure at the eigenfrequency k̄n. Here, J is the
number of linearly independent eigenfunctions u(j)

0

(
g,k̄n
)

(the number of different
free oscillations of the field) related to the eigenvalue (eigenfrequency) k̄n.

Thus, the following spectral problem naturally arises: it is necessary to find such
values k̄n ∈ K̄, for which homogeneous (i.e., Ũi

0 (g,k) ≡ 0) boundary value prob-

lem has nontrivial solutions u(j)
0

(
g,k̄n
)
. In accordance with the terminology of the

previous section, we call the spectral problem described as global spectral problem
(one spectral parameter k for both media). For its numerical analysis there was an
effective algorithm, grounded on classical C-method and some simple regularizing
procedures, suggested and realized in [135]. Below, we briefly comment a number
of physical results from this paper.

3.6.3.1 Connection Between Spikes in Diffraction Characteristics
and Eigen Regimes

In our investigation of diffraction properties of gratings we followed the approach
used in [1, 10], considering the periodic grating as an open periodic resonator
(OPR). The assumption that resonant transmission or reflection from the periodic
boundary treated as OPR is related to the excitation of regimes close to eigen ones
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in the region of the boundary Sε,μ,σ
x has been inspired by the following facts: when

parameters of the problem are close to ones providing the spikes in diffraction char-
acteristics a decrease in the value of the determinant of the system of equations of
corresponding boundary value problem and an increase in the field intensity near
the boundary do emerge.

To prove this statement we have studied the frequency responses of the different
gratings activated by E- and H-polarized plane waves and the field patterns formed
by gratings in the resonant regimes. The latter are rather interesting and useful char-
acteristics, giving more profound understanding of the resonant phenomena. We
would like to attract the attention to the fact that in the case of H-polarization, the
first resonances appears at much smaller frequency parameter, that is, for more long
waves. This resonance exists due to the possibility of excitation of TEM-waves that
are propagating along the grooves and, under certain parameters, are able to provide
the resonance. Naturally, this resonance disappears at certain value of hTEM that cor-
responds to the minimal depth of grooves that can provide resonance conditions for
TEM-waves.

The impressive illustration of the correlation between spikes in the diffraction
characteristics and excitation in OPR oscillations close to eigen ones can be obtained
from the consideration of electromagnetic wave diffraction by the dielectric layer,
limited by two periodic boundaries. In Fig. 3.12 we present the curves WR

n0 (k)

(WR
n0 = ∣∣RAA

n0

∣
∣2 ReΓA

n

/
ΓA

0 ; see Section 1.2.1) and the table, demonstrating the cor-
respondence of resonances at the real frequencies k = Kn and relevant complex
eigenfrequencies k̄n. It is clearly seen here that the values of Kn are close to Re k̄n

and the values of Im k̄n are very small.

3.6.3.2 Spectral Properties of the Grating with Negative Material Parameters

The above-described solution to the spectral and, naturally, diffraction problem and
corresponding complementary algorithms can simulate the electromagnetic field
interaction in materials characterized by negative material parameters. Therefore,
we are able to provide the feedback study: spectral characteristics ↔ diffraction
characteristics. In order to prove the efficiency and perspective advantages of such
a study we shall discuss here one result of the simulation that seems to be rather
distinctive for the materials with Re ε̃ < 0 and (or) Re μ̃ < 0.

In Fig. 3.13 there are two characteristic cases of E- and H-polarized waves
diffraction by periodic boundary between two media, when one of them occupy-
ing the domain B has negative magnetic conductivity (Re μ̃ < 0) and ε̃ = 2.25. Fig.

�
Fig. 3.12 (continued) The diffraction and spectral characteristics for the dielectric layer with ε̃ =
4.4, μ̃ = 1 of thickness hreg normally excited with E-polarized plane wave. The layer limited with
the upper boundary z = 0.5−4π−2 (cos (y) + cos (3y) /9 + cos (5y) /25) and the lower boundary
that is the mirror image of the upper boundary. Solid line corresponds to hreg = 0.5π; dashed line
corresponds to the layer with hreg = 0.1π
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Fig. 3.12 (continued)
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Fig. 3.13 The amplitude and phase of propagating harmonic reflected by boundary z = 0.4 ×[
sin2 (y/2) − 1.0

]
: ε̃ = 2.25, Re μ̃ = −5.0, solid curves correspond to E-polarization; dotted to

H-polarization. For E-polarization and for Φ = 0, Im μ̃ = 0, the grating has the eigenfrequency
k̄ = 0.813 − i0.0. (a) Im μ̃ = 0, αi

0 = 0; (b) Im μ̃ = 0.1, αi
0 = 0; (c) Im μ̃ = 0.1, αi

0 = 5◦

3.13a illustrates the resonance that appears for normal excitation of the boundary,
when Im μ̃ = 0. In this case, the resonance may be seen in the curve of arg RAA

00 (k)
for E-polarized waves only, as we have total reflection of the incident wave, and∣∣RAA

00 (k)
∣∣ ≈ 1.0.

By introducing the losses in the second medium we can make the resonance
to be manifested for the amplitude of reflection filed also (see Fig. 3.13b). While
oblique excitation, even with rather small angles, say αi

0 = 5.0◦ (see Fig. 3.13c),
the resonance splits into two, moving from initial position in frequency into two
different directions. The amplitudes of evanescent harmonics in scattering field are
suffering pronounced resonant spikes also.

Naturally, similar situation emerges for H-polarized wave diffraction by peri-
odic boundary with medium parameters Re ε̃ < 0 and Re μ̃ > 0. In contrast to the
resonance appearing for E-polarization, that has been discussed above, this reso-
nance does not disappear with depth of grooves h decreasing, even for h ≈ 0.01
(see Fig. 3.14, where the evolution of resonances with h decreasing and various
ε̃ are presented). It is worthwhile to point out that the Q-factor of this resonance
increases when h decreases. That allows us to conclude that resonances of the type
are characteristic for periodic boundaries and are connected with excitation of polar-
izations. All these resonances have corresponding complex eigenfrequencies k̄ with
Im k̄ ≈ 10−8, that means within the algorithm accuracy these resonances have real
eigenfrequencies.
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Fig. 3.14 The low-frequency super high-Q resonance of H-polarized field for different depths of
grating profile z = h

[
sin2 (y/2) − 1.0

]
: μ̃ = 1 and Φ = 0. (a) ε̃ = −5.0; (b) h = 0.4. For grating

with ε̃ = −5.0 and h = 0.4, the eigenfrequency k̄ = 0.893 − i0.0

For the special case, say for H-polarization, when ε̃ < 0, μ̃ > 0, and |ε̃| > 1.0,
under condition δ = h

/
l � 1, the approximation

Re k̄ =
√

ε̃2 − 1

ε̃ (ε̃− μ̃)
(1 + O(δ)) ,

∣∣Im k̄
∣∣ = O(δ2)

can be obtained. The fields, corresponding to these eigenfrequencies, are concen-
trated in the vicinity of the boundary Sε,μ,σ

x (see, for example, Fig. 10 in the paper
[135], where this type of resonances, supplied with the eigenfield structures for two
different shapes of boundary are presented).

Among numerous results of computational experiments carried out for double-
negative materials we have chosen to present here the absorption resonance
appearing in diffracted field from periodic surface of left-handed material when
incident plane electromagnetic wave is almost parallel to the y-axis. Figure 3.15a
shows the pronounced resonance for rather smooth (h = 0.1 l) periodic surface of
left-handed (double negative) material illuminated with E-polarized plane wave with
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Fig. 3.15 (a) Reflection coefficient and (b) field strength
∣
∣Ẽx (g,K)

∣
∣ = const computed at fre-

quency of maximal absorption (marked with arrow) for the double negative material surface with
boundary z = 0.5 h (cos (y) − 1); h = 0.1 l. E-polarization: ε̃ = −0.2 + i0.01, μ̃ = −1.5 + i0.01,
incidence angle αi

0 = 88◦, complex eigenfrequency k̄ = 0.4645 − i0.0012

incidence angle αi
0 = 88◦. The real-valued resonant frequency may be estimated for

surface with δ � 1 from approximate formula

k̄ ≈ 1

/(

sin
(
αi

0

)+
√
(
μ̃2 − 1

)/(
μ̃2 − ε̃μ̃

)
)

.

For H-polarization, the resonance frequency may be defined approximately from

k̄ ≈ 1

/(

sin
(
αi

0

)+
√
(
ε̃2 − 1

)/(
ε̃2 − ε̃μ̃

)
)

.
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When δ � 1, these approximate values of resonant frequencies are in good
agreement with calculated ones by rigorous solution of problem under considera-
tion. In our case the eigenfrequency k̄ = 0.4645− i0.0012 of corresponding natural
oscillation that has been found out from the solution to spectral problem is in good
correlation with diffraction resonance. Periodic surface eigenfield intensity is con-
centrated near the boundary at the frequency k = K = 0.466, corresponding to
maximal electromagnetic energy absorption (see Fig. 3.15b where the field pattern∣∣Ẽx (g,K)

∣∣ = const is presented).



Chapter 4
Modeling and Analysis of Transients in Periodic
Structures: Fully Absorbing Boundaries for 2-D
Open Problems

Abstract The chapter is concentrated on the description of the construction and
implementation of new rigorous methods and techniques oriented to the solution
of open initial boundary value problems of the electromagnetic theory of gratings.
The formulation and incorporation of explicit absorbing conditions into conven-
tional numerical routines of finite-difference algorithms constitute the basis of the
method. An essential point is that such conditions restrict in a correct and efficient
way the computational domain without introducing any distortion into the nature of
the scattering process, simulated by means of the mathematics.

Study of transient electromagnetic waves [1, 4, 6, 176–180] is a dominating trend
in theoretical radio physics today because, first and foremost, many and varied
means of communications, electronics, and radiolocation are not possible without
profound insights into spatial–temporal and spatial–frequency field transformations
in relevant quite sophisticated electromagnetic structures, whereas the potential of
traditional frequency domain approaches is to a large extent already exhausted.
Additionally, the time domain approaches:

• are free from some frequency domain idealizations;
• are universal, as limitations imposed on geometrical and constitutive parameters

of considered objects are at a minimum;
• make possible the construction of explicit and straightforward computational

routines (without inversion of any operators) that are rather efficient (limited
time and memory resources required) and solve the problem under consideration
within a reasonable time;

• furnish results which are easy to translate into a standard set of frequency domain
characteristics.

However, in the shift toward time domain approaches we still face problems
whose complete and justified solution takes a great deal of analytic efforts. These
are, e.g., problems with correct and effective truncation of the computation space in
the so-called open problems whose analysis domain tends to infinity along one or
several spatial directions, the far-zone treatment, the problems of large and distant
sources of the fields, etc. [1, 4]. Problems of this kind are considered in Chapter 4,

211Y.K. Sirenko, S. Ström (eds.), Modern Theory of Gratings, Springer Series in Optical
Sciences 153, DOI 10.1007/978-1-4419-1200-8_4,
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in the part concerned with 2-D initial boundary value problems for infinite and finite
gratings. The topical themes of Chapter 4 are:

• exact absorbing conditions (EACs) for open initial boundary value problems of
diffraction grating theory;

• time domain and frequency domain methods combined in the study of gratings
as open resonators;

• spatial–temporal and spatial–frequency transformations of electromagnetic field,
including cases of possible resonant wave scattering.

Available heuristic and approximate solutions to problems associated with the
finite domain transition in analysis of open time domain problems are mostly based
on using of the so-called absorbing boundary conditions (ABCs) [181–183] and the
perfectly matched layers (PMLs) [184–186]. A weak point of these solutions is the
unpredictable behavior of computational errors when the observation time t is large.
As a consequence, the results obtained are not safe to rely upon in the event of the
resonant wave scattering.

In this chapter, an approach will be elaborated which allows us to estimate cor-
rectly and minimize the errors caused by the translation of open initial boundary
problems into corresponding closed problems. It is based on the exact absorbing
conditions, on their construction, and on building them into the standard scheme
of the finite-difference method. The EACs addition to the starting initial boundary
problem turns it into the equivalent closed problem. The history of the approach
dates back to 1986, when A.R. Maykov, A.G. Sveshnikov, and S.A. Yakunin first
formulated [187] the exact nonlocal conditions for virtual boundaries across a reg-
ular semi-infinite hollow waveguide as a channel to transmit signals formed by a
waveguide unit. Afterward this approach based on the usage of radiation condition
for spatial–time amplitudes of partial components (modes) of nonsinusoidal waves,
outgoing from effective sources and scatterers was modified and adapted (refer,
e.g., to [1, 40, 188–195]) to a great variety of problems in theoretical and applied
radio physics. Its validity and efficiency has been repeatedly proved by numerical
experiments and special tests.

4.1 Infinite Gratings: Exact Absorbing Conditions for Plane
Parallel Floquet Channel

In Sections 4.1 and 4.2, we obtain some important results relative to the proper trun-
cation of the computational domain in the open 2-D initial boundary value problems
of the electromagnetic theory of gratings. By passing on to the some special trans-
forms of the functions describing physically realizable sources, such problems for
infinite gratings can be reduced to those of scattering of transient waves by compact
inhomogeneities in the plane parallel Floquet channel R = {g ∈ R2: 0 < y < l

}



4.1 Infinite Gratings: Exact Absorbing Conditions for Plane Parallel Floquet Channel 213

(see Section 1.1.3) or, in other words, in the plane parallel waveguide with specific
(quasi-periodic) boundary conditions.

4.1.1 Transformation of Evolutionary Basis of a Signal in a
Regular Floquet Channel

Let us rewrite the problems (1.18) for semitransparent infinite gratings (see Fig. 4.1)
in the following simplified form (indexes new are dropped):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
−εμ ∂2

∂t2
− σμ ∂

∂t + ∂2

∂y2 + ∂2

∂z2

]
U (g,t) = F (g,t) ; g = {y,z} ∈ Q, t > 0

U (g,0) = ϕ (g) , ∂
∂t U (g,t)

∣∣
t=0 = ψ(g); g ∈ Q̄

Etg (p,t)
∣∣
p={x,y,z}∈S = 0; t ≥ 0

U
{

∂ U
∂ y

}
(l,z,t) = e2πiΦU

{
∂ U
∂ y

}
(0,z,t) ; t ≥ 0

.

(4.1)

Here, in the E-polarization case, U(g,t) = Ex(g,t) and μ(g) is a piecewise constant
function. For the H-polarized fields, U(g,t) = Hx(g,t) and ε(g), σ(g) are piecewise
constant functions. Φ is a real parameter. The surfaces S = Sx × [|x| ≤ ∞] of the
perfectly conducting elements in geometry of gratings assumed to be sufficiently
smooth. Also, we suppose (here and from this point on) that the continuity condi-
tions for the tangential components of the field strength vectors will be fulfilled in
those cases where it is necessary. The analysis domain Q for problems (4.1) is part
of the Floquet channel R bounded by curves Sx: Q = R\intSx. The complex-valued
functions U(g,t), F(g,t), and so on are special images of real functions describing
the actual fields and sources (see Section 1.1.3). It is assumed that the functions
F(g,t), ϕ(g) = Ui(g,0), ψ (g) = ∂Ui (g,t)

/
∂ t
∣∣
t=0 (Ui(g,t) is the incident wave), σ(g),

ε(g)–1, and μ(g)–1, being finitary in the closure of Q, satisfy the theorem of unique
solvability of problems (4.1) in the Sobolev space W1

2

(
QT
)
, QT = Q × (0;T),

T < ∞ (see Statement 1.1 and work [5]). The supports of the functions F(g,t), ϕ(g),
and ψ(g) belong to the set QL\L, QL = {g ∈ Q: − L2 − h < z < L1}, L1 ≥ 0 and
L2 ≥ 0. The regular parts A and B of the channel R (the parts z > L1 and z < –L2–
h of the domain LQ = Q\ (QL ∪ L) = A ∪ B), along which the field formed by
the grating propagate infinitely far, are free from the sources and scatterers. Here,
L = L1 ∪ L2 is the artificial boundary which separates the domain QL from the
domain LQ. It is denoted by dashed lines in Fig. 4.1.

Take, for definiteness sake, the upper (z > L1) regular part of the R channel. Here,
ε (g) = μ(g) ≡ 1 and σ (g) = ϕ (g) = ψ (g) = F (g,t) ≡ 0. By assuming that the
excitation U(g,t) in domain QL has not yet reached the boundary L1 (z = L1) by the
time t = 0, we obtain via the separation of variables the following representation for
the solutions U(g,t) to (4.1):
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Fig. 4.1 Geometry of model problems (4.1)

U (g,t) =
∞∑

n=−∞
un (z,t)μn (y); z ≥ L1, 0 ≤ y ≤ l, t ≥ 0. (4.2)

The orthonormal system {μn(y)} of transversal, complete in the space L2(0;l)
functions of the form μn (y) = l−1/2 exp (iΦny); Φn = (n +Φ) 2π

/
l, n = 0,±1,. . .

comes from the nontrivial solutions of the homogeneous (spectral) problem

⎧
⎨

⎩

[
d2

dy2 +Φ2
n

]
μn (y) = 0; 0 < y < l

μn

{
dμn
dy

}
(l) = e2πiΦμn

{
dμn
dy

}
(0)

. (4.3)
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The spatial–time amplitudes {un(z,t)} (evolutionary basis) of the signal U(g,t)
are available from the solutions of the initial boundary value problems

{[
− ∂2

∂t2
+ ∂2

∂z2 −Φ2
n

]
un (z,t) = 0; t > 0

un (z,0) = 0, ∂
∂t un (z,t)

∣
∣
t=0 = 0

; z ≥ L1, n = 0, ± 1, ± 2,... (4.4)

The cosine Fourier transform of (4.4) with respect to z̄ = z−L1 on the semi-axis
z̄ ≥ 0 (image ↔ original)

f̃ (ω) = Fc
[
f
]
(ω) ≡

√
2
π

∞∫

0
f (z̄) cos (ω z̄) d z̄ ↔

↔ f (z̄) = F−1
c

[
f̃
]
(z̄) ≡

√
2
π

∞∫

0
f̃ (ω) cos (ω z̄) dω

(4.5)

results in the following Cauchy problems for the images ũn (ω,t):

⎧
⎪⎨

⎪⎩

D
(√

Φ2
n + ω2

) [
ũn(ω,t)

] ≡
[

∂2

∂t2
+ (Φ2

n + ω2)
]

ũn (ω,t) = −
√

2
π

ū′n(0,t);

ω > 0, t > 0
ũn (ω,0) = 0, ∂

∂t ũn (ω,t)
∣∣
t=0 = 0; ω ≥ 0

.

(4.6)

Here, ũn (ω,t) ↔ ūn (z̄,t) = un (z,t) and ū′n (0,t) = ∂ ūn (z̄,t)
/
∂ z̄
∣∣
z̄=0. It has also

been considered that

−ω2 f̃ (ω) −
√

2

π

[
d

d z̄
f (z̄)

]∣∣∣
∣
z̄=0

↔ d2

d z̄2
f (z̄) ,

and that the wave U(z,t) in the region A does not contain components propagating
in the sense of decreasing z. The outgoing components toward z = ∞ are equal to
zero for sufficiently large z at any finite instant of time t = T.

By extending the functions ũn (ω,t) with zero on the semi-axis t < 0, let us pass
on to the generalized statement of the Cauchy problems (4.6) [2]:

D
(√

Φ2
n + ω2

) [
ũn(ω,t)

] ≡
[

∂2

∂t2
+ (Φ2

n + ω2)
]

ũn (ω,t) = −
√

2
π

ū′n (0,t)+
+δ(1) (t) ũn (ω,0) + δ (t) ∂

∂ t ũn (ω,t)
∣∣
t=0 = −

√
2
π

ū′n (0,t);

ω > 0, −∞ < t < ∞.

(4.7)

Here, δ(. . .) is the Dirac delta function and δ(m)(. . .) is its generalized mth deriva-
tive. The convolution of the fundamental solution G(λ,t) = χ(t)λ−1 sin λt of the
operator D(λ) (see Section 1.1.3 and [1]) with the right-hand side of equation (4.7)
gives the following representation of ũn (ω,t):
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ũn (ω,t) = −
√

2

π

t∫

0

sin

[
(t − τ)

√
Φ2

n + ω2

]
ū′n (0,τ)
√

Φ2
n + ω2

dτ; ω ≥ 0, t ≥ 0.

(4.8)
After application to (4.8) of the inverse Fourier transform (4.5), we obtain

ūn(z̄,t) = − ∫
0

J0

[
Φn
(
(t − τ)2 − z̄2

)1/2
]
χ [(t − τ) − z̄] ū′n (0,τ) dτ;

z̄ ≥ 0, t ≥ 0,
(4.9)

from which it follows that

un(z,t) = − ∫
0

J0

[
Φn
(
(t − τ)2 − (z − L1)

2)1/2
]
χ [(t − τ) − (z − L1)] u′n (L1,τ) dτ;

z ≥ L1, t ≥ 0.
(4.10)

The expressions (4.10) displays the general property of the solutions U(g,t) to
problems (4.1) in the subdomain LQ, namely, the solutions satisfying zero initial
conditions and being free of the components (modes) propagating toward the com-
pact inhomogeneity of the channel R (toward the domain QL). These expressions
define the diagonal transport operator ZL1→z (t) (see references [1, 40, 196, 197]),
which operates according to the rule

u(z,t) = {un(z,t)} = ZL1→z (t)
[
u′(L1,τ)

]
; u′(b,τ) = {u′n(b,τ)

}
,

z ≥ L1, t ≥ τ ≥ 0

and enables us to trace changes of the transient wave field during its free propaga-
tion along the finite regular section of the R channel. Here, Jm(. . .) is the Bessel
cylindrical function, χ(. . .) is the Heaviside step function,

u′n (b,t) = ∂un (z,t)

∂ z

∣∣∣∣
z=b

=
l∫

0

∂U (g,t)

∂ z

∣∣∣∣
z=b

μ∗
n (y) dy, (4.11)

and the asterisk ∗ stands for the complex conjugation.

4.1.2 Nonlocal Absorbing Conditions

Consider the case when the observation point in (4.10) is on the artificial boundary
L1 (z = L1). Then

un(L1,t) = −
∫

0

J0 [Φn (t − τ)] χ (t − τ) u′n (L1,τ) dτ; t ≥ 0. (4.12)
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Differentiation of (4.12) with respect to t gives

[
∂

∂ t
+ ∂

∂ z

]
un (z,t)

∣∣∣
∣
z=L1

= Φn

∫

0

J1 [Φn (t − τ)] χ (t − τ) u′n (L1,τ) dτ; t ≥ 0

(4.13)
on account of the familiar relationships dJ0 (x)

/
dx = −J1 (x), J0(0) = 1, and

χ(1) (t − τ) = δ (t − τ), where χ(1)(. . .) is the generalized derivative of χ(. . .).
Next, the application of the Laplace transform in t (image ↔ original)

f̃ (s) = L
[
f
]
(s) ≡

∞∫

0

f (t) e−stdt ↔ f (t) = L−1
[
f̃
]
(t) ≡ 1

2πi

α+i∞∫

α−i∞
f̃ (s) est ds

(4.14)

in view of the familiar formulas f̃1 (s) f̃2 (s) ↔
t∫

0
f1 (t − τ)f2 (τ) dτ (the convolu-

tion theorem), λ2
[√

s2 + λ2
(√

s2 + λ2 + s
)]−1 ↔ λJ1 (λt) [198], and sf̃ (s) −

f (0) ↔ df (t)
/

dt gives (in the space of images ũn (z,s))

[
∂

∂ z
+ s

]
ũn (z,s)

∣∣∣∣
z=L1

= Φ2
n ũ′n (L1,s)

√
s2 +Φ2

n

(√
s2 +Φ2

n + s
) , (4.15)

and finally

ũ′n (L1,s) = −
(

s + λ2
n

s +√s2 + λ2
n

)

ũn (L1,s) . (4.16)

The inverse Laplace transform of (4.16), in view of
(

s +√
s2 + λ2

)−1 ↔
(λt)−1 J1 (λt) [199], allows us to return to the original functions un(z,t)

[
∂
∂ t + ∂

∂ z

]
un (z,t)

∣∣∣
z=L1

= −Φn
∫

0
J1 [Φn (t − τ)] (t − τ)−1 χ (t − τ) un (L1,τ) dτ;

t ≥ 0.
(4.17)

The translation of (4.13) into (4.17) [the validity of transformations (4.14)] rests
upon the assertion [8] that at some points g of any bounded subdomain inside a
Q domain, the field U(g,t) from a set of compact support sources cannot grow
faster than exp(αt) as t→∞, where α > 0 is a constant. The assertion is true for
any electromagnetic structure whose spectrum Ωk does not contain points k̄ of the
upper half-plane of the first (physical) sheet of the surface giving the natural vari-
ation range of the complex frequency parameter k. This holds for all the gratings
considered in Chapter 4 (see Section 1.3.2).
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In terms of (4.2) and (4.11), expressions (4.12), (4.13), and (4.17) become

U(y,L1,t) = −
∞∑

n=−∞

{
t∫

0
J0 [Φn (t − τ)]

[
l∫

0

∂U(ỹ,z,τ)
∂ z

∣∣
∣
z=L1

μ∗
n (ỹ) d ỹ

]

dτ

}

μn (y) =

= V1 (y,t) ; 0 ≤ y ≤ l, t ≥ 0,

(4.18)
[

∂
∂ t + ∂

∂ z

]
U (y,z,t)

∣∣
∣
z=L1

=

=
∞∑

n=−∞

{
t∫

0
J1 [Φn (t − τ)]

[
l∫

0

∂U(ỹ,z,τ)
∂ z

∣∣
∣
z=L1

μ∗
n (ỹ) d ỹ

]

dτ

}

Φnμn (y) =

= V2 (y,t) ; 0 ≤ y ≤ l, t ≥ 0,
(4.19)

[
∂
∂ t + ∂

∂ z

]
U (y,z,t)

∣∣∣
z=L1

=

= −
∞∑

n=−∞

{
t∫

0
J1 [Φn (t − τ)] (t − τ)−1

[
l∫

0
U (ỹ,L1,τ) μ∗

n (ỹ) d ỹ

]

dτ

}

×

×Φnμn (y) = V3 (y,t) ; 0 ≤ y ≤ l, t ≥ 0.
(4.20)

Let us consider the possibility of (4.18), (4.19), and (4.20) to play the part of
the boundary conditions for restriction of the analysis domain Q of open problems
(4.1). Using the results from references [1, 2, 5, 40, 187, 200] we advance.

Statement 4.1 Problems (4.1) and problems (4.1) supplemented with any one of
conditions (4.18), (4.19), and (4.20) are equivalent. The requirements that ensure
their unique solvability (correctness classes) are identical.

Formulas (4.18), (4.19), and (4.20) are exact. Hence their addition to the original
problems does not actually increase the computation error or distort the process of
simulation.

In the problem (4.1) with (4.18), (4.19), and (4.20), the instant (for τ= t) impacts
of the function U(g,τ) that is in the right-hand side functions Vj(y,t) can be entirely
excluded. Hence, during the calculation, when “moving” through time layers, the
functions Vj(y,t) may be considered as known ones, determined at the previous
layers τ < t.

Relations (4.12), (4.13), (4.17) and (4.18), (4.19), and (4.20) constitute the
exact radiation conditions for the outgoing transient waves formed by the grating.
Formulas (4.12), (4.13), and (4.17) describe the behavior of spatial–temporal ampli-
tudes of all partial components (modes) of the waves guided by the regular channel
R in the direction z→∞. The behavior of these wave fields as a whole is governed
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by formulas (4.18), (4.19), and (4.20). Therefore, the open problems (4.1) are equiv-
alent to problems (4.1) whose analysis domain QL is finite, with any condition of
(4.18), (4.19), and (4.20) types met on the virtual boundaries L1 and L2. By the same
reason, conditions (4.18), (4.19), and (4.20) can be regarded as exact absorbing con-
ditions: the wave field U(g,t) neither experiences deformation across L1 boundary
nor reflects back into the QL domain, the wave U(g,t) fully transmits to the upper
(z > L1) regular part of the R channel as if it were absorbed by the domain A or its
boundary L1.

At V2(y,t) = V3(y,t) = 0, the nonlocal conditions (4.19) and (4.20) coincide
with the simplest local classical ABC of the first-order approximation [181, 182].
This means that functions V2(y,t) and V3(y,t) determine the ABC residual, or the
difference between the exact values of the function

[
∂
/
∂ t + ∂

/
∂ z
]

U (y,z,t)
∣∣
z=L1

and the corresponding figures given in the computational schemes using this
approximate absorbing condition. The availability of the residual allows us
to estimate the accuracy of the corresponding computational scheme as a
whole.

4.1.3 Local Absorbing Conditions

Finite-difference method algorithms employing the nonlocal (both in space and time
variables) absorbing conditions (4.18), (4.19), and (4.20) call for substantial mem-
ory resources as the Vj(y,t) function databases grow progressively with time. They
all are stored to make the next step, proceeding through time layers [40]. The prob-
lem can be approached in the following way. We will turn to the local conditions by
applying the following scheme which is easy to realize. In view of the representation
[201]

J0 (x) = 2

π

π/2∫

0

cos (x sin ϕ) dϕ,

rewrite (4.12) as

un (L1,t) = − 2

π

π/2∫

0

⎧
⎨

⎩

∫

0

cos
[
Φn (t − τ) sin ϕ

]
χ (t − τ) u′n (L1,τ) dτ

⎫
⎬

⎭
dϕ; t ≥ 0.

(4.21)
Introduce

wn (t,ϕ) = −
∫

0

sin
[
Φn (t − τ) sin ϕ

]
χ (t − τ) u′n (L1,τ)

Φn sin ϕ
dτ; t ≥ 0, 0 ≤ ϕ ≤ π

/
2.

(4.22)
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Then

∂wn (t,ϕ)

∂ t
= −
∫

0

cos
[
Φn (t − τ) sin ϕ

]
χ (t − τ) u′n (L1,τ) dτ,

and from (4.21) we have

un (L1,t) = 2

π

π/2∫

0

∂ wn (t,ϕ)

∂ t
d ϕ; t ≥ 0. (4.23)

The integral form (4.22) is equivalent to the differential formulation below

⎧
⎨

⎩

[
∂2

∂ t2
+Φ2

n sin2 ϕ
]

wn (t,ϕ) = −u′n (L1,t) ; t > 0

wn (0,ϕ) = ∂ wn(t,ϕ)
∂ t

∣∣∣
t=0

= 0
. (4.24)

Indeed, passing from (4.24) to the generalized Cauchy problem and using
the fundamental solution G(λ,t) = χ(t)λ−1 sin λt of the operator D(λ) ≡[
d2
/

d t2 + λ2
]

(see Section 1.1.3 and [1]), one easily finds out that (4.22) and (4.24)
define one and the same functions wn(t,ϕ).

Now multiply (4.23) and (4.24) by μn(y) and sum over n = 0,±1,±2,. . .. On
account of

∞∑

n=−∞
Φ2

n wn (t,ϕ)μn (y) = −∂2 W (y,t,ϕ)

∂ y2

for

W (y,t,ϕ) =
∞∑

n=−∞
wn (t,ϕ)μn (y)
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[see problem (4.3)], we obtain

U (y,L1,t) = 2
π

π/2∫

0

∂ W(y,t,ϕ)
∂ t d ϕ; t ≥ 0, 0 ≤ y ≤ l,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
∂2

∂ t2
− sin2 ϕ ∂2

∂ y2

]
W (y,t,ϕ) = − ∂U(y,z,t)

∂ z

∣∣
∣
z=L1

; 0 < y < l, t > 0.

W (y,0,ϕ) = ∂ W(y,t,ϕ)
∂ t

∣∣∣
t=0

= 0; 0 ≤ y ≤ l

W
{

∂ W
∂ y

}
(l,t,ϕ) = ei2πΦW

{
∂ W
∂ y

}
(0,t,ϕ) ; t ≥ 0 (4.25)

This local (both in space and time variable) EAC enables us to efficiently trun-
cate the computation domain when solving problems (4.1) numerically. From here
on, W(y,t,ϕ) is an auxiliary function coming from the solution of the separate
initial boundary value problem, which is the inner problem with respect to the
corresponding condition, and 0 ≤ ϕ ≤ π/2 is a numerical parameter.

A similar treatment for (4.13) and (4.17) gives the following local EACs,
different from (4.25):

[
∂
∂t + ∂

∂z

]
U (y,z,t)

∣∣∣
z=L1

= 2
π

π/2∫

0
W (y,t,ϕ) cos2 ϕ dϕ; t ≥ 0, 0 ≤ y ≤ l,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
∂2

∂t2
− cos2 ϕ ∂2

∂y2

]
W (y,t,ϕ) = − ∂2

∂y2

[
∂
∂z U (y,z,t)

∣
∣∣
z=L1

]
; 0 < y < l, t > 0

W (y,0,ϕ) = ∂ W(y,t,ϕ)
∂ t

∣∣∣
t=0

= 0; 0 ≤ y ≤ l

W
{

∂ W
∂ y

}
(l,t,ϕ) = ei2πΦW

{
∂ W
∂ y

}
(0,t,ϕ) ; t ≥ 0,

(4.26)

[
∂
∂t + ∂

∂z

]
U (y,z,t)

∣∣∣
z=L1

= 2
π

π/2∫

0

∂W(y,t,ϕ)
∂ t sin2 ϕ dϕ; t ≥ 0, 0 ≤ y ≤ l,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
∂2

∂t2
− cos2 ϕ ∂2

∂y2

]
W (y,t,ϕ) = ∂2U(y,L1,t)

∂y2 ; 0 < y < l, t > 0

W (y,0,ϕ) = ∂ W(y,t,ϕ)
∂ t

∣∣∣
t=0

= 0; 0 ≤ y ≤ l

W
{

∂ W
∂ y

}
(l,t,ϕ) = ei2πΦW

{
∂ W
∂ y

}
(0,t,ϕ) ; t ≥ 0

.

(4.27)

Expression (4.26) was obtained by virtue of the formula [202]

J1 (x) = 2

π

π/2∫

0

sin (x cos ϕ) cos ϕ dϕ
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with the substitutions

wn (t,ϕ) = Φn
∫

0

sin[Φn(t−τ) cos ϕ]χ(t−τ)u′n(L1,τ)
cos ϕ dτ;

t ≥ 0, 0 ≤ ϕ ≤ π
/

2.

The derivation of (4.27) was through the Poisson integral [201]

J1 (x) = 2x

π

π/2∫

0

cos (x cos ϕ) sin2 ϕ dϕ

and

wn (t,ϕ) = −Φn
∫

0

sin[Φn(t−τ) cos ϕ]χ(t−τ)un(L1,τ)
cos ϕ dτ;

t ≥ 0, 0 ≤ ϕ ≤ π
/

2.

Under the assumption W(y,t,ϕ) ≡ 0 (which cannot be justified), (4.26) and (4.27)
reduce to the classical ABC of first-order approximation. Using the trapezoidal rule,
the integral in (4.26) is replaced by a finite sum and we end up with an approximate
condition that agrees well with that from [183].

By invoking the formulas [202]

J0 (x) = 1

2π

π∫

−π

exp (ix sin ϕ) dϕ and J1 (x) = 1

π

π∫

0

sin (x sin ϕ) sin ϕ dϕ,

one also arrives at the following local EACs:

U (y,L1,t) = − 1
2π

π∫

−π

W (y,t,ϕ) dϕ; 0 ≤ y ≤ l, t ≥ 0,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
∂
∂ t − sin ϕ ∂

∂ y

]
W (y,t,ϕ) = ∂

∂ z U (y,z,t)
∣∣
∣
z=L1

; 0 < y < l, t > 0

W (y,0,ϕ) = ∂ W(y,t,ϕ)
∂ t

∣∣∣
t=0

= 0; 0 ≤ y ≤ l

W
{

∂W
∂y

}
(l,t,ϕ) = ei2πΦ W

{
∂W
∂y

}
(0,t,ϕ) ; t ≥ 0

,
(4.28)

[
∂
∂ t + ∂

∂ z

]
U (g,t)

∣∣∣
z=L1

= 1
π

π∫

0
W (y,t,ϕ) dϕ; 0 ≤ y ≤ l, t ≥ 0,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
∂2

∂ t2
− sin2ϕ ∂2

∂ y2

]
W (y,t,ϕ) = −sin2ϕ ∂2

∂ y2

[
∂Us(g,t)

∂ z

∣∣∣
z=L1

]
;

0 < y < l, t > 0

W (y,0,ϕ) = ∂ W(y,t,ϕ)
∂ t

∣∣∣
t=0

= 0; 0 ≤ y ≤ l

W
{

∂W
∂y

}
(l,t,ϕ) = ei2πΦ W

{
∂W
∂y

}
(0,t,ϕ) ; t ≥ 0

.
(4.29)
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Conditions (4.28), (4.29) are concerned with (4.12), (4.13) and (4.18), (4.19) in
the same way as (4.25), (4.26). Here, we have made the substitutions

wn (t,ϕ) =
t∫

0

exp
[
iΦn (t − τ) sin ϕ

]
u′n (L1,τ) dτ; |ϕ| ≤ π, (4.30)

wn (t,ϕ) = Φn sin ϕ

t∫

0

sin
[
Φn (t − τ) sin ϕ

]
u′n (L1,τ) dτ; 0 ≤ ϕ ≤ π,

to derive conditions (4.28) and (4.29), respectively. Note the new technical detail –
the differential form

[
∂
/
∂ t − iΦn sin ϕ

]
wn (t,ϕ) = u′n (L1,τ) [from which follows

the equation with respect to W(y,t,ϕ) in the inner initial boundary value problem in
(4.28)], which is equivalent to the integral form (4.30), has been constructed with the
help of the fundamental solution G(λ,t) = χ(t) exp (−λt) of the operator [d/dt + λ]
(see Section 1.1.3 and [1]).

We return now to the representation (4.2) for the lower regular part z < –L2–h
of the R channel as well as for its upper part and construct the following initial
boundary value problems similar to (4.4):

{[
− ∂2

∂t2
+ ∂2

∂z2 −Φ2
n

]
un (z,t) = 0, t > 0

un (z,0) = 0, ∂
∂t un (z,t)

∣
∣
t=0 = 0

; z ≤ −L2 − h, n = 0, ± 1, ± 2,...

(4.31)
for the evolutionary basis elements un(z,t) of the signal U(g,t), g∈B. The problems
(4.4) generates three types of nonlocal EACs [formulas (4.18), (4.19), and (4.20)]
and five types of the local EACs [(4.25), (4.26), (4.27), (4.28), and (4.29)]. A com-
parison between (4.4) and (4.31) shows how all these EAC formulas can be rewritten
in terms of boundary L2. In what follows, conditions (4.19) and (4.26) will be
used. Taking into account the change both in the direction of free propagation of
pulsed waves (toward z→–∞ instead of z→+∞) and in the position of the artificial
boundary L2 (z = –L2–h instead of z =L1), we have

[
∂
∂ t − ∂

∂ z

]
U (y,z,t)

∣∣∣
z=−L2−h

=

= −∑
n

{
t∫

0
J1 [Φn (t − τ)]

[
l∫

0

∂U(ỹ,z,τ)
∂ z

∣∣∣
z=−L2−h

μ∗
n (ỹ) d ỹ

]

dτ

}

Φnμn (y) ;

0 ≤ y ≤ l, t ≥ 0
(4.32)

and
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[
∂
∂t − ∂

∂z

]
U (y,z,t)

∣∣∣
z=−L2−h

= 2
π

π/2∫

0
W (y,t,ϕ) cos2 ϕ dϕ; t ≥ 0, 0 ≤ y ≤ l,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
∂2

∂t2
− cos2 ϕ ∂2

∂y2

]
W (y,t,ϕ) = ∂2

∂y2

[
∂
∂z U (y,z,t)

∣∣∣
z=−L2−h

]
;

0 < y < l, t > 0

W (y,0,ϕ) = ∂ W(y,t,ϕ)
∂ t

∣∣∣
t=0

= 0; 0 ≤ y ≤ l

W
{

∂ W
∂ y

}
(l,t,ϕ) = ei2πΦW

{
∂ W
∂ y

}
(0,t,ϕ) ; t ≥ 0

.

(4.33)

Now we can formulate the main result of the section.

Statement 4.2 The open problems (4.1) with the analysis domain Q are equivalent
to closed problems (4.1) with the analysis domain QL and nonlocal or local EACs
(4.18), (419) and (4.20), (4.25), (4.26), (4.27), (4.28) and (4.29), (4.32), and (4.33)
on its outer boundary L = L1 ∪ L2. For the auxiliary functions W(y,z,ϕ), the inner
initial boundary value problems in (4.25), (4.26), (4.27), (4.28), (4.29), and (4.33)
are well posed.

4.1.4 The Problems of Large and Remote Field Sources

Earlier, formulating the initial boundary value problem and specifying Q and QL

domains, we assumed that the functions describing the sources which excite the grat-
ings (see Section 4.1.1) are finitary in the closure of the complete analysis domain
Q and their supports belong to QL\L for all times 0 ≤ t ≤ T. The advantage is
that the conditions on the virtual boundaries L can be formulated in terms of the
total field U(g,t). The limitations introduced by these assumptions can be partially
or completely removed by enclosing a certain part of the current and/or the instant
sources in the LQ domain. The only concern is that one should exclude the incom-
ing primary wave Ui(g,t), generated by this source, from the field U(g,t) on L. To
this end, the scattered (secondary) field Us(g,t) = U(g,t)–Ui(g,t) is introduced. The
final equations for the modified problem can be formulated either in terms of the
total field U(g,t) or in terms of the secondary field Us(g,t). The first alternative is
preferred to the second as the formally true separation of the field U(g,t) into Us(g,t)
and Ui(g,t) can be physically invalid in partial subdomains of the domain Q.

The problems (4.34) stated below

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[
−εμ ∂2

∂t2
− σμ ∂

∂t + ∂2

∂y2 + ∂2

∂z2

]
U (g,t) = F (g,t) + F̃ (g,t) ;

g = {y,z} ∈ Q, t > 0
U (g,0) = ϕ (g) + ϕ̃ (g) , ∂

∂t U (g,t)
∣∣
t=0 = ψ(g) + ψ̃(g); g ∈ Q̄

Etg (p,t)
∣∣
p={x,y,z}∈S = 0; t ≥ 0

U
{

∂ U
∂ y

}
(l,z,t) = e2πiΦU

{
∂ U
∂ y

}
(0,z,t) ; t ≥ 0

(4.34)
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differs from (4.1) by the existence of the functions F̃ (g,t), ϕ̃ (g), and ψ̃ (g) which are
finitary in the domain Q. It is assumed that the supports of these functions and the
corresponding sources belong to the domain A = {g ∈ Q: z > L1} (see Fig. 4.1).
The domain B = {g ∈ Q: z < −L2 − h} carries, as before, no sources or efficient
scatterers.

In A, the total field can be written as U(g,t) = Ui(g,t)+Us(g,t), where Ui(g,t) is
the field in the channel R from the sources F̃ (g,t), ϕ̃ (g), and ψ̃ (g):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
− ∂2

∂t2
+ ∂2

∂y2 + ∂2

∂z2

]
Ui (g,t) = F̃ (g,t) ; g ∈ R, t > 0

Ui (g,0) = ϕ̃ (g) , ∂
∂t U

i (g,t)
∣
∣
t=0 = ψ̃(g); g ∈ R

Ui
{

∂ Ui

∂ y

}
(l,z,t) = e2πiΦUi

{
∂ Ui

∂ y

}
(0,z,t) ; t ≥ 0

. (4.35)

In order to find Us(g,t) in A and U(g,t) in B, we may consider now the following
homogeneous initial boundary value problems:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
− ∂2

∂t2
+ ∂2

∂y2 + ∂2

∂z2

] {Us (g,t)
U (g,t)

}
= 0; g ∈

{
A
B

}
, t > 0

{
Us (g,0)

U (g,0)

}
= 0, ∂

∂t

{
Us (g,t)
U (g,t)

}∣∣
∣∣
t=0

= 0; g ∈
{

Ā
B̄

}

{
Us

U

}{{
Us

U

}/
∂ y

}
(l,z,t) = e2πiΦ

{
Us

U

}{{
Us

U

}/
∂ y

}
(0,z,t) ;

{
z > L1
z < −L2 − h

}
, t ≥ 0

(4.36)

It is assumed that the perturbation caused by the sources concentrated in QL have
not reached the boundaries L1 and L2 of the domains A and B at the time t = 0. The
solutions of problems (4.36) – the function U(g,t) in B and the function Us(g,t) in
A – determine the outgoing waves traveling in the z→–∞ and z→+∞ directions,
respectively. Therefore we will prove that (see Sections 4.1.1, 4.1.2 and 4.1.3)

U(y,L1,t) − Ui(y,L1,t) =
= −

∞∑
n=−∞

{
t∫

0
J0 [Φn (t − τ)]

[
l∫

0

∂
[
U(ỹ,z,τ)−Ui(ỹ,z,τ)

]

∂ z

∣
∣∣
z=L1

μ∗
n (ỹ) dỹ

]

dτ

}

×
×μn (y) ; 0 ≤ y ≤ l, t ≥ 0,

(4.37)

U(y, − L2 − h,t) =
∞∑

n=−∞

{
t∫

0
J0 [Φn (t − τ)]

[
l∫

0

∂U(ỹ,z,τ)
∂ z

∣∣∣
z=−L2−h

μ∗
n (ỹ) d ỹ

]

dτ

}

×
×μn (y) ; 0 ≤ y ≤ l, t ≥ 0,

(4.38)
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and

U (y,L1,t) − Ui (y,L1,t) = 2
π

π/2∫

0

∂ W(y,t,ϕ)
∂ t d ϕ; t ≥ 0, 0 ≤ y ≤ l,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
∂2

∂ t2
− sin2 ϕ ∂2

∂ y2

]
W (y,t,ϕ) = − ∂

[
U(y,z,t)−Ui(y,z,t)

]

∂ z

∣∣∣
z=L1

;

0 < y < l, t > 0

W (y,0,ϕ) = ∂ W(y,t,ϕ)
∂ t

∣∣∣
t=0

= 0; 0 ≤ y ≤ l

W
{

∂ W
∂ y

}
(l,t,ϕ) = ei2πΦW

{
∂ W
∂ y

}
(0,t,ϕ) ; t ≥ 0

,
(4.39)

U (y, − L2 − h,t) = 2
π

π/2∫

0

∂ W(y,t,ϕ)
∂ t d ϕ; t ≥ 0, 0 ≤ y ≤ l,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
∂2

∂ t2
− sin2 ϕ ∂2

∂ y2

]
W (y,t,ϕ) = ∂U(y,z,t)

∂ z

∣∣∣
z=−L2−h

; 0 < y < l, t > 0

W (y,0,ϕ) = ∂ W(y,t,ϕ)
∂ t

∣∣∣
t=0

= 0; 0 ≤ y ≤ l

W
{

∂ W
∂ y

}
(l,t,ϕ) = ei2πΦW

{
∂ W
∂ y

}
(0,t,ϕ) ; t ≥ 0

.

(4.40)

Here, as before, W(y,t,ϕ) are certain auxiliary functions.
The couple (4.37) and (4.39) are exact (nonlocal and local) absorbing conditions

on the boundary L1 in the region A cross-section at z = L1. The couple (4.38) and
(4.40) represents the same conditions for the boundary L2 in the region B cross-
section at z = –L2 – h. They are direct analogues of conditions (4.18) and (4.25)
constructed in Sections 4.1.2 and 4.1.3. It is evident that the other nonlocal and
local conditions from these sections may be adjusted for the situation considered
here.

In QL, the function U(g,t) is defined by the equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
−εμ ∂2

∂t2
− σμ ∂

∂t + ∂2

∂y2 + ∂2

∂z2

]
U (g,t) = F (g,t) ; g ∈ QL, t > 0

U (g,0) = ϕ (g) , ∂
∂t U (g,t)

∣
∣
t=0 = ψ(g); g ∈ QL

Etg (p,t)
∣∣
p={x,y,z}∈S = 0; t ≥ 0

U
{

∂ U
∂ y

}
(l,z,t) = e2πiΦU

{
∂ U
∂ y

}
(0,z,t) ; t ≥ 0

.

(4.41)

Statement 4.3 Problems (4.34) and problems (4.41) with conditions (4.37) and
(4.38) or (4.39) and (4.40) in the domain QL have the same solutions U(g,t) for an
arbitrary observation time t∈[0;T]. In the modified problems, the functions Ui(g,t)
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involved in the EACs of (4.37) and (4.39) type for the virtual boundary L1 act as
real sources outside the bounded analysis domain QL.

The EACs of the (4.37) and (4.39) type allow us to confine the calculation space
QL to a reasonable size when working the problem of the type (4.34) with large
and/or distant sources of transient waves Ui(g,t). These sources – F̃ (g,t), ϕ̃ (g), and
ψ̃ (g) – are merely enclosed in the LQ domain. Their contribution to the total field
U(g,t) is considered via the boundary values of the functions Ui(g,t), t∈[0;T] and
their normal derivatives on the L boundaries. All information relevant for the real-
ization of the scheme is provided by the solution of problem (4.35), which is quite
simple computationwise. Also, the problem is explicitly solved using the mirror
image technique. The Poisson formula governing the given source field in a free 2-D
space (in the space R2) readily admits the boundary wall condition of the Floquet
channel R [2, 10].

Where and how the primary Ui(g,t) wave is excited is usually no problem for
standard scattering analysis of infinite periodic gratings (see Section 4.4). Nor does
it need Ui(g,t) values at all observation time t∈[0;T] and at all points g from A. A
proper numerical experiment only needs Ui (g,t)

∣
∣
g∈L1

and
[
∂Ui (g,t)

/
∂z
]∣∣

g∈L1
val-

ues for all times t∈[0;T]. Yet these values must be in agreement with the boundary
values of some function Ui(g,t) that governs in the domain A a transient electro-
magnetic wave running on the virtual boundary L1 (principle of causality). On the
L1 boundary separating the domains QL and A, this requirement complies with the
functions

Ui
p (y,L1,t) = vp (L1,t)μp (y) ,

[
∂Ui

p (y,z,t)
/

∂z
]∣∣
∣
z=L1

= v′p (L1,t)μp (y) ;

0 ≤ y ≤ l, p = 0, ± 1, ± 2,...,
(4.42)

whose amplitudes vp(L1,t) and v′p(L1,t) are related as follows:

vp(L1,t) =
∫

0

J0
[
Φp (t − τ)

]
χ (t − τ) v′p (L1,τ) dτ; t ≥ 0. (4.43)

It is evident that (4.42) and (4.43) give boundary values of the function Ui
p (g,t) =

vp (z,t)μp (y) describing a transient wave running on the boundary L1 from the A
region. This is so because (4.43) comes from (4.10), taking into account the changes
in the direction of propagation of the wave under discussion.

4.2 Finite Gratings: Exact Conditions for Rectangular Artificial
Boundaries

4.2.1 Statement of the Problems

In Section 4.2, we analyze 2-D model configurations involving finite periodic
structures (see, for example, Fig. 4.2). The models proceed from the following
real-valued scalar problems:
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Fig. 4.2 Geometry of model problems (4.44)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
−εμ ∂2

∂t2
− σμ ∂

∂t + ∂2

∂y2 + ∂2

∂z2

]
U (g,t) = F (g,t) ; g = {y,z} ∈ Q, t > 0

U (g,t)|t=0 = ϕ (g) , ∂
∂t U (g,t)

∣∣
t=0 = ψ (g) ; g ∈ Q

Etg (p,t)
∣∣
p={x,y,z}∈S = 0; t ≥ 0

Dj
[
U (g,t) − Ui(j) (g,t)

]∣∣
g∈Lj

= 0; j = 1,2,...,N, t ≥ 0

.

(4.44)

Here, U(g,t) = Ex(g,t) for E-polarization of the field (Ey = Ez = Hx = 0 and μ(g)
is a piecewise constant function) and U(g,t) = Hx(g,t) for H-polarization (Hy = Hz

= Ex = 0 and ε (g) and σ(g) are piecewise constant functions). The analysis domain
Q, part of the plane R2, is limited by curves Sx and virtual boundaries (ports) Lj;
S = Sx × [|x| ≤ ∞] are surfaces of perfectly conducting elements as given by the
device geometry. The functions F (g,t) , ϕ (g) , ψ (g) , σ (g), ε (g)–1, and μ(g)–1
are finitary in Q. For all observation times 0 ≤ t ≤ T, their supports belong to the
closure of the domain QL = {g ∈ Q: A4 < y < A3; A2 < z < A1} (see Fig. 4.2).
Above (below, on the right/left of) the artificial boundary z = A1 (z = A2, y = A3,
y = A4) there are neither sources nor scatterers. The continuity conditions of the
tangential components of the field strength vectors are satisfied when the situation
so requires, and all initial data are such that (4.44) have a unique solution in the
space W1

2

(
QT
)
, QT = Q × ( 0;T), T < ∞ (see Statement 1.1 and [5]).
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The difference between problems (4.44) and compact (in the free space R2) inho-
mogeneity problems (3.12) [1] is only that the former admits perturbation sources
in the jQ domains that are regular, lj wide virtual plane parallel waveguides imme-
diately adjacent to the QL domain lengthwise of the boundaries (ports) Lj (see Fig.
4.2). These sources produce pulsed waves Ui(j)(g,t) running on the boundaries Lj

from jQ. Owing to the jQ waveguides, the object modeling in terms of infinite
regular boundaries S leaves us in a more convenient yet more physically relevant
contexts, which are valid, strictly speaking, only for compact inhomogeneities in
free space. Also, it is very important that this expedient allows the object model-
ing in the regime of the excitation from the waveguide feed line by giving on one
or more boundaries Lj the primary signal Ui(j)(g,t) from the current or the instant
sources whose supports are within the virtual jQ domain.

The exact absorbing conditions

Dj

[
U (g,t) − Ui(j) (g,t)

]∣∣∣
g∈Lj

= 0; t ≥ 0 (4.45)

for the plane parallel waveguide jQ are derived in the same way as the EACs are
derived for A as part of the plane parallel Floquet channel R. The results from
Section 4.1 are easily modified to fit the situation considered now. All we need to do
is to substitute the solutions {Φn} and {μn(y)} of problems (4.3) by the solutions
{λnj} and {μnj(yj)} of the spectral problems

⎧
⎪⎪⎨

⎪⎪⎩

[
d2

dy2
j
+ λ2

nj

]
μnj
(
yj
) = 0; 0 < yj < lj

μnj (0) = μnj (lj) = 0 (E − case) or
dμnj (yj)

/
dyj
∣
∣
yj=0,lj

= 0 (H − case)

and change from the local coordinates gj = {yj,zj} associated with the waveguide
jQ (see Fig. 4.2) to the general coordinates g = {y,z}. Thus, for the structure shown
in Fig. 4.2 and excited by the E-polarized wave Ui(2)(g,t) from the second virtual
waveguide, the EACs of the type (4.37), (4.38), (4.39), and (4.40) on the boundaries
L1 (y = –L1) and L2 (y = L2) take the form

U(L2,z,t) − Ui(2)(L2,z,t) = Us(2)(L2,z,t) =
= −

∞∑
n=1

{
t∫

0
J0 [λn (t − τ)]

[
b2∫

a2

∂Us(2)(y,z̃,τ)
∂y

∣∣∣
y=L2

μn2 (z̃) dz̃

]

dτ

}

μn2 (z);

a2 ≤ z ≤ b2, t ≥ 0,
(4.46)

U( − L1,z,t) =
∞∑

n=1

{
t∫

0
J0 [λn (t − τ)]

[
b1∫

a1

∂U(y,z̃,τ)
∂ y

∣∣∣
y=−L1

μn1 (z̃) d z̃

]

dτ

}

μn1 (z) ;

a1 ≤ z ≤ b1, t ≥ 0
(4.47)

and
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U (L2,z,t) − Ui(2) (L2,z,t) = 2
π

π/2∫

0

∂ W(z,t,ϕ)
∂ t d ϕ; t ≥ 0, a2 ≤ z ≤ b2,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
∂2

∂ t2
− sin2 ϕ ∂2

∂ z2

]
W (z,t,ϕ) = − ∂

[
U(y,z,t)−Ui(2)(y,z,t)

]

∂ y

∣∣∣∣
y=L2

;

a2 ≤ z ≤ b2, t > 0

W (z,0,ϕ) = ∂ W(z,t,ϕ)
∂ t

∣∣∣
t=0

= 0; a2 ≤ z ≤ b2

W (a2,t,ϕ) = W (b2,t,ϕ) = 0; t ≥ 0

,
(4.48)

U (−L1,z,t) = 2
π

π/2∫

0

∂ W(z,t,ϕ)
∂ t d ϕ; t ≥ 0, a1 ≤ z ≤ b1,

⎧
⎪⎪⎨

⎪⎪⎩

[
∂2

∂ t2
− sin2 ϕ ∂2

∂ z2

]
W (z,t,ϕ) = ∂U(y,z,t)

∂ y

∣∣∣
y=−L1

; a1 ≤ z ≤ b1, t > 0

W (z,0,ϕ) = ∂ W(z,t,ϕ)
∂ t

∣∣
∣
t=0

= 0; a1 ≤ z ≤ b1

W (a1,t,ϕ) = W (b1,t,ϕ) = 0; t ≥ 0

.

(4.49)

Here, λnj = nπ/lj, n = 1,2,. . .; {μnj(z)} are the complete systems of orthonormalized

transverse functions μnj (z) =
√

2
/

lj sin
[
nπ
(
z − aj

)/
lj
]
, lj = bj–aj is the height of

the waveguide jQ, z = aj and z = bj are the planes corresponding to the waveguide
upper and lower walls, respectively.

4.2.2 Truncation of the Analysis Domain to a Band

In the domain LQ, the functions U(g,t) are associated with the outgoing waves
crossing the boundary L in one direction only. They comply with the homogeneous
problems

{[
− ∂2

∂t2
+ ∂2

∂y2 + ∂2

∂z2

]
U (g,t) = 0; g = {y,z} ∈L Q, t > 0

U (g,t)|t=0 = 0, ∂
∂t U (g,t)

∣
∣
t=0 = 0; g ∈ LQ

. (4.50)

Subject the U(g,t) function from (4.50) to the Fourier transform

uy (λ,z,t) = 1

2π

∞∫

−∞
U (y,z,t)eiλydy ↔ U (y,z,t) =

∞∫

−∞
uy (λ,z,t)e−iλydλ,

uz (y,μ,t) = 1

2π

∞∫

−∞
U (y,z,t)eiμzdz ↔ U (y,z,t) =

∞∫

−∞
uz (y,μ,t)e−iμzdμ

and employ the technique checked in Sections 4.1.1 and 4.1.2 as applied to
homogeneous problems (4.4) for one-dimensional Klein–Gordon equations. Then
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[
∂

∂ t
± ∂

∂ z

]
uy (λ,z,t) = ±λ

t∫

0

J1 (λ (t − τ))
∂uy (λ,z,τ)

∂ z
dτ;

{
z ≥ A1
z ≤ A2

, (4.51)

[
∂

∂ t
± ∂

∂ y

]
uz (y,μ,t) = ±μ

t∫

0

J1 (μ (t − τ))
∂uz (y,μ,τ)

∂ y
dτ;

{
y ≥ A3
y ≤ A4

.

(4.52)

After a sequence of simple operations (see Section 4.1.2: Laplace transform in
t → solution of the operational equations with respect to the derivatives in the spatial
coordinates of the uy and uz images → inverse Laplace transform), equations (4.51)
and (4.52) can be written in the following equivalent form:

[
∂

∂ t
± ∂

∂ z

]
uy (λ,z,t) = −λ

t∫

0

J1 (λ (t − τ))

t − τ
uy (λ,z,τ) dτ;

{
z ≥ A1
z ≤ A2

, (4.53)

[
∂

∂ t
± ∂

∂ y

]
uz (y,μ,t) = −μ

t∫

0

J1 (μ (t − τ))

t − τ
uz (y,μ,τ) dτ;

{
y ≥ A3
y ≤ A4

.

(4.54)

The nonlocal conditions (4.51), (4.52), (4.53), and (4.54), written in terms of
the Fourier amplitudes of the field U(g,t), truncate the analysis domain of problems
(4.44) to the band A2 < z < A1 or A4 < y < A3. We will seek now relations that are
local in time and space. Let us begin with formulas (4.53) and (4.54) and follow the
scheme tried in Section 4.1.3. Here we apply the Poisson integral formula [201]

J1 (x) = 2x

π

π/2∫

0

cos (xcosϕ)sin2ϕ dϕ,

the substitutions

vy = −λ

t∫

0

sin (λ (t − τ) cosϕ)

cosϕ
uy dτ,

∂vy

∂ t
= −λ2

t∫

0

cos (λ (t − τ) cosϕ) uy dτ,

(4.55)

and the fundamental solution G (a,t) = χ (t) sin (at) a−1 of the operator D (a) ≡[
d2
/

dt2 + a2
]
, in order to go from the integral forms (4.55) to the equivalent

differential forms

⎧
⎨

⎩

[
∂2

∂ t2
+ λ2cos2ϕ

]
vy = −λ2uy; t > 0

∂vy
∂ t

∣∣∣
t=0

= vy
∣∣
t=0 = 0

.
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As a result we obtain:
[

∂
∂ t ± ∂

∂ z

]
uy (λ,z,t) = 2

π

π/2∫

0

∂vy(λ,z,t,ϕ)

∂ t sin2ϕdϕ; t ≥ 0,
⎧
⎪⎨

⎪⎩

[
∂2

∂ t2
+ λ2cos2ϕ

]
vy (λ,z,t,ϕ) = −λ2uy (λ,z,t) ; t > 0

∂vy(λ,z,t,ϕ)

∂ t

∣∣∣
t=0

= vy (λ,z,t,ϕ)
∣∣
t=0 = 0

,

{
z ≥ A1
z ≤ A2

,

(4.56)

[
∂
∂ t ± ∂

∂ y

]
uz (y,μ,t) = 2

π

π/2∫

0

∂vz(y,μ,t,ϕ)
∂ t sin2ϕdϕ; t ≥ 0,

⎧
⎨

⎩

[
∂2

∂ t2
+ μ2cos2ϕ

]
vz (y,μ,t,ϕ) = −μ2uz (y,μ,t) ; t > 0

∂vz(y,μ,t,ϕ)
∂ t

∣∣∣
t=0

= vz (y,μ,t,ϕ)|t=0 = 0
,

{
y ≥ A3
y ≤ A4

.

(4.57)

Let

V1 (g,t,ϕ) =
∞∫

−∞
vy (λ,z,t,ϕ)e−iλydλ, V2 (g,t,ϕ) =

∞∫

−∞
vz (y,μ,t,ϕ)e−iμzdμ.

Subject (4.56) and (4.57) to the inverse Fourier transform. Then the local EACs
reducing the analysis domain of the original problems (4.44) to a band in R2 takes
the form

[
∂
∂ t ± ∂

∂ z

]
U (g,t) = 2

π

π/2∫

0

∂V1(g,t,ϕ)
∂ t sin2ϕdϕ; |y| ≤ ∞, t ≥ 0,

⎧
⎨

⎩

[
∂2

∂ t2
− cos2ϕ ∂2

∂ y2

]
V1 (g,t,ϕ) = ∂2

∂ y2 U (g,t) ; |y| < ∞, t > 0
∂V1(g,t,ϕ)

∂ t

∣∣∣
t=0

= V1 (g,t,ϕ)|t=0 = 0; |y| ≤ ∞ ;

{
z ≥ A1
z ≤ A2

(4.58)
and

[
∂
∂ t ± ∂

∂ y

]
U (g,t) = 2

π

π/2∫

0

∂V2(g,t,ϕ)
∂ t sin2ϕdϕ; |z| ≤ ∞, t ≥ 0,

⎧
⎨

⎩

[
∂2

∂ t2
− cos2ϕ ∂2

∂ z2

]
V2 (g,t,ϕ) = ∂2

∂ z2 U (g,t) ; |z| < ∞, t > 0
∂V2(g,t,ϕ)

∂ t

∣
∣∣
t=0

= V2 (g,t,ϕ)|t=0 = 0; |z| ≤ ∞ ;

{
y ≥ A3
y ≤ A4

.

(4.59)

4.2.3 The Corner Points: Proper Formulation of the Inner Initial
Boundary Value Problems in the Exact Local Absorbing
Conditions

Each of the four expressions (4.58) and (4.59) generates the EAC which truncates
the analysis domain down to the half-plane z < A1, z > A2, y < A3 or y > A4. The inner
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differential (Cauchy) problems for the functions V1(g,t,ϕ) (z is some parameter) and
V2(g,t,ϕ) (y is some parameter) are well posed.

When the so truncated domain is of rectangular shape, all the four equations of
(4.58) and (4.59) must be taken into account. At the same time, the inner differential
problems must be completed with the conditions at the ends where the boundaries
z = const and y = const meet. There are several analytic ways to treat this prob-
lem (the problem of the corner points). One of them, supposedly the clearest, is
examined below.

Initially, consider the first equations (with the plus signs) from conditions (4.58)
and (4.59). In Fig. 4.2, the R2 plane quadrant, where these equations are valid
simultaneously, is dotted. In this quadrant, single out the region

G = {g = {y,z} : A3 < y < A3 + 2π; A1 < z < A1 + 2π}

and use here the following representation:

f (g,t) ∈ W1
2 (G∞,β) = {f (g,t) :f (g,t) exp (−βt) ∈ W1

2 (G∞)
}

:

f (g,t) = 1
2πi

α+i∞∫

α−i∞

∞∑
n,m=−∞

f̃ (n,m,s)ei(ny+mz)+stds; Res ≥ β ≥ 0 ↔

↔ f̃ (n,m,s) = 1
4π2

∞∫

0

A1+2π∫

A1

A3+2π∫

A3

f (g,t)e−i(ny+mz)−stdydzdt.
(4.60)

For the amplitudes ũ = ũ (n,m,s), ṽj (ϕ) = ṽj (n,m,s,ϕ), and w̃j (ϕ) =
w̃j (n,m,s,ϕ), j = 1,2, of the functions U(g,t), Vj(g,t,ϕ), and Wj (g,t,ϕ) =
Vj (g,t,ϕ) cos2ϕ+ U (g,t), we obtain:

(s + im) ũ = 2s

π

π/2∫

0

sin2ϕ ṽ1dϕ, (s + in) ũ = 2s

π

π/2∫

0

sin2ϕ ṽ2dϕ, (4.61)

w̃1 = s2

s2 + n2cos2ϕ
ũ, w̃2 = s2

s2 + m2cos2ϕ
ũ, (4.62)

ṽ1 = − n2

s2 + n2cos2ϕ
ũ, ṽ2 = − m2

s2 + m2cos2ϕ
ũ, (4.63)

s2 + m2 + n2 = 0. (4.64)
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Now address the function

inw̃1 (ϕ) = inũ
s2

s2 + n2cos2ϕ
= s2

s2 + n2cos2ϕ

⎡

⎢
⎣−sũ + 2s

π

π/2∫

0

sin2γṽ2 (γ) dγ

⎤

⎥
⎦ =

= −sũ
s2

s2 + n2cos2ϕ

⎡

⎢
⎣1 + 2sin2ϕ

π

π/2∫

0

sin2γ

cos2ϕ+ sin2ϕcos2γ
dγ

⎤

⎥
⎦+

+ 2
π

π/2∫

0
sũ s2

s2+m2cos2γ
× sin2γ

cos2ϕ+ sin2ϕcos2γ
dγ =

= − s

cosϕ
w̃1 (ϕ) + 2

π

π/2∫

0

sw̃2 (γ)
sin2γ

cos2ϕ+ sin2ϕcos2γ
dγ.

(4.65)

Here, a successive usage was made of equations (4.62), (4.61), and (4.63), the
equality

s2

s2 + an2
× s2

s2 + bm2
= a

a + (1 − a) b
× s2

s2 + an2
+ b

a + (1 − a) b
× s2

s2 + bm2

is valid only if (4.64) holds, and, once again, equation (4.62).
The inverse transform of (4.65) yields

[
∂
∂ t + cosϕ ∂

∂ y

]
W1 (g,t,ϕ) = 2cosϕ

π

π/2∫

0

sin2γ

cos2ϕ+sin2ϕcos2γ

∂W2(g,t,γ)
∂ t dγ;

z ≥ A1 , y ≥ A3.

The upper boundaries z = A1 + 2π and y = A3 + 2π of the region G, where the
mentioned equation holds, are not mentioned, because the region G may be arbitrary
in size.

Performing the operations described above for the function imw̃2 (ϕ), which is
the object of the present study, we obtain

[
∂
∂ t + cosϕ ∂

∂ z

]
W2 (g,t,ϕ) = 2cosϕ

π

π/2∫

0

sin2γ

cos2ϕ+sin2ϕcos2γ

∂W1(g,t,γ)
∂ t dγ;

z ≥ A1, y ≥ A3.

The expressions relating the auxiliary functions W1(g,t,ϕ) and W2(g,t,ϕ) in all the
four G-like regions resolve the problem of corner points. The inner initial boundary
value problems in (4.58) and (4.59) equipped by the corresponding relation are well
posed within the finite sections of the outer boundary L surrounding the rectangu-
lar domain QL. The relevant complete system of equations truncating the analysis
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domain Q down to the region QL is

[
∂

∂ t
± ∂

∂ z

]
U (g,t) = 2

π

π/2∫

0

∂V1 (g,t,ϕ)

∂ t
sin2ϕdϕ; A4 ≤ y ≤ A3, t ≥ 0,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
∂2V1 (g,t,ϕ)

∂ t2
− ∂2W1 (g,t,ϕ)

∂ y2

]
= 0; A4 < y < A3, t > 0

∂V1 (g,t,ϕ)

∂ t

∣∣∣
∣
t=0

= V1 (g,t,ϕ)|t=0 = 0; A4 ≤ y ≤ A3

;

{
z = A1
z = A2

,

(4.66)

[
∂
∂ t ± ∂

∂ y

]
U (g,t) = 2

π

π/2∫

0

∂V2 (g,t,ϕ)

∂ t
sin2ϕdϕ; A2 ≤ z ≤ A1, t ≥ 0,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
∂2V2 (g,t,ϕ)

∂ t2
− ∂2W2 (g,t,ϕ)

∂ z2

]
= 0; A2 < z < A1, t > 0

∂V2 (g,t,ϕ)

∂ t

∣
∣∣∣
t=0

= V2 (g,t,ϕ)|t=0 = 0; A2 ≤ z ≤ A1

;

{
y = A3
y = A4

,

(4.67)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
∂
∂ t ± cosϕ ∂

∂ y

]
W1 (g,t,ϕ) = 2cosϕ

π

π/2∫

0

sin2γ

cos2ϕ+ sin2ϕcos2γ

∂W2 (g,t,γ)

∂ t
dγ

[
∂
∂ t ± cosϕ ∂

∂ z

]
W2 (g,t,ϕ) = 2cosϕ

π

π/2∫

0

sin2γ

cos2ϕ+ sin2ϕcos2γ

∂W1 (g,t,γ)

∂ t
dγ

;

{+
+
}
→ g={A3,A1} ,

{+
−
}
→ {A3,A2} ,

{−
+
}
→ {A4,A1} ,

{−
−
}
→ {A4,A2} .

(4.68)

Actually, the three formulas (4.66), (4.67), and (4.68) should be considered
together, for only taken together they can determine the exact local absorbing con-
dition over the entire artificial coordinate boundary L. Equations (4.68) act here
as boundary conditions in the inner initial boundary value problems of (4.66) and
(4.67). The symbol

{+
+
}
→ g = {A3,A1}

chooses the signs in the upper and lower equations for different corner points
g = {y,z}.
Statement 4.4 Problems (4.44), the analysis domain Q and problems (4.44), the
analysis domain QL = {g ∈ Q: A4 < y < A3; A2 < z < A1} and conditions (4.66),
(4.67), and (4.68) on the outer rectangular boundary L are equivalent.
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The inner initial boundary value problems in (4.66), (4.67), and (4.68) for the
functions W1(g,t,ϕ) and W2(g,t,ϕ) are well posed.

4.2.4 The Far Zone Problem: Radiation Conditions for Outgoing
Cylindrical Waves and Exact Conditions for Artificial
Boundaries in Polar Coordinates

Let a circle of radius L with its center in the point g = {y,z} = {0,0} be inscribed
in the rectangular QL domain. Let this circle have all field sources and R2 space
inhomogeneities inside (see Fig. 4.2). Then within ρ > L, 0 ≤ φ ≤ 2π (g = {ρ,φ}
are polar coordinates) the solutions U(g,t) of the initial boundary value problems
(4.44) represent outgoing transient waves crossing the boundary ρ = L only in one
(ρ→∞) direction, and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
− ∂2

∂t2
+ 1

ρ
∂
∂ρ

ρ ∂
∂ρ

+ 1
ρ2

∂2

∂φ2

]
U (g,t) = 0; ρ > L, t > 0

U (g,t)|t=0 = 0, ∂
∂t U (g,t)

∣∣
t=0 = 0; ρ ≥ L

U (ρ,φ,t) = U (ρ,φ+ 2π,t) ; t ≥ 0

. (4.69)

Separation of the φ-variable in (4.69) yields

U (ρ,φ,t) =
∑

n

ūn (ρ,t) μ̄n (φ) ; ρ ≥ L, t ≥ 0, (4.70)

where μ̄n (φ) = (2π)−1/2 exp (inφ), n = 0,±1,±2,. . ., is the orthonormal system of
transverse functions, complete in the space L2(0 < φ < 2π). The spatial–temporal
amplitudes ūn (ρ,t) (the evolutionary bases ū (ρ,t) = {ūn (ρ,t)}) of the waves U(ρ,φ,t)
are available from the solutions of the initial boundary value problems

{[
− ∂2

∂t2
+ 1

ρ
∂
∂ρ

ρ ∂
∂ρ

− n2

ρ2

]
ūn (ρ,t) = 0; ρ > L, t > 0

ūn (ρ,0) = 0, ∂
∂t ūn (ρ,t)

∣
∣
t=0 = 0; ρ ≥ L

. (4.71)

The expansion (4.70) refers to an analysis in the space of complex functions
ūn (ρ,t). We can (through a slight analytic complication) translate the analysis into a
real space, thereby saving computer resources. An important point is that the scheme
for constructing the radiation conditions is identical within both approaches.

Let us multiply (4.71) by χ(ρ–L) and then apply the Hankel transformation in ρ

on the semi-axis ρ ≥ 0 (image ↔ original):
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f̃n (ω) = H
[
fn
]
(ω) ≡

∞∫

0
fn (ρ) ρ J|n| (ρω) dρ ↔

↔ fn (ρ) = H−1
[
f̃n
]
(ρ) ≡

∞∫

0
f̃n (ω)ω J|n| (ρω) dω.

(4.72)

Finally, for the images Z̃n (ω,t) of the functions Zn (ρ,t) = ūn (ρ,t)χ (ρ− L) we
have,

⎧
⎪⎨

⎪⎩

(
∂2

∂ t2
+ ω2

)
Z̃n (ω,t) = L

[
ūn (L,t) J′|n| (ωL) − ū′n (L,t) J|n| (ωL)

]
;

ω > 0, t > 0
Z̃n (ω,0) = ∂

∂ t Z̃n (ω,t)
∣
∣
t=0 = 0; ω ≥ 0

. (4.73)

Here,

ū′n (L,t) = ∂

∂ρ
ūn (ρ,t)

∣∣∣∣
ρ=L

and J′|n| (ωL) = ∂

∂ρ
J|n| (ωρ)

∣∣∣∣
ρ=L

.

The derivation of (4.73) uses the familiar formula [201]

−ω2 f̃n (ω) ↔
[

d2

dρ2
+ d

ρdρ
− n2

ρ2

]
fn (ρ)

and the chain of evident equalities

χ (ρ− L)
[

1
ρ

∂
∂ρ

ρ ∂
∂ρ

]
ūn (ρ,t) = χ (ρ− L)

[
1
ρ

∂
∂ρ

+ ∂2

∂ρ2

]
ūn (ρ,t) =

=
[

1
ρ

∂
∂ρ

+ ∂2

∂ρ2

]
Zn (ρ,t) − δ (ρ− L)

[
1
ρ
+ ∂

∂ρ

]
ūn (ρ,t)−

− ∂
∂ρ

[δ (ρ− L) ūn (ρ,t)] ,

and, also, the equality (∂αf ,γ) = (−1)|α| (f ,∂αγ) defining the generalized derivative
∂αf of the generalized function f ∈ D̃ (Rn) (see Section 1.1.3).

Problems (4.73) are similar to (4.6) in Section 4.1.1. Their solutions

Z̃n (ω,t) = L

ω

t∫

0

sin [ω (t − τ)]
[
ūn (L,τ) J′|n| (ωL) − ū′n (L,τ) J|n| (ωL)

]
dτ

after inverse Hankel transform (4.72) become

ūn (ρ,t) = L
t∫

0

[
ūn (L,τ) f ′n (L,ρ,t − τ) − ū′n (L,τ) fn (L,ρ,t − τ)

]
dτ;

ρ ≥ L, t ≥ 0.
(4.74)

Formula (4.74) describes spatial–time amplitude variations of outgoing transient
cylindrical waves (4.70), propagating from the circle ρ = L to ρ ≥ L. Here,
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fn (r,ρ,t − τ) =
∞∫

0

sin [ω (t − τ)] J|n| (ωr)J|n| (ωρ) dω (4.75)

and

f ′n (L,ρ,t − τ) = ∂

∂ r
fn (r,ρ,t − τ)

∣∣
∣∣
r=L

.

The integration in (4.75) is converted to the calculation of the first and the
second kind Legendre functions P|n|–1/2(a) and Q|n|–1/2(–a) for the argument
ar,ρ =

[
r2 + ρ2 − (t − τ)2]/(2ρr) [1]:

fn (r,ρ,t − τ) =

⎧
⎪⎪⎨

⎪⎪⎩

0; 0 < t − τ < ρ− r

P|n|−1/2
(
ar,ρ
)/[

2 (rρ)1/2
]

; ρ− r < t − τ < ρ+ r

Q|n|−1/2
(−ar,ρ

)
cos (nπ)

/[
π (rρ)1/2

]
; ρ+ r < t − τ

=

= χ [(t − τ) − (ρ− r)] Q|n|−1/2
(−ar,ρ

)
cos (nπ)

/[
π (rρ)1/2

]
; 0 < t − τ.

The final step is the use of the familiar property of the Legendre functions [202]

Pv (x) = cos (vπ) Pv (−x) − 2

π
sin (vπ) Qv (−x) .

Formula (4.74) in problems (4.44) acts in the same manner as (4.10) does
in the infinite grating problems (4.1). Following the previous line of rearrange-
ments, one finally gets the exact radiation conditions for the total field U(g,t)
in the region ρ > L. Considering [7, 202] that the value of Q|n|–1/2(–ar,ρ) at
t–τ = ρ–r is Q|n|−1/2 (−1) = πP|n|−1/2 (1)

/
2 cos (nπ) = π

/
2 cos (nπ), while

∂χ [(t − τ) − (ρ− r)]
/
∂r = δ [(t − τ) − (ρ− r)], upon differentiation in (4.74)

and summation of the results in accordance with (4.70), we obtain for ρ ≥ L and
t ≥ 0:

U (ρ,φ,t) =
= 1

2

√
L
ρ

U (L,φ,t − ρ+ L) + 1
π

√
L
ρ

∑

n
(−1)nμ̄n (φ)

t−(ρ−L)∫

0

{
ūn(L,τ)

2L ×
×
[
Q′
|n|−1/2

(−aL,ρ
) (

ρ2−L2−(t−τ)2

Lρ

)
− Q|n|−1/2

(−aL,ρ
)]−

−ū′n (L,τ) Q|n|−1/2
(−aL,ρ

)}
dτ .

(4.76)

On the artificial boundary ρ = L, the exact absorbing condition coming from
(4.76) takes the form
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U (L,φ,t) = 2
π

∑

n
(−1)nμ̄n (φ)

[
t∫

0

[
ūn (L,τ) ξn (t − τ) − ū′n (L,τ)ηn (t − τ)

]
dτ

]

;

0 ≤ φ ≤ 2π, t ≥ 0.
(4.77)

In (4.76) and (4.77) the following notations have been introduced:

Q′
|n|−1/2 (−a) = ∂

∂ x Q|n|−1/2 (x)
∣
∣
x=−a ,

ξn (t − τ) =
[
2Q′

|n|−1/2
(−aL,L

) (
aL,L − 1

)− Q|n|−1/2
(−aL,L

)]
(2L)−1 ,

and ηn (t − τ) = Q|n|−1/2
(−aL,L

)
.

The expression (4.76) suggests the exact radiation condition for an outgoing tran-
sient waves U(ρ,φ,t) and solves the far-zone problem by extending the originally
compact grating problems (4.44) to the situation in which the calculation space is
bounded with EACs (4.66), (4.67), and (4.68).

4.3 Time Domain Methods in the Study of Gratings and
Compact Grating Structures as Open Resonators

The exact absorbing conditions properly bounding the calculation space of initial
boundary value problems suggest versatile and stable computational schemes aimed
at a wide diversity of problems in electromagnetic resonant scattering [1, 4, 40,
193–195]. How can we benefit from these schemes in the spectral study of differ-
ent electromagnetic objects, in particular, those from Sections 4.1 and 4.2? How
is it possible to find out information about certain high-quality free oscillations of
the field from the database representing the transient dynamics in some open (peri-
odic, compact, or guiding) resonators? Or how is it possible to distinguish these
oscillations in the response that the resonance structure gives to the excitation by
broadband or quasi-monochromatic signals? In Sections 4.3.1 and 4.3.2, these ques-
tions will be discussed by considering some elementary problems in the theory of
infinite periodic gratings. The reported results are easy to extend to more compli-
cated problems in this theory and also to problems for compact grating structures
(see Sections 4.2, 4.3.3, and papers [203, 204]).

4.3.1 Spatial–Frequency Representations of Transient Fields and
Preliminary Qualitative Analysis

The initial boundary value problems and the boundary value problems given in
equations (4.78) and (4.79) below
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
−εμ ∂2

∂t2
− σμ ∂

∂t + ∂2

∂y2 + ∂2

∂z2

]
U (g,t) = F (g,t) ;

g = {y,z} ∈ Q = R\intSx, t > 0
U (g,0) = ϕ (g) , ∂

∂t U (g,t)
∣∣
t=0 = ψ(g); g ∈ Q̄,

Etg (p,t)
∣∣
p={x,y,z}∈S = 0; t ≥ 0

U
{

∂ U
∂ y

}
(l,z,t) = U

{
∂ U
∂ y

}
(0,z,t) ; t ≥ 0

(4.78)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
∂2

∂y2 + ∂2

∂z2 + ε̃μk2
]

Ũ
(

g,k,f̃
)
= f̃ (g,k) ; g ∈ Q

Ẽtg (p,k)
∣∣
p={x,y,z}∈S = 0

Ũ
{

∂ Ũ
∂ y

}
(l,z,k) = Ũ

{
∂ Ũ
∂ y

}
(0,z,k)

Ũ (g,k) =
n=∞∑

n=−∞

{
An (k)
Bn (k)

}
ei[Φny±Γn(z∓a)];

{
z ≥ a
z ≤ −a

}
. (4.79)

describe transient and stable processes going on in 1-D periodic gratings, or, more
precisely, in the Floquet channels R whose compact discontinuities scatter the waves
owing to sources confined in the region Qa = {g ∈ Q: |z| < a} ∈ QL. These are
(1.18) [or (4.1)] and (1.20), (1.22) problems (indices new are dropped) for Φ = 0 –
ImU(g,t) ≡ 0, if only ImF (g,t) = Imϕ (g) = Imψ (g) ≡ 0. Their solutions Ũ (g,k)
(for Imk > 0) and U(g,t) (t ≥ 0) obey the formulas (see Section 1.1.4)

U (g,t) = 1

2π

iα+∞∫

iα−∞
Ũ (g,k)e−iktdk, Ũ (g,k) =

∞∫

0

U (g,t)eiktdt. (4.80)

All k̄ poles of the resolvents A–1(k) of the (4.79) type problem

A (k)
[
Ũ
(

g,k,f̃
)]

= f̃ (g,k), g ∈ Q̄, on the first – physical – sheet Ck of the

K surface are localized in the region Imk ≤ 0 (see Sections 1.1.4 and 1.3.2).
Assuming that elements k̄ of the set Ωk do not accumulate in the neighborhood of
the axis Imk = 0 as |Rek|→∞, we can deform the integration contour |Rek| < ∞,
Imk = α > 0 in (4.80) downward to Imk = –β < 0. Narrow loops of the new contour
P go the branch points k±n around and descent along the two sides of the branch
cuts of the surface K (see Fig. 1.2a). In the result,
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U (g,t) = 1
2π

iα+∞∫

iα−∞

[
A−1 (k)

[
f̃ (g,k)

]]
e−iktdk =

= 1
2π

iα+∞∫

iα−∞

[
∫

Q
G̃ (g,g0,k) f̃ (g0,k) dg0

]

e−iktdk =

= 1
i

{
∑

n

∫

Q
Res
k=k̄n

[
G̃ (g,g0,k) f̃ (g0,k) e−ikt

]
dg0 +

+∑
m

∫

Q
Res
k=km

[
G̃ (g,g0,k) f̃ (g0,k) e−ikt

]
dg0

}

+ R (g,t) ;

g ∈ QL, t > 0.

(4.81)

Here:

• G̃ (g,g0,k), g0∈Qa, is the Green function of problem (4.79), or the kernel of the
operator-function A–1(k);

• k̄n ∈ Ωk are the characteristic numbers of the operator A(k) (eigenfrequencies of
the open periodic resonator) which are situated on the first sheet of the K surface
over the contour P and numbered so that Imk̄n+1 ≤ Imk̄n; these eigenfrequencies
are finite in number;

• km are the poles of the function f̃ (g,k) which do not coincide with the elements
of the spectral set Ωk; all they are assumed to belong to the plane Ck over the
contour P;

• the function R (g,t) = 1
2π

∫

P
Ũ (g,k) e−iktdk summarizes the contributions

from the singularities of the function Ũ
(

g,k,f̃
)

, k∈K, which have not been

encircled in the deformation of the integration contour in expression (4.80);
‖R (g,t)‖W1

2(Qa)
= O
(
t−1
)

as t→∞ [10].

The identity ε̃ (−k∗) = ε̃∗ (k) suggests

Statement 4.5

G̃ (g,g0,k) = G̃ (g0,g,k) = G̃∗ (g,g0, − k∗
)

. (4.82)

On the basis of (4.82) and assuming that f̃ (g, − k∗) = f̃ ∗ (g,k), which is true for
all real current and instant sources of practical interest, we can rewrite (4.81) in the
form

U (g,t) = 2Im

{
∑

n

∫

Q
Res

k=k̄n: Rek̄n>0

[
G̃ (g,g0,k) f̃ (g0,k) e−ikt

]
dg0 +

+∑
m

∫

Q
Res

k=km : Re km>0

[
G̃ (g,g0,k) f̃ (g0,k) e−ikt

]
dg0

}

+ R (g,t) ;

g ∈ QL, t > 0.

(4.83)
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A complete analytic description of the deformations experienced by the U(g,t)
pulses inside open periodic resonators (gratings) is scarcely possible without
relevant computations whose results should be properly considered. In these struc-
tures, the transients develop very fast, and multiple factors have an influence on
them. Therefore, a strong background of computational experiment is necessary.
Sometimes some features of the results have to be to a certain extent predicted
beforehand – you should be prepared to what is going to come out, in order to
be able to recognize it. Of benefit here can be analytic representations of the type
(4.81) and (4.83). They certainly refine the process, leaving the main participants
alone on the stage. Yet having traced these components in the actual database, one
can feel more confident when taking up the interpretation of the physical sense of
the obtained results. Also, the analysis of field transients in open periodic resonators
cannot be fruitful if one leaves aside the results of the spectral theory and the theory
of resonant scattering of sinusoidal waves. The achievements of the kind can suggest
a reasonable scheme for numerical experiment in the time domain, ridding us off a
direct, little-efficiency item-by-item examination of probable situations. All this are
general phrases. Now, proceed to expressions (1.23) from Statement 1.3 and (4.81)
and (4.83) to have some particular corollaries facilitating the numerical experiments
and the interpretation of their results [203, 204].

Assume that all poles k = k̄ ∈ Ck of the Green function G̃ (g,g0,k) of problem
(4.79) are simple. This assumption is supported by Statement 1.6 and also, as shown
in Section 1.3.2, by the numerical results in frequency domain. Yet otherwise (say,
for example, the point k = k̄; Rek̄ > 0, Imk̄ < 0 is a second-order pole) the
corresponding term

2Im
∫

Q
Res
k=k̄

[
G̃ (g,g0,k) f̃ (g0,k) e−ikt

]
dg0 =

= 2Im

{

−ite−ik̄t
∫

Q
G−2
(
g,g0,k̄

)
f0
(
g0,k̄
)

dg0+

+e−ik̄t
∫

Q

[
G−2
(
g,g0,k̄

)
f1
(
g0,k̄
)+ G−1

(
g,g0,k̄

)
f0
(
g0,k̄
)]

dg0

}

in the expansion (4.83) when f̃ (g,k) = ikε̃ (g)μ (g)ϕ (g) − ε (g)μ (g)ψ (g) (the
grating is excited by a transient wave Ui(g,t)) will grow until t = T1 < T, faster
than the general energy ratios permit (see, for example, formula (1.31) in [1]). From
this point on, Gl(g,g0,η) and fl(g0,η) are the coefficients of the terms (k–η)l in the
Laurent expansion of the functions G̃ (g,g0,k) and f̃ (g0,k) about a point k = η.

Without loss of generality, every characteristic number k̄ can be assumed to cor-
respond to one eigen element u(1)

0 (g) = u0
(
g,k̄
)

of the operator-function A(k). The

eigen element w(1)
0 (g) of the operator-function Ā (k) (see Statement 1.3) is denoted

by w0
(
g,k̄∗
)

when it refers to the characteristic number k̄∗.
Under these assumptions, the principal part ΞG̃ of the Green function G̃ (g,g0,k)

[see (1.23)] in the vicinity of the characteristic number k = k̄ is
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ΞG̃ (g,g0,k) = G−1
(
g,g0,k̄

)

k − k̄
= u0

(
g,k̄
)

w∗
0

(
g0,k̄∗
)

k − k̄
, (4.84)

and it follows from (4.82) and (4.84) that eigen elements u0 and w0 are connected
by the relations

u0
(
g,k̄
) = w∗

0

(
g,k̄∗
)

, u0
(
g,k̄
)

w∗
0

(
g0,k̄∗
) = −u∗0

(
g, − k̄∗

)
w0
(
g0, − k̄

)
. (4.85)

Now consider some indicative situations A to E. Using (4.83), (4.84), and (4.85)
we will derive for them certain analytic representations to facilitate analysis of the
numerical results as applied to problems (4.78).

Situation A: The function f̃ (g,k) has no singularities on the sheet Ck. From (4.83),
it follows that

U (g,t) ≈ 2Im

[
∑

n : Rek̄n>0

u0
(
g,k̄n
)

e−ik̄nt
∫

Q
u0
(
g0,k̄n
)
f̃
(
g0,k̄n
)

dg0

]

=

= 2
∑

n : Rek̄n>0

etImk̄n
∣∣u0
(
g,k̄n
)∣∣
∣∣∣C
(

f̃ ,k̄n

)∣∣∣ sin
[
arg u0

(
g,k̄n
)+

+ arg C
(

f̃ ,k̄n

)
− tRek̄n

]
; g ∈ QL, 0 < T1 < t < T .

(4.86)

Here, (0;T) is the observation time, T1 is specified by the experimental conditions,
and

C
(
f ,k̄
) =
∫

Q

u0
(
g0,k̄
)
f
(
g0,k̄
)

dg0. (4.87)

From (4.86) it follows that the near field U(g,t) of a periodic open resonator
is a superposition of the free oscillation fields u0

(
g,k̄
)

corresponding to real and
complex eigenfrequencies k̄. The lifetime of each oscillation in the QL domain
and the velocity of its decay are determined by

∣∣Imk̄
∣∣ (or by the quality Q =

Rek̄
/

2
∣∣Imk̄
∣∣). The initial state (or the excitation level) is governed by the C

(
f̃ ,k̄
)

function estimating the degree of the linkage between the amplitude–spatial and the
amplitude–frequency characteristics of the field u0

(
g,k̄
)

on one side and the source
function f̃ (g,k) on the other.

Situation B: In the right half-plane of the Ck sheet, the function f̃ (g,k) has one
simple pole that is located at a point k = k and does not coincide with any element
k̄ from the set Ωk. From (4.83) we have
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U (g,t) ≈ 2Im

{
∑

n : Rek̄n>0

u0
(
g,k̄n
)

e−ik̄nt
∫

Q
u0
(
g0,k̄n
)
f̃
(
g0,k̄n
)

dg0 +

+e−ikt
∫

Q
G̃
(
g,g0,k

)
f−1
(
g0,k
)
dg0

}

= 2

{
∑

n : Rek̄n>0

etImk̄n
∣∣u0
(
g,k̄n
)∣∣×

×
∣
∣∣C
(

f̃ ,k̄n

)∣∣∣ sin
[
arg u0

(
g,k̄n
)+ arg C

(
f̃ ,k̄n

)
− tRek̄n

]
+

+etImk
∣∣Ũ
(
g,k,f−1

)∣∣ sin
[
arg Ũ

(
g,k,f−1

)− tRek
]}

;

g ∈ QL, 0 < T1 < t < T .

(4.88)

The expression (4.88) contains a new term for the field whose oscillation
frequency is Rek. The spatial field configuration is determined by the solution
Ũ
(
g,k,f−1

)
of the elliptic problem A

(
k
) [

Ũ
(
g,k,f−1

)] = f−1
(
g,k
)
. The amplitude

decreases as exp
(
tImk
)
. If Imk̄n < 0 for all n, then for Im k = 0 and a sufficiently

large t this term will dominate in the field U(g,t), setting the so-called limiting
amplitude principle.

Situation C: In the right half-plane of the Ck sheet, the function f̃ (g,k) possesses
one second-order pole. It is located at a point k = k and coincides with none of k̄
elements of the set Ωk. In this case,

U (g,t) ≈ 2Im

{
∑

n : Rek̄n>0

u0
(
g,k̄n
)

e−ik̄nt
∫

Q
u0
(
g0,k̄n
)
f̃
(
g0,k̄n
)

dg0 −
−ite−ikt

∫

Q
G̃
(
g,g0,k

)
f−2
(
g0,k
)
dg0+

+e−ikt
∫

Q

[
G̃
(
g,g0,k

)
f−1
(
g0,k
)+ G1

(
g,g0,k

)
f−2
(
g0,k
)]

dg0

}

=

= 2

{
∑

n : Rek̄n>0

etImk̄n
∣∣u0
(
g,k̄n
)∣∣ sin

[
arg u0

(
g,k̄n
)+ arg C

(
f̃ ,k̄n

)
−tRek̄n

]
×

×
∣∣∣C
(

f̃ ,k̄n

)∣∣∣− tetImk
∣∣Ũ
(
g,k,f−2

)∣∣ cos
[
arg Ũ

(
g,k,f−2

)− tRek
]+

+etImk
∣∣Ũ
(
g,k,f−1

)+ Ũ1
(
g,k,f−2

)∣∣ sin
[
arg
[
Ũ
(
g,k,f−1

)+ Ũ1
(
g,k,f−2

)] −
− tRek

]}
; g ∈ QL,0 < T1 < t < T .

(4.89)

Here,

Ũl (g,η,f ) =
∫

Q

Gl (g,g0,η) f (g0,η)dg0.
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For Im k = 0 and sufficiently large t, the contribution from the free oscillations
corresponding to complex eigenfrequencies k̄ to the U(g,t) field can be dropped.
Even against the background of steady-state free oscillations corresponding to real
eigenfrequencies k̄, the field of the k = k frequency oscillation will dominate
then. The spatial configuration of this field is given by the solution Ũ

(
g,k,f−2

)
of

the elliptic problem A(k)
[
Ũ
(
g,k,f−2

)] = f−2
(
g,k
)
, and the amplitude grows pro-

portionally with t. Although at a small
∣∣Im k
∣∣ > 0, the contrast ceases to be so

striking, the pattern (for a certain finite time t of observation) will be practically the
same.

Situation D: Simple poles k = k and k = k̄ of the functions f̃ (g,k) and G̃ (g,g0,k)
coincide (k̄ = k). In this case,

U (g,t) ≈ 2Im

{
∑

n : Rek̄n>0; k̄n �=k̄

u0
(
g,k̄n
)

e−ik̄nt
∫

Q
u0
(
g0,k̄n
)
f̃
(
g0,k̄n
)

dg0 −

−ite−ik̄tu0
(
g,k̄
) ∫

Q
u0
(
g0,k̄
)

f−1
(
g0,k̄
)
dg0 + e−ik̄tu0

(
g,k̄
)×

× ∫
Q

u0
(
g0,k̄
)

f0
(
g0,k̄
)
dg0 + e−ik̄t

∫

Q
G0
(
g,g0,k̄

)
f−1
(
g0,k̄
)
dg0

}

=

= 2

{
∑

n : Rek̄n>0; k̄n �=k̄

etImk̄n
∣∣u0
(
g,k̄n
)∣∣
∣
∣∣C
(

f̃ ,k̄n

)∣∣∣ ×

× sin
[
arg u0

(
g,k̄n
)+ arg C

(
f̃ ,k̄n

)
− tRek̄n

]
−

−tetImk̄
∣∣u0
(
g,k̄
)∣∣ ∣∣C
(
f−1,k̄
)∣∣ cos

[
arg u0

(
g,k̄
)+ arg C

(
f−1,k̄
)− tRek̄

]+
+etImk̄

∣∣u0
(
g,k̄
)∣∣ ∣∣C
(
f0,k̄
)∣∣ sin

[
arg u0

(
g,k̄
)+ arg C

(
f0,k̄n
)− tRek̄

]+
+etImk̄

∣∣Ũ0
(
g,k̄,f−1

)∣∣ sin
[
arg Ũ0

(
g,k̄,f−1

)− tRek̄
]}

g ∈ QL, 0 < T1 < t < T .
(4.90)

As soon as a singularity of the Green function of problem (4.79) and a source
function f̃ (g,k) singularity coincide, the corresponding free oscillation becomes
dominant in the U(g,t) field. How long the field

W (g,t) = −2tetImk̄
∣∣u0
(
g,k̄
)∣∣ ∣∣C
(
f−1,k̄
)∣∣ cos

[
arg u0

(
g,k̄
)+ arg C

(
f−1,k̄
)− tRek̄

]

(4.91)

can hold that position depends on the
∣∣Imk̄
∣∣ and

∣∣C
(
f−1,k̄
)∣∣ values and, also, on

whether the free oscillations u0
(
g,k̄n
)

include oscillations of real eigenfrequencies.

Situation E: Simple poles k̄ and k of the functions G̃ (g,g0,k) and f̃ (g,k) do not
coincide but

∣∣k̄ − k
∣∣� 1. In this case,
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U (g,t) ≈ 2

{
∑

n : Rek̄n>0; k̄n �=k̄

etImk̄n
∣∣u0
(
g,k̄n
)∣∣
∣∣∣C
(

f̃ ,k̄n

)∣∣∣ ×

× sin
[
arg u0

(
g,k̄n
)+ arg C

(
f̃ ,k̄n

)
− tRek̄n

]
−

−Im

[

ite−ik̄tu0
(
g,k̄
) ∫

Q
u0
(
g0,k̄
)

f−1
(
g0,k
)
dg0− e−ik̄tu0

(
g,k̄
)×

× ∫
Q

u0
(
g0,k̄
)

f0
(
g0,k
)
dg0 − e−ikt

∫

Q
G0
(
g,g0,k̄

)
f−1
(
g0,k
)
dg0

]}

+
+O
(
t2
∣
∣k̄ − k

∣
∣) ; g ∈ QL, 0 < T1 < t < T .

(4.92)

The representations (4.90) and (4.92) are practically the same. It is only
determination of the excitation level for the component

W (g,t) = −2tetImk̄Re

⎡

⎢
⎣e−itRek̄u0

(
g,k̄
) ∫

Q

u0
(
g0,k̄
)

f−1
(
g0,k
)
dg0

⎤

⎥
⎦ , (4.93)

which at certain circumstances can dominate in the field U(g,t), and for other com-
ponents, oscillating with the frequencies Re k and Rek̄n, somewhat differs from the
one in the previous case.

4.3.2 A Choice of the Field Sources in Numerical Experiments

In reality the upper bound T of the observation time [0;T] is often limited as are the
possibilities of present means of computation. When T is not large enough, some
special measures must be undertaken to separate the contributions from particu-
lar quasi-monochromatic components to the total field U(g,t) in order to examine
the spectral characteristics of the open periodic resonator. A variant of the solu-
tion of the problem is as follows. We should choose a field source that could unveil
one or another oscillation against the background of others, making its properties
manifestly more conspicuous for the further investigation.

Begin with the Situation A, whose analytic description is given by (4.86). When
among other free oscillations of comparable quality, a certain one of eigenfrequency

k̄ is wanted, then a source f̃ (g,k) is needed such that
∣∣∣C
(

f̃ ,k̄
)∣∣∣�

∣∣∣C
(

f̃ ,k̄n

)∣∣∣, k̄n �=
k̄. Formula (4.87) suggests the following algorithm for the choice:

• in a considered frequency range, f̃ (g,k), as a function of parameter k, must have a
single and well-pronounced amplitude center located in the neighborhood of the
point k = k̄;
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• the function f̃
(
g,k̄
)
, as a member of the space L2(QL), must be closely parallel to

the element w0
(
g,k̄∗
) = u∗0

(
g,k̄
)

in the same space.

Both these requirements are easily satisfied when f̃ (g,k) ↔ F (g,t) (here, as
before, the function derived through the Laplace transform is identified with its con-
tinuation to the first sheet of the K surface), and some information about the spatial
structure of the free oscillation field u0

(
g,k̄
)

is available beforehand.
The excitation source of the open resonator and the observation time length

0 ≤ t ≤ T are very important in the experiment and must comply with the par-
ticular problem to be solved. This will be explained in terms of an example. A soft
current source

F (g,t) = P (g) exp
[
− (t − T̃

)2/
4α̃2
]

cos
[
k̃
(
t − T̃

)]
χ
(
T̄ − t

) = P (g) F1 (t)

(4.94)
for E-polarized waves (χ(. . .) is the Heaviside step function) is specified by the five
free parameters: P(g), k̃, α̃, T̃ , and T̄ . The first one gives the size and location of the
support of the function F(g,t) (in other words, the source geometry) and also a spatial
current distribution over this support. The parameter k̃ specifies the amplitude center
of the primary signal Uprim(g,t) (and, of course, of the functions F̃ (g,k) ↔ F (g,t)
and F̃1 (k) ↔ F1 (t), too) in the spectral domain (in the domain of real k; see
Fig. 4.3a ), i.e., the maximum point of the module of the function

Ũprim

(
g,k,f̃
)
=

T∫

0

Uprim (g,t)eiktdt ↔
{

Uprim (g,t) ; t ≤ T
0; t > T

.

Here Uprim(g,t) is the field of the source F(g,t) in free space. The parameters

k̃ and α̃ establish the band
[
k̃ − b

/
α̃;k̃ + b

/
α̃
]

of real frequencies k, where the

normalized spectral amplitudes of the field Uprim(g,t) (
∣∣Ũprim (g,k)

∣∣
/∣∣∣Ũprim

(
g,k̃
)∣∣∣

values) do not fall below the γ level. On the t–axis, the signal Uprim(g,t) occupies
the interval T̃ − cα̃ ≤ t ≤ T̃ + cα̃, and

∣∣Uprim (g,t)
∣∣/∣∣Uprim

(
g,T̃
)∣∣ ≤ γ beyond it.

Table 4.1 lists the coefficients b and c which are available due to the well-known
analytic representations [40] for several γ levels. The parameters T̃ and T̄ ≥ 2T̃
control the delay of signal Uprim(g,t) and its duration.

Now it is time to ask what requirements should be imposed on the above-
mentioned parameters to benefit from the study of the general frequency charac-
teristics of the open periodic resonator? Evidently the frequency k̃ should be close
to the central point of the frequency band of interest. The parameter α̃ is picked
so that the level of normalized spectral amplitudes of the signal Uprim(g,t) [of the
function F(g,t)] in this band would not be lower than 0.1. In fact, it would be bet-
ter to keep it not less than 0.5. Then the ultimate picture we could observe if the
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Fig. 4.3 Dynamical and spectral characteristics of current sources for pulsed waves: (a) Source
(4.94), k̃ = 1.0, α̃ = 1.0, T̃ = 100, and T̄ = 200; (b) source (4.95), k̃ = 4.2, Δk = 1, T̃ = 100,
T̄ = 200; (c) source (4.96), k̃ = 0.5, T̃ = 0.5, and T̄ = 190

Table 4.1 Determination of parameters for the source given by (4.94)

γ = 0.001 γ = 0.01 γ = 0.1 γ = 0.5

b≈ 2.63 2.14 1.52 0.83
c≈ 5.25 4.29 3.04 1.66

value
∣∣Ũprim (g,k)

∣∣ did not suffer changes throughout the band of interest would be
most true. To cut down the overall computation time T, the left end of the inter-
val T̃ − cα̃ ≤ t ≤ T̃ + cα̃ is put at the point t = 0. And to secure the expected
spectral characteristics of the source, the level of

∣∣Uprim (g,0)
∣∣ should be small
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(0.001 ≤ γ ≤ 0.01). This condition and the chosen α̃ establish the effective spatial
duration 0 ≤ t ≤ 2T̃ of the primary signal and its delay time T̃ .

At the stage related to the study of resonator frequency characteristics, of interest
are, as a rule, all mode types corresponding to the relevant symmetry class. Hence,
in its spatial structure, the function f̃ (g,k) [the function F(g,t)] must be of the same

symmetry class and provide approximately the same coefficient values C
(

f̃ ,k̄
)

[see

formula (4.87)] for all free oscillations.
The excitation efficiency of quasi-monochromatic components of the field U(g,t)

depends on the source volume [see representations (4.86), (4.87), (4.88), (4.89),
(4.90), (4.91), (4.92), and (4.93)]. Making the support of the function F(g,t) bigger,
one can substantially reduce the overall computation time T. The bottom T = 5T̃
of the possible T value is controlled by the following evident requirements. Within
0 ≤ t ≤ T, the open periodic resonator has to:

• work in the forced oscillation mode for some time (0 ≤ t ≤ 2T̃);
• exclude (by the radiation into free space) those U(g,t) field components that

cannot form stable oscillations in the resonance volume (2T̃ ≤ t ≤ 3T̃);
• allow high-Q modes to reveal themselves against the background of low-Q

oscillations (3T̃ ≤ t ≤ 5T̃).

With these requirements met, the study of the grating spectral characteristics over
a frequency band consists in the search of the field U(g,t) as a function of the time
t∈[0;T] at a fixed point g∈QL and the analysis of the image Ũ (g,k) ↔ U (g,t);
Imk = 0 (see Section 7.4.1 in [1]). Evidently the point g must not fall into a field
node of a high-Q oscillation u0

(
g,k̄
)
. If so, the resonator characteristics will be

distorted – the function Ũ (g,k) will fail to consider frequency k̄ as a member of the
spectral set Ωk.

The examination of a particular free oscillation u0
(
g,k̄
)

(see, for example, Fig.
7.16 in [1]) implies that k̃ ≈ Rek̄. One must guard against other resonance points in

the interval
[
k̃ − b

/
α̃;k̃ + b

/
α̃
]

and be careful that the level of spectral amplitudes

of the signal Uprim(g,t) is insignificant at this interval ends. Otherwise the choice of
the source parameters in (4.94) still follows above-formulated rules.

The source

F (g,t) = 4
sin
[
Δk
(
t − T̃

)]

(
t − T̃

) cos
[
k̃
(
t − T̃

)]
χ
(
T̄ − t

)
P (g) = F2 (t) P (g) (4.95)

produces signals Uprim(g,t) with a trapezoidal distribution of spectral amplitudes

(see Fig. 4.3b), which is very suitable for the study of frequency characteristics of

open resonators. Within the frequency range
[
k̃ −Δk;k̃ +Δk

]
, the module of the

function F̃2 (k) ↔ F2 (t) remains almost unchanged. Off it,
∣∣F̃2 (k)

∣∣ ≈ 0 for
all k > 0.
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The spectral characteristics of the source

F (g,t) = P (g) cos
[
k̃
(
t − T̃

)]
χ
(
T̄ − t

) = P (g) F3 (t) (4.96)

for quasi-monochromatic signals Uprim(g,t) (see Fig. 4.3c) are controlled by the
parameters k̃, T̄ , and T̃ . The first two determine the central frequency and duration
of the signal and also its effective width in the spectral domain. The parameter T̃
smoothes the switch-on process of the source if necessary.

The information on singularities of the f̃ (g,k) functions for sources of the type
(4.94) and (4.95) is unavailable for the direct analysis. The existence of k poles of
these functions in the lower half-plane of the Ck sheet, the order and location of
these poles can be judged only by circumstantial evidence, considering the f̃ (g,k)
behavior in the domain of real k. A better adjustment to a particular point k can be
via a F(g,t) source with, for example, the following time dependence [201]:

F (t) = 1

Rek
etImk sin

(
tRek
) ↔ F̃ (k) = − 1

(
k − k

) (
k + k∗

) . (4.97)

4.3.3 Compact Grating Structures

The initial boundary value and the boundary value problems

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

[
−εμ ∂2

∂t2
− σμ ∂

∂t + ∂2

∂y2 + ∂2

∂z2

]
U (g,t) = F (g,t) ;

g = {y,z} ∈ Q = R2\intSx, t > 0
U (g,t)|t=0 = ϕ (g) , ∂

∂t U (g,t)
∣∣
t=0 = ψ (g) ; g ∈ Q

Etg (p,t)
∣∣
p={x,y,z}∈S = 0; t ≥ 0

, (4.98)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[
∂2

∂y2 + ∂2

∂z2 + ε̃μk2
]

Ũ (g,k) = f̃ (g,k) ; g ∈ Q

Ẽtg (p,k)
∣∣
p={x,y,z}∈S = 0

Ũ (g,k) =
∞∑

n=−∞
an (k) H(1)

n (kρ) einφ; ρ ≥ a, 0 ≤ φ ≤ 2π

(4.99)

describe transient and steady-state processes in compact grating structures and,
certainly, in any open compact resonator as well. Here, H(1)

n (...) are the Hankel
cylindrical functions and {ρ,φ} are polar coordinates in the y0z plane. All scattering
inhomogeneities of the free space R2 and wave sources exciting these inhomo-
geneities are enclosed in the domain ρ < L (see Fig. 4.2). Problems (4.98) are nothing
but (4.44) without virtual waveguides jQ. Their solutions U(g,t) relate to the solu-
tions Ũ (g,k); Imk > 0, of problems (4.99) by formula (1.21). The last equation in
(4.99) represents the radiation condition acting in the same way as condition (1.22)
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in problems (1.20) and (4.79) (see Statement 1.2). All the key qualitative conclu-
sions of the spectral theory of open periodic resonators (see Statements 1.3 and 1.4)
and all the results from Sections 4.3.1 and 4.3.2 remain true and almost unchanged
for problems (4.98) and (4.99) [11, 47–49, 203, 204]. However, we must mention
the following essential difference existing between infinite periodic resonators and
open compact resonators with grating structures (or compact resonators for short).

• The surface K of the analytic continuation of the solutions Ũ (g,k); Imk > 0, of
problems (4.99) to the complex domain k: Imk ≤ 0 coincides with the surface
of the analytic continuation of the function lnk: k = 0 is the logarithmic branch
point and the surface sheets are cut along the negative axis Rek = 0 [11].

• The spectrum
{
k̄n
} = Ωk of open compact resonators does not contain any points

k̄ ∈ Ck (Ck is the first – physical – sheet of the surface K) such that Imk̄ = 0 [8,
9, 11].

• In the case of compact resonators bounded by sufficiently smooth convex con-
tours Sx, for dielectric and metal objects, in the case of absorbing insertions, the
value

∣∣Imk̄
∣∣ of the elements k̄ ∈ Ck increase as

∣∣Rek̄
∣∣ grows, at least as fast as

ln
∣∣Rek̄
∣∣ [8, 205].

We take up now [203, 204] some simple compact resonators with dispersion
mirrors furnished by reflection or semitransparent gratings and start with the spectral
characteristics of the structure whose geometrical and constituent parameters are
given by the equation

σ (g) = 2.19 · 1010χ (4 − |y|) [χ (−z)χ (z + 0.1) + χ (6.6 − z)χ (z − 6.5)] .
(4.100)

Equation (4.100) applies to a Fabry–Perot resonator with parallel metal (copper)
mirrors (see Fig. 4.4a). The E-polarized wave source

F (g,t) = χ (3 − |y|)χ (6 − z)χ (z − 3) cos
(

k̃z
)

F2 (t) = P (g) F2 (t) ;

k̃ = 8.5, Δk = 5, T̃ = 20, T̄ = 150
(4.101)

occupying the frequency band 3.5 < k < 13.5 excites symmetrical about the main,
y = 0 axis oscillations alone in the resonator of the kind (see Fig. 4.5a). One of
these oscillations (H0,1,18-oscillation; see Fig. 4.6a) corresponds to eigenfrequency
k̄ ≈ 8.5− i0.0015. The Rek̄ and Imk̄ values have been inferred from the behavior of
the field U(g,t) = U(τ), τ = t − 2T̃ > 0 in the resonator excited by the narrowband
current source for E-polarized waves

F (g,t) = 10P (g) F1 (t) ; k̃ = 8.5, α̃ = 30, T̃ = 90, T̄ = 180. (4.102)

This source switches off at the time t = 2T̃ = 180. According to (4.86), for all times
τ > 0 at any fixed point g∈QL, we have
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Fig. 4.4 (a) Fabry–Perot resonator and (b and c) dispersive open resonators; (b) resonator with
semitransparent dielectric mirrors; and (c) resonator with a reflective grating

U (g,t) = U (τ) ≈ A exp
(
τImk̄
)

cos
(
τRek̄ + a

)
. (4.103)

A correlation of (4.103) with the features of U(g,t) (see the right-hand fragment
in Fig. 4.6a) yields the quantities Rek̄ ≈ k̃, Imk̄, and also the values A ≈ ±18.2 and
a ≈ 0.79.

For the resonator (4.100), the elements k̄n of the spectrum Ωk corresponding to
sufficiently high-quality oscillations are presented by an almost equidistant system
of points k ≈ Rek̄n on the axis Imk = 0 (see Fig. 4.5a). At these points, the level∣∣∣Ũ
(

g,k,f̃
)∣∣∣ of spectral amplitudes of the field U(g,t) is governed by the quality of the

corresponding free oscillations and the quantity C
(

f̃ ,k̄n

)
[see formula (4.87)] dis-

playing the response of the amplitude–spatial characteristics of the free oscillation
field to the source function f̃ (g,k) ↔ F (g,t).

In the examination of the H0,1,18-oscillation of the resonator (4.100) described
above, the contribution from the other free oscillations to the U(g,t) field was made
infinitesimally small owing to the fine tuning of the source and the absence of other
resonator eigenfrequencies in the k̄ neighborhood. The analysis becomes compli-
cated when some two eigenfrequencies k̄1 and k̄2 are so close that even an essential
narrowing of the band of the signal Uprim(g,t) in the spectral domain (this narrowing



4.3 Time Domain Methods in the Study of Gratings and Compact Grating Structures 253

Fig. 4.5 Spectral amplitudes of field U(g,t) produced by current source (4.101) in resonators: (a)
(4.100) for g = {0,6.28}; (b) (4.106) for g = {0.0,6.3}; and (c) (4.108) for g = {0.0,6.32}

evidently increases T̃ and T, the experiment duration increases substantially) is not
helpful when it comes to an extraction of one of them accurately enough.

This statement can be illustrated by a simple example (see Fig. 4.7 and [204]).
The confocal resonator

σ (g) = 2.19 · 1010χ
[
5 − |y|]χ [4 − |z|] χ

[
z2 + (|y| + 4.5)2 − 92

]

is excited by the current source

F (g,t) = 10χ
[
3.5 − |y|]χ [1.5 − |z + 1|] cos

(
β1k̃y+β2

)
exp
[
− (t−T̃

)2/
4α̃2
]
×

× cos
[
k̃
(
t − T̃

)]
χ
(
T̄ − t

)
; k̃ = 4.235, α̃ = 50, T̃ = 150, T̄ = 2T̃ ,

β1 = 1, β2 = 0.785

for E-polarized transient waves. The frequency characteristics of the source and
its spatial configuration are such that at any instant 0 < t < 2500 one can observe
oscillations of the two types, H0,12,1 – Rek̄1 ≈ 4.2212 and H0,11,3 – Rek̄2 ≈ 4.239,
in the field U(g,t). In support of this statement see Fig. 4.7a for the Ex(g,t) spatial
distribution in the free oscillation field. The dependence U(g,t) at the point g =
{0.82,0.0}, t > T̄ , is plotted in Fig. 4.7b.

We now make use of representation (4.86) and describe the behavior of the field
U(g,t) using the following simplified formula:
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Fig. 4.6 The H0,1,18-oscillations in (a) Fabry–Perot resonator (4.100) and in resonators (b) (4.106)
and (c) (4.108): g = {0.0,6.32}

U (g,t) = U (τ) ≈ U1 (τ) + U2 (τ) = A exp
(
τImk̄1

)
cos
(
τRek̄1

)+
+B exp

(
τImk̄2

)
cos
(
τRek̄2 + b

)
; τ = t − T̄ > 0.

(4.104)

Introduce the notation Γ0 (τ) = cos
[
τ
(
Rek̄2 − Rek̄1

)+ b
]

and refer to the
model situation – Rek̄1 = 5.1, Rek̄2 = 5.2, A = 0.9, Imk̄1 = −0.002, B = –6.0,
Imk̄2 = −0.005, b = 0.8 – expressed in Fig. 4.7c. It is easy to check that:

• the curves

Γ±
1 (τ) = ± [|A| exp

(
τImk̄1

)− |B| exp
(
τImk̄2

)]
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Fig. 4.7 Determination of parameters of free oscillations with neighboring eigenfrequencies
k̄1 and k̄2: (a and b) Analyzed situation; and (c) model situation

and

Γ±
2 (τ) = ± [|A| exp

(
τImk̄1

)+ |B| exp
(
τImk̄2

)]

represent global interior and global superior envelopes of the dependence U(τ);

• for A > 0, B > 0, at the points of contact of the U(τ) and Γ±
2 (τ) curves

Γ0 (τ) = 1 and cos
(
τRek̄1

) = cos
(
τRek̄2 + b

) = ±1

and at the points of contact of the U(τ) and Γ±
1 (τ) curves,

Γ0 (τ) = −1 and cos
(
τRek̄1

) = − cos
(
τRek̄2 + b

) = ±1;

• when A < 0, B < 0, at the points of contact of the U(τ) and Γ±
2 (τ) curves,

Γ0 (τ) = 1 and cos
(
τRek̄1

) = cos
(
τRek̄2 + b

) = ±1

and at the points of contact of U(τ) and Γ±
1 (τ) curves,
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Γ0 (τ) = −1 and cos
(
τRek̄1

) = − cos
(
τRek̄2 + b

) = ∓1;

• when A > 0, B < 0, at the points of contact of the U(τ) and Γ±
1 (τ) curves,

Γ0 (τ) = 1 and cos
(
τRek̄1

) = cos
(
τRek̄2 + b

) = ±1,

and at the points of contact of U(τ) and Γ±
2 (τ) curves,

Γ0 (τ) = −1 and cos
(
τRek̄1

) = − cos
(
τRek̄2 + b

) = ±1;

• when A < 0, B > 0 at the points of contact of the U(τ) and Γ±
1 (τ) curves,

Γ0 (τ) = 1 and cos
(
τRek̄1

) = cos
(
τRek̄2 + b

) = ∓1,

and at the points of contact of U(τ) and Γ±
2 (τ) curves,

Γ0 (τ) = −1 and cos
(
τRek̄1

) = − cos
(
τRek̄2 + b

) = ∓1.

These conclusions suggest that the behavior of the function U(g,t), t > T̄ (behav-
ior of U(τ) = U(g,t), τ = t − T̄ > 0) makes it possible to uniquely determine all
main parameters of the field free oscillations corresponding to some neighboring
eigenfrequencies k̄1 and k̄2. Thus, in the case whose analysis results can be seen
in Figs. 4.7a and b, we have Rek̄2 − Rek̄1 ≈ 0.0178, A ≈ 3.5, Imk̄1 ≈ −0.0005,
B ≈ 18.5, Imk̄2 ≈ −0.00105, and b ≈ 2.91.

The spectrum of a classical open resonator can be rarefied by changing its non-
selective mirrors for grating mirrors [10, 16, 206–208]. For an open resonator, the
model synthesis scheme [1, 40, 41] based on the so-called principle of prototype
[10, 40] predicts the relevant changes of the spectral characteristics and allows us
to find the eigenfrequency allocation over the working range and the field configu-
ration of high-Q oscillations to an accuracy desired [40, 203, 204]. Following this
scheme, we substitute the lower mirror of resonator prototype (4.100) by a finite
metal grating (see Fig. 4.4c) of the type

σ (g) = 2.19 · 1010χ (4 − |y|) {χ (−z̄)χ (z̄ + h)χ
[
cos
(
2πȳ
/

l
)− cos (π (1 − θ))

]+
+χ (−z̄ − h)χ (z̄ + h + c)} ; ȳ = y cos ϑ− z sin ϑ, z̄ = y sin ϑ+ z cos ϑ.

(4.105)
This is a metal comb with the period l = 0.9, the groove width lθ = 0.765 (θ =
0.85), the depth h = 0.315, and the substrate thickness c = 0.3. The upper plane of
the periodic structure (plane z̄ = 0) is turned clockwise at an angle ϑ ≈ 24.25◦ with
respect to the plane z = 0.

As is known (see [10, 16, 18] and Section 1.2.1), when an infinite reflection
grating of the kind is excited with the plane monochromatic wave Ũi

0 (ḡ,k) =
exp
[
ik
(
ȳ sin αi

0 − z̄ cos αi
0

)]
, ḡ = {ȳ,z̄}, ∣∣αi

0

∣∣ < 90◦, the secondary field
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Ũs (ḡ,k) = Ũ (ḡ,k) − Ũi
0 (ḡ,k) =

∞∑
n=−∞

RAA
n0 exp

[
i (Φnȳ + Γnz̄)

]
;

Φn = 2πn
/

l + k sin αi
0, Γn = √k2 −Φ2

n, ReΓn ≥ 0, ImΓn ≥ 0,

in the zone z̄ > 0 contains a finite number of spatially traveling harmonics with
ImΓn = 0, where n is the harmonic number. Each harmonic accumulates the portion

WR
n0 (k) = ∣∣RAA

n0

∣∣2 ReΓn
/
Γ0 of the energy arriving to the channel whose orientation

in space is given by the angle αn = − arcsin
(
2πn
/

lk + sin αi
0

)
(counterclock-

wise reading from the z̄-axis). With the condition kl sin
(
αi

p

)
= πm satisfied, the

component RAA−m0 (k) exp
[
i (Φ−mȳ + Γ−mz̄)

]
of the field Ũs (ḡ,k) travels toward the

incident wave. This regime is known as autocollimation reflection on the minus mth
spatial harmonic. If WR−m0 (k) ≈ 1 in this regime, the effect of total autocollimation
reflection is achieved.

For an infinite grating of the type (4.105), the reflection efficiency of an E-
polarized plane wave into the minus first autocollimating harmonic tends to one
within the frequency region 7.68 < k < 9.77 (WR−10 (k) ≈ 1; see Fig. 133 in [18]).
Therefore the modified resonator, or the resonator

σ (g) = 2.19 · 1010χ (4 − |y|) {χ (−z̄)χ (z̄ + h)χ
[
cos
(
2πȳ
/

l
)− cos (π (1−θ))

]+
+χ (−z̄ − h)χ (z̄ + h + c) + χ (6.6 − z)χ (z − 6.5)

}
,

(4.106)
at the frequency k = 8.5, with arg RAA−10 (k) ≈ π must keep (in the main) the elec-
tromagnetic characteristics of the resonator of the type (4.100) (see the principle
of prototype in [10, 40]). The results presented in Figs. 4.5b and 4.6b confirm the
statement: the resonator with a reflection grating maintains the free oscillation of the
same type (H0,1,18-oscillation) that the Fabry–Perot resonator does. The spectrum
of the dispersive open resonator is perceptibly and predictably rarefied (a detailed
description of the selection mechanism for the dispersive resonator with grating
mirrors can be found in [10, 40]), the quality of the discussed oscillation is almost
halved. In this case, Imk̄ ≈ −0.0026: when the resonator is excited with a narrow-
band current source of the type (4.102), the behavior of the field U(τ) = U(g,t),
τ = t − T̄ is such that Γ±

1 (τ) = Γ±
2 (τ) ≈ ±20.4 exp (−0.0026τ).

The periodic dielectric layer

ε (g) = 1 + χ (−z)χ (z + 0.372)
[
1 + sin (10.13y)

]
(4.107)

(period length l = 0.62, layer thickness h = 0.372) excited with a normally incident
monochromatic wave Ũi

0 (g, k) = exp (−ikz) produces the secondary field

Ũs (g,k) =

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
n=−∞

RAA
n0 (k) exp

[
i (Φny + Γnz)

]
; z > 0

∞∑
n=−∞

TBA
n0 (k) exp

[
i (Φny − Γn (z + h))

]
; z < −h
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in the reflection (z > 0) and transmission (z < –h) zones. At the k = 8.5 frequency,
WR

00 (k) ≈ 1 (see Fig. 5.5 in [10] for regimes of the total resonance reflection of
plane waves from semitransparent dielectric structures) and all the scattered energy
is accumulated in the principal reflection harmonic RAA

00 (k) exp
[
i (Φ0y + Γ0z)

]
of

the grating spatial spectrum. But at this frequency, arg RAA
00 (k) is different from π.

That is why the substitution of the metal mirrors in the resonator (4.100) for finite
dielectric gratings of the type (4.107), that is the passage to the dispersive open
resonator

ε (g) = 1 + χ (4 − |y|) [χ (−z)χ (z + 0.372) + χ (6.872 − z)χ (z − 6.5)]×
× [1 + sin (10.13y)

]

(4.108)
(see Fig. 4.4b), drastically changes the eigenfrequency k̄ corresponding to the
H0,1,18-oscillation: Re k̄ moves toward the point k ≈ 8.7 (see Fig. 4.5c). It is
at this point the rule applies that the phase of the resonant wave recovers in a
complete cycle of propagation along the longitudinal axis of resonator (4.108).
Imk̄ ≈ −0.011: when the dispersion open resonator is excited with a narrowband
current source

F (g,t) = 10χ (3 − |y|)χ (4.75 − z)χ (z − 1.75) cos
(

k̃z + 1.75
)

F1 (t) ; k̃ = 8.7,

α̃ = 40, T̃ = 120, T̄ = 180, T = 600,

the field U(τ) = U(g,t), τ = t − T̄ > 0 (see Fig. 4.6c) behaves so that Γ±
1 (τ) =

Γ±
2 (τ) ≈ ±3.3 exp (−0.011τ). The quality of the oscillation decreases, as at the

frequency k ≈ Rek̄ the semitransparent mirrors of the resonator (4.108) trans-
mit a substantial part of energy into free space. For a grating of the type (4.107),
WR

00

(
Rek̄
) ≈ WT

00

(
Rek̄
) ≈ 0.5. Evidently the situation can be recovered and the

H0,1,18-oscillation can be restored to the previous parameters. For this, the dispersive
open resonator should be extended lengthwise, or what is the same, the resonance
conditions for the quasi-optical volume should match the resonance conditions for
the periodic dielectric layer.

4.4 Infinite Gratings: Resonant Wave Scattering

The standard discretization of the 2-D initial boundary value problems consid-
ered in Sections 4.1 and 4.2 by the finite-difference method [4, 5] using a uniform
rectangular mesh attached to Cartesian coordinates g = {y,z} leads to explicit com-
putational schemes with uniquely defined mesh functions U (j,k,m) ≈ U

(
yj,zk,tm

)
.

The approximation error is O(h̄2), h̄ is the mesh step in spatial coordinates, l̄ = h̄
/

2
for ϑ = max

g∈QL

[
ε (g)μ (g)

]
< 2 or l̄ < h̄

/
2 for ϑ ≥ 2 is the mesh step in time variable

t; yj = jh̄, zk = kh̄, and tm = ml̄. The range of the j, k, and m integers depends on
the size of the QL areas and the length of the interval [0;T] of the observation time
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t: gjk ∈ QL and tm∈[0;T], gjk = {yj,zk}. The condition providing uniform bound-
edness of the approximate solutions U(j,k,m) with decreasing h̄ and l̄ is met (see,
for example, formula (1.50) in [1]). Hence [5] the finite-difference computational
schemes are stable, and the mesh functions U(j,k,m) tend to the solutions U(gjk,tm)
of the original problems. The relevant test problems solution and other independent
results serve to confirm the statement (see, for example, Section 4.5.1 and 4.6.1
in [1]).

4.4.1 Electrodynamical Characteristics of Gratings

The analysis of infinite single-periodic gratings rests on the numerical solution of
problems of the type (4.34). The passage to the finite domain of analysis QL is
assisted by exact absorbing conditions (4.39) and (4.40).

Let us represent the total field U(g,t) in the form U(g,t) = Ui(g,t)+Us(g,t), g∈A,
and U(g,t) = Us(g,t), g∈B, where Ui(g,t) is the field produced in the channel R by
some sources F̃ (g,t), ϕ̃ (g), and ψ̃ (g). Then [see formulas (4.2) and (4.42)],

⎧
⎪⎪⎨

⎪⎪⎩

Us (g,t) =
∞∑

n=−∞
un (z,t)μn (y)

Ui (g,t) =
∞∑

n=−∞
vn (z,t)μn (y)

; t ≥ 0. (4.109)

U(g,t) = Ex(g,t) or U(g,t) = Hx(g,t) depending on whether the field is E- or
H-polarized, respectively. In the domain LQ = A ∪ B [see (1.6) and (1.8)],

∂

{
Hy

Ey

}/
∂t = ∓η∓1

0
∂ U

∂z
, ∂

{
Hz

Ez

}/
∂t = ± η∓ 1

0
∂U

∂y
;

{
E − case
H − case

}
. (4.110)

Then [cf. the representation (4.109)],

{
Hs

y (z)
Es

y (z)

}
=

∞∑
n=−∞

uy (z)
n (z,t)μy(z)

n (y),

{
Hi

y (z)
Ei

y (z)

}

=
∞∑

n=−∞
vy (z)

n (z,t)μy (z)
n (y);

{
E − case
H − case

}
.

(4.111)

The spatial–temporal amplitudes un(z,t), vn(z,t), etc., in the representations (4.109)
and (4.111) are also called the evolutionary basis elements of the corresponding
signals [196, 197]. They fully describe the dynamics of the Us(g,t) (U(g,t)) and
Ui(g,t) pulsed waves traveling along the Floquet channel, their mode and spectral
contents.

In the QL domain, the simulated process dynamics is estimated upon the time
dependences U(g,t) referring to particular points g∈QL as well as the point set QL

as a whole. In the latter case, current values of the complex quantities U(g,t) are
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specified by the color of pixels (spatial mesh cells) throughout the computational
domain QL. In the .exe files (see captions in Chapter 4) and the figures related to
Section 4.4, the data mapping is executed using a circular color scale graded in the
two variables (Fig. 4.8a): |U(g,t)| (10 layers) and argU(g,t) (20 layers). The quantity
Umax(t) responsible for the starting (exterior) layer can be chosen in two ways. In the
first, each time layer is attached to its own current value Umax (t) = max

g∈QL

|U (g,t)|.
In the second, a value of Umax(t) is fixed and kept constant on a certain interval of
the time variable t. If in the second regime, the |U(g,t)| magnitude at some point
in the QL domain exceeds the Umax(t) level, this point (a spatial mesh cell) will be
colored as Umax(t) is colored.

Attach the A and B domains each to the local coordinate system gj = {yj,zj ≥ 0},
j = 1,2, the boundary Lj lies in the plane zj = 0. Then, starting from the values
on the boundary Lj, the diagonal transport operator Z0→zj (t) (see Section 4.1.1 and
Fig. 4.1) will calculate the spatial–temporal amplitudes u(zj,t) = {un(zj,t)} for any
zj ≥ 0 section of the corresponding regular channel R. This means that [see also
(4.109), (4.110), and (4.111)] any electrodynamical characteristic of the grating is
established by the amplitude sets

{
un(zj,t)

}∣∣
zj=0, j = 1,2, of the secondary pulsed

field Us(g,t) on the virtual boundaries Lj.
Now let the grating be excited by a pulsed wave Ui

p (g1,t) = vp (z1,t)μp (y1)

coming from the area A, the QL domain has no current sources. In this case, the
relationship

Fig. 4.8 The color scale for
current (a) complex and (b)
real U(g,t) values in the
computational domain
QL, 0 < t < T
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Ps
1 + Ps

2 + Pi×s
1︸ ︷︷ ︸

1

+ 1

2

∂

∂t

∫

QL

(η0μ
∣∣ �H∣∣2 + ε

η0

∣∣�E∣∣2)dg

︸ ︷︷ ︸
2

+ 1

η0

∫

QL

σ
∣∣�E∣∣2 dg

︸ ︷︷ ︸
3

= −Pi
1

(4.112)

(dg = dydz) governs the balance of instant powers of the electromagnetic field.
Namely, the instant power arriving at QL across the boundary L1 is the sum of the
total instant power (1) radiated across the Lj boundaries into the LQ domain, the
instant power (2) accumulative in the QL domain and the instant accepted power
(3). Here,

Ps(i)
j (t) = ∫

Lj

(
[�Es(i) × �Hs(i)] · �nj

)
dyj,

Pi×s
1 (t) = ∫

L1

[(
[�Es × �Hi] + [�Ei × �Hs]

) · �n1
]

dy1,

�nj is the outward normal to the QL domain at the boundary Lj, �Es(i) and �Hs(i) are the
electric and magnetic fields of the waves Us(g,t) (Ui(g,t)) in the A and B domains.

The amplitude–frequency characteristics f̃ (k) (where k = 2π/λ; Rek > 0, Im = 0,
is the wavenumber, or some frequency parameter or simple frequency, and λ is
the free space wavelength) come from the time characteristics f(t) by virtue of the
integral transformation

f̃ (k) =
T∫

0

f (t) eiktdt ↔ f (t) (4.113)

(image ↔ original, T is the upper limit of the interval [0;T] of the observation time
t: for all t > T, the function f(t) is assumed to be zero).

The frequency domain traditional characteristics RAA
np (k) and TBA

np (k) (see also
Section 1.2.1, where A = {g = {y,z} ∈ R: z > 0} and B = {g ∈ R: z < −h}) rep-
resent the conversion coefficients. The former indicates how the pth mode incident
from the part A of the Floquet channel R converts into the nth reflection mode
(synonymous with reflection coefficient). The latter shows how the pth mode arriv-
ing from the A domain transforms to the nth mode in the B domain (transition
coefficient). Specifically,

RAA
np (k) = ũn (z1,k)

ṽp (z1,k)

∣∣∣∣
z1=0

, TBA
np (k) = ũn (z2,k)|z2=0

ṽp (z1,k)
∣
∣
z1=0

. (4.114)

When the grating is excited by a traveling (ImΓp = 0) or damped (ImΓp > 0)
monochromatic wave Ũi

p (g,k) = exp
[
i
(
Φpy − Γp (z − L1)

)]
, the total field in the

domain QL = A ∪ B is
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Ũ (g,k) =

⎧
⎪⎪⎨

⎪⎪⎩

Ũi
p (g,k) +

n=∞∑
n=−∞

RAA
np exp

[
i (Φny + Γn (z − L1))

]
; g ∈ A

n=∞∑
n=−∞

TBA
np exp

[
i (Φny − Γn (z + h + L2))

]
; g ∈ B

,

and the coefficients RAA
np (k) and TBA

np (k) are related according to

∞∑

n=−∞

[∣∣
∣RAA

np

∣∣
∣
2 +
∣∣
∣TBA

np

∣∣
∣
2
]{

ReΓn

ImΓn

}
=
{

ReΓp + 2ImRAA
pp ImΓp

ImΓp − 2ImRAA
pp ReΓp

}
− k2β0

l

{
W1
W2

}
.

(4.115)

Here (see also Sections 1.1.4 and 1.2.1), Φn= 2π (Φ+ n)
/

l, Γn = √k2 −Φ2
n, and

W2 =
{+
−
} ∫

QL

[
μμ0
∣∣ �H∣∣2 − Reε̃ε0

∣∣�E∣∣2
]

dg =
{+
−
} ∫

QL

[
μμ0
∣∣ �H∣∣2 − εε0

∣∣�E∣∣2
]

dg,

β0 =
{
η2

0
η−2

0

}
;

{
E − case
H − case

}
.

Provided that ImΓp = 0, the values

W = W1
k2β0

lΓp
= kβ0

lΓp

∫

QL

σε0
∣∣�E∣∣2dg, WR

np =
∣∣
∣RAA

np

∣∣
∣
2 ReΓn

Γp
, WT

np =
∣∣
∣TBA

np

∣∣
∣
2 ReΓn

Γp

(4.116)

are the relative parts of energy lost by absorption and given to the open channels
(each propagating mode of the Floquet channel) taking it away from the QL domain.
The relationships (4.115) reduce to the expressions (1.29) if the virtual boundaries
L1 and L2 lie in the planes z = 0 and z = –h.

The nonlocal and local absorbing conditions derived for problems (4.1) and
(4.34) were tested to find out [1, 40, 189] that the errors introduced by their incorpo-
ration into the explicit finite-difference schemes of the second-order approximation
do not exceed the standard sampling error. They are much smaller than the errors
caused by the use of the classical approximate absorbing boundary conditions [181–
183] of the first, second, and third orders of approximation. And, by contrast, they
almost do not grow at all with time t.

4.4.2 Semitransparent Gratings

A grating will be called semitransparent if the geometry and constitutive parameters
permit an electromagnetic wave transition from the zone z > 0 to the zone z < –h (see,
for example, Figs. 1.1b and 4.1). The state of the art of the theory of these gratings
originates with the book [16]. For a long time, it used to be a unique source whose
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value is difficult to overestimate for the top quality and exceptional completeness of
the factual material on the physics of resonant wave scattering by periodic structures
of classical geometry. After a lapse of 13 years, the book [18] appeared. However, it
sometimes duplicates the results from [16], and the level of the presentation is fairly
different. In [18], an analysis is given of classes of structures sharing certain scat-
tering properties. The observed effects and spatial–frequency electromagnetic field
transformations of practical interest have been given a comprehensive description,
opening certain possibilities to pose and effectively solve problems of synthesis of
periodic structures with desired electrodynamical characteristics. In the book [10]
the results of [16, 18] with respect to the resonant nature of the concerned effects
are confirmed and new results based on the spectral theory of gratings are added.
On this basis [10, 16, 18], the book [1] briefly summarizes the central achievements
of the electrodynamical theory of gratings. The study of transient processes such as
spatial–time transformations of pulsed waves traveling along regular and irregular
Floquet channels, which is undertaken in the book [1], leans in an essential way
upon fundamental results from the frequency domain. Sections 4.4.2, 4.4.3, and
4.4.4 of the present book does not present results different in kind from the material
worked out in [1, 10, 16, 18]. Rather, we seek to demonstrate possibilities of some
new approaches and techniques to open up a new chapter in the study of gratings.

Let a pulsed E-polarized wave

Ui
0 (g,t) = v0 (z,t)μ0 (y) ; g = {y,z} ∈ A, Φ = 0.1,

v0 (L1,t) = 4
sin
[
Δk
(
t−T̃
)]

(
t−T̃
) cos

[
k̃
(
t − T̃

)]
χ
(
T̄ − t

) = F2 (t) ;

k̃ = 1.15, Δk = 0.75, T̃ = 50, T̄ = 100

(4.117)

(or, for short, the wave Ui
0 (g,t): Φ= 0.1; v0(L1,t) = F2(t); k̃ = 1.15, Δk = 0.75, T̃ =

50, T̄ = 100) be incident on semitransparent gratings whose geometry is sketched
in Fig. 4.9. The parameters k̃, Δk, T̃ , and T̄ establish (see formula (4.95) and Fig.
4.3b) the central frequency of the signal (4.117), its spectral bandwidth (0.4 ≤ k ≤
1.9), the delay time (the moment the principal part of the pulse Ui

0 (g,t) crosses the
boundary L1), and the duration. When k∈[0.4;1.9], one (for k < k+−1 the value of
N in the joint qualitative characteristic {N,M} introduced in Section 1.2.1 is equal
to one), two (k+−1 < k < k+1 , N = 2), or three (k > k+1 , N = 3) spatial propagating
harmonics can be maintained (without attenuation) in the Floquet channel R. Here,
k±n = ± |Φn| are the threshold points of the periodic structure, or the branch points
of the surface K (see Sections 1.1.4 and 1.2.1): k+0 ≈ 0.156, k+−1 ≈ 1.41, k+1 ≈ 1.72,
and k+−2 = 2.97.

The time domain data obtained in terms of the initial boundary value model
problems are translated into the amplitude–frequency characteristics [see the rep-
resentation (4.113)] with an accuracy that depends on the observation time period
[0;T] and the Q-factor of the free field oscillations in the gratings, excited by pulses
of finite duration. In the considered case (see Fig. 4.9), the observation time is taken
to be as long as T = 500 for geometry 2 and T = 2500 for geometry 3, providing
highly accurate WR

n0 (k) and WT
n0 (k) functions: a routine check shows that the energy
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Fig. 4.9 E-polarization. Functions WR
n0 (k) of different semitransparent gratings of perfectly con-

ducting bars inside a ε = 4.0 dielectric layer. Geometries 1–4: grating period l = 4.02, height
h = 2.0, period open part is d = 2.0 long, metal strips are h̄ = 0.02 thick, L1 = L2 = 5.0
Look: 4-09-1.exe, 4-09-2.exe, 4-09-3.exe, 4-09-4.exe – the Ex(g,t) spatial–time distribution, g∈QL,
50 ≤ t ≤ 65 (forced oscillations mode; Umax(t) = 1.0) in the excitation of gratings 1–4 by pulsed
wave (4.117)
All .exe files which enable to watch in dynamics the space–time transformations of the elec-
tromagnetic field close to finite and infinite periodic structures one may download from the
http://www.ire.kharkov.ua/downloads/Figures_EXE_Files.zip

conservation law on propagating harmonics is fulfilled with a related error not
exceeding 1% throughout the interval 0.4 ≤ k ≤ 1.9 [see formula (4.115)]. The max-
imum error for geometry 1 is observed at k ≈ K13 = 1.675 (resonance on H02-waves
in the d-wide parallel-plate waveguide segments within parameters’ domain {N,M};
N = M = 2). For geometry 2, it is at the threshold points k ≈ k+−1 and k ≈ k+1 . For
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geometry 3 – at k ≈ K31 = 1.19 and k ≈ K32 = 1.29 (high-Q resonances providing
fast switch regimes with utmost WR

00 (k) and WT
00 (k) values). For geometry 4, it is at

k ≈ K41 = 1.13 and k ≈ K43 = 1.29 (total resonant reflection), k ≈ K42 = 1.2 (total
resonant transition), k ≈ k+−1, and k ≈ k+1 .

At the points k ≈ K11 = 0.9, k ≈ K12 = 1.22, and k ≈ K21 = 0.82, k ≈ K22 =
1.13 on the frequency interval k+0 < k < k+−1 coming under N = 1, the functions
WR

00 (k) vanish in the case of metal gratings of rectangular or circular bars (see Fig.
4.9). In these cases, the plane monochromatic wave

Ũi
0 (g,k) = exp

[
i (Φ0y − Γ0 (z − L1))

]
; g = {y,z} ∈ A (4.118)

transmits to the domain B without reflection,
∣∣RAA

00 (k)
∣∣ = 0 and

∣∣TBA
00 (k)

∣∣ = 1.
It is known [1, 10] that these grating regimes at frequencies k = K are induced by
the excitation of some sufficiently high-Q oscillations whose field highly resembles
the field of free oscillations complying with complex eigenfrequencies k̄ such that
Rek̄ ≈ K. Thus, in the case of rectangular metal gratings, these are oscillations on
the H0m-waves propagating in the G domain, or the H0mn-oscillations.

Let us have a closer look at the total transition effect occurring at frequency k ≈
K11 = 0.9, geometry 1 (see Fig. 4.10). Following the recommendations from Section
4.3, we illuminate the grating with the quasi-monochromatic pulsed wave

Ui
0 (g,t) : Φ = 0.1; v0 (L1,t) = cos

[
k̃
(
t − T̃

)]
χ
(
T̄ − t

) = F3 (t) ; k̃ = 0.9,

T̃ = 0.5, T̄ = 100
(4.119)

(see Fig. 4.10a). The analysis of the U(g,t) field for the quasi-monochromatic com-
ponent responsible for the resonance regime of interest leads to the H011-oscillation
(see Fig. 4.10d). The analysis of the dynamical properties of U(τ), τ = t − T̄ > 0
(see Fig. 4.10b) provides its essential characteristics: the complex eigenfrequency
k̄ ≈ 0.899 − i0.026 and the quality factor Q = Rek̄

/
2
∣∣Imk̄
∣∣ ≈ 17.3.

Similar results were obtained for the total transition effects at frequencies k ≈
K12 (geometry 1) and K21, K22 (geometry 2). These effects in gratings are associated
with the excitation of the first-family oscillations H011 and H012 (see Fig. 4.11 and
Section 1.3.4). Their Q-factor is modest and the suitable eigenfrequencies k̄ are
sparse. Hence, the examination of these resonant regimes admits employing rather
narrow monochromatic signals, and, consequently, the observation time [0;T] need
not be long.

The pattern is quite different when semitransparent gratings maintain low-
attenuation oscillations of the second family in the band k+0 < k < k+−1 (N = 1).
When the frequency k approaches the real values of the complex eigenfrequencies k̄
suitable for the free H02n-oscillations of the field, the plane monochromatic wave of
the type (4.118) type is totally reflected:

∣∣RAA
00 (k)

∣∣ = 1,
∣∣TBA

00 (k)
∣∣ = 0, and the field

in the domain B is formed only by evanescent spatial harmonics. As a rule, the total
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Fig. 4.10 (continued)
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Fig. 4.11 The grating excitation by quasi-monochromatic wave (4.119) with the central fre-
quency: (a) k̃ = K12; (b) k̃ = K21; and (c) k̃ = K22: the Ex(g,t) spatial distribution, g∈QL at
the time t ≈ 80 (the upper row; forced oscillations of the field) and t ≈ 205 (the lower row; free
oscillations of the field)

�

Fig. 4.10 (continued) Geometry 1. The grating excitation by quasi-monochromatic wave (4.119)
with the central frequency k̃ = K11: (a) Temporal and spectral amplitudes of the Ui

0 (g,t) wave on
virtual boundary L1; (b) complex-valued function Ex(g1,t); (c and d) the Ex(g,t) spatial distribution,
g∈QL at the time t ≈ 80 (forced oscillations of the field) and t ≈ 205 (free oscillations)
Look: the Ex(g,t) spatial–time distribution, g∈QL; 4-10-C.exe – forced oscillations mode (75 ≤ t
≤ 90); 4-10-D.exe – free oscillations mode (200 ≤ t ≤ 210)
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reflection effect of the nature is accompanied by the total transition effect. Together
they make up the so-called double resonance (for details, see Section 6.3.2 in [1]).

The double resonances and the resonances giving rise to the total reflection
effects are illustrated in Fig. 4.9, for points k ≈ K31, K32 (geometry 3) and k ≈
K41, K43 (geometry 4). We take a closer look at the situation corresponding to the
frequency k ≈ K31 (see Fig. 4.12). Now the bandwidth factually occupied by signal
(4.119) with the central frequency k̃ = K31 = 1.19 turns out to be too wide to accu-
rately identify in the field U(g,t) oscillations responsible for the double resonance.
Any substantial extension of the quasi-monochromatic signal practically serves no
purpose. In this situation it is more efficient to use the pulsed wave

Ui
0 (g,t) : Φ = 0.1; v0 (L1,t) = exp

[
−
(
t−T̃
)2

4α̃2

]
cos
[
k̃
(
t − T̃

)]
χ
(
T̄ − t

) = F1 (t) ;

k̃ = 1.19, α̃ = 40, T̃ = 150, T̄ = 300
(4.120)

(see Fig. 4.12a; the dashed line shows the module of the spectral amplitude of
the pulsed wave as given by formula (4.119) for k̃ = 1.19 and T̄ = 300). In

Fig. 4.12 Geometry 3. The
grating excitation by pulsed
wave (4.120) with the central
frequency k̃ = K31: (a) The
temporal and the spectral
amplitudes of the wave
Ui

0 (g,t) on virtual boundary
L1; (b) function ReEx(g2,t);
(c and d) the Ex(g,t) spatial
distribution, g∈QL at the time
t ≈ 159 (forced oscillations of
the field) and t ≈ 515 (free
oscillations of the field)
Look: the Ex(g,t) spatial–time
distribution, g∈QL;
4-12-C.exe – forced
oscillations mode (150 ≤ t ≤
165); 4-12-D.exe – free
oscillations mode (510 ≤ t ≤
520)
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the field U(g,t), arising as the grating is excited by a wave (4.120), at a time
t > 400, a quasi-monochromatic component dominates which can be identified to be
an H021-oscillation (see Fig. 4.12d). This oscillation field builds up strength while
the perturbation source is acting. But this growth is not monotonous (see Fig. 4.12b),
suggesting (see Section 4.3) that the real part Rek̄ of the complex eigenfrequency
k̄ complying with the free H021-oscillation of the grating field does not coincide
with the central frequency of the signal (4.120). Yet the difference Rek̄ − k̃ is not
large. The spectral characteristics of the free oscillation can be obtained by analy-
sis of the function U(τ), τ = t–300 > 0 at a node of this oscillation field. They are
Rek̄ ≈ 1.1885, Imk̄ ≈ 0.0025, and Q ≈ 237.7.

In [10], one finds eigenfrequency behavior research for the first three families of
the free field oscillations in a rectangular metal grating under changes of the param-
eter Im ε̃ (g) (ε̃ (g) = ε (g) + iσ (g)

/
k) specifying the value W(k) of the related

energy part absorbed by a lossy dielectric [see formula (4.116)] to fill the domain G
connecting the reflection and transition zones of periodic structures. In particular, it
has been shown that as |Im ε̃ (g)| grows, the oscillation field configuration and the
Rek̄ part of the eigenfrequency k̄ change little. At the same time, Imk̄ increases pro-
portionally with the |Im ε̃ (g)| and uniformly with the other independent parameters.
By and large this pattern holds, also, in parameter ranges where the Q-factor of free
oscillations can change anomalously (see Section 1.3.4). How should this knowl-
edge be applied to the analysis of wave scattering by semitransparent gratings with
lossy dielectric insertions? First of all, it is safe to say that if |Im ε̃| is not very large,
the resonant regimes will be practically at the same place as in the case Im ε̃ = 0
(see Figs. 4.9 and 4.13, where all geometrical parameters of the gratings with geom-
etry 1 coincide). Second, the function W(k) must have been at its maximum in the
Rek̄ vicinity. But in case Im ε̃ varies, this W(k) behavior cannot be attributed one to
one only to the growth of the square of the electric field amplitude in the G domain
[see formula (4.116)]. The field strength of free oscillations still depends markedly
on their Q-factors, which decrease with increasing |Im ε̃|. In support of this state-
ment, refer to Fig. 4.13. The field changes in the domain A are more pronounced
than in the domain B, the influence mostly concerns the amplitudes RAA

00 (k) and
TBA

00 (k) of the propagating harmonics whose k value approaches Rek̄.

4.4.3 Reflective Gratings

The structure of the reflective grating field can be effectively controlled by a few
geometrical and (or) constitutive parameters [10, 16, 18, 19]. Effects that come
to light in modeling and analysis of these gratings excite great interest in a vari-
ety of practical applications. As a rule, their implementation does not take long
but it means new optical and spectroscopic devices, radar and antenna units, solid
state and vacuum electronics applications, new trends in high-power electron-
ics. Below some effects of that nature will be discussed. We emphasize that all
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Fig. 4.13 The amplitude–frequency characteristics of a semitransparent grating of rectangular
metal bars inside a dielectric layer with relative dielectric permittivity ε = 4.0 and specific con-
ductivity σ0: (a) σ0 = 0.001 and (b) σ0 = 0.0001; l = 4.02, h = 2.0, d = 2.0, L1 = L2 = 5.0

they can be extracted from commonly used reflective gratings of ordinary geom-
etry, conventional dispersive and selective components in both optical and radio
wavelengths.

Let an echelette grating like that depicted in Fig. 4.14a be illuminated by H-
polarized pulsed waves

Ui
0 (g,t) : Φ = 0; v0 (L1,t) = F2 (t) ; k̃, Δk = 0.7, T̃ = 50, T̄ = 100. (4.121)
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Fig. 4.14 (a) The echelette geometry and (b) its electrodynamical characteristics in the frequency
band 1.4 ≤ k ≤ 4.2: H-polarization, αi

0 = 0 (Φ = 0), l = 4.02, ψ = 67.5◦, L1 = 8.4

Having solved the corresponding initial boundary value problems for any time
0 ≤ t ≤ T, T = 500, we can obtain the electrodynamical characteristics of the struc-
ture (see Fig. 4.14b) in the frequency bands 1.4 ≤ k ≤ 2.8 (the central frequency
of signal (4.121) is k̃ =2.1) and 2.8 ≤ k ≤ 4.2 (k̃ = 3.5). Why do we halve the
analyzed frequency interval 1.4 ≤ k ≤ 4.2? Thus, the free oscillation field U(g,t),
g∈QL, t > T̄ (see Fig. 4.15) rids of the contribution from the threshold effect taking
place at one of the branch points of the surface K: k+±1 ≈ 1.56 (for k̃ = 3.5) or

k+±2 ≈ 3.13 (for k̃ = 2.1).
In the frequency band 1.7 ≤ k ≤ 2.0 past the threshold point k+±1 ≈ 1.56

(where first high-order spatial propagating harmonics appear), the echelette grating
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Fig. 4.15 The echelette excitation by pulsed H-polarized wave (4.121) with the central frequency
(a) k̃ = 2.1 and (b and c) k̃ = 3.5: (a and b) The Hx(g,t) spatial distribution, g∈QL at the time
t = 60 (forced oscillations) and t = 200 (free oscillations); (c) the temporal and the spectral ampli-
tudes of the Hx-field component at the point g = g1
Look: the Hx(g,t) spatial–time distribution, g∈QL; 4-15-A.exe and 4-15-B.exe – forced oscillations
mode (50 ≤ t ≤ 70; Umax(t) = 1.0); 4-15-A-F.exe and 4-15-B-F.exe – free oscillations mode (200
≤ t ≤ 210)

manages to concentrate over 98% of the applied energy delivered by normally
incident H-polarized plane wave (4.118) into one of these harmonics (specifi-
cally, the minus first one) (see Fig. 4.14b). For these k values, the angle α−1 =
− arcsin

(
Φ−1
/

k
)

at which the RAA−10 (k)-amplitude harmonic departs from the grat-
ing is α–1 = 66.8◦ to α–1 = 51.4◦. Past the second threshold point k+±2 ≈ 3.13,
a substantial part of the incident energy is given to the minus second spatial har-
monic. But its WR−20 (k) function does not grow as fast as WR−10 (k) does, and it
cannot achieve anomalously high values.

At the frequency k = 2.89, all the energy is equally distributed between the
principal and the minus first spatial harmonics (WR−10 (k) = WR

00 (k) = 0.5 and
WR

10 (k) = 0; α0 = 0 and α–1 = 32.7◦), compare with WR
10 (k) = WR

00 (k) ≈ 0.49,
WR−10 (k) ≈ 0.02, and α1 = –31.2◦ at the frequency k = 3.015. From an asym-
metric echelette grating, we can also get symmetric channels to radiate the input
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energy. Thus, WR
10 ≈ WR−10 ≈ 0.46, WR

00 (k) ≈ 0.08, and α∓1 = ±30.3◦ at the point
k = 3.098.

The energy flows that the reflective grating under the action of a normally inci-
dent E- or H-polarized quasi-monochromatic wave Ui

0 (g,t) directs to side channels
can be visualized via the calculation of the spatial–time distribution of the values
of Hz(g,t) or Ez(g,t) corresponding to the field U(g,t), g∈QL. Indeed, the excita-
tion with a quasi-monochromatic wave whose spectral amplitudes decrease rapidly
as the frequency k departs from k = k̃ makes it possible to minimize the angular
widening of the side channels. Then the z-components of the incident wave field
Ui

0 (g,t) and of the total field U(g,t) part traveling toward it are identically equal to
zero. Figure 4.16 plots the solution results of the initial boundary value problems of
the echelette grating excitation by the quasi-monochromatic wave

Ui
0 (g,t) : Φ = 0; v0 (L1,t) = F3 (t) ; k̃, T̃ = 0.5, T̄ = 300 (4.122)

with the central frequencies k̃ = 1.85 (Fig. 4.16a) and k̃ = 2.89 (Fig. 4.16b). Let
us remember (see above) that WR−10 (k) > 0.98 and α–1 = 57.7◦ at the frequency
k = 1.85 and WR−10 (k) = 0.5 and α–1 = 32.7◦ at k = 2.89. These α–1 values are
shown in those parts of Fig. 4.16 which are plotting the spatial distribution of Ez(g,t),
g∈QL, t = 101. They give a sufficiently accurate picture of the orientation of the side
channels drawing energy away from the grating.

Evidently in the H-polarized field case, the spectrum Ωk (see Section 1.3.2) of
the perfectly conducting plane z = 0 on the first sheet of the surface K carries real-
valued k̄ points coinciding with the branch points k±n = ± |Φn|, n = 0,±1,±2,. . ..
These eigenvalues k̄ meet the field free oscillations u0

(
g,k̄
) = u0

(
g,k±n
) =

exp (iΦny), Φn = 2π(Φ+n)/l with infinitely large Q-factor. If a “smooth” defor-
mation of the plane z = 0 is started to shape it into the surface S = Sx × [|x| ≤ ∞]
of some reflective grating, then the oscillations u0

(
g,k̄
)

and the relevant elements k̄
of the spectral set Ωk will vary in the same “smooth” manner so that no element in
the bounded part of the surface K will ever disappear (see [10] and Statement 1.5).
Therefore, in the H-polarized field case, the amplitude–frequency characteristics of

Fig. 4.16 The echelette
excitation by
quasi-monochromatic pulsed
wave (4.122) with the central
frequency: (a) k̃ = 1.85 and
(b) k̃ = 2.89. The Hx(g,t) and
Ez(g,t) spatial distributions,
g∈QL at the time t = 101
Look: 4-16-A.exe and
4-16-B.exe – the Hx(g,t)
spatial–time distribution,
g∈QL, 100 ≤ t ≤ 110
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reflective gratings demonstrate the threshold effects (Wood’s anomalies) far more
intensively than in the E-case. The reason is that the action of the branch points
k±n of the surface K (in small vicinities of the k±n points, the local variable of the

surface K is
(
k − k±n

)1/2 [1, 10]) is enhanced by the resonances associated with the
excitation of sufficiently high-Q oscillations of the field. These oscillations fit, as a
rule, eigenfrequencies k̄ whose difference Rek̄ − k±n is not large. For instance, the
free oscillation field U(g,t), g∈QL, t > 100, maintained by a metal echelette grat-
ing excited by a pulsed wave (4.121), clearly demonstrates [see expression (4.86)]
certain characteristic features of free oscillation fields u0

(
g,k+n
) = exp (iΦny) =

exp
(
i2πny

/
l
)
. n = ±1 (Fig. 4.15a) and n = ±2 (Fig. 4.15b). The spectral ampli-

tudes of the Hx-field component at the node of one of these oscillations (see Fig.
4.15c) reach their maxima in the vicinity of the point k = 3.13 (k+±2 ≈ 3.13). A

second local maximum of the function
∣∣H̃x (g3,k)

∣∣ exists near k = 3.11. These seem
to be right Rek̄ values of the eigenfrequencies k̄ to fit the deformed free oscillations
u0
(
g,k+n
)
, n = ±2.

Reflective gratings excited by an oblique incident (sin αi
0 = Φ0

/
k �= 0) E- or

H-polarized plane wave (4.118) can concentrate most of the applied energy into one
of high-order spatial harmonics RAA

n0 (k) exp
[
i (Φny + Γn (z − L1))

]
. n �= 0, of the

secondary field Ũs (g,k) = Ũ (g,k) − Ũi
0 (g,k); g = {y,z}∈A (see [16, 18, 19] and

Section 1.2.1). The propagation direction of this harmonic according to the angle
αn = − arcsin

(
Φn
/

k
)

is different from the direction of the specular reflection wave
RAA

00 (k) exp
[
i (Φ0y + Γ0 (z − L1))

]
, α0 = −αi

0. If WR
n0 (k) = 1, we say that the

total nonspecular reflection effect takes place. Let n = –m and

WR−m0 (k) = 1, kl sin
(
αi

0

) = πm. (4.123)

If condition (4.123) holds for some k values, it is said that the effect of total
autocollimation reflection takes place on the minus mth spatial harmonic, implying
that all the energy is concentrated into the plane wave traveling toward the incident
wave Ũi

0 (g,k). In the autocollimation regime Φ = m/2, the propagation constants
Γn of the specular (n = 0) and autocollimation (n = –m) harmonics coincide at the
same time as Φ0 = –Φ–m.

The effect of total or nearly total autocollimation reflection on the minus first
spatial harmonic can both be spread over wide a band and retained within a nar-
row band. For example, Fig. 4.17b shows that for geometry 1 the 0.85 ≤ k ≤ 1.85
bandwidth where WR−10 (k) ≥ 0.95 amounts to 74%. In the first case, the effect is
due to the low-Q oscillations of the first family in the G domain, namely, the oscilla-
tions on TEM- or H01-waves in the d-wide parallel-plate waveguide segments. In the
second case, the responsibility for maintaining the effect rests with larger-Q oscil-
lations on the E0n- (n ≥ 1) or H0n-waves (n ≥ 2). But in any case, the limit value
WR−10 (k) = 1.0 can only be reached when no more than two – the zeroth and the
minus first – spatial harmonics propagate without attenuation in the reflection zone
of the periodic structure.
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Fig. 4.17 H-polarization. The autocollimation reflection on the minus first spatial harmonic: (a)
Grating geometry (1 – l = 4.02, h = 1.0, d = 2.02, ε = 1; 2 – l = 4.02, h = 1.28, d = 1.62, ε =
2); (b) reflection efficiency (geometry 1 – dots and geometry 2 – solid line); (c and d) the Hx(g,t)
spatial distribution, g∈QL at the time t = 65 and t = 205 in the excitation of grating with geometry
2 by a pulsed wave (4.124), L1 = 8.4
Look: 4-17-C.exe and 4-17-D.exe – the Hx(g,t) spatial–time distribution, g∈QL, 50 ≤ t ≤ 70
(Umax(t) = 1.0) and 200 ≤ t ≤ 210

The data reported in Fig. 4.17 were obtained by studying the grating response to
the excitation with the pulsed H-polarized wave

Ui
0 (g,t) : Φ = 0.5; v0 (L1,t) = F2 (t) ; k̃ = 1.55, Δk = 0.75, T̃ = 50, T̄ = 100.

(4.124)
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The band 0.85 ≤ k ≤ 2.3, where the spectral amplitudes of the signal (4.124)
reach their maxima, does not include the branch points k+0 = k+−1 ≈ 0.782 and
k+1 = k+−2 ≈ 2.35. Therefore, in the free oscillation field U(g,t), t > 100, the oscil-
lation on E01-waves is clear enough (see Fig. 4.17d), and it is evidently a single
oscillation characterized by a sufficiently high Q-factor whose complex eigenfre-
quency k̄ is under the segment 0.85 ≤ k ≤ 2.3 of the real axis k > 0 of the first
sheet of the surface K. It seems to be precisely that this oscillation is responsi-
ble for the total autocollimation reflection at the frequency k = 1.565 (see Fig.
4.17b). This possibility gains substance from the analysis of the grating response
to the excitation by a quasi-monochromatic H-polarized wave Ui

0 (g,t) with the cen-
tral frequency k̃ = 1.565 (see Fig. 4.18). The spectral amplitudes of the function
U(τ) are at their maxima in the small vicinity of the point k = 1.569, its enve-
lope f(τ) obeys the equation f(τ) = ±3.12exp(–0.0088τ). This means (see Section
4.3) that the free oscillation on the E01-waves (see Fig. 4.18b) fits the eigenfre-
quency k̄ ≈ 1.569 − i0.0088. The field U(g,t) becomes real valued as soon as the
perturbation source is turned off (see Fig. 4.18c). Therein lies a specific character
of the boundary value and the initial boundary value problems with a half-integer
Φ [10, 18]. Namely, in the case of gratings symmetric about the planes y = l/2+nl,
n = 0,±1,±2,. . ., the problems of this kind can be reduced to the inhomogeneity
problems of a parallel-plate waveguide with electrical and magnetic walls y = 0
and y = l.

Reflective gratings can be used as dispersive elements to do effective polar-
ization selection of signals. Refer to the situation reported in Fig. 4.19. At the
frequency k = 0.775, 99% of the applied energy is drawn toward the incident
plane wave when it is H-polarized and only 1% when the incident plane wave
is E-polarized. At the frequency k = 1.005, the main channels of energy with-
drawal on E- and H-polarized waves are interchanged: WR−10 (k) = 0.05 for the
H-polarization and WR−10 (k) = 1.0 for the E-polarization. At the frequency k =
0.667, WR−10 (k) = 0.92 for both polarizations. The portion of energy given away
to the specular reflection spatial harmonics comes from the equation WR−10 (k) +
WR

00 (k) = 1.0: in the band 0.5 < k < 1.5, only the principal and the minus
first harmonics of the secondary field Ũs (g, k) travel without attenuation in the
domain A.

A grating formed by thin metal strips lying on a dielectric substrate backed by
a perfectly conducting screen fully separates polarizations when the autocollima-
tion reflection regime comes about on the minus first spatial harmonic. Figure 4.20
shows that at k = 1.565, all the energy delivered by the E-polarized wave goes
to the minus first spatial harmonic (WR−10 (k) = 1.0). When the incident wave
is H-polarized, all the energy concentrates into the specular reflection harmonic
(WR−10 (k) = 0.0). At k = 2.0, the separation of polarizations is not so fine. Here
WR−10 (k) = 1.0 in the case of H-polarization of the field and WR−10 (k) = 0.02
(WR

00 (k) = 0.98) in the E-case.
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Fig. 4.18 The reflective grating excitation (geometry 2) by an H-polarized quasi-monochromatic
wave Ui

0 (g,t) : Φ = 0.5; v0(L1,t) = F3(t); k̃ = 1.565, T̃ = 0.5, T̄ = 100: (a and b) The Hx(g,t)
spatial distribution, g∈QL at the time t = 90 and t = 205: (c) functions U(g2,t) and U(τ)
Look: 4-18-A.exe and 4-18-B.exe – the Hx(g,t) spatial–time distribution, g∈QL, 80 ≤ t ≤ 95 and
200 ≤ t ≤ 210

4.4.4 Gratings in a Pulsed Wave Field

It is evident that a fairly complete analytic description of pulse deformations in
regular and irregular Floquet channels is impossible without proper computational
work. The figures obtained must be adequately interpreted. A treatment of this kind
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Fig. 4.19 The autocollimation reflection efficiency on the minus first spatial harmonic: H-
polarization – dots; E-polarization – solid line (l = 2π, h = 4.3, d = 3.8, ε = 2)

originated in references [1, 40, 209]. Here, we discuss some recent results based on
the methods reported in Section 4.1.

The four plane E-polarized sinusoidal waves Ũi
0 (g,k) = exp (−ikz), Ũ0 (g,k) =

exp (ikz), Ũ1 (g,k) = − exp (iky), and Ũ−1 (g,k) = − exp (−iky) traveling in free
space result in the field Ẽx (g,k) whose null surfaces at k = k+±1 = 2π

/
l can be

brought into coincidence with the surface S = Sx × [|x| ≤ ∞] of a symmetric
echelette grating (see Fig. 4.14a: ψ = 45◦). This means that the total field origi-
nating as the echelette grating excited by the wave Ũi

0 (g,k) coincides (everywhere
above the contour Sx) with the field Ũ (g,k) = Ũi

0 (g,k) + ∑

n=0,1,−1
Ũn (g,k). In this

case, the waves Ũn (g,k), n = 0,±1, play the parts of principal, plus and minus first
spatial harmonics of the secondary field Ũs (g,k) = Ũ (g,k) − Ũi

0 (g,k). Usually
in this way a reason is given for an explicit analytic solution to problem (1.26),
the existence of the solution is attributed to the so-called geometrical resonances
[18]. Later on, we will see what the mentioned geometrical resonance (a frequency
domain effect) tells us about the solution of the corresponding scattering problem in
the time domain.

Suppose that a symmetric echelette grating is excited by the E-polarized quasi-
monochromatic wave Ui

0 (g,t): Φ = 0; v0(L1,t) = F3(t); k̃ = 1.563 ≈ k+±1, T̃ = 0.5,
T̄ = 200 (see Figs. 4.21 and 4.22). Next compare between the spatial–temporal
amplitudes of the signal Ui

0 (g,t) and the principal spatial harmonics Un (g,t) =
un (z,t)μn (y), n = 0,±1, caused by this signal in the reflection zone of the grat-
ing. The function v0(L1,t), whose related spectral amplitudes do not exceed 0.3
beyond the narrow frequency band 1.54 < k < 1.586, has a simple envelope and
vanishes for all t > T̄ . The effective spatial duration of the signals U0(g,t) and
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Fig. 4.20 The autocollimation reflection efficiency on the minus first spatial harmonic: (a) Grating
geometry (l = 4.02, h = 1.42, d = 2.78, ε = 2, perfectly conducting strips thickness is 0.04, L1
= 8.4); (b) reflection efficiency (H-polarization – dots; E-polarization – solid line); (c and d) the
Ex(g,t) and Hx(g,t) spatial distributions, g∈QL at the time t = 60 in the grating excitation by a
pulsed E- and H-polarized wave (4.124)
Look: 4-20-C.exe and 4-20-D.exe – the Ex(g,t) and Hx(g,t) spatial–time distributions, g∈QL, 50 ≤
t ≤ 70 (forced oscillations mode; Umax(t) = 1.0)

Ui
0 (g,t) is practically the same, but the U0(g,t) amplitude gradually increases by

the action of the perturbation source. The main part of the pulse u0(L1,t) is fol-
lowed by a short, fast decaying tail. The tails of the pulses u±1(L1,t) are more
powerful, which is probably caused by the fact that the plus and the minus first
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Fig. 4.21 The excitation of a
symmetric echelette (ψ =
45◦, l = 4.02, L1 = 7.8) by a
normally incident E-polarized
quasi-monochromatic wave
Ui

0 (g,t). The spatial–temporal
amplitudes are shown for the
Ui

0 (g,t) wave and the
principal spatial harmonics of
the secondary field Us(g,t) on
the virtual boundary L1

harmonics are the principal components of the free oscillation field complying with
the eigenfrequency k̄ which is such that Rek̄ is in a small vicinity of the branch
point k+±1 ≈ 1.563.

The main carriers of the Hz(g,t)-component of the field U(g,t) are the waves
U±1 (g, t). The Hy(g,t) main carriers are the waves Ui

0 (g,t) and U0(g,t). The spa-
tial distribution of the values Ex(g,t), g∈QL, corresponding to the field U(g,t) is
equally governed by all these waves. At some time moments, it is practically
no different from the distribution resulting (at k = k+±1) from the interfer-

ence of the sinusoidal waves Ũi
0 (g,k) and Ũn (g,k), n = 0,±1. The distinctions

decrease monotonously with the time t provided that the central frequency k̃ of the
quasi-monochromatic wave Ui

0 (g,t) having a sufficiently large spatial duration T̄
coincides exactly with k+±1. Thus in this situation, the limiting amplitude principle
[1, 10] is realized, and the transient gradually takes on properties of the established
process.

Now let us excite a symmetrical echelette grating by the E-polarized wideband
signal Ui

0 (g,t): Φ = 0; v0(L1,t) = F1(t); k̃ = 1.6, α̃ = 1.3, T̃ = 15, T̄ = 30 (see
Fig. 4.23: the bandwidth is given by 0.4 < k < 2.8, where the normalized spectral
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Fig. 4.22 (Complementation to Fig. 4.21). The Ex(g,t), Hy(g,t), and Hz(g,t) spatial distributions,
g∈QL, t = 189.75
Look: 4-22.exe and 4-22-F.exe – the Ex(g,t) spatial–time distribution, g∈QL, 180 ≤ t ≤ 195 (forced
oscillations mode) and 450 ≤ t ≤ 460 (free oscillations mode)

amplitudes of the function v0(L1,t) are no less than 0.1, is equal to 150%). The
spectral amplitudes of the pulses u0(L1,t) and v0(L1,t) differ little from each other
everywhere except on the frequency interval past the branch point k+±1. And it is
on this frequency interval that the amplitudes of the pulses u±1(L1,t) are at their
maxima. As in the case of a grating excitation by a monochromatic signal Ui

0 (g,t),
all features of the functions un(L1,t) and |ũn (L1,k)| originate from the threshold
effect in the frequency domain and the redistribution of the applied energy among
the spatial harmonics of the field Ũs (g,k).

The phenomenon of the strong conversion of the sinusoidal H01-waves to the
H0m-waves, m > 1 that takes place on inclined H-plane plugs in rectangular waveg-
uides (see Fig. 12 in [210]) can be interpreted in superwideband signal terms as
follows. The pulsed H01-wave with spectral amplitudes evenly distributed across the
range k2 < k < kM (km is the H0m-wave cutoff) is reflected from the plug to produce
a series of the pulsed H0m-waves, m = 2, . . ., M–2, each occupying its own band
km < k < km+2 in the range. In this band, the function Wm1(k) describing the applied
energy part transferred to the reflected H0m-wave first monotonously increases from
zero up to max

k
Wm1 (k) = Wm1 (km+1) ≈ 1, then monotonously decreases down to

Wm1 (km+2) � 1.
Phenomena of this kind attend the scattering of superwideband TE01-pulses

from cone-shaped plugs in circular and coaxial circular waveguides [211] and
also the scattering of E-polarized pulsed waves normally incident on a symmet-
ric metal echelette grating with obtuse teeth (see Figs. 4.24 and 4.25 ). The
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Fig. 4.23 The symmetric echelette excitation by a normally incident E-polarized Gaussian pulse
Ui

0 (g,t): (a) The spatial–temporal and the spectral amplitudes are shown for the Ui
0 (g,t) wave and

the principal spatial harmonics of the secondary field Us(g,t) on the virtual boundary L1; (b and c)
the Ex(g,t) spatial distribution, g∈QL, t = 26 and t = 55
Look: 4-23-B.exe and 4-23-C.exe – the Ex(g,t) spatial–time distribution, g∈QL, 15 ≤ t ≤ 40 (forced
oscillations mode) and 50 ≤ t ≤ 60 (free oscillations mode)
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Fig. 4.24 The mode-frequency exfoliation of a superbroadband pulse: (a) Grating geometry (ψ=
60◦, l = 4.02, L1 = 8.0); (b) the amplitudes of the incident E-polarized pulsed wave Ui

0 (g,t)
(Φ = 0); (c) the energy distribution among spatial harmonics of the field Ũs (g,k) in the structure
reflection zone
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Fig. 4.25 (Complementation to Fig. 4.24). The amplitudes of high-order spatial harmonics of the
field Us(g,t) on the virtual boundary L1

result is that a superwideband pulse of one type (for echelette gratings, it is the
pulsed wave Ui

0 (g,t)) changes into an ordered sequence of narrowband pulses of
other types (pulsed spatial harmonics Un(g,t), |n| ≥ 1). This effect is the modal
frequency exfoliation of a superwideband signal. Particular bands occupied by
each pair U±n(g,t) of pulsed waves and the Wn0 (k) = WR−n0 (k) + WR

n0 (k) dis-
tributions across these bands remain basically the same as in the case of the
H0n-waves of a rectangular waveguide. The reflected pulses U±n(g,t) with a higher
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|n| have a larger central frequency k̃n ≈ k+±(n+1). It tells clearly on the oscillat-
ing character of the spatial–temporal amplitudes u±n(z,t) as a function of t (see
Fig. 4.25).

In the H-polarization case, the effect is not so evident. The formation of the pairs
U±n(g,t) of the reflected pulses fitting the above-mentioned notion of the modal
frequency exfoliation begins only past the point k = k+±3 – the grazing point for

the plus and minus third spatial harmonics of the field Ũs (g,k). But now the top
value of the energy characteristic Wn0(k) can fall over a 0.85 level for none of the
pairs. Distinctions from the E-case are mainly caused by different intensities of the
threshold phenomena (Wood’s anomalies) in the vicinities of the first three branch
points k = k+±n.

4.5 2-D Models of Compact Grating Structures:
Spatio-frequency and Spatio-temporal Field
Transformations

4.5.1 Basic Definitions and Numerical Tests of New Exact
Conditions

Plane models are classical in electrodynamics. They start from some universally
adopted assumptions that simplify the solution of urgent theoretical and applied
problems and, at the same time, take care of the substance of processes and phe-
nomena that these problems seek to describe. In Section 4.5, we deal with plane
models of compact grating structures (see Fig. 4.2 and Section 4.2) in the field
of E-polarized waves. Models of this kind proceed from the scalar initial bound-
ary value problems of the type (4.44) for U(g,t) = Ex(g,t). By virtue of the exact
absorbing conditions (4.66), (4.67), and (4.68), analysis domains Q extending to
infinity are truncated to the finite domains QL. In the electrodynamical scheme of
the objects treated in these problems, the regular parallel-plate waveguides jQ feed-
ing the structure or drawing away electromagnetic energy are thought of as virtual
boundaries (ports) Lj. On these boundaries, exact absorbing conditions of the type
(4.46), (4.47), (4.48), and (4.49) must be met.

Assume that a compact grating structure (j = 1,2,. . ., N) is excited by some cur-
rent and momentary sources F(g,t), ϕ(g), ψ(g) and, simultaneously, by the pulsed
wave Ui(q)(g,t) from the waveguide qQ. Then the general solution of problem (4.44)
in the free propagation domains is given as

U (g,t) = U (ρ,φ,t) =
∞∑

n=−∞
ūn (ρ,t) μ̄n (φ); ρ ≥ L, 0 ≤ φ ≤ 2π, (4.125)

U
(
gj,t
) = Us(j) (gj,t

)+ δ
q
j Ui(q)

(
gq,t
)
; gj ∈j Q, j = 1,2,..., N.
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Here,

Us(j) (gj,t
) =

∞∑

n=1

unj
(
zj,t
)
μnj
(
yj
)

, Ui(q)
(
gq,t
) =

∞∑

n=1

vnq
(
zq,t
)
μnq
(
yq
)
; (4.126)

gj = {yj,zj} is the local coordinate system attached to the waveguide jQ (see Fig.
4.2); ρ = L is a circle that does not overflow the boundary L and surrounds all the
inhomogeneities of the space R2 and the sources F(g,t), ϕ(g), ψ(g); ρ and φ are
the polar coordinates; μ̄n (φ) = (2π)−1/2 exp (inφ), n = 0,±1,±2,. . ., is the com-
plete orthonormal system of transverse functions in the free space R2, and ūn (ρ,t)
are the spatial–temporal amplitudes (the evolutionary basis ū (ρ,t) = {ūn (ρ,t)}) of
the wave U(ρ,φ,t) (see Section 4.2.4).

The amplitude–frequency characteristics f̃ (k) (k = 2π/λ is the wavenumber,
frequency parameter, or mere frequency and λ is the free space wavelength) are
obtained from the time characteristics f(t) via the integral transformation (4.113).

If F(g,t) ≡ 0, ϕ(g) = ψ(g) ≡ 0 and Ui(q)
(
gq,t
) = Ui(q)

p
(
gq,t
) = vpq

(
zq,t
) ×

×μpq
(
yq
)
, then the formulae

Rqq
np (k) = ũnq

(
zq,k
)

ṽpq
(
zq,k
)

∣∣∣
∣∣
zq=0

and Tjq
np (k) =

ũnj
(
zj,k
)∣∣

zj=0

ṽpq
(
zq,k
)∣∣

zq=0

(4.127)

give us the reflection coefficient Rqq
np (k) describing the transformation of the pth inci-

dent monochromatic wave to the nth reflected and the transition coefficient Tjq
np (k)

tracing the transformation of the pth mode of the waveguide qQ to the nth mode of
the waveguide jQ, j �= q.

When, in addition, σ(g) ≡ 0 and Imγpq = 0, the efficiency η(k) of the open unit
as a monochromatic wave radiator is expressed by the formula

η (k) = 1−
∑

n,j

Wjq
np (k); Wqq

np (k) =
∣∣∣Rqq

np (k)
∣∣∣
2 Reγnq

γpq
, Wjq

np (k) =
∣∣∣Tjq

np (k)
∣∣∣
2 Reγnj

γpq
.

(4.128)

Here, γnj =
(

k2 − λ2
nj

)1/2
; Reγnj ≥ 0 and Imγnj ≥ 0; λnj are the transverse

eigenumbers of the waveguide jQ (see Section 4.2.1); Wjq
np (k) is the relative energy

of the nth mode that is reflected or enters the waveguide jQ as the structure is excited

across the Lq boundary by the propagating wave Ũi(q)
p
(
gq,k
)

(Imγpq = 0).
The pulsed near field U(g,t) is worked out in the immediate calculation space QL.

The far field is found by the field U(g,t) conversion from the arc ρ= L to the arc ρ=
M > L, a proper distance away from the virtual boundary L (see Section 4.2.4). Such
a possibility gives us the exact radiation conditions for outgoing cylindrical waves
(4.125) [see formulas (4.74) and (4.76)] resulting in a transport operator ZL→ρ(t)
such that
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ū(ρ,t) = {ūn(ρ,t)} = ZL→ρ (t)
[
∂ ū(ρ,τ)

/
∂ρ
∣∣
ρ=L ,ū(L,τ)

]
; ρ ≥ L, t ≥ τ ≥ 0.

Having obtained the spatial–temporal amplitudes ūn (ρ,t) of the field U(g,t) on
the circle ρ= L, we proceed to finding also the far monochromatic field Ũ (ρ,φ,k) ↔
U (ρ,φ,t); ρ = M > L. Make use of the spectral representations

ūn (ρ,t) ↔ ˜̄un (ρ,k) = an (k) H(1)
n (kρ) ; n = 0, ± 1, ± 2..., (4.129)

owing to the partial radiation conditions for outgoing cylindrical waves [see Section
4.3.3 and formula (4.99)]. From (4.129), the sets of complex amplitudes an(k) are
obtained, and invoking the radiation conditions we have the Ũ (M,φ,k) value.

The function

D (φ,k,M) =
∣
∣Ũ (M,φ,k)

∣
∣2

max
φ1<φ<φ2

∣∣Ũ (M,φ,k)
∣∣2

(4.130)

describes the normalized radiation pattern produced by the compact grating struc-
tures on the portion 0 ≤ φ1 ≤ φ ≤ φ2 ≤ 360◦ of the arc ρ = M ≥ L; K1 ≤ k ≤ K2.
The main lobe is directed at the angle φ̄ (k): D

(
φ̄ (k) ,k,M

) = 1; φ0.5(k) is the lobe
width at the level D(φ,k,M) = 0.5, with M indicating the zone (near, medium or far)
where the diagram D(φ,k,M) is computed. Assume that the near zone is limited by
M = L, and the far-zone boundary is specified by such a value of M that the function
D(φ,k,M) barely changes as M increases for all k considered.

When dealing with spatial–time transformations of broadband signals, a good
deal of information can be gained from the characteristics associated with the
normalized pulse diagram [193]

DP (φ,t,M) = U (M,φ,t)

max
φ1<φ<φ2, t

|U (M,φ,t)| (4.131)

on the portion 0 ≤ φ1 ≤ φ ≤ φ2 ≤ 360◦ of the arc ρ = M ≥ L; T1 ≤ t ≤
T2 ≤ T + M. The pulse radiation efficiency ξ = 1–W; 0 ≤ ξ ≤ 1 for nonabsorbing
(σ(g) ≡ 0) compact grating structures excited from the waveguide qQ is obtained
by integrating the instant power flows of the primary Ui(q)(gq,t) and the secondary
Us(j)(gj,t) pulsed waves on the virtual boundaries Lj. Here, W is the related energy
stored by all the Us(j)(gj,t) waves. The integral is taken over 0 ≤ t ≤ T, where T is
the upper limit of the observation time t∈[0;T].

The analysis of the time dependences U(g,t) = Ex(g,t), both pointwise, at separate
g points in the domain QL and also with the QL domain thought of as a unit, yields
the character of the simulated processes. Current values of the real quantities U(g,t)
in the computation domain QL are mapped throughout all the .exe files and figures
related to Section 4.5 by means of a linear color scale (see Fig. 4.8b) providing a
19-layer gradation from –Umax(t) to Umax(t). The algorithm for the Umax(t) choice
is the same as in the case of infinite periodic gratings (see Section 4.4.1).
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The faithfulness of the obtained electrodynamical characteristics primarily
depends on the step dimension h̄ ≥ 2l̄ of the spatial mesh, at which nodes the mesh
functions U (j,k,m) ≈ U

(
yj,zk,tm

)
, yj = jh̄, zk = kh̄, tm = ml̄, are specified. The

overall size of the computation space QL, the way in which conditions (4.66), (4.67),
and (4.68) are realized, etc., are less important. Among the induced errors, those
are distinguished that are caused by the standard finite-difference approximation of
the original initial boundary value problems (scheme errors) and those introduced
by enclosing the analysis in the finite domain QL (boundary errors). The boundary
errors are usually an order of magnitude less and decay faster than the scheme errors.
These estimations and others regarding convergence and stability of the computa-
tional schemes upon the standard sampling of the original initial boundary problems
equipped with exact absorbing conditions follow from the solution of various test
problems [1, 40, 189]. Below, we will comment briefly one of these problems just to
identify the basic points of the test scheme, assuming no comparison with familiar
and well-proved results.

The problem geometry is shown in Fig. 4.26a. A soft current source of the kind

F (g,t) = χ (y)χ (0.04 − y)χ (−z)χ (z + 0.04) F (t)

(see Fig. 4.26b) produces a divergent pulsed wave U(g,t) in the homogeneous
(ε (g) = μ(g) ≡ 1, σ(g) ≡ 0, intSx = ∅) space R2. Denote by UL

(
j,k,m,h̄

)
the

mesh function obtained by the numerical solution of the problem within the QL

domain and approximating the exact values U(gjk,tm), gjk = {yj,zk}, of the sought
function U(g,t); the step dimension of the mesh is h̄ = 2l̄. The numerical solution
of this problem in a larger domain Qp ⊃ QL is designated as UP

(
j,k,m,h̄

)
. The size

of the new domain is large enough so that the perturbation cannot reach its outer
boundary P within the observation time 0 ≤ t ≤ T. We analyze the functions (here
N is the number of the nodes gjk in the QL domain):

VL
(
gjk,tm,h̄

) = UL
(
j,k,m,h̄

)
,

MLP
(
gjk,tm,h̄

) = ∣∣UL
(
2j,2 k,2m,0.5h̄

)− UL
(
j,k,m,h̄

)∣∣ ,

M̄LP
(
gjk,tm,h̄

) = 1

N

∑

gjk∈QL

MLP
(
gjk,tm,h̄

)
,

ML
(
tm,h̄
) = max

j,k: gjk∈QL

∣∣UL
(
j,k,m,h̄

)− UP
(
j,k,m,h̄

)∣∣ ,
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Fig. 4.26 (a) Test problem geometry and (b) dynamical and spectral characteristics of the source
F(g,t)

M̄L
(
tm,h̄
) = 1

N

∑

j,k: gjk∈QL

∣∣UL
(
j,k,m,h̄

)− UP
(
j,k,m,h̄

)∣∣,

MP
(
tm,h̄
) = max

j,k: gjk∈QL

∣∣UP
(
2j,2 k,2m,0.5h̄

)− UP
(
j,k,m,h̄

)∣∣ ,

M̄P
(
tm,h̄
) = 1

N

∑

j,k: gjk∈QL

∣∣UP
(
2j,2 k,2m,0.5h̄

)− UP
(
j,k,m,h̄

)∣∣,

and others. The results are partly represented in Fig. 4.27. On this basis, it is possible
to estimate (see, for example, reference [17]):
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Fig. 4.27 Test problem solution results: (a) Functions VL
(
gjk,tm,h̄

)
; gjk = g0 for h̄ = 0.02 (curve

1), h̄ = 0.01 (2), and h̄ = 0.005 (3) – curves 2 and 3 are difficult to distinguish; (b) functions
MLP
(
gjk,tm,h̄

)
; gjk = g0 for two different h̄ values; (c) scheme error functions MP

(
tm,h̄
)
; (d)

boundary error functions ML
(
tm,h̄
)

• the actual rate of convergence of the method (governed by the functions
VL
(
gjk,tm,h̄

)
, MLP

(
gjk,tm,h̄

)
, and M̄LP

(
gjk,tm,h̄

)
for a number of decreasing h̄

values);
• the actual error of virtual boundaries L and the rate of its decrease (governed by

the functions ML
(
tm,h̄
)

and M̄L
(
tm,h̄
)

for a number of decreasing h̄ values);
• the real error of the finite-difference scheme itself and the rate of its decrease

(governed by the functions MP
(
tm,h̄
)

and M̄P
(
tm,h̄
)

for a number of decreasing
h̄ values).
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The examinations of this kind need substantial computation time and computer
resources. However, a full measure of research is demanded only when a new
method or algorithm or software package is tried before being launched. In every-
day treatment, one or two simple tests will suffice to check the operational stability
of the scheme, the convergence of the approximation, etc.

4.5.2 Finite and Infinite Periodic Structures:
Similarities and Differences

The secondary field

Ũs (g,k) =
{

Ũ (g,k) − Ũi
0 (g,k) ; g ∈ A

Ũ (g,k) ; g ∈ B
,

produced by the semitransparent (Fig. 1.1b) or reflective (Fig. 1.1c) infinite grat-
ing excited by a homogeneous E-polarized plane wave Ũi

0 (g,k) from the domain A
contains a finite number of propagating spatial harmonics. Each harmonic gets some
part of the energy applied to the periodic structure (see Section 1.2.1). Consider
the pairs

{
WR

n0 (k) ;αn (k)
}

and
{
WT

n0 (k) ;αn (k)
}
, where αn (k) = − arcsin

(
Φn
/

k
)

refers to the grating reflection zone harmonics and αn (k) = π+arcsin
(
Φn
/

k
)

to the
transmission zone harmonics (all the αn(k) angles are measured anticlockwise from
the z-axis in the plane y0z). They define the so-called beam pattern characterizing
the energy distribution among the plane waves traveling in the space R2 in the direc-
tions φ= φn = αn + 90◦ (ρ and φ are polar coordinates). With all things the same, the
beam pattern of an infinite grating and the radiation pattern D(φ,k,∞) [see formula
(4.130)] of its finite analog give qualitatively the same picture of spatial–frequency
transformations of the electromagnetic field. This speculation is postulated (some-
times without grounds and even against available facts) in the majority of applied
problems of electrodynamical theory of gratings. This line leaves open the question
about how safe it is to quantitatively describe finite gratings leaning upon infinite
grating analysis estimates. Evidently it can only be answered by solving many
model boundary and initial boundary value problems for various compact grating
structures.

Let us simulate the finite semitransparent grating excited by a normally incident
pulsed wave with a finite and almost plane wavefront. In so doing, 20 circular per-
fectly conducting metal bars (see Fig. 4.28a) are put in the field of the current source

F (g,t) = χ (4.11 − y)χ (y + 4.11)χ (2.26 − z)χ (z − 2.04) F2 (t) ;
k̃ = 9, Δk = 7, T̃ = 30, T̄ = 60.

(4.132)

This source, occupying the frequency band 2 ≤ k ≤ 16, produces a pulsed wave
whose field spot covers 10–12 grating elements. Within 6 ≤ k ≤ 16, the lobes of
the pattern D(φ,k,∞) of the periodic structure transition zone 180◦ < φ < 360◦
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Fig. 4.28 A finite (20-element) grating in the field of current source (4.132): (a) Problem geometry
(l = 1, circular metal bar diameter is 0.62, source length is 9.22 and source width 0.22, the source–
grating distance is 2.04); (b) the radiation pattern in the grating transition zone; (c) the functions
D(φ,k,∞) for two k frequency values
Look: 4-28.exe – the Ex(g,t) spatial–time distribution, g∈QL, 30 ≤ t ≤ 45

(see Figs. 4.28b and c) are directed in the same way as the propagating spatial
harmonics of the infinite grating placed in the field of normally incident plane
monochromatic wave (4.118) (see Fig. 4.29c). They differ only in the related energy
amounts concentrated in analogous lobes and similar harmonics. Thus, for k = 9.5,
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Fig. 4.29 (Complementation to Fig. 4.28). An infinite grating (l = 1, L1 = 1.19) in the field of
a pulsed wave Ui

0 (g,t) : Φ = 0; v0(L1,t) = F2(t); k̃ = 9, Δk = 7, T̃ = 12.5, T̄ = 25. (a)
The Ex(g,t) spatial distribution, g∈QL, t = 15.5; (b and c) the functions WT

n0 (k) ( k+±1 ≈ 6.28,
k+±2 ≈ 12.57 ) and ray radiation patterns WT

n0 (k)/WT
00 (k) ; k = 9.5 and k = 16.0, for spatial

harmonics propagating in the grating transition zone
Look: 4-29-A.exe – the Ex(g,t) spatial–time distribution, g∈QL, 12.5 ≤ t ≤ 16.25 (Umax(t) = 1.0)

it is seen that φ±1 ≈ 270◦ ± 41◦, D(φ±1,k,∞) = 0.25, and WT±1,0 (k)
/

WT
00 (k) ≈

0.32. For k = 16.0, we have φ±1 =270◦ ± 23◦, φ±2 ≈270◦ ± 52◦, D(φ±1,k,∞) =
0.52, D(φ±2,k,∞) = 0.08, and WT±1,0 (k)

/
WT

00 (k) ≈ 0.51, WT±2,0 (k)
/

WT
00 (k) ≈

0.05. Hence, with a source whose field spot covers 16–18 grating elements, the
corresponding characteristics do not come any closer together.

An infinite grating of rectangular dielectric bars (see Fig. 4.30a) fully reflects a
normally incident E-polarized plane wave Ũi

0 (g,k), g∈A, at the points k = K1 ≈ 7.6,
K2 ≈ 8.7, and K3 ≈ 10.22 falling within the frequency range 6.5 ≤ k ≤ 11.5. For all
these points, the value of N in joint qualitative characteristic {N,M} introduced in
Section 1.2.1 is equal to 1 (k+±1 ≈ 10.3), whereas the value of M is equal to 2 [18].
The finite analog (see Fig. 4.30b, all components of the system “source – periodic



294 4 Modeling and Analysis of Transients in Periodic Structures

Fig. 4.30 The functions (a) WT
00 (k); Φ = 0, and (b)

∣
∣Ũ (g1,k)

∣
∣ characterizing the transparency of

the infinite (a) (l = 0.61, h = 0.61, d = 0.31 and ε = 5.0) and (b) finite (13 periods) dielectric
gratings

structure” are drawn to scale) placed in the field of the current source F(g,t) =
P(g) F2(t); k̃ = 9.0, Δk = 2.5, T̃ = 50, T̄ = 100, T = 150 (the function P(g)
determines the source geometry and location) effectively blocks the U(g,t) wave
monochromatic components corresponding to the frequencies k ≈ 7.63, 8.68, and
10.21 and keep them from the lower space. No principal distinctions between the
finite and infinite periodic structures are observed.

Another behavior is demonstrated by dielectric gratings whose elements are
depicted in Fig. 4.31a. The infinite periodic structure fully reflects the normally
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Fig. 4.31 The same as in Fig. 4.30 but for a dielectric grating of l = 0.61, h = 0.31, a = 0.43,
b = 0.12, and ε = 2.0

incident E-polarized plane wave Ũi
0 (g,k) at the point k = K4 ≈ 8.4. But this effect

practically does not influence the transparency of the finite structure (see Fig. 4.31b,
the experimental conditions are the same as for the system sketched in Fig. 4.30b).
Why are those excellent range characteristics of a simple dielectric grating (see Fig.
4.31a) affected so much in a situation that is so easy to realize not only in theory but
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also in practice, too? In an effort to answer this question, let us excite an infinite grat-
ing by the plane pulsed wave Ui

0 (g,t): Φ = 0; v0(L1,t) = F1(t); α̃ = 15, k̃ = 8.34,
T̃ = 75, T̄ = 150 (see Fig. 4.32a). We trace the spatial–time transformations of
the field U(g,t), g∈QL, 0 < t < T = 600. From the time t = T̄ , the source being
off and till t ≈ 300, it is a quasi-monochromatic component corresponding to the
free oscillation u0

(
g,k̄1
)
, k̄1 ≈ 8.404 − i0.0135 (see Sections 1.3.2 and 1.3.4) that

dominates in the field U(g,t). It turns out to be the H021-oscillation, the field nodes
align themselves in the directions y = nl and y = 0.5l + nl, n = 0,±1,. . . (see Fig.
4.32b), and it is this oscillation that is responsible for the total resonant reflection
effect at the frequency k = K4 ≈ 8.4. Again, at the moments of time t > 375, a quasi-
monochromatic component corresponding to the H021-oscillation dominates in the
field U(g,t). But now it is another, u0

(
g,k̄2
)

oscillation. Its Q-factor is practically
unbounded (Rek̄2 ≈ 8.28 and Imk̄2 ≈ 0), and the field nodes are placed along the
lines y = ±0.25l + nl, n = 0,±1,. . . (see Fig. 4.32c). At the intermediate moments
of time 300 < t < 375, the field U(g,t) is featured by both u0

(
g,k̄1
)

and u0
(
g,k̄2
)

characteristics. Here the amplitudes of the quasi-monochromatic components cor-
responding to these oscillations are comparable (see Figs. 4.32b and c). It seems
possible that the conditions providing the existence and the special properties of
the oscillations u0

(
g,k̄1
)

and u0
(
g,k̄2
)

(and, indirectly, the effect of the total reflec-
tion of a normally incident E-polarized wave) are interrelated (note, for example, the
intermode coupling effect described in the books [1, 10] and in Section 1.3.4). Finite
gratings cannot maintain persistent free oscillations of the field (see Section 4.3.3).
This point appears to stop the cause-and-effect chain that for the infinite structure
leads to the effect given by the analytic formula WR

00 (k) = 1 − WT
00 (k) = 1.0.

4.5.3 Radiating Apertures with Quasi-periodic Field Structure

A most important component of the models that is investigated and discussed below
is a planar dielectric waveguide (see, for example, Fig. 4.33a) – an open segment of
a regular parallel-plate waveguide. Near the plugged (on the side of the QL domain)
ends, the parallel-plate waveguide has a port L1 to excite the examined systems by
the pulsed H01-wave

Ui(1)
1 (g,t) = v11 (y,t)μ11 (z) ; v11 (g ∈ L1,t) = F2 (t) ; k̃ = 4.5, Δk = 2.1, T̃ = 25,

T̄ = 100
(4.133)

(see Section 4.2.1 and formula (4.117)), and a port L2 to receive signals crossing
the zone open for radiation into the free space. In the parallel-plate waveguide can
propagate without attenuation one (k1 < k < k2; k1 ≈ 2.17, k2 ≈ 4.33; km is the
H0m-wave cutoff), two (k2 < k < k3; k3 ≈ 6.5), or three (k > k3) H0m-waves in the
frequency band 2.4 < k < 6.6 occupied by the pulse (4.133). For frequencies 2.5 <
k < 6.0, the loss by radiation from the finite segment of the planar waveguide does
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Fig. 4.32 The dynamical and the spectral characteristics of (a) wave Ui
0 (g,t) (L1 = L2 = 1.0)

and (b and c) field U(g,t) at the points (b) g = g2 and (c) g = g3. Here [see transformation (4.113)]

f
˜̃
(k) ↔

{
0; t ≤ T̄
f (t) ; t > T̄

. The last right fragments in the rows depict the U(g,t) = Ex(g,t) spatial

distributions within the QL domain at the time (a) t = 76, (b) t = 250, and (c) t = 400
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not exceed 15% (see Fig. 4.33b) and 25% – within all of the considered bands 2.5
< k < 6.5. The H02-wave of the parallel-plate waveguide is never excited because
the symmetry classes of the structure and the primary wave coincide. Therefore the
function η(k) characterizing the radiation efficiency is unresponsive to the passage
of the cutoff k = k2, and it starts changing only when the point k = k3 is approached.

Fig. 4.33 (a) A planar dielectric waveguide (l1 = 1, b = 13.58, ε = 2.1, all proportions of the
actual object are retained) and (b) its loss by the radiation into the free space

Assuming that Φ0(k) = βp(k) (βp(k) is a longitudinal wavenumber of some propa-
gating wave of the open guiding channel in the system “planar waveguide – grating”;
see, for example, Figs. 4.34a and 4.35a) and modeling the grating excitation by
the plane nonhomogeneous (Im Γ0 > 0) wave Ũi

0 (g,k) = exp
[
i (Φ0y − Γ0z)

]
,

g = {y,z}∈ A, one gets the complex amplitudes RAA
n0 (k) for the first traditional step

of the solution of the synthesis problem of a pattern-generating (PG) plane grating
structure [1, 40, 41, 212–215]. That is to compute (in the given field approxima-
tion) the energy characteristics of the channels to radiate the energy into free space.
The figures obtained in this way cannot be reliable enough – for the primary wave
attenuation during its y-propagation is ignored, as well as a possible emergence of
other propagating waves of the guide, etc. A full-scale experiment is needed and its
success largely depends on the validity of the corresponding theoretical predictions.
Quite satisfactory data can be obtained by the approach developed in Section 4.2. In
support of this statement, refer to the examples considered below.

�
Fig. 4.34 (continued) (a) Geometry (l1 = 1, ε = 2.1, ε 1 = 4, l = 1, θ= 0.5), (b and d) radiation
patterns, and (c) efficiency of the pattern-generating plane structure
Look: 4-34.exe – the radiator excitation by a pulsed wave (4.133) (Ex(g,t), g∈QL, 25 < t < 55;
Umax(t) = 0.5)
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Fig. 4.34 (continued)
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Fig. 4.35 (a) Geometry ( ε = 2.1, ε 1 = 4, l = 1), (b and d) radiation patterns, and (c) efficiency
of the pattern-generating plane structure
Look: 4-35-1.exe and 4-35-2.exe – the radiator excitation by a pulsed wave (4.133) and a quasi-
monochromatic wave Ui(1)

1 (g,t) : v11 (g ∈ L1,t) = F3 (t); k̃ = 3.99, T̃ = 0.5, T̄ = 100 (Ex(g,t),
g∈QL, 25 < t < 55; Umax(t) = 0.5)
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Figure 4.34 sketches a planar waveguide backed with a metal substrate and hav-
ing 13 slots 0.32 deep and 0.5 wide filled with a material of dielectric permittivity
ε 1 = 4. The grating period is l = 1.0. The structure is drawn to scale. Within the
band 3.25 < k < 4.05 (its width equals 22%), this plane PG structure produces a
single-beam radiation pattern, η(k) > 0.8 and 95◦ < φ̄ (k) < 120◦ (see Fig. 4.34b
and c). At the point k = 3.52 of the band, η(k) = 0.914, φ̄ (k) = 110◦, and φ0.5(k)
= 7.5◦ (see Fig. 4.34d).

Assume that the function Φ0(k) = β1(k) is defined by the value γ1(k), with

γm (k) =
√

k2ε− (πm
/

l1
)2 being the longitudinal wavenumbers of the H0m-waves

of the parallel-plate waveguide. In this case, the minus first spatial harmonic of the
grating is responsible for the pattern main lobe. The substitution Φ0(k) = γ1(k)
(a very rough approximation) is good enough to sketch the situation quite fairly.
But the quantitative results differ from the exact figures substantially. Thus, this
approximation yields φ̄ (k) = 129.9◦ at k = 3.52.

In the frequency band 5.4 < k < 6.5, the radiator efficiency is η(k) > 0.6, and the
radiation pattern has a new main lobe (see Figs. 4.34b and d) whose appearance is
also caused by the radiation of the minus first spatial harmonic. But in this case,
Φ0(k) = β2(k) – another cutoff point has been passed, and the next propagating
wave has been excited in the planar guiding structure. At the point k = 5.8 of this
band, φ̄ (k) = 80◦ and φ0.5(k) = 4◦, and the side lobe direction is φ (k) = 62◦.
A qualitative analysis of the situation tolerates Φ0(k) = γ1(k) and Φ0(k) = γ2(k).
But this approximation is too rough for computations and causes great errors. Thus,
at the point k = 5.8, we have φ̄ (k) ≈ 96◦ and φ (k) ≈ 73.2◦.

At the beginning of the considered range (2.5 < k < 3), the radiation efficiency
is not over 28%. Multilobe radiation patterns are formed by particular components
of the grating, rather than by the grating as a unit. The traveling wave of the pla-
nar waveguide excites each of the grating components, not generating any spatial
traveling harmonics.

For the structure whose electrodynamical characteristics are plotted in Fig. 4.35,
the passage to multilobe patterns has the same reasons. Thus, in the frequency band
4.9 < k < 5.2, this passage is caused by the fact that the high-order propagating wave
of the planar dielectric waveguide appears sooner than the corresponding Γ–1(k)
becomes real valued. All structure components in Fig. 4.35a are drawn to scale. A
metal comb is placed under a planar dielectric waveguide 0.1 apart. The dielectric
permittivity of the slot filling is ε 1 = 4, the period length is l = 1.0, the slots are 0.5
wide and 0.4 deep. At the point k = 3.99 of the observed frequency interval, the radi-
ation efficiency amounts 94%, φ̄ (k) = 102◦ (in the Φ0(k) = γ1(k) approximation,
φ̄ (k) = 111◦) and φ0.5(k) = 7◦.

A truncated H-plane bend of rectangular waveguide (see Fig. 4.36)with a lat-
eral matching aperture at the input converts (at certain geometrical and frequency
parameters) the H01-wave of the narrow waveguide (waveguide 1) to the H0m-wave,
m = 2,3,. . .,20 of the broad waveguide (waveguide 2). The conversion efficiency
is 86% (m = 20, W21

20,1 ≈ 0.86; Wjq
mp (k) is the relative part of energy given to the

mth mode of the jth waveguide when the structure is excited by the pth propagating
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Fig. 4.36 The geometry of the converting and radiating waveguide unit

wave from the qth waveguide) to 99.99% (m = 2) [216]. The strict H01→H0m con-
version is a narrowband effect. But off the corresponding band, the same unit acts
as H01→H0m–1 or H01→H0m+1 transducer. Here the conversion purity character-
ized by the quantity W21

m−1,1 or W21
m+1,1 and the coefficients of the transformation to

the reflected and the same-direction waves are only little worse than the optimized
special unit offers [210, 216].

The mentioned properties of the H01→H0m transducers can be employed
in antennas whose radiation pattern is controlled by varying the operation fre-
quency (passage to the conversion regime H01→H0m–1 or H01→H0m+1), the
angle γ at which the broad waveguide gets open into free space, and (or)
by special bifurcations of the broad waveguide (see Fig. 4.36; A is the radi-
ation aperture). In the aperture A, the H0m-wave traveling along the broad
waveguide produces a quasi-periodic system of the secondary field sources that
form their radiation pattern at a sufficiently large m obeying rules legitimate
for periodic structures of all types. The results validating this assumption are
seen in Figs. 4.37 and 4.38. The units are excited by the quasi-monochromatic
H01-wave

Ui(1)
1 (g,t) : v11 (g ∈ L1,t) = cos

[
k̃
(
t − T̃

)]
P (t) = F4; k̃ = 5.03, T̃ = 0.5,

P (t) : 0.1 − 5 − 75 − 80,
(4.134)
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Fig. 4.37 The radiator providing a strong H01- to H0,10-wave conversion (l1 = 1, l2 = 6.56, b =
9.8, d1 = 0.84, d2 = 3.91, d3 = 0.1, d4 = 0.53, d5 = 0.83, d6 = 1.5, β = 66.3◦, the unit walls are
0.05 thick). The radiator excitation by a quasi-monochromatic wave (4.134): (a and b) Radiation
patterns in a frequency band and at the frequency k = 5.03; (c) the dependence W11

11 (k) = 1−η (k)
characterizing the radiation efficiency; (d) the Ex(g,t) spatial distribution, g∈QL, t = 85
Look: 4-37-D.exe – the Ex(g,t) spatial–time distribution, g∈QL, 60 < t < 70 (Umax(t) = 0.5)

where P(t):t1–t2–t3–t4 is the trapezoidal envelope that vanishes for t < t1 and t >
t4 and equals unity for t2 < t < t3, and k = 5.03 is the design frequency for the
H01→H0m transducers considered here [216].

For the radiator whose analysis results are plotted in Fig. 4.37, γ= β= 66.3◦ and
l = 0.716 (one-tenth the length of the aperture A). The phase incursion of the field
per period l in the aperture A approximates 2.71. The module of the field amplitude
is practically unchanged when going from one period to another. In such a case, two
harmonics, the zeroth and the minus first, propagate without attenuation over the
infinite periodic structure. For them, α0 = –49◦ and α–1 = 83◦, which in view of the
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Fig. 4.38 The same as in Fig. 4.37 except that the radiator wide waveguide has a right cut (a
perpendicular beginning from the point z = 9.8 on the right wall to the point z = b = 7.16 on the
left wall)
Look: 4-38-D.exe – the radiator excitation by a quasi-monochromatic wave (4.134) (Ex(g,t), g∈QL,
60 < t < 70; Umax(t) = 0.5)

evident equality φn = αn + 90◦ allows us to predict that the basic directions of the
applied energy radiation are φ = φ0 ≈ 41◦ and φ = φ–1 ≈ 173◦. Actually, at the
frequency k = 5.03, the main lobe of the pattern is found at the angle φ̄ (k) = 42◦,
and the radiation level in the direction of the minus first harmonic is as low as
D(φ,k,∞) < 0.1. A low radiation level in the direction φ= φ–1 ≈ 173◦ is attributed to
the fact that the minus first spatial harmonic becomes a propagating one only at k =
|Φ–1|, while Φ–1 = –4.99. The radiation efficiency in the band 4.97 < k < 5.09 does
not fall below 96.8%. So, the H0,10-wave propagating along the broad waveguide
produces a quasi-periodic system of the secondary sources in the aperture A, and
the open end of the waveguide really works as a phased antenna array.

The efficiency of the H0,10-wave radiation from the broad waveguide segment
cut off normal to the walls (see Fig. 4.38; γ = 90◦) is somewhat less than in the
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Fig. 4.39 The resonant antenna geometry: R = 10, b = 9.24, waveguide width is l1 = 1.16, the
distance from boundary L1 to the diaphragm is 1.12, the thickness of the diaphragm and the strip
grating (right mirror) is h̄ = 0.04, a is the diaphragm window size, the grating period is l = 0.56,
lθ is the length of the period open part

previous case, yet η(k) ≥ 0.92 within the frequency band 4.97 < k < 5.09. The
phase shift of the field of the secondary sources on the period l = l2/10 ≈ 0.656 in
the aperture A approximates 3.14, the expected φ0 and φ–1 are 42◦ and 185◦ (φn =
90◦+αn+23.7◦). As a matter of fact, at the frequency k = 5.03, the pattern main lobe
is observed at φ̄ (k) = 48◦ (see Fig. 4.38b), the second lobe with a sufficiently high
radiation level holds the direction φ = 179◦. The difference between the expected
and the actual results is bigger than in the previous case. The reason seems to be
as follows. Though for some two neighboring channels, defined by the transverse
structure of the radiated H0,10-wave, the field phases differ practically by a constant,
but the module of the field amplitude when going from one channel to another is not
constant, the difference amounts to between 4% and 8%.

4.5.4 Resonant Antennas with Semitransparent Grating Mirrors

Distinguishing resonant antennas as a separate class is only reasonable when, in
the analyzed frequency region, the structures can maintain slightly damped free
oscillations of the electromagnetic field. These oscillations comply with complex
eigenfrequencies k̄n ∈ Ωk (Ωk is the frequency spectrum; see Section 4.3.3), it is
their distribution in the complex space K that defines all dynamical features of the
basic characteristics of resonant radiators. The operation at a frequency k approach-
ing the real part of one of the eigenfrequencies k̄ allows effective control of the
radiation pattern (it is bound up with the free oscillation field configuration) as well
as the range and the power characteristics of the antenna (they depend on the k−Rek̄
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and
∣
∣Imk̄
∣
∣ values and the existence of other eigenfrequencies in the vicinity of the

point k̄) [217–219].
The efficiency η(k) of a resonant antenna becomes satisfactory at the fre-

quency k = K in the near vicinity of the point k = Re k̄, where k̄ is one
of the complex eigenfrequencies of the volume V that radiates energy into free
space. Normally it is expected that at the frequency k = K (or at k ≈ K if the
k departure from the point k = K is small enough not to noticeably affect the
efficiency), the antenna directionality is totally governed by the field spot that
the free oscillation complying with eigenfrequency k̄ draws on the semitranspar-
ent mirror of the resonant volume V. We check this suggestion for the radiator
whose overall geometry is given in Fig. 4.39. Excite the radiator by the pulsed
H01-wave

Ui(1)
1 (g,t) : v11 (g ∈ L1,t) = F2 (t) ; k̃ = 4.3, Δk = 0.7, T̃ = 50, T = 100

(4.135)

arriving from the parallel-plate waveguide 1Q and occupying the frequency range
3.6 < k < 5.0 [see formulas (4.117), (4.126), and (4.133)]. For these frequencies,
the feeding waveguide is a single-mode one (k1 ≈ 2.71, k2 ≈ 5.42), and the func-
tion W11

11 (k) = 1 − η(k̄) characterizing the radiation efficiency has four pronounced
local minima (see Fig. 4.40). For geometry 4 (the aperture window connecting the
waveguide 1Q and the resonant volume V is of the size a = 0.36; the length of the
open part of the strip grating period is lθ = 0.2), peaks of the antenna efficiency
η(k) are at the points k = Kj; j = 1÷4, and η(K3) = 1.0 (K1 = 3.823, K2 = 4.147,
K3 = 4.443, K4 = 4.769). For different a and θ parameters (geometries 1–3), the
local minima of the functions W11

11 (k) are slightly shifted from the points k = Kj. The
radiation efficiency is not better than 50%, 90%, and 85%, respectively. Higher-Q
resonances occur in the volume bounded by a strip grating with a shorter open part
lθ of the period l. For this grating within the frequency band 3.6 < k < 5.0, the mod-
ule of the reflection coefficient RAA

00 (k) [see problem (1.26)] of normally incident
wave (4.118) is approximately 0.1 [18]. For a half-filled strip grating (see geome-
tries 1 and 2),

∣∣RAA
00 (k)

∣∣ ≈ 0.3. The resonance Q-factor, the optimum size a of the
diaphragm window, and the radiation efficiency of the applied energy are intimately
related. As a rough guide, a better η(k) in the case of high-quality resonances comes
at a smaller a.

We proceed now to geometry 4 (see Figs. 4.41, 4.42, 4.43, 4.44 and 4.45).
Consider the temporal and spectral amplitudes of the field excited by the wave
(4.135). The examination of these amplitudes at a point g = g1 located on the
radiator axis approximately a quarter of the wavelength λ = 2π/k, 3.6 < k < 5.0,
away from its semitransparent mirror yields the real parts of the eigenfrequencies
k̄. They are responsible for the realization of resonant regimes in the vicinities of
the points k = Kj, j = 1÷4 (see Section 4.3 and Fig. 4.41): Rek̄1 ≈ 3.825, Rek̄2 ≈
4.149, Rek̄3 ≈ 4.445, Rek̄4 ≈ 4.772. The regimes with peak η(k) values appear for
lower frequencies, a little earlier than the regimes of possible free oscillations of the
field in the volume V.
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Fig. 4.40 The radiation efficiency characteristic W11
11 (k) = 1 − η (k) for resonant antennas with

different-size diaphragm windows and a different length of the open period part of the strip grating
(geometries 1–4): 1 – a = 0.28 and θ = 0.5; 2 – a = 0.36 and θ = 0.5; 3 – a = 0.28 and θ = 0.36;
4 – a = 0.36 and θ = 0.36

The excitation of the radiator by the quasi-monochromatic H01-wave

Ui(1)
1 (g,t): v11 (g ∈ L1,t) = cos

[
k̃
(
t − T̃

)]
P (t) = F4, k̃, T̃ = 0.5,

P(t):0.1 − 5 − 95 − 99.9
(4.136)
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Fig. 4.41 The radiator excitation (geometry 4) by the pulsed H01-wave (4.135): (a) The Ex(g,t)
spatial distribution, g∈QL, t = 300; (b and c) the temporal and the spectral amplitudes of the field
at the point g = g1 near the semitransparent mirror of the resonant antenna
Look: 4-41-A.exe and 4-41-A-F.exe – the Ex(g,t) spatial–time distribution, g∈QL at the time 50 <
t < 62 (forced oscillations of the field; Umax(t) = 0.5) and 300 < t < 308 (free oscillations of the
field; Umax(t) = 0.03)

[see formulas (4.133) and (4.134)] whose central frequency k̃ takes the values
k̃ = Kj j = 1÷4 (see Figs. 4.42, 4.43, 4.44 and 4.45) yields some check points
to estimate the quality factor Q = Rek̄/2

∣∣Imk̄
∣∣ of the oscillations corresponding

to eigenfrequencies k̄, to identify the oscillation type and examine (in the narrow
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Fig. 4.42 The radiator excitation (geometry 4) by the quasi-monochromatic H01-wave (4.136)
with the central frequency k̃ = K1: (a) The Ex(g,t) spatial distribution, g∈QL, t = 302; (b and d)
radiation patterns D(φ,k,∞) – from here on, some φ and k parameter ranges where D(φ,k,∞) > 0.9
are asterisked (∗); (c) the function W11

11 (k) characterizing the radiation efficiency
Look: 4-42-A.exe and 4-42-A-F.exe – the Ex(g,t) spatial–time distribution, g∈QL at the time 80 <

t < 92 (forced oscillations of the field; Umax(t) = 0.3) and 300 < t < 308 (free oscillations of the
field; Umax(t) = 0.2)
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Fig. 4.43 The radiator excitation (geometry 4) by the quasi-monochromatic H01-wave (4.136)
with the central frequency k̃ = K2: (a) The Ex(g,t) spatial distribution, g∈QL, t = 302; (b and d)
radiation patterns D(φ,k,∞); (c) the function W11

11 (k) characterizing the radiation efficiency
Look: 4-43-A.exe and 4-43-A-F.exe
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Fig. 4.44 The same as in Fig. 4.42 except that k̃ = K3
Look: 4-44-A.exe and 4-44-A-F.exe

frequency bands Kj − 0.06 < k < Kj + 0.06) the behavior of the functions η(k) and
D(φ,k,∞) characterizing the radiation efficiency and its directionality. The resonant
change of the pattern D(φ,k,∞) – a passage to the pattern exactly corresponding to
the field spot of the free oscillation on the semitransparent mirror of the resonant –
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Fig. 4.45 The same as in Fig. 4.42 except that k̃ = K4
Look: 4-45-A.exe and 4-45-A-F.exe

comes too late (along the k-axis) for both maximum η(k) regime and for regime
of free oscillation of the field. In the case considered, these changes end at the
points k = K j, j = 1÷4 ((K1 = 3.837, K2 = 4.154, K3 = 4.460, K4 = 4.778)),
where the radiation efficiency ((η(K1) ≈ 0.05, η(K2) ≈ 0.1, η(K3) ≈ 0.08, and
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η(K4) ≈ 0.13)) is substantially lower than at the points k = Kj, j = 1÷4 (η(K1) ≈
0.92, η(K2) ≈ 0.77, η(K3) = 1.0, and η(K4) ≈ 0.85).

Thus, at particular frequencies, the considered resonant antennas can radiate most
of the applied energy into free space. Also, at certain frequencies, the radiation can
achieve the predicted directivity. The trouble is that the corresponding frequency
sets k = Kj and k = Kj; j = 1÷4, differ essentially. The problem is to make the
radiation remain efficient enough and yet realize a desired directivity. Let us try one
expedient and replace the resonance volume V, open on three sides (see Fig. 4.39),
by a resonator, open only on one side where is a semitransparent grating mirror
located (see Fig. 4.46a: the scheme of the excitation from the feeding waveguide
and the periodic structure are the same as that of the antenna in Fig. 4.39). The
resonator size b across is approximately one-third of that before. This is the only
way to get over the dramatic crowding of the spectrum Ωk in the considered band
3.6 < k < 5.0. Under this band, only eigenfrequencies complying with the H0n1-
and H0n3-oscillations can be found. The reason is that no oscillations asymmetric
with respect to the longitudinal axis of the resonator (they cannot be excited by the
H01-wave of the feeding waveguide), and the H0n5-oscillations arise as soon as the
H05-wave becomes propagating when traveling along a b-wide waveguide (k > k5 ≈
5.24).

Let us excite the antenna by a pulsed wave as given by (4.135) and find the
functions W11

11 (k) and
∣∣Ũ (g1,k)

∣∣ (the point g = g1 is close to the semitransparent
mirror as in the preceding case). Their behavior suggests values for the radia-
tion efficiency η (k) = 1 − W11

11 (k) and the real parts of the eigenfrequencies k̄
responsible for the realization of the resonant regimes. The best η(k) behavior is
for a structure with a = 0.36 (the size of the diaphragm window) and lθ = 0.28
(the size of the open part of the grating period). Thus, at the points k∈[3.6;5.0]
coinciding with the Rek̄, the antenna efficiency is as high as 95% and more
(see Fig. 4.46b and c).

We analyze now in more detail the operation of this system at the frequencies
k ∈ [Kj − 0.06;Kj + 0.06

]
, j = 1,2, K1 = Rek̄1 = 3.864, and K2 = Rek̄2 =

3.972 (see Figs. 4.47, 4.48 and 4.49). The frequency band beyond which the spectral
amplitudes of the wave (4.136) can be neglected turns out to be too wide for the
response of the resonant antenna to be formed by only one, k̄1 or k̄2, eigenfrequency.
That is why the narrowband Gaussian pulse

Ui(1)
1 (g,t) : v11 (g ∈ L1,t) = F1 (t) ; k̃, α̃ = 25, T̃ = 125, T̄ = 250 (4.137)

will be used as the exciting H01-wave. Its central frequency k̃ takes on the values

k̃ = K1 and k̃ = K2. Outside the band
[
k̃ − 0.1;k̃ + 0.1

]
, the absolute value of the

normalized spectral amplitudes of this pulse is not above 0.0017.
At the frequencies k = K1 and k = K2, all the energy delivered by the sinusoidal

H01-wave to the resonant antenna is radiated into free space, η(K1) = η(K2) = 1.0.
Such a high efficiency is due to the excitation of the slight-attenuation oscillations
on the H01- and H03-waves of the broad parallel-plate waveguide. These oscillations
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Fig. 4.46 (a) The resonant antenna geometry (b = 3.0, c = R/2 = 5.0, diaphragm window size
is 0.36, length of the open part of the grating period is 0.28), its (b) energy and (c) spectral
characteristics in a frequency band

(H061 and H043; see Figs. 4.47a and 4.48a) comply with the complex eigenfrequen-
cies k̄1 ≈ K1 − i0.0056 and k̄2 ≈ K2 − i0.0019 whose imaginary parts are uniquely
determined by the behavior of the functions U(τ) = U(g1,t); τ = t − T̄ > 0 (see
Section 4.3.3 and Figs. 4.47c and 4.48c).

For all k ∈ [K1 − 0.06;K1 + 0.06], the configuration of the radiation pattern
D(φ,k,∞) of the resonant antenna complies with the shape of the H01-wave field
spot on the semitransparent grating mirror (see Fig. 4.47b). The patterns of the res-
onant antenna and the nonresonant antenna analog differ only in the width of the
main lobe. For example, at the frequency k = K1, it is, respectively, φ0.5(k) ≈ 36◦
and φ0.5(k) ≈ 60◦ (see Fig. 4.47d).

In the vicinity of the point k = K2, the resonant antenna radiation pattern
changes rather markedly (see Fig. 4.48b): one main lobe at the frequency k =
3.912, three lobes at k = 3.970, two at k = 3.998, and again one at k = 4.032
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Fig. 4.47 The antenna excitation by a narrowband Gaussian pulse (4.137) with the central fre-
quency k̃ = K1: (a) The Ex(g,t) spatial distribution, g∈QL, t = 505; (b) frequency-band radiation
pattern D(φ,k,∞); (c) function U(g1,t); (d) radiation patterns D(φ,k,∞) of the resonant and non-
resonant antennas at the point k = K1
Look: 4-47-A.exe and 4-47-A-F.exe – the Ex(g,t) space–time distribution, g∈QL at the time 125 <
t < 133 (forced oscillations of the field; Umax(t) = 0.5) and 500 < t < 508 (free oscillations of the
field; Umax(t) = 0.2)
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Fig. 4.48 The same as in Fig. 4.47, except that k̃ = K2
Look: 4-48-A.exe and 4-48-A-F.exe

(see Fig. 4.49). Similarly does also the radiation efficiency: from η(k) = 0.02 to
η(k) = 1.0. Only within the narrow frequency band k ∈ [K2 − 0.008;K2 + 0.003],
the configuration of the radiation pattern D(φ,k,∞) of the resonant antenna corre-
sponds to the field spot of the resonance-inducing H03-wave on the semitransparent
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Fig. 4.49 Changes in the radiation pattern D(φ,k,∞) and in the radiation efficiency η(k) of the
resonant antenna upon frequency k slight variations: 1 – k = 3.912, η(k) = 0.03; 2 – k = 3.968,
η(k) = 0.2; 3 – k = 3.970, η(k) = 0.4; 4 – k = 3.972, η(k) = 1.0; 5 – k = 3.998, η(k) = 0.03;
6 – k = 4.032, η(k) = 0.02

grating mirror. Here, the D(φ,k,∞) value in the φ-direction of each of the three
lobes is never below D(φ,k,∞) = 0.5. The radiation pattern of the nonresonant
antenna is basically the same as that on the interval k ∈ [K1 − 0.06;K1 + 0.06]
(see Fig. 4.48d), the H01-wave running on the open end of the broad parallel-plate
waveguide contributes the most to the radiation field.

4.5.5 2-D Models of Phased Arrays

The analysis and synthesis of phased arrays is based mainly on methods and results
from the grating theory [220]. Clearly the actual structure design cannot do with-
out sufficiently flexible and reliable 3-D models. Nevertheless, several fundamental
aspects, in particular the physics of the processes going in phased antenna arrays,
can be treated effectively in terms of simple 2-D models. In what follows, some
questions of this nature will be considered with reference to the methods developed
in Section 4.2.
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First we address problems arising in the case of simple (cheap) phased antenna
arrays intended for a certain range [K1;K2] of frequencies k = 2π

/
λ = 2π

√
ε0μ0f .

The main lobe of the radiation pattern has to scan around a circular cone, whose
generatrices make a given angle β with its axis. For definiteness’ sake, we take
f = 8 ÷ 12 [GHz] (k ∈ [168;251], λ ∈ [0.025;0.0375]) and β = 45◦. The radiating
element of 2-D phased array is a dielectric rod mounted at the open end of the
parallel-plate waveguide and excited by the sinusoidal H01-wave (see, for example,
Fig. 4.50a).We find the waveguide width a, the permittivity ε of the filling, and the
period length l > a of the array composed of N elements (Fig. 4.50b) in the following
way.

Assume that the array of Fig. 4.50b extends to infinity, and that the phases of
the field produced by the H01-waves running from parallel-plate waveguides on its
aperture in the z = 0 plane differ (in two neighboring waveguides) by the value of
2πΦ. In this situation, the electromagnetic field in the z ≥ 0 area can be written in
the following form (see Sections 1.1.4 and 1.2.1):

Ũ (g,k) = Ẽx (g,k) =
n=∞∑

n=−∞
An (k)ei[Φny+Γnz], Ẽy = Ẽz = H̃x = 0,

H̃y = 1
ikη0

∂Ũ
∂z , H̃z = − 1

ikη0

∂Ũ
∂y ; g = {y,z} .

(4.138)

Here, Φn= 2π (Φ+ n)
/

l; Γn = √
k2 −Φ2

n, ReΓn ≥ 0, ImΓn ≥ 0, and
Ũ (y + l,z,k) = e2πiΦŨ (y,z,k) . The values Φ and k define the departure angles
αn = −arcsin

(
Φn
/

k
)

at which the propagating spatial harmonics
An (k) exp

[
i (Φny + Γnz)

]
(their numbers n are such that ImΓn = 0) go from

the array into free space. The phased array of this type are usually under the
following restrictions imposed on the feeding waveguides cutoffs km = mπ

/√
εa,

m = 1,2,. . ., and the grazing points k+n = ∣∣2π (Φ+ n)
/

l
∣∣, n = 0,±1,. . ., of the

infinitely extending periodic structure:

• k1 < K1 and k2 > K2;
• k+0 < K1 and k+n > K2, with n �= 0 for all k∈[K1;K2] and all Φ such that

|Φ0| ≤ k sin β.

Neglect of these constraints reduces, as a rule, the array efficiency and enhances
side lobes of the radiation pattern because of the threshold effects and certain
changes in the operation of the feeding waveguide and the radiating unit. The
mentioned restrictions can be converted into the following set of inequalities

l < 2π [(1 + sin β) K2]−1 , l > a, a
√

ε >
π

K1
, a
√

ε <
2π

K2
. (4.139)

On this basis and assuming that ε = 2.5, one gets the optimum geometrical
parameters a and l in the desired range of working frequencies k∈[168;251] and
directions |α0| ≤ 45◦. These are a = 0.0132 (k1 ≈ 151, k2 ≈ 301) and l = 0.014.
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Fig. 4.50 (a) The radiating element geometry (b = 0.03, c = 0.02, r = 0.01, s = 0.001) and (b)
the phased array consisting of N elements

The concept of a dielectric rod at the end of the parallel-plate waveguide implies
a great variety of radiating elements. How shall we choose among them when
designing effective finite-length phased array? This problem will be touched upon,
addressing the radiating elements 1–3 with different geometry of the transition
“dielectric rod – free space” (see Fig. 4.51). Excite these elements by the pulsed
H01-wave

Ui(q)

1 (g,t) : v11
(
g ∈ Lq,t

) = F2 (t) ; k̃ = 210, Δk = 42, T̃ = 1, T̄ = 2 (4.140)
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Fig. 4.51 (continued)
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(q = 1) and compare their major electrodynamical characteristics D(φ,k,∞) and
η(k) (W11

11 (k)) within the frequency band 168 ≤ k ≤ 251. As before, Ui(q)
p
(
gq,t
) =

vpq
(
zq,t
)
μpq
(
yq
)

is the H0p-wave running from the virtual parallel-plate waveguide

qQ, Wjq
np (k) the energy taken away by the sinusoidal H0n-wave reflected or trans-

mitted to the waveguide jQ, η (k) = 1 −∑
n,j

Wjq
np (k) the radiation efficiency, and

F2 (t) = 4
sin
[
Δk
(
t − T̃

)]

(
t − T̃

) cos
[
k̃
(
t − T̃

)]
χ
(
T̄ − t

)
.

The radiation patterns of all the three radiating elements are identical in kind
across the whole band of working frequencies k. Yet configurations 2 and 3 outper-
form the first one in efficiency. Discard radiator 1. Use radiators 2 and 3 to make up
two arrays with a minimum number, N = 2, of elements (see Figs. 4.52 and 4.53).
One of the elements is active [excited by the pulsed wave (4.140)]. The other is
passive. Compare the characteristics D(φ,k,∞), η (k) = 1−W11

11 (k)−W21
11 (k), and

W21
11 (k) of these arrays within 168 ≤ k ≤ 251. In the case considered, the functions

W21
11 (k) determine the factors of the power coupling between first and second radi-

ating elements [220]. Their behavior, as well as the behavior of the functions η(k),
does not demonstrate any characteristic features to decide on element 2 or element 3
as the better building block for a multicomponent antenna array. The integral values

η̄ = 1

K2 − K1

K2∫

K1

η (k) dk and W̄21
11 = 1

K2 − K1

K2∫

K1

W21
11 (k) dk (4.141)

are more informative. For a set of two elements 2, η̄ = 0.966 and W̄21
11 = 0.016. For

a set of two elements 3, η̄ = 0.975 and W̄21
11 = 0.0077. On this basis, we discard

element 2 and employ element 3. An array consisting of 13 elements 3 is shown in
Fig. 4.54a. The radiation patterns of its central radiating element and the coupling
coefficients of this element with the rest elements of the structure are shown in
Fig. 4.54.

Now excite 5 (case A), 9 (B), and 13 (C) central elements of this grating by the
pulsed H01-waves Ui(q)

1 (g,t) [see formula (4.140)]. This will assist us in tracing the
changes of the radiation pattern of the structure [see Fig. 4.55 : for frequency k =
210, φ0.5(k) ≈ 22.5◦ (in the case A), φ0.5(k) ≈ 12.4◦ (B), and φ0.5(k) ≈ 8.0◦ (C)]

�

Fig. 4.51 (continued) Range characteristics of the radiating elements: a = 0.0132, b1 = b;
1 – d = c, 2 – d = 0.5c, 3 – d = 0
Look: The radiating element excitation by the pulsed H01-wave (4.140). 4-51-1.exe, 4-51-2.exe,
and 4-51-3.exe – the Ex(g,t) spatial–time distribution, g∈QL at the time 1.0 < t < 1.15 (the pulse
major part crosses the computational space QL; Umax(t) = 0.5)
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Fig. 4.52 The excitation of a system (l = 0.014) of two radiation elements 2 (d = 0.5c) by the
pulsed H01-wave (4.140): (a) The Ex(g,t) spatial distribution, g∈QL, t = 1.1; (b) radiation pattern
D(φ,k,∞) in the frequency band 168 ≤ k ≤ 251; (c) energy characteristics of the system
Look: 4-52-A.exe – the Ex(g,t) spatial–time distribution, g∈QL at the time 1.0 < t < 1.15 (the pulse
major part crosses the computational space QL; Umax(t) = 0.5)
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Fig. 4.53 The same as in Fig. 4.52 but for a system of radiating elements 3 (d = 0)
Look: 4-53-A.exe

and its efficiency [ζ̄ ≈ 0.95 (in the case A), ζ̄ ≈ 0.955 (B), and ζ̄ ≈ 0.957 (C)]. Here,
φ0.5(k) is the width of the pattern main lobe at the level D (φ,k,∞) = 0.5, while the
integrated efficiency

ζ̄ = 1

K2 − K1

K2∫

K1

ζ (k) dk
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Fig. 4.54 The excitation of a system of 13 radiating elements 3 by the pulsed H01-wave (4.140),
q = 7: (a) The Ex(g,t) spatial distribution, g∈QL, t = 1.1; (b) radiation pattern D(φ,k,∞) in the
frequency band 168 ≤ k ≤ 251; (c) the coefficients of the power coupling between the active
(j = 7) and passive (j = 1,2,. . .,6) elements
Look: 4-54-A.exe – the Ex(g,t) spatial–time distribution, g∈QL at the time 1.0 < t < 1.3 (the pulse
major part crosses the computational space QL; Umax(t) = 0.5)
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Fig. 4.55 The radiation patterns of a system of 13 radiating elements 3. Pulsed waves (4.140)
excite (a) 5 central elements; (b) 9 central elements; and (c) all the 13 elements
Look: 4-55-A.exe, 4-55-B.exe i 4-55-C.exe – the Ex(g,t) spatial–time distribution, g∈QL at the
time 1.0 < t < 1.3 (Umax(t) = 0.5)
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and the efficiency ζ(k) clearly generalizes the characteristics η̄ [see formula (4.141)]
and η(k) in the case of the excitation of compact grating structures from two, three,
and more feeding waveguides.

A failure of one or two radiating elements has practically no effect on the array
radiation pattern (see Fig. 4.56). We simulate these regimes by cutting off the energy
supply from the corresponding feeding waveguides. At frequency k = 210, the
main lobe width φ0.5(k) changes within 0.2◦, the side lobes level never exceeds
D (φ,k,∞) = 0.1 for all the cases considered.

Now let the first element of the array be excited by a wave (4.140), while the
remaining ones (q = 2,3,. . .,13) are excited by the Ui(q)

1 (g,t) waves such that
v11
(
g ∈ Lq,t +Δt

) = v11
(
g ∈ Lq−1,t

)
. One easily checks that in this case, the

sinusoidal H01-waves Ũi(q)

1 (g,k) ↔ Ui(q)

1 (g,t) [see transformations (1.19) and
(4.113)] obey the following quasi-periodicity condition:

Ũi(q)

1

(
g ∈ qQ,k

) = eikΔtŨi(q−1)

1

(
g ∈ q−1Q,k

)
. (4.142)

For an infinite array, the fulfillment of condition (4.142) provides an α0 =
φ–90◦ deflection of the beam along which the fundamental spatial harmonic
A0 (k) exp

[
i (Φ0y + Γ0z)

]
, Φ0= 2πΦ

/
l = kΔt

/
l, propagates in the radiation zone

z > 0 of the structure [see (4.138) and Sections 1.1.4 and 1.2.1]. The angle α0 =
φ–90◦ is such that

− l sin α0 = Δt. (4.143)

Based on relationship (4.143), we model the finite array main lobe steering by
time domain methods. In the frequency range 168 ≤ k ≤ 251 and for scan angles
45◦ ≤ φ ≤ 135◦ (see Figs. 4.57, 4.58 and 4.59), for which the major parameters of
the periodic structure have been determined, the radiation efficiency ζ(k) does not
fall below ζ(k) = 0.9. The width φ0.5(k) of the pattern main lobe varies from 7.0◦
(k = 251, φ = 0) to 13.9◦ (k = 168, φ = 90◦ ± 45◦). The directivity φ̄ (k) is in
full agreement with the predicted value: φ̄ (k) = 75◦ for Δt = sin (15◦) l ≈ 0.36,
φ̄ (k) = 60◦ for Δt = sin (30◦) l ≈ 0.7, and φ̄ (k) = 45◦ for Δt = sin (45◦) l ≈
0.99. The results of this kind encourage further efforts in the modeling of the con-
sidered phased array, giving cause for formulating and working out new applied
problems. Thus, it could be natural to continue with the analysis and synthesis of
the so-called ideal pulse antennas [193, 221] that can directionally radiate broad-
band radio signals occupying a frequency band up to 40% wide. But now, we go
beyond the bounds indicated in the problem formulation with respect to param-
eters k and (or) φ and examine the resulting consequences of such a step. For
Δt = sin (60◦) l ≈ 1.21 (see Fig. 4.60), the pattern main lobe deflects from the
normal through a given angle (φ̄ (k) = 30◦). The integrated radiation efficiency,
which before grew monotonously with Δt from ζ̄ ≈ 0.957 for Δt = 0 to ζ̄ ≈ 0.983
for Δt = 0.99, now is evidently smaller (ζ̄ ≈ 0.92). At the short-wavelength piece
of the considered range, a side lobe appears. As k increases, it is increasingly more
separated from the array plane and concentrates all the more radiation energy into
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Fig. 4.56 (continued) The radiation patterns of a system of 13 radiating elements 3 at the fre-
quency k = 210. Pulsed waves (4.140) excite (a) all the 13 elements; (b) all the elements but the
central one; (c) all the elements but the third; and (d) all the elements but the central and the third
ones
Look: 4-56-B.exe, 4-56-C.exe i 4-56-D.exe – the Ex(g,t) spatial–time distribution, g∈QL at the
time 1.0 < t < 1.3 (Umax(t) = 0.5)
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Fig. 4.57 The phased array excitation by a set of pulsed waves Ui(q)

1 (g,t) satisfying condition
(4.142), Δt = sin (15◦) l ≈ 0.36: (a) The Ex(g,t) spatial distribution, g∈QL, t = 1.1; (b) radiation
pattern D(φ,k,∞); (c) array efficiency in the frequency band 168 ≤ k ≤ 251; and (d) radiation
pattern D(φ,k,∞) at the frequency k = 210
Look: 4-57-A.exe – the Ex(g,t) spatial–time distribution, g∈QL at the time 1.0 < t < 1.3 (the major
part of the radiated pulse crosses the computational space QL; Umax(t) = 0.5)
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Fig. 4.58 The same as in Fig. 4.57 but for Δt = sin (30◦) l ≈ 0.7
Look: 4-58-A.exe
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Fig. 4.59 The same as in Fig. 4.57 but for Δt = sin (45◦) l ≈ 0.99
Look: 4-59-A.exe
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Fig. 4.60 The phased array excitation by a set of pulsed waves Ui(q)

1 (g,t) satisfying condition
(4.142), Δt = sin (60◦) l ≈ 1.21: (a) The Ex(g,t) spatial distribution; g∈QL, t = 1.1; (b) radiation
pattern D(φ,k,∞); (c) array efficiency in the frequency band 168 ≤ k ≤ 251; (d) radiation patterns
D(φ,k,∞) at the frequencies k = 210 and k = 251
Look: 4-60-A.exe – the Ex(g,t) spatial–time distribution, g∈QL at the time 1.0 < t < 1.3 (the major
part of the radiated pulse crosses the computational space QL; Umax(t) = 0.5)



332 4 Modeling and Analysis of Transients in Periodic Structures

Fig. 4.61 The same as in Fig. 4.60 but for a set of pulsed waves Ui(q)

1 (g,t) occupying the frequency
band 250 < k < 334 and for Δt = sin (45◦) l ≈ 0.99
Look: 4-61-A.exe
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itself. In the field of the infinite periodic structure [see formula (4.138)] this lobe
complies with the minus first spatial harmonic A−1 (k) exp

[
i (Φ−1y + Γ−1z)

]
. For

frequencies k above the threshold k+−1 ≈ 241, this harmonic propagates in the radi-
ation zone z > 0 of the structure without attenuation and goes away from it at an
angle α–1 such (see Fig. 4.50b) that sin α−1 ≈ 2π

/
kl − 0.866. At the frequency

k = Rek̄ ≈ 219, the compact grating structure maintains slightly attenuating free
oscillations of the field (see Fig. 4.60b for the spatial distribution of Ex(g,t), t =
3.0). Their excitation sharply enhances the array efficiency and narrows the main
lobe somewhat.

For Δt = sin (45◦) l ≈ 0.99, the passage to the higher frequencies 250< k < 334
(see Fig. 4.61) is accompanied by the conversion of the decaying H02-wave of the
feeding parallel-plate waveguides into a propagating wave (k > k2 ≈ 301), and also a
side lobe appears that complies with the minus first spatial harmonic in the radiation
field of the infinite periodic structure (k+−1 ≈ 263). Near the cutoff of the H02-wave,
no substantial changes in the array characteristics are observed. The side lobe level
goes up with k. Until k = 318, φ̄ (k) = 45◦. Then the side lobe takes over the part
of the main lobe, and φ̄ (k) ≈ 90◦ + α−1 (k).



Chapter 5
Finite Scale Homogenization of Periodic
Bianisotropic Structures

Abstract This chapter explains how a composite material with a periodic
microstructure can be modeled with effective material parameters in the low-
frequency limit. In particular, we treat the problem of how to compute the material
parameters when the scale of the microstructure is finite compared to the applied
wavelength. For lossless anisotropic media, a self-adjoint eigenvalue problem can
be formulated to compute the relevant material parameters, whereas a singular
value decomposition of Maxwell’s equations can be used to treat the general lossy
bianisotropic case. The fundamental idea is the number of degrees of freedom:
homogenization is possible precisely when the electromagnetic field can only be
excited (or observed) corresponding to the degrees of freedom possible in a homo-
geneous material. When the scale difference is not large, this requires spatial
dispersion in the homogenized model.

The chapter deals with the theory of periodic media in the low-frequency limit,
where the period is small compared to the wavelength. We treat here the bulk
homogenization of composite materials, where the material parameters of the
component materials can have bianisotropic properties.

Bulk homogenization concerns under which circumstances the periodic struc-
ture can be replaced by a fictitious homogeneous material while maintaining the
same large-scale scattering characteristics. In the limit where the scale difference
between the period and the wavelength is infinite, this is the classical homogeniza-
tion problem, which has a long history in many areas of physics, engineering, and
mathematics. An introduction to the mathematics is given in [222], a broad overview
of applications is given in [24, 223, 224], whereas mathematical rigor and many
explicitly solvable cases are found in [225, 226].

We demonstrate how this can be extended to the case where the period and the
wavelength are comparable to each other, which corresponds better to the practical
problems encountered in real-life applications. Similar problems have been attacked
by other authors [227–233], usually in a scalar setting where the effective material
parameters can be treated in the effective mass approximation as a derivative of the
energy bands of the structure.
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For lossless anisotropic media, a self-adjoint eigenvalue problem is formulated
to compute the relevant material parameters, whereas a singular value decomposi-
tion of Maxwell’s equations is used to treat the general lossy bianisotropic case.
The mathematical methods employed treat the material case as a perturbation of
the vacuum case, which can be solved analytically, and it is shown that important
mathematical properties such as compactness of relevant operators can be derived
from this perturbation approach. The fundamental idea is the number of degrees of
freedom: homogenization is possible precisely when the electromagnetic field can
only be excited (or observed) corresponding to the degrees of freedom possible in
a homogeneous material, that is, the different polarizations of the electric and mag-
netic fields. When the scale difference is not infinite, this implies spatial dispersion
in the homogenized model. At the end of the chapter, we give examples of results
for a few explicit microstructures.

5.1 Fundamental Ideas

The object of this chapter is to demonstrate a method to compute homogenized
material parameters for a structure being periodic in three dimensions. The typi-
cal application is to compute effective material parameters for composite materials,
where the size of the microstructure of the composite is not necessarily infinitely
small compared to the free space wavelength.

The fundamental idea is based on the number of degrees of freedom in a homo-
geneous material. In a homogeneous material, we can in principle only affect the
polarizations of the electric and magnetic fields. A pair of electric and magnetic
excitation vectors �E and �H then have a one-to-one correspondence to a pair of
response vectors �D and �B according to

( �D
�B
)
=
(

ε0ε c−1ξ

c−1ζ μ0μ

)( �E
�H
)

,

where c−1 = √
ε0μ0 is the inverse of the speed of light in vacuum. The material

parameters are in general analytic functions of frequency in the complex upper half
plane, due to restrictions derivable from causality and energy conservation. This
means they satisfy relations similar to the classical Kramers–Kronig relations [234].
In periodic heterogeneous media, the situation is rather that a pair of excitation fields
can excite a multitude of possible responses, corresponding to the free oscillations,
or eigenwaves, in the structure. The higher the frequency of the excitation, the more
modes can be excited.

However, when the signal has a limited frequency content, only a limited number
of eigenwaves can be excited, or rather, carry an energy flow. In classical homoge-
nization, the frequency is thought of as being asymptotically close to zero, making it
difficult to incorporate dynamic effects of the structure when calculating the mate-
rial response. In this chapter, we demonstrate that the requirement from classical
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homogenization can be relaxed, and we can allow for frequencies high enough to
correspond to a wavelength comparable with the periodicity of the structure.

Taking a look first at the classical case of homogenizing permittivity in the limit
where the applied wavelength is infinite compared to the microstructure, a physical
definition of this quantity can be taken as

〈 �D〉 =
〈
ε�E
〉
= ε

hom 〈�E〉 ,

where 〈...〉 is a suitably defined averaging operation, smoothing out the small details
of the field associated with the microstructure. If the number of degrees of freedom
of the electric field is reduced to three, we could write it as

�E (g) =
3∑

n=1

cn �En (g), (5.1)

where �En (g) are the modes representing the degrees of freedom. The modes can
be derived from a local problem, typically defined in a periodic unit cell. When the
applied wavelength is infinite compared to the unit cell, the local problem is static
and we have rot�E = 0 which implies �E = �E0−gradφ, where �E0 is a constant vector,
and φ is a periodic potential with zero mean value. This means that the mean value
of the electric field is

〈�E〉 = �E0, which is the large-scale electric field, whereas -
gradφ is the microscopic field, necessary to resolve the boundary conditions in the
microstructure. The potential is determined for each fixed �E0 from the elliptic partial
differential equation

div �D = div
[
ε
(�E0 − gradφ

)] = 0

and the homogenized permittivity is given by the relation

〈 �D〉 =
〈
ε
(�E0 − gradφ

)〉 = ε
hom �E0

To generalize the classical homogenization, we look for local problems taking
the full Maxwell’s equations into account. It can then be shown that the modes have
some useful orthogonality properties. If these carry over to the averaged vectors in

the respect that either
(〈

ε�Em

〉
· 〈�E∗

n

〉) = 0 or
(〈�Em
〉 · 〈�E∗

n

〉) = 0 when m �= n, we can

write up the homogenized matrix as either

ε
hom =

3∑

n=1

〈
ε�En

〉 〈
ε�En

〉H

〈
ε�En

〉H 〈�En
〉 or ε

hom =
3∑

n=1

〈
ε�En

〉 〈�En
〉H

〈�En
〉H 〈�En

〉

depending on which kind of orthogonality is available. Here,
〈�E〉 is identified as a

column vector and
〈�E〉H is its hermitian transpose, i.e., the product in the nomina-

tor is a dyadic product that is identified as a matrix, whereas the product in the



338 5 Finite Scale Homogenization of Periodic Bianisotropic Structures

denominator is a scalar. The correctness of these representations can be checked

by simply inserting the expansion (5.1) in
〈
ε�E
〉

and
〈�E〉 and use the orthogonality

assumptions. The remainder of this chapter will show how to define the averaging
operator, how to define suitable modes, and that only a limited number of these
modes are excited when the scale of the microstructure becomes small. More pre-
cisely, at most six modes, corresponding to the polarizations of the electric and the
magnetic fields, will be needed assuming that the currents driving the fields are
band-limited in frequency.

5.2 Some Mathematical Properties of Maxwell’s Operator

Here, we present some important mathematical properties of Maxwell’s opera-
tor with periodic boundary conditions in all three dimensions. Most importantly,
the compactness of the resolvent operator aids us in formulating decompositions
based either on eigenvectors/eigenvalues for lossless media, or a singular value
decomposition for general dispersive media.

We start by formulating a six-vector notation which reduces the length and com-
plexity of the chapter. The electromagnetic field is treated as one unified field

�U =
{
ε

1/2
0

�E,μ1/2
0

�H
}T

, where index T denotes the transpose operation, which per-

mits the interpretation of �U as a column vector with six elements if �E and �H are
interpreted as column vectors with three elements. The scaling with the square root
of the permittivity and permeability of vacuum makes both the electric and mag-
netic part of �U have the same physical dimension of square root of power density.
Occasional use of the decomposition �Ue = ε

1/2
0

�E and �Uh = μ
1/2
0

�H will be made.
The constitutive relation is

(
ε
−1/2
0

�D
μ
−1/2
0

�B

)

=
(

ε ξ

ζ μ

)(
ε

1/2
0

�E
μ

1/2
0

�H

)

= M �U

where the scaling of the fluxes �D and �B makes all the entries in the material matrix

M be dimensionless. The curl operators in Maxwell’s equations are denoted by

rotJ �U =
(

0 −rot
rot 0

)( �Ue
�Uh

)
=
(−rot �Uh

rot �Ue

)

so that Maxwell’s equations can be compactly written as rotJ �U − ikM �U =
−�F, where K is the wave number in vacuum. The excitation currents �F ={
μ

1/2
0

�Je,ε1/2
0

�Jh

}
satisfy the equation of continuity

div�F =
(

divμ1/2
0

�Je

divε1/2
0

�Jh

)

= ik

(
ε
−1/2
0 ρe

μ
−1/2
0 ρh

)

.
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Even though the magnetic current and charge density, J̃h and ρ̃h, can be argued
to be zero on physical grounds, we still include them here to keep an as general
formulation as possible. In a Born-series approach to scattering, they appear in a

very natural way, typically �F = −ik
(

M − M0

) �U0, where �U0 is an applied wave

field propagating in a background medium M0.
We now turn to the description of periodic media. The physical unit cell is

denoted by G, and the reciprocal unit cell is G̃. A vector in the physical unit cell
is denoted as g = {x,y,z} ∈ G, and a vector in the reciprocal unit cell is denoted
as γ = {γx,γy,γz

} ∈ G̃. The three-dimensional space R3 is tiled by translating the
unit cell G by all possible lattice vectors gn1,n2,n3 = n1�a1 + n2�a2 + n3�a3, where
{�a1,�a2,�a3} can be viewed as the sides of the unit cell G. The typical length of one
of these vectors is 2πa. The lattice vectors in reciprocal space are represented using

the basis
{�b1,�b2,�b3

}
, with the typical length 1/a. The two sets of bases are related

by
(
�am · �bn

)
= 2πδm

n where δm
n is the Kronecker delta. Using the Floquet–Bloch

theorem [235, 236] and the Laplace transform in time, any square integrable field
can be written as

�U (g,t) = 1

2π

iα+∞∫

iα−∞

1
∣∣
∣G̃
∣∣
∣

∫

G̃

ei[(γ·g)−kt]Ũ (g,γ,k) dvγdk,

where α is large enough so that all poles of the field Ũ (g,γ,k) are below the inte-
gration path. The Bloch amplitude Ũ (g,γ,k) is a G-periodic function of g, and
exp
[
i (γ · g)

]
Ũ (g,γ,k) is a G̃-periodic function of γ. It can be expressed in terms of

the spatio-temporal field �U(g,t) as

Ũ (g,γ,k) =
∞∫

0

∑

n1,n2,n3

�U (g + gn1,n2,n3 ,t
)
ei
[
kt−(γ·(g+gn1,n2,n3

))]
dt.

We prefer to express the fields in terms of the G-periodic Bloch amplitude Ũ
instead of quasi-periodic functions exp

[
i (γ · g)

]
Ũ (g,γ,k) in this chapter, since we

later on are going to average the fields over the unit cell and it is then very natu-
ral to work with the Bloch amplitude. The typical effect is that the nabla operator
(divergence) is shifted by iγ, according to

div
(
exp
[
i (γ · g)

]
Ũ
) = exp

[
i (γ · g)

]
(div + (iγ·)) Ũ.

We use two function spaces in this chapter, each with G-periodic boundary
conditions:

X =
{

Ũ ∈ L2

(
G;C6

)
: ∃ (z,z̃) ∈ C2, (div + (iγ·)) Ũ =

(
zε−1/2

0 ρ̃e

z̃μ−1/2
0 ρ̃h

)}

,
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Y =
{

Ũ ∈ L2

(
G;C6

)
: ∃ (z,z̃) ∈ C2, (div + (iγ·))

[
MŨ
]
=
(

zε−1/2
0 ρ̃e

z̃μ−1/2
0 ρ̃h

)}

.

Here, L2
(
G;C6

)
is the space of square integrable functions taking values in C6.

The shift of the nabla operator means that Maxwell’s equations for the Bloch ampli-

tudes are
(
rot + [iγ×]) JŨ − ikMŨ = −F̃. When considering the function spaces

X and Y, it is convenient to use the notation

(
Ũ,Ṽ
) = 1

|G|
∫

G

( �U (g) · �V∗ (g)
)

dvg

for the scalar product over the physical unit cell G, and

〈
Ũ
〉 = 1

|G|
∫

G

Ũ (g) dvg (5.2)

for the mean value of the field Ũ over the unit cell. Note that when taking the mean
value of the Bloch amplitude, the origin of the unit cell is irrelevant since the Bloch
amplitude is periodic. Had we taken the mean value of the quasi-periodic function
exp
[
i (γ · g)

]
Ũ (g,γ,k) the result would not be translation invariant.

5.2.1 Vacuum Case

We start by considering the source free vacuum case, where Maxwell’s equations
simplify to

(
rot + [iγ×]) JŨ = ikŨ.

This can be considered as an eigenvalue problem for the (bi)curl operator in the
left-hand side. The solutions to this equation are easily characterized using a Fourier
series representation, and the following statement is easily shown using explicit
calculations [237].

Statement 5.1 The resolvent operator

R0(k) = [(rot + [iγ×]) J − ik
]−1 : X → X

is a compact operator for all k ∈ C in the resolvent set; i.e., when R0(k) is bounded,
it is also compact. Furthermore, there exists a number k̃ ∈ R1, such that iR0(k̃) is a
compact, self-adjoint operator.

It is important to consider the resolvent as an operator on X. If we consider it on
the entire space L2

(
G;C6

)
, the resolvent becomes proportional to the identity oper-

ator on the subspace consisting of all gradients, since this is the null space of the curl
operator. Since the identity operator is compact only on finite-dimensional spaces,
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we need the divergence condition in the definition of X to restrict the dimension of

this space. With the divergence condition (div + (iγ·)) Ũ =
[
zε−1/2

0 ρ̃e,z̃μ−1/2
0 ρ̃h

]T

for some complex constants z and z̃, at most two linearly independent gradient func-
tions can occur. If the charge densities ρ̃e and ρ̃h are zero, the only gradient function
satisfying the divergence condition is the zero function.

The compactness of the vacuum resolvent constitutes the fundamental result
upon which we build our following results. Thanks to the compactness, we know
there exist eigenvectors and eigenvalues, and when we have self-adjointness, we also
have orthogonality between the eigenvectors. When general bianisotropic material

parameters M are considered, we cannot expect self-adjointness unless the material
is lossless.

5.2.2 Material Case

We now show how to use the result for the vacuum operator to deduce information
of the material case. The spatial dependence of the material matrix is suppressed in

order to emphasize the frequency dependence, that is, when writing M (k) we really

mean M (g,k).

Statement 5.2 The generalized resolvent operator

R (k) =
[(

rot + [iγ×]) J − ikM (k)
]−1

: X → Y

is compact for all k ∈ C in the resolvent set such that M (k) is bounded.

Proof. The generalized resolvent operator R (k) can be written in terms of the
vacuum resolvent

R (k) =
[(

rot + [iγ×]) J − ikM (k)
]−1 =

[
(R0 (k))−1 − ik

(
M (k) − E

)]−1

=
[
E − R0 (k) ik

(
M (k) − E

)]−1
R0 (k) ,

where E is the identity matrix. A product of two operators AB is compact
if one of the operators is compact and the other is bounded. The operator[
E − R0 (k) ik

(
M (k) − E

)]−1
is bounded unless 1 is an eigenvalue of the com-

pact operator R0 (k) ik
(

M (k) − E
)

. It is possible to choose k = k̃ ∈ C such that

this does not occur. This means R
(

k̃
)

is compact, and the generalized resolvent

equation [238]

R (k1) − R (k2) = R (k1)
(
−ik1M (k1) + ik2M (k2)

)
R (k2)

then implies that R (k) is compact for all k in the resolvent set, provided that M (k)
is bounded, which concludes the proof.
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Statement 5.2 shows that some fundamental mathematical properties of the vac-
uum case can be generalized to the material case. The basis of the proof is the fact

that the material operator M is bounded compared to the partial differential operator
rotJ. This is a demonstration of the principle that the well-posedness of a partial
differential equation is usually not affected by a change in the model if the principal
part, that is, the highest order derivatives are not changed.

5.2.3 Lossless Media: Eigenvalue Decomposition

To gain some intuition about the decomposition of solutions to Maxwell’s equations,
we start by considering lossless, nondispersive media,

M (g) =
(

ε (g) 0
0 μ (g)

)
,

where the matrices ε and μ are real-valued, symmetric, and positive definite, but
depend on position g ∈ G. This implies that the generalized resolvent operator
iR (k) is self-adjoint for real k, and the eigenvalue problem

(
rot + [iγ×]) JŨn = iknM (g) Ũn (5.3)

in the function space Y is well posed for a fixed γ ∈ G̃. The eigenvectors corre-
spond to waves freely propagating in the periodic structure, representing the natural
electromagnetic degrees of freedom in the structure. Using these eigenvectors as a
basis, we can expand any square integrable field as

�U(g) =
∑

n

1
∣∣∣G̃
∣∣∣

∫

G̃

(MŨ,Ũn)Ũn(g,γ)ei(γ·g)dvγ,

where Ũ is the Bloch amplitude for �U, and the eigenvectors are orthonormal in the
respect

(
MŨm,Ũn

) = δm
n . We see that the material parameters appear as a natural

weight function in the scalar product of the function space Y.
The time-dependent Maxwell’s equations in R3 with a given excitation current

distribution �F (g,t) is

(
rotJ + ∂

∂t
M

)
�U = −�F. (5.4)

By expanding the field �U in the eigenvectors
{
Ũn
}
, projecting the equations on

the same eigenvectors, and solving the resulting ordinary differential equation, we
can write the solution as [237]
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�U (g,t) =
∑

n

1
∣∣∣G̃
∣∣∣

∫

G̃

ei[(γ·g)−kn(γ)t] (−F̃tn,Ũn
)

Ũn (g,γ) dvγ,

where

F̃tn =
t∫

−∞

∑

n1,n2,n3

�F (g + gn1,n2,n3 ,τ
)

ei
[
kn(γ)τ−(γ·(g+gn1,n2,n3

))]
dτ.

As t → ∞, it is clear that F̃tn → F̃ (g,γ,kn (γ)). In the following, we shall see
that the infinite sum for �U becomes finite when the frequency content of the current
�F is limited. We can already see traces of when this happens: as n increases, the
eigenfrequencies kn grow rapidly, and the fast oscillations cannot carry a substantial
amount of the available energy if the current �F is band-limited in frequency.

In this context, it is interesting to look at the contribution of the (at most two)
modes where kn (γ) = 0 for all γ ∈ G̃. These are associated with static solutions
(where we mean static in the respect that the curl is zero,

(
rot + [iγ×]) JŨn = 0)

due to the presence of charge densities ρe and ρh. Since kn (γ) = 0, they cannot
contribute to any wave propagation, but they are important to resolve the bound-
ary conditions when free charges are present. When the charge densities are zero,
the static modes are zero, but for completeness we include them explicitly in the
following.

We enumerate the modes according to n = 1,2 for the static modes, and
n ≥ 3 for the other modes, such that the absolute values of the eigenvalues form
a nondecreasing sequence, |k3| ≤ |k4| ≤ |k5| ≤ ....

Note that if Ũn = [Ũne,Ũnh
]T

is an eigenvector with eigenvalue kn, that is,

(
0 − (rot + [iγ×])(

rot + [iγ×]) 0

)(
Ũne

Ũnh

)
= ikn

(
ε (g) 0

0 μ (g)

)(
Ũne

Ũnh

)

then so is Ũñ = [Ũñe,Ũñh
]T = [Ũne, − Ũnh

]T
but with eigenvalue kñ = −kn. This

is seen from

(
0 − (rot + [iγ×])(
rot + [iγ×]) 0

)(
Ũne

−Ũnh

)
=
((

rot + [iγ×]) Ũnh(
rot + [iγ×]) Ũne

)
=

(−iknε (g) Ũne

iknμ (g) Ũnh

)
= −ikn

(
ε (g) 0

0 μ (g)

)(
Ũne

−Ũnh

)
.

This means we always have pairs of modes with eigenvalues satisfying k2n−1 =
−k2n corresponding to forward and backward propagating waves. This symmetry
property is particular for the lossless case, and is exploited in Section 5.6.3 when
looking at an artificial chiral material. One way to see how the symmetry is broken
by losses is by considering a material with an electric conductivity, in which case
the eigenproblem reads
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(
σ(g) − (rot + [iγ×])(

rot + [iγ×]) 0

)(
Ũne

Ũnh

)
= ikn

(
ε (g) 0

0 μ (g)

)(
Ũne

Ũnh

)
,

where the matrix σ is nonnegative. From this equation, it is seen that the operator in
the left-hand side is the sum of a symmetric and a skew symmetric operator, which
means the eigenvalues ikn must in general be complex valued. A detailed exploration
of this eigenvalue problem is given in [239].

5.2.4 Dispersive Media: Singular Value Decomposition

For dispersive media, we cannot conveniently use eigenvectors for the expansion
of an arbitrary field �U, since we typically lose orthogonality. However, since the
generalized resolvent operator R(k) is compact, we can use the singular value
decomposition, where the associated singular vectors are mutually orthogonal. The
following statement is proven in [240], and is an adaptation of a more general repre-
sentation theorem for compact operators which can be found in, for instance, [241].

The basis for the statement is that − (rot + [iγ×]) J+ik∗M
H

: X → Y is the adjoint

operator of
(
rot + [iγ×]) J− ikM: Y → X, and that the null space of each operator

is empty for each k in the resolvent set.

Statement 5.3 For each k in the resolvent set for a fixed γ ∈ G̃, there exists a
sequence of real, positive numbers {σn}, arranged in ascending order 0 ≤ σ1 ≤
σ2 ≤ σ3 ≤ ... with infinity as the only accumulation point, and orthonormal
sequences

{
Ũn
}

in Y and
{
Ṽn
}

in X such that

⎧
⎪⎨

⎪⎩

[(
rot + [iγ×]) J − ikM

]
Ũn = σnṼn[

− (rot + [iγ×]) J + ik∗M
H
]

Ṽn = σnŨn

. (5.5)

For each Ũ ∈ Y and Ṽ ∈ X we have the expansions

Ũ =
∑

n

(Ũ,Ũn)Ũn and Ṽ =
∑

n

(Ṽ ,Ṽn)Ṽn

and the action of the operator can be expanded as

[(
rot + [iγ×]) J − ikM

]
Ũ =

∑

n

σn(Ũ,Ũn)Ṽn

The numbers {σn} are the singular values for the partial differential operator
(
rot + [iγ×]) J − ikM.

The singular values are functions of the wave vector γ ∈ G̃ and the frequency
k. They are nonzero except for very particular combinations of γ and k, k = km (γ)
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where σ1 (k,γ) = σ1 (km (γ) ,γ) = 0, corresponding to the eigenvalues in the preced-
ing section. Note that due to the ordering of the singular values in a nondecreasing
sequence, all the eigenvalues of the preceding section are contained in the first sin-
gular mode, when considered as a function of both γ and k. Remember that the
eigenvalues are not a function of frequency k, they rather define the dispersion
relation k = kn (γ), which in the context of singular value decomposition is the
particular case when the smallest singular value is zero.

Returning to the solution of Maxwell’s equations with sources (5.4), the solution
can now be represented as

�U (g,t) =
∑

n

1

2π

iα+∞∫

iα−∞

1
∣∣∣G̃
∣∣∣

∫

G̃

ei[(γ·g)−kt]
(−F̃,Ṽn

)

σn (γ,k)
Ũn (γ,g,k) dvγdk.

We evaluate the inverse Laplace transform integral using residues, assuming the
poles

{
k̄m (γ)

}
of F̃ (γ,g,k) do not coincide with the poles {km} of the operator

associated with the smallest singular value,
(
Ṽ1
)

Ũ1/σ1 (γ,k). These poles are the
frequencies k = km (γ) such that the smallest singular value σ1 (γ,k) = 0. The result
is

U (g,t) = 1
i

∑

n

1∣
∣
∣G̃
∣
∣
∣

∫

G̃

∑

m
Res{
k̄m(γ)

}

[

ei[(γ·g)−kt]
(−F̃,Ṽn

)

σn (γ,k)
Ũn

]

k=k̄m(γ)

dvγ+

+ 1
i

1∣∣
∣G̃
∣∣
∣

∫

G̃

∑

m
Res{km(γ)}

[

ei[(γ·g)−kt]
(−F̃,Ṽ1

)

σ1 (γ,k)
Ũ1

]

k=km(γ)

dvγ.

This demonstrates the familiar result that the solution is a sum of forced oscilla-
tions (first row) and natural resonances (second row). Should the poles of the sources
coincide with the poles of the operator, a more detailed analysis must be applied as
in [1]. To keep the results in this chapter simple, we refrain from this complication.

5.3 Estimates of the Eigenvalues and Singular Values in the
Low-Frequency Limit

In this section, we demonstrate some technical estimates of the eigenvalues kn (γ)

and singular values σn (γ,k) derived in the previous section. We shall assume that
the frequency is low compared to the periodicity of the structure, i.e., ka is a small
number, but not necessarily infinitesimally small.

The inspiration for the behavior of the eigenvalues and singular values is taken
from the vacuum case, where they can be explicitly calculated. Using the reciprocal
lattice vectors γn1,n2,n3 = n1�b1 + n2�b2 + n3�b3, the eigenvectors can be written as
[237]
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Ũ =
(

γn1,n2,n3 + γ

0

)
ei
(
γn1,n2,n3 ·g

)
or Ũ =

(
0

γn1,n2,n3 + γ

)
ei
(
γn1,n2,n3 ·g

)
,

Ũ =
( �

l

± �m

)

ei
(
γn1,n2,n3 ·g

)
or Ũ =

( �m
∓�

l

)

ei
(
γn1,n2,n3 ·g

)

where the constant unit vectors
�
l and �m are orthogonal to the propagation direction

and satisfy
[�

l × �m
]
= (γn1,n2,n3 + γ)/

∣∣γn1,n2,n3 + γ
∣∣. We note that the first row

corresponds to functions that can be written as gradients, whereas the second row
corresponds to functions that can be written as curls. The latter ones correspond to
propagating waves, and we see that for a fixed set of indices {n1,n2,n3}, there are two

possible polarizations,
�
l and �m, and for each polarization there is the possibility of

propagation along the positive or negative direction of γn1,n2,n3 + γ corresponding
to the plus or minus sign. Thus, for a fixed propagation direction, there exist four
propagating modes. The singular vectors are similar but with slight deviations, we
refer to the Appendix in [240] for details.

Using the above explicit representation of the eigenvectors, the eigenvalues for
the vacuum case are found as [237]

kn0 (γ) = 0 for pure gradient functions (statics),

kn0 (γ) = ± ∣∣γn1,n2,n3 + γ
∣∣ for the others

and the singular values for the vacuum case are [240]

σn0 (γ,k) = |k| for pure gradient functions (statics),

σn0 (γ,k) =
√
|Im k|2 + (∣∣γn1,n2,n3 + γ

∣∣± |Re k|)2 for the others.

In both cases, the second row has multiplicity two when fixing the sign ±, cor-

responding to the different polarizations
�
l and �m. Since the reciprocal basis vectors

{b1,b2,b3} scale as 1/a, we see that all eigenvalues and singular values scale as 1/a
when a → 0, except the ones corresponding to (a) the gradient solutions and (b)
the case n1 = n2 = n3 = 0. In the enumeration of the eigenvalues and singular
values, this corresponds to n = 1,...,6. We also see that the smallest singular value
can approach zero only when |Re k| ≈ |γ| and |Im k| ≈ 0.

For the eigenvalues, it is sufficient to observe that the eigenvalues corresponding
to n1 = n2 = n3 = 0 are proportional to |γ|, which make them go to zero as the
wave number goes to zero. These are called the acoustic modes, whereas the other
modes are called optical modes (see Fig. 5.1 and [242, 243]).

For the singular values, we need a few more delicate estimates. In [240] a more
detailed look at the singular vectors for the vacuum case reveals that the requirement
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Γ

Γ

Fig. 5.1 A typical situation for the eigenvalues kn (γ) defined by (5.3). The eigenvalues are plotted
as functions of the wave vector γ as this passes through points of symmetry in the reciprocal unit
cell. The calculations are made with the program described in [242], and the structure is identical
to the one presented in [243]. The thickness of the bars is 20% of the unit cell, and the permittivity
in the bars is 12.96

n1 = n2 = n3 = 0 allows for six modes, two static and four dynamic. The higher-
order singular values can be estimated using the observation that for sufficiently low
frequencies, the vacuum singular values for n > 6 can be estimated by the size of the
reciprocal lattice vectors

∣∣γn1,n2,n3

∣∣, which has the typical size 1/a. In the following
lemma, D is a dimensionless number such that D/a is the diameter of the largest
sphere that can be inscribed in the reciprocal unit cell G̃ (see Fig. 5.2).



348 5 Finite Scale Homogenization of Periodic Bianisotropic Structures

Fig. 5.2 Definition of the diameter D in the reciprocal unit cell. D is the diameter of the largest
sphere that can be contained in the unit cell. The unit cell is really three-dimensional, but only
2-D representations are shown here for clarity. Two different unit cells are shown: (a) A cubic
(quadratic) cell and (b) a skew cell

Lemma 5.1 For each C ∈ (0;D/2) and n > 6 (with n = 1 being the smallest
singular value) we have

σn (γ,k) ≥ C

a
if |ka| <

D/2 − C
∥∥∥M − E

∥∥∥+ 1

independent of γ ∈ G̃.

Proof. From [238] we find the following classical estimate of singular values
using the singular values for vacuum,

|σn − σn0| ≤
∥∥∥k
(

M − E
)∥∥∥∞ = sup

g∈G

∣∣∣k(M (g,k) − E)
∣∣∣ .

The higher-order vacuum singular values can be estimated as

σn0 =
√
|Im k|2 + (∣∣γn1,n2,n3 + γ

∣∣± |Re k|)2 ≥ ∣∣γn1,n2,n3 + γ
∣∣− |Re k| .

Since the effect of adding γn1,n2,n3 to γ is to shift the origin to a different unit cell in
the reciprocal lattice, the absolute value of the vector γn1,n2,n3 + γ is larger than the
absolute value of any vector on the rim of the fundamental reciprocal unit cell ∂G̃,
or

∣
∣γn1,n2,n3 + γ

∣
∣ ≥ inf

γ̃∈∂G̃
|γ̃| = D

2a
,

when at least one of the indices n1, n2, or n3 is nonzero. This implies

σn ≥ σn0−
∥∥∥k
(

M − E
)∥∥∥ ≥ D

2a
−|Rek|−|k|

∥∥∥M − E
∥∥∥ ≥ D

2a
−|k|
(∥∥∥M − E

∥∥∥+ 1
)

.

This means that for each C ∈ (0;D/2), we have
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σn ≥ C

a
if |ka| <

D/2 − C
∥∥∥M − E

∥∥∥+ 1

which concludes the proof.
We now turn to the first six singular values. We do not estimate all of them, it is

sufficient to look only at the smallest one, σ1.

Lemma 5.2 Let k ∈ C be such that Im
(
−ikM (g,k)

)
is a definite matrix for each

g ∈ G. For each γ ∈ G̃, the smallest singular value σ1 can then be estimated by

σ1 (γ,k) ≤
∣∣∣∣1 − kn (γ)

|k|
∣∣∣∣
∥∥∥Im
(
−ikM

)∥∥∥+ C1

∥∥∥Re
(
−ikM

)∥∥∥ ,

where kn (γ) is a real eigenvalue defined by the eigenproblem

(
rot + [iγ×]) JŨ = ikn(γ)Im

(−ik

|k| M(g,k)

)
Ũ,

(div + (iγ·))
[

Im

(−ik

|k| M (g,k)

)
Ũ

]
= 0 (5.6)

and

C1 = 1 +
∣∣∣∣
kn (γ)

k

∣∣∣∣ cond
(

Im
[
−ikM

])
,

where the condition number of an invertible matrix A is cond (A) = ∥∥A−1
∥
∥ · ‖A‖.

The proof is quite elaborate and is omitted here (see [240] for details). Notice
how an auxiliary self-adjoint eigenvalue problem using only the imaginary part of

−ikM is formulated in order to estimate the singular values. This eigenvalue prob-
lem is well posed due to the results previously accounted for in this section and in
[237]. This estimate of the singular values is good for materials with small losses,
where the singular vectors correspond to only weakly damped waves propagating
in the structure. The importance of the estimate is that it provides an upper bound
for the singular value, which is necessary to give a lower bound on the energy con-

tained in the first modes. Note how Re
(
−ikM

)
, corresponding to the losses, enters

the estimate of the singular value as an additive term. This is similar to the result in
[239], where it is shown that the imaginary part of the spectrum of the correspond-
ing Maxwell operator does not exceed the norm of the conductivity, which is our

operator Re
(
−ikM

)
.

5.4 Reduced Number of Degrees of Freedom in the
Low-Frequency Limit

We now demonstrate that the estimates just derived can be used to show that under
certain conditions, only a few of the modes indicated by the eigenvalue or singular
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value expansion survive. Starting with the eigenvalue expansion, it is seen that the
amplitude of mode n is proportional to

F̃tn =
t∫

−∞

∑

n1,n2,n3

�F(g + gn1,n2,n3 ,τ)ei
[
kn(γ)τ−(γ·(g+gn1,n2,n3 )

)]
dτ.

As t → ∞, it is clear that F̃tn → F̃ (g,γ,kn (g)), which is constructed from the
temporal Fourier transform of �F (g,t) evaluated at frequency kn (γ). For n > 6, we
have concluded that kn is proportional to 1/a (kn ∝ 1/a) as a → 0. This means
that if the currents are band-limited in frequency, in the respect that F̃ (g,γ,k) = 0 if
|k| > K0, then there exists an A such that

F̃ (g,γ,kn (γ)) = 0 for n > 6 and a < A.

Thus, if we consider the stationary response to a sufficiently band-limited
excitation, we have

lim
t→∞

�U (g,t) =
6∑

n=1

1
∣∣
∣G̃
∣∣
∣

∫

G̃

ei[(γ·g)−kn(γ)t] (−F̃,Ũn
)

Ũn (g,γ) dvγ

that is, the field has only six degrees of freedom, corresponding to the avail-
able polarizations of the electric and magnetic fields. The fact that we do not
have to let the period a become infinitesimally small is a first indication that we
can obtain homogenized material parameters without letting the scale difference
between structure and excitation become infinite.

Some words should be said about the relation to real signals. In reality, a signal
never exactly satisfies the criterion to be zero for high frequencies, but can often be
considered small enough. Also, the limit t → ∞ above does not have to be taken
literally, since after some finite time all transient processes can be considered small
enough to allow us to focus on the stationary response. We do not give the details of
this refined modeling.

Going to the general case of dispersive bianisotropic media, we first consider
the classical homogenization, where the scale difference is infinite. The following
statement shows that the energy contained in the higher-order modes is negligible
compared to the energy in the first six modes.

Statement 5.4 (infinite wavelength) Let the currents �F(g) be band-limited in spatial

frequency; i.e., the Fourier transform
�
F (γ) = 0 if |γ| > K0, where K0 is a fixed

wave number. For a given C ∈ (0;D/2) with a, k, and K0 restricted by

|ka| <
D/2 − C

∥∥∥ M − E
∥∥∥+ 1

and K0a <
D

2
,



5.4 Reduced Number of Degrees of Freedom in the Low-Frequency Limit 351

the estimate

∥∥∥
∑∞

n=7

∫
G̃

ei(γ·g)

σn

(−F̃,Ṽn
)

Ũndvg

∥∥∥
2

∥∥∥
∑6

n=1

∫
G̃

ei(γ·g)

σn

(−F̃,Ṽn
)

Ũndvg

∥∥∥
2
≤ a2

C2

(
K0 +

∥∥∥ kM
∥∥∥
)2

holds.

This shows that as K0a → 0, only the first six modes contribute to the field.
This is the regime of classical homogenization, where the wavelength of the applied
field is much larger than the size of the microstructure. In order to find informa-
tion on the situation for finite-scale difference, we need to be a bit more careful
with our estimates, and show that the first six modes actually contain more of the
electromagnetic energy than the statement above suggests.

We start by demonstrating the typical effect of the lowest singular value, and
show that an integral over G̃ can be estimated from below by an integral over the
region where the singular value is small.

Lemma 5.3 Let kn (γ) be defined from the problem (5.6). Let Γ denote the set of
γ ∈ G̃ such that kn (γ) = |k| for some n, i.e., a surface in G̃. Assume this set is
nonempty and that the eigenvalue function kn (γ) can be linearized near γ0 ∈ Γ as

kn (γ)

|k| = 1 + α (γ0) (�n · (γ− γ0)) + o (|γ− γ0|) ,

where �n is a unit normal to the surface Γ. Further assume there exists r such that
|α (γ0)| /a < r independent of γ0 and a. For a dimensionless parameter δ > 0,
assume

(
1 + (1 + δ) cond

{
Im
[
−ikM

] }) ∥∥∥ Re
[
−ikM

] ∥∥∥ ≤ δ

∥∥∥ Im
[
−ikM

] ∥∥∥ . (5.7)

Then the following estimate holds, under the conditions of Lemma 5.2:

∫

G̃

f (γ) dvγ

σ1 (γ,k)2
≥ 1

δ

1/r

2
∥
∥∥ Im
(
−ikM

) ∥∥∥
2

1

a

∫

Γ̃

f (γ̃0)dSγ̃0 ,

where f (γ) is a continuous, nonnegative function of γ, and Γ̃ is a set close to Γ,
satisfying dist (Γ,Γ̃) = supγ0∈Γ inf

γ̃0∈Γ̃
|γ0 − γ̃0| < δ/(ra) (see Fig. 5.3).

The proof of the lemma can be found in [240] and is omitted here. The idea
of this lemma is to be able to estimate the action of the lowest singular value
over the unit cell in a more precise way than the obvious estimate

∫
G̃ f /σ2

1dvγ ≥(
inf σ−2

1

) ∫
G̃ fdvγ, which has the problem that it does not scale favorably with the

size of the unit cell and only leads to the classical homogenization case. The lemma
states that for a suitably regular function f (γ), the integral of f /σ2

1 over the entire
reciprocal unit cell G̃ is bounded below by a constant multiplying an integral of f
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Fig. 5.3 The surfaces Γ and
Γ̃ in the reciprocal unit cell
G̃. Only a two-dimensional
representation is shown here,
making the surfaces become
curves. The distance between
two surfaces is defined as the
supremum of the infimum of
the distance between two
arbitrary points on each
surface. The surface Γ is
defined by the equation
kn (γ) = |k|, δ is a parameter
of choice, and r corresponds
to the largest linear variation
of the eigenvalue kn (γ)

orthogonal to the surface Γ

over a region close to a surface where σ1 is small. This means that a large part of
the contribution to the integral comes from the region where the singular value σ1 is
small, which makes intuitive sense. The importance of the lemma lies in the possi-
bility of choosing a number δ > 0, which will help in controlling the scaling of the
result with unit cell size a. In the following statement, we also assume that the func-

tion f (γ) = ∣∣(−F̃,Ṽ1
)∣∣2 ≤ ∥∥ F̃ (·,γ)

∥∥2
L2(G) is regular enough to allow the additional

estimate 1
a

∫
Γ̃ f (γ) dSγ ≥ Cf

∫
G̃ f (γ) dvγ, that is, the integral over the surface Γ̃ can

be bounded below by a constant multiplying the integral over the entire reciprocal
unit cell. Note that the scaling of the surface integral by 1/a makes the constant Cf

dimensionless.

Statement 5.5 (finite wavelength) Choose δ > 0. Let k ∈ C be such that

Im
(
−ikM (g,k)

)
is a definite matrix for each g ∈ G, (5.7) is satisfied, and

|ka| <
D/2 − C
∥∥∥M − E

∥∥∥+ 1

for some C > 0. Further assume that
∣∣(−F̃,Ṽ1

)∣∣2 is a continuous function of γ and
there is a dimensionless constant Cf independent of a such that

1

a

∫

Γ̃

∣∣( − F̃,Ṽ1)
∣∣2 dSγ ≥ Cf

∫

G̃

∥∥F̃
∥∥2

dvγ

where Γ̃ is defined in Lemma 5.3. Then the estimate
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∥∥
∥
∑∞

n=7

∫
G̃

ei(γ·g)

σn

(−F̃,Ṽn
)

Ũndvγ
∥∥
∥

2

∥∥∥
∑6

n=1

∫
G̃

ei(γ·g)

σn

(−F̃,Ṽn
)

Ũndvγ
∥∥∥

2
≤ 2ra2

C2Cf

∥∥∥ Im
(
−ikM

) ∥∥∥
2
δ

holds, where r is defined in Lemma 5.3.

From this estimate we see that the energy can be contained in the first six modes

in the limit of vanishing size of the unit cell a → 0 even if Im
(
−ikM

)
scales

as 1/a. This requires that we let δ scale as aε with ε > 0, which can be done if∥∥∥ Re
(
−ikM

) ∥∥∥
/∥∥∥ Im

(
−ikM

) ∥∥∥ ∝ aε. This is actually a quite common case, and

corresponds to the losses becoming zero in the high-frequency limit. Consider for

instance the case of a conductivity model, M(k) = M0 + M1/(−ik), where M0

is a positive definite hermitian symmetric matrix, and M1 is a positive semidef-

inite hermitian symmetric matrix. For real k, we then have Re
(
−ikM

)
= M1

and Im(−ikM) = −kM0. Letting the frequency scale as k ∝ 1
/

a then implies∥
∥∥ Re
(
−ikM

) ∥∥∥
/∥∥∥ Im

(
−ikM

) ∥∥∥ ∝ a, corresponding to ε = 1. This can be seen

as letting the scale a become smaller than the skin depth. Additional examples of
dispersive models satisfying corresponding relations between the real and imaginary
parts are Debye and Lorentz models [240].

The statements of this section have demonstrated a particular combination of
circumstances that make the number of modes contributing to the electromagnetic
energy in a periodic structure becoming at most six. In short, the result is that if the
structure supports propagating waves, a situation which requires small losses, only
a few waves can be generated if the frequency is low enough. We now turn to the
implications of this, and show that the reduced number of degrees of freedom can
be used to compute homogenized material parameters.

5.5 Computation of Homogenized Parameters

Homogenization is the procedure of calculating effective material properties, such
that they predict the same large-scale scattering characteristics as the true, micro-
scopic material parameters. This corresponds to forgetting the fine details of the
microstructure, but remembering the large, coherent effects. The homogenized
material matrix can be defined by the property

〈
MŨ
〉
= M

hom 〈
Ũ
〉
, (5.8)

where the averaging operator was defined in (5.2). Thanks to the reduced number of

degrees of freedom shown previously, the matrix M
hom

can not only be defined but

also computed, provided the set of averaged modes
{ 〈

Ũn
〉 }6

n=1 are linearly indepen-
dent. That they are linearly independent can be shown by considering the finite sum
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Ũ = ∑6
n=1

(−F̃,Ṽn
)

Ũn. If we choose currents that do not vary on the scale of the

unit cell, F̃ (g,γ) = F̃ (γ), this reduces to Ũ =∑6
n=1 −

(〈
F̃
〉 · 〈Ṽ∗

n

〉)
Ũn. If

{ 〈
Ṽn
〉 }6

n=1
were linearly dependent, we could choose currents such that

(〈
F̃
〉 · 〈Ṽ∗

n

〉) = 0 for all
n. But we know a priori from the well-posedness of Maxwell’s equations that if
F̃ is nonzero, then the electromagnetic field Ũ must also be nonzero, hence the set

of constant six-vectors
{ 〈

Ṽn
〉 }6

n=1 must be linearly independent. In the following
sections, we also demonstrate that they are not only linearly independent but also
mutually orthogonal.

5.5.1 Lossless Case

In the lossless case, the degrees of freedom can be derived from the eigenvalue
problem (5.3). Taking the mean value of this equation and using the definition of
the homogenized matrix (5.8) we find

[
iγ× J

〈
Ũn
〉] = ikn

〈
MŨn

〉
= iknM

hom 〈
Ũn
〉
, n = 1,...,6.

This demonstrates that the mean values of the first six eigenvectors are eigen-
vectors of a generalized eigenvalue problem involving the homogenized matrix

M
hom

(γ) for each fixed γ ∈ G̃. Remember that the first two modes correspond
to the static modes with kn (γ) = 0 for all γ. From the above expression it is clear
that the mean value of these eigenvectors must be proportional to γ, whereas the

mean values
〈
MŨn

〉
are orthogonal to γ. A continued line of reasoning as in [237]

shows that all modes are mutually orthogonal in the respect
〈
MŨm

〉H 〈
Ũn
〉 = 0 when

m �= n, where we identify the mean values of the eigenvectors with ordinary col-
umn vectors. Using this orthogonality, the homogenized material parameters can be
represented as [237]

M
hom

(γ) =
6∑

n=1

〈
MŨn

〉 〈
MŨn

〉H

〈
MŨn

〉H 〈
Ũn
〉 .

Note that this matrix is defined in terms of averages of the modes, that is, there
is an implicit dependence on the eigenvalues kn (γ), and also on the wave vector
γ ∈ G̃.

Considering the special case of propagating waves in nonmagnetic media with
no free charges, that is, excluding the static modes, the eigenproblem (5.3) takes the
form

(
rot + [iγ×]) [(rot + [iγ×]) Ẽn

] = kn (γ)2 εẼn. It is then straightforward to
show that the homogenized permittivity can be written as [244]
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ε
hom

(γ) =
2∑

n=1

|γ|2
kn (γ)2

〈
Ẽn
〉 〈

Ẽn
〉H

∣∣〈Ẽn
〉∣∣2

.

Here, the numbering differs from the previous convention, since here only two
propagating modes corresponding to the lowest eigenvalues k2

n are necessary to
represent the permittivity. This demonstrates that the homogenized permittivity is
directly associated with the phase slowness γ/kn (γ) for each mode. This does not
contradict the standard conclusion that it is the group velocity ∂kn (γ) /∂γ which
is associated with effective properties for a pulse signal. Since the homogenized

material properties ε
hom

(γ) depend on the wave vector, it can be shown that the
homogenized material satisfies the same dispersion relation as the original heteroge-
neous structure. Hence, it has the same group velocity as well, which is the relevant
velocity for a narrow-band wave packet.

One challenge with the homogenized material properties is that they depend
on the wave vector γ, making the medium exhibit spatial dispersion. This is not
straightforward to use in scattering problems, since the spatial dispersion implies
nonlocal constitutive relations which are not easily implemented in boundary con-

ditions. For a fixed propagation direction
�γ = γ/ |γ|, it is formally possible to

represent the material in terms of temporal dispersion instead. Assuming the relation

k = kn (γ) = kn(
�γ |γ|) = k

�γ
n (|γ|) can be inverted to give |γ| = γn (k) (assuming all

parameters are real), we can write

ε
hom, �γ

(k) =
2∑

n=1

[
γn (k)

]2

k2

〈
Ẽn
〉 〈

ẼH
n

〉

∣∣〈Ẽn
〉∣∣2

,

which, at least formally, can be considered as a temporally dispersive medium.
However, the restriction to a fixed propagation direction still implies a spatial
dispersion.

The eigenvalue problem defining the modes in the lossless case is well explored,
and standard computational tools exist, especially from the photonic bandgap com-
munity. Some general-purpose commercial solvers implement periodic boundary
conditions and allow for convenient postprocessing, such as calculating the mean
of the eigenvectors. In the examples of this section, we make frequent use of the
program described in [242], which is a freely available software and works on many
platforms.

5.5.2 Dispersive Case

For the general case with dispersive material properties, we have mutual orthog-

onality between the vectors
{ 〈

Ũn
〉 }6

n=1 and
{ 〈

Ṽn
〉 }6

n=1, respectively. This can be
seen by applying the mean value operator on the equations (5.5) defining the sin-
gular values. Having concluded the existence of a homogenized matrix satisfying
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〈
MŨn

〉
= M

hom 〈
Ũn
〉

for the first six modes, the result is

⎧
⎪⎨

⎪⎩

[
iγ× J

〈
Ũn
〉]− ikM

hom 〈
Ũn
〉 = σn

〈
Ṽn
〉

− [iγ× J
〈
Ṽn
〉]+ ik∗

(
M

hom
)H 〈

Ṽn
〉 = σn

〈
Ũn
〉 , n = 1,...,6,

which is identified as the singular value decomposition of a 6×6 constant matrix
[
iγ× J

] − ikM
hom

. This in turn implies that the singular vectors
〈
Ũn
〉

and
〈
Ṽn
〉

are
mutually orthogonal, and we can represent the homogenized material matrix as

M
hom =

6∑

n=1

〈
MŨn

〉 〈
Ũn
〉H

〈
Ũn
〉H 〈

Ũn
〉 .

In contrast to the lossless case, where the local problem from which the homog-
enized material matrix is computed can be solved with standard methods, there
does not seem to exist similar standard methods for computing the singular value
decomposition of a partial differential operator. In principle, we could for instance
make use of a finite element discretization of the operator, and apply standard linear
algebra packages to the resulting system matrix. Since only the first six singular val-
ues are actually needed, a method which computes only the lowest singular values
should be chosen.

5.6 Results for Sample Structures

To demonstrate the results of the homogenization procedure laid out in this chapter,
we look at a few sample structures. At the present level of computational means,
only structures consisting of isotropic dielectrics can be treated. However, any gen-
eral program with periodic (or quasi-periodic) boundary conditions can be used as
long as it can export the relevant data. In the following examples, we make frequent
use of the freely available program described in [242].

5.6.1 Laminated Media

In [245] it is shown that for a laminated structure, the following analytic expressions
for the dispersion relation can be derived for a laminated geometry as in Fig. 5.4,
depending on polarization:

cos (kza) = cos (k1a1) cos (k2a2) − 1

2

(
k1

k2
+ k2

k1

)
sin (k1a1) sin (k2a2)

(for E-polarization when the electric field is orthogonal to the plane spanned by the
propagation direction and the normal direction to the laminates) and
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Fig. 5.4 (a) Geometry and reciprocal unit cell for the laminated structure. (b) The dispersion rela-
tions kn (γ) as γ passes through points of symmetry in the unit cell. The exact dispersion relations
are the solid lines, and the asymptotic approximations leading to (5.9) and (5.10) are the dashed
lines. The upper graphs correspond to E-polarization, and the lower are for H-polarization. The
plots are for a low contrast case where ε1/ε2 = 2 and f1 = f2 = 0.5

cos (kza) = cos (k1a1) cos (k2a2) − 1

2

(
ε2k1

ε1k2
+ ε1k2

ε2k1

)
sin (k1a1) sin (k2a2)

(for H-polarization). Here k1,2 =
√

ε1,2k2 − k2
xy, kxy is the wave number parallel

to the laminates, and kz the wave number in the normal direction to the laminates.
These exact relations can be solved asymptotically to find asymptotic formulas for
the effective permittivity as

εhom = f1ε1 + f2ε2 + 1

12

(ε1 − ε2)
2 (f1f2)2

f1ε1 + f2ε2

((
kxya
)2 + (kza)2

)
+ O
(

ka4
)

, (5.9)

εhom =
[(

f1
ε1

+ f1
ε1

)
sin2 θ+ 1

f1ε1 + f2ε2
cos2 θ

]−1

+ 1

12

(ε1 − ε2)
2 (f1f2)2

f1ε1 + f2ε2
×

×
⎡

⎣
(f1ε1+f2ε2)

2

ε1ε2
sin2 θ− cos2 θ

(
f1
ε1
+ f1

ε1

)
(f1ε1 + f2ε2) sin2 θ+ cos2 θ

⎤

⎦

2

((
kxya
)2 + (kza)2

)
+ O
(
(ka)4) ,

(5.10)

where the propagation angle θ is defined as

cos2 θ = k2
z

k2
xy + k2

z
.

The leading terms in the expressions (5.9) and (5.10) are the effective permittivi-
ties predicted by the classical homogenization approach, where the scale difference
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is infinite corresponding to ka → 0. It is seen that the leading term in the first
expression is isotropic, in the respect that it does not depend on the direction of
propagation. This is expected since in this case the electric field is tangential to the
laminates, and therefore the leading term is simply the arithmetic mean value of
the permittivities, as classical homogenization suggests. In the second expression
however, the leading term is identified as the effective permittivity for an extraordi-
nary wave propagating in a uniaxial medium, which does depend on the direction
of propagation. The extraordinary wave is composed of two effective permittivities:
one with the arithmetic mean of the permittivities, and another with the harmonic
mean, where the harmonic mean corresponds to the polarization where the electric
field is normal to the laminates.

In both expressions, the correction terms are proportional to (ε1 − ε2)
2 f1f2,

which demonstrates that the spatial dispersion is small when the contrast is small
or the volume fraction of one of the materials is small. An interesting detail is that
the correction term in (5.10) is zero for the particular propagation angle

θ = arc tg
√

ε1ε2

f1ε1 + f2ε2
.

This means this angle corresponds to a direction of minimal spatial dispersion
when the electric field is not orthogonal to the lamination direction. For both polar-
izations, we see that the correction term is positive, implying that the phase velocity
is lowered when ka is small but not negligible.

In Figs. 5.4 and 5.5 we have plotted the exact dispersion relations together with
the asymptotic dispersion relations leading to (5.9) and (5.10). It is seen that the
asymptotic expressions, keeping only the first-order correction term in ka, approxi-
mates the true dispersion relation very well for weak contrasts, whereas it may fail
miserably for higher contrasts. We also note that the H-polarization is more sensitive
to the spatial dispersion than the E-polarizations.

5.6.2 Validity of Classical Homogenization

Here we give some results for a few structures which can be identified as macro-
scopically isotropic in the classical homogenization limit [246]. We compare
the wave-vector-dependent homogenized material parameters with the classical
homogenization results. The following three cases are considered.

• A two-dimensional checker board structure as in Fig. 5.6. This structure has
a well-known exact solution in the classical homogenization limit. For elec-
tric fields normal to the plane, the effective permittivity is the arithmetic mean,
εhom = (ε1 + ε2) /2, and for electric fields in the plane, it is the geometric mean
εhom = √

ε1ε2.
• An assemblage of spherical shells as in Fig. 5.7. This structure is a common engi-

neering case, where the Maxwell–Garnett (also known as Hashin–Shtrikman)
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Fig. 5.5 Dispersion relations kn (γ) for a laminated structure corresponding to Fig. 5.4 for the
contrasts (a) ε1/ε2 = 10 and (b) ε1/ε2 = 50. It is seen that for the highest contrast, there is a
large region where the asymptotic solution (dashed curve) fails to approximate the true dispersion
relation for one of the polarizations

mixing formula is often a good approximation in the classical homogenization
limit.

• A scaffold structure as in Fig. 5.8. This structure is interesting since it has a
bandgap, as illustrated in the previous Fig. 5.1.

The results for finite scale homogenization are computed using postprocessing
of data from the freely available program described in [242]. In all three cases, we

look at the deviation of the classical homogenization result ε
hom

(0) from the finite

scale homogenization result ε
hom

(γ), and define the error for the polarization p as

δ =
∣∣∣εhom

p (0) − εhom
p (γ)

∣∣∣
/∣∣∣εhom

p (γ)

∣∣∣, where εhom
p is the scalar permittivity value

corresponding to a fixed polarization p.
For all of these structures, we see that the error when using the classical homog-

enization method is approximately less than 10% if the contrast is lower than 10
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Fig. 5.6 The relative deviations δ depending on ε1/ε2 and �k = {kx,ky,kz
}

:
∣
∣
∣�k
∣
∣
∣ = k for a

checkerboard structure. The exact value for the classical homogenization is (ε1 + ε2) /2 for elec-
tric fields orthogonal to the plane, and

√
ε1ε2 for electric fields in the plane: (a) E-polarization

(b) H-polarization

Fig. 5.7 The relative deviations δ depending on ε1/ε2 for a structure of spherical shells: (a) The
geometry, where spherical shells with outer radius 0.3a are arranged in a cubic lattice; (b) the
results for a wave propagating along a main coordinate axis is given (the results are the same for
E- and H-polarizations due to symmetry)

[246], even when the period is a considerable fraction of the wavelength. This
demonstrates that the classical homogenization works surprisingly well even when
the wavelength is comparable to the size of the unit cell, provided that the contrast
is small. This corresponds well to the analytical results in (5.8) and (5.9), where it
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Fig. 5.8 (a) Scaffold structure, which is the same as in Fig. 5.1. (b) The relative deviations δ

depending on ε1/ε2 for a wave propagating along a main coordinate axis. As in Fig. 5.7, the results
for E- and H-polarizations are similar due to symmetry

is seen that the term corresponding to the spatial dispersion is multiplied by a factor
directly linked to the contrast.

On the other hand, if we want to design materials which should exhibit strong
spatial dispersion, we see from these results and the analytic results in equations
(5.9) and (5.10) that strong contrasts should be employed. This is natural, since
strong contrasts correspond to strong interaction between the electromagnetic field
and the structure.

5.6.3 Results for a Chiral Structure

A classical method of synthesizing macroscopically chiral materials is by embed-
ding spiral inclusions in an isotropic background medium. This was first attempted
by Lindman in 1914 using metallic coils, all wound the same way as the chiral
inclusions [247]. The result was a material with different properties for left- or right-
hand circular polarization. In Fig.5.9a, unit cell with similar spirals is shown. This
structure is analyzed using the homogenization procedure presented in this chapter.

Chiral structures have classically been modeled in many different ways. In Table
5.1 we list the three most common models for isotropic media, Tellegen/Pasteur,

Table 5.1 Three common models for chiral media. If χ �= 0 and κ = 0 we have the Tellegen
medium, and if χ = 0 and κ �= 0 we have the Pasteur medium, which is what is usually meant by
a chiral medium

Tellegen/Pasteur Post Drude-Born-Fedorov

�D = εT �E + (χ+ iκ) �H εP �E + iξ�B ε
(�E + βrot�E)

�B = (χ− iκ) �E + μT �H μP( �H − iξ�E) μ
( �H + βrot �H)
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Fig. 5.9 Results for a chiral
structure, where the
horizontal axis in (b to d)
corresponds to the wave
vector γ: (a) The analyzed
geometry; the computed
parameters (b) ε (solid line),
μ (dashed line); and (c) β1/a
(solid line), β2/a (dashed
line); (d) the errors δε (solid
line) and δμ (dashed line) of
the parameter fit, which is
almost entirely due to the
slight non-isotropy of the
structure (a)
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Post, and Drude-Born-Fedorov (DBF). In source-free regions, all three models can
be expressed in terms of each other using Maxwell’s equations. This presents the
interesting question which model should be considered the most correct one.

The Tellegen/Pasteur and Post models differ from the DBF model in the respect
that they introduce a coupling between the electric and magnetic fields directly in
the constitutive relation, whereas the DBF model introduces a dependence on the
spatial derivatives on the fields instead.

We start by demonstrating that when the spirals are made of lossless dielectrics
or PEC, the symmetry argument shown in Section 5.2.3 implies that there can be no
coupling between the electric and magnetic field in the constitutive relation, in the

respect that ξ
hom = 0 and ζ

hom = 0 [248]. The symmetry relation states that if Ũn =
[
Ũne,Ũnh

]T
is an eigenvector with eigenvalue kn, then so is Ũñ = [Ũñe, − Ũñh

]T

with eigenvalue kñ = −kn. From this relation, it is seen that ξ
hom = 0, since we

have

ξ
hom

=
6∑

n=1

〈
εẼn

〉 〈
μH̃n
〉H

(〈
εẼn

〉H 〈
Ẽn
〉
)
+
(〈
μH̃n
〉H 〈

H̃n
〉)

=
3∑

n=1

〈
εẼ2n−1

〉 〈
μH̃2n−1

〉H +
〈
εẼ2n−1

〉 〈−μH̃2n−1
〉H

(〈
εẼ2n−1

〉H 〈
Ẽ2n−1

〉)+
(〈
μH̃2n−1

〉H 〈
H̃2n−1

〉) = 0

with the same conclusion for ζ
hom = 0. Thus, using this simple symmetry argument,

we see that our homogenization method can never predict the Tellegen/Pasteur or
Post model of any chiral structure. The only model left for consideration is then the
DBF model.

This does not mean that there cannot be any chiral effects. Since the homoge-
nized material parameters depend on the wave number γ, the most general isotropic

homogenized permittivity that can be allowed is (where we must subtract
�γ �γ from

the identity matrix in order to account for the fact we only consider polarizations
orthogonal to the propagation direction)

ε
hom

(γ) = ε
(

E − �γ �γ + [βiγ×]
)

.

Since an inverse Fourier transform of this implies �D = ε(�E + βrot�E), this is
equivalent to the Drude-Born-Fedorov model. With the homogenization method
presented in this chapter, the calculation of the homogenized material parameters

M
hom

(γ) =
[
ε

hom
(γ) ,0;0,μ

hom
(γ)
]

is unbiased by any model. Since the structure

is macroscopically isotropic, we attempt to fit the parameters in the models
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ε
mod

(γ) = ε
(

E − �γ �γ + [β1iγ×]
)

, μ
mod

(γ) = μ
(

E − �γ �γ + [β2iγ×]
)

,

which are the most general isotropic models orthogonal to the propagation direc-

tion. Since
[
iγ× 〈Ẽ〉] corresponds to rot�E, we see that the combination of ε

mod
(γ)

and μ
mod

(γ) corresponds to a generalized DBF model with different β-factors for
the electric and magnetic field, respectively. The parameters are calculated from

the material parameters ε
hom

and μ
hom

computed from the unbiased finite scale
homogenization using the formulas

ε= tr
(
ε

hom
)

/2, εβ1 = tr
[
iγ× ε

hom
]
/2, μ = tr

(
μ

hom
)

/2, μβ2=tr
[
iγ× μ

hom
]
/2,

which are exact if the model is correct. Here, tr
(
ε

hom
)

denotes the trace of the

matrix ε
hom

, i.e., the sum of the diagonal elements. The error in the parameter fit is
measured as

δε =
∥∥∥ε

mod − ε
hom
∥∥∥

∥∥∥ε
hom
∥∥∥

, δμ =
∥∥∥μ

mod − μ
hom
∥∥∥

∥∥∥μ
hom
∥∥∥

.

The results are depicted in Fig. 5.9. It is seen that in general the chirality
parameters β1 and β2 are different, and in particular when studying the classical
homogenization limit of vanishing wave vector γ we have

β1 → β0 �= 0 and β2 → 0 as |γ| → 0.

The value β0 is in the order of 0.04a, and depends on in which direction the origin
is approached. This does not contradict the isotropy of the material, since as soon
as the propagation direction is fixed and the wave number is not zero, the symmetry
is broken. Since the β-factors are multiplied by the wave number, their contribution
vanish in the classical homogenization limit where the wave number is taken to be
zero.

An interesting note on this result is that this suggests that in the limit of infinite
scale difference, our homogenization method predicts a modification of the Drude-
Born-Fedorov model

�D = ε
(�E + βrot�E) , �B = μ0 �H,

which is actually Born’s original model [249, 250].
In Fig. 5.9 we can see that the magnetic response in terms of the permeability μ

is identically one for all wave numbers, whereas the corresponding β-factor varies
as a function of the wave vector. The errors in the parameter fit are small, and are
mostly due to the fact that the structure is not completely isotropic, since the spirals
are realized using rectangular blocks.
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5.7 Conclusions

In this chapter, we have presented a means for computing effective material param-
eters for a broad class of structures. Any bianisotropic structure can in principle be
treated, but the range of validity has only been proven in a restricted sense, where
the estimates typically depend on the contrast of the materials.

Several examples of applying the method to specific structures have been pro-
vided. Most of them are concerned with classical electric material properties,
described by a permittivity depending on the wave vector of the applied field, cor-
responding to spatial dispersion. This may provide useful models for predicting
qualitative features of the electromagnetic field, but is not straightforward to apply
in a scattering computation, since then the boundary conditions need to be treated
with extra care.

As a particular case, we have demonstrated that a chiral structure made up of spi-
rals all wound the same way can be modeled with a modified Drude-Born-Fedorov
model, where in the long wavelength limit only the curl of the electric field con-
tributes to the electric flux density but the magnetic properties are not affected. This
is Born’s original model of optically active media.
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The List of the Symbols and Abbreviations

Rn and G ⊂ Rn n-dimensional Euclidean space and domain
G in it

g and p Points of the space R3 or R2; x, y, z –
Cartesian coordinates; ρ, φ, z – cylindrical
coordinates; r, ϑ, φ – spherical coordinates

t and τ; (0; T), T < ∞ Time variables; the observation interval
�E ≡ �E (g,t) = {Ex,Ey,Ez

}
and

�H ≡ �H (g,t) = {Hx,Hy,Hz
} Vectors of the electrical and magnetic field

η0 = (μ0/ε0)1/2, ε0, and μ0 Free space impedance, electric and magnetic
vacuum constants

σ0 (g), ε (g), and μ (g);
σ = η0σ0

Specific conductivity, relative dielectric
permittivity, and magnetic conductivity for a
locally inhomogeneous, isotropic,
nondispersive medium

Q Unbounded domain of analysis in boundary
value and initial boundary value problems;
QT = Q × (0;T)

R = {g ε R2 : 0 < y < l} and
R = {g ε R3 : 0 < x < lx;

0 < y < ly
}

Parallel-plane and rectangular Floquet
channels

Qa Bounded subdomain of the domain Q;
aQ = Q\Q̄a is a complement of Q̄a up to Q

Ḡ, G ∪ Q, G ∩ Q, and G\Q Closure, union, intersection, and difference
of sets

Cn (G) Class of functions that are continuous
together with all their derivatives including n
order in G

D(G) Sets of finite and infinitely differentiable in
G functions

367Y.K. Sirenko, S. Ström (eds.), Modern Theory of Gratings, Springer Series in Optical
Sciences 153, DOI 10.1007/978-1-4419-1200-8,
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D̃ (G) Space of generalized functions (linearly
continuous functionals) on the space of
fundamental functions D(G)

(f ,γ) Value of functional (generalized function f )
on fundamental function γ ∈ D (G)

D̃r (G) Class of regular (locally integrable)
generalized functions

Ln (G) Space of functions f(g), g ε G, for which
function |f(g)|n is integrable in G

Wl
m (G) Set of all the elements f(g) from Lm (G),

having generalized derivatives up to the
order l, including, from Lm (G)

L2,1
(
GT
)

Space containing all elements
f(g,t) ∈ L1

(
GT
)

with finite norm

‖f‖ =
T∫

0

(
∫

G
|f |2 dg

)1/2

dt

◦
W1

2 (G) Subspace of space W1
2 (G), where D(G) is a

dense set
W1

2,0

(
GT
)

Subspace of space W1
2

(
GT
)
, where smooth

functions, equal to zero in the vicinity of
PT = P × (0,T) (P is a boundary of domain
G), is a dense set

C Plane of complex variable w or s
Ø Empty set

l2 ={
a = {an}: ∑

n
|an|2 < ∞

}
,

l̃2 ={
a:
∑

n
|an|2 (|n| + 1) < ∞

}
,

and
l2 (η) ={

a:
∑

n
|an|2 (1 + |n|)η < ∞

}

Spaces of infinite sequences a = {an};
l2 (1) = l̃2

U (g,t) and Ũ (g,k) Unknown functions of 2-D initial boundary
value problems and boundary value
problems, defining components of vectors of
field strength

vn (z,t), un (z,t), and so on Spatial–temporal amplitudes of pulsed
waves
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f̃ (k) ↔ f (t) Functions (image and original), relevant to
Laplace transform over s = −ik

k = 2π
/
λ and λ; κ = l

/
λ Wavenumber (frequency parameter or

simply frequency) and wavelength in a free
space; nondimensional frequency parameter

Ui (g,t) and Ũi (g,k) Functions, defining the components of the
vectors of the field density of incident wave

S and Sε,μ,σ Surfaces of break of properties of medium
where the excitation propagates –
boundaries of perfectly conducting and
dielectric scatterers

Sx and Sε,μ,σ
x Trace of the surfaces S and Sε,μ,σ in

coordinate plane x = const – boundary
contours of inhomogeneouties in 2-D initial
boundary value problems and boundary
value problems

intS Slosure of the domain, filled with perfectly
conducting scatterer or domain, bounded
with perfectly conducting surface S

k̃, α̃, β̃, T̃ , and T̄ Parameters of signals
ϕ (g), ψ (g), and F (g,t) Instant (ϕ (g) and ψ (g)) and current (F (g,t))

sources of signals and pulsed waves
Fj (t), j = 1,2,3,4 Functions, defining dynamic characteristic

of the sources
l (2π) and h (2πδ) The principal geometrical parameters of 1-D

periodic gratings: the length of a period and
height

RAA
np exp

[
i (Φny + Γnz)

]
and

TBA
np exp

[
i (Φny − Γn (z + h))

]
,

n = 0, ± 1, ± 2,...

Spatial harmonics of a scattered field in the
domain of reflected (A) and transmitted
fields (B) of grating; Φn= 2π (Φ+ n)

/
l,

Γn = √k2 −Φ2
n, ReΓnRek ≥ 0, ImΓn ≥ 0

K and F Infinitely sheeted Riemann surfaces of
variation of complex (nonphysical) values of
frequency parameter k and parameter Φ of
Floquet channel R

k±n = ± |Φn| and Φ±
n Branching points of surfaces K and F

(threshold points)
Ωk and ΩΦ Spectra of open resonators and waveguides

(eigenfrequencies and eigen propagation
constants)

k̄n and Φn Elements of spectral sets Ωk and ΩΦ
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u(j)
0

(
g,k̄n
)

and u(j)
0

(
g,Φ̄n
)

Eigenmodes and eigenwaves of periodic
open resonators and periodic directing
structures

km or kmj Cutoff frequency of mth wave in jth
waveguide

Wjq
np (k) Relative part of energy concentrate in the nth

waveguide mode in jth waveguide when pth
stimulating mode is coming from qth
waveguide

D (φ,k,M) and η (k) Normalized pattern of the radiator and its
efficiency

(f ∗ g); (f × g),
(
�a · �b
)

,
[
�a × �b

]
; f ∗

Operation of convolution, direct, scalar and
vector products; and complex conjugation

[a;b] and (a;b), {an} Close and open intervals, set of elements an

δ (...) and δ(m) (...) δ -Dirac function and its derivative of mth
order

δn
m Kronecker symbol

χ (...) Heaviside step function
χ
[
f1 (g)

]
χ
[
f2 (g)

]
...χ
[
fm (g)

]
Generalized step function, equal to unity on
the intersection G of sets
Gj =

{
g ∈ Rn: fj (g) ≥ 0

}
, j = 1,2,...m, and

equal to zero on Rn\G
G (...) Fundamental solution (Green function) of

differential operator
Jn (...), Nn (...), and H(1)

n (...) Bessel, Neumann, and Hankel cylindrical
functions

Pv (...) and Qv (...) (Pm
n (...) and

Qm
n (...))

Legendre functions (adjoint Legendre
functions) of the first and second kind

Re (w) and Im (w) Real and imaginary parts of the complex
value of w

Res f (wn) Residue of f (w) at a point w = wn

EACs Exact absorbing conditions
ABCs Absorbing boundary conditions
PMLs Perfectly matched layers
FD Frequency domain
TD Time domain
BVP Boundary value problem
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G
Gamma function, 79
Gaussian pulse, 282, 313, 315
Generalized functions theory, 201
Generalized resolvent operator, 341–342, 344
Generalized scattering matrices, 16, 96,

99–100
Geometrical resonance, 21, 278
G-periodic function, 339
Granet, G., 174
Grating–compact discontinuity, 33
Grating excitation, 267–268, 277, 279,

281, 298
Grating geometry, 275, 279, 283
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Grating mirrors, 27, 256–257
Grating period, 55, 106, 108, 115, 143, 151,

159, 185, 192, 264, 301, 305, 313–314
Grating polarization, 90
Grating strips, 132, 137, 147
Grating theory, 181, 212, 317
Grating transforms, 41
Grating transmission zone, 17
Grazing points, 19, 116, 318
Green’s function, 10, 13, 15, 25–26, 31–32,

158, 168, 170, 176, 202–203,
241–242, 245

canonic, 159
quasi-periodic, 33, 201

H
Hankel transformation, 236–237
Hashin–Shtrikman formula, see Maxwell–

Garnett mixing formula
Heaviside step function, 247
Helmholtz equation, 46, 54, 57, 105, 107, 130,

132, 147, 157, 159, 161, 175, 181
Hermitian symmetric matrix, 353
High-efficiency numerical models, 51
Hilbert–Schmidt operator, 71
Hilbert space, 50, 93, 110
Hilbert-type operator, 100
Hölder-like 2π-periodical class, 161–162
Homogeneous initial boundary value

problems, 225
Homogeneous isotropic media, 189
Homogeneous waves, 13
Homogenization, 335–339, 350–351, 356–361,

363–364
Homogenized material properties, 355
Homogenized matrix, 337, 353–356
Homogenized parameters, computation of,

353–356
dispersive case, 355–356
lossless case, 354–355

H-polarization, 8, 10, 109, 115, 125, 157, 175,
181–183, 185, 188–190, 192–193, 196,
205, 207–208, 209, 228, 271, 275–276,
278–279, 285, 357–358, 360–361

H-polarization vs. inverse of truncation, 188
H-polarized field, 107, 110, 122, 125, 181,

183–184, 196, 208, 213, 273
components of the, 3

H-polarized wave, 27, 117–119, 125, 128, 130,
143, 151, 207, 272, 275–276, 279

plane wave, 17, 20–21, 39, 205 , 274
pulsed waves, 270
quasi-monochromatic wave, 273, 277

I
Incidence angle, 20, 192, 209
Incidence of excitation wave, 17, 200
Incident wave, 16, 18–19, 21, 40, 103, 107,

117, 120, 123, 125–126, 130–131, 146,
151, 159, 207, 213, 257, 273–274,
276, 306

elliptic polarization of, 102, 126
Infinite-dimensional matrix operators, 63, 80
Infinite gratings, 212–227

large and remote field sources problems,
224–227

local absorbing conditions, 219–224
nonlocal absorbing conditions, 216–219
transformation of a signal in regular floquet

channel, 213–216
Infinite periodic gratings theory, 239
Infinite-sheeted Riemannian surface, 23, 136,

199
Infinite single-periodic gratings, 259
2-D initial boundary formulation, 15
Instant and current source functions, 5
Integral transform method, 54
Integrated radiation efficiency, 326
Interacting, 35, 37
Isometric isomorphism, 46
Isotropic chiral half-space, 102
Isotropic media, models for, 361
Iterative refinement procedure, 50

J
Jacobian matrix, 177, 186
Jalousie-type gratings, 54, 89

K
Kernel operator, 24, 136
Kernels analysis, 56
Kernel singularities, 56
Kernel splitting, 164
Klein–Gordon equations, 230
Koch matrix, 24
Kramers–Kronig relations, 336
Kronecker delta, 64, 93, 133, 339
Kronecker symbol, 52

L
Lamellar diffraction problem, 189
Laminated media, 356–358
Laplace operator, 3
Laplace transform, 11, 217, 231, 247, 339

inverse, 217, 231, 345
Lattice vectors, 339, 347
Laurent expansion, 242
Laurent series, 27
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Legendre functions, 238
Legendre polynomial, 61–62, 63, 67, 77, 79
Li, L., 174, 185
Limiting absorption, 22
Limiting amplitude principle, 22, 244, 280
Lindman, 361
Linear algebraic equation, 45, 64, 72, 90, 92,

94, 115, 122, 166
infinite system of, 56, 58, 61–62, 64, 69,

72, 78–80, 87, 91, 111, 130, 135,
146, 150

Lorentz lemma, 17–18
Low-frequency limit

degrees of freedom in the, 349–353
estimates of the eigenvalues, 345–349

M
Magnetic–electric interaction, 104
Magnetic flux density, 4
Magnetoactive plasma, 73, 79
Magnetodielectric filling, 107
Magnetodielectric layer, 102, 120, 127, 130
Matrix-formalism scheme, 98
Matrix operators, 11, 65, 69–70, 73–74, 79–80,

88, 100, 115, 134–135
Matrix perturbation, 64, 69
Maxwell equation, 1–2, 107, 174, 195

See also Helmholtz equation
Maxwell–Garnett mixing formula, 358–359
Maxwell’s operator, mathematical properties

of, 338–345
eigenvalue decomposition, 342–344
material case, 341–342
singular value decomposition, 344–345
vacuum case, 340–341

Maykov, A. R., 212
Meixner condition, 101, 110, 132, 146
Metamaterials, 56, 192
Microscopic, 337, 353
Microstrip antenna, chirality of, 102
Microstrip antenna substrates, 102
Microwave absorbers, 102
Microwave engineering, 38
Mirror image technique, 227
Mittag-Leffler theorem, 54, 91
Modal method by Fourier expansion

(MMFE), 184
Mode-conversion device, 102
2-D model configurations, 227
Monochromatic elliptically polarized plane

wave, 120
Monochromatic plane-wave interaction

process, 131

Monochromatic signal, 265, 281
Monochromatic wave, 257, 261, 265, 267, 273,

280, 286
Multilobe radiation patterns, 301
Multipole representations, 27

N
Narrow-band wave packet, 355
Near grating zone, 37
Neumann problems, 157
Nonhomogeneous waves, 13
Nonplanar strip grating, 197
Nonresonant antenna, 314–315, 317
Nonspecular reflection, 127
Nontransmission zones, 31
Numerical catastrophe, 47–49
Numerical solution technique, 44

O
One-to-one mapping condition, 156
Open periodic resonator (OPR), 204–205
Open periodic resonators theory, 26
Open resonator, 1, 27, 35, 37, 40, 130–131,

212, 239, 247, 249, 252, 256–258
Optical and spectroscopic devices, 269
Optically denser, 116
Optical modes, 346
Oscillation eigenfrequencies, 24
Outgoing waves, 176, 200–202, 225, 230

P
Parallel-plate waveguide, 90, 96–98, 100, 264,

274, 276, 285, 296, 298, 301, 306, 313,
317–319, 321, 333

Parseval equation, 75
Partial radiation condition, 13, 22, 287
Pattern-generating (PG) problem, 298
Perfectly matched layers (PMLs), 212
Periodic grating, 20, 54, 81, 106, 155, 204,

227, 287
1-D periodic gratings, 240
1-D periodic grating zone, 8
Periodic resonator, 24, 33, 34, 35, 241–242,

247, 251
1-D periodic structure, 15, 41
Permeability function, 189
Permittivity tensor, components of, 150
Phased antenna array, 304, 317–318
Phased array excitation, 328, 331
Phase incursion of field, 303
Phase velocity, 154, 358
Photolithographic masks, 192
Planar dielectric waveguide, 296, 298, 301
Planar half-filling strip grating, 98
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Planar waveguide-grating, 298
Plane monochromatic wave, 256, 265, 292

diffraction problem, 79
incidence, 144

Plane-wave scattering, 93
Plasma frequency, 150, 152–153
Plumey, J. P., 174
Poisson formula, 6, 227
Poisson integral, 222, 231
Polarization, 30, 32–33, 38–39, 102–103, 110,

115, 117, 122, 124–128, 130, 157,
181, 185, 190, 195, 207, 276, 346,
356–359, 361

Polarization conversion, 103, 124–125, 128
Polarization effects, 102
Polarizations of electric and magnetic fields,

336, 338, 350
Polarization transformation, 103, 125–127, 130

efficiency of, 126
Post’s formalism, 174
Poynting theorem, 17
Poynting vector, 30
Preist, T. W., 174
Principal polarization, 115–116, 119, 123–124
Principal-polarized field, 116, 118
Principal spatial harmonic, 22, 151, 278,

280, 282
Principle of prototype, 256–257
Pulse diagram, 287
Pulsed spatial harmonics, 284
Pulsed waves, 5, 229, 248, 259, 263, 270, 281,

284, 287, 328, 331–332
propagation, 223

Pulse radiation efficiency, 287

Q
Q-factor, 35–36, 39, 207, 263, 265, 269, 273,

276, 296, 306
diffraction, 35
of second-family oscillations, 36

Qualitative theory of ill-posed infinite
systems, 90

Quasi-monochromatic
component, 246, 249, 265, 269, 296
signal, 239, 250, 268
wave, 267, 273, 277, 280, 303–304

Quasi-optical devices, 32
Quasi-periodical, 179
Quasi-periodic distribution, 176
Quasi-periodic function, 159, 339–340
π-Quasi-periodic function, 158, 160
Quasi-periodicity

condition, 107–108, 326

parameter of, 156, 160
Quasi-periodic waves diffraction, 155–172

additive splitting of integral equation
kernel, 161–164

dirichlet diffraction problem, 158
integral equation kernel, 161–164
linear algebraic equations of the second

kind, 167
neumann diffraction problem, 167–172
reduction of dirichlet BVP, 158–161
reduction of the integral equation, 165–166

R
Radar and antenna units, 269
Radiating element geometry, 319
Radiation efficiency, 298, 301, 303–304,

306–307, 309–313, 316–317, 321, 326
Radiation zone, 41, 326, 333
Radiator

excitation of the, 307
efficiency, 301
excitation, 298, 300, 303–304, 308–310

Radio-engineering device, 27
Radio-physical community, 44
Radio physics, 27, 43–44, 211–212
Rarefied spectrum, 32
Rayleigh expansion, 108, 120, 176, 192
Rayleigh harmonics, 121
Rayleigh hypothesis, 27
Rayleigh radiation condition, 22
Real-valued scalar problem, 227
Real waves, 29–30, 37
Reciprocal lattice, 345, 347–348
Reflection and transition zone, 90, 269
Reflection and transmission coefficient, 20
Reflection and transmission zone, 22
Reflection coefficient, 18–20, 115–119, 131,

143, 151–154, 261, 286, 306
amplitude, 151
module, 151, 153–154
of principal polarization, 119
of principal-polarized field, 116

Reflection matrix, 16, 91
Regularization algorithm, 51, 55, 73, 80
Regularization theory of dual series

equations, 130
Reichardt radiation condition, 203
Resonance field, 155
Resonance frequency, 209
Resonances split, 125
Resonant antenna, 305–308, 313–314,

316–317
Resonant radiators, characteristics of, 305
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Resonant scattering of electromagnetic waves,
130–155

strip grating loaded with metamaterial
layer, 131–145

strip grating with anisotropic medium,
145–155

Resonant scattering theory, 242
Resonant spatial–frequency transformation, 25
Resonant wave scattering, 258–285

electrodynamical characteristics, 259–262
gratings in a pulsed wave field, 277–285
reflective grating, 269–277
semitransparent grating, 262–269

Resonant wave-scattering regime, 39
Resonator

electromagnetic characteristics of, 259
semitransparent mirrors of, 258

Resonator frequency characteristics, 249
Resonator layer, 130
Ribbon jalousie-type grating, 20
Riemann–Hilbert boundary, 64, 66, 111, 115
Riemann–Hilbert problem method, 54, 56–88,

122, 196
classical dual series equations, 57–63
dual series equations system, 80–88
matrix perturbation, 63–73
nonunit coefficient of conjugation, 73–79

Riemann–Hilbert scalar problems, 84
Riemann–Hilbert vector problem, 80, 82–84
Riemannian surface, 14, 23–24, 28, 30, 41,

136, 198, 202–204
Rouche theorem, 138
Rounding-off errors, 45
Rounding-off scheme, 49

S
Scalar setting, 335
Scattering characteristics, 33, 335, 353
Scattering matrices, 16, 96, 100, 183, 196
Scattering regime, 128
Second-order approximation, 262
Second-order derivatives, 11
Self-adjoint eigenvalue problem, 335–336, 349
Semi-inversion method, 53–55
Semi-sphere scanning, 90
Semitransparent grating, 19, 21, 158, 251,

262–265, 269–270, 291, 313–314, 316
mirror, 313–314

Sewing method, 54, 57
Shestopalov, V. P., 43
Single-periodic gratings, 56

diffraction problems of, 80, 88
Sinusoidal waves, 242, 278, 280

S-matrix propagation, 174
Sobolev space, 46, 164, 213
Sokhotskyi-Plemelj formulas, 60, 67, 77
Sommerfeld radiation, 202
Spatial (diffraction) harmonics, 17
Spatial dispersion, 102, 104, 335–336, 355,

358, 361, 365
Spatial Fourier harmonics, 179
Spatial–frequency transformations, 1, 23, 291

electromagnetic field transformations, 263
Spatial harmonic, 17–20, 39, 93, 119–120,

127, 130, 151, 257, 265, 272, 274–278,
278–279, 281, 283–285, 291–293, 301,
304, 318, 326, 333

Spatial mesh cells, 260
Spatial spectrum harmonics, 121
Spatial spectrum waves, superposition of, 122
Spatial–time amplitudes, 215

variations, 237
Spatial–time distribution, 264, 267–268, 272,

275, 277, 279, 281–282, 292–293,
303, 308–309, 321–322, 324–325,
327–328, 331

calculation, 277
Spatial–temporal amplitudes, 218, 236,

259–260, 278, 280, 285–287
Spatial–temporal transformations, 1, 23,

211, 212
Spatio–temporal field, 339
Spectral amplitudes, 247, 249, 252, 267–268,

272–274, 276, 278, 281–282, 306,
308, 313

Spectral amplitudes trapezoidal
distribution, 249

Spectral theory of gratings, 19, 22–41, 263
open periodic resonator, 24–28
open periodic waveguide, 28–33
physical results, 33–41

Spectral theory of open periodic
resonators, 251

Spectral theory relevancy to C-method
formalism, 198–210

complex-valued frequencies, 201–204
real-valued frequencies, 199–201
spectral problem and its solution, 204–210

Specular Reflection, 123
Strip grating, 54, 56–57, 79, 102, 106, 108,

120, 130–131, 143, 145–146, 151, 174,
192, 305–307

Strip grating diffraction problem, Geometry
of, 194

Surface harmonics decaying, 116, 122
Sveshnikov, A. G., 212
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T
Telegraph equation, 11
Telescopicity coefficient, 128–129
Telescopicity regime, 129
Tellegen/Pasteur or Post model, 363
Temporal dispersion, 355
Three-dimensional chiral objects, 103
Threshold effects, 26, 90, 274, 318
Tikhonov, A. N., 45
Time domain methods, 239–258

compact grating structures, 250–258
field sources in numerical experiments,

246–250
spatial–frequency representations, 239–246

T-matrix method, 103–104
Toeplitz matrix, 180
Transducers, 302–303
Transient cylindrical waves, 237
Transient wave, 212, 216, 218, 227, 236,

242, 253
Transition coefficient, 144–145, 261, 286
Translation coordinate system, 173–174, 177,

181, 186
Transmission band, 102
Transmission coefficient, 18, 21, 115, 144
Trapezoidal grating, 185–186, 191
Trapezoidal rule, 222

Trigonometric functions, orthogonality
property of, 52

Truncation method, 89, 95, 97, 100–101, 136
Two-dimensional checker board structure, 358
Two-dimensional diffraction problem, 45

V
Vienne-type chart, 35

W
Wave equation, 5, 105
Wave monochromatic components, 294
Wave-vector-dependent homogenized

material, 358
Wideband signal, 23, 39, 280
Wiener–Hopf method, 54
Wood, R. W., 26
Wood’s anomalies, 90, 116, 151, 274, 285

Y
Yakunin, S. A., 212

Z
Zero-order harmonic of linear polarization,

125–126
Zero-order principal-polarized wave, 117
Zeroth Fourier coefficient information, 65
Zeroth harmonic, 143
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