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Preface

Many of the physicists studying lasers in laboratories have been confronted by
the appearance of erratic intensity fluctuations in the laser beam. This type of
behavior was already evident in the early days of the laser (1960s) when it was
found that the intensity of the light generated by the ruby laser displayed irregular
spiking. Russian theoreticians showed that equations describing an active medium
coupled to an electromagnetic field could display such pulsations. Laser physicists
K. Shimoda and C.L. Tang tried to relate these outputs to saturable absorption and
mode competition, respectively. But the discrepancy in the values for the instability
frequencies, the fact that simple rate equations only predicted damped oscilla-
tions, and the development of stable lasers shifted interest towards new topics.
About the same time, spontaneous instabilities were found to play key roles in fluid
mechanics, chemistry, and the life sciences. Except for some isolated pioneers like
L.W. Casperson, laser physicists only understood in the early 1980s that the pulsat-
ing outputs were not the result of environmental fluctuations but rather originated
from the interaction between the radiation field and matter. On June 18–21, 1985,
the University of Rochester organized the first International Meeting on “Instabil-
ities and Dynamics of Lasers and Nonlinear Optical Systems” [1]. Two special
issues of the Journal of the Optical Society of America later appeared [2, 3].
But it took until the early 1990s before the idea became widely accepted among
physicists that lasers exhibit the same type of bifurcations as oscillating mechani-
cal, chemical, and biological systems [4–7]. The possible laser outputs were then
systematically explored by multi-disciplinary groups. Nonlinear laser dynamics
became a hot topic of research following similar adventures in the physical and
life sciences [8–12].

Early investigations have concentrated on gas and solid state lasers. Semicon-
ductor lasers came in the 1990s thanks to an enormous effort in fundamental and
applied research. They are the lasers used in most of our current applications.
Systematic experimental and theoretical studies of their possible instabilities in
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xii Preface

a variety of set-ups have been undertaken during the last 20 years and significant
progress has been made, to the point where we know how to exploit, avoid, or
control them [13, 14].

Laser dynamical instabilities are of interest for a growing number of scientists
and engineers, not only laser physicists, but also chemists, biologists, and others
in a variety of obviously and not so obviously related fields. Placing pulsating
lasers in the framework of dynamical systems means that many of the observed
instabilities can be investigated using simple classical equations based on material
properties rather than design. Twenty years ago, a book largely devoted to laser
intensity oscillations using this approach would have been inconceivable with-
out taking account of the quantum mechanical properties of the laser or its cavity
design. The visually compelling phenomena observed with laser devices and their
potential applications make laser dynamics a subject about which colleagues and
graduate students with different experiences seek to become better informed. Spe-
cial sessions entitled Laser Dynamics now appear at conferences, introductory
courses are offered at universities, and research groups have concentrated their
main activities on laser stability problems.

The primary objective of this book is to introduce a series of simple laser dynam-
ical problems that are the building blocks of our current research in the field. These
include a description of the relaxation oscillations of the laser, strongly pulsat-
ing outputs following a quick change of a parameter or resulting from a saturable
absorber, phase-locking phenomena for a laser subject to an injected signal, res-
onance phenomena in modulated lasers, and oscillatory instabilities caused by a
delayed optical feedback. Topics like the diagnostics of chaotic outputs, ultra-fast
optics and mode-locked lasers, or the propagation of spatial solitons in fibers are
too broad to be covered in this book.

As is largely the case for engineers and applied scientists, a theoretical model
is often considered as a numerical model. The difficulty with this approach is
that computation limits insight because of an inability to pose questions prop-
erly. We cannot ignore the possibilities offered by our computers but we also
need to think about the main objectives of our research. To this end, asymptotic
approaches [15–17] based on the natural values of the parameters smoothly com-
plement simulations by emphasizing particular properties of our laser. From an
applied mathematical point of view the laser rate equations offer challenging (sin-
gular) limits requiring the adaptation of known techniques to our laser equations.
In this book, we introduce some of these techniques, helping the physicist to high-
light the generic character of a specific phenomenon or to compare different lasers
through their relevant effective parameters. Key to this approach is the hierarchy
of different time scales as they appear in the experimental set-ups and observa-
tions. The book explores different laser systems whose descriptions require tools of
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increasing complexity. In each chapter, both theoretical and experimental points of
view are confronted with the goal of finding the underlying physical mechanisms
responsible for a specific dynamical output.

The book is organized into three parts, namely, I Basic tools, II Driven laser
systems, and III Particular laser systems. The first part aims to address how the
laser physicist studies simple dynamical outputs by using rate equations and the
mathematical tools used for their exploration. There is an extensive discussion of
time scales and their relevance in slow-time dynamics. There is confusion in the
literature and we hope to clarify some of the questions arising in choosing time
scales. Another objective of Part I is to introduce the basic bifurcation transitions
that appear in a variety of laser set-ups. To this end, we examine explicit examples
and introduce methods in the most friendly way. After many years of teaching the
subject of laser dynamics, we have found that this is the best way to introduce
bifurcation theory to the physicist. Part II is devoted to specific laser systems that
are driven either by a modulated signal or by a slowly varying control parameter.
The literature of periodically forced lasers is abundant because modulated lasers
are important in telecom applications, but also at a more fundamental level because
strongly forced lasers lead to chaotic outputs. This part will not review all that has
been realized on driven lasers but rather will emphasize the variety of synchroniza-
tion mechanisms from weak to strongly modulated. Slow passage problems are a
key topic in applied mathematics because they appear in a variety of problems with
applications in physics, chemistry, and biology. Surprisingly, many experiments on
basic slow passage problems have been realized with lasers or optically bistable
devices. Part III is devoted to specific laser set-ups that became important on their
own and were motivated by specific applications. Of particular interest is the fact
that they each introduce a new dynamical phenomenon, such as the onset of spik-
ing pulses, multimode antiphase dynamics, or instabilities caused by a delayed
optical feedback.

The book contains more than enough for two one-semester courses and some
flexibility is possible in selecting topics. Part I collects simple concepts in both
laser physics and nonlinear dynamics such as stability, bifurcation, and multiple
time scales that must be understood before exploring Parts II and III. The first
two chapters of Part II are linked while the third one on slow passage effects is
rather independent. The five chapters of Part III consider specific laser systems
and can be read separately. Some of these chapters cover classical areas (such as
the laser with a saturable absorber) that are introduced in almost every course.
Other chapters concentrate on less known areas (such as the far-infrared laser)
which we critically revisit, benefiting from the current capacities of our computers
or from new asymptotic investigations. To cover the whole book, the student will
need a background in linear algebra and ordinary differential equations. However,
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the details of the calculations are given each time a new technique is introduced so
that the reader less oriented towards theory may follow each step. Similarly, exper-
imental details are introduced in the simplest way and avoid technical descriptions
of set-ups. To limit the size of the book, we have combined solved problems
and additional material usually relegated to appendices in an associated website,
http://www.ulb.ac.be/sciences/ont. This site includes detailed answers to exercises
in the book, links to other useful sites, and illustrations of specific mathematical
techniques such as the method of matched asymptotic expansions (MAE).

We are very much indebted to many colleagues for help during the years while
this book was being written. Over the past 30 years, we greatly profited from col-
laboration or discussion with our friends at the Laboratoire de Physique des Lasers,
Atomes et Molécules and in the department of Optique Nonlinéaire Théorique
who shared our enthusiasm comparing experimental and theoretical data. This
book pays tribute to the memory of Gilbert Grynberg, Lorenzo Narducci, Yakov I.
Khanin, and Fréderic Stoekel who have particularly contributed to many aspects of
laser dynamics. Finally, we acknowledge the Belgian National Science Foundation
and the Pole Attraction Pole program of the Belgian government for the support
we received during the preparation of this book.

http://www.ulb.ac.be/sciences/ont
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Part I

Basic tools





1

Rate equations

Modeling lasers may be realized with different levels of sophistication. Rigorously
it requires a full quantum treatment but many laser dynamical properties may be
captured by semiclassical or even purely classical approaches. In this book we
deliberately chose the simplest point of view, i.e. purely classical equations, and
try to extract analytically as much information as possible. The basic framework
of our approach is provided by the rate equations.

In their simplest version, they apply to an idealized active system consisting of
only two energy levels coupled to a reservoir. They were introduced as soon as
the laser was discovered to explain (regular or irregular, damped or undamped)
intensity spikes commonly seen with solid state lasers (for a historical review,
see the introduction in [18]). These rate equations are discussed and sometimes
derived from a semiclassical theory in textbooks on lasers [19–22]. They capture
the essential features of the response of a single-mode laser and they may be modi-
fied to account for specific effects such as the modulation of a parameter or optical
feedback.

The most basic processes involved in laser operation are schematically repre-
sented in Figure 1.1. N1 and N2 denote the number of atoms in the ground and
excited levels, respectively. The process of light–matter interaction is restricted to
stimulated emission and absorption. This leads to the following rate equations for
the number of laser photons n and the populations N1 and N2:

dn

dT
= G(N2 − N1)n − n

Tc
, (1.1)

d N2

dT
= Rp − N2

T1
− G(N2 − N1)n, (1.2)

d N1

dT
= − N1

T1
+ G(N2 − N1)n. (1.3)

3
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N 2

T1
–1

T1
–1

G(N2 – N1)n

Rp

N1

Fig. 1.1 Two-level system. Rp denotes the pumping rate, T −1
1 is the decay rate of

the populations, and G(N2 − N1) is the gain for stimulated emission.

In these equations, G is the gain coefficient for stimulated emission, T −1
c is the

decay rate due to the loss of photons by mirror transmission, scattering, etc., T −1
1

is the decay rate for each population, and Rp is the pumping rate. Introducing
the population difference or population inversion N ≡ N2 − N1, Eqs. (1.1)–(1.3)
reduce to the following two equations for n and N :

dn

dT
= G Nn − n

Tc
, (1.4)

d N

dT
= − 1

T1
(N − N0)− 2G Nn, (1.5)

where N0 ≡ RpT1 is the population difference in the absence of laser light. The
decay rates T −1

c and T −1
1 are identical to the parameters 2κ and γ‖, respectively,

in the “class B” laser equations [23, 6].
In practice, lasing action is realized with three or four energy level systems

and the rate equations are more complicated (see Chapter 2). But for many
lasers such as Nd3+:YAG, CO2, and semiconductor lasers, Eqs. (1.4) and (1.5)
provide a good description of simple dynamical phenomena such as the laser relax-
ation oscillations or the build-up of laser radiation following either pump or loss
switch. Supplemented by additional terms, these equations are also valid for the
description of specific laser instabilities as we shall illustrate in the forthcoming
chapters.

1.1 Dimensionless equations

Equations (1.4) and (1.5) depend on four physical parameters, namely, G, Tc, T1,
and N0. In order to reduce the number of independent parameters, it is worthwhile
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Table 1.1 Characteristic times for common lasers.

Laser Tc(s) T1(s) γ

CO2 10−8 4 × 10−6 2.5 × 10−3

solid state (Nd3+:YAG) 10−6 2.5 × 10−4 4 × 10−3

semiconductor (AsGa) 10−12 10−9 10−3

to rewrite these equations in dimensionless form (for a dimensionless formulation,
see, for example, [24]). Introducing new variables I , D, and t defined as

I ≡ 2GT1n, D ≡ GTc N , and t ≡ T /Tc (1.6)

into Eqs. (1.4) and (1.5), we obtain the following equations for I and D (Exercises
1.8.1 and 1.8.4)

dI

dt
= I (D − 1), (1.7)

dD

dt
= γ (A − D(1 + I )) (1.8)

where A and γ are defined by

A ≡ GTc N0 and γ ≡ Tc/T1. (1.9)

Compared to the original equations (1.4) and (1.5), Eqs. (1.7) and (1.8) offer
two clear advantages. First, we only have two independent parameters instead
of the original four parameters. This means that Eqs. (1.7) and (1.8) are sim-
pler to analyze or require fewer numerical simulations. Second, we may estimate
these two parameters for different lasers, discover common ranges of values,
and possibly propose approximations of the solution based on their respective
values.

Table 1.1 gives the order of magnitude of Tc and T1 for three common lasers.
Although their ranges of values are quite different, we note that the ratio γ ≡
Tc/T1 is typically a 10−3 small quantity. For microchip solid state lasers, γ may
even reach 10−6 small values. A small γ is a key property of these lasers and, as we
shall demonstrate, is responsible for their weak stability properties. On the other
hand, A scales the pump in units of the pump at threshold and is typically in the
range 1−10. It barely exceeds 10 in most common lasers although it may reach
very high values in specific situations such as the “thresholdless laser” [25]. In
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addition to solid state lasers, earlier laser studies used He-Ne and Ar gas lasers. For
the He-Ne and Ar gas lasers the value of γ is much larger than 1. Consequently,
the evolution of the population inversion is very fast until the right hand side of
Eq. (1.8) is zero. D then adiabatically follows the intensity as

D = A

1 + I
(1.10)

and Eq. (1.7) reduces to

dI

dt
=
(

A

1 + I
− 1

)
I . (1.11)

Eq. (1.11) is a first order nonlinear equation. Lasers described by the single
equation (1.11) are called “class A” lasers [23, 6]. Moreover, assuming I < 1, we
may further simplify Eq. (1.11) by expanding 1/(1 + I ) and obtain

dI

dt
= (A − 1 − AI )I , (1.12)

which exhibits a single quadratic nonlinearity.
There are other ways to non-dimensionalize the rate equations. Here time is

measured in units of the photon damping time Tc but T1 could equally be used to
rescale time. It is also possible to introduce 2GTcn and/or GT1 N as the dimen-
sionless photon and population inversion variables. But the equations resulting
from these normalizations are less appropriate for analysis than Eqs. (1.7) and
(1.8). As previously emphasized, γ is small and it is mathematically convenient
that it appears as a single parameter multiplying the right hand side of one of
the two equations. Similar procedures have been applied for classical problems
such as the van der Pol equation or the Michaelis–Menten equations in enzyme
kinetics [8].

1.2 Steady states and linear stability

The analysis of our model equations starts with the determination of the steady
states and their linear stability properties. The results allow us to predict bifurca-
tions, anticipate interesting transient regimes, and possibly propose simplifications
of the laser equations. The linear stability analysis is well documented for one- or
two-variable systems of ordinary differential equations [26–28]. For higher order
systems, we benefit from the Routh–Hurwitz conditions for the stability of the
steady states ([26] p. 270, [29] p. 304).
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1.2.1 Steady states

The steady state solutions of Eqs. (1.7) and (1.8) satisfy the conditions dI/dt =
dD/dt = 0 or, equivalently, the following two equations for I and D

I (D − 1) = 0, (1.13)

A − D(1 + I ) = 0. (1.14)

The possible solutions are (1) the zero intensity solution

I = 0 and D = A, (1.15)

and (2) the non-zero intensity solution

I = A − 1 ≥ 0 and D = 1. (1.16)

The inequality in (1.16) is needed because I is an intensity. We conclude that the
desired lasing action is possible only if A > 1. The critical point

(I , D, A) = (0, 1, 1) (1.17)

is called the laser first threshold and is a bifurcation point because it connects
our two steady state solutions. These solutions are represented as a function of
the pump parameter A in Figure 1.2. The diagram is called a bifurcation diagram
because it represents the amplitude of the possible solutions in terms of a control

A

D

I

0

on

off

1

1

Fig. 1.2 Steady state solutions. Full and broken lines correspond to stable and
unstable solutions, respectively. The arrow indicates the bifurcation point at
A = 1.
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or bifurcation parameter. In the zero intensity solution (laser OFF), the laser does
not emit any radiation and the population difference sets to the value given by
the pump (D = A). As the pump exceeds its threshold value A = 1, a non-zero
intensity solution is possible (laser ON) and the laser emits radiation. The amount
of emitted energy is proportional to the pump in excess of threshold, i.e. I = A−1.
Which of the two solutions will be effectively observed depends on their stability.

1.2.2 Linear stability

In order to analyze the stability of the steady states, we introduce the small
deviations u and v defined by

u ≡ I − Is and v ≡ D − Ds , (1.18)

where (I , D)= (Is , Ds) denotes either OFF (1.15) or ON (1.16) solutions. We
insert I = Is + u and D = Ds + v into Eqs. (1.7) and (1.8), simplify by using
the steady state equations (1.13) and (1.14), and neglect the quadratic terms in u
and v. We then obtain the following linearized equations for u and v

du

dt
= u(Ds − 1)+ Isv, (1.19)

dv

dt
= γ (−Dsu − (1 + Is)v). (1.20)

It is useful to rewrite these equations in matrix form as

d

dt

(
u
v

)
= J

(
u
v

)
, (1.21)

where the 2 × 2 matrix J is called the Jacobian matrix and is defined here as

J ≡
(

Ds − 1 Is

−Dsγ −(1 + Is)γ

)
. (1.22)

The general solution of Eqs. (1.19) and (1.20) or Eq. (1.21) is a linear combination
of two exponential solutions. Introducing u = c1 exp(σ t) and v= c2 exp(σ t) into
Eqs. (1.19) and (1.20) leads to a homogeneous system of two equations for c1

and c2. A nontrivial solution is possible only if the growth rate σ satisfies the
characteristic equation given by

det J − σ I = σ 2 + σ
[
γ (1 + Is)− Ds + 1

]+ γ (1 + Is − Ds) = 0. (1.23)
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Stability means that Re(σ j )< 0 ( j = 1, 2). Then the small deviations u and v will
decay to zero. On the other hand, if Re(σ j ) > 0 for either j = 1 or j = 2, u and
v will grow exponentially and the steady state is unstable. The stability results are
given as follows:

(1) For the zero intensity steady state (1.15), Eq. (1.23) admits the simple solutions

σ1 = A − 1 and σ2 = −γ . (1.24)

From (1.24), we conclude that the zero intensity steady state is stable if A< 1 and
unstable if A> 1.

(2) For the non-zero intensity steady state (1.16), Eq. (1.23) reduces to the following
quadratic equation

σ 2 + γ Aσ + γ (A − 1) = 0. (1.25)

To determine the sign of Re(σ ), we don’t need to solve Eq. (1.25). Indeed, we note that
the product of the roots is always positive (σ1σ2 = γ (A − 1) > 0) and that the sum
of the roots is always negative (σ1 + σ2 = −γ A < 0). Together, the two inequalities
imply that Re(σ j )< 0 ( j = 1, 2). Thus, the non-zero intensity solution is always stable.

At the bifurcation point (1.17), we note an exchange of stabilities between the
zero intensity and non-zero intensity steady state solutions. This is a simple exam-
ple of a bifurcation with exchange of stability. Some dynamical properties linked
to the existence of this bifurcation will be examined in Section 1.5.

1.2.3 Damped relaxation oscillations

The linear stability analysis allows us to describe slowly decaying intensity oscil-
lations that are observed in lasers after a sudden excitation such as a loss or gain
pulse. Specifically, we solve the quadratic equation (1.25) and obtain

σ1,2 = −γ A

2
±i
√
γ (A − 1)− γ 2 A2/4 (1.26)

provided γ (A − 1)− γ 2 A2/4 ≥ 0. Expanding the two roots for small γ (A fixed)
simplifies (1.26) as

σ1,2 = ±i
√
γ (A − 1)− γ

A

2
+ O(γ 3/2), (1.27)

where the notation O(γ 3/2) means that the correction term is proportional to γ 3/2

(in Section 1.5.2, we examine the limit A − 1 small (γ fixed)). The meaning of
the two first terms in (1.27) is best understood if we write the general solution for
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u = I − (A −1) = c exp(σ1t)+c exp(σ2t), where c means the complex conjugate
of c. Using (1.27), u can be rewritten as

u � C exp

(
−γ A

2
t

)
sin
(√
γ (A − 1)t + φ

)
, (1.28)

where C and φ are arbitrary constants determined by the initial conditions. The
expression (1.28) implies that the intensity I = A − 1 + u oscillates with a fre-
quency proportional to

√
γ and slowly decays with a rate proportional to γ . The

frequency appearing in (1.28), defined by

ωR ≡ √
γ (A − 1), (1.29)

is called the laser relaxation oscillation (RO) frequency and is a reference fre-
quency for all lasers experiencing intensity oscillations (see Problem 1.8.8 for the
RO frequency close to threshold). The quantity

� ≡ γ
A

2
(1.30)

is called the damping rate of the laser relaxation oscillations. Note that the expres-
sion (1.28) is the product of two functions that exhibit different time scales,
namely1

t1 = √
γ t and t2 = γ t . (1.31)

In summary, the linearized theory reveals that the non-zero intensity steady state
is weakly stable for all lasers exhibiting a small γ and that slowly decaying oscil-
lations (RO oscillations) of the laser intensity are possible. Our results are strictly
valid for small perturbations of the steady state. But in Section 5.2.1, we show that
our conclusions remain valid if we consider arbitrary intensities.

1.3 Turn-on transients

In 1965, Pariser and Marshall [30] investigated the time evolution of the laser
intensity using a He-Ne laser pumped by a flash lamp. The laser intensity was
assumed to be initially close to zero and the time evolution was fitted using

dE

dt
= aE − bE3, E(0) = E0, (1.32)

1 In physical units, these two time scales are
√

T1TcT and T1T respectively. The latter has a simple meaning
since it coincides with the lifetime of the population inversion. The former is less obvious since it is the
geometrical mean of two lifetimes. It appears because there exists a coupling between the variables I and D.
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Fig. 1.3 He-Ne gas laser output as a function of time. From the lower to the upper
time traces, the pump parameter above threshold is gradually increased. Reprinted
Figure 2 with permission from Pariser and Marshall [30]. Copyright 1965 by the
American Institute of Physics.

where E represents the electrical field and a and b are positive. This equation is the
“class A” laser equation (1.12) with I = E2, a = (A−1)/2, and b = A/2. Equation
(1.32) is a Bernoulli equation that can be solved exactly, leading to the following
expression for the intensity I

I = a

b

1

1 − (1 − a
bI0
) exp(−2at)

, (1.33)

where I0 = E2
0. The different lines in Figure 1.3 correspond to (1.33) with different

values of a and b. Note that a is proportional to the pump parameter above its
threshold value. The expression (1.33) tells us that

τ = (2a)−1 (1.34)

is the time scale of the laser emission. It decreases as a increases (i.e. as the pump
increases). Careful statistical studies of the laser build-up using a He-Ne laser
[31] and a dye laser [32] complete the earlier investigations [30]. In both cases,
Eq. (1.32) was used as the deterministic reference equation.

1.3.1 Typical turn-on experiment

For most common lasers used today in laboratories and in applications (solid state,
CO2, and semiconductor lasers), we switch the pump from a below- to an above-
threshold value and observe the time evolution of the intensity. Figure 1.4 shows
an example for a Nd3+:YAG laser. We note three distinct regimes:

(1) A long time interval where the laser output power remains very low. In the conditions
of Figure 1.4, this extends from the time origin given by the on-switching of pump
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Fig. 1.4 Typical switch-on transient of a Nd3+:YAG laser.

power to about 450 μs. This regime is called the “latency,” “lethargy,” or “turn-on”
regime and is analyzed in Section 1.3.2. The delay of the laser transition is called
“turn-on time” or “turn-on delay” ([33] p. 240, [34] p. 81).

(2) A strongly pulsating intensity regime during which the laser emits a series of sharp
spikes separated by periods of very low (almost zero) emission. In Figure 1.4, it extends
from 450 μs to about 800 μs.

(3) A regime of damped oscillations as the laser approaches its steady state through
exponentially damped sinusoidal oscillations. In Figure 1.4, this goes from 800 μs to
1000 μs. We may compare these oscillations with the decaying oscillations predicted
by the linear stability analysis (see Section 1.2) and determine the RO frequency and
the RO damping rate.

In terms of the original time T , the relaxation oscillation frequency is defined
by fR ≡ ωR/Tc and, using (1.29), we find that

fR ≡
√

A − 1

T1Tc
. (1.35)

The expression (1.35) means that the square of the relaxation oscillation fre-
quency ( f 2

R) increases linearly with the pump power above the threshold A − 1.
From the slope of the straight line, we may determine either T1 or Tc. In [35],
the relaxation oscillation frequency is measured for an erbium doped fiber laser.
Figure 1.5 represents f 2

R as a function of the pump power P . The experi-
mental data are then fitted to the expected linear dependence: f 2

R = aP + b,
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Fig. 1.5 Square of the relaxation oscillation frequency fR vs. pump power P
for an erbium doped fiber laser. Adapted Figure 4 from Sola et al. [35] with
permission from Elsevier.
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Fig. 1.6 Damping rate as a function of the pump power. Adapted Figure 3 from
Sola et al. [35] with permission from Elsevier.

where a = 4.854 7 × 1011 s−2W−1 and b = −4.323 0 × 109 s−2. The pump
threshold equals Pth = −b/a = 8.9 mW.

Much less attention has been paid to the damping constant of the relaxation
oscillations (1.30). In terms of the original time variable T , the damping rate
�damp ≡ �/Tc is given by

�damp ≡ A

2T1
(1.36)

and its measure provides new information on the laser parameters. For the doped
fiber laser studied in [35], the damping rate �damp is measured as a function
of the pump power P . See Figure 1.6. The experimental data are fitted to the
expected linear dependence: �damp = a′ P + b′, where a′ = 68 756 s−1 W−1 and
b′ =− 4.297 4 s−1. Note that the constant b′ is not predicted by (1.36) but comes
from the fact that the equation for the inversion of population is slightly different
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Fig. 1.7 Relaxation oscillations of a CO2 laser subject to a square pulse excita-
tion. Upper trace: variations of the laser intensity. Lower trace: loss modulation.
Total time scan is 500 μs.

from Eq. (1.5) [35]. For the range of pump power considered, the contribution of
b′ is less than 1% and could be neglected.

Damped relaxation oscillations are also observed at the output of a CO2 laser.
See Figure 1.7. The laser undergoes step periodic changes of its losses. As can be
seen from the long time behavior, these changes are sufficiently small and do not
modify the average intensity. On the other hand, the perturbations on the losses are
strong enough to initiate relaxation oscillations which disappear after 8–10 cycles.
Increasing or decreasing losses induces transients with opposite phases in the laser
output. We may understand this behavior by reformulating our rate equations for
this particular experiment. Instead of Eqs. (1.7) and (1.8), we now consider

dI

dt
= I (D − (1 − ε)),

dD

dt
= γ (A − D(1 + I )) , (1.37)

I (0) = A − 1, and D(0) = 1, (1.38)

where the −ε accounts for the small decrease of the losses at time t = 0+.
Because γ is small, dD/dt = 0 in first approximation which means that D =
D(0)= 1 during the time interval t = O(1). Substituting D = 1 into the first
equation implies that dI/dt = I ε > 0. This result is in accordance with intu-
itive thinking since a step decrease of the losses is expected to produce a jump
increase of the laser output. Similarly, a small increase ε in the losses will lead to
dI/dt = −I ε < 0, i.e. a jump decrease in the laser output.

The simple dependence with respect to the pump displayed by either f 2
R or

�damp comes from the two-level rate equations but seems to apply for more
complex laser systems exhibiting three, four, or more energy levels (see Chapter 2).

1.3.2 Switching-on or turn-on time

The linearized theory cannot describe the latency regime because the inversion
of population does not remain close to the OFF state. However, we may take
advantage of the very low values of the intensity and neglect the nonlinear term in
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Eq. (1.8) to proceed further in the analytical investigation of the switch-on regime
and in particular to obtain the value of the turn-on time. The rate equations (1.7)
and (1.8) then reduce to

dI

dt
= I (D − 1), (1.39)

dD

dt
= γ (A+ − D), (1.40)

where A = A+> 1 denotes the value of the pump above threshold. The initial
conditions appropriate for the turn-on experiment are given by

I (0) = I0 << 1 and D(0) = A−, (1.41)

where A = A− < 1 represents the value of the pump below threshold. The actual
value of I0 is unknown but, as we shall see, the latency regime does not depend on
I0, in first approximation. Eq. (1.40) is linear and its solution is

D = (A− − A+) exp(−γ t)+ A+. (1.42)

Substituting (1.42) into the right hand side of Eq. (1.39), we find that the resulting
equation is separable. Its solution is

I = I0 exp
(
γ−1 F(γ t)

)
, (1.43)

where F = F(s) is defined by

F(s) ≡ (A+ − 1)s − (A− − A+) (exp(−s)− 1). (1.44)

A graphical analysis of (1.44) shows that F(s) is zero at s = 0 and s = son > 0,
and that F(s) is negative when 0 < s < son and positive when s > son. Recall
that γ is small. The expression (1.43) tells us that I (t) is an O(exp(−γ−1)) small
quantity until t = ton where ton ≡ γ−1son. When t is slightly above ton , I (t) sud-
denly changes from an O(exp(−γ−1)) small to an O(exp(γ−1)) large quantity
whatever the value of I0 = O(1). The turn-on time satisfies F(s) = 0 and its evo-
lution is shown in Figure 1.8 (see Problem 1.8.7 for a turn-on experiment induced
by a pump square pulse).

Simplified expressions for ton have been proposed in the literature. If γ ton is
large, we may neglect the exponential in (1.44) and obtain the expression

ton � γ−1
(

A+ − A−
A+ − 1

)
. (1.45)



16 Rate equations

A+

0 1 2 3

g ton

0

2

4

6

8

10

Fig. 1.8 Turn-on time as a function of A+ (A− = 0.8). The full line is the
non-zero root of F = 0 where F is defined by (1.44). The dashed line is the
approximation (1.45).

The approximation (1.45) is shown in Figure 1.8 by a dashed line. The approxima-
tion is good close to threshold but overestimates the actual turn-on time when A+
increases. If in addition A+ − 1 << 1 (near threshold experiments), (1.45) can be
further simplified as

ton � γ−1
(

1 − A−
A+ − 1

)
. (1.46)

This expression is documented in [33] p. 243, for A− = 0. It indicates that ton

is an O(γ−1) large quantity that increases like (A+ − 1)−1 as we approach the
laser threshold A = 1 from above. In terms of the original time T , the turn-on time
Ton = Tcton = Tcγ

−1son = T1son, where son is defined as the root of (1.44). Since
(1.44) only depends on the initial and final values of the pump (i.e. A = A±), Ton

allows the determination of T1.
Mathematically, the turn-on delay is comparable to the delay of a bifur-

cation transition as the control parameter slowly passes the bifurcation point
(see Chapter 7). Indeed, Eq. (1.39) admits a bifurcation point at D = 1 where
I = 0 changes stability. But because D = D(γ t) is slowly varying, the actual
jump occurs when the integral

∫ t
0 (D(γ t)− 1)dt changes sign and not when

D − 1 changes sign. The delay of the bifurcation transition is therefore a sig-
nificant quantity but, physically, it is sensitive to the level of noise and in
particular of spontaneous emission always present in a real experiment (see
Section 1.6.2).
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1.4 Transfer function

The linear stability analysis is intimately connected to the transfer function of the
system. This quantity, which is widely used by engineers, measures the response
of the laser to small-amplitude harmonic modulation of one of its parameters. The-
oretically [20, 34], the transfer function is obtained by modulating a parameter in
the rate equations and by determining the leading approximation of the solution.
It is an interesting function to study because we know that the laser exhibits a
weak damping rate and that a resonance is expected when the driving frequency
comes close to the laser RO frequency. Specifically, we consider a 2π/ω-periodic
modulation of the pump parameter given by

A = A0 + a exp(iωt) + c.c., (1.47)

where a << 1 and c.c. means complex conjugate. We then seek a 2π/ω-periodic
solution of the rate equations (1.7) and (1.8) of the form

I = A0 − 1 + a (p exp(iωt)+ c.c.)+ O(a2),

D = 1 + a (q exp(iωt) + c.c.)+ O(a2). (1.48)

Substituting (1.48) into (1.7) and (1.8), we find that the leading problem is O(a)
and provides two equations for p and q given by

iω

(
p
q

)
− J

(
p
q

)
=
(

0
γ

)
, (1.49)

where J is the Jacobian matrix (1.22) evaluated at Is = A0 − 1 and Ds = 1. Com-
paring with the linear stability analysis, we find a similar equation to (1.21) where
the contribution of the modulated parameter appears in the right hand side of
Eq. (1.49). Eliminating q, we obtain p as

p = 1

1 − ω2/ω2
R + 2iω�/ω2

R

, (1.50)

where ωR and� are the RO frequency (1.29) and the damping rate (1.30) evaluated
at A = A0 (Exercise 1.8.2). p is called the transfer function from current modu-
lation to power output [p = H(iω) in [34] with Petermann damping frequency
ωd ≡ ω2

R/(2�)]. With (1.50), we may determine the amplitude and phase of the
intensity sinusoidal oscillations. The amplitude of the oscillations is 2a |p|, where

|p| =
√

1(
1 − ω2/ω2

R

)2 + (2ω�/ω2
R

)2 (1.51)
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Fig. 1.9 Transfer function. The amplitude and the phase of the transfer fuction p,
defined by (1.51) and (1.52), respectively, are represented in terms of ω/ωR . The
values of the fixed parameters are A = 2 and γ = 10−3.

and the phase is given by

φ = arctan

[
− 2ω�

ω2
R − ω2

]
. (1.52)

The amplitude and the phase of p are represented in Figure 1.9 for standard values
of the laser parameters. The transfer function (1.51) exhibits a sharp maximum
at ω/ωR � 1 in a small domain |ω/ωR − 1| proportional to �/ωR = O(γ 1/2).
The transfer function is asymmetric showing a smooth increase from |p| = 1 to
|p| = (2�/ωR)

−1 at ω/ωR = 1 and then a decrease to small values as ω/ωR fur-
ther increases. On the other hand, the phase experiences a π jump as ω crosses
ωR . In experiments, the transfer function may be measured in different ways. The
standard technique is to monitor the response of the laser to harmonic modula-
tion vs. the excitation frequency. An alternative approach is to excite the laser
with a random (noise) signal and to monitor the spectral density of the noise on
the laser output. An example of a transfer function obtained by the first technique
on a diode pumped Nd3+:YAG laser is shown in Figure 1.10. The transfer func-
tion for a semiconductor laser is shown in Figure 1.11 for different bias currents
(different A0). The resonance frequency of the transfer function increases with
the bias current (because ωR = √

γ (A0 − 1) increases with A0) and the transfer
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Fig. 1.10 Pump modulation response in a diode-pumped Nd3+:YAG laser (Figure
25.13 of Siegman [20]).
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Fig. 1.11 Transfer function for a modulated diode laser. The different curves
correspond to different bias currents, or equivalently to different A0. Reprinted
Figure 4.10 of Petermann [34] with kind permission from Springer Science and
Business Media.

function becomes smoother near its maximum (because the width of the layer
|ω − ωR| ∼ � = γ A0/2 increases with A0).

1.5 Dynamical system

The laser threshold is a good physical example of a bifurcation point, i.e. a point
at which the whole dynamics of the system changes. In this section, we investigate
the laser bifurcation transition by determining a simplified evolution equation valid
near this bifurcation point.
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1.5.1 Laser bifurcation

For the rate equations (1.7) and (1.8), the bifurcation occurs at A = 1 and is a
transcritical bifurcation. At such a bifurcation point two steady state solutions,
one stable and one unstable, exchange their stability. The OFF state is stable
(unstable) below (above) threshold and the ON state is stable (unstable) above
(below) threshold. However, the intensity I of the laser output needs to satisfy
the physical constraint I > 0 and therefore the ON solution does not exist below
threshold. We may avoid this constraint by simply reformulating the rate equa-
tions in terms of the laser field rather than its intensity. These equations may be
derived from the Maxwell–Bloch equations. Under several approximations derived
in standard textbooks [6, 21, 36, 37], we obtain equations relating the electric field
E , the polarization P induced by the field, and the population difference N . After
eliminating adiabatically P , the equation for E is

dE

dT
= G N E

2
− E

2Tc
. (1.53)

From E∗dE/dt + EdE∗/dt , where E∗ is the complex conjugate, we obtain Eq.
(1.4) with n = |E |2. In dimensionless form, Eq. (1.53) and Eq. (1.5) with n = |E |2
are given by

dE
dt

= 1

2
E(D − 1), (1.54)

dD

dt
= γ

(
A − D(1 + E2)

)
, (1.55)

where E ≡ √
2GT1 E . These equations are identical to Eqs. (1.7) and (1.8) if we

introduce I ≡ E2. The OFF state now corresponds to E = 0 and D = A while the
ON state is given by E = ±(A − 1)1/2 and D = 1 (see Figure 1.12). The two ON
solutions admit the same intensity and have no extra physical meaning compared
to our previous analysis of the rate equations. But the nature of the bifurcation tran-
sition is different. The bifurcation at A = 1 is a pitchfork bifurcation which exists
only if A ≥ 1. The linear stability analysis of the steady state solutions (Exercise
1.8.3) indicates that the OFF solution is stable (unstable) below (above) threshold
while both ON solutions are stable in their whole domain of existence (A> 1).
The pitchfork bifurcation is represented in Figure 1.12. Below threshold, only the
OFF solution is possible. Beyond threshold, two new solutions corresponding to
the ON state are available. The bifurcation is supercritical for our laser (the new
solutions overlap the unstable basic solution) but it can be subcritical for other
nonlinear problems (the new solutions overlap the stable basic solution) [8]. For
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Fig. 1.12 Pitchfork bifurcation for the laser electric field.

elementary bifurcations, the stability of the bifurcating solutions is related to the
stability of the basic solution [38]. A supercritical (subcritical) bifurcation then
means a bifurcation to stable (unstable) solutions.

1.5.2 Normal form

The laser exhibits typical dynamical features of a steady bifurcation. This can be
substantiated mathematically by showing that a simple amplitude equation may
capture the essential features of the bifurcation transition. This is already transpar-
ent if we review the stability results for the non-zero intensity steady state. The
amplitude of the field is given by

E = ±(A − 1)1/2 (1.56)

and the characteristic equation admits the following limits for the growth rate σ

σ1 � −(A − 1) and σ2 � −γ (1.57)

as (A − 1) → 0+ (γ fixed). The two σ are negative but σ1 suggests that a small
perturbation will slowly decay to zero according to the time scale

τ = (A − 1)t . (1.58)

The expressions (1.56) and (1.58) suggest that we seek a long time solution of
Eqs. (1.54) and (1.55) in power series of (A − 1)1/2 and depending on (1.58) only.
This is the first time that we propose to solve a nonlinear problem that exhibits
different time scales. The information provided by (1.56) and (1.58) help but we
show in the next subsection that the correct limit can be found without preliminary
assumptions on the amplitude and time scale of the solution.
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Derivation

The key idea is the introduction of a parametric representation of the solution that
takes into account its slight change as we increase A − 1. Specifically, we seek a
solution of the form

E = εE1 + ε2E2 + . . .

D = 1 + εD1 + ε2 D2 + . . . , (1.59)

where ε is a small parameter related to A − 1 by

A − 1 = εa1 + ε2a2 + . . . (1.60)

In (1.59), the coefficients are assumed to be functions of one or several slow time
variables defined by

τ1 = εt , τ2 = ε2t , . . . , τn = εnt . (1.61)

Right now, we don’t know if all these slow time variables are really needed. The
method of multiple scales is a powerful technique [15, 16] but is based on an artifice
that is difficult to accept. Even though the solution is a function of t , we shall seek
a solution that is a function of all the variables τ1, τ2, etc., treated as independent
variables. Of course, the actual solution is a solution of t only but the solution may
be expressed as a product of functions of a single slow time variable.

Because τ1, τ2, etc. are treated as independent time variables, we use the chain
rule for partial differentiation to compute the derivatives of E and D, i.e.

dF

dt
= εFτ1 + ε2 Fτ2 + . . . , (1.62)

where F is either E or D and subscripts mean partial derivatives of F with respect
to τ1, τ2, etc. Substituting (1.59), (1.60), and (1.62) into Eqs. (1.54) and (1.55) and
equating to zero the coefficients of each power of ε leads to a sequence of simple
problems for the functions in (1.59). The first three problems are given by

O(ε) : a1 − D1 = 0, (1.63)

O(ε2) : E1τ1 = 1

2
D1E1, (1.64)

D1τ1 = γ
(

a2 − D2 − E2
1

)
, (1.65)
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and

O(ε3) : E2τ1 + E1τ2 = 1

2
(E2 D1 + E1 D2) . (1.66)

These problems are now solved sequentially.
Equation (1.63) implies that

D1 = a1 (1.67)

but E1 is unknown and motivates the study of the next problem.
With (1.67), Eq. (1.64) is linear and admits an exponential solution of the form

E1 = E1(0) exp
(1

2 a1τ1
)
. But if a1> 0, this solution is unbounded in τ1 and can-

not be accepted. If a1< 0, the solution approaches zero which contradicts our
assumption in (1.59) that E = O(ε). We are thus forced to require

a1 = 0. (1.68)

Using (1.67), (1.68) then gives

D1 = 0 (1.69)

and from (1.64), we find

E1τ1 = 0. (1.70)

Equation (1.70) means that E1 is now a function of τ2, τ3, . . . but no longer of τ1.
From Eq. (1.65) with (1.69), we learn that

D2 = a2 − E2
1 . (1.71)

The function E1 is still unknown and motivates the analysis of the next problem.
Equation (1.66) with (1.69) can be rewritten as

E2τ1 = −E1τ2 + 1

2
E1 D2. (1.72)

We note that the right hand side of (1.72) is a constant with respect to time τ1 and
that E2 only appears in the left hand side. As for the O(ε2) problem, we require
bounded solutions in τ1. A bounded solution for E2 with respect to τ1 requires that
the right hand side is zero, i.e. that E1 satisfies the equation

E1τ2 = 1

2
E1 D2 = 1

2
E1(a2 − E2

1 ). (1.73)
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Equation (1.73) is the equation for E1 that we were looking for. We are now ready
to refine our definition of ε. Without loss of generality, we choose |a2| = 1 and
a j = 0 ( j ≥ 3). Then, the expression (1.60) uniquely defines ε as

ε ≡
√

A − 1

a2
, (1.74)

where a2 = 1 (a2 =− 1) if A − 1> 0 (if A − 1< 0). In terms of the original
variables, Eq. (1.73) is equivalent to

dE
dt

= 1

2
E(A − 1 − E2), (1.75)

which is called the normal form equation for the laser bifurcation. This equation
can be solved exactly and we may describe the complete time history of the field
from its initial condition E(0) = Ei .

The normal form equation is the simplest equation capturing the main features
of the bifurcation. Near the bifurcation point, there exists a small amplitude solu-
tion that scales like (A − 1)1/2 and depends on the slow time τ = |A − 1| t . This
slow time is noted experimentally by longer transients as we approach the laser
threshold (A → 1+) and is called critical slowing down in the physics commu-
nity. Such a slowing down is visible on Figure 1.3 where the transients are slower
and slower as the laser threshold is approached.

Validity

However, our derivation of Eq. (1.75) suffers from an important deficiency that
is not immediately transparent as we review our perturbation analysis. It is not
the method that needs to be criticized but our basic assumptions. By deriving
Eq. (1.75), we have deliberately ignored the fast time dynamics in t . This is
because we found from (1.57) that the second growth rate σ2 � −γ implies a
contribution of the form of an exponentially decaying function of t which is rapid
on the O((A − 1)−1) large time interval. But is this observation still correct if γ is
small? (See Problem 1.8.10.) We find that Eq. (1.75) is correct but we also find that
its validity is limited to a strict vicinity of the bifurcation point. More precisely, we
obtain the inequality

|A − 1| << γ . (1.76)

If γ is too small (γ is an O(10−3) quantity for many lasers; see Table 1.1),
Eq. (1.75) does not provide the simple description of the laser dynamics that we
were looking for because it applies only in an extremely restricted region. We need
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to take into account the small value of γ and realize from the expression of the RO
frequency (1.29) that the solution needs an expansion in power series of

√
γ . This

(singular) perturbation analysis will be described in Section 5.2.1.

1.5.3 Phase space

An alternative method to study the dynamical possibilities of the laser rate equa-
tions is to plot different solutions I = I (t) and D = D(t) in the phase-plane (D, I ).
A trajectory is a line (I (t), D(t)) which starts at the initial point (D(0), I (0)).
Trajectories cannot cross each other because each initial point determines a unique
trajectory. The phase-plane is a convenient method to analyze all the possible evo-
lutions of the laser. See Figure 1.13. We note that all trajectories spiral around the
fixed point (D, I )= (1, A − 1) representing the ON state and that they all escape
the OFF state (D, I )= (A, 0). Note that the line I = 0 is an exact solution of the
laser equations. Trajectories starting close to I = 0 remain close to I = 0 for a long
time before quickly spiraling to the ON state (see Problem 1.8.6 for the trajectories
emerging from the saddle-point).

Experimentally, we cannot measure the inversion of population D. But Eq. (1.7)
suggests a relation between D and I ′ given by

D = I ′

I
+ 1. (1.77)
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Fig. 1.13 Phase-plane trajectory corresponding to the transient build-up of laser
radiation. The trajectory has been determined numerically from Eqs. (1.7) and
(1.8) with γ = 5 × 10−3, A = 2, I (0)= 1, D(0)= 0.6. It first follows a small
intensity regime (latency), then undergoes a series of spikes (spiking), and
finally approaches the stable steady state (D, I )= (1, 1) with small amplitude
oscillations (RO). Arrows indicate the direction of rotation.
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Fig. 1.14 Experimental phase-plane trajectories (I as a function of D = I ′/I +1)
for the transient switch-on of the Nd3+:YAG laser reported in Figure 1.4.

Since I ′ = dI/dt is easily determined as we monitor I (t) electronically, an experi-
mental phase-plane is possible by graphing I as a function of I ′/I +1. Figure 1.14
displays an example of such trajectories for the turn-on transient of the Nd3+:YAG
laser displayed in Figure 1.4.

1.6 Spontaneous emission

In some lasers such as the He-Ne laser and more particularly the semiconduc-
tor laser, spontaneous emission (SE) may not be neglected even at a simple level
of approximation. The rate equations must be modified accordingly to take into
account SE as well as the regular emission (RE). In this section, we propose a
simple description of SE which reveals important effects such as the laser emis-
sion below threshold. More refined models are possible by using stochastic and
quantum theories [37, 39] or by introducing Fokker–Planck equations [40].

1.6.1 Imperfect bifurcation and ghosts

An elementary description of SE is possible if we replace the stimulated emission
term in the intensity equation, i.e. GnN , by G(n +1)N . We then take into account
SE by counting “one extra photon” in the laser mode. The validity of this point is
extensively discussed, e.g. in [20]. The modified rate equations now read

dn

dT
= G(n + 1)N − n

Tc
,

d N

dT
= −2GnN − 1

T1
(N − N0). (1.78)
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Fig. 1.15 Steady state intensity with spontaneous emission. Top: the branch
of steady states given by (1.81) unfolds near the bifurcation point (A, I )=
(1, 0) (b = 10−3). The broken line is the b = 0 non-zero intensity steady state
(I = A − 1). Bottom: logarithmic plot emphasizing the change of scale of the
intensity near the bifurcation point. The transition layer near A = 1 becomes
sharper as b → 0.

The modified rate equations are non-dimensionalized in the same way as Eqs. (1.4)
and (1.5). The rate equations now are

dI

dt
= I (D − 1)+ bD, (1.79)

dD

dt
= γ [A − D(1 + I )] , (1.80)

with b = 2GT1. The modified rate equations (1.79) and (1.80) have only one steady
state solution, given by

I = 1

2

[
(A − 1)+

√
(A − 1)2 + 4bA

]
. (1.81)

The steady laser bifurcation is said to be “imperfect” (see Figure 1.15) meaning
that the branch of steady states is smooth near the bifurcation point at A = 1.
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Fig. 1.16 Logarithmic plot of the variations of the intensity vs. pump power for a
GaAs injection laser as the pumping current is increased through the laser bifur-
cation point. Reprinted Figure 5 with permission from H.S. Sommers, Jr. [41].
Copyright 1982 American Institute of Physics.

Analyzing the function (1.81) for small b shows three different scalings for the
intensity. The intensity is O(b) small if A < 1 [I � bA/(1 − A)], O(

√
b) small in

the vicinity of the laser threshold A = 1 [|A − 1| = O(
√

b)], and O(1) if A> 1
[I � A − 1]. The change of amplitude from low O(b) values to high O(1) values
is best detected by a logarithmic plot of the intensity. It exhibits more explicitly the
existence of a “threshold” (Figure 1.15 bottom and Figure 1.16) (Exercise 1.8.5).

A consequence of the smooth transition of the steady state branch is the possibil-
ity of observing a manifestation of the new state at subcritical values of the pump.
These “ghosts” are particularly spectacular if the bifurcating regime is quite dif-
ferent from the basic steady state solution. This is, for example, the case for other
bifurcation problems where the new state is time-periodic or exhibits a rich spatial
structure.

SE has a strong effect on the laser dynamics both near and below threshold. It is
not restricted to the laser intensity but also modifies the phase of the field and more
generally its spectral properties (linewidth of emission, the number and frequency
of modes). These effects are discussed in [34].

Measurements on the emission below threshold were first performed using
He-Ne lasers and it has been shown to be important in semiconductor lasers. For
semiconductor lasers, the confining effect of the waveguide contributes to the col-
lection of a larger part of the SE, making its contribution more effective than in
open cavity lasers. This effect is readily measured as can be seen from the com-
mercial characteristics of some diode lasers. Figures 1.16 and 1.17 give examples
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Fig. 1.17 Imperfect bifurcation for a laser in the presence of spontaneous emis-
sion, measured for a He-Ne laser. Reprinted Figure 1 with permission from Corti
and Degiorgio [42]. Copyright 1976 by the American Physical Society.

of measurements made on a GaAs and a He-Ne laser, respectively. The observed
evolutions of the output vs. pump power show remarkable agreement with the
predictions of the rate equations.

1.6.2 Dynamical effects

SE not only changes the static characteristics of the laser but it also alters its
dynamics. This effect is more subtle than the qualitative change of the steady state
near the laser threshold.

The RE tends to produce pulses with a very high contrast ratio and is the dom-
inant dynamical response of the laser as long as it remains of large amplitude.
However, if this intensity becomes very small it is expected that processes other
than stimulated emission, loss and relaxation, e.g. SE, play a major role. This
occurs during the large periods of time separating the intensity spikes as observed
at the beginning of the turn-on experiment transient (see Figure 1.18).

We note from Eq. (1.79) that the spontaneous emission bD term feeds continu-
ously the intensity and consequently prevents it from dropping to extremely small
values. Mathematically, we may reproduce the analysis described in Section 1.3.2.
Instead of (1.43), the intensity during the latency period admits the solution

I = I0 exp
(
γ−1F(γ t)

)
+ b exp

(
γ−1F(γ t)

)
G(γ t), (1.82)

where

G(s) ≡ γ−1
∫ s

0
exp

(
−γ−1F(s)

)
D(s)ds. (1.83)
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Fig. 1.18 Effect of spontaneous emission as the laser turns on. Numerical solution
of Eqs. (1.79) and (1.80). I and t are dimensionless variables. At t = 0, A is
changed from A− = 0.9 to A+ = 1.41 during the time interval �t = 2000.
γ = 2.76 × 10−3 and b = 10−8 (top) or b = 10−30 (bottom).

The integral (1.83) can be evaluated for small γ by using Laplace’s method [15].
The leading approximation is given by

G �
√

2πγ−1

A+ − 1
exp

(
−γ−1 F(sc)

)
, (1.84)

where sc ≡ ln
[
(A+ − A−)/(A+ − 1)

]
is the critical time where D(t) passes the

bifurcation point. Assuming now that b is an O(exp(−γ−1)) small quantity, the
second term in (1.82) blows up at t j < t0n where s j ≡ γ t j is the root of

ln(b)+ γ−1 (F(s)− F(sc)) = 0. (1.85)

Provided s = s j is close to sc, we find from (1.85) that

s j � sc +
√

−2γ ln(b)

A+ − 1
. (1.86)

The expression (1.86) indicates that the delay of the jump transition increases only
if b decreases exponentially. This exponential sensitivity of the build-up times with
respect to spontaneous emission noise led to the development of a sensitive test of
the quantum fluctuations in the OFF state (“statistical microscope” [43]).



1.7 Semiconductor lasers 31

1.7 Semiconductor lasers

We have seen in the previous sections that quantitative agreement between theory
and experiment is possible using rate equations but it often requires a more sophis-
ticated description of the active medium. This is the case for semiconductor lasers
(SLs) that we consider in this section.

Traveling through a semiconductor, a single photon can generate an identical
photon by stimulating the recombination of an electron–hole pair (see Figure 1.19).
Subsequent repetition of this process leads to strong light amplification. How-
ever, the competing process is the absorption of photons by generation of new
electron–hole pairs. Stimulated emission prevails when more electrons are present
at the higher energy level (conduction band) than at the lower energy level (valence
band). This situation is called inversion. The photon energy is given by the band
gap, which depends on the semiconductor material.

Rate equations appropriate for single mode SLs have been derived in many
places [33, 34, 44]. Their formulation is slightly different from the rate equations
that were derived for gas or solid state lasers. For historical reasons (the analyti-
cal study of the semiconductor laser rate equations came later), the currently used
dimensionless rate equations are also different.

In general, the SL rate equations refer to the following equations2 for the
complex amplitude E of the optical field (Eopt = E(τ ) exp(iω0τ )) and the
carrier number N

electron
energy
[eV]

1

0

vertical position [μm]
4.4 4.9

quantum
well
bandgap

conduction band

electrons

valence band

holes

Fig. 1.19 Schematic electron band diagram and carrier transport within an
InGaAsP/InP multiquantum well active region (redrawn from Figure 3.1 of Piprek
and Bowers [45]).

2 τ (instead of T ) is used here to denote the real (physical) time, to keep up with the notations most usually
found in the literature.
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d E

dτ
= 1

2
(�G(N )− τ−1

p )E + i(ω(N )− ω0)E , (1.87)

d N

dτ
= J

e
− N

τs
− G(N ) |E |2 . (1.88)

In these equations, the optical field is normalized such that the power |E |2 rep-
resents the number of photons in the active layer. In Eq. (1.87), the coefficient
�G(N ) is defined as the power gain, τp is the photon lifetime, and ω(N ) − ω0

is the detuning between the cavity resonance frequency and the optical frequency
ω0 of the field. The parameter � is called the confinement factor and takes into
account the fact that only a part of the mode intensity contributes to the gain [33].
In Eq. (1.88), J is the pump current, e is the elementary charge, τs is the car-
rier lifetime, and the term −G(N ) |E |2 accounts for the stimulated loss of the
carriers.

Numerically computed optical gains show that they vary almost linearly with
N if the intensity of the field is not too high. The gain is then commonly approxi-
mated as (see Figure 1.20)

�G(N ) = �G N (N − Nt), (1.89)
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Fig. 1.20 Optical gain g(N) vs. carrier density for an InGaAsP strained quantum
well active layer (1.55 μm) at 20◦C. The power gain is defined by �G(N)=
�vg g(N), where vg is the photon group velocity (∼1010 cm s−1) and � is the
confinement factor (∼0.1) (redrawn from Figure 3.1 of Piprek and Bowers [45]).
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where G N and Nt are called the gain coefficient and the carrier number at trans-
parency, respectively (G(Nt)= 0). In most of the literature, (1.89) is rewritten
using the threshold carrier number Nth rather than Nt as the reference quantity.
Nth satisfies the condition �G(Nth) = τ−1

p and we rewrite Eq. (1.89) as

�G(N ) = τ−1
p + �G N (N − Nth). (1.90)

Similarly, the cavity resonance frequency is linearized around its value at threshold

ω(N ) = ωth + ωN (N − Nth). (1.91)

In (1.91), ωN is not independent of the gain coefficient G N . The relation between
the two coefficients is given in terms of the linewidth enhancement factor α. The
so-called α parameter is defined as the ratio of the real part of the susceptibility χp

(change in frequency) and its imaginary part (gain). It is given by

α = Re(χp)

Im(χp)
= − 2

�

ωN

G N
. (1.92)

The linewidth enhancement factor typically takes values from 4 to 7 in 1.3 to
1.6 μm InGaAsP lasers and 2.5 to 4 in 0.85 μm GaAs lasers. Assuming ω0 = ωth

and introducing (1.90), (1.91), and (1.92) into Eqs. (1.87) and (1.88), we obtain

d E

dτ
= �G N

2
(1 + iα)nE , (1.93)

dn

dτ
= J − Jth

e
− n

τs
−
(

1

�τp
+ G N n

)
|E |2 , (1.94)

where n ≡ N − Nth and Jth ≡ Ntheτ−1
s are called the inversion and the threshold

current, respectively. These equations are now in a form equivalent to our basic
rate equations.

We obtain dimensionless equations by introducing the new time t and the new
dependent variables Y and Z defined by

t ≡ τ/τp, Y ≡
√
τsG N

2
E , and Z ≡ �G Nτp

2
n. (1.95)

In terms of these variables, Eqs. (1.93) and (1.94) become

dY

dt
= (1 + iα)Y Z (1.96)

T
d Z

dt
= P − Z − (1 + 2Z) |Y |2 , (1.97)
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where the new parameters T and P are defined by3

T ≡ τs/τp and P ≡ τsτpG N�

2

(
J − Jth

e

)
. (1.98)

The fixed parameter T represents the ratio of the carrier and photon lifetimes and
is large (T = 102 to 103). P is called the pump parameter above threshold (|P | =
10−2 to 1). The equations for |Y | and Z are equivalent to Eqs. (1.7) and (1.8) with
D = 1 + 2Z , I = 2 |Y |2, A = 1 + 2P , and γ = T −1.

If we now determine the steady state solutions of Eqs. (1.96) and (1.97) and
analyze their linear stability properties (note that Y is complex), we find that the
frequency ωR and the damping rate ξ of the RO oscillations are simply given by

ωR ≡
√

2P

T
and ξ ≡ 1 + 2P

2T
. (1.99)

This expression is often used to measure SL parameters but it must be handled
with care as shown in Problem 1.8.9.

1.8 Exercises and problems

1.8.1 Dimensionless rate equations

Verify the derivation of the dimensionless rate equations (1.7) and (1.8).

1.8.2 Transfer function

Determine the transfer function of a laser described by the rate equations (1.7)
and (1.8). Compare the effects of loss and gain modulation given by Tc =
T 0

c (1 + a exp(iωt)+ c.c.) and A = A0(1 + a exp(iωt)+ c.c.), respectively. After
introducing I = Is + ap exp(iωt) + c.c. and D = Ds + aq exp(iωt) + c.c. into
the linearized rate equations, determine p and q. Deduce the transfer function in
each case.

1.8.3 Linear stability analysis

Determine the steady states of Eqs. (1.54) and (1.55) and analyze their linear
stability properties.

3 These dimensionless parameters are those usually found in the SL literature. Confusion is possible since T
was defined as the physical time in our standard rate equations.
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1.8.4 Rate equations in terms of power and gain

In the Encyclopedia of Laser Physics and Technology [46], the laser rate equations
are introduced in a different way. The equations are formulated for the intracavity
laser power p and the gain coefficient g,4 and are given by

dp

dT
= g − l

TR
p, (1.100)

dg

dT
= −g − gss

τg
− gp

Esat
, (1.101)

where TR is the cavity round-trip time, l is the cavity loss, gss is the small-signal
gain (for a given pump intensity), τg is the gain relaxation time (often close to
the upper state lifetime), and Esat is the saturation energy of the gain medium.
Reformulate these equations in the dimensionless form (1.7) and (1.8).

1.8.5 Characteristic equation

Determine the characteristic equation for the steady state solution of Eqs. (1.79)
and (1.80). Define the expressions of the RO frequency and analyze its behavior
close to the laser threshold (A − 1 → 0+) for progressively smaller values of b.

1.8.6 Phase-plane and saddle-point

Analyze the separatrices emerging from the saddle-point (D, I )= (1, 0) in the
phase-plane. To this end, formulate the equation for the trajectories I = I (D) by
dividing Eq. (1.7) and Eq. (1.8). Investigate the limit I small and then the limit
γ small.

1.8.7 Turn-on experiment with a pump square pulse

A laser is excited by a pump square pulse from below to above threshold during
the short interval of time (0< t < tp). Under some conditions, the laser may emit
a turn-on pulse after the pump has been reduced below its threshold [47, 48]. See
Figure 1.21. To analyze this phenomenon, assume that the pump parameter A is
changed from A−< 1 to A+> 1 during the time interval 0 < t < tp. Assuming
then that the intensity remains close to zero, determine the solution for (1)
t ≤ t ≤ t+ when A = A+, and then the solution for (2) t+ ≤ t < ton when A = A−.
Combining these two solutions, determine an equation for t = ton .

4 The gain measures the strength of optical amplification. It is defined in different ways in the literature. For
small gains, it is specified as a percentage, e.g. 3% means an amplification factor of 1.03.
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Fig. 1.21 The laser pulse (top) appears after the pump pulse returns to its ini-
tial, below-threshold value (bottom). Reprinted Figure 10a with permission from
Garreau et al. [47]. Copyright 1994 IEEE.
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Fig. 1.22 RO frequency as a function of the pump current. �: IPAG (Ith =
7.4 mA), •: HLP1400 (Ith = 64.1 mA), �: FBH (Ith = 45.2 mA). The gray lines
follow the square-root scaling that is predicted by theory for solitary SLs. Note
that the relative deviation (IDC − Ith)/Ith < 1 for the first data. Peil’s νRO and
IDC − Ith are proportional to ωRτ

−1
p and P, respectively, where ωR and P are

defined at the end of Section 1.7. From Figure 2.4 of Peil [49].

1.8.8 RO frequency near threshold

In his thesis [49], Michael Peil determined the frequency–current characteristics
of the RO frequencies for three different lasers. They are given by a Fabry–Pérot
type SL (Hitachi HLP1400) emitting at a center emission wavelength of 840 nm, a
telecommunication distributed feedback (DFB) SL (IPAG DFB SL) emitting at a
center wavelength of 1551 nm, and another Fabry–Pérot type SL (FBH) emitting
at a center wavelength of 786 nm. Figure 1.22 shows the measured RO frequencies
from spectra as a function of the pump current. The grey lines correspond to the
square-root law (1.29). Note the deviation of the data from this law for small pump
currents. M. Peil suggested that this could be the result of spontaneous emission
which is dominant close to threshold. But there could be a simpler explanation
related to the fact that a log-log plot is used. Consider the exact expression of the
RO frequency as provided by the imaginary part of (1.26). Discuss the validity of
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the approximation (1.29) as A − 1 approaches zero. Investigate then the behavior
of the exact expression of the RO frequency in a log-log plot.

1.8.9 RO frequency and the design of high-speed SLs

The SL is an important element in fiber optic links since it generates the coher-
ent optical wave that carries the signal. Typical laser wavelengths are 1.3 μm and
1.55 μm, corresponding to the dispersion and absorption minimum, respectively, of
silica fibers. The laser frequency is about 200 THz and the RF (10 kHz–300 MHz)
or microwave (300 MHz–300 GHz) signal can be modulated onto the laser beam
either directly or externally. Direct modulation is simpler to implement than exter-
nal modulation but the usable bandwidth is limited to a few GHz. Applications
of direct analog laser modulation include cable TV, base station links for mobile
communication, and antenna remoting. Experiments have shown a resonance peak
in the modulation response and these results were well explained by the following
laser rate equations

dp

dτ
= (G N (N − Nt)− τ−1

p )p, (1.102)

d N

dt
= J

e
− N

τs
− G N (N − Nt)p (1.103)

predicting the RO’s resonance frequency [50]. Equations (1.102) and (1.103) are
equivalent to Eqs. (1.87) and (1.88) (without the confinement factor �) rewritten
in terms of the output power p ≡ |E |2. The phase of the field depends passively
on p and its equation can be ignored. Verify that the steady state power is given by

p0 = τp

[
J

e
− 1

τs

(
Nt + 1

τP G N

)]
= τp

[
J

e
− Nth

τs

]
(1.104)

and that the leading approximation of the RO frequency (in Hz) is

fR = 1

2π

√
G N p0

τP
. (1.105)

The modulation bandwidth is widely accepted to be equal to fR . Equation (1.105)
expresses the modulation bandwidth as a simple function of three independent
parameters. The differential optical gain constant G N depends on material prop-
erties, the photon lifetime τP is related to the device geometry, and the photon
density expresses the state of the laser. There are therefore three obvious ways to
increase the RO frequency. The gain coefficient can be increased roughly by a fac-
tor of five by cooling the laser from room temperature to 77 K. Biasing the laser
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at higher currents would increase the optical output power density but there is an
upper limit where mirror damage occurs. The third way to increase the modulation
bandwidth is to reduce the photon lifetime by decreasing the length of the laser
cavity.

Compare (1.105) with the expression

fR = 1

2π

√
1

τPτs

(
J

Jth
− 1

)
, (1.106)

which is used extensively. To this end rewrite (1.105) in terms of J/Jth where
Jth ≡ Ntheτ−1

s and show that (1.106) is valid provided that τP G N Nt << 1. The
expression (1.106) therefore neglects the fact that a large electron density Nt is
needed to achieve transparency.

1.8.10 Two-time analysis of the laser rate equations

Determine the solution of Eqs. (1.54) and (1.55) by seeking a solution of the form

E = εE1(t , τ )+ ε2E2(t , τ )+ . . .

D = 1 + εD1(t , τ )+ ε2 D2(t , τ )+ . . . , (1.107)

where the small parameter ε is defined by

ε ≡
√

A − 1

a2
(1.108)

with a2 = 1 (a2 =− 1) if A − 1> 0 (if A − 1< 0) and τ ≡ ε2t . Expand the initial
conditions E(0)= Ei and D(0)= Di in power series of ε as in (1.107).
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Three- and four-level lasers

In Chapter 1, we introduced the standard rate equations (SRE) for a laser contain-
ing two-level atoms between which stimulated emission is possible. But real lasers
exhibit much more complicated energy level schemes. Throughout this chapter, we
consider several models in which the light–matter interaction is described by pop-
ulation equations for all the levels involved in the laser operation.1 Although they
are mathematically more complicated, we shall investigate these equations in the
same way as in Chapter 1, i.e. by formulating dimensionless equations and by
analyzing the stability properties of the steady states.

The basic ingredients of the SRE model used up to here, namely pumping and
relaxation processes, play key roles in the efficiency of lasers. But already during
the pioneering days of the laser, it appeared important to investigate three- and
four-level models in order to obtain more reliable information on quantities such
as the power conversion efficiency or the response time. The common extensions
of the two-level SRE typically consider an open two-level system, or three- or four-
level systems, depending on the nature of the active medium. Restriction to as few
as four levels is again a crude simplification of the complex population dynamics
occurring in most lasers. But it is rather surprising to see how good these simple
kinetic models are. As we demonstrate by studying specific examples, the solution
of the three- or four-level rate equations differs only slightly from the solution
of the SRE. This reinforces the idea that the dynamical response of many lasers
depends on a few dynamical features that are well captured – at least qualitatively –
by the two-level SRE.

In practice, the complexity of the level schemes considered depends on the las-
ing material but also on the desired level of modeling. The description of more
complex phenomena such as some specific pulsating instabilities in a CO2 laser

1 A more rigorous treatment is possible using a semiclassical theory where the Schrödinger and Maxwell
equations are considered (see e.g. [36]).

39
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containing a saturable absorber motivated a three-level scheme for the CO2 active
medium. Similarly, the quantitative analysis of long transient behaviors required a
model that takes into account the coupling of the lasing levels with their vibrational
manifolds in the CO2 molecule. Both models are analyzed in this chapter.

We begin by a rapid description of several energy level schemes and concen-
trate on important ones motivated by either historical (ruby laser) or technical
(Nd3+:YAG, CO2 lasers) reasons. We start from the equations appearing in the
original papers, formulate dimensionless equations, and discuss the relevance
of the parameters. Because some population variables are either small in size
or slowly varying in time, they can be eliminated from the rate equations by
quasi-steady state approximations. As a result, the number of equations can be
reduced. The quasi-steady state approximation (also called adiabatic elimination)
is a popular technique in chemistry and biochemistry because it allows major
simplifications of the original kinetic equations.

2.1 Energy level schemes in lasers

This section reviews different models commonly used in the literature (for more
details, see standard textbooks on lasers, e.g. [20], [51]).

The first laser that exhibited intensity oscillations was a ruby (i.e. a Cr3+:
Al2O3) laser and its mode of operation may be understood using a three-level
scheme. Such a pumping scheme was suggested by Basov and Prokhorov in 1955
[50] and in a more detailed way in 1956 by Bloembergen [51],2 for obtaining
continuous operation of a maser, the microwave elder brother of the laser (which
was only at that time referred to as an “optical maser”). Bloembergen showed
that population inversion on a microwave transition could be obtained by pump-
ing with cw radiation on another transition, an idea which was implemented soon
afterwards in three-level solid state masers. Practically speaking, the ruby laser
was flash pumped and its output was pulsed but the basis of its operation follows
Bloembergen’s pumping scheme.

The He-Ne laser, which was introduced during the same year as the ruby laser,
is usually modeled with a two-level scheme. However, in contrast to the model
discussed in Chapter 1, the total population of the two levels is not constant since
relaxation processes expel the atoms from the level manifold directly involved in
the stimulated emission process. This model is called the “open two-level” system
(see Exercise 2.4.1).

2 The ideas behind the maser were proposed independently by Nikolai Basov and Alexander Prokhorov in 1955
and by Nicolaas Bloembergen in 1956. Because of this difference in dates, Basov and Prokhorov shared the
Nobel Prize with Charles Townes in 1964 while Bloembergen shared it a few years later, in 1981, with
Arthur Schawlow.
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In solid state lasers such as the Nd3+:YAG lasers, many ionic energy levels con-
tribute to pumping and relaxation. Fortunately, in the case of the Nd3+ emission
at 1.06 μm, the lasing process may be described by a scheme involving four levels
only and, as we shall demonstrate, can be reduced to an effective two-level scheme.
Other rare-earth doped materials are commonly used to obtain coherent emission
in specific wavelength ranges and each one has its own scheme for pumping and
relaxation, leaving a series of problems of various complexity (for an overview,
see [52]). As far as applications are concerned, the currently important laser is
the Er3+ doped fiber laser, which emits at the wavelength of long-haul fiber
telecommunications (λ= 1.55 μm). It was first described by a three-level model
with emission between the intermediate and the ground state, just like the ruby
laser. However, because of an accidental resonance of the pump wavelength with
another transition, excited state absorption is possible making it often necessary to
include more energy levels in the model.

Gas lasers such as the CO2 and N2O lasers are qualitatively well described by
the two-level SRE introduced in Chapter 1. But, as already mentioned, the SRE
model is inadequate to describe instabilities generated by a saturable absorber
inserted inside the cavity. The inclusion of additional levels is needed and has
been done either by using a three-level model or by considering a “two + two”
level model.

Far-infrared lasers are of restricted practical use because of their low emission
power and poor efficiency but they often are the only coherent source available
in the far infrared (100 μm–1 mm) region of the spectrum. Two simple models
are especially relevant. The first one is just a three-level model as discussed in the
forthcoming section [55]. The second one is known as the Haken–Lorenz model
and will be presented in Chapter 11.

As explained in Chapter 1, emission in semiconductor lasers results from
electron–hole recombinations between energy bands rather than discrete levels.
As a result, unusual dynamical responses are possible but a description in terms of
two rate equations is still possible.

2.2 Three-level lasers

Two lasing scenarios are possible for a three-level scheme. See Figure 2.1. In the
first case (a), atoms (or molecules or ions) are pumped from the ground state 1 to
some excited state 3. Laser emission occurs between this level and an intermediate
state 2. The atoms relax rapidly from there to the ground state and the cycle repeats.
The relaxation from 2 to 1 is fast, implying a low population at level 2. This then
contributes to a large gain between 3 and 2. In the second case (b), the atoms de-
excite from the upper state 3 to an intermediate state 2. The transition to the ground
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Fig. 2.1 Schematic description of the three-level models. Wp is the pumping rate
and the γi j are the relaxation rates. K n indicates laser action, where n is the
number of photons. (a) CO2 laser scheme; (b) ruby laser scheme (redrawn from
Figure 10 of Dangoisse et al. [22]).

state 1 is weakly allowed so that atoms are stored in the intermediate level until
sufficient population inversion is accumulated, then laser action occurs between
levels 2 and 1.

We shall consider both cases and show how we may simplify our rate equations
by taking advantage of the relative values of the relaxation rates.

2.2.1 Ruby laser

The laser rate equations consist now of equations for the various populations cou-
pled to an equation for the field as Eq. (1.1) in Chapter 1. We first consider the case
shown in Figure 2.1(b) which models, for instance, a ruby laser. We assume that
pumping is realized from level 1 to level 3. A double arrow in the figure indicates
that the pumping process induces transitions in the two directions from level 1 to
level 3 and from level 3 to level 1 (with the same rate Wp in case of coherent pump-
ing). Using Figure 2.1(b), we may formulate the population equations for N1, N2,
and N3. They are given by

N ′
1 = γ21 N2 − Wp(N1 − N3)+ K n(N2 − N1)+ γ31N3, (2.1)

N ′
2 = γ32 N3 − γ21N2 − K n(N2 − N1), (2.2)

N ′
3 = Wp(N1 − N3)− γ32 N3 − γ31 N3, (2.3)

where prime (′) means differentiation with respect to time T . Note that N ′
1 + N ′

2 +
N ′

3 = 0 implying that the total population

N1 + N2 + N3 = NT (2.4)

is a constant. In the case of the ruby laser, the upper laser level lifetime is excep-
tionally long (γ−1

21 = 3 ms [56, 51], γ−1
21 = 4.3 ms [20] p. 250). On the other hand,
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the relaxation rates from level 3 to level 2 or from level 3 to level 1 are fast com-
pared to γ−1

21 (γ−1
32 and γ−1

31 are of the order of 0.1 μs; see [51]: energy level scheme
p. 149, constants p. 448). Furthermore, we note the inequalities

γ−1
32 << W−1

p , γ−1
31 . (2.5)

As soon as one atom is excited from level 1 to level 3, it will almost instantaneously
be de-excited to level 2 and N3 will remain small. Mathematically, we assume that
N3 is small compared to N1 and that γ31N3 and N ′

3 are both small compared to
Wp N1 (but γ32 N3 is of the same magnitude as Wp N1). Equations (2.1)–(2.4) then
simplify as

N ′
1 � γ21 N2 − Wp N1 + K n(N2 − N1), (2.6)

N ′
2 = γ32 N3 − γ21N2 − K n(N2 − N1), (2.7)

0 � Wp N1 − γ32 N3. (2.8)

NT � N1 + N2. (2.9)

Solving Eq. (2.8) for N3, we obtain

N3 = Wp N1

γ32
< 1. (2.10)

Using (2.10), Eq. (2.7) is further simplified as

N ′
2 = Wp N1 − γ21 N2 − K n(N2 − N1). (2.11)

Introducing the inversion of population N ≡ N2 − N1 and using (2.6), (2.9), and
(2.11), we determine an equation for N as

N ′ = −γ21(N + NT )− Wp(N − NT )− 2K nN . (2.12)

The right hand side of Eq. (2.12) displays the three main processes appearing in
laser action. The first term models the relaxation to equilibrium in the absence
of pumping: N relaxes towards −NT since the population accumulates in level 1
under the influence of the single relaxation process. The second term describes
the pumping process which creates the inversion of population (if Wp >γ21): in
case of very strong pumping (if Wp >> γ21), and in the absence of laser emission
(n = 0), the population accumulates in level 2 (N = NT ). The last term indicates
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the nonlinear coupling between population and intensity as the result of stimulated
emission.

Equation (2.12) for N is coupled to an equation for the laser number of photons
given by

n′ = n(−γc + K N ). (2.13)

Equation (2.13) is identical to Eq. (1.4) in Chapter 1 with K = G, and γc = T −1
c .

Introducing the new variables

t ≡ γcT , I ≡ 2K n

γ21 + Wp
, and D ≡ K

γc
N (2.14)

into Eqs. (2.12) and (2.13), we obtain

I ′ = I (−1 + D),
D′ = γ [A − D(1 + I )] (2.15)

where

γ ≡ γ21 + Wp

γc
and A ≡ (Wp − γ21)K NT

(γ21 + Wp)γc
. (2.16)

With these new definitions of γ and A, the system (2.15) is identical to Eqs. (1.7)
and (1.8) in Chapter 1.

2.2.2 CO2 laser

Since the early 1970s, various theoretical models of the CO2 laser containing a
saturable absorber have been proposed with the aim of quantitatively describing
the pulsating outputs observed experimentally [57, 58]. Powell and Wolga (1971)
[59] introduced a two-level description for the absorber and the active medium
which was later studied in detail. However, the two-level model hardly provides
the range of parameters in which the pulsating instabilities appear. Arimondo
et al. (1983) [60] then proposed including the vibrational manifolds to which
the lasing and absorbing levels are coupled. The resulting four-level model well
reproduced the experimental domain of instabilities but was unable to describe
some of the multiperiodic or chaotic regimes observed experimentally. A defi-
nite step towards their description came with Tachikawa and coworkers (1986)
[61]–[63], who introduced the ground state of the CO2 molecule as a third level
for the active medium. Numerical simulations of the model equations successfully
reproduced the variety of periodic and erratic pulsating states [64, 65].
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Model

The third-level model of a CO2 laser is shown in Figure 2.1(a). Assuming inde-
pendence of the three basic processes (pumping, relaxation, stimulated emission),
the population equations for N1, N2, and N3 are now given by

N ′
1 = −Wp(N1 − N3)+ γ21N2 + γ31N3, (2.17)

N ′
2 = γ32 N3 − γ21N2 + K n(N3 − N2), (2.18)

N ′
3 = Wp(N1 − N3)− γ32N3 − γ31 N3 − K n(N3 − N2), (2.19)

where prime means differentiation with respect to time T . As for the ruby laser,
we assume coherent pumping, i.e. the pumping mechanism induces back and forth
transitions between levels 1 and 3. Typical values of the rate constants for a CO2

laser are listed in Table 2.1.
Note that N ′

1 + N ′
2 + N ′

3 = 0 and that Eq. (2.4) is still verified. We would like
to take advantage of the relative small values of γ32 and Wp compared to either
γ21 or γ31. The large values of γ21 and γ31 mean that N2 and N3 are small com-
pared to N1 because they rapidly relax to their equilibrium values. From (2.4),
we then conclude that N1 � NT . With N1 = NT and neglecting all γ32 N3 terms,
Eqs. (2.17)–(2.19) considerably simplify as

N ′
1 = −Wp NT + γ21N2 + γ31 N3, (2.20)

N ′
2 = −γ21 N2 + K n(N3 − N2), (2.21)

N ′
3 = Wp NT − γ31 N3 − K n(N3 − N2). (2.22)

It is natural to introduce the inversion of population

N = N3 − N2 (2.23)

and express N2 in terms of N3 and N as N2 = N3 − N . From Eqs. (2.20)–(2.22),
we obtain the following equations for N1 and N

N ′
1 = −Wp NT + γ21(N3 − N )+ γ31 N3, (2.24)

N ′ = Wp NT − γ31N3 − 2K nN + γ21(N3 − N ). (2.25)

Since the total population is N1 + N2 + N3 = N1 + 2N3 − N = NT , we may
express N3 as

N3 = NT − N1 + N

2
. (2.26)
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Substituting (2.26) into Eqs. (2.24) and (2.25), we find

N ′
1 = γ1 N + γ2(NT − N1)− Wp NT , (2.27)

N ′ = −γ1(NT − N1)− 2K nN − γ2 N + Wp NT , (2.28)

where

γ1 ≡ γ31 − γ21

2
and γ2 ≡ γ21 + γ31

2
. (2.29)

Equations (2.27) and (2.28) are coupled to Eq. (2.13) for the number of photons.
We now finalize our formulation of the rate equations by introducing the following
dimensionless variables

t ≡ γcT , I ≡ 2K n

γ2
, U ≡ K

γc
N , (2.30)

W ≡ K

γcγ2

[−γ1(NT − N1)+ Wp NT
]

. (2.31)

From Eqs. (2.13), (2.27), and (2.28), we obtain

I ′ = I (−1 + U),
U ′ = ε [W − U(1 + I )] ,
W ′ = ε (A + bU − W ) (2.32)

where

ε ≡ γ2

γc
, b ≡

(
γ1

γ2

)2

, and A ≡ K Wp NT

γcγ2

(
1 − γ1

γ2

)
. (2.33)

These are the equations derived by Lefranc et al. [65]. In these equations, the
population inversion is U which is coupled to a reservoir population W . Both U
and W are slow variables because the right hand sides of the equations for U and
W are proportional to ε which is a small parameter. A is the control parameter and
there are only two fixed parameters, b and ε. Using the values of the parameters
given by Lefranc et al. [65] (see Table 2.1), we find b = 0.85 and ε = 0.1375. In
the next two subsections, we determine the steady state solutions and discuss their
stability properties.
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Table 2.1 Rate constants for a CO2 laser (all in s−1).

Tachikawa et al.a Lefranc et al.b

γ32 20 10
γ21 380 × 103 289.2 × 103

γ31 103 1.2 × 104

Wp 8.5–70
γc 2.5 × 106 1.1 × 106

a [63, 64].
b [65]. The value of γ21 documented in [65] (γ10) is a misprint
(M. Lefranc, private communication).

Steady state solutions

From (2.32), we find the following steady state solutions

I = 0, W = U = A

1 − b
, (2.34)

I = A + b − 1 ≥ 0, U = 1, W = A + b (2.35)

corresponding to the OFF and ON states, respectively. The value of b is close to 1
because γ31<<γ21. However, we cannot set b equal to 1 because (2.34) is singular
at b = 1.

From (2.35), we find that the lasing threshold is A = Ath ≡ 1 − b suggesting
a drastic reduction of the lasing threshold from a two- to a three-level system.
This is however not the case because the definition of A is quite different in the
two- and three-level problems. Practically, A is not calculated from the physical
constants but it is normalized using the threshold pump as a reference since it can
be determined experimentally. If this is done, the OFF and ON steady states are
(I , U) = (0, A/Ath) and (I , U) = (A − Ath , 1), respectively.

Linear stability analysis

We wish to find how a small perturbation of either (2.34) or (2.35) will grow or
decay. To this end, we insert I = Is + i , U = Us + u, and W = Ws + w into
Eqs. (2.32) where (Is , Us , Ws) denotes either the zero intensity steady state (2.34)
or the non-zero intensity steady state (2.35). We simplify the resulting equations
using the steady state equations and neglect all nonlinear contributions in i , u,
and w. We then obtain the following linear equations for i , u, and w

d

dt

⎛⎝i
u
w

⎞⎠ =
⎛⎝Us − 1 Is 0

−εUs −ε(1 + Is) ε

0 εb −ε

⎞⎠⎛⎝i
u
w

⎞⎠. (2.36)
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The general solution of Eq. (2.36) is a linear combination of three exponential
solutions of the form

i = c1 exp(σ t), u = c2 exp(σ t), and w = c3 exp(σ t), (2.37)

where σ is the growth rate and the c j are constants. Introducing (2.37) into (2.36)
leads to a homogeneous system of equations for c1, c2, and c3. A nontrivial
solution is possible only if

det

⎛⎝Us − 1 − σ Is 0
−εUs −ε(1 + Is)− σ ε

0 εb −ε − σ

⎞⎠= 0. (2.38)

For the zero intensity steady state (2.34), (2.38) leads to the following charac-
teristic equation for σ(

A

1 − b
− 1 − σ

)(
σ 2 + 2εσ + ε2(1 − b)

) = 0. (2.39)

The first root is σ1 = A
1−b −1 and the two other roots satisfy the quadratic equation

σ 2 + 2εσ + ε2(1 − b) = 0. From the sign of the coefficients and since b < 1, we
conclude that the real part of these roots is always negative. Therefore the stability
of the solution is determined by σ1 only. σ1 changes sign at A = Ath = 1 − b and
the solution is stable (unstable) if A < Ath (if A > Ath).

For the non-zero intensity steady state (2.35), (2.38) leads to the following
characteristic equation for σ

σ 3 + C1σ
2 + C2σ + C3 = 0, (2.40)

where the coefficients C j ( j = 1, 2, 3) are defined by

C1 ≡ 2ε + εIs , C2 ≡ εIs + ε2 A, C3 ≡ ε2 Is . (2.41)

The necessary and sufficient conditions for σ having a negative real part are known
as the Routh–Hurwitz conditions [29]. For (2.40), these conditions require the
following inequalities on the coefficients C j

C1 > 0, C3 > 0, and C1C2 − C3 > 0. (2.42)

They are easily verified since ε and Is are both positive. The non-zero intensity
solution is always stable.
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Relaxation oscillations

As in Chapter 1, we wish to derive a useful analytical approximation of the growth
rate taking into account that ε is small. The growth rate for the two-level problem
was given by an expansion in powers of ε1/2 and we are going to do the same here.
After inserting

σ = ε1/2σ0 + εσ1 + . . . (2.43)

into Eq. (2.40), we equate to zero the coefficients of each power of ε1/2. The first
two problems are given by

O(ε3/2) : σ 3
0 + Isσ0 = 0,

O(ε2) : 3σ 2
0 σ1 + Isσ1 + (2 + Is)σ

2
0 + Is = 0 (2.44)

and lead to the following solutions

σ � −ε, (2.45)

σ � ±i
√
εIs − ε

2
(Is + 1). (2.46)

The first term in (2.46) indicates that small perturbations of the steady state exhibit
oscillations at a frequency

ωR = √
εIs , (2.47)

which is identical to the expression obtained for the two-level system (ωR =√
γ Is). The second term in (2.46) represents the damping rate of the laser

relaxation oscillations, i.e.

� = −ε
2
(Is + 1), (2.48)

which is identical to the expression obtained for the two-level system (�=
− γ

2 (Is + 1)). We conclude that although we cannot reduce the three rate
equations (2.32) to the SRE, the relaxation of a small perturbation from the
non-zero intensity steady state is the same as for the SRE.

2.3 Four-level lasers

2.3.1 Model

The four-level laser system is a model for a Nd3+:YAG and many similar solid state
and dye lasers. An idealized four-level pumping scheme is shown in Figure 2.2.
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Fig. 2.2 Four-level model. Wp is the pumping rate, the γi j are relaxation rates,
and K n denotes the lasing action (redrawn from Figure 11 of Dangoisse et al.
[22]).

From this figure, we derive the following population equations for N0, N1, N2,
and N3

N ′
0 = γ10N1 − WP (N0 − N3)+ γ30N3, (2.49)

N ′
1 = −γ10N1 + γ21N2 + K n(N2 − N1), (2.50)

N ′
2 = γ32N3 − γ21 N2 − K n(N2 − N1), (2.51)

N ′
3 = Wp(N0 − N3)− γ32N3 − γ30N3. (2.52)

Again, we verify that N ′
0 + N ′

1 + N ′
2 + N ′

3 = 0 meaning that the total population

N0 + N1 + N2 + N3 = NT (2.53)

is constant. We assume that γ32 is much larger than all the other relaxation and
pump rates. From (2.52), we then find that N3 is small and is given by

N3 � Wp N0/γ32. (2.54)

As is the case for most solid state lasers, the upper levels are poorly populated
compared to the ground level and from (2.53) we have N0 � NT . The population
equations then reduce to Eqs. (2.50) and (2.51) with γ32N3 = Wp N0 = Wp NT as
for the three-level system. Coupled to an equation for the number of photons,
we have

n′ = −γcn + γ21K n(N2 − N1)+ Rsp , (2.55)

N ′
2 = S − γ21 N2 − γ21K n(N2 − N1), (2.56)

N ′
1 = −γ10 N1 + γ21N2 + γ21K n(N2 − N1), (2.57)
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Table 2.2 Relaxation rates for a solid
state microchip laser [66, 67].

Parameters Values

K 7 × 10−6

γc 7 × 1010 s−1

γ21 1.3 × 104 s−1

γ10 1.6 × 109 s−1

where S ≡ Wp NT is the pump rate, K is defined as the ratio of stimulated to spon-
taneous emission cross sections, Rsp ≡ N2 Kγ21 is the spontaneous emission rate
into the lasing mode (following Siegman, [20] pp. 502–503). Typical values for a
Nd3+:YVO4 microchip laser are listed in Table 2.2.

2.3.2 Connection with the two-level model

We note from Table 2.2 that the ratio γ21/γ10 ∼ 10−5 is small which suggests a
simplification of Eqs. (2.55)–(2.57). To this end, we introduce a small parameter ε
defined as

ε ≡ γ21/γ10 (2.58)

and seek an approximation of N1 of the form

N1 = εN11 + . . . (2.59)

Inserting (2.59) into Eq. (2.57) gives N11 as

N11 = N2(1 + K n). (2.60)

Then introducing N1 = εN11 into Eqs. (2.55) and (2.56), we obtain the following
two-variable rate equations

n′ = −γcn + Kγ21 N2 [1 − ε(1 + K n)] n + Rsp , (2.61)

N ′
2 = S − γ21 N2 − Kγ21 N2 [1 − ε(1 + K n)] n. (2.62)

We may reformulate these equations in dimensionless form. Introducing the new
variables

I ≡ K n, D ≡ Kγ21

γc
N2, and t ≡ γcT , (2.63)
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Eqs. (2.61) and (2.62) become

I ′ = I [−1 + D (1 − ε(1 + I ))] + KD
D′ = γ [A − D − D (1 − ε(1 + I )) I ] (2.64)

where

γ ≡ γ21

γc
and A ≡ SK

γc
. (2.65)

Equations (2.64) were obtained after eliminating N1 adiabatically. A better
approach is to first formulate dimensionless rate equations and then eliminate one
of the population variables.

In the present model, spontaneous emission has been included via the param-
eter KD.3 In spite of its small value, it has a important effect on the solution if
the intensity is small. Equations (2.64) reduce to the SRE as ε→ 0 and K → 0.
The four-level system introduces nonlinear gain saturation and the rate equa-
tions exhibit three small parameters, namely γ = 0.2 × 10−6, K = 7 × 10−6, and
ε = 8 × 10−6. All three may contribute to the damping of the relaxation oscilla-
tions. This can be understood if we analyze the stability properties of the non-zero
intensity steady state. From (2.64), we find (Is , Ds) = (A − 1, 1) + O(K , ε) and
that the characteristic equation leads to the following solution for the growth rate σ

σ � ±i
√
γ Is − 1

2

[
γ A + K

A − 1
+ ε(A − 1)

]
, (2.66)

where the second term in (2.66) describes the damping rate of the relaxation
oscillations. It is given by

� ≡ −1

2

[
γ A + K

A − 1
+ ε(A − 1)

]
, (2.67)

where we note the SRE contribution given by −γ A/2. The two extra terms nev-

ertheless have an influence. �(A) exhibits a minimum at A − 1 =
√

K
ε+γ � 0.92

which is observed experimentally in [66] from the laser linewidth.

2.3.3 Modified four-level model for CO2 lasers

An improved four-level model that takes into account rotational bands has been
proposed in [58, 60] and further analyzed in [68, 69] because it better describes
CO2 lasers in the presence of slow cavity loss modulations. More specifically, it is

3 The notations of Siegman [20] have been used here. The SE term K D here corresponds to bD in Eq. (1.79).
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Fig. 2.3 Four-level model for the CO2 laser. Each lasing level is collisionally cou-
pled to the manifold of rotational energy levels belonging to the same vibrational
level.

a two + two model in which the two lasing levels are rotational levels of different
vibrational states. The collisional coupling between these lasing levels and the
other rotational states of the same vibrational state(s) is explicitly considered. In
this section, we present this model starting from the four-level scheme shown in
Figure 2.3, derive a dimensionless form for the equations, and deduce from a long
time analysis the main effect of the addition of the vibrational manifolds of the
rotational levels coupled by relaxation to the lasing levels.

For clarity, we use the same notation as in [70]. As illustrated in Figure 2.3, N1

and N2 represent the populations of the two lasing states while M1 and M2 are
the global populations of the two manifolds of rotational levels. Together with the
intensity I of the field, they satisfy the following rate equations

I ′ = −κ I + G(N2 − N1)I ,

N ′
1 = −(zγR + γ1)N1 + G(N2 − N1)I + γR M1,

N ′
2 = −(zγR + γ2)N2 − G(N2 − N1)I + γR M2 + γ2 P ,

M ′
1 = −(γR + γ1)M1 + zγR N1,

M ′
2 = −(γR + γ2)M2 + zγR N2 + zγ2 P . (2.68)

Typical values for the parameters are given in Table 2.3.4

Introducing the population inversions

N = N2 − N1 and M = M2 − M1, (2.69)

4 The dispersion of the parameter values results from the difficulty of measuring quantities which are defined
in the framework of a simplified two + two model knowing that in reality hundreds of levels are involved.
Nevertheless, these values will help us to estimate the relative magnitude of the terms appearing in the rate
equations. Moreover, laser parameters typically vary by one order of magnitude depending on the operating
conditions. For example, the pressure inside the active medium, which controls the gain and the relaxation
constants, may vary from a few to tens of Torrs for the same laser.
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Table 2.3 Parameters for a two + two
level CO2 laser [70].

Parameters Values

κ(s−1) 1.35 × 107

G(s−1) 6.7 × 10−8

γ1(s−1) 8.0 × 104

γ2(s−1) 104

γR(s−1) 7 × 105

P 6.35 × 1014

z 16

Eqs. (2.68) can be rewritten as

I ′ = −κ I + G N I ,

N ′
1 = −(zγR + γ1)N1 + G N I + γR M1,

N ′ = −(zγR + γ2)N − 2G N I + γR M + γ2 P + (γ1 − γ2)N1,

M ′
1 = −(γR + γ1)M1 + zγR N1,

M ′ = −(γR + γ2)M + zγR N + zγ2 P + (γ1 − γ2)M1. (2.70)

The special case

γ = γ2 = γ1 (2.71)

is the case studied in [60, 31]. It corresponds to equal relaxation times for the
vibrational states associated with the upper and lower energy levels of the las-
ing transition. Equations (2.70) then separate into two systems of equations.
Specifically, I , N , and M satisfy

I ′ = −κ I + G N I ,

N ′ = −(zγR + γ )N − 2G N I + γR M + γP ,

M ′ = −(γR + γ )M + zγR N + zγ P , (2.72)

while N1 and M1 are passively related to N and I and satisfy

N ′
1 = −(zγR + γ )N1 + G N I + γR M1,

M ′
1 = −(γR + γ )M1 + zγR N1. (2.73)
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The difficulty of analyzing the laser rate equations is reduced to three equations
making both qualitative and quantitative analyses easier. In the forthcoming sec-
tion, we formulate dimensionless equations in order to compare parameter values
and propose simplifications.

2.3.4 Dimensionless equations

To this end, we introduce the new variables

I ≡ γ

2G
i , N ≡ κ

G
n, and M ≡ κ

G
m. (2.74)

From Eqs. (2.72), we obtain5

i ′ = κi(−1 + n),

n′ = −(zγR + γ )n − γ ni + γRm + γ P0,

m′ = −(γR + γ )m + zγRn + zγ P0, (2.75)

where

P0 ≡ G

κ
P . (2.76)

Finally, we need to introduce a dimensionless time. If

t = γRT (2.77)

Eqs. (2.75) become

i ′ = ki(−1 + n), (2.78)

n′ = −(z + ε)n − εni + m + εP0, (2.79)

m′ = −(1 + ε)m + zn + zεP0, (2.80)

where prime now means differentiation with respect to t . The dimensionless
parameters k and ε are defined by

k ≡ κγ−1
R and ε ≡ γ γ−1

R . (2.81)

Note that time is measured in units of γR instead of κ as in our previous for-
mulations, for mathematical convenience only. Using Table 2.3 and γ = 5 × 104,

5 Equations (2.75) are equivalent to Eqs. (6) in [71] and Eqs. (5) in [69] if we introduce the new variables
R = m−zn

z+1 , Q = m+n
z+1 , and I = i

z+1 (Eqs. (6) in [71]) or y = i (Eqs. (5) in [69]).
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we find k = 19.2 and ε= 7.1 × 10−2. Mathematically, the SRE equations are
obtained by taking the limit z → 0. However, the value of z = 16 to 20 is high. In
the next subsection, we examine the relaxation properties of a slightly perturbed
steady state.

2.3.5 Long time solution

As with Eqs. (2.32), we analyze Eqs. (2.78)–(2.80) by studying the relaxation prop-
erties of the non-zero intensity steady state. The analysis is similar to our previous
investigation of Eqs. (2.32) and we only summarize the main steps. The non-zero
intensity steady state of Eqs. (2.78)–(2.80) is given by

is = (P0 − 1)
(z + 1 + ε)

1 + ε
, ns = 1, ms = z(1 + εP0)

1 + ε
. (2.82)

We determine the characteristic equation for the growth rate σ . It has the form

σ 3 + (z + 1 + 2ε + εis) σ
2

+ (εkis + ε + εis + ε(z + ε + εis)) σ + kisε(1 + ε)

= 0. (2.83)

We solve Eq. (2.83) by taking advantage of the large value of k. Specifically, we
seek a solution of the form

σ = k1/2σ0 + σ1 + . . . (2.84)

We find one real root which is always negative, and

σ � ±i
√

kεis − 1

2
(z + ε + εis). (2.85)

In terms of time measured in units of the cavity lifetime, the growth rate is

σγRκ
−1 = ±i

√
γ

κ
is − γ

2κ
(1 + is)− γR

2κ
z. (2.86)

The two first terms in the right hand side of (2.86) are identical to the terms appear-
ing for the SRE. The last term is new and contributes significantly to the damping
of the relaxation oscillations.
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Fig. 2.4 Open two-level laser scheme.

2.4 Exercises and problems

2.4.1 Open two-level system

If the laser emission occurs between two excited states with similar lifetimes, the
approximation of a constant total population in the laser levels cannot be used and
an open two-level model needs to be considered, as illustrated in Figure 2.4. It
serves, for instance, in the case of the He-Ne laser operation at λ = 632 nm. The
evolution equations are

d N1

dt
= −γ1 N1 + (N2 − N1)K n,

d N2

dt
= P − γ2 N2 − (N2 − N1)K n,

dn

dt
= K n(N2 − N1)− γcn.

Rewrite these equations in the dimensionless form

n′
1 = −ε1n1 + (n2 − n1)i ,

n′
2 = −ε2n2 − (n2 − n1)i + A,

i ′ = −i + (n2 − n1)i

and determine the stability properties of the steady states.

2.4.2 Two-photon laser

The direct transition from the upper to the lower level of the “laser transition” may
be forbidden by electric dipole selection rules, for instance if these states have the
same parity. In this situation, there is a possibility of a two-photon transition [72].
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The corresponding rate equations for such a process differ in the field–matter inter-
action: as the emission process involves two photons instead of one, it is easily
shown by quantum mechanics that the transition rate evolves as the square of the
intensity. Such a laser may be described by the following set of rate equations
using the notation of the original paper

dq

dt
= B(2)q2�N − γc(q − qinj (t))

d�N

dt
= −2B(2)q2�N − γ (�N −�N0),

where q is the photon density and �N the population inversion. γc and γ are
the relaxation rates for these two quantities. B(2) is the two-photon stimulated
emission coefficient and qinj (t) represents the possible injected field at the two-
photon frequency that will be assumed to be null here.

Reformulate these equations in dimensionless form and check that the number
of effective (useful) constants has been reduced to a single one. Find the steady
state solutions and determine their stability properties. Define the laser thresh-
old and discuss the problem this laser may have to start (conclude about the role
of qinj ).

2.4.3 Asymptotic solution of the characteristic equation

In Section 2.2.2, we proposed seeking a solution of Eq. (2.40) as a power series in
ε1/2. Check that the expansion σ = εσ1 +ε2σ2 + . . . only provides one root which
then requires a different scaling for σ .

2.4.4 Dimensionless formulation

Introduce the new variables I = K n, D = Kγ21 N2/γc, N = Kγ10 N1/γc, and
t = γcT into Eqs. (2.55)–(2.57), and formulate the three equations for I , D, and
N . Investigate the conditions for the adiabatic elimination of N .
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Phase dynamics

Phase dynamical instabilities are described by a single angular variable. The basic
phenomenon called “phase-locking” occurs as soon as two interacting oscillators
have “close enough” frequencies. Adler’s equation1 describes this phenomenon
and appears in various areas of laser physics, including polarization dynamics,
a laser subject to an injected signal, coupled microlasers, and laser gyros.

3.1 Phase-locking in laser dynamics

In Chapter 1, the response of the laser was described in terms of the light intensity
and the population inversion. This description of the laser output in terms of two
dependent variables is accurate enough to describe phenomena such as turn-on
experiments or the onset of damped ROs. However, there are precise cases where
such a description is inadequate.

Specifically, the active medium and the electric field deserve more sophisticated
treatments. A better account of the active medium energy levels was considered in
Chapter 2. In this chapter, we concentrate on the laser electrical field. We already
saw in Chapter 1 that a description based on the intensity only may be misleading
and we emphasized the fact that the complex electric field should be used instead
of the intensity. Specifically, the laser output depends on the electric field vector
�E = Re{ �E0 exp(i(ω0t +�))}. Both the phase�(t) and the azimuth, i.e. the direc-

tion of the electric field vector
−−−→
E0(t), may lead to new phenomena as we shall now

describe.
We may reasonably wonder why we are interested in laser phase dynamics.

Indeed, the phase of the optical field, ω0t +�, varies so quickly (10−15 s) that, in

1 Robert Adler (1913–2007) is best known as the co-inventor of the television remote control using ultrasonic
waves. But in the 1940s, he and others at Zenith Corporation were interested in reducing the number of
vacuum tubes in an FM radio. The possibility that a locked oscillator might offer a solution inspired his 1946
paper, “A Study of Locking Phenomena in Oscillators” [79]. Adler’s work concerned a single nonlinear phase
oscillator. Later the idea was exploited and generalized to describe a number of similar coupled oscillators.

59
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Table 3.1 Different laser systems where phase-locking is observed.

Laser Coupled waves Coupling

ringa forward/backward waves back-scattering
vectorial class Ab polarization components Faraday rotation
with injectionc injected and laser fields injection
coupled lasersd waves in each laser evanescent waves

a [6, 74].
b [75, 76].
c [77].
d [78, 79, 80].

most experiments, only the intensity of the laser I may be monitored and the opti-
cal phase � remains inaccessible. There are however experiments where a phase
variable must be considered. This occurs if there exists an optical time/frequency
reference such as the phase of another laser beam at a frequency close to that of the
laser under study. The relative phase of the two laser fields may then vary slowly.
Laser arrays or a laser injected with the field of another laser are typical exam-
ples where this relative phase between laser optical fields needs to be taken into
account. The nature of the coupled waves and the associated coupling mechanism
for different systems are summarized in Table 3.1.

The objective of this chapter is to review several situations in which phase-
locking rules the laser dynamics. We begin by studying one of the simplest cases,
the vectorial dynamics of a class A laser in the presence of Faraday rotation. We
shall introduce Adler’s equation and emphasize some specific effects of phase-
locking. More complicated examples of phase-locking will then be described.

3.2 Vectorial laser in presence of Faraday driving

3.2.1 Theoretical model

In most lasers, the polarization of the electric field is fixed because polarization-
selective elements are inserted in the laser cavity. However, if the laser cavity
is made quasi-isotropic, the polarization is free to rotate and subtle polarization
dynamics may develop. The choice of a representation for this evolution depends
on the properties of the particular system under study. However, the description of
the polarization state of light in terms of amplitude, azimuth, and ellipticity (see
for example [81]) is quite appropriate for class A monochromatic lasers such as
Ar or He-Ne lasers (see Section 1.1). Subject to a longitudinal magnetic field, the
atoms of the active medium experience Faraday rotation, i.e. light in the two states
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Table 3.2 Parameters for the anisotropic
He-Ne laser.

Parameters Values

|M| 2.2 × 105 s−1

�B0 � 1.14 × 106 rad s−1

Kx 1.101 4 × 108 s−1

Ky 1.106 1 × 108 s−1

D0 2.4 × 108 s−1

of opposite circular polarization (cw and ccw)2 propagates at slightly different
velocities. As a consequence, the azimuth of a linearly polarized light beam rotates
as it travels through such an active medium. In a laser cavity, this effect occurs
together with other polarization changes caused by other elements (e.g. polarizers,
waveplates, or anisotropic crystals inserted inside the laser cavity). Here, we con-
sider the simplest case of a class A laser whose active medium experiences Faraday
rotation in the presence of small pure loss (i.e. no refractive index) anisotropies.
The laser evolution equations for the azimuth θ and the intensity I are given by
[75, 82, 83]

dI

dt
= −

[
Kx cos2(θ)+ Ky sin2(θ)

]
I + D0 I

1 + ζ I
(3.1)

dθ

dt
= M sin(2θ)+ �(I )B0, (3.2)

where Kx and Ky are the loss (positive) coefficients for the intensities in the x
and y polarizations. D0 is the unsaturated gain coefficient, and �(I ) is the Fara-
day rotation coefficient, which generally depends on the laser intensity I . B0 is
the magnetic field amplitude and ζ equals 1 or 1/2 for lasers which are homoge-
neously broadened or not (for the origin of the 1/2 factor see, e.g. [36]). M < 0
(see Problem 3.7.1) characterizes the electric field rotation due to the difference
in transmissivity for the two orthogonal linear polarizations. Typical values of the
parameters for the anisotropic 3.39 μm He-Ne laser [83] are listed in Table 3.2.

We note that the rate constants in Eq. (3.1) are 100 times larger than the terms
in Eq. (3.2). This means that I is a fast variable compared to θ and that it quickly
reaches a quasi-steady state regime where the right hand side of Eq. (3.1) is close
to zero. Setting the right hand side of Eq. (3.1) equal to zero and solving for I ,
we obtain

2 cw and ccw stand for clockwise and counterclockwise, respectively. cw is also used for “continuous wave”
meaning a constant laser ouput.
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I = ζ−1

[
−1 + D0

Kx cos2(θ)+ Ky sin2(θ)

]
. (3.3)

For weakly anisotropic lasers, Kx � Ky , and (3.3) can be further simplified by
using a trigonometric identity. We now have

I � ζ−1
[
−1 + D0

Kx

]
= ζ−11.18, (3.4)

which is a constant. Consequently, �(I ) is constant, and Eq. (3.2) reduces to

dθ

dt
= M sin(2θ)+ �B0. (3.5)

In the absence of any magnetic field (B0 = 0), Eq. (3.5) admits a stable equilibrium
position at θ = 0, and an unstable one at θ = π/2 (M < 0). On the other hand,
a non-zero magnetic field in an isotropic cavity (Kx = Ky and M = 0) induces
Faraday rotation at an angular velocity ω0 = �B0. We now wish to investigate the
case of a non-zero magnetic field (B0 �= 0) and weak loss anisotropies (Kx �= Ky

or M �= 0). The polarization dynamics of the laser then result from the competition
between Faraday rotation and the “restoring force” M sin(2θ) which tends to bring
the azimuth back to the θ = 0 position. From Eq. (3.5), we note that a steady state
solution only exists if |�B0/M| ≤ 1. The laser then approaches a state of constant
linear polarization with an azimuth θ = θ0 given by

θ0 = −1

2
arcsin

(
�B0

M

)
. (3.6)

If |�B0/M| > 1, there are no steady state solutions. In the limit of a strong mag-
netic field (i.e. |�B0/M| >> 1), the restoring force is negligible and the system
experiences an almost uniform rotation at the rate ω0 = �B0. Between these two
regimes (i.e. phase-locking if |�B0/M| ≤ 1 and free rotation if |�B0/M| >> 1),
dθ/dt exhibits an oscillatory behavior which can be explored analytically (see
below). Of physical interest is the frequency of these oscillations which is given by

� ≡ �

√
B2

0 − B2
c (B0 > Bc ≡ M/�). (3.7)

3.2.2 Experiments

The locking phenomenon can be investigated with the He-Ne and He-Xe lasers
oscillating at 3.39 μm and 3.51 μm, respectively, if they are subject to a longitu-
dinal magnetic field of the order of a few milliGauss [75]. A tilted plate inserted
inside the laser cavity, as shown in Figure 3.1, introduces loss anisotropies. The
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Fig. 3.1 He-Ne laser with an active medium subject to a static magnetic field B0.
A slightly tilted plate introduces weak loss anisotropies in the cavity. α is the tilt
angle. Two detectors behind crossed polarizers monitor the evolution of the laser
emission. Reprinted Figure 1a from Glorieux and Le Floch [75] with permission
from Elsevier.
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Fig. 3.2 Field azimuth for a He-Ne laser subjected to a static magnetic field and
for three different values of the tilt angle α. Dots correspond to the experimental
data and the full lines are given by� = �(B2−B2

c )
1/2, where� = 4.05×106 s−1.

Redrawn using the data of Figure 1b of Glorieux and Le Floch [75].

tilt angle α controls the amplitude of the anisotropy because the transmission of
a tilted plate depends on the polarization of the incident light and on the inci-
dence angle through the Fresnel relations ([81] Chapter 1). A polarizer selects the
component of the laser field emitted in one direction.

Monitoring the component of emitted radiation in one polarization direction,
i.e. Ix = I cos2(θ), immediately shows that, depending on the strength of the
magnetic field, the laser adopts two distinct regimes, as seen in Figure 3.2:

1. For low values of the magnetic field B0, the laser field is linearly polarized along a fixed
direction and its amplitude is constant in time. This corresponds to the phase-locked
state.

2. If the magnetic field B0 exceeds the critical value Bc which depends on the tilt angle
α, 100% amplitude modulation is observed on any polarized component of the laser
output while the total intensity exhibits only negligible modulation. This means that the
electric field rotates continuously in time, thus producing oscillating linear components.
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3.3 Adler’s equation

The angular dynamics of the class A laser in the presence of Faraday rotation and
weak loss anisotropy is described by Eq. (3.5). This equation is known as Adler’s
equation and is the simplest equation describing the phase-locking between a
nonlinear oscillator and an external periodic drive. It was first derived in con-
nection with the phase-locking of radiofrequency oscillators [84], and has since
found application in many other settings, including the depinning of charge den-
sity waves, the entrainment of biological oscillators, and the onset of resistance in
superconducting Josephson junctions [8]. In its classical form, Adler’s equation is
given by

dφ

dt
= ω − a sin(φ), (3.8)

where φ is the phase difference between the oscillator and the drive, ω is the fre-
quency detuning, and a is the coupling strength. A system described by Eq. (3.8)
can display only two types of long-time behaviors. If |ω/a| ≤ 1, all solutions tend
to a phase-locked state, where the response oscillator maintains a constant phase
difference relative to the driver (phase-locking or synchronization). On the other
hand, if |ω/a| > 1, all solutions exhibit phase drift, where the phase difference
grows monotonically, with one oscillator periodically overtaking the other (phase
drift or rhythm splitting). We briefly analyze these two distinct behaviors.

3.3.1 Phase-locking

If |ω/a| < 1, Equation (3.8) admits two steady-state solutions. They are given by

φ1 = arcsin (ω/a) and φ2 = π − arcsin (ω/a) . (3.9)

For a first order differential equation of the form x ′ = f (x), the growth rate of a
small perturbation of the steady state x = x0 is σ = f ′(x0). For Eq. (3.8), we find
that f ′(φ1)= −a cos(φ1)< 0 and f ′(φ2)= −a cos(φ2)> 0 if a/ω> 0 (similarly,
f ′(φ1)> 0 and f ′(φ2)< 0 if a/ω< 0). This implies that there is always a stable
and an unstable steady state solution.

3.3.2 Phase drift

If |ω/a| > 1, there are no steady-state solutions and dφ/dt is a bounded time-
periodic function of t . An analytic solution of Adler’s equation is possible in this
case (see Problem 3.7.2) but is not very instructive. However, the period T of the
oscillations has a simpler expression. The period is defined as the time needed
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for φ to vary from 0 to 2π . Using Eq. (3.8), the period is given by the following
definite integral

T =
∫ T

0
dt =

∫ 2π

0

dt

dφ
dφ =

∫ 2π

0

dφ

ω − a sin(φ)
. (3.10)

The last integral can be solved using a trigonometric substitution (see Problem
3.7.2). We obtain

T ≡ 2π√
ω2 − a2

. (3.11)

In the absence of the restoring force (a = 0), the period equals the angular period
T = 2π/ω. As a2 is progressively increased from zero, the period increases and
becomes unbounded at a2 = ω2. Equivalently, the beating frequency defined as

� ≡ 2π/T ≡
√
ω2 − a2 (3.12)

is zero at a = |ω| .
From an experimental point of view, it is worthwhile to emphasize three

different effects:

1. Well outside the locking range (i.e. |a/ω| small), we expand (3.12) in Taylor series and
obtain � � ω(1 − a2/2ω2). The beating frequency is pulled to ω when the detuning ω
becomes large. It is an important effect for the optically injected laser.

2. Close to locking (|ω/a| � 1), the period T is large meaning that the system becomes
very slow. This effect is called “critical slowing down” and occurs because we are close
to a saddle-node bifurcation point (see Problem 3.7.2). From (3.11), we note that this
divergence follows an inverse square-root law.

3. In many experiments, the locking phenomenon is discovered by slowly scanning the
detuning back and forth. The typical response is shown in Figure 3.3 where the beating
frequency is zero in the locking domain and non-zero as soon as ω < −a or ω > a.

3.3.3 Long period motion

Although the beating phenomenon is much slower than the optical oscillations,
the observation of phase dynamics close to locking (ω � |a|) is still delicate for
lasers. Optothermal systems are much slower than lasers and their phase synchro-
nization has been studied by Herrero et al. [85]. They observed regular or chaotic
oscillations with a basic recurrence of about 2 Hz in isolated optothermal oscilla-
tors. Coupling two such devices leads to phase synchronization which operates on
a much slower time scale. Figure 3.4 shows the results of experiments on a set of
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Fig. 3.3 Beating frequency� as a function of the detuning ω. The region of zero
beat (−a ≤ ω ≤ a) is the locking range. Outside the locking range, � is pulled
to the straight line � = ω.
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Fig. 3.4 Experimental time evolution of the phase difference between the two
optothermal oscillators. Close to locking, the two oscillators are nearly synchro-
nized except when the phase jumps by 2π . Reprinted Fig. 2b from Herrero et al.
[85]. Copyright 2002 by the American Physical Society.

two bidirectionally coupled devices which oscillate at frequencies of 2.29 Hz and
2.35 Hz, respectively. The relative phase difference varies much more slowly and
displays regular 2π phase jumps about every 20 seconds, i.e. close to the inverse
of the frequency difference (= 0.06 Hz) of the two oscillators.

3.4 Laser with an injected signal

In the laser with an injected signal (LIS), the radiation from a “master” oscillator
is sent into the cavity of a “slave” oscillator. This is a standard arrangement used to
transfer some properties of the master to the slave, and in particular its frequency
stability, which is possible if phase-locking can be realized. Of particular interest
is the case of high power lasers. The optical spectra of the waves emitted by such
lasers are rather broad because the optimization of the output power is usually
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obtained at the expense of the spectral quality. In order to bypass this difficulty,
a low power highly monochromatic laser is injected into the high power one (“opti-
cal seeding”). If the two lasers can be phase-locked, the spectrum of the high power
laser narrows and makes it suitable for applications demanding spectral purity such
as laser cooling of atoms or Doppler velocimetry. The LIS has received renewed
interest because it is one of the simplest systems exhibiting dynamical instabilities.
However, except for semiconductor lasers, which will be specifically considered
in Chapter 9, there have not been many systematic experimental studies [74].

3.4.1 Experiments

Laser injection-locking was first achieved by Stover and Steier using two 6328 Å
He-Ne lasers [77]. In their experiment, one laser is injected with a second laser
and portions of both laser outputs are combined on a detector. The latter delivers
a signal proportional to the beat note (phase drift) or to the interference (phase-
locking) of the two lasers. The frequency of either laser is tuned over a few tens of
MHz. Figure 3.5 displays the evolution of the detector output vs. laser detuning.
In the absence of injection, the beat signal amplitude just follows the response
curve of the detection system. The beat is too fast to be resolved in the display
conditions and generates a broad oscilloscope trace. In the presence of injection,
the beat signal vanishes in the central region where the detuning goes through zero.
There the trace displays no beat but a slow continuous variation due to the phase
variations of the two fields in the locked regime.

Fig. 3.5 First experimental evidence of phase-locking in a laser with an injected
signal. The beat note between the master and slave lasers is displayed vs. their
frequency detuning at different injection levels. Phase-locking corresponds to an
almost continuous signal in the central part of the trace. From top to bottom,
the width of the locked region in the middle increases with the injected power.
Adapted Figure 2a, 2b, 2c with permission from Stover and Steier [77]. Copyright
1966 by the American Institute of Physics.
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3.4.2 Theory

We concentrate on the He-Ne laser used in the experiments by Stover and Steier.
This laser is considered as a class A laser (which also includes the Ar+ laser). Class
A lasers are characterized by a high value of γ and are described by the single
equation (1.11) for the intensity of the field E . Introducing I = E2 and removing
the factor 2 by redefining the time variable, (1.11) becomes

dE
dt

= E
(

A

1 + |E |2 − 1

)
. (3.13)

If now the laser (called slave) is subject to the injected signal from another laser
(called master), Eq. (3.13) exhibits an additional term modeling the injected field.
Instead of Eq. (3.13), the equation for the field E now is

dE
dt

= E
(

−1 + A

1 + |E |2
)

+ Ei , (3.14)

where Ei(t)= X0 exp(i�t) has amplitude X0 and frequency detuning �≡
ωi −ω0.3 We may eliminate the time dependence of Ei by introducing the
decomposition

E = X exp(i�t + φ), (3.15)

where X and φ are the amplitude and the phase of the slave laser, respectively.
Inserting (3.15) into (3.14), we obtain the following two equations for X and φ

X ′ =
(

−1 + A

1 + X2

)
X + X0 cos(φ), (3.16)

φ′ = −�− X0

X
sin(φ). (3.17)

Eq. (3.16) is an equation for the amplitude of the laser field and includes a source
term X0 cos(φ). Equation (3.17) is similar to Adler’s equation but admits a cou-
pling term which is inversely proportional to the slave laser field amplitude. If
A> 1 and if X0<< 1, we find from Eq. (3.16) that X approaches its stable steady
state value X = √

A − 1. Substituting this expression into Eq. (3.17), we obtain
Adler’s equation

φ′ = −�− X0√
A − 1

sin(φ). (3.18)

3 In dimensionless form, the electrical field in the laser cavity is E(t) exp(iω0t), where ω0 is the optical
frequency and E(t) is the slowly varying amplitude. Similarly, the electrical field injected into the laser is
Ei exp(iωi t), where ωi is the optical frequency of the master laser.
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Fig. 3.6 Injection-locking of a Nd3+:YAG laser. The figure represents the lock-
ing range � f obtained by scanning the slave cavity length as a function of the
root power ratio

√
Pmaster/Pslave. The slave laser power is 4 W (from Figure 2 of

Nabors et al. [86]).

We assume that |�| scales like X0/
√

A − 1 and Eq. (3.18) predicts that the locking
region is

|�| ≤ X0√
A − 1

. (3.19)

Since X0 is proportional to the injection field amplitude |Ei | = √
Iin and I0 =

A − 1 is the intensity of the field in the free running laser, the expression (3.19)
means that the locking range is proportional to

√
Iin/I0. If we try to lock a high

power slave laser (high I0) with a low power master laser (low Iin), the locking
range can be quite narrow. Figure 3.6 shows an experimental verification.

Outside the locking region, the phase is unbounded in time but forces the ampli-
tude of the laser to oscillate. We note that φ is a slowly varying function of
S ≡ (X0/

√
A − 1)t , and determine a solution of Eq. (3.16) in a power series

in X0 that depends on S. We obtain

X = √
A − 1 + X0

A

2(A − 1)
cos(φ(t))dt + O(X2

0), (3.20)

where we note that the first correction term is time-periodic.
The bifurcation diagrams for two different values of � are shown in Figure 3.7.

The stability analysis of the steady state solutions of Eqs. (3.16) and (3.17) is
proposed in Exercise 3.7.3. We find from this analysis that (3.19) is a good
approximation of the phase-locking region for small X0 but that there exist
Hopf bifurcation instabilities that are not predicted by Adler’s equation. A Hopf
bifurcation marks the transition from a steady state to a time-periodic solution
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Fig. 3.7 Bifurcation diagrams of the maximum and minimum intensity I = X2.
Top: a branch of periodic solutions emerges from X0 = 0 with an unbounded
phase. The period progressively increases and becomes infinite at the steady state
limit point. Bottom: the branch of periodic solutions emerging at X0 = 0 termi-
nates at a Hopf bifurcation point with a fixed period. The diagrams have been
obtained numerically from Eqs. (3.16) and (3.17) with A = 2 and � = 0.3 (top)
or� = 0.5 (bottom).

and is characterized by a pair of purely imaginary eigenvalues of the linearized
problem. The injection laser is presumably the simplest laser case where such a
bifurcation appears.

3.5 Counterpropagating waves in ring class A lasers

Most lasers are built in a standing wave cavity, i.e. a cavity in which the electro-
magnetic wave bounces back and forth between the mirrors. The superposition of
the two opposite traveling waves produces a standing wave and reduces the effi-
ciency of the light–matter interaction at its nodes. Ring lasers have been developed
to optimize the energy extraction in the lasing medium. In these lasers, pure travel-
ing waves are possible, i.e. waves circulating in the clockwise or counterclockwise
direction. By inserting a Faraday isolator, one of the two rotating waves is elim-
inated and field nodes no longer exist. The whole lasing medium then uniformly
contributes to the laser emission leading to a better efficiency of conversion of the
pump into laser power.
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lasing medium

Ω

Ecw

Eccw

Fig. 3.8 Ring laser gyro. The detector reads the combination of two counter-
running waves Ecw and Eccw .

Ring cavities are also the basis of most laser gyros [87]. In the ring lasers, both
cw and ccw waves may develop but their frequency degeneracy is lifted through the
Sagnac effect induced by the mechanical rotation of the laser frame. The frequency
of the beating between these two waves is a measure of the rotation rate of the laser
reference frame and, consequently, gives access to the rotation angle of the frame
on which the laser is placed. However, the measure of very small rotations (equiv-
alently, very small beat frequencies) is limited by the phase-locking phenomenon
of the two counterpropagating traveling waves which occurs when their frequency
difference becomes too small. This is the origin of the “blind range” which should
be bypassed to allow efficient use of these devices in airplanes or rockets. The blind
range due to phase-locking of the cw and ccw traveling waves has been detected in
all the laser gyros and serves as quality evaluator. Ring lasers are not only used for
laser gyros. Since they are very sensitive to the coupling of one wave (e.g. cw) into
the other one (e.g. ccw), this effect may be used to measure very small scattering
coefficients. For instance, Quintero-Torres et al. have demonstrated that intensity
back-scattering coefficients as low as 10−15 can be detected [88].

A laser gyro is most often based on a triangular (or zig-zag or rectangular)4

ring cavity in an arrangement as shown in Figure 3.8. The beams emitted in each
direction (cw and ccw) are recombined on the same detector and provide the beat
signal from which the information on the rotation angular frequency� of the laser
frame is deduced.

We consider He-Ne laser gyros where the coupling between the amplitudes of
the counter-running waves E± = E± exp(iϕ±) is due to back-scattering from the

4 These geometries are chosen for their specific optical properties (astigmatism, stability of optical beams).
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SΩ

Δw
b–b

dead band

Fig. 3.9 The average frequency difference �ω = √
(S�)2 − b2 in the unlocked

region is shown as a function of S�. The straight dashed lines passing through
the origin represent the ideal response. The “dead band” or range of input rotation
rates for which no frequency difference is observed extends from � = −b/S to
� = b/S.

mirrors forming the cavity. Back-scattering in the ring laser means that, due to
imperfections in the optical path, a small fraction of one of the waves is scattered
back in the direction of the opposite traveling wave. The resulting coupling coeffi-
cient is usually very small, yet it becomes a dominant effect at low rotation rates,
as we shall see. From Lamb’s semiclassical theory [36] and provided the coupling
between the waves is not too large, it is possible to derive Adler’s equation for the
phase difference ψ = ϕ+ − ϕ− [87]

ψ ′ = S�+ b sin(ψ), (3.21)

where � is the rotation rate and S is a scale factor. The coefficient b is called the
back-scattering coefficient. Locking occurs if

|�| < �th ≡ bS−1. (3.22)

�th is defined as the threshold for locking and hence the minimum detectable rota-
tion rate. Several studies have considered the full laser equations for the amplitudes
and the phases of the two fields and have shown that Hopf bifurcation instabilities
are possible [89, 6]. But Adler’s equation (3.21) for phase-locking remains the
reference equation for all laser gyros.

Experimentalists prefer to write Adler’s equation as

1

2π

dψ

dt
= f − l sin(ψ)
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Table 3.3 Parameter values for laser systems described by Adler’s equation.

System Driving f (Hz) Driver Lock limit l (Hz)

ring gyro lasera 33 240 laser rotation 4 115
supergyro laserb 1 513 Earth rotation ∼1
ring laser scatterometerc 50–1 000 electro-optical 250

a [93].
b [94].
c [88].

so that f and l are expressed in frequency units (Hz) rather than in angular units
(rad s−1). Table 3.3 provides typical values for (1) a standard laboratory gyro
laser, (2) a “supergyro laser” with top quality components in a super controlled
environment, and (3) a ring laser scatterometer.

3.5.1 Dither control of ring laser gyro

Experimentally, several techniques have been developed to overcome the locking
problem. One of these techniques is to introduce a mechanical alternating bias
where the gyro is rotated alternatively in one direction and the other (this technique
is known as “dithering”). This can be done by mounting the gyro on a rotational
spring system which is oscillated by means of a piezoelectric transducer. The effect
of an alternating bias that changes sinusoidally in time may be described by the
modified Adler’s equation

ψ ′ = S�+ b sin(ψ)+ α cos(ωDt), (3.23)

where α >> b and ωD >> b are the amplitude and frequency of the oscillating
bias, respectively. An approximation of Eq. (3.23) is studied in [87] but in Section
3.5.2 we derive a simpler asymptotic approximation of Eq. (3.23). Assuming α =
O(ωD) and ωD >> 1, and averaging the high-frequency oscillations, we find that
the average value of ψ is

〈ψ〉 =ωDφ0(t)+ O(1), (3.24)

where φ0 satisfies a new Adler’s equation of the form

φ′
0 = S�+ bJ0(α/ωD) sin(φ0). (3.25)

Here J0(x) is the Bessel function of order zero. From this equation, we find that
the locking condition is

|S�| < |bJ0(α/ωD)| . (3.26)
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Therefore by choosing α/ωD equal to a root of the zeroth Bessel function, it is
possible to make this dead band vanish. This is usually prevented by technical
constraints. What can be done, however, is to choose α/ωD as large as possible
since J0(α/ωD)∼ (α/ωD)

−1/2 as α/ωD →∞. And so, the width of the dead zone
goes to zero. In mechanically dithered gyros, we may have α= 190 kHz and ωD =
200 Hz giving α/ωD = 950 and therefore J0(α/ωD) << 0.02 [87].

3.5.2 High-frequency asymptotics

We propose to solve Eq. (3.23) for α = O(ωD) >> 1. To this end, we introduce a
small parameter ε defined as

ε ≡ ω−1
D (3.27)

and expand α as

α = ε−1α0 + α1 + . . . (3.28)

We then seek a solution of the form

ψ = ψ0(T , t)+ εψ1(T , t)+ . . . , (3.29)

where T ≡ ε−1t is defined as the fast time of the high-frequency modulations. The
assumption of two independent time variables implies the chain rule

ψ ′ = ε−1ψT + ψt , (3.30)

where subscripts indicate partial derivatives. Inserting Eqs. (3.27)–(3.30) into
Eq. (3.23) and equating to zero the coefficients of each power of ε lead to a
succession of problems for the unknowns ψ0, ψ1, . . . The first two equations are
given by

O(ε−1) : ψ0T = α0 cos(T ), (3.31)

O(1) : ψ1T = S�+ b sin(ψ0)+ α1 cos(T )− ψ0t . (3.32)

The solution of Eq. (3.31) is

ψ0 = α0 sin(T )+ φ0(t), (3.33)
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where φ0 is an unknown function of t . Introducing (3.33) into the right hand side
of Eq. (3.32), we apply a solvability condition in order to have a bounded func-
tion for ψ1 with respect to T . This condition is obtained by realizing that the
function sin(α0 sin(T )+ φ0) can be expanded in terms of a Bessel-Fourier series.
Specifically,

sin(α0 sin(T )+ φ0) = cos(φ0) sin(α0 sin(T ))+ sin(φ0) cos(α0 sin(T ))

= cos(φ0)(2J1(α0) sin(T )+ . . .)

+ sin(φ0)(J0(α0)+ . . .), (3.34)

where Jn(x) is the Bessel function of order n. The solvability condition then leads
to an ordinary differential equation given by

φ′
0 = S�+ bJ0(α0) sin(φ0). (3.35)

3.6 Coupled lasers

Arrays of coupled lasers are of considerable technical importance as high power
coherent sources for a number of applications [90]. In order to achieve a single-
lobed output profile and at the same time maximize the total system output power,
strong phase synchronization and amplitude stability of the individual lasers is
desired. Synchronization between lasers is achieved by either injecting a common
reference to a series of (laser) amplifiers as in fusion experiments, or by mutual
coupling of lasers as in high power laser arrays. So far, CO2, YAG, and semi-
conductor laser arrays have been designed and used successfully. However, both
experiment and theory have shown that already two single-mode lasers that are
stable individually may exhibit pulsating outputs if coupled.

Because the time scale of the intensity fluctuations of solid state lasers is con-
venient for precise dynamical measurements, laterally coupled YAG microlasers
are particularly convenient [78, 79, 91, 92]. Microlasers are tiny lasers – typically
500 μm long – which are implemented in materials such as Nd3+:YAG or YVO4.
In most configurations, they are pumped by radiation delivered by diode lasers con-
nected to optical fibers (see Figure 3.10). This allows for parallel operation of a series
of microlasers located on the same chip, opening the way for large-scale optical
integration, as with electronic microcircuits. We briefly review some experimental
resultson laterallycoupledmicrochip lasersandintroduce thebasicmodelequations.

3.6.1 Experiments

In a typical experiment [78], the wafer is irradiated by independent laser beams
from a Titanium:Sapphire laser. The spacing between these beams can be adjusted
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Fig. 3.10 Thermal lensing induced in the Nd:YVO4 crystal creates two separate
laser cavities. The overlap between the fields of these two lasers (i.e. coupling)
can be changed by varying the spacing between the incoming beams. Reprinted
Figure 1 from Möller et al. [78] with permission from Elsevier.

between 0.25 mm and more than 1 mm. Thermal lensing induced in the Nd:YVO4

crystal creates two stable, separate cavities emitting infrared laser beams. The over-
lap between these two lasers can be continuously changed by varying the spacing.
In the investigated range of distances, there is no appreciable overlap of the pump
beams, thus coupling is entirely due to spatial overlap of the infrared laser fields.
The individual output intensity time series are recorded with fast photodetectors. In
addition to the distance between the pump beams, the frequency detuning between
the lasers can be adjusted by tilting the output coupler. Phase synchronization
between the lasers is observed by monitoring the fringe pattern of the two beams
combined under a small angle with a CCD camera.

At pump powers of about twice the threshold, four regimes can be distinguished
(see Figure 3.11):

1. At large spacings and large detunings (region 1 in Figure 3.11), both lasers run
independently without any visible phase correlation.

2. At small detuning and small spacings (region 2 in Figure 3.11), the intensities remain
steady. Bursts of intensity pulsations appear if we increase the spacing.

3. At very small spacings, there exists a detuning boundary below which intensity pul-
sations appear. The length of the bursts increases with decreasing spacing, leading to
almost continuous, synchronized pulsing (see region 3 in Figure 3.11, and Figure 3.12).

4. At very small detuning (see region 4 in Figure 3.11), the intensity pulsations disappear
and the lasers remain steady and phase-locked.

In summary, phase-locking with steady state intensities is observed if the spac-
ing between the laser beams is sufficiently small (coupling sufficiently strong) and
if the detuning is sufficiently small. There is a distinct boundary in the detuning
vs. spacing diagram where the lasers exhibit synchronous pulsating instabilities.
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Fig. 3.12 Amplitude instabilities at a laser spacing of 0.23 mm. Reprinted Fig. 3b
from Möller et al. [78] with permission from Elsevier.

3.6.2 Theory

The coupling between the two lasers arises from the overlap of the two individual
electrical fields. In dimensionless form, the two laser rate equations are of the form
[78, 79, 91]

dEk

dt
= Ek

[
Dk − 1 − κE j

]+ iωkEk , (3.36)

dDk

dt
= γ

[
A − Dk

(
1 + |Ek |2

)]
, (3.37)
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where k = 1 or 2 and j = 3 − k. Ek = Ek exp(−iφk) and Dk are the complex
field and the inversion of population of laser k, respectively. Time t is measured
in units of the cavity constant. ω1 and ω2 (angular frequencies) are the detun-
ings of the lasers from a common cavity mode. The lasers are coupled linearly
to each other with strength κ , assumed to be small, and the sign of the coupling
terms is chosen to account for the observed stable phase-locked state in which the
lasers have a phase difference of 180◦. Control parameters are the frequency detun-
ing of the lasers (�=ω2 −ω1) and the coupling coefficient κ . We have assumed
that both lasers have the same losses and pump. Equations (3.36) and (3.37) are
equivalent to five equations for the amplitudes Ek , Dk (k = 1, 2) and the phase dif-
ference �≡φ2 −φ1. However, the connection to Adler’s equation can be seen if
we consider the particular solution where E1 = E2 = E and D1 = D2 = D. Equa-
tions (3.36) and (3.37) then reduce to the following three equations for E , D,
and �:

dE

dt
= E [D − 1 − κ cos(�)] , (3.38)

dD

dt
= γ

[
A − D

(
1 + E2

)]
, (3.39)

d�

dt
= �+ 2κ sin(�). (3.40)

The last equation is Adler’s equation for the phase difference�. Since both E and
D do not appear in this equation, the variations of � are autonomous, and E and
D are slaved to �, i.e. the phase � is driving the laser through the cos(�) term in
Eq. (3.38).

A steady phase (phase-locking) occurs if

|�| < 2κ (3.41)

meaning that the coupling strength needs to be sufficiently large. Since the lin-
earized problem for (3.40) leads to the growth rate σ = 2κ cos(�), the stable
solution of Eq. (3.40) with σ < 0 satisfies the two conditions

�+ 2κ sin(�) = 0 and cos(�) < 0. (3.42)

Using Eqs. (3.38) and (3.39), we determine the stable steady state as

D = 1 + κ cos(�) = 1 − 1

2

√
4κ2 −�2, (3.43)

E2 = A − 1 + 1
2

√
4κ2 −�2

1 − 1
2

√
4κ2 −�2

≥ 0. (3.44)
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The situation is however completely different outside the locking region. If condi-
tion (3.41) is violated, cos(�) is a pulsating function of time that is driving the field
E . If κ is small, we find from (3.40) that� = �t + O(κ) and the remaining equa-
tions for E and D are equivalent to the equations of laser subject to periodic loss
modulations. See Section 5.2.1. As a consequence, multiple branching of time-
periodic intensity regimes is possible and this explains why pulsating intensities
are observed if the spacing between lasers increases (coupling decreases).

3.7 Exercises and problems

3.7.1 Rotation induced by loss anisotropy

If loss anisotropy is introduced in the laser cavity, i.e. the fields polarized in the x
and y directions are transmitted with different efficiencies tx and ty respectively,
this results in a rotation of the azimuth of the electric field which tends to align
along the axis with lower losses. Show that the azimuth θ of a linearly polarized
field is ruled by an evolution equation

dθ

dt
= M sin(2θ) with M = c

2L

(
ty

tx
− 1

)
. (3.45)

Solution: The azimuth θ is defined by (see Figure 3.13)

tan(θ) = Ey

Ex
. (3.46)

After a single trip into the cavity, the two fields Ex and Ey are reduced by the
quantities tx and ty , respectively. The new azimuth is now

tan(θ + dθ) = ty Ey

tx Ex
. (3.47)

y

x

Ey

Ex

dq
q

txEx

tyEy

Fig. 3.13 Rotation of the electric field azimuth θ induced by loss anisotropy
(tx �= ty). x and y refer to the directions transverse to the laser axis as indicated in
Figure 3.1.
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Taking the difference between (3.47) and (3.46), we find

tan(θ + dθ)− tan(θ) = sin(dθ)

cos(θ + dθ) cos(θ)
=
(

ty

tx
− 1

)
tan(θ). (3.48)

In the limit dθ → 0, sin(dθ) → dθ and cos(θ+dθ) → cos(θ), and the expression
(3.48) leads to

dθ = sin(θ) cos(θ)

(
ty

tx
− 1

)
. (3.49)

The time needed for a single trip into the cavity is dt = L/c, where c is the speed
of light and L is the length of the cavity. Together with (3.49), we obtain (3.45). If
ty/tx < 1 as in Fig. (3.13), M < 0.

3.7.2 Adler’s equation

Normal form equation

Derive the normal form equation for Adler’s equation (3.8) for ω close to a. To
this end, try an expansion of the form

ω = a + εω1 + ε2ω2 . . . (3.50)

φ = φ0(τ )+ εφ1(τ )+ . . . , (3.51)

where τ ≡ εt is a slow time variable. ε is a small positive parameter that is
related to ω − a. Conditions on the ω j will be determined by applying solvability
conditions. We sequentially find φ0 = π/2, ω1 = 0, and φ1 satisfying

φ′
1 = ω2 + a

2
φ2

1. (3.52)

Oscillation period

Determine the period defined by (3.10) (ω> a> 0) using the trigonometric
substitution u = tan(φ/2).

Exact solution

Determine the exact solution of the following Adler’s equation

dφ

dt
= 1 − a sin(φ), φ(t0) = −π/2 (3.53)

for |a| < 1. Introduce first θ = (φ + π/2)/2 and then y = tan(θ). The solution in
implicit form is given by√

1 − a

1 + a
tan

(
φ + π/2

2

)
= tan

(√
1 − a2

2
(t − t0)

)
. (3.54)
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Fig. 3.14 Numerical solution of Adler’s equation (3.55) for φ(0)=π/2 and
� = −0.01.

Solution of Adler’s equation close to locking

We wish to solve Adler’s equation

φ′ = 1 − (1 +�) sin(φ), φ(0) = π/2 (3.55)

for small and negative values of the control parameter� by using asymptotic meth-
ods. The initial condition φ(0)=π/2 simplifies the analysis but is not a restriction
of the asymptotic theory. The numerical solution shown in Figure 3.14 exhibits
successive plateaus separated by relatively fast transition layers. The exact solu-
tion of Adler’s equation (3.54) is complicated and gives little physical insight into
what happens as |�| approaches zero. If�< 0, the period of the oscillations given
by (3.11) is

P = 2π√
1 − (1 +�)2

(3.56)

and it approaches the inverse square-root law

P � 2π√−2�
(3.57)

as �→ 0 (see Figure 3.15). Construct an asymptotic approximation by using the
method of matched asymptotic expansions (or MAE) [15]. The basic idea of the
method is to construct two distinct solutions, one for the plateaus (the outer solu-
tion) and one for the transition layers (the inner solution). Because the period is
inversely proportional to

√−�, introduce

ε = √−� (3.58)
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Fig. 3.15 The period of the exact solution of Adler’s equation (3.56) (full line) is
compared to its approximation, Eq. (3.57) (broken line).

as a small parameter. The outer solution usually refers to the solution that we may
obtain by a regular expansion. To this end, seek a solution of the form

φ = φ0(s)+ εφ1(s)+ ε2φ2(s)+ . . . , (3.59)

where s is a slow time variable defined by s ≡ εt . Note from the expression of
φ1(s) that it becomes unbounded as s → sc where

sc ≡ √
2
π

2
. (3.60)

This singularity motivates an inner solution of the form

φ = �(S)+ ε�1(S)+ . . . , (3.61)

where S ≡ t − tc. Determine this solution and show how it connects with the outer
solution.

3.7.3 Class A laser subject to an injected signal

Determine the steady states of Eqs. (3.16)–(3.17) and investigate their stability
properties. Derive the locking (saddle-node bifurcation) and Hopf stability bound-
aries in the (�, X0) diagram. At a Hopf bifurcation, the characteristic equation
admits a pair of purely imaginary eigenvalues. Discuss the validity of Adler’s
locking condition (3.19) for small X0.

3.7.4 Ring laser with diffraction locking

When apertures smaller than or similar to the beam waist limit the transverse
extent of the laser beam, they may also act on standing waves resulting from the



3.7 Exercises and problems 83

D

M3

A

M1

M2

Fig. 3.16 Controlling the position of the standing-wave pattern in a ring laser
at rest is possible thanks to diffraction. Modulating the position of the aperture A
along the beam axis induces a beat frequency between the two counterpropagating
waves in the motionless ring laser (the so-called reverse Sagnac effect). The figure
represents the standing-wave structure when the two counterpropagating waves
are locked. Mirrors M2 and M3 are plane and M1 is spherical. The output beams
are recombined on the detector D by a beam splitter and an extra plane mirror
(from [93]).

interference between the counterpropagating beams of a ring laser since these aper-
tures control the nodes of the standing wave (see Figure 3.16). In this situation,
phase-locking is due not only to the mirror defects but also to diffraction produced
by the diaphragm. Driving the diaphragm allows to “drag” the standing waves.
This induces the so-called “reverse Sagnac effect” [93]. In the Sagnac effect, the
two waves (cw and ccw) running in the laser cavity are frequency shifted because
they run in a rotating cavity. In the reverse Sagnac effect, the cavity is fixed and
the waves inside it are rotating because of the shift of the standing waves’ nodes
induced by the motion of the internal diaphragm. Adler’s equation for ring lasers
with such diffracting apertures must be modified to account for this additional
effect. It is given by [93]

dϕ

dt
= ω − d sin(ϕ)− da sin (ϕ − ϕ0). (3.62)

The competition between the two restoring forces gives rise to new results when
d and da are of the same magnitude. Show that the new equilibrium positions are
shifted by an angle

α = arctan

(
da sin(ϕ0)

d + da sin(ϕ0)

)
. (3.63)
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Hopf bifurcation dynamics

A Hopf bifurcation marks the transition from a steady state to a time-periodic
solution. We already encountered an example of a Hopf bifurcation in Section 3.4
as we analyzed the laser subject to an injected signal.

The emergence of spontaneous time-dependent regimes in lasers is not a purely
academic problem because physicists have been confronted by the appearance of
“noise-like” intensity fluctuations in the laser’s beam since the beginning of the
laser. This type of behavior was evident even during the earlier investigations of
the laser in the 1960s [96, 97] where it was found that the intensity of the light
generated by the ruby laser displayed irregular spiking, as shown in Figure 4.1.
Were these spikes the result of a noisy environment or were they coming from the
laser itself? A lot of experiments have been undertaken on the ruby laser under
various conditions (see [6]). It eventually appeared that the oscillatory output of
the ruby laser resulted from the combined effect of several mechanisms. Research
on this topic vanished because of the advent of new lasers whose parameters are
much better controlled and therefore capable of delivering cw power or pulses with
well-defined and reproducible properties.

For many years, attempts to understand the appearance of such oscillatory insta-
bilities in lasers were limited (for instance, the extensive but isolated effort of Lee
W. Casperson to describe the pulsations of the Xe laser [98]), until Hermann Haken
showed the equivalence of the laser equations with the Lorenz system [99]. As the
latter was known to exhibit deterministic chaos, Haken’s work triggered a wave
of interest for laser nonlinear dynamics. More importantly, it placed optical sys-
tems in the general framework of dynamical systems [8]. This means that turbulent
flows in fluids, oscillatory chemical reactions, and self-pulsing lasers share similar
phenomena that do not depend on the detailed physics or chemical kinetics but
rather on simple bifurcation mechanisms.

Nowadays, the motivation for studying these bifurcations really depends on the
background of the researcher and it extends beyond the community of physicists.

84
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Fig. 4.1 Oscillatory traces of light intensity emitted by a flash-lamp pumped ruby
laser. Left: train of irregular pulses, horizontal scale 50 μs/division, vertical scale
0.5 V/division. Right: enlarged view at higher temporal resolution (2 μs/division),
vertical scale 50 mV/division. Reprinted Figure 10.10 of Lauterborn and Kurz
[95] with permission. Copyright Springer-Verlag 1995, 2003.
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Fig. 4.2 Amplitude of the oscillations as a function of the control parameter λ.
Left and right figures represent a subcritical and a supercritical Hopf bifurcation,
respectively.

For some engineers, oscillatory instabilities are viewed as a limitation on the
performance of the optical device that must be avoided or controlled. For exam-
ple, we wish to control chaotic fluctuations in the intensity of diode lasers because
they limit their ability to detect information stored on compact discs [100]. In con-
trast, other researchers have put the unstable behavior to good use making practical
devices such as low-jitter high-frequency generators for communication or even
chaotic oscillators for an optical cryptosystem [101].

A Hopf bifurcation denotes the appearance of a periodic solution in the neigh-
borhood of a steady state whose stability changes due to the crossing of a conjugate
pair of eigenvalues over the imaginary axis.1 The Hopf theorem states that if this
cycle coexists with the steady state solution, it is unstable and vice versa, as illus-
trated in Figure 4.2. A supercritical Hopf bifurcation leads to a branch of stable
periodic solutions overlapping a branch of unstable steady states (Figure 4.2 right).

1 I.e. the characteristic equation has a pair of roots with zero real parts σ = ±iω.
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A subcritical Hopf bifurcation leads to a branch of unstable periodic solutions
overlapping a branch of stable steady states (Figure 4.2 left). In the latter case,
the branch of periodic solutions may fold back at a larger amplitude and give
rise to a branch of stable periodic solutions. However, this evolution at large
amplitudes is not predicted by Hopf theory which is purely local (i.e. valid near
the bifurcation point λ=λH ). In the vicinity of the bifurcation, the oscillations
are nearly harmonic in time and, in general, the amplitude A of the oscillations
grows like (λ− λH )

1/2. Other bifurcation behaviors, such as a vertical bifurca-
tion or a different scaling law for A, are not ruled out by the Hopf bifurcation
theorem.

The Hopf bifurcation was rediscovered in the 1970s when new oscillatory phe-
nomena were found in fluid, chemical, and biological systems.2 Mathematicians
interested in proving the existence of specific solutions became interested by their
stability. Hopf’s bifurcation paper appeared in 1942 in German [104] and was
translated in 1970 [105]. In his paper, Hopf says “I scarcely think that there is
something new in the above theorem. The methods were developed by Poincaré
perhaps 50 years ago . . . ” Thus, as Louis N. Howard [106] commented, “Hopf
himself might not entirely agree with the current usual designation of the result
as the Hopf bifurcation theorem or the description of the kind of oscillatory bifur-
cation to which it refers as Hopf bifurcation. Still, Hopf’s clear formulation and
presentation of the result was a significant contribution, and he was perhaps one
of the first to understand clearly some features of it, particularly with regard to the
stability properties of the periodic solution.”

How good the Hopf asymptotic solution is as λ− λH increases depends on the
nonlinear system. In the last section, we showed that a Hopf solution which is
purely local may be limited in the strict vicinity of λ = λH for systems exhibiting
different time scales, as with many of our lasers.

A Hopf bifurcation is the simplest mechanism leading to nonlinear oscillations
in many dynamical systems, but not for a single mode class B laser. As we already
know from Chapter 1, these lasers exhibit slowly decaying oscillations called
relaxation oscillations that do not result from a change of stability of a reference
steady state. However, we may sustain and even amplify these “relaxation oscilla-
tions” by weakly modulating a parameter such as the pump or loss parameter. We
concentrate on this important topic in Section 5.2.1.

Another way to compensate for the damping of the relaxation oscillations is to
apply a positive feedback to the laser. The two laser rate equations for the field

2 Although physicists and mathematicians gathered several times at conferences from 1973 to 1977, the New
York Academy of Sciences conference on Bifurcation Theory and Applications in Scientific Disciplines held
from October 31 to November 4, 1977 [102], was the first meeting attended by a larger number of scientists
with different backgrounds [103].
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in the cavity and the inversion of population are now supplemented by a third
equation for the voltage of the feedback loop. The three coupled first order dif-
ferential equations exhibit multiple steady states and Hopf bifurcations that we
analyze in Section 4.1. In Section 4.2, we consider the case of a passive resonant
cavity subject to delayed optical feedback, which provided the first clear identi-
fication of a Hopf bifurcation in nonlinear optics. This problem was analyzed in
Japan by Kensuke Ikeda [108] and had a considerable historical impact. Today,
similar devices are built as sources of periodic or chaotic outputs for uses such
as transmitting digital information. This device is accurately modeled by a scalar
delay differential equation. We show how this may be reduced to the equation for
a map which appears to be very efficient in obtaining analytical approximations of
the periodic solutions.

4.1 Electrical feedback

Negative electrical feedback is frequently used in laser design, e.g. to establish
a regulatory loop in order to achieve stable output or to protect the laser from
burnout. For example, semiconductor lasers (SLs) have to be operated at a high
current density and have a very low forward resistance when lasing action occurs,
so they are at risk of destroying themselves due to thermal runaway. Their operat-
ing light density can also rise to a level where the end mirrors can begin melting.
As a result their electrical operation must be carefully controlled. This means that
not only must a laser’s current be regulated by a “constant current” circuit but opti-
cal negative feedback must generally be used as well – to ensure that the optical
output is held to a constant safe level. In the most usual feedback scheme, laser
diodes have a silicon PIN photodiode built right into the package, arranged so
that it automatically receives a fixed proportion of the laser’s output. The out-
put of this monitor diode can then be used to control the current fed through
the laser by the constant current circuit, for stable and reliable operation [107].
Other types of feedback (feedback on the cavity length, or optical feedback) have
also been successfully used for stabilizing the laser frequency. A schematic dia-
gram of a semiconductor laser controlled by optoelectronic feedback is shown in
Figure 4.3. In this section we concentrate on the case of electrical feedback con-
trolling the cavity losses, and the delay of the feedback does not play a major role.
Section 4.2 and Chapter 10 are specifically devoted to the important effects of a
delayed optoelectronic or optical feedback.

Feedback may lead to a variety of dynamical instabilities. This question was
raised for the first time in 1986 for a CO2 laser with an intracavity electro-optic
modulator (EOM) by Arecchi et al. [108, 109]. The same problem was recently
revisited for a Nd:YAG laser with the more convenient acousto-optic modulator
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attenuator

amplifier
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Fig. 4.3 Schematic diagram of optoelectronic feedback. The optical power emit-
ted by the laser is detected by a photodiode with a fixed bandwidth. The electrical
output is fed back to the laser through an amplifier.

(AOM) [110]. Both lasers are class B lasers and are described by the same rate
equations for the intensity of the laser field I , the inversion of population D, and
an additional equation for the voltage V of the feedback loop. The latter accounts
for the limited bandwidth of the feedback loop. In dimensionless form, the three
evolution equations are of the form [110]

I ′ = I
[

D − 1 − a sin2(V )
]

, (4.1)

D′ = γ [A − D(1 + I )] , (4.2)

V ′ = β(B + f I − V ), (4.3)

where γ and A have the same meaning as in the SRE. a scales the maximum
loss introduced by the modulator, the damping rate β of the feedback loop is nor-
malized by the cavity decay rate, B is the bias voltage applied to the modulator
amplifier, and f is the scaling of the feedback gain, i.e. it measures the relation
between the intensity incident on the photodiode and the voltage delivered by the
differential amplifier. In general, B is the control parameter and the bifurcation dia-
gram of the possible long-time regimes is studied for different values of f which
may be adjusted through the detector preamplifier.

In this system, the bias B sets a reference value for the voltage applied to
the modulator, and consequently allows the operation point of the laser to vary.
The feedback enters through the term f I in (4.3). Positive or negative feedback
depends on the relative sign of f and B. Assuming B > 0, Eq. (4.3) indicates that
V > 0 is favored in absence of feedback. As I > 0, f > 0 implies that the feed-
back increases V , i.e. increases the losses through −a sin2(V ) since modulators
are generally operated at V < π/2. Therefore f > 0 implies negative feedback in
the classical sense that an increase in laser output is transduced as less efficiency
for laser action.
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Table 4.1 Values of the parameters for a CO2 laser and a Nd:YAG laser.

Parameters Symbol CO2 laser a Nd:YAG laser b

cavity loss κ 9.6 × 106 s−1 6.6 × 107 s−1

population decay γ‖ 3 × 104 s−1 4.166 × 103 s−1

γ ≡ γ‖/κ 3.125 × 10−3 6.31 × 10−4

pump parameter A 1.66 1.85
feedback damping rate β0 5 × 105 s−1 6.28 × 105 s−1

β ≡ β0/κ 5.21 × 10−2 9.51 × 10−3

feedback amplitude a 5.8 0.052
feedback gainc f −0.8 to 0 0.75

a [111].
b [110].
c f is denoted by –r in [108].

Typical values of the fixed parameters are listed in Table 4.1. In spite of their
different nature, these two lasers have very similar relaxation frequencies (compare√
κγ‖). The difference by a factor of 100 in a is compensated by the change by a

factor of 5 in the damping factor β.3

The dynamical effects of the electrical feedback on both lasers have been exten-
sively studied by R. Meucci and different coworkers since the end of the 1980s. In
[109], periodic and chaotic intensity oscillations were observed and interpreted as
resulting from the presence of several stable and unstable steady states, and, in par-
ticular, a saddle-node which is responsible for the appearance of Shilnikov chaos.
The shape of the different signals has been carefully investigated in the vicinity of
each bifurcation with special attention on those related to Shilnikov dynamics. In
[111], a more global approach in the parameter space is proposed and a subcriti-
cal Hopf bifurcation has been observed. Quasi-sinusoidal oscillations are obtained
near the bifurcation. They evolve into spikes in regions further from the bifurcation
(see Figure 4.4). Two distinct bifurcation diagrams have been examined for low or
high feedback gain | f |, respectively (see Figure 4.5). In [110], the dynamics asso-
ciated with two different Hopf bifurcations are studied in detail with the idea of
producing a chaotic function generator.

Note that the discussion on the laser energy level schemes that we developed
in Chapter 2 also applies to the present problem. As far as qualitative agree-
ment is looked for, the two-level model applies quite well to both CO2 and YAG
lasers. But it must be kept in mind that a quantitative agreement may be obtained
with the CO2 laser only if more refined models are used. In addition, we need to

3 By dividing Eq. (4.1) by the parameter a and introducing the new time s = at , we obtain a term β/a
multiplying the right hand side of Eq. (4.3). It is this ratio that controls the decay of V .
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Fig. 4.4 Laser intensity vs. time for f = −0.25. The oscillations are harmonic
near the Hopf bifurcation point (top) but become pulsating as we increase B
(bottom). Reprinted Figure 2 from Wang et al. [111] with permission from
Elsevier.

take into account the nonlinearity of the detector response [112]. In the following
sections, we concentrate on the steady state solutions and discuss two instability
mechanisms (saddle-node bifurcation and Hopf bifurcation) and how they rule the
bifurcation diagrams as observed in the experiments.

4.1.1 Steady-state solutions

Here, we limit our review to the steady states and their bifurcation points for
B > 0.4 Equations (4.1)–(4.3) admit a zero intensity solution given by

I = 0, D = A, and V = B, (4.4)

and a non-zero intensity solution given in parametric form as

D = 1 + a sin2(V ), (4.5)

I = −1 + A

1 + a sin2(V )
, (4.6)

B = f − f A

1 + a sin2(V )
+ V , (4.7)

where V is the parameter. Their stability properties can be obtained from the
linearized equations, which we do not formulate.

4 The case B < 0 can be analyzed by noting the change (B , f , V ) → (−B ,− f , −V ).
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Fig. 4.5 Laser intensity vs. bias voltage B for a low negative ( f =−0.25, top)
and a high negative value of the feedback gain f ( f =−0.56, bottom). For a low
negative f , strongly pulsating oscillations are observed as we pass a Hopf bifur-
cation point. For a high negative f , oscillations disappear but the non-zero and
the zero intensity steady states may coexist for a short range of value of B . The
large spike at the left boundary of the bistable domain corresponds to the jump
transition between the lower and upper branches. The jump transition between
the upper and lower branches at the right boundary of the bistable domain pro-
duces negligible transient. Reprinted Figure 1c, 1d from Wang et al. [111] with
permission from Elsevier.

The zero intensity solution (4.4) is stable if A − 1 − a sin2(B)< 0 or, equiva-
lently, if

a > A − 1 and B > Bc ≡ arcsin

(√
A − 1

a

)
. (4.8)

If a< A − 1, the zero intensity solution is always unstable. The critical point
B = Bc denotes a bifurcation point from the zero intensity steady state to the
non-zero intensity steady state.

For the non-zero intensity steady state (4.5)–(4.7), the characteristic equation
for the growth rate σ is

σ 3 + C1σ
2 + C2σ + C3 = 0, (4.9)
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where the coefficients are defined by

C1 = γ (1 + I )+ β, (4.10)

C2 = γ I D + aI sin(2V )β f + γβ(1 + I ), (4.11)

C3 = βγ I
[
D + a f sin(2V )(1 + I )

]
. (4.12)

The real part of σ is negative provided the Routh–Hurwitz conditions are satisfied
[29]. Violation of one of these conditions leads to two stability boundaries corre-
sponding to saddle-node and Hopf bifurcations, respectively, which we detail in
the next two sections.

4.1.2 Steady or saddle-node bifurcation

The condition for a steady bifurcation or a saddle-node bifurcation point is C3 = 0
(one zero eigenvalue, σ = 0). Using (4.12), we find that this condition is realized
either if I = 0 or if

D + a f sin(2V )(1 + I ) = 0. (4.13)

The first case corresponds to the steady bifurcation point located at B = Bc and
documented in (4.8). The second case corresponds to a saddle-node bifurcation or
limit point (see Exercise 4.4.1). Using (4.5) and (4.6), we eliminate D and 1 + I
in (4.13) and obtain

f = −
(
1 + a sin2(V )

)2
a A sin(2V )

. (4.14)

In Figure 4.6, we represent (4.14) in terms of the steady state intensity I as a
function of f (for curve SN, note: I is related to V by (4.6)). The diagram shows
that there are three different domains of f where zero, two, and one saddle-node
bifurcation points are possible.

4.1.3 The Hopf bifurcation

The Hopf bifurcation conditions can be determined by introducing σ = iω into
Eq. (4.9). From the real and imaginary parts, we obtain

C1C2 − C3 = 0 and C2 > 0. (4.15)

The first condition simplifies as

γ 2(1 + I ) [DI + β(1 + I )] + β2 [a f I sin(2V )+ γ (1 + I )
] = 0. (4.16)
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Fig. 4.6 Saddle-node (SN) and Hopf bifurcation (Hopf) stability boundaries in
terms of the steady state intensity I and f . They are given by (4.14) and (4.17),
respectively. The values of the fixed parameters are: γ = 3.125×10−3, A = 1.66,
β = 5.21 × 10−2, and a = 5.8.

We may again eliminate I and D by using (4.5) and (4.6) and find the following
expression relating f and V

f = −γ
2 A
[
A − 1 − a sin2(V )+ βA(1 + a sin2(V ))−1

]+ β2γ A

β2a(A − 1 − a sin2(V )) sin(2V )
. (4.17)

The Hopf stability boundary (4.17) is shown in Figure 4.6 in terms of the steady
state intensity I and feedback factor f (for curve Hopf, note: I is related to V by
(4.6)). The Hopf line which also satisfies C2> 0 emerges from the SN line at a
very low intensity (I = O(γ )) from a critical point satisfying the two conditions
C3 = C2 = 0 (a double zero eigenvalue, σ1 = σ2 = 0). From left to right in Figure
4.6, the Hopf line remains nearly constant at low intensities, suddenly turns near
f = 0, and then saturates to an almost constant intensity from right to left. This
behavior can be anticipated by noting that β and γ are small parameters. Assuming
γ = O(β2),5 the leading term in Eq. (4.16) is O(β2) and given by

aI sin(2V ) f = 0. (4.18)

Equation (4.18) implies that either (1) I = 0, (2) f = 0, or (3) sin(2V )= 0.
Case (1) anticipates the low-intensity part of the Hopf bifurcation line; case (2)
predicts the vertical line at f = 0; case (3) is verified if V = 0 which implies
I = A − 1, i.e. the horizontal Hopf bifurcation line in Figure 4.6 (case (3) is
also verified if V =π/2, which implies I = (A − 1 − a)/(1 + a), but the condition
I > 0 cannot be realized with the values of the parameters used in Figure 4.6).

5 This is required to balance the two terms in (4.16).
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Fig. 4.7 Low-gain bifurcation diagram. The figure represents the maxima and
minima of the long time stable solutions. A square marks the steady state bifur-
cation point at (I , B)= (0, Bc). Two dots at B = 0.167 and 0.34 indicate Hopf
bifurcation points. The diagram has been determined numerically from Eqs.
(4.1)–(4.3) with γ = 3.125 × 10−3, A = 1.66, β = 5.21 × 10−2, a = 5.8, and
f = −0.25.

4.1.4 Bifurcation diagrams

We illustrate our stability results by studying bifurcation diagrams in two cases
representing relatively low ( f = −0.25) and high ( f =−0.6) gain and using B
as the control parameter. The values of the other parameters are the same as in
Figure 4.6.

For f = −0.25, a single branch of steady states emerges from zero at B =
Bc � 0.344 as shown in Figure 4.7. Two Hopf bifurcation points bound a domain
of unstable steady states. The Hopf bifurcation point with the higher steady state
intensity (B � 0.167 in Figure 4.7) is located at IH � A − 1 according to our
previous analysis. Using then (4.7) with V = 0, we find

BH � f (1 − A), (4.19)

which gives BH � 0.165. The Hopf bifurcation is supercritical and, as can be
shown from an analysis of ω2 = C2 = C3/C1, exhibits oscillations close to the
laser relaxation frequency ωR =√

γ (A − 1) (see Exercise 4.4.2). The role of the
feedback is therefore to sustain the RO oscillations and β does not play a major
role, in first approximation. The high intensity Hopf bifurcation is followed by
a Torus bifurcation to quasi-periodic oscillations.6 More complex bifurcations
appear as we further increase B but they are not analyzed here. The oscillations are
then strongly pulsating in time and are of similar nature to the passive Q-switch

6 A Torus bifurcation is a bifurcation from periodic to quasi-periodic oscillations characterized by two
noncommensurable frequencies.
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Fig. 4.8 High-gain bifurcation diagram. The figure represents the maxima and
minima of the long time stable solutions. A square and a dot mark the steady
state and the Hopf bifurcation points, respectively. A hysteresis cycle indicated
by arrows is possible by increasing and then decreasing B . The diagram has been
determined numerically from Eqs. (4.1)–(4.3) with γ = 3.125 × 10−3, A = 1.66,
β = 5.21 × 10−2, a = 5.8, and f = −0.6.

oscillations for a laser with a saturable absorber (see Chapter 8). The pulsating
character of the oscillations results from the small value of γ , forcing the laser to
operate on two distinct time scales. Note that the Hopf bifurcation point does not
depend on β, in first approximation. This motivates an adiabatic elimination of the
variable V and a simplification of Eqs. (4.1)–(4.3) (see Section 4.3).

The second Hopf bifurcation point appears at a very low intensity and is located
close to the steady bifurcation at B = Bc � 0.344. The physical mechanism respon-
sible for this Hopf bifurcation is quite different and depends on both γ and β (see
Exercise 4.4.3). In Figure 4.8, the values of the parameters are the same as in
Figure 4.6 but f =−0.6. The system exhibits bistability (coexistence of two sta-
ble steady states) and a hysteresis cycle is observed as we increase or decrease B
beyond the interval 0.35–0.40. Note that the Hopf bifurcation point at BH = 0.396
is well approximated by (4.19). As we progressively increase B, the transition to
the zero intensity steady state does not occur at the steady state limit point but from
the Hopf bifurcation branch.

The two numerical diagrams shown in Figure 4.7 and Figure 4.8 reproduce the
main features of the experimental ones (Figure 4.5), namely a Hopf bifurcation
leading quickly to a large domain of irregular regimes for low gain, and hysteresis
between steady states at large gain. As we see in these two examples, the transition
from the steady state to harmonic oscillations may be quite abrupt. Hopf bifurca-
tion theory is a local theory which is only valid in the vicinity of the bifurcation
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Fig. 4.9 Schematic diagram of Ikeda system. A passive cavity is subject to an
injected field Ei . Part of the output E(t) is reinjected into the cavity as E(t − t0)
after it has undergone a long delay t0.

point. It doesn’t tell us if pulsating or square-wave regimes may appear as we
deviate from it.

4.2 Ikeda system

In 1979, Ikeda considered a nonlinear absorbing medium containing two-level
atoms placed in a ring cavity and subject to a constant input of light. If the
total length of the cavity is sufficiently large, the optical system undergoes a
time-delayed feedback which destabilizes its steady state output. See Figure 4.9.
From the Maxwell–Bloch equations, Ikeda derived a set of coupled differential-
difference equations [113] (this derivation is simpler if we start from the Maxwell–
Debye equations for highly dispersive media [114]; see [5] p. 122, [7] p. 39).
Then introducing more assumptions, Ikeda formulated the following scalar delay
differential equation (DDE) [114, 21]

τφ′ = −φ + A2 [1 + 2B cos (φ(t − tD)− φ0)] , (4.20)

where the growth of φ depends both on its value at time t and on its value at time
t − tD . Here the delay represents the round-trip time along the optical path. Using
(4.20), Ikeda then showed numerically that periodic, multiperiodic, and chaotic
outputs are possible. In 1983, the experimental system was realized by his col-
leagues with a train of light pulses injected in a long single-mode optical fiber
[115], but this physical system is poorly described by Eq. (4.20). Efforts to develop
an experimental device that is accurately modeled by a simple DDE like Eq. (4.20)
immediately followed the early work of Ikeda and today quantitative comparisons
between experiments and theory are possible.

In Besançon (France), work has been done on a delayed optical system where
the dynamical variable is the wavelength [116]. An improved device using a
tunable DBR laser was then realized [117, 118]. This experience led to the
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Fig. 4.10 Experimental bifurcation diagram for �= 0 (from Figure 4a of Larger
et al. [119]).

development of a system based on coherence modulation. The dynamical variable
is the optical-path difference in a coherent modulator driven electrically by a non-
linear delayed feedback loop [118]. The system is realized from a Mach–Zehnder
coherence modulator powered by a short coherence source and driven by a non-
linear feedback loop that contains a second Mach–Zehnder interferometer and a
delay line. In dimensionless variables, the response of the system is well described
by [118]

τ

td
x ′ = −x + β

[
1 + 1

2
cos(x(t − 1)+�)

]
, (4.21)

where x is proportional to the optical-path difference and the dimensionless time
t is the original time t ′ normalized by the delay td . The parameter τ measures the
relaxation of the system in the absence of delay. The bifurcation parameter β is
proportional to the gain in the feedback loop, which can be varied. The phase �
also can easily be changed electrically by means of a bias voltage.

The experimental bifurcation diagram for �= 0 is shown in Figure 4.10. It has
been obtained by progressively changing β from small to large values. No attempt
has been made to find if other attractors are possible in the same range of values
of β (for example, by decreasing β from a high to a small value). This experimen-
tal bifurcation diagram was obtained by recording the extrema of the oscillations.
Steady operation provides a single-valued output as, for example, for β < 2.07.
The emergence of a cycle at a Hopf bifurcation is revealed by the appearance of
a double value oscilloscope trace. Quasiperiodic or chaotic regimes are associated
with continuous bands of values for the extrema. Two successive Hopf bifurcation
points are visible at β = 2.07 and 5.30, marking the beginning and the end of sus-
tained oscillations with one maximum and one minimum. A third point at β = 6.69
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Fig. 4.11 Long time periodic solution of the delay differential equation. The
oscillations are nearly square wave with a period close to 2. The values of the
parameters are � = 3 and τ/td = 0.05. The dotted lines at x = 1.5 and x = 3.1
are the values predicted by the equation of the map valid as τ/td → 0.

marks the sudden transition to chaotic oscillations exhibiting irregular maxima
and minima.

Before analyzing the bifurcation diagram, we numerically investigate the solu-
tions of Eq. (4.21) and find that periodic solutions are typically square-wave with
a period close to 2 (see Figure 4.11). The square-wave form of the oscillations
results from the fact that the ratio τ/ tD = 0.05 is small. We may then neglect the
left hand side of (4.21) and obtain an equation for a map relating the extrema of
the square wave xn = x(t − 1) and xn+1 = x(t) and given by

xn+1 = β

[
1 + 1

2
cos(xn +�)

]
. (4.22)

A steady state solution of the DDE (4.21) corresponds to a Period 1 fixed point
of the map (xn+1 = xn). A periodic solution of the DDE (4.21) corresponds to a
Period 2 fixed point of the map (xn+2 = xn).

The bifurcation diagram of the fixed points of Eq. (4.22) has been studied
numerically and is shown in Figure 4.12 for � = 0. Different initial conditions
have been used in order to find all possible stable attractors. The numerical bifurca-
tion diagram indicates that, in addition to the branches found experimentally, there
is another domain (β � 4.64–5.5) of periodic and chaotic oscillations emerging
from a third Hopf bifurcation located on the upper branch of steady states.

The experimental values of β for three observed bifurcation transitions are com-
pared to the numerical estimates obtained from Eq. (4.22). See Table 4.2. The
excellent quantitative agreement means that (1) the optical system closely mimics
the Ikeda differential equation and (2) the reduction of the DDE to the equation for
a map is fully justified. This motivates some additional work on Eq. (4.22).
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Table 4.2 Experimental and numerical estimates of the
first three bifurcations agree quantitatively. The first
two correspond to Hopf bifurcations, and the third to
a limit point.

Results β(� = 0)

numerical 2.06 5.06 6.59
experimental 2.07 5.30 6.69

xn
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Fig. 4.12 Stable fixed points of the map. The broken line is the branch of steady
states. Dots mark three Hopf bifurcation points. Transition to chaos occurs as β
surpasses the first limit point of the steady states. The upper steady state branch
admits a Hopf bifurcation leading to a cascade of bifurcations. It ends as the min-
imum reaches the unstable branch of steady states. The arrow indicates a small
window of periodic solutions.

4.2.1 Limit and Hopf bifurcation points

We consider �= 0 and analyze the stability of the Period 1 fixed points of Eq.
(4.22). Exercise 4.4.6 considers the case of arbitrary values of �. Introducing x =
xn+1 = xn = x , we find from (4.22) the implicit solution

β = x

1 + 1
2 cos(x)

. (4.23)

The linearized problem for the small perturbation un = xn − x is then given by

un+1 = −β 1

2
sin(x)un , (4.24)

which is a linear difference equation. Substituting un = rn into Eq. (4.24), we
find r as

r = −β 1

2
sin(x). (4.25)
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Table 4.3 Hopf bifurcation points for
increasing positive values of β. The
first two points mark the beginning and
the end of the isolated branch of peri-
odic solutions (isola). The third one is
located on the upper branch of steady
states.

βH xH

1 2.06 1.81
2 5.06 2.74
3 4.64 6.73
4 18.53 9.32

Stability requires |r | < 1 because un → 0 as n = 1, 2, . . . → ∞. There are two
possible stability changes.

(1) The first possibility is r = 1, which requires

1 = −β 1

2
sin(x). (4.26)

Eliminating β using (4.23), (4.26) reduces to the following equation for x only

1 + 1

2
cos(x)+ x

1

2
sin(x) = 0. (4.27)

From Eq.(4.23), we determine dβ/dx and find that the condition dβ/dx = 0 for a
steady state limit point is identical to (4.27). Thus, the condition r = 1 marks the
change of stability of the steady state at a limit point.

(2) The second possibility is r = −1, which requires

1 = β
1

2
sin(x). (4.28)

The small perturbation un = rn with n = 1, 2, . . . is alternatively equal to −1 or
+1 and exhibits an oscillatory behavior. This condition marks the transition from a
Period 1 to a Period 2 fixed point and is equivalent to the Hopf bifurcation point of the
DDE. From (4.28) and using (4.23), we obtain

1 + 1

2
cos(x)− x

1

2
sin(x) = 0, (4.29)

which needs to be solved numerically. The first four roots of Eq. (4.29) with positive
values of β are listed in Table 4.3.

The position of the Hopf bifurcations is extremely well predicted analyti-
cally. We may proceed further and obtain information on the amplitude of the
oscillations.
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4.2.2 Hopf bifurcation approximation

The Hopf bifurcation of Eq. (4.22) leads to square-wave oscillations that we may
further analyze. Specifically, a Period 2 fixed point satisfies the condition x2 = x0

and from two iterations of Eq. (4.22) we determine the following conditions for x0

and x1

x1 = β

[
1 + 1

2
cos(x0)

]
, (4.30)

x0 = β

[
1 + 1

2
cos(x1)

]
. (4.31)

We wish to find the solution of these equations near the Hopf bifurcation point
(xH ,βH ) where xH is a root of Eq. (4.29) and βH is obtained from (4.23) with
x = xH or, equivalently, using (4.29)

βH = 2

sin(x)
. (4.32)

Specifically, we seek a perturbation solution of the form

x j = xH + εu j1 + ε2u j2 + . . . , (4.33)

where ε is proportional to the small deviation β − βH and is defined by7

β − βH = ε2c (c = ±1). (4.34)

Introducing (4.33) and (4.34) into Eqs. (4.30) and (4.31), and equating to zero the
coefficients of each power of ε, leads to a sequence of linear problems to solve.
The first three problems are given by

O(ε) : u11 = −u01; (4.35)

O(ε2) : u12 = −u02 − cot(xH )
u2

01

2
+ cx , (4.36)

u02 = −u12 − cot(xH )
u2

11

2
+ cx ; (4.37)

O(ε3) : u13 = −u03 − cot(xH )u01u02 + u3
01

6
− cu01, (4.38)

u03 = −u13 − cot(xH )u11u12 + u3
11

6
− cu11. (4.39)

7 We have anticipated that β − βH is proportional to ε2 for mathematical clarity.
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The solution of Eq. (4.35) is

u01 = A and u11 = −A, (4.40)

where A is an unknown amplitude. The solution of Eqs. (4.36) and (4.37) is

u02 = B and u12 = −B − cot(xH )
A2

2
+ cxH , (4.41)

where B is a new unknown amplitude. A is still undetermined, so we consider the
next problem. Subtracting the two O(ε3) equations, we eliminate u13 and u03 and
obtain a condition for A given by

(
(cot(xH ))

2

2
+ 1

3

)
A3 − c(cot(xH )xH + 2)A = 0. (4.42)

In terms of the original variables the nontrivial solution of Eq. (4.42) is

A2 = 6(cot(xH )xH + 2)

(3 cot(xH )
2 + 2)

(
β − βH

βH

)
≥ 0. (4.43)

In Figure 4.13, we compare xn = xH ±εA with the numerical bifurcation diagram.
The amplitude of the analytical solutions emerging at the bifurcation point changes
like the square root of β − βH .

b
1 2 3 4 5 6

xn
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3

4

Fig. 4.13 The Hopf bifurcation approximation (dashed lines) is compared to the
numerical bifurcation diagram (full lines).
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The analysis of the Hopf bifurcation presented here takes advantage of the equa-
tion for a map which is valid for sufficiently large delay. But Hopf perturbation
theory can be applied to all types of equations provided a change of stability
through a pair of purely imaginary eigenvalues is observed. Because the two
bifurcating branches are overlapping the unstable steady state they are supercriti-
cal and the Hopf theorem guarantees their stability in the vicinity of the bifurcation
points.

4.3 From harmonic to pulsating oscillations

In its original formulation, the Hopf bifurcation describes the transition from a
steady state to nearly harmonic oscillations. But the bifurcation that we analyzed
from the map (4.22) actually corresponds to the emergence of square-wave oscil-
lations. Is this a contradiction of our understanding of a Hopf bifurcation? It isn’t.
We have to remember that the equation for the map is derived for large delay
(i.e. td/τ large) and for arbitrary but finite O(1) amplitude. As we numerically
solve the DDE (4.21), we observe nearly harmonic oscillations very close to the
Hopf bifurcation (β −βH <<τ t−1

d ). But as soon as β − βH = O(τ t−1
d ), the small

amplitude harmonic oscillations continuously change to square-wave oscillations
[120]. These small amplitude square-wave oscillations then match the square-wave
oscillations of the map as β − βH >>τ t−1

d . This dramatic change of the waveform
near the Hopf bifurcation point is typical of dynamical systems that exhibit several
time scales.

This is also the case for the laser subject to an electrical feedback problem
because γ is small. In the limit γ → 0, V is faster than D which suggests elim-
inating V by a quasi-steady state approximation. Setting the right hand side of
Eq. (4.3) to zero leads to V = B + f I . Substituting this expression into Eq. (4.1)
leads to the following two-variable equations for I and D:

I ′ = I
[

D − 1 − a sin2(B + f I )
]

, (4.44)

D′ = γ [A − D(1 + I )] . (4.45)

The bifurcation diagram of the solutions of Eqs. (4.44) and (4.45) is shown in
Figure 4.14. It exhibits a sudden increase in amplitude near B = 0.17 which marks
the transition from oscillating to pulsating oscillations. Figure 4.15 shows the
oscillations in intensity I for three different values of B. As for the delay differen-
tial equation, Eqs. (4.44) and (4.45) exhibit a transition layer for B − BH = O(γ ).
Using this scaling, we may further analyze the solution by a different asymptotic
analysis as in [121, 122, 123, 124].
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Fig. 4.14 The bifurcation diagram for the laser subject to an electrical feed-
back. The Hopf bifurcation at B = 0.1675 leads to harmonic oscillations in a
small vicinity of the Hopf bifurcation. Near B = 0.17, the oscillations increase
in amplitude and become strongly pulsating. The bifurcation diagram has been
obtained numerically from Eqs. (4.44) and (4.45) with a = 5.8, f = −0.25,
γ = 3.125 × 10−3, and A = 1.66.
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Fig. 4.15 The harmonic oscillations near the Hopf bifurcation gradually change
into saw-tooth and then triangular oscillations. Same values of the fixed parame-
ters as in the previous figure.

4.4 Exercises

4.4.1 Saddle-node bifurcation

One effect of the electrical feedback is to generate multiple steady states. Use (4.7)
and verify that Eq. (4.14) locates a saddle-node bifurcation.

Solution: at a saddle-node bifurcation or limit point dB/dV = 0. Using the
expression of B = B(V ) for the non-zero intensity steady state, we find
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dB

dV
= a f A sin(2V )

(1 + a sin2(V ))2
+ 1.

Therefore dB/dV = 0 leads to

f = −(1 + a sin2(V ))2

a A sin(2V )
,

which is the expression obtained from the condition of a zero eigenvalue.

4.4.2 Frequency of the limit-cycle oscillations

Investigate the frequency of the high intensity Hopf bifurcation point assum-
ing γ = O(β2). If we consider ω2 = C2, the leading order problem gives ω2 =
aI sin(2V ) f β, which is zero with V = 0. To avoid a higher order analysis of the
expression ω2 = C2, consider the equivalent expression ω2 = C3/C1.

Solution: the high intensity Hopf bifurcation admits the approximation V � 0
and I � A − 1. From ω2 = C3/C1 with γ = O(β2), we obtain

ω � √
γ (A − 1),

which we recognize as the RO frequency.

4.4.3 Low intensity Hopf bifurcation

For low values of f , a single branch of steady states admits two Hopf bifurcation
points. Analyze the low intensity Hopf bifurcation point assuming γ = O(β2).

Solution: the branch of steady state close to B = Bc is given by

I = −a sin(2Bc)(B − Bc)

A + a f sin(2Bc)

and the Hopf bifurcation condition gives

IH = − γ 2 A + β2γ

β2a f sin(2Bc)
.

4.4.4 Multiple steady states

In [125], the number of possible steady states is investigated. From (4.7) and using
the stability diagram in Fig. 4.6, show that a case of tristability is possible for a
small range of values of f . Figure 4.16 illustrates the case of tristability.
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Fig. 4.16 Tristability. The steady states are obtained using Eqs. (4.5)–(4.7) with
A = 1.66, a = 5.8, and f = −0.42.

4.4.5 Laser with feedback on the cavity length

Many CO2 lasers use a feedback loop to stabilize the laser output frequency. A
typical set-up maximizes the laser output to lock the laser at the wavelength cor-
responding to maximum emission. Chen et al. [126, 127] investigated the case of
a laser subject to feedback on the cavity length. The model equations are similar
to Eqs. (4.1)–(4.3) except that the two rate equations for I and D are now sup-
plemented by a third equation which describes the relaxation of cavity length as a
function of the feedback. In the original paper, these equations are given by

dI

dt
= −2kI + 2k AI D

1 + δ2
,

dD

dt
= γ‖

[
1 − D − I D

1 + δ2

]
,

τ
dδ

dt
= −(δ − δ0)− B I .

Formulate these equations in the dimensionless form

dI

ds
= −I + AI D

1 + δ2
,

dD

ds
= γ

[
1 − D − I D

1 + δ2

]
,

(2kτ )
dδ

ds
= −(δ − δ0)− B I ,

where γ = γ‖/(2k). Determine the steady states and their stability properties.
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4.4.6 Double Hopf bifurcation and the eye bifurcation diagram

Consider � as a parameter and analyze the bifurcation diagram of the Period 2
fixed point solutions near a double Hopf bifurcation point of Eq. (4.22).

Solution: the basic steady state satisfies the condition xn+1 = xn = x . From Eq.
(4.22), we obtain x = x(β) in the implicit form

β = x

1 + 1
2 cos(x +�)

. (4.46)

The linearized problem for the small perturbation un = xn − x is then given by

un+1 = −β 1

2
sin(x +�)un. (4.47)

Substituting un = r−1 into Eq. (4.47), we find the condition

1 = β
1

2
sin(x +�). (4.48)

Using (4.46), we may eliminate β in Eq. (4.48) and obtain a single equation for
x only

1 + 1

2
cos(x +�)− x

1

2
sin(x +�) = 0, (4.49)

which needs to be solved numerically. Eq. (4.49) admits a double root for a par-
ticular value of �. The condition for a double root is determined by taking the
derivative of (4.49) with respect to x . We find

sin(x +�)+ x
1

2
cos(x +�) = 0. (4.50)

Using (4.50), we eliminate sin(x +�) in (4.49) and obtain cos(x +�) as

cos(x +�) = − 4

2 + x2
. (4.51)

Substituting (4.51) into (4.50), we find sin(x +�) as

sin(x +�) = 2x

2 + x2
. (4.52)

Using the trigonometric identity sin2(x + �) + cos2(x + �) = 1, we determine
an equation for x = x∗ only. It admits the simple solution

x∗ = 121/4 � 1.86. (4.53)
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Fig. 4.17 Hopf bifurcation points in terms of the steady state value x . As � →
�∗ � 0.53, two Hopf bifurcation points come closer together and disappear as
� > �∗. The parabola is the local approximation and is given by � = �∗ −
2
x∗
(

x∗2

4 + 2
)
(x − x∗)2.

From (4.46), (4.51), and (4.52), β = β∗ and � = �∗ are given by

β∗ = 2 + x∗2

x∗ � 2.94, (4.54)

�∗ = −x∗ + π − arctan

(
x∗

2

)
� 0.53. (4.55)

Figure 4.17 shows the Hopf bifurcation line in the � vs. x diagram. For each
�, there exist two Hopf bifurcation points, provided �<�∗. The critical point
�=�∗ corresponds to a double Hopf bifurcation point. From Eqs. (4.30) and
(4.31), supplemented with �, we may now analyze the Period 2 fixed point
solutions in the vicinity of β = β∗ and� = �∗.
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Driven laser systems





5

Weakly modulated lasers

Class B lasers naturally exhibit damped relaxation oscillations and, as for any
nonlinear oscillator, their responses to a time-periodic modulation of a parame-
ter are rich and varied. The study of forced oscillators itself has a long history.
Systematic studies started with Edward Appleton (1922) and Balthasar van der
Pol (1927) who showed that the frequency of a triode generator can be entrained
by a weak external signal with a slightly different frequency. These studies were
of high practical importance because such generators became basic elements of
radio communication systems. The next impact on the development of the the-
ory of forced oscillators came from the Russian school when control engineering
became an emerging discipline. Alexandr Aleksandrovich Andronov (1901–1952)
was a key figure in the development of mathematical techniques for driven oscilla-
tors, yet his name, and his contributions to control theory and nonlinear dynamics,
are much less well known in the West than they deserve to be [128]. As we shall
demonstrate later in this chapter, these analytical techniques are totally appropriate
for our laser problems.

Today, lasers and fiber optic cables have replaced the electronic amplifying tubes
and cables. Light signals are modulated with the information to be sent into fiber
optic cables by lasers. Telephone fiber drivers may be solid state lasers the size of
a grain of sand and consume a power of only half a milliwatt. Yet they can send
50 million pulses per second into an attached telephone fiber and encode over 600
simultaneous telephone conversations.

Studies on driven lasers started soon after their discovery when it was found
that the laser output dramatically peaks as the modulation frequency comes close
to the RO frequency. In the early 1980s, laser physicists became fascinated by new
dynamical instabilities appearing if the modulation amplitude is sufficiently high.
These instabilities were investigated in laboratories for different lasers by changing
either the modulation frequency or the modulation amplitude and acting on differ-
ent laser parameters (cavity loss, length etc.). Bifurcation diagrams were generated

111
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showing different routes to chaos (subharmonic sequence, incommensurate fre-
quencies, chaotic bursts), various forms of pulsations were analyzed (harmonic
to spiking), and non-autonomous rate equations were investigated numerically in
order to simulate the experimental observations.

Before we examine the case of a modulated class B laser described by two cou-
pled non-autonomous first order differential equations, we concentrate on lasers
subject to a modulated magnetic field. As shown in Section 3.2, the response of
this laser can be elegantly described by Adler’s first order differential equation.

5.1 Driven Adler’s equation

5.1.1 Weakly nonlinear and arbitrary modulation

In Section 3.2, we examined the case of a laser with pure loss anisotropies sub-
ject to a DC longitudinal magnetic field Bdc. We showed that the polarization
angle θ with respect to the x axis (see Figure 5.1) satisfies Adler’s equation.
Cotteverte et al. [83] further studied the laser polarization dynamics by consid-
ering the additional effect of an AC longitudinal magnetic field Bac cos(ωact).
Using the same approximations as detailed in Section 3.2, the response of the laser
is well described by the following periodically driven Adler’s equation

dθ

dt
= M sin(2θ)+ γ [Bdc + Bac cos(ωact)] , (5.1)

where M < 0 measures the electrical field rotation due to the difference in transmit-
tivity of the plane plate for the two polarizations. As in [83], we shall consider the
case of weak anisotropies (i.e. |M|/ωdc << 1, where ωdc = 2γ Bdc). γ is defined
as the saturated Faraday rotation coefficient. Introducing the dimensionless time
s ≡ωact and dividing Eq. (5.1) by ωdc ≡ 2γ Bdc, Eq. (5.1) takes the form

σ
dθ

ds
= −ε sin(2θ)+ 1

2
+ δ cos(s), (5.2)

x

zy

Fig. 5.1 A laser containing only loss anisotropies (controlled by a tilted plate)
exhibits only one stable eigenstate polarized along the x axis.
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where the dimensionless parameters σ , ε, and δ are all positive and are defined by

σ = ωac

ωdc
, ε = − M

ωdc
, and δ = γ Bac

ωdc
. (5.3)

δ is our control parameter which is progressively increased from zero by varying
Bac. The small parameter ε motivates a perturbation analysis.

The regular perturbation solution (see Exercise 5.3.1) shows the possibility of
resonances at σ = n−1 (n = 1, 2, 3, . . .) as well as oscillations of frequencies 1 and
|σ − n−1|, respectively. We concentrate on these interesting cases by assuming

σ = n−1(1 + εα), (5.4)

where α= O(1) is a new parameter which measures the offset from pure res-
onance. We now proceed as in our previous perturbation problems: we seek a
solution in power series of ε, formulate a sequence of linear problems for the
unknown functions, and apply solvability conditions. Specifically, we seek a two-
time solution of the form θ = θ0(s, τ )+ εθ1(s, τ )+ . . . where τ = εs. Using the
chain rule dθ/ds = θs + εθτ , the first two problems for θ0 and θ1 are given by

θ0s = n

[
1

2
+ δ cos(s)

]
, (5.5)

θ1s = −αθ0s − θ0τ − n sin(2θ0). (5.6)

The solution of Eq. (5.5) is

θ0 = ns

2
+ δn sin(s)+�(τ), (5.7)

where � is an unknown function of the slow time τ . Substituting (5.7) into the
right hand side of Eq. (5.6), we obtain

θ1s = RHS ≡ −αn

[
1

2
+ δ cos(s)

]
−�τ − n sin [ns + 2δn sin(s)+ 2�] . (5.8)

The homogeneous problem θ1s = 0 admits a constant solution. Therefore, the right
hand side needs to satisfy the solvability condition

1

2π

∫ π

−π
RHS(s, τ )ds = 0. (5.9)
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This condition leads to a new Adler’s equation

d�

dτ
= −α n

2
+ n sin(2�)Jn(2δn), (5.10)

where the coefficient of sin(2�) is a periodic function of the control parameter δ.
We have used the integral expressions for the Bessel functions, namely,

∫ π

−π
sin(ns − z sin(s))ds = 0,∫ π

−π
cos(ns − z sin(s))ds = 2π Jn(z).

The critical values of α that limit the locking domain satisfy the condition
sin(2�) = ±1, and using Eq. (5.10) with �′ = 0, we obtain

α = ±2Jn(2δn). (5.11)

The lines defined by (5.11) delimit the region where a periodic solution of fre-
quency ωac is possible (inside the “Christmas tree” in Figure 5.2). Cotteverte et
al. [83] obtained excellent quantitative agreements when they compared experi-
mental and theoretical diagrams in terms Bac vs. ωac. They also observed higher
order resonances (n = 2 and 3) but these domains of subharmonic periodic solu-
tions become progressively smaller as n increases, as we may expect from (5.11)
(i.e. Jn(2δn) ∼ n−1/2 as n → ∞).
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Fig. 5.2 Analytical locking region near the first resonance (n = 1). δ is repre-
sented as a function of α ≡ ε−1(σ − 1) using (5.11). Inside the “Christmas tree”,
a locked periodic regime is possible. Outside, the oscillations are quasi-periodic.



5.1 Driven Adler’s equation 115

5.1.2 Strongly nonlinear and weak modulation

Cotteverte et al. [83] also investigated other limiting cases but always kept a weak
nonlinearity (|M|/ωdc << 1). What happens if we consider the case of a strongly
nonlinear Adler’s equation? Our previous analysis of (5.1) took advantage of the
weak nonlinearity in order to obtain an analytical solution of the nonlinear prob-
lem. Here we consider M to be of the same order of magnitude as γBdc and we
need to find a different route to an analytical solution. Specifically, we shall con-
sider the case of a weak modulation, i.e. Bac<< Bdc = O(Mγ−1). This motivates
a different dimensionless formulation of the original problem. Introducing the new
variables

s = 2γ Bdct and φ = 2θ , (5.12)

Eq. (5.1) can be rewritten as

dφ

ds
= 1 − a sin(φ)+ ε sin(ωs), (5.13)

where the new parameters are defined by

a = M

γ Bdc
, ε = Bac

Bdc
, and ω = ωac

2γ Bdc
. (5.14)

The numerical bifurcation diagram is shown in Figure 5.3 and exhibits time-
periodic locking near a = 0.5 where Adler’s frequency

ω0 ≡
√

1 − a2 (5.15)

a
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Fig. 5.3 Numerical bifurcation diagram of the modulated Adler’s equation (5.13).
The extrema of dθ/dt are shown as a function of a (0 ≤ a < 1). The values of
the parameters are ω = 0.866 and ε = 0.1. Locking occurs near a = 0.5 where
Adler’s frequency ω0 = √

1 − a2 is close to ω. Outside the locking region, the
oscillations are quasi-periodic.
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is close to ω. Regular perturbation methods fail when resonance occurs and we
propose a singular perturbation technique to obtain expressions which are accurate
even when resonance appears [129].

A change of variable

We wish to capture this resonance phenomenon by a perturbation analysis valid
for ε small. To this end, we shall benefit from the fact that Adler’s equation admits
an exact solution (see 3.7.2). We therefore introduce the function �(s) defined as
the exact solution of Adler’s equation

d�

ds
= 1 − a sin(�), �(0) = −π/2 (5.16)

and a> 1. We next change φ in (5.13) into ψ by means of the relation

φ = �(ψ), (5.17)

where ψ(s, ε) is an unknown function of s to be found. Introducing (5.17) into
Eq. (5.13), we have

dφ

ds
= d�

dψ

dψ

ds
= 1 − a sin(�(ψ))+ ε sin(ωs). (5.18)

Using (5.16), we obtain an equation for ψ(s) of the form

dψ

ds
= 1 + ε sin(ωs)

1 − a sin(�(ψ))
. (5.19)

This equation can be rewritten as (see exercise 5.3.2)

dψ

ds
= 1 + ε

ω2
0

[
sin(ωs)− a

2
sin(ωs − ω0ψ)− a

2
sin(ωs + ω0ψ)

]
. (5.20)

Eq. (5.20) is exact and no approximations have been used in reducing (5.13) to
(5.20). Although (5.20) looks more complicated than (5.13), the linearity of Eq.
(5.20) at ε = 0 makes it easy to work with. Moreover, possible cases of resonance
clearly appear in the terms multiplying ε: because ψ = s, in first approximation,
the three sine functions in the right hand side of Eq. (5.20) exhibit the modulation
frequencies ω and ω ± ω0.
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Two-time solution

We now propose to solve Eq. (5.20) by a two-time perturbation method. The two
times are suggested by the right hand side of Eq. (5.20), motivating the necessity
of a slow time τ ≡ εs to take into account the long time behavior of the solution.
Specifically, we seek a solution of the form

ψ = ψ0(s, τ )+ εψ1(s, τ )+ . . . (5.21)

and require that the corrections ψ1, ψ2 are bounded functions for s large. Using
the chain rule dψ/ds = ψs + εψτ and substituting the expansion for ψ yields the
following sequence of problems

ψ0s = 1, (5.22)

ψ1s = −ψ0τ + 1

ω2
0

[
sin(ωs)− a

2
sin(ωs − ω0ψ0)− a

2
sin(ωs + ω0ψ0)

]
. (5.23)

The solution of (5.22) is ψ0 = s + α(τ ), where the function α is undetermined at
this stage of the perturbation analysis. Substituting the expression for ψ0 into the
right hand side of Eq. (5.23), we obtain the solution

ψ1 = −s
dα

dτ
− 1

ω2
0

[
cos(ωs)

ω
− a

2

cos((ω − ω0)s − ω0α)

ω − ω0

−a

2

cos((ω + ω0)s + ω0α)

ω + ω0

]
+ C , (5.24)

where C is an integration constant. If ω is not equal to ω0, −ω0, or 0 (i.e. if
resonance does not occur at first order), then the requirement that ψ1 must never
become unreasonably large implies that dα/dτ = 0. α is thus equal to a constant
α0. Equivalently, the solvability condition for Eq. (5.23) requires that the average
of the right hand side is zero, meaning dα/dτ = 0. On the other hand, cases of
resonance need to be treated carefully.

Resonance

We wish to investigate the case where ω is close to ω0. Using (5.24), we note that
the expansion (5.21) becomes nonuniform if |ω−ω0| = O(ε). This motivates the
expansion of the modulation frequency ω as

ω = ω0 + εσ + . . . (5.25)
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Substituting (5.21) and (5.25) into (5.20) leads to Eq. (5.22) for ψ0 and the
following equation for ψ1

ψ1s = −ψ0τ + 1

ω2
0

[
sin(ω0s)− a

2
sin(σ τ − ω0α)− a

2
sin(2ω0s + ω0α)

]
.

(5.26)

After substitutingψ0 = s+α(τ ) into Eq. (5.26), we apply the solvability condition
requiring that the average of the right hand side is zero. This then leads to an
equation for α given by

dα

dτ
= − a

2ω2
0

sin(σ τ − ω0α). (5.27)

Eq. (5.27) is equivalent to a new Adler’s equation. Introducing β = στ −ω0α into
Eq. (5.27) gives

dβ

dτ
= −σ + a

2ω0
sin(β), (5.28)

which implies locking if ∣∣∣∣2σω0

a

∣∣∣∣ ≤ 1. (5.29)

We now recall from (5.25) that σ = ε−1(ω−ω0) and that ω0 is Adler’s frequency
(5.15). Eq. (5.29) then is of the form∣∣∣∣2(ω− ω0)ω0

εa

∣∣∣∣ ≤ 1 (5.30)

requiring that ω remains sufficiently close to ω0 for locking. If now ω is fixed and
a is the control parameter as in Figure 5.3, we expand a as

a = a0 + εa1 + . . . , (5.31)

where a0 satisfies the resonance condition ω = ω0(a), i.e.

a0 =
√

1 − ω2. (5.32)

Inserting (5.31) into (5.30) then leads to the simple condition

|a1| ≤ 1

2
. (5.33)
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For the bifurcation diagram in Figure 5.3, ω= 0.866 and ε= 0.1. From (5.32),
we determine a0 = 0.5 which then implies, using (5.33), that the boundaries of
the locking domain are a = 0.5 ± 0.05. These values are in excellent quantitative
agreement with the locking domain shown in Figure 5.3. As a first order solution
has been found, we obtain that the locking range (∼a1ε) increases linearly with
the forcing amplitude (∼ε).

5.2 Weakly modulated class B lasers

5.2.1 Nearly conservative oscillations

The limit γ small of the class B laser linearized rate equations (1.19) leads to
a solution of the form of weakly damped sinusoidal oscillations. The analysis is
valid only for small deviations from the equilibrium state. Here we explore the
same limit but allow for large deviations with respect to the equilibrium state. By
contrast to Chapter 1 where we analyzed the linearized equations, we now consider
the full nonlinear laser equations (1.7) and (1.8).

To this end, we introduce the initial conditions

I (0) = Ii and D(0) = Di (5.34)

and propose to determine an asymptotic solution of Eqs. (1.7) and (1.8) valid in
the limit γ small. Setting γ = 0 into Eqs. (1.7) and (1.8) leads to the following
problem for I and D

d I

dt
= I (Di − 1) and

d D

dt
= 0. (5.35)

The second equation implies D = Di . Solving then the first equation gives
I = Ii exp ((Di − 1)t): the intensity either decays to zero or grows exponentially
depending on the value of Di . Both cases contradict our earlier observation of a
stable non-zero intensity steady state. The limit γ small is a singular limit because
the γ = 0 problem does not lead to a physical solution.

Singular perturbation problems are difficult problems because there exist no
systematic techniques to resolve them. The simplest way to resolve our γ small
difficulty is to reformulate the laser equations in a form where the small parameter
γ does not multiply any right hand side. This can be realized by introducing the
new time

s ≡ ωRt , (5.36)
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where ωR is the RO frequency (Eq. (1.29)) and the new dependent variables x and
y are defined by (see Exercise 5.3.3)

x ≡ D − 1

ωR
and y ≡ I − (A − 1)

A − 1
. (5.37)

The variables x and y are deviations of D and I from their non-zero intensity
steady state values. The coefficient ωR dividing D − 1 in (5.37) is required when
we insert (5.36) into Eq. (1.7) and try to balance left and right hand sides. With
(5.36) and (5.37), Eqs. (1.7) and (1.8) become

dx

ds
= −y − ε2x[1 + (A − 1)(1 + y)], (5.38)

dy

ds
= (1 + y)x , (5.39)

where ε2 is a small parameter defined by

ε2 ≡
√

γ

A − 1
<< 1. (5.40)

Note that γ now appears in ε2 and that the limit γ small is no longer singular for
(5.38) and (5.39). Indeed we can find an implicit form of a bounded solution as we
shall see now.

Setting ε = 0 in (5.38) leads to

x ′ = −y and y′ = (1 + y)x , (5.41)

which admit bounded periodic solutions. Indeed, (5.41) is conservative and admits
a one parameter family of periodic solutions. This can be demonstrated by
determining the first integral

C = x2

2
+ y − ln(1 + y), (5.42)

where C is the constant of integration. It is called the energy of the conserva-
tive system (5.41) and will be used as we examine the possibility of subharmonic
solutions (see Section 6.1.2). The expression (5.42) is obtained by dividing the
equations for x and y in (5.41) and by noting that the resulting problem for
y = y(x) is separable. From (5.42), we then find

x = ±√2(C − y + ln(1 + y)), (5.43)
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Fig. 5.4 Laser nonlinear oscillations. Each orbit is a periodic solution of the laser
conservative equations (5.41). Near the center, the frequency of the oscillations is
close to the relaxation oscillation ωR . As the amplitude increases, the frequency
becomes smaller. The dotted line is the invariant line y = −1.

which allows us to draw closed orbits in the phase plane (x , y) for all values of C
(0 < C < ∞). See Figure 5.4. Each orbit corresponds to emission of a laser spike
with a given amplitude. The horizontal part of the trajectory exploring the vicin-
ity of y =−1 is associated with the long period of very small intensity between
successive spikes.

Key properties of the laser spiking such as the interpulse period and the pulse
intensity may be related to the energy. Introducing y =−1 into the first equa-
tion in (5.41) and integrating from x =−√

2C to x =√
2C (the two extrema of

x according to (5.43)), the interpulse period is Pint = 2
√

2C . On the other hand
the maximum value of the intensity y occurs at x = 0 and from (5.42), we find
yM � C for C large. The interpulse period and pulse intensity are therefore corre-
lated and this observation was already noted for the irregular pulses emitted by a
ruby laser: the larger the temporal separation between one pulse and its predeces-
sor, the larger its peak intensity (see Figure 4.1 right). As we simply demonstrated,
this relation follows the scaling law yM = P2

int/8, in first approximation.
Because ε is small, the laser equations (5.38) and (5.39) form a nearly conserva-

tive system of equations. This fundamental property of the laser rate equations was
discovered in early studies of the laser equations, which are interesting to review.
In 1966, Basov et al. [130] (see also Morozov [131]) had already found that a large
number of laser problems can be formulated as

u′′ − u−1u′2 + u(u − 1)+ ε2 f (u, u′) = 0. (5.44)

Eq. (5.44) can be obtained from Eqs. (5.38) and (5.39) by introducing u ≡ 1 + y
and by formulating a second order differential equation for u only. In addi-
tion, Basov et al. [130] showed that the reduced problem (ε= 0) is conservative,



122 Weakly modulated lasers

and later, Morozov [131] used an elementary averaging theory to determine the
long time effect of the function f (u, u′). In 1985, the same idea was explored,
independently, by Oppo and Politi [132]. Specifically, they reformulated Eqs. (1.7)
and (1.8) as a second order differential equation describing the motion of a particle
in a Toda potential. This equation is given by

u′′ + V ′(u)+ ε2h(u, u′) = 0, (5.45)

where the single-well potential V (u) and the nonlinear dissipation term h(u, u′)
are defined by

V (u) ≡ exp(u)− u, (5.46)

h(u, u ′) ≡ u′ [1 + (A − 1) exp(u)
]

. (5.47)

Eq. (5.45) can be obtained from Eqs. (5.38) and (5.39) by introducing the new
variable u ≡ ln(1 + y) and by formulating a second order differential equation
for u only. Again, an averaging method is proposed in [132] in order to describe
the long time behavior of the laser oscillations. Eqs. (5.38) and (5.39) offer the
advantage that x and y are defined as deviations of D and I from their steady
state values, which allows an immediate physical interpretation. On the other hand,
Eq. (5.45) allows the application of modern averaging techniques developed for a
large class of second order and nearly Hamiltonian systems (see [16, 133, 134]).

5.2.2 Pump and loss modulations

A periodic modulation of a laser can be realized by modulating either the pump
or the cavity losses. We note from the laser equations that modulating the cavity
losses changes the evolution equation of the intensity while modulating the pump
modifies the evolution equation of the population inversion. Since the population
inversion for all class B lasers is much slower than the intensity of the field, we
expect different responses depending on the modulated parameter. As we shall
demonstrate below, this difference can be highlighted by introducing the relaxation
oscillation frequency into the rate equations.

The case of pump modulation is straightforward. Controlling the pump
implies that

Am = A(1 + mF(t)), (5.48)

where A and m represent the pump mean value and the modulation amplitude,
respectively. The function F(t) is 2π/ω-periodic and has zero mean but can be
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sinusoidal, pulsating, or square wave. Introducing (5.48), (5.36), and (5.37) into
Eqs. (1.7) and (1.8) leads to the following modification of Eq. (5.38)

dx

ds
= δ f (s)− y − ε2x[1 + (A − 1)(1 + y)] (5.49)

while Eq. (5.39) remains unchanged. The function f (s) = F(s) is 2π/σ -periodic
and δ and σ are defined by

δ ≡ Am

A − 1
and σ ≡ ω

ωR
. (5.50)

In the case of loss modulation, we need to go back to the original rate equa-

tions (1.4) and (1.5) with a time-dependent cavity decay rate: T
−1
c (T ) = T −1

c (1 +
m H(�T )). After introducing the dimensionless time t ≡ T /Tc, Eq. (1.7) for the
intensity becomes

dI

dt
= I (D − 1 − mG(t)), (5.51)

where G(t)= H(t) is 2π/ω-periodic and ω≡�Tc. We next insert (5.36) and
(5.37) into Eqs. (5.51) and (1.8) and find

dy

ds
= (1 + y)(x − δg(s)), (5.52)

where g(s) = G(s) is 2π/σ -periodic and δ and σ are defined by

δ ≡ m

ωR
and σ ≡ ω

ωR
. (5.53)

Eq. (5.38) remains unchanged. Note the presence of ωR in the normalized
modulation amplitude δ for the case of loss modulation.

We may now compare the effects of these two modulations. Since
ωR ∼√

γ ∼ 10−2 is small for most class B lasers, assuming δ = O(1) requires that
m is O(1) in the case of pump modulation (see (5.50)) while m is O(ωR) small
in the case of loss modulation (see (5.53)). In other words, a significant control
of the modulation amplitude (δ= O(1)) is more easily achieved via loss modula-
tion. But we also need to take into account technical factors. Pump modulation is
easily achieved in diode pumped Nd3+:YAG/YVO4 lasers by changing the pump
diode current, while this technique is difficult for CO2 lasers which are pumped by
a DC or RF discharge. On the other hand, loss modulation is easily achieved by
inserting an acousto- or electro-optic modulator inside the cavity of a CO2 laser.
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Since the availability and performance of optical components are crucial for exper-
iments, practical factors will generally determine the most appropriate modulation
technique.

5.2.3 Weak pump modulation near the fundamental resonance
and hysteresis

In this section, we concentrate on the primary resonance (σ ∼ 1) and show that the
typical response of the laser is bistable even if the modulation amplitude is small.
This is the first case where we need to develop a nonlinear theory to describe the
phenomenon. Specifically, we consider (5.48) with m small but F(t) arbitrary and
apply a singular perturbation method. A singular perturbation problem arises when
the regular perturbation method is no longer uniformly valid. The technique might
break down, for example, either for large t values (as for our laser problem; see
Exercise 5.3.4) or in the presence of boundary or interior layers. Another difficulty
comes from the fact that we wish to consider values of σ close to 1 and δ small
which imply that we need to scale these two parameters with respect to our small
parameter ε. The first difficulty will be resolved by introducing the natural strained
coordinate S = σ(ε)t . The second difficulty will be resolved by introducing gen-
eral expansions of σ − 1 and δ in power series of ε and by systematically applying
solvability conditions.

Although we could directly analyze Eqs. (5.49) and (5.39), the algebra is simpler
if we have a second order differential equation rather than a system of two first
order equations. To this end, we use the same procedure as for the formulation
of Eq. (5.45), i.e. we eliminate one of the dependent variables by introducing u =
ln(1 + y). We then obtain du/ds = x from Eq. (5.39) and, using Eq. (5.49), we
determine an equation for u only, given by

u′′ = δ f (s)+ 1 − exp(u)− ε2u′ [1 + (A − 1) exp(u)
]

, (5.54)

which is Eq. (5.45) with an extra modulation term, and prime means differentiation
with respect to time s.

Analysis of the successive orders

If δ = ε = 0, the linearized problem for u = 0 is u′′ + u = 0, which admits a
2π -periodic solution. This motivates looking for a small amplitude, 2π/σ -periodic
solution of Eq. (5.54) for δ small and σ close to 1. Specifically, we seek a 2π -
periodic solution of Eq. (5.54) of the form

u(S, ε) = εu1(S)+ ε2u2(S)+ . . . , (5.55)
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where S ≡ σ s. With this definition of S, the frequency σ will appear as a parameter
in the equation for u and no longer in the modulation function f (s). The two
parameters δ and σ need to be expanded in power series of ε. At this stage of our
analysis, we don’t know their leading scaling with respect to ε and expand them in
the most general way as

δ(ε) = εδ1 + ε2δ2 + . . . and σ(ε) = 1 + εσ1 + ε2σ2 + . . . , (5.56)

where the coefficients δ1, δ2, . . . , σ1, σ2, . . . need to be determined by applying
solvability conditions. Introducing S ≡ σ s and (5.56) into Eq. (5.54) and equating
the coefficients of each power of ε to zero leads to a sequence of linear problems
for u1, u2, . . . that we investigate now.

The leading order problem is O(ε) and is given by

u′′
1 + u1 = RH S ≡ δ1 f (S), (5.57)

where prime means differentiation with respect to time S and RHS means the
right hand side. We note that the homogeneous problem admits the two solutions
exp(±iS) (or equivalently, sin(S) and cos(S)). In order to have a bounded periodic
solution, the right hand side RHS needs to satisfy a solvability condition which is
given by ∫ 2π

0
RHS exp(±iS)dS = 0. (5.58)

Assuming that

I ≡ 1

2π

∫ 2π

0
f (S) exp(iS)dS �= 0, (5.59)

i.e. the main Fourier component of the modulation is different from zero as can
reasonably be expected for periodic modulation, (5.58) requires that

δ1 = 0. (5.60)

Equation (5.57) then admits the periodic solution

u1 = α exp(iS)+ c.c., (5.61)

where c.c. means complex conjugate and α is an unknown complex amplitude. In
order to determine α, we need to investigate the higher order problems.
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The next problem is O(ε2) and, with (5.60), it is given by

u′′
2 + u2 = RHS ≡ −1

2
u2

1 + δ2 f (S)− 2σ1u′′
1. (5.62)

We note that u2
1 = α2 exp(2i S)+ c.c. + 2αα only exhibits subharmonic functions.

This means that the condition (5.58) reduces to the following linear equation for α

δ2 I + 2σ1α = 0. (5.63)

Solving for α, we find that α is unbounded if σ1 = 0. Thus the only physical
solution is

δ2 = σ1 = 0 (5.64)

and α arbitrary. Since α is still unknown, we examine the next problem for u3. To
this end, we first determine the solution of Eq. (5.62) with (5.64). It has the form

u2 = (α2 exp(i S) + c.c.)+
(
α2

6
exp(2i S)+ c.c.

)
− αα, (5.65)

where α2 is a new unknown complex amplitude so that we must solve for the next
order problem.

The problem for u3 is O(ε3) and is given by

u′′
3 + u3 = RH S ≡ δ3 f (s)− u1u2 − 1

6
u3

1 − Au′
1 − 2σ2u′′

1. (5.66)

Applying (5.58) now leads to the following nonlinear equation for α

δ3 I + 1

3
α2α − iαA + 2σ2α = 0. (5.67)

We analyze its solution by introducing the decomposition α= R exp(iθ) and
assuming I = J exp(iφ). We obtain the following equations for R and θ .

δ3 J cos(θ − φ)+ 1

3
R3 + 2σ2 R = 0,

−δ3 J sin(θ − φ)− AR = 0. (5.68)

Eliminating the trigonometric functions, we obtain

(δ3 J )2 = R2

[
A2 +

(
1

3
R2 + 2σ2

)2
]

(5.69)
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Fig. 5.5 Hysteresis of periodic solutions. A = 2, f (S) = cos(S), implying J =
1/2. The branches of solutions are represented for δ3 = 10, 20, 30, and 40. As δ3
increases, the middle and upper branches increase in amplitude and come closer
to the parabola σ2 = −R2/6 (broken line).

or, equivalently, the implicit solution σ2 = σ±(R) where

σ±(R) ≡ −1

6
R2 ± 1

2R

√
(δ3 J )2 − R2 A2 (5.70)

(R ≤ δ3 J/A) . Knowing R, we may find θ using one of the two equations in (5.68).
The problem is now solved. In summary, the solution is nearly harmonic in time

and is given by u � εR exp(i(S + θ)) + c.c., where R satisfies Eq. (5.70). R is
implicitly given vs. δ3 and σ2, which measure the amplitude and the detuning of the
modulation through the scalings δ= δ3ε

3 and σ = 1 + σ2ε
2
(
ε = ( γ

A−1

)1/4). Since
in many lasers γ is typically 10−2 − 10−3, the resonance is very sharp (u ∼ γ 1/4).

Bifurcations

We next examine the bifurcation properties of R in order to obtain quantita-
tive information on the main properties of the resonance curves. The solution
R = R(σ2) may be multiple if the modulation amplitude is sufficiently high. See
Figure 5.5. We determine the location of the limit points by analyzing the condi-
tion dσ2/dR = 0. This condition is never satisfied if σ2 = σ+. On the other hand,
if σ2 = σ−, we obtain a quadratic equation for (δ3 J )2, which is given by

(δ3 J )4 − (δ3 J )2
4R6

9
+ A2 4R8

9
= 0. (5.71)

As we progressively increase δ3, two real solutions for R appear at a critical point
δ3 = δ3c. At this point there is a vertical tangency in the curve R(δ), and then the
critical point satisfies the condition

dδ3/dR2 = 0. (5.72)
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Differentiating (5.71) with respect to R2 and using (5.72), we obtain a second
condition relating R2 and δ3. Then eliminating R2 using (5.71), we find δ3 = δ3c as

δ3c ≡ 2

J

√
2A3
√

3
� 2.15

J
A3/2. (5.73)

The critical modulation amplitude δ3c is proportional to A3/2, which means that
the lowest value of δ3c is at the laser threshold A = 1. However, the laser should
not operate too close to its threshold since noise may eliminate the hysteresis phe-
nomenon. We also note that δ3c is inversely proportional to J which depends on
the modulation function. The lowest value of δ3c means a high J . In the case of a
sinusoidal modulation of the form f (S) = cos(S), we find J = 1/2. In the case of
a bang-bang modulation f (S) = ±1, we obtain J = 4/2π > 1/2. The bang-bang
modulation thus leads to a smaller δ3c.

If A = 2 and J = 1/2, we find from (5.73) that δ3c � 12.16, which is numerically
relatively large. This suggests determining the large δ3 (or equivalently, the large
R) approximations of the two roots of Eq. (5.71). We obtain R1 � (3δ3 J/2)1/3

and R2 � δ3 J/A. Near R = R1, the laser experiences a jump-up transition while
near R = R2, we expect a jump-down transition. Inserting these expressions into
σ−(R), given by (5.70), we obtain

σ2up � −1

2

(
3δ3 J

2

)2/3

and σ2down � −1

6

(
δ3 J

A

)2

. (5.74)

In terms of the original variables σ − 1 = ε2σ2 and δ= ε3δ3, and for J = 1/2, the
two limit points (5.74) are

σup − 1 � 0.41δ2/3 and σdown − 1 � −0.04

(
δ

εA

)2

. (5.75)

Equation (5.75) tells us that the σdown limit point changes much faster than the σup

limit point as δ increases. This is clearly seen experimentally in Figure 5.6: σdown

decreases significantly as the modulation amplitude increases while the decrease of
σup is moderate. In Figure 5.7, the experimental estimations of the two limit-point
frequencies are compared to the theoretical predictions. The experimental values
for σup compare well with the theoretical prediction but the experimental values of
σdown deviate from the theoretical line as δ increases and saturate at a fixed value.
This saturation is the result of noise that is always present in the experiment. As δ
increases, the bifurcation diagram near the σdown limit point becomes very sharp
(see Figure 5.5) and small perturbations of the upper stable branch may lead to
jump-down transitions before the limit point is reached. The saturation level is
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then a function of the level of noise. In [135], this was demonstrated quantitatively
by adding noise to the pump and observing a lower saturation.

5.2.4 Subharmonic modulation and period doubling bifurcation

In the previous section, we considered the case of a near resonant modulation
(frequency σ � 1) and analyzed the conditions for hysteresis with an arbitrary
modulation function f (s). In this section, we analyze the period doubling bifurca-
tion generated by a subharmonic modulation of the form f (s)= cos(σ s) where
σ ∼ 2. To this end, we use the same perturbation technique as in the previous
section but anticipate a bifurcation from a 2πσ−1 periodic solution to a 4πσ−1

periodic solution.
As for the case σ � 1, we first expand the parameters δ and σ as

δ(ε) = εδ1 + ε2δ2 + . . . and σ(ε) = 2 + εσ1 + ε2σ2 + . . . (5.76)

and seek a 2π -periodic solution of Eq. (5.54) of the form (5.55). Introducing
S = σ s, (5.76), and (5.55) into Eq. (5.54) and equating the coefficients of each
power of ε to zero leads to a sequence of linear problems for u1, u2, . . . We then
proceed as usual by solving the successive equations for u1, u2, . . . and applying
solvability conditions.

Analysis of the successive orders

The leading order problem is O(ε) and is given by

4u′′
1 + u1 = RHS ≡ δ1 cos(S). (5.77)

The two solutions of the homogeneous problem now are u1 = exp
(± i S

2

)
and the

solvability condition becomes∫ 2π

0
RHS(S) exp

(
± i S

2

)
d S = 0, (5.78)

which is identically satisfied for (5.77). Its solution is then

u1 =
(
α exp

(
i S

2

)
+ c.c.

)
− δ1

6
(exp(i S)+ c.c.), (5.79)

where c.c. means complex conjugate and α is an unknown complex amplitude. In
order to determine α, we need to investigate the higher order problems.

The next problem is O(ε2) and is given by the following equation for u2

4u′′
2 + u2 = RH S ≡ −1

2
u2

1 + δ2 cos(S)− 4σ1u′′
1. (5.80)



5.2 Weakly modulated class B lasers 131

We note that

u2
1 = (α2 exp(i S)+ c.c.)+ 2αα +

(
δ1

6

)2

[(exp(2i S)+ c.c.)+ 1]

− δ1

6

(
α exp

(
i S

2

)
+ c.c.

)
− δ1

6

(
α exp

(
3i S

2

)
+ c.c.

)
(5.81)

only exhibits higher order harmonics of the basic periodic function exp(±i S/2).
Using the solvability condition (5.78) for Eq. (5.80) leads to the condition

δ1

12
α + σ1α = 0. (5.82)

This equation and its complex conjugate form a homogeneous linear system of two
equations for α and α. It admits a nontrivial solution only if

δ1 = ±12σ1 and α ± α = 0. (5.83)

For a fixed value of the detuning, σ1, we have two period doubling bifurcations.
Note, however, that |α| is arbitrary, meaning that the two bifurcations are vertical
at this order of the perturbation analysis. To further progress in our analysis of the
bifurcation diagram, we examine another route proposed by (5.82), namely

δ1 = σ1 = 0. (5.84)

In this case, α is still completely arbitrary and we need to investigate the problem
for u3. To this end, we determine u2 as

u2 = (α2 exp(2iS)+ c.c.)+
(
α2

6
exp(4i S)+ c.c.

)
− αα − δ2

6
(exp(iS)+ c.c.), (5.85)

where α2 is a new unknown amplitude.
The equation for u3 is given by

4u′′
3 + u3 = RHS ≡ δ3 cos(S)− u1u2 − 1

6
u3

1 − 2Au′
1 − 4σ2u′′

1. (5.86)

The solvability condition (5.78) for Eq. (5.86) now leads to the following nonlinear
equation for α

1

3
α2α − i Aα + δ2

6
α + σ2α = 0. (5.87)
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Introducing the decomposition α = R exp(iθ) into (5.87), we obtain the following
equations for R and θ :

R

[
δ2

6
cos(2θ)+ 1

3
R2 + σ2

]
= 0, (5.88)

−
[
δ2

6
sin(2θ)+ A

]
R = 0. (5.89)

This provides us with the required information, namely the amplitude R of the
2π -periodic solution in the presence of a π -periodic modulation. We may now
proceed to the analysis of these solutions. In particular their domain of existence
will provide us with the position of the bifurcations.

Bifurcations

The possible solutions of Eqs. (5.88) and (5.89) are (1) the Period 1 solution

R = 0 (5.90)

and (2) the Period 2 solution R �= 0. Eliminating the trigonometric functions, we
obtain the solution (in implicit form)(

δ2

6

)2

=
(

1

3
R2 + σ2

)2

+ A2, (5.91)

which we rewrite as

1

9
R4 + 2σ2

3
R2 = δ2

2 − δ2
P D

36
, (5.92)

where

δP D = ±6
√

A2 + σ 2
2 (5.93)

are the period doubling bifurcation points. The bifurcation exhibits hysteresis if
σ2< 0 and anticipates a “hard transition” to the Period 2 oscillations as δ2 sur-
passes the period doubling bifurcation point. A hard transition means that the laser
experiences a quick jump from small to large amplitude oscillations. If σ2 = 0,
the bifurcation is supercritical but sharp (R ∼ (δ2

2 − δ2
P D)

1/4) while it is parabolic
(R ∼ (δ2

2 − δ2
P D)

1/2) if σ2 > 0. In this case, the bifurcation transition is called
“soft” because the amplitude of the solutions changes gradually as δ2 passes the
period doubling bifurcation point. See Figure 5.8. In the figure, the leading approx-
imation of the maximum of y for the P1 and P2 solutions (y = δ/3 and y = 2εR,
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Fig. 5.9 Numerical period doubling bifurcation. The extrema of y are represented
as a function of δ. Equation (5.54) is solved numerically with f (s) = cos(σ s),
A = 2, γ = 10−3, σ = 1.9 (left), and σ = 2.1 (right).

respectively) is represented as a function of δ. The period doubling bifurcation
point is located at δPD = 0.71.

These analytical results are confirmed by numerical simulations as shown in
Figure 5.9. In the case of negative (positive) detuning we find the hard transition
(the smooth transition) to the P2 oscillations predicted by the bifurcation analysis.
The stability of the periodic solutions could be determined by a two-time perturba-
tion analysis. The P2 solution near its bifurcation point is shown in Figure 5.10 for
the case of positive detuning. It clearly exhibits two maxima and two minima. In
the case of negative detuning, the P2 solution exhibits a large amplitude and only
one maximum and one minimum.

In summary, we have described two nonlinear phenomena that result from a
weak modulation of a parameter. In the first case, the modulation frequency was
close to the relaxation oscillation frequency of the solitary laser and a bistable
response for the laser oscillations was possible at large modulation amplitudes. In
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Fig. 5.10 Numerical P2 solution of Eq. (5.54) with f (s) = cos(σ s) and A = 2,
γ = 10−3, σ = 2.1, and δ = 0.85.

the second case, the modulation frequency was close to twice the relaxation oscil-
lation frequency of the laser (subharmonic modulation), and a period-doubling
bifurcation with a hard (or a soft) transition was possible, depending on the sign
of the frequency detuning from its resonance value.

5.3 Exercises and problems

5.3.1 Driven Adler’s equation

Substitute θ = θ0(s) + εθ1(s) + . . . into Eq. (5.2) and equate the coefficients of
each power of ε to zero. The equation for θ0 can be integrated. The equation for
θ1 can be solved after the right hand side is expanded in Fourier series. Verify that
the solution for θ1 becomes unbounded at σ = n−1 where n is an integer.

5.3.2 Weakly modulated Adler’s equation

We wish to compute the expression (1 − a sin(�(s)))−1, where�(s) is defined as
the exact solution of Adler’s equation for 0 < a < 1. Introduce the new variable
y = tan((�+ π/2)/2) and note that the solution of Adler’s equation is given by

y2 = 1 + a

1 − a
tan2

(ω0

2
s
)

. (5.94)

5.3.3 A change of variables in the rate equations

We wish to eliminate the small parameter γ multiplying the right hand side of
Eq. (1.8) by changing both the dependent and independent variables. To this end
we introduce the new variables

s = σ t , I = A − 1 + αy, and D = 1 + βx , (5.95)

where (I , D) = (A − 1, 1) corresponds to the non-zero intensity steady state. The
coefficients σ , α, and β in (5.95) are unknown and will be determined by requiring
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that (1) γ no longer multiplies a right hand side and that (2) the resulting equations
for x and y exhibit a reduced number of parameters. Proceeding in this way, obtain
Eqs. (5.38) and (5.39).

5.3.4 Failure of the regular perturbation method

The failure of the regular perturbation method in case of resonance can be simply
analyzed using the laser equation in the weak dissipation limit (ε = 0) and with a
sinusoidal modulation f (s) = sin(s)

u′′ = δ sin(s)+ 1 − exp(u). (5.96)

Seek a regular perturbation expansion solution for u of the form u = δu1(s) +
δ2u2(s)+. . . and find that u1 exhibits the secular term s cos(s).1 It is called secular
as s →∞ because it increases without bound, thus violating the implicit assump-
tion that successive terms in an asymptotic expansion remain of decreasing size.
The regular perturbation expansion is therefore not suitable for s large. Trying
a different expansion like u = δ1/2u1(s) + δu2(s) + . . . will only postpone the
difficulty to higher order.

1 Secular (derived from the Latin saeculum for “century”) was first used in astronomical applications where
the undesired mixed term becomes significant only when time is of the order of a century.
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Strongly modulated lasers

In the previous chapter, we investigated the case of weakly modulated lasers. We
found that a bistable response is possible if the modulation frequency is close to
the relaxation oscillation (RO) frequency or to twice the RO frequency of the laser.
In this section, we consider stronger modulation amplitudes, which is the case in
most experimental studies. A strongly modulated laser may lead to chaos through
successive period-doubling bifurcations as we shall see in this chapter.

In the late 1970s and early 1980s, there was a lot of excitement about “deter-
ministic chaos” in all fields of physics, chemistry, and even biology. Deterministic
refers to the idea that the future state of a system can be predicted using a mathe-
matical model that does not include random or stochastic influences. Chaos refers
to the idea that a system displays extreme sensitivity to initial conditions so that
arbitrary small errors in measuring the initial state of the system grow exponen-
tially large and hence practical, long term predictability of the future state of the
system is lost. As far as optics was concerned, Kensuke Ikeda suggested in 1979
that an optical ring resonator containing a two-level medium and subject to a
delayed feedback could exhibit chaos [113]. His work triggered a lot of experi-
mental research on optical chaos but, as explained in Section 4.2, it took several
years before quantitative comparisons were possible. Following a quite different
approach, Arecchi et al. [136] modulated the losses of a CO2 laser at a frequency
close to the RO frequency and obtained in 1982 a clear period-doubling cascade to
chaos (see Figure 6.1). At that time, there was also intense research on chaos in free
running (i.e. nonmodulated) lasers, in particular in far-infrared (FIR) lasers. It was
motivated by the prediction of the Lorenz–Haken instability but a neat detection of
Lorenz type chaos in the NH3 laser came much later (see Section 11.2). Similarly,
there was strong research activity in the former USSR where the concept of laser
instabilities was well known from laser physicists. Almost simultaneously with
Arecchi et al., Russian scientists Ivanov et al. modulated their Nd:YAG laser at a
frequency 0.4 times the RO frequency and observed period doubling and chaotic

136
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Fig. 6.1 Bifurcation diagram for the CO2 laser with modulated losses. The
peak intensity Ip is represented as a function of the modulation amplitude m.
Figures (a) and (b) are obtained by increasing or decreasing m, respectively
( f = RO frequency; c = chaos; nl = nonlasing). Adapted Figure 6 with permis-
sion from Tredicce et al. [141]. Copyright 1986 by the American Physical
Society.

emission. They called this irregular behavior “autostochasticity” [137]. Since that
time, chaos has been observed in a variety of modulated class B lasers including
diode, LNP, Nd:YVO4, Er3+, and Nd3+ doped fiber lasers. These experimental
results motivated several numerical studies of the laser equations [138, 139, 140].
The excellent agreement between experiments and simulations of rate equations
for the modulated CO2 laser led to the study of many dynamical phenomena using
these lasers.

6.1 Generalized bistability

6.1.1 Experiments and simulations

Bifurcation diagrams (BD), where a property of a long time solution (maxima,
period) is represented as a function of a control parameter (modulation amplitude
or modulation frequency), are useful for exploring how multiperiodic regimes may
appear. Typical diagrams showing cascades of period-doubling bifurcations are



138 Strongly modulated lasers

Fig. 6.2 Left: bifurcation diagram of an erbium-doped fiber laser with modu-
lated pump for different values of the modulation frequency. Right: three different
regimes are observed for a modulation frequency of 92 kHz. From top to bot-
tom the T, 3T, and 4T time-periodic regimes are represented. The bottom trace is
the modulation reference of the pump intensity. Reprinted Figures 3 and 5 with
permission from Pisarchik et al. [142]. Copyright 2003 IEEE.

shown in Figure 6.1 for increasing or decreasing values of the modulation ampli-
tude. They also exhibit different dynamics (Period 3 and chaos) in the domain
(12%<m< 14%). Such a coexistence of different dynamical regimes for the same
values of the parameters is quite common in the modulated CO2 laser and has been
called “generalized bistability (multistability)”. The multistability phenomenon
has been explored in a series of recent experiments using an erbium-doped fiber
laser with a modulated pump (see Figure 6.2).1 Distinct branches of nT-periodic
solutions with their period-doubling bifurcations may be identified. Here the mod-
ulation frequency is the control parameter and period-doubling bifurcations are
clearly visible, e.g. near 30 kHz and 70 kHz. Attractors with periods T, 3T, and 4T
(marked as R1′, P3, and P4 in Figure 6.2) coexist for a modulation frequency of
92 kHz.

A typical numerical BD of the periodic solutions of Eqs. (5.38) and (5.52) is
shown in Figure 6.3. The L2 norm2 of the periodic solutions is represented as
a function of the modulation amplitude δ. The values of the parameters are γ =
2.7 × 10−4, A = 1.03, g(s) = cos(σ s), and σ = 0.9. The BD has been obtained
by using a continuation method3 which allows the determination of branches of
both stable and unstable solutions. The figure shows the successive branching of

1 This laser most likely operates on many longitudinal modes. This does not significantly modify simple
processes such as relaxation oscillations or period-doubling cascades, as shown by several authors.

2 The L2 norm of a P-periodic solution (x(s), y(s)) is defined as L2 ≡ 1
P

∫ P
0 (x

2 + y2)ds.
3 Instead of solving the initial value problem, the continuation method solves a boundary-value problem since

each periodic solution satisfies periodic boundary conditions.
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Fig. 6.3 Stable (full lines) and unstable (dots) branches of Pn-periodic solutions
(Pn = n2π/σ) appear through successive limit points. In addition, period-
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doubling bifurcation is enlarged in the left part of the figure. Reprinted from
Figures 1 and 2 of Schwartz [139] with permission from Elsevier.

Pn-periodic solutions (Pn ≡ 2πn/σ ) emerging from limit points (called primary
saddle-node bifurcation points in [139]). These branches of periodic solutions may
overlap allowing the coexistence of several regimes for certain range of values of δ.
The figure also suggests that the L2 norm at each limit point is linearly proportional
to δ. In addition to the successive branching of Pn-periodic solutions, we note
cascades of period-doubling bifurcations. The first period-doubling bifurcation is
marked in the figure and is a bifurcation from the P1 solution. Near this bifurcation,
the P2 solution exhibits a double loop in the phase plane (x , y) and progressively
becomes single loop as its amplitude increases.

In summary, the existence of generalized multistability is accompanied by the
emergence of isolated subharmonic branches and period-doubling bifurcations.
These are key dynamical phenomena for strongly modulated class B lasers. We
analyze them in the next two sections.
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6.1.2 Branches of subharmonic periodic solutions

In this section, we demonstrate the emergence of branches of subharmonic periodic
solutions at limit points and show how to derive analytical expressions for the
positions of these points.

Numerically, we note that the limit points δ = δn for all Pn-periodic solutions
move to zero as the damping rate of the laser relaxation oscillations ε2 goes to
zero. This suggests a simple perturbation analysis of the laser equations. To this
end, we expand the modulation amplitude δ as

δ = ε2δ1 + . . . (6.1)

and seek a regular perturbation solution of Eqs. (5.38) and (5.52) of the form

x = x0(s)+ ε2x1(s)+ . . . (6.2)

y = y0(s)+ ε2 y1(s)+ . . . (6.3)

It is mathematically convenient to introduce the energy of the periodic solu-
tion. The first integral (5.42) motivates introducing the energy function E(x , y)
defined by

E(x , y) ≡ x2

2
+ y − ln(1 + y). (6.4)

Differentiating (6.4) with respect to s and using Eqs. (5.38) and (5.52), we obtain
the following differential equation for E

dE

ds
= −ε2x2[A + (A − 1)y] − δyg(s). (6.5)

We solve this equation in the same way as the x and y equations by expanding E
in power series of ε2, i.e.

E = E0(s)+ ε2 E1(s)+ . . . (6.6)

Substituting (6.1), (6.2), (6.3), and (6.6) into Eqs. (5.38), (5.52), and (6.5) leads to
a sequence of simpler problems. The leading order problem for x0, y0, and E0 is
given by

dx0

ds
= −y0, (6.7)

dy0

ds
= (1 + y0)x0, (6.8)
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dE0

ds
= 0. (6.9)

Equations (6.7) and (6.8) are identical to the equations for the conservative system
(5.41). This system admits a one-parameter family of period solutions with period
changing from 2π to infinite. We denote the Pn-periodic solution (Pn = 2πn/σ )
of Eqs. (6.7) and (6.8) by

x0 = Xn(s + φn) (6.10)

y0 = Yn(s + φn), (6.11)

where φn is an arbitrary constant phase. Equation (6.9) simply means that E0 = Cn

is a constant.
To determine φn, we examine the equation for E1, namely

dE1

ds
= −x2

0

[
1 + (A − 1)(1 + y0)

]− δ1 y0g(s). (6.12)

We note that the left hand side of Eq. (6.12) admits a constant solution and there-
fore the right hand side needs to satisfy a solvability condition. This condition
requires that the average of the right hand side is zero, i.e.

A
∫ Pn

0
X2

n(s + φ)ds + δ1

∫ Pn

0
Yn(s + φ)g(s)ds = 0 (6.13)

where we used the fact that∫ Pn

0
X2

nYnds = −
∮

X2
nd Xn = 0. (6.14)

Setting ξ = s + φn, (6.13) can be rewritten as

A
∫ Pn

0
X2

n(ξ)dξ + δ1

∫ Pn

0
Yn(ξ)g(ξ − φn)dξ = 0. (6.15)

Without loss of generality, we may define the origin ξ = 0 so that X(ξ) is odd and
Y (ξ) = −X ′(ξ) is even. If g(s) = cos(σ s), then (6.15) reduces to

AIn + δ1 cos(φn)Jn = 0, (6.16)

where In and Jn are two definite integrals defined by

In ≡
∫ Pn

0
X2

ndξ and Jn ≡
∫ Pn

0
Yn(ξ) cos(σ ξ)dξ . (6.17)
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Equation (6.16) is now of the form of a steady Adler’s equation. A solution of this
equation is possible only if δ1 ≥ |AIn/Jn| or, equivalently, if

δ ≥ δn = ε2 |AIn/Jn| . (6.18)

In general, the integrals (6.17) need to be computed numerically but we may
analyze the limit n large. In this limit, the period Pn becomes large forcing the Pn-
periodic oscillations to be of large amplitude. Xn(ξ) (odd) approaches saw-toothed
oscillations of the form

Xn = xn + ξ (−xn ≤ ξ < 0)

= −xn + ξ (0 < ξ < xn),

where xn ≡ πn/σ . On the other hand,

Yn � −1

except near ξ = 0 where it pulses and where Xn jumps from xn to −xn . Using these
approximations, we evaluate the two integrals (6.17) as

In �
∫ 0

−xn

(xn + ξ)2dξ +
∫ xn

0
(−xn + ξ)2dξ = 2x3

n

3
, (6.19)

Jn �
∫ xn

−xn

Yn(ξ)dξ = −
∫ −xn

xn

d Xn = 2xn. (6.20)

For (6.20), we have taken into account that the main contribution of the integral Jn

is at ξ = 0, implying cos(σξ) = 1. We then used Eq. (6.7) to solve the integral.
Using (6.18), the approximation for δn then is

δn �
√

γ

A − 1

Ax2
n

3
=
√

γ

A − 1

Aπ2n2

3σ 2
. (6.21)

Similarly, we evaluate the L2 norm of the Pn-periodic solution as

L2(n) ≡ 1

Pn

∫ Pn

0
(X2

n + Y 2
n )dξ � 1

2xn

∫ xn

−xn

X2
ndξ = x2

n

3
= π2n2

3σ 2
. (6.22)

We conclude that L2(n) grows linearly with δn , which is what Figure 6.3 suggests.
The derivation of the leading approximation for (Xn , Yn) can be substantiated
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analytically by using the method of matched asymptotic expansions. This analysis
is described in [143].

In summary, our analysis reveals the emergence of successive branches of
isolated Pn-periodic regimes. The damping rate of the laser relaxation oscilla-
tion, proportional to ε2 =√

γ/(A − 1), plays an important role in the domain
of existence of these solutions. Coexistence of several branches of periodic
solutions is more likely to be observed if this damping rate is sufficiently
small.

6.2 Map for the strongly modulated laser

In this section, we propose to replace the laser differential equations by equa-
tions for a map valid if the oscillations are sufficiently large (see Figure 6.4).
We first explore numerically the solutions of the equations in the low dissipation
limit. This suggests approximations helping to build the mapping. We then use
this mapping to obtain an analytic value of the position of the first period-doubling
bifurcation.

6.2.1 Exploring the large oscillation regimes

In the strong modulation limit, x(s) exhibits saw-tooth oscillations while y(s)
shows intense pulses separated by intervals where y is close to −1. Specifically,
we wish to determine equations for the successive values x = xn < 0 if y = 0 as
well as the times s = sn when they appear. For simplicity, we consider the laser
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(g(s)= cos(σ s)). The solution is obtained from Eqs. (5.38) and (5.52).
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Period 1 regime and then goes into its long time Period 2 regime.



144 Strongly modulated lasers

L2

norm

Period 2

Period 1

0.0
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0.5 1.0 1.5 2.0

d
2.5 3.0 3.5 4.0

PD

Fig. 6.5 Blow-up of the bifurcation diagram of Eqs. (6.23) and (6.24) for σ = 0.9
showing the first period-doubling bifurcation. The Period 2 branch emerging at
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ε increases from zero, the limit points at δ = 0 and L2 = 2 and 14 move to the
right as suggested by the double arrows. Redrawn from Figure 2 of Schwartz and
Erneux [144]. Copyright 1994 Society for Industrial and Applied Mathematics.
Reprinted with permission. All rights reserved.

rate equations with loss modulation (5.38), (5.52) in the limit of zero damping
(ε = 0). They are given by

dx

ds
= −y, (6.23)

dy

ds
= (1 + y)(1 − δ cos(σ s)). (6.24)

The bifurcation diagram of the Period 1 and Period 2 branches of Eqs. (6.23) and
(6.24) obtained by a continuation method is shown in Figure 6.5. The Period 1 and
Period 2 left limit points appearing at the L2 norm, equal to 2 and 14, respectively,
are located at δ = 0 because damping is zero (ε2 = 0 in Eq. (6.18) implies δn = 0).
The period-doubling bifurcation at δ � 1.25 is new and the periodic orbits in the
phase plane before and after the period-doubling bifurcation point are shown in
Figure 6.6.

6.2.2 Building the map

We consider Eqs. (6.23) and (6.24) supplemented by the initial conditions

x(sn) = xn < 0, y(sn) = 0, (6.25)
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where |xn| >> 1 is our large parameter that controls the amplitude of the orbit (see
Figure 6.7). Furthermore, we assume δ = O(1) and σ = O(|xn |−1) and we build
the map by decomposing the evolution into two parts: the slow evolution between
the pulses and the fast spiking, which we successively characterize as follows.

Slow evolution

The slow evolution between two successive pulses is characterized by the fact that
y � −1. In this regime, Eqs. (6.23) and (6.24) reduce to

dx

ds
= 1,

dy

ds
= (1 + y) [x − δ cos(σ s)]. (6.26)

Using the initial conditions (6.25) and integrating, the solution of Eq. (6.26) is
given by

x = xn + (s − sn) and y = −1 + exp( f (s)), (6.27)

where

f (s) = xn(s − sn)+ 1

2
(s − sn)

2 − δσ−1 [sin(σ s)− sin(σ sn)] . (6.28)
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Fig. 6.7 One orbit in the phase plane (x , y). The orbit starts at (xn , 0) when
s = sn , passes through (xc, 0) when s = sc, and completes its orbit at (xn+1, 0)
when s = sn+1. If xn is decreased, the “tear drop” orbit becomes more triangular,
spending most of its time near y = −1.

Assuming s − sn = O(|xn|) >> 1, (6.28) simplifies as

f (s) = xn(s − sn)+ 1

2
(s − sn)

2. (6.29)

Recall that xn < 0, and that the exponential in (6.27) is very small until f (sc) = 0
where it starts growing. sc is given by

sc = sn − 2xn. (6.30)

At this time, x = xc where

xc = −xn . (6.31)

Spiking

Since the pulse is instantaneous, the equations for the fast pulse are the original
laser equations where the modulation term is evaluated at s = sc = sn+1. They are
given by

dx

ds
= −y, (6.32)

dy

ds
= (1 + y)

[
x − δ cos(σ sn+1)

]
. (6.33)
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By dividing the two equations, we obtain a first order differential equation for
the trajectories y = y(x). This equation is separable and integration leads to the
relation

x2

2
− δ cos(σ sn+1)x − y + ln(1 + y) = C , (6.34)

where C is the constant of integration. This equation must be verified by the start-
ing and end points of the fast pulse defined by (xc, 0) = (−xn , 0) and (xn+1, 0),
respectively. This leads to the following two conditions for the unknown C
and xn+1:

x2
n

2
− δ cos(σ sn+1)(−xn) = C , (6.35)

x2
n+1

2
− δ cos(σ sn+1)xn+1 = C . (6.36)

The solution for xn+1 is then obtained by subtracting the two equations and by
factorizing (xn+1 + xn). Using (6.31), we eliminate xc and obtain

xn+1 = xn + 2δ cos(σ sn+1). (6.37)

Equation (6.37) is only the first equation for a map. We need a second equation
that describes the period of a complete orbit. Since sn+1 = sc and using (6.30), this
equation is

sn+1 − sn = −2xn. (6.38)

This completes the equations for the map which links the amplitude xn+1 and time
sn+1 of the (n + 1)th pulse to the values for the nth pulse.

6.2.3 The first period doubling bifurcation

We shall now investigate Eqs. (6.37) and (6.38) by seeking the Period 1 and
Period 2 solutions. The first period-doubling bifurcation will be given by the
existence condition of the Period 2 solution.

The Period 1 solution satisfies the locking condition sn+1 − sn = 2πσ−1 and
from Eqs. (6.37) and (6.38) we find

xn = −πσ−1 and σ sn = ±π
2

. (6.39)
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The Period 2 single loop solution satisfies the condition sn+1 − sn = 4πσ−1 and
from Eqs. (6.37) and (6.38) we have

xn = −nπσ−1 and σ sn = ±π
2

. (6.40)

For a Period 2 double loop solution, we need to solve the equations for the map
for two successive orbits and use the condition

xn+2 = xn and sn+2 = sn + 4πσ−1. (6.41)

These equations are given by

x1 = x0 + 2δ cos(σ s1), (6.42)

s1 − s0 = −2x0, (6.43)

x0 = x1 + 2δ cos(σ s0), (6.44)

s0 − s1 = −2x1 − 4πσ−1. (6.45)

We first extract x0 and x1 from Eqs. (6.43) and (6.44) and find

x0 = −1

2
(s1 − s0) and x1 = −1

2
(s0 − s1 + 4πσ−1). (6.46)

The remaining equations then become

(s0 − s1)+ 2πσ−1 + 2δ cos(σ s1) = 0, (6.47)

(s1 − s0)− 2πσ−1 + 2δ cos(σ s0) = 0. (6.48)

We solve these equations by introducing s1 − s0 = 2πσ−1 + τ and rewriting
Eqs. (6.47) and (6.48) in terms of τ and s0

−τ + 2δ cos(σ s0 + στ) = 0, (6.49)

τ + 2δ cos(σ s0) = 0. (6.50)

We determine an expression for sin(σ s0) from (6.49), using (6.50). Eliminating s0

by using a trigonometric identity, we obtain the following equation for τ

δ = τ

| sin(σ τ )|
√

1

2
(1 + cos(σ τ )). (6.51)
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This equation describes δ as a function of τ . There is a bifurcation point at τ = 0
given by

δ = δPD ≡ σ−1 (6.52)

and the bifurcation is supercritical (near δ= δPD , τ �±√24σ−1(δ − δPD), which
implies δ≥ δPD). The approximation of the period-doubling bifurcation for
σ = 0.9 is δPD � 1.1, which compares reasonably well with the numerical value
(δ= 1.25).

6.3 Dual tone modulation near period-doubling bifurcation

In 1985, Wiesenfeld and McNamara [145, 146] suggested that any system modu-
lated just below the period-doubling bifurcation point with a frequencyω would be
very sensitive to additional modulation at the period-doubled frequency ω/2. This
phenomenon could be useful for applications where highly sensitive and selective
amplification is required. Very quickly after this proposal, Derighetti et al. [147]
took advantage of this small signal amplification to detect weak input signals on
a parametrically modulated “NMR laser”. In 1992, experiments on a CO2 loss-
modulated laser, inspired by experiments on noise deamplification in a p-n junction
diode, demonstrated that the phase of the additional modulation atω/2 plays a cru-
cial role and that it was even possible to squeeze noise [148]. The theory of a class
B laser subjected to two-tone modulation was later developed together with new
experiments on a pump modulated fiber laser [149].

6.3.1 Period-doubling lasers as small-signal detectors

Derighetti et al. [147] operated a so-called “NMR laser” which is essentially a
ruby NMR experiment in which gain is achieved via microwave pumping near
an ESR transition. In their experiment, modulation was achieved via modula-
tion of the NMR linewidth (Q-factor). Derighetti et al. concentrated on the first
period-doubling bifurcation in their NMR laser whose relaxation frequency ranged
between 30 and 80 kHz and the pump quality factor Q was modulated with a fre-
quency f = 102.7 Hz, i.e. at about twice the relaxation oscillation frequency. The
laser output was sampled at equal time intervals (T = 1/ f ). The discrete output
values were then represented as a function of the swept modulation strength a.
The resulting bifurcation diagram shows strong low-frequency oscillations for low
values of a before the bifurcation point has been reached. Figure 6.8 represents
the observation of a period-doubling bifurcation with the superimposition of the
amplified input signal. The beat frequency of 1.35 Hz stems from the nonlinear
coupling of the first subharmonic of the modulation signal (i.e. f /2 = 51.35 Hz)
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Fig. 6.8 Period-doubling bifurcation for the NMR laser with Q modulation of
frequency f = 102.7 Hz. The beat of frequency 1.35 Hz indicates the interference
with the power line of 50 Hz. Reprinted Figure 1 with permission from Derighetti
et al. [147]. Copyright 1985 by the American Physical Society.

with the 50 Hz pickup from the powerline. This pickup signal is usually hidden in
the thermal noise of the NMR laser. However, near the onset of the bifurcation, it
is strongly amplified and clearly visible as illustrated in Figure 6.8.

We first show the connection between their so-called NMR laser and our
standard class B laser. Derighetti et al. [147] simulated their experiments by
considering the following equations

dMv

dt ′
= −γ⊥(t ′)Mv + 9C1 Mz − 9C2Q(t ′)MvMz , (6.53)

dMz

dt ′
= −γ‖(Mz − Me)− C1 Mv + C2 Q(t ′)M2

v . (6.54)

Here Mz denotes the nuclear magnetization along the direction of the static exter-
nal field and Mv is the perpendicular magnetization in the rotating frame [150].
The corresponding relaxation rates are γ‖ and γ⊥, respectively. Me is the pump
magnetization and Q is the quality of the coil. The parameters C1 and C2 are
proportional to the gyromagnetic ratio of the laser-active 27Al nuclei [147]. To sim-
ulate the experimental observations, the parametric pump (basic frequency) acts
on the coil quality Q(t ′) and the input signal (period-doubled frequency) changes
the perpendicular relaxation rate γ⊥(t ′). Both parameters become time-periodic
functions given by

Q(t ′) = Q
[
1 + a sin(2π f t ′)

]
, (6.55)

γ⊥(t ′) = γ⊥
[
1 + b sin

(
(π f + 2πδ)t ′

)]
. (6.56)

The values of the parameters are [147]: C2 = 24.09 mA−1s−1, C1 = − 6.9 ×
10−3 s−1, Me = −1.6 Am−1, Q = 250, γ⊥ = 3 × 104 s−1, γ‖ = 10 s−1, and
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f = 110 Hz. a, b, and δ are three control parameters. Introducing the new variables
E , D, and t defined as

E ≡ 3C2Q√
γ⊥γ‖

Mv , D ≡ −9C2 Q

γ⊥
Mz , t ≡ γ⊥t ′ (6.57)

into Eqs. (6.53)–(6.56), we find the following equations

dE

dt
= −r(t)E − αD + q(t)E D, (6.58)

dD

dt
= γ

[
A − D + αE − q(t)E2

]
, (6.59)

where q(t) and r(t) are periodic functions of t given by

q = 1 + a sin(ωt), (6.60)

r = 1 + b sin
((ω

2
+�

)
t
)

. (6.61)

The definitions and values of the fixed parameters are: A ≡ −9C2 Q
γ⊥ Me � 2.89,

α ≡ 3C1√
γ⊥γ‖ = 3.8 × 10−5, γ = γ‖/γ⊥ = 3.3 × 10−4,ω = 2π f γ−1

⊥ = 2.3 × 10−2,

� = 2πδγ−1
⊥ . Neglecting the small α terms, Eqs. (6.58) and (6.59) reduce to the

following rate equations of a class B laser

dE

dt
= E

[−r(t)+ q(t)D
]

, (6.62)

dD

dt
= γ

[
A − D − q(t)E2

]
, (6.63)

where q(t) and r(t) are given by (6.60) and (6.61), respectively. We compute the
relaxation oscillation frequency ωR = √

2γ (A − 1) � 1.2 × 10−2 and note that
ω/ωR � 1.9, i.e. the system is operated at about twice the relaxation oscillation
frequency as discussed in Section 5.2.4, meaning that we expect a period-doubling
bifurcation for a low value of the parametric pump amplitude a.4

6.3.2 Two-tone modulation of a class B laser

Variants of these NMR laser experiments were carried out on real class B lasers
(CO2 [151] and neodymium fiber [149] lasers) with special attention to exact sub-
harmonic modulation. In [149], the laser is pumped with a laser diode and the
current of the laser diode is modulated as

4 The factor 2 in the definition of ωR comes from the fact that we need to rewrite the equation for the field E as
an equation for the intensity I = E2 in order to define the RO frequency as in Chapter 1.
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Fig. 6.9 Experimental bifurcation diagram of the two-tone modulated fiber laser.
Both diagrams (a) represent the single modulation frequency diagrams (I2 = 0).
The figures exhibit a period-doubling bifurcation at I1 = 2.3 mA (left), I1 �
2.4 mA (right). The diagrams (b) represent the effect of the second modulation
(I2 = 0.06 mA) for two different phases. Almost no changes are observed for
φ = π/2. Reprinted Figures 3 and 4 from Newell et al. [149]. Copyright 1997 by
the American Physical Society.

I (t) = I0 + I1 cos(ωt)+ I2 cos
(ω

2
t + φ

)
, (6.64)

where I0 = 65 mA (Ith = 34 mA), I1 is the bifurcation parameter (2.1 mA
< I1< 2.5 mA), and I2 is either 0 or 0.06 mA. The bifurcation diagrams repre-
senting the maximum of the intensity oscillations as a function of I1 are recorded
for different values of φ (see Figure 6.9). Both figures (a) show the bifurcation dia-
gram for the single modulation case (I2 = 0) in the vicinity of the period-doubling
bifurcation point at I1 � 2.4 mA. Note that the bifurcation diagrams are slightly
different, predominantly due to environmental factors. Consequently, in the exper-
iment, care was taken to first record a reference data set (I2 = 0) then immediately
acquire the set in which the perturbation was applied (I2 �= 0). The environmen-
tal factors, ambient temperature, and mechanical drift affect the fiber laser on a
very slow time scale (tens of minutes) that does not perturb the bifurcation dia-
gram recording on the millisecond time scale. Comparing diagrams (a) and (b) in
Figure 6.9 clearly indicates that the splitting of the Period 1 orbit is maximal at
φ = 0 and minimal at φ = π/2. The influence of the phase factor φ may be antici-
pated through a simple qualitative analysis. The spectral content of the laser output
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in the period-doubled regime is made of two spectral components with frequencies
ω and ω/2 and a given relative phase. Introducing an additional component at ω/2
may interfere constructively or destructively with the ω/2 response of the laser to
a single modulation, depending on the phase φ.

The change of the bifurcation diagram resulting from the second modulation
has been analyzed using the following rate equations which we have shown to be
equivalent to our standard rate equations

dE

dt
= (N − 1)E , (6.65)

dN

dt
= γ

[
A(t)− N − N |E |2

]
, (6.66)

where

A = A0 + A1 cos(ωt)+ A2 cos
(ω

2
t + φ

)
. (6.67)
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Fig. 6.10 Numerical bifurcation diagrams of the interspike interval sn+1 − sn as a
function of δ1 (s = ωRO t and δ1 = A1/(A0 − 1)). (a) A2 = 0. A pitchfork bifur-
cation appears at δ1 = 1 that creates the Period 2 orbit. (b) A2/(A0 − 1) = 10−2

and φ = 90◦. The pitchfork bifurcation no longer exists and the P2 bifurcation
point is replaced by a limit point located where the two inner branches converge.
(c) A2/(A0 − 1) = 2 × 10−3 and φ = 171◦. At this phase, the unfolding is sub-
stantially larger even if the amplitude of the second modulation is smaller than in
(b). Reprinted Figure 6 from Newell et al. [149]. Copyright 1997 by the American
Physical Society.
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The values of the fixed parameters appropriate for our experiments are
γ = 2.4 × 10−5, A0 = I0/Ith = 1.93, and ω= 0.9ωRO . The bifurcation diagram of
the periodic regimes is studied as a function of δ1 ≡ A1/(A0 − 1) for fixed values
of A2<< A1 and φ. It displays the evolution of the interspike interval instead of
the intensity observed in most experiments. These two representations are dynam-
ically equivalent since the two quantities are strongly correlated, as demonstrated
previously, e.g. by the map; see Section 6.2. Figure 6.10 (a) serves as a reference
and Figures 6.10 (b) and (c) clearly demonstrate that the phase of the additional
modulation plays a crucial role as observed in the experiments.

To conclude, a strong modulation of a laser with a frequency close to its RO fre-
quency is well described by simple models that capture key nonlinear phenomena
such as period-doubling bifurcations. The excellent agreement obtained between
analytical, numerical, and experimental results suggests that Class B lasers are
good experimental systems for the exploration of generic nonlinear phenomena.
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Slow passage

What is common to the self-combustion of grain dust in a storage silo and the
bursting activity of neurons? In both cases a quick time evolution follows a period
of quiescence during which a key parameter is slowly varying. It can be the sur-
rounding temperature in the case of the grain storage silo or the concentration of
calcium ions that turns the neuronal activity on and off. These dramatic changes
are possible because a slowly varying parameter passes a limit or bifurcation point
of a fast dynamical system. But because of the system’s inertia close to the bifur-
cation point, the expected jump or bifurcation transition is delayed. This delay has
raised considerable interest not only for lasers but in other areas as well, such as
fluid mechanics [152] and chemistry [154–156]. In mechanical engineering, slow
passage problems are referred to as “nonstationary processes” [157]. They occur
in the start-up and shut-down of engines [158] or in high-rise building elevators
when the length of the rope is slowly changing [159]. Although most delay effects
are now well understood and illustrated by simple first or second order equations
[160], the study of slow passage problems remains a fascinating topic of research
for mathematicians [161], biologists [162, 163], and students learning bifurcation
theory in the laboratory [164].

Quantitative comparisons between experiments and theory for slow passage
problems are always delicate. The evolution equations of a real physical sys-
tem cannot be reduced to a simple equation if the rate of change is gradually
increased, and we often need to take into account the effect of noise present in
experiments. The purpose of this chapter is to review some key slow passage prob-
lems that have been examined for lasers and optically bistable devices over the last
20 years. Although they often correspond to elementary bifurcations, the experi-
mental investigations of their slow passage properties have generated considerable
theoretical discussion.

In this chapter we consider slow passage first through a limit point, illustrating
this on a passive optical bistable system, then through a bifurcation point such

155
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as we met at the laser threshold. We later investigate passage through a period-
doubling bifurcation point, and in the last section we discuss the connection of
slow passage with slow–fast dynamics as occurs, for example, in the laser with
saturable absorber or the optical parametric oscillator.

7.1 Dynamical hysteresis

The simplest slow passage problem occurs when we investigate a bistable system.
Several studies have reported on the enlargement of optically bistable cycles result-
ing from sweeping the control parameter back and forth [165, 166]. The reference
problem is given by the following cubic equation

y′ = ay − y3 + λ, (7.1)

λ′ = ε, (7.2)

where a = O(1) and ε << 1. The first equation models a simple hysteretic
system driven by some quantity λ, here the field impinging the passive cavity,
whose magnitude increases at a constant rate ε.

Typical time evolutions are shown in Figure 7.1 for full (a = 3) and nascent
(a = 0) hysteresis cycles. In both cases, the expected jump transition experiences
a delay and the scaling law that relates delay and rate of change ε is indicated
in the figures. These scaling laws are determined analytically by investigating the
solution of Eqs. (7.1) and (7.2) near the limit point in the limit ε small. The theory
predicts that the shift of the switching points in the bistable case scales as the 2/3

l

y

~ e
2/3

l

y

~e 4/5

Fig. 7.1 Slow passage through a steady limit point. Solution of Eqs. (7.1) and
(7.2) with a = 3, ε = 0.1, y(0) = −1, and λ(0) = −2 (left) or with a = 0,
ε = 0.01, y(0) = −0.8, and λ(0) = −0.5 (right). The broken line is the steady
state solution.
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Fig. 7.2 Experimental investigation of the bistable branches by sweeping the volt-
age applied to the modulator back and forth. Curve (a) obtained at 0.1 Hz gives a
good approximation of the static loop. Curves (b) and (c) were obtained at 100 Hz
and 500 Hz, respectively. From Figure 1a of Fettouhi et al. [168]. With permission
of the European Physical Journal.

power of the sweeping rate. In the case of nascent hysteresis (a = 0), this power
increases to 4/5 which is still less than 1. The 2/3 law was verified experimentally
in 1990 by using a bistable semiconductor laser [165] and in 1995 by using an
injected semiconductor laser [166]. Starting in 1985 with a laser containing a sat-
urable absorber [167], the experimental study of specific optically bistable devices
accumulated in the mid 1990s and was a topic of animated discussions.1 Figure 7.2
shows an experimentally observed bifurcation diagram [168]. The experimental
set-up consisted of a 23 m long waveguide Fabry–Pérot cavity filled with HC15N
gas at low pressure. The source and the cavity were tuned to the frequency of the
J = 0 →1 rotational line of HC15N, which then behaves as a saturable absorber
(purely absorptive bistability). The power transmitted by the cavity was measured
as a function of the voltage applied to a PIN diode modulator controlling the input
power. The steady state for the field amplitude X in the cavity as a function of
input field amplitude Y is given (in implicit form) by

Y = X + 2C X

1 + X2
, (7.3)

where the bistability parameter C is a large parameter (highly nonlinear absorp-
tion). See Figure 7.3. The triangular rather than rectangular shape of the hysteresis
cycle explains why the determination of the delay as a function of the rate of

1 For example, at the CLEO/Europe–EQEC Meetings at the 5th European Quantum Electronics Conference in
Amsterdam, August 28 to 2 September, 1994.
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Fig. 7.3 Bistability. The branches of steady states exhibit low and high trans-
mission branches (Eq. (7.3) with C = 200). The arrows indicate the switching
positions.

change was best achieved near the right limit point. Near the left limit point, the
observation of a clear fast jump transition is harder. Introducing the scaling law
YJ − YL P = cεβ because the change of X is shorter, where YJ − YL P represents
the deviation between the actual jump and limit point values, the experiments indi-
cated that the critical exponent β varies between 0.56 to 0.65 as the pressure is
increased. It thus approaches the theoretical value of 2/3 � 0.67 at high pressure,
i.e. in the domain where the assumptions used to derive (7.1) are best justified.

7.2 Slow passage through a bifurcation point

The slow passage through the laser threshold was first analyzed in 1984 [169]. The
reference problem describing a slow passage through a steady bifurcation point is
given by the following equations

y′ = y(λ− 1 − y) (7.4)

λ′ = ε (7.5)

defined for y > 0. The first equation describes, for example, the intensity of the
laser field for a class A laser whose pump parameter is swept (see, e.g., Eq. (1.32)
with y = |E |2, λ− 1 = 2a, and b = 1).

Assuming y(0) > 0 and λ(0) < 1, the passage through the bifurcation point
λ = 1 exhibits a delay that depends on the rate of change ε. See Figure 7.4. We
arbitrarily define the delay as the deviation λ j −1, where λ j is the value of λ when
y = 10−2. Figure 7.5 represents this delay as a function of the rate of change ε.
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Fig. 7.4 Slow passage through a steady bifurcation point. The numerical solution
of Eqs. (7.4) and (7.5) is determined for different rates of change ε. The initial
conditions are y(0) = 10−3 and λ(0) = 0.9. From left to right, the different
bifurcation transitions correspond to ε = 10−4, 10−3, 10−2, and 10−1.
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Fig. 7.5 Delay vs. ramp speed. The delay is constant in the limit ε → 0 and fol-
lows a

√
ε law for moderately low rates of change. The delay is found numerically

by solving Eqs. (7.4) and (7.5). It is defined as the deviation λ j − 1, where λ j is
the value of λ when y = 10−2.

We note two distinct regimes. For low values of ε (ε ≤ 10−4), the delay seems
independent of the rate of change ε. For higher values of ε (ε > 10−2), the delay
follows a

√
ε law. We explain these two different behaviors and show in the next

subsection the crucial role played by noise.
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7.2.1 The limit ε → 0 and the role of noise

We first explore the case of very slow passage (ε → 0) and take advantage of the
fact that before the quick jump, y remains very close to zero. Assuming y << 1,
Eqs. (7.4) and (7.5) become

y′ = y(λ− 1) and λ′ = ε. (7.6)

Together with the initial conditions y(0) and λ(0), the solution of (7.6) is λ =
λ(0)+ εt and

y = y(0) exp

[
(λ(0)− 1)t + εt2

2

]
. (7.7)

The expression (7.7) indicates that y is exponentially small until t = t j ≡
−2ε−1(λ(0)− 1), i.e. when

λ j − 1 = 1 − λ(0). (7.8)

In words, the delay λ j − 1 equals the deviation of the initial value of λ from the
bifurcation point λ = 1. From the ε = 10−4 solution in Figure 7.5, we indeed
verify that |λ(0)− 1| = λ j − 1 = 10−1.

The ε small asymptotic result formulated by (7.8) is counter-intuitive and
provocative because it implies a delay that is independent of the ramp speed and
that the initial conditions control the size of the delay. This problem is resolved
by taking into account the fact that noise is always present in experiments and, in
particular, in lasers where the lasing action would be impossible without sponta-
neous emission. There is a considerable literature on the various ways to explore
the effect of noise on a delayed bifurcation. A popular way is to add a stochastic
term ξ(t) into the right hand side of Eq. (7.4). ξ(t) is often defined as a Gaussian
white noise source with zero mean and δ-correlated [70]. The main question is,
however, how large noise has to be compared to ε in order to substantially reduce
the delay of the bifurcation transition.

This question can be explored by considering Eqs. (7.4) and (7.5) with a small
constant term added into the right hand side of Eq. (7.4). The new equation is

y′ = y(λ(0)+ εt − 1 − y)+ δ, (7.9)

where δ << 1 needs to be compared to ε << 1. Before the jump, y << 1 and
Eq. (7.9) simplifies as

y′ = y(λ(0)+ εt − 1)+ δ, (7.10)
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which is linear. The solution of Eq. (7.10) is the sum of two exponentials which
can be rewritten as

y = y(0) exp

[
1

2ε

(
s2 − s2

c

)]
+ δ exp

(
s2

2ε

)∫ s

−sc

exp

(
−x2

2ε

)
dx . (7.11)

In (7.11), we have introduced the new time variable

s ≡ ε(t − tc), (7.12)

where sc ≡ εtc = (1 − λ(0)). Evaluating the integral in (7.11) for small ε and
s > 0,2 we obtain the approximation

y � y(0) exp

[
1

2ε

(
s2 − s2

c

)]
+ δ

√
2πε exp

(
s2

2ε

)
. (7.13)

The expression (7.13) now exhibits a competition between two exponentials. If
δ = 0, the jump transition occurs at s = sc and we recover our previous result. On
the other hand if δ is exponentially small as

δ = ε−1/2 exp

(
−k2

2ε

)
, (7.14)

where k = O(1) is a parameter, the jump will occur at s = k if k < sc. Indeed, the
first exponential remains small during the interval 0 < s < k and (7.13) reduces to

y � √
2π exp

[
1

2ε

(
s2 − k2

)]
(7.15)

showing no dependence with respect to the initial conditions.
We conclude that the size of the imperfection needs to be exponentially small as

δ ∼ exp(−1/ε) (7.16)

in order to have a significant effect on the delayed bifurcation transition. Mathe-
matically, the exceptionally long delay comes from the fact that y = 0 is a solution
of the non-autonomous equation (7.4). This delay remains large provided that δ is
exponentially small like (7.16). It will be much smaller if δ is rationally small

2
∫ s
−sc

exp
(
− x2

2ε

)
dx = √

2ε
∫ s/

√
2ε

−sc/
√

2ε
exp

(
−z2

)
dz

=
√
πε
2

[
erf
(

s/
√

2ε
)

+ erf
(

sc/
√

2ε
)]

� √
2πε.
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(δ ∼ ε p and p > 0). This property is consistent with our observations on the
latency time associated with the turn-on of the laser (see Sections 1.3.1 and 1.3.2).
The exponential sensitivity confirms that measuring microscopically small initial
quantities such as light coming from spontaneous emission in the laser mode is
possible through macroscopic quantities (delays).

7.2.2 Moderately small ε

Keeping the same initial conditions but increasing ε, y(t) does not have the time
to exponentially relax to the stable zero solution before passing through λ = 1.
This is particularly the case if λ(0) is close to the bifurcation point λ = 1, as it is
in the experiments. We analyze this case by introducing the new variables y1 and
s, and parameter λ1 defined as

y = ε p y1, s = εr t , λ(0)− 1 = εnλ1. (7.17)

From Eq. (7.4), with λ = λ(0)+ εt , we obtain

εr y′
1 = y1(ε

nλ1 + ε1−r s − ε p y1), (7.18)

where prime now means differentiation with respect to time s defined in (7.17).
Balancing each term in the equation requires that

r = n = 1 − r = p. (7.19)

The resulting equation for y1 is now almost the same as the original equation

y′
1 = y1(λ1 + s − y1) (7.20)

except that ε has disappeared. This equation can be solved with the initial condition
y1(0) = ε−1 y(0).3 The important result, however, is the fact that n = r = 1/2
which then implies that λ− 1 is of the form

λ− 1 = ε1/2(λ1 + s), (7.21)

where both λ1 and s are O(1) quantities. It is no longer possible to define the
delay as the critical value of λ where a sudden exponentially fast jump occurs.
Nevertheless, the increase of λ j −1, where λ j is determined at the same y = y j , is
proportional to

√
ε. This scaling law differs significantly from that associated with

passage through a limit point.

3 Physically, assuming a constant intensity is consistent with the fact that in most lasers swept near threshold,
the intensity of spontaneous emission, proportional to population inversion, is almost constant.
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7.2.3 Experiments

Soon after the delay of the laser bifurcation was theoretically predicted [21],
slow passage experiments were investigated in different laboratories with different
lasers. The first experimental study was proposed in 1987 by Scharpf [170, 171]
who used a commercial argon-ion laser with an acousto-optic modulator (AOM)
that slowly changes the cavity losses. By slowly increasing and then decreasing
the voltage of the AOM, the losses first decrease, allowing the transition to the
lasing mode, and then increase, leading the laser back to its zero intensity regime.
See Figure 7.6. The experiments were simulated numerically by assuming a slowly
varying pump but, as we shall later show, this is equivalent to a change of the losses
for the argon-ion laser.

Consider our laser rate equations (1.7) and (1.8), now supplemented by a slowly
varying pump. They are given by

dI

dt
= I (−1 + D), (7.22)

dD

dt
= γ [A(εt)− D(1 + I )] , (7.23)

where I is the intensity of the laser field in the cavity and D is the inversion of
population. The pump parameter A(εt) is slowly varying with rate ε. It can be a
time-periodic function of t or a linear function of t such as

Fig. 7.6 Forward and backward passage through the laser bifurcation. The figure
represents the intensity of the laser output as a function of the voltage of the AOM.
The forward transition exhibits a much larger delay than the backward transition,
allowing a hysteresis cycle (from Figure 3.6A of Scharpf [170]).
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Fig. 7.7 Numerical solution of the laser equations (7.22) and (7.23). The val-
ues of the parameters are: γ = 1, I (0)= 10−3, D(0)= 0.9. A = A0 + εt , where
A0 = 0.9 and ε = 10−3 for 0 < t < 400; A = A0 − ε(t − 400), where A0 = 1.3
and ε = 10−3 for 400 < t < 800. The broken line is the non-zero intensity steady
state I = A − 1.

A(εt) = A0 ± εt . (7.24)

We next assume that we start our experiment at or near a stable steady state. For
the forward transition (A = A0 + εt with A0 < 1), the initial conditions are

I (0) = I0 << 1 and D(0) = A0 (7.25)

while for the backward transition (A = A0−εt with A0 > 1), the initial conditions
are

I (0) = A0 − 1 and D(0) = 1. (7.26)

A typical forward and backward slow passage experiment is simulated numerically
in Figure 7.7. The values of the parameters are the same as those used in Figure
7.6. For the forward transition, we note a substantial delay followed by a quick
jump to the non-zero steady state. For the backward transition, the bifurcation
transition is delayed but this delay is much smaller. The broken line represents the
non-zero steady state I = A − 1. The theory is summarized below and predicts an
O(1) delay in the forward transition, followed by a quick transition to the slowly
varying solution I = A − 1 + O(ε), and finally a backward transition near A = 1
exhibiting an O(ε1/2) deviation from the laser threshold A = 1.

Forward transition

The forward transition can be analyzed in the same way as for our reference
problem (7.4) and (7.5) by realizing that (1) if ε → 0, the intensity I remains
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exponentially small before its fast jump, and (2) for larger values of ε and starting
near the bifurcation point, the dynamical system interacts with the slowly varying
bifurcation parameter. In the first case, we find that the delay is independent of the
rate of change and only depends on its initial condition (A j − 1 = 1 − A0) while
the delay is proportional to

√
ε in the second case (A j − 1 ∼ √

ε).
Sharpf et al. [170, 171] measured the delay for increasing values of ε. They

observed that the delay changes like εm where m = 0.56 is found using a least-
square fit of the data. This critical exponent is close to the theoretical result
m = 0.5 predicted for moderately small values of ε and starting close to the laser
bifurcation. Errors in the experiments were attributed to the inaccurate method
used for determining the static threshold and the small number of available data
points in the delayed region.

Backward transition

The backward passage problem is more straightforward to analyze. Away from the
bifurcation point the solution for the intensity simply follows the slowly varying
steady state I = A(εt) − 1 + O(ε). But close to the bifurcation point, a local
analysis of the solution is needed. The analysis of the slow passage problem is
similar to the analysis of the forward slow passage for moderately small values
of ε. The main result is that the intensity deviates from the steady state by an

√
ε

quantity near the laser bifurcation point A = 1.

Changing the losses

In 1993, Bromley et al. [172] investigated the slow passage through the laser
bifurcation in a CO2 laser by slowly decreasing and then increasing the losses. In
contrast to experiments using the pump parameter, they found that negative hys-
teresis cycles were possible, i.e. the forward transition occurs at higher intensities
than the backward transition. See Figure 7.8. They explain their results by the fact
that there exists a competition between the delay of the switch-on and an antici-
patory switch-off. Both processes, delay and anticipation, depend on the sweeping
rates and the level of noise. The rate equations now are of the form

dI

dt
= I (−k(εt) + D), (7.27)

dD

dt
= γ [A − D(1 + I )] (7.28)

where

k = k0 ± εt . (7.29)
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Fig. 7.8 Slow passage through the laser threshold by changing the losses. Numer-
ical solution of Eqs. (7.27)–(7.29) with γ = 10−3, k0 = 1, ε = ∓10−5, A = 0.9,
β = 10−6, I (0) = 10−3, and D(0) = A.

Introducing N = D − k + 1 into Eqs. (7.27) and (7.28), we find

dI

dt
= I (−1 + N ), (7.30)

dN

dt
= γ [A − (k − 1)− N (1 + I )− (k − 1)I ] − k′(εt). (7.31)

If k′(εt)<< γ and |k − 1|< 1, Eqs. (7.30) and (7.31) reduce to the familiar rate
equations (7.22) and (7.23) with A(εt) ≡ A0 ± εt and A0 ≡ A − (k0 − 1). The
conditions on k are verified in the case of the experiments by Scharpf [171] who
used an argon-ion laser with γ = O(1), ε = O(10−3), and |k − 1| = 0.2; see
Figure 7.6. On the other hand, if k′(εt) = O(γ ), we may not ignore the effect
of the last term in (7.31) and some new phenomena related to the slow evolution
of the control parameter could be possible. In Figure 7.8, a negative hysteresis
cycle is simulated numerically using Eqs. (7.27) and (7.28) (a term βD with β =
10−6 has been added to the right hand side of Eq. (7.27) to model the effect of
noise). The figure represents intensity vs. A/k rather than k so that forward and
backward evolutions can be compared to the one we had with a slowly varying
pump. The hysteresis cycle is more rectangular than triangular and seems to follow
two slowly varying regimes (upper and lower broken lines). We note that these
regimes substantially deviate from the static diagram (middle broken line) by an
amount that is larger than ε.
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The slowly varying regimes are defined as solutions that only depend on the
slow time

s ≡ εt . (7.32)

They are our new reference solutions since the steady state solutions in the static
case (namely, I = 0 and I = A−1) are no longer solutions of the non-autonomous
laser equations. However, in contrast to the static case, only the solution I = 0 and
D = A(εt) is an exact slowly varying solution. To determine whether there is
another solution, we shall use a regular perturbation series in ε. Specifically, we
seek a solution of (7.27) and (7.28) of the form I = I0(s) + εI1(s) + . . . and
D = D0(s)+ εD1(s)+ . . . From Eqs. (7.27) and (7.28) with (7.32) and assuming
γ = O(ε), we find that the leading equations for I0 and D0 are given by

0 = I0(−k(s)+ D0), (7.33)

dD0

ds
= γ

ε
[A − D0(1 + I0)] . (7.34)

These equations admit two solutions, namely (1) I0 = 0 and (2)

D0 = k and I0 = A − k

k
− εγ−1 k′

k
. (7.35)

The first solution corresponds to the exact slowly varying solution but the second
solution is new. The first term in the expression of I0 matches the non-zero steady
state solution I0 = A/k−1. The second term, proportional to εγ−1, is the deviation
due to the sweeping parameter. If k = k0 − εt (forward transition) this correction
term is positive, while if k = k0 + εt (backward transition) this correction is neg-
ative. The two slowly varying solutions for the forward and backward transitions
are shown in Figure 7.8 (upper and lower broken lines).

The decaying oscillations at each jump are the consequence of the small value of
γ , allowing relaxation oscillations with a period proportional to γ−1/2 and decay-
ing on a γ−1 time interval. As described in Bromley et al. [172], these decaying
oscillations are better simulated using a four-level model that introduces more
damping than the two-level model. The level of noise and the initial conditions
also play a role. Nevertheless, we have explained the negative hysteresis cycle by
the presence of substantially different slowly varying attractors as the losses are
swept back and forth. The size of this rectangular cycle increases as the ratio ε/γ
increases. In the case of slow changes of the pump, this effect is also possible but
will require a much larger rate of change of the order of ε = O(

√
γ ). But then

the change of the pump parameter is comparable to the time scale of the relaxation
oscillations and we cannot assume that the pump is a slowly varying parameter.
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7.3 Period-doubling bifurcation

Another topic that was and still is a source of theoretical investigations is the slow
passage through a period-doubling bifurcation. In 1987, Dangoisse et al. [173]
investigated experimentally the bifurcation diagram of a modulated CO2 laser.
Several groups had already published on the bifurcation diagram of a modulated
laser (see Section 5.2.1) but Dangoisse et al. examined the slow passage through
the first period-doubling bifurcation. Specifically, the cavity losses were modu-
lated by a T -periodic sine wave and the laser output intensity was sampled at each
time T . As a result, T -, 2T -, and 4T - periodic regimes will lead to one, two, and
four points in the bifurcation diagram, respectively. Figure 7.9 exhibits three slow
passage experiments where the modulation amplitude is swept back and forth.
As clearly seen in the 300 Hz diagram, the back and forth evolutions are differ-
ent for the Period 2 branch. As with the steady bifurcation problem, the forward
transition experiences a larger delay than the backward transition. Comparing all
three diagrams, we note that the width of the forward and backward hysteresis
cycle increases with the ramp speed. The experiment was partially motivated by
an analysis of the quadratic map with a slowly varying parameter [174] predicting
a delayed period-doubling transition proportional to the square root of the ramp

300 Hz

30 Hz

3 Hz

Fig. 7.9 Stroboscopic bifurcation diagram exhibiting the first period-doubling
bifurcation. The traces have been obtained by sampling the laser output intensity
at each period T . The figure represents both the forward and backward change of
the modulation amplitude. Reprinted Figure 20 with permission from Dangoisse
et al. [173]. Copyright 1987 by the American Physical Society.
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speed. Dangoisse et al. [173] simulated the laser rate equations and found a good
agreement with the experimental diagrams. In dimensionless form (see Section
5.2.1), the evolution equations for the modulated laser are given by

x ′ = −y − ηx
[
1 + (A − 1)(1 + y)

]
(7.36)

y′ = (1 + y) [x − δ sin(σ t)] . (7.37)

In these equations, A is the dimensionless pump parameter, η = ωRO/(A−1) rep-
resents the damping rate of the relaxation oscillations where ωRO = √

γ (A − 1) is
the relaxation oscillation frequency. δ = m/ωRO and σ = ωmod/ωRO are defined
as the modulation amplitude and frequency, respectively. Using the values of the
parameters documented in [173] (γ = 2.083 × 10−3, A = 1.05), we sequen-
tially compute ωRO = 1.0205 × 10−2, ωmod = 2.0944 × 10−2, σ = 2.0523, and
η = 0.2041. The modulation amplitude is changed as

δ = δ(0)+ εt , (7.38)

where ε ranges from 2.5 × 10−6 to 2.5 × 10−4 for the ramp speeds indicated in
Figure 7.9. Figure 7.10 illustrates the forward slow passage through the period-
doubling bifurcation point. The T -periodic solution emerges at δ = 0 and the
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Fig. 7.10 Slow passage through the PD bifurcation point. Numerical solution of
Eqs. (7.36)–(7.38) with γ = 2.083 × 10−3, A = 1.05, δ(0) = 0.6, and ε =
3 × 10−5. The rapid oscillations jump from the T -periodic to the 2T -periodic
regimes at δ = δ j . The dots represent the extrema of the periodic solutions in the
static bifurcation diagram (ε = 0).
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maximum amplitude follows the straight line yM � 0.66δ. The static PD bifurca-
tion point is located at δpd � 0.72. The oscillation jumps at δ = δj > δpd and
the delay is defined as the deviation δj − δpd . We next wish to determine how the
delay changes with ε. To this end, we simulate the rate equations for various ε
and determine δj as the point where y(t) = 0.66δ + 0.05. The best linear fit gives
a slope close to 0.45, which is near 0.5. However, we need to be careful when
drawing conclusions because the PD transition is dynamically two-dimensional
and it is not clear if it can be captured by a one-dimensional theory such as the
quadratic map.

7.4 Slow–fast dynamics

Although simple slow passage problems can be identified, we have seen that both
theoretical and experimental results need to be carefully examined. There are other
important slow passage problems such as the slow passage through a Hopf bifurca-
tion which exhibits both delay and memory effects [175], and the passage through
a homoclinic (infinite-period) orbit. Both transitions are possible for lasers subject
to a saturable absorber or subject to an injected signal. But these transitions have
never been investigated experimentally.

Steady and Hopf slow passage problems are important because they appear as part
of more complex dynamical problems such as the polarization dynamics of lasers,
the bursting oscillations of optical parametric oscillators (OPOs), and the passage
through resonance in a modulated laser. In Chapter 8, we will find that the interpulse
regime in an LSA is described by a linear equation for the intensity of the form

I ′ = I (−1 + D(εt)),

where the population inversion D is slowly varying from negative to positive val-
ues. Mathematically, it is a slow passage through the steady bifurcation point
D(εt) = 1 and we know that the intensity will increase when∫ t

0
(−1 + D(εt ′))dt ′ = 0.

Bistable slow–fast cycles appear in OPOs and are explained by identifying a slow
passage problem (see Chapter 12) that is not affected by noise. By contrast, noise
has a definite effect on the passage through resonance if the modulation frequency
is either increased or decreased (see Section 5.2.1).

7.5 Exercise

Analyze Eqs. (7.22) and (7.23) for the forward and backward bifurcation transi-
tion. To this end, first determine a slowly varying solution that depends on the
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slow time εt . In the forward case, it is the stability of the slowly varying solution
I = 0 with respect to the fast time that determines the delayed bifurcation tran-
sition. In the backward transition, the transition from the slowly varying solution
I = A − 1 + O(ε) to I = O(ε) occurs through a transition layer |A − 1| =
O(ε1/2).
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Particular laser systems
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Laser with a saturable absorber

In a laser with a saturable absorber (LSA), two spatially separated cells are placed
in the laser cavity as shown in Figure 8.1. The roles of the two cells are quite
different: one of them is pumped so that the atoms have a positive population
inversion (active or amplifying medium); the other one is left with a negative pop-
ulation inversion (passive or absorbing medium). As these two media are in general
different, they saturate at different power levels. The most interesting case corre-
sponds to the situation where the absorber saturates more easily than the active
medium, introducing nonlinear losses inside the cavity. This new nonlinearity is
responsible for two phenomena. An LSA may exhibit optical bistability, i.e. two
distinct stable steady states may coexist for a range of values of a parameter. It
may also produce pulsating intensity oscillations which have been called “passive
Q-switching” (PQS) in contrast to “active Q-switching” experiments such as the
“gain switching” experiments discussed in Section 1.3.2.

The interest in LSAs varied very much over time, with peaks in the late 1960s
for their large intensity pulses, in the mid 1980s for their chaotic outputs, and in
the late 1990s for the design of compact microlasers. Historically, physicists try-
ing to explain the irregular intensity pulses delivered by the ruby laser suspected
the possible destabilizing role of a saturable absorber. Shimoda [177] proposed
that the nonlinear losses generated by a saturable absorber could explain this phe-
nomenon. Self-pulsing was also observed in semiconductor lasers with a degraded
section that is acting as an absorber [130]. These first experiments were performed
on multimode lasers and require model equations that are mathematically compli-
cated. Experimental and theoretical studies then concentrated on single-mode gas
lasers. In 1968, Lisitsyn and Chebotaev [178] obtained clear evidence of optical
bistability by introducing a cell containing neon inside the cavity of a He-Ne laser.
They observed hysteresis loops for the laser intensity as the losses, the gain, or the
cavity detuning were varied. Furthermore, PQS was extensively studied for CO2

LSAs with the idea that these high intensity pulses could be useful for applications

175
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YAG
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radiation
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Fig. 8.1 Nd:YAG-V:YAG microchip solid state laser with a saturable absorber. It
consists of a sandwich crystal that combines in one piece the cooling undoped part
(undoped YAG crystal 4 mm long), the active laser part (YAG crystal doped with
Nd3+ ions, 12 mm long), and the saturable absorber (YAG crystal doped with V3+
ions, 0.7 mm long). The diameter of the crystal is 5 mm. The microchip resonator
consists of dielectric mirrors which are deposited directly on the monolith crystal
surfaces. Redrawn from Figure 2b of Sulc et al. [176].

such as isotope separation. At that time, Brzhazovskii et al. [179] carried out a
systematic investigation of PQS in CO2 LSAs. The interest in LSA pulses dis-
appeared when they were outperformed by mode-locking lasers capable of high
power pulse production. In the late 1970s, however, the idea of developing an opti-
cal computer revived studies on optically bistable systems, including the LSA, but
the real new impetus came in the 1980s when it was realized that PQS was a form
of spontaneous laser instability that could lead to chaos. Work then concentrated
on CO2 LSAs with the objective of obtaining quantitative comparisons between
experiments and theory on chaos [60, 63, 64, 180].

Today, the development of microchip solid state lasers and single mode semi-
conductor lasers has led to practical applications. PQS microchip lasers deliver
extremely short (<1 ns) high-peak-power (>10 kW) pulses of light without the
need for an additional external pulse generator. The short pulse widths are useful
for high-precision optical ranging with applications in automated production. The
high peak output intensities are needed for efficient nonlinear frequency generation
or ionization of materials, with applications in micro-surgery and ionization spec-
troscopy. Self-pulsing semiconductor lasers exhibit a high repetition rate which
ranges from hundreds of megahertz to a few gigahertz [33, 181]. They are interest-
ing for telecommunications and for optical data storage using compact disc (CD)
or digital versatile disc (DVD) systems [182, 183].

Because of the diversity of LSAs as well as scientific objectives, model equa-
tions were derived each time in order to describe particular features of the
PQS pulses. Reformulated in dimensionless form, they exhibit similar solutions.
In this chapter, we first introduce the new parameters associated with the sat-
urable absorber. We then describe the bistable and pulsating responses. We start
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with a simple one-variable LSA equation and then introduce progressively more
dependent variables as the observed time-dependent regimes become richer.

8.1 LSA parameters

As with the active medium in a laser, (saturable) absorbers may be described by
quantum systems with two, three, four, or an infinite number of levels, depend-
ing on the nature of the absorber (semiconductor, ion-doped crystal, gas) and the
operating wavelength of the laser.

In its simplest version, the absorber is described by a two-level system. Its
main dynamical effects are well accounted for by introducing its absorption
coefficient, its saturation intensity, and its relaxation time. Specifically, we
introduce the saturability a, the absorption parameter A, and the reduced relax-
ation rate γ of the population difference, which should be compared with the
active medium parameters A and γ that we previously introduced. It is worthwhile
to briefly discuss the range of parameter values which are likely to lead to new
phenomena.

• The strength of the interaction of light with the passive medium is measured by the
parameter A which relates the absorption coefficient to the gain at threshold. In the
absence of an absorber, the laser threshold is reached as the (unsaturated) gain com-
pensates the losses (A = 1). As the absorber is introduced, the losses are increased and
the threshold is shifted proportionally to A. A strong absorber (A >> 1) would block
off laser action; a weak one (A << 1) would have no influence. Therefore, interesting
values of the absorption are of the order of the gain above threshold, i.e. A ∼ A − 1.

• The saturability coefficient a therefore measures the relative saturation effect of the
absorber with respect to the active medium. A large saturability (a >> 1) means that
the absorber saturates more easily, i.e. at smaller laser power, than the active medium.
On the other hand, a small saturability (a << 1) implies that the absorption in the pas-
sive medium is weak. A bistable steady operation is more likely to appear for large a
because the absorption is then strongly nonlinear.

• As for γ , γ is typically a small parameter for many gaseous absorbers, meaning that the
decay of the inversion is slow compared to the decay of the field in the cavity. Often
γ is comparable to γ but if γ >> γ , i.e. a fast absorber as occurs in some solid state
absorbers, a simplification of the laser equations is possible. A fast absorber with weak
efficiency (A << 1) but large saturability (a >> 1) may exhibit nonlinear behaviors
competing in time with the active medium. The fast response compensates for the weaker
interaction.

Typical values of the parameters are shown in Table 8.1 for different lasers. We
note the small values of γ and γ . They are typically O(10−3) small for CO2 and
semiconductor lasers and even smaller for microchip solid state lasers. Solid state
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Table 8.1 Typical values of the parameters for common LSAs.

Laser γ γ A a

CO2 + SF6
a 3 × 10−3 6.6 × 10−4 2.78 1768

Nd3 + :YAG + Cr4+b 1.8 × 10−6 6.4 × 10−5 3.96 0.085
semiconductor c 1.8 × 10−3 1.4 × 10−3 4.73 2.16

a [60].
b [184, 185].
c [182, 186].

Pout

I

Fig. 8.2 Hysteresis cycles in a He-Ne laser representing the output power as
a function of the discharge current. Reprinted Figure 3 with permission from
Lisitsyn and Chebotaev [178]. Copyright 1968 American Institute of Physics.

lasers also exhibit a small a compared to CO2 and semiconductor lasers. The pres-
ence of several small parameters suggests the need for asymptotic expansions and
opens the possibility of analytic treatments as demonstrated in previous chapters.

8.2 LSA basic phenomena

In this section, we propose an overview of new phenomena arising because of the
presence of the absorber, namely, optical bistability and PQS.

8.2.1 Optical bistability

We know from Chapter 1 that the rate equations for a single-mode laser only admit
one stable steady state for each value of A. Surprisingly enough, two stable steady
states may coexist for the same value of A in LSAs. This phenomenon, called
“optical bistability,” has been observed for a long time. Figure 8.2 shows the hys-
teresis cycles obtained in 1968 by Lisitsyn and Chebotaev [178] in a He-Ne laser
(0.6328 μm) with an intracavity cell containing Ne at a lower pressure than the
amplifying cell. The discharge current in the active medium was used as a control
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Fig. 8.3 Laser flux as a function of pumping for a CO2 laser with SF6 as a sat-
urable absorber. The pumping rate is proportional to the partial pressure of He in
the plasma feed mixture. Reprinted Figure 1 from Ruschin and Bauer [187]. With
permission from Elsevier.

parameter. They observed that the laser switches on at a discharge current much
larger than that for which the laser switches off. In the intermediate domain, the
laser may be ON or OFF depending on its previous history. Similar hysteresis phe-
nomena were observed in CO2 lasers with SF6, CH3I, and many other gases (see
Figure 8.3).

The minimal rate equation model for an LSA is the class A rate equation
(see Section 1.1) where all population variables are adiabatically eliminated. It is
given by

I ′ = I

(
−1 + A

1 + I
− A

1 + aI

)
, (8.1)

where the new term −A/(1 + aI ) describes the saturation effect of the absorber.
The zero intensity solution admits a bifurcation point at A = Ath , where

Ath ≡ 1 + A. (8.2)

This is the new laser threshold where the gain A compensates the linear losses
1 + A. At that point, we may switch to a non-zero intensity steady state if there
exists a positive solution of

−1 + A

1 + I
− A

1 + aI
= 0 (8.3)

with A = Ath . Solving this equation for I leads to the roots I = 0 and

I = Aa − 1 − A

a
> 0. (8.4)
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Fig. 8.4 PQS pulse shapes as a function of the absorber pressure and the laser
detuning for a CO2 + CH3I LSA (from Figure 2 of Dangoisse et al. [188]).

The inequality thus requires that

Aa > 1 + A = Ath (8.5)

meaning that the saturation nonlinearity should be larger in the absorber than in
the active medium.

8.2.2 Passive Q-switching

PQS is a generic term that covers quite different forms of self-pulsating inten-
sity oscillations in LSAs. Smooth quasi-sinusoidal oscillations (as, for example,
in the upper right corner of Figure 8.4) as well as repetitive high intensity spiking
(upper left of Figure 8.4) are called PQS. Some PQS lasers even display different
forms of bursting and chaos (central part of Figure 8.4). We first describe sim-
ple experimental observations on PQS. Richer pulsating activities such as bursting
oscillations and chaos in the CO2 LSA will be considered later (see Section 8.4.1).
Recall that large intensity spikes are observed as we turn on a laser from a below-
to an above-threshold pump value (see Section 1.3.1). The underlying idea is that,
as the laser switches on, it benefits from the accumulated population inversion, i.e.
a larger gain than when it is operated in a cw regime. If now a saturable absorber
is added to the laser, it will play the role of an optical intracavity switch, hence
the name Q-switching. As was already understood in 1966, this switch “empha-
sizes the largest amplitude fluctuation occurring at the initiation of the laser
oscillation” [189].
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Fig. 8.5 Oscilloscope traces of a train of pulses at 29 kHz from a Nd3+:YAG laser
with a Cr4+:YAG saturable absorber. Upper trace is an expanded shape of a single
pulse, showing a 300 ns width. Reprinted Figure 1 with permission from Shimony
et al. [190]. Copyright 1996 IEEE.

As already mentioned, the advent of mode-locked lasers made the PQS tech-
nique for pulse production obsolete. But the discovery that LSAs as well as other
nonlinear systems may exhibit sustained intensity oscillations triggered a large
interest in the investigation of lasers as pure dynamical systems. In this direc-
tion, the CO2/N2O laser with molecular gases such as SF6 or CH3I as saturable
absorbers appeared in the 1980s as the simplest and richest optical system dis-
playing several bifurcations. After the craze for optical chaos, the interest in LSAs
disappeared until the advent of integrated microchip lasers. The most recent tech-
nologies use microchip lasers with two kinds of saturable absorbers. The active
medium is most often made of a thin crystal of Nd3+-doped YVO4 or YAG as the
active part, and the saturable absorber is either a Cr4+-doped layer of the same
crystal directly deposited on the active part or a semiconductor deposited on the
surface of a mirror (SESAM). Typically, a 440 μm long Nd3+-doped YVO4 with a
SESAM mirror delivered 2.6 ns/1.6 kW pulses at 440 kHz. See Figure 8.5. Varying
the laser design (cavity length, active medium thickness), it is possible to control
both the duration and the frequency of these pulses. For instance, durations as short
as 37 ps are possible (see Figure 8.6).

Both the early (c. 1966) and the more recent studies (c. 2000) were design-
oriented. Specifically, they aimed at optimizing the pulsed operation, in terms of
pulse duration, energy, peak power, and repetition rate. Here we focus on PQS
dynamical properties such as the conditions for its appearance, their frequency,
and time evolution. Our objective is to provide simple formulae that make visible
the basic physical mechanisms responsible for PQS.
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Fig. 8.6 Oscillatory trace of a single-frequency 37 ps Q-switched pulse with a
peak power of 1.4 kW and a repetition rate of 160 kHz (from Figure 1 of Spühler
et al. [191]).

8.3 Rate equations

In this section, we analyze a simple extension of the rate equation (8.1) that takes
into account the response of the saturable absorber. Specifically, the rate equations
for a two-level laser with a saturable absorber consist of three nonlinear first order
differential equations for the intensity of the laser field I , the laser population
inversion D, and the absorber state population D. In dimensionless form, these
equations are similar to Eqs. (1.7) and (1.8) for a single-mode laser and we shall
not detail their derivation. They are given by

dI

dt
= (−1 + D + D)I , (8.6)

dD

dt
= γ [A − D(1 + I )] , (8.7)

dD

dt
= γ

[−A − D(1 + aI )
]

. (8.8)

In these equations, A and A are the pump parameters for the lasing medium and
the absorber. γ and γ are the gain and saturable absorber decay rates normalized
to the cavity lifetime. a is the absorber saturability.

The absorber may be fast, like the Cr4+ ions in the YAG laser, or slow, like
SF6 in the CO2 laser. In the first case, a quasistatic approximation may be used
to eliminate D. The resulting two-variable reduction of the LSA rate equations is
analyzed in the next subsection and a linear stability analysis of the steady states
leads us to two main bifurcations. The three-variable LSA equations (8.6)–(8.8)
will then be analyzed but, as we shall demonstrate, the two-variable LSA equations
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already capture the simple PQS regimes observed with microchip LSAs and even
some CO2 LSAs.

8.3.1 Steady state solutions

We first determine the steady state solutions of Eqs. (8.6)–(8.8). We find a zero
intensity solution

I = D − A = D + A = 0 (8.9)

and a non-zero intensity solution given by (in parametric form)

A = (1 + I )

(
1 + A

1 + aI

)
, (8.10)

D = A

1 + I
and D = − A

1 + aI
. (8.11)

Note that these steady state solutions depend only on A and a. Bistability is possi-
ble if there exists a subcritical branch of steady states that folds back at sufficiently
large amplitude. Inversely, a supercritical bifurcation at threshold leads to single
solution as is the case for the solitary laser. To determine the direction of bifur-
cation, we analyze Eq. (8.10) for small I . We find a bifurcation point located at
A = Ath , where Ath is defined by (8.2), from where a branch of steady states
emerges (1) for A > Ath if

Ath − a A > 0 (8.12)

or (2) for A < Ath if
Ath − a A < 0. (8.13)

Case 1 (supercritical bifurcation) occurs if a is sufficiently small while Case 2
(subcritical bifurcation) appears if a > 1. Condition (8.13) is the necessary con-
dition (8.5) for bistability that we previously derived. In this case, the subcritical
branch of steady states folds back at a limit point where dA/dI = 0. Using (8.10),
we determine dA/dI as

dA

dI
= 1 + A

1 + aI
− (1 + I )Aa

(1 + aI )2
(8.14)

and find that the limit point condition dA/dI = 0 leads to the following quadratic
equation for I

a2 I 2 + 2aI + Ath − a A = 0. (8.15)

Because of (8.13), the last term in Eq. (8.15) is negative and a positive real root
of the quadratic equation is always possible. The non-zero intensity steady state
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Fig. 8.7 Left: the direction of bifurcation depends on a and A. If a < 1, the steady
bifurcation is always supercritical. Right: the branch of non-zero intensity steady
states for a = 1/2 (supercritical bifurcation) or a = 2 (subcritical bifurcation).
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solution is represented in Figure 8.7 for the two cases. In the subcritical case,
hysteresis is possible. Using Eq. (8.15) with A = a = 2, we find that the limit
point is located at IL P = 0.207. However, in order to determine if a bistable
response is possible, we need to examine the stability of the coexisting solutions.

8.3.2 Two-variable reduction and PQS

The stability analysis may be performed using the full three-variable model equa-
tions (8.6)–(8.8). In this section, we first examine the reduced two-variable model
in which the absorber population is adiabatically eliminated. The reduced mode
exhibits both bistability and PQS phenomena. The condition for the elimination of
D by a quasi-steady state approximation is that γ >> γ , which is valid for a fast
absorber, such as the Cr4+ ions in the Nd3+:YAG laser. As we shall later see, this
elimination is also valid if γ a >> γ , which is the case for the CO2 + SF6 laser.
From (8.8), we then find that D rapidly changes unless the right hand side is close
to zero. After a short initial transition, we expect that

D � − A

1 + aI
(8.16)

and Eqs. (8.6) and (8.7) reduce to the following equations for I and D

dI

dt
� (−1 − A

1 + aI
+ D)I , (8.17)
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dD

dt
= γ [A − D(1 + I )] . (8.18)

These equations are nothing more than the standard rate equations (SRE) where the
field losses term has been changed from −1 to −1−A/(1+aI ) and is now a nonlin-
ear function of the intensity. A typical bifurcation diagram of the stable steady and
time-periodic solutions is shown in Figure 8.8, and has been obtained numerically
by scanning A back and forth. The branch of unstable periodic solutions has been
determined numerically by integrating the laser equations backward in time (gray
line). For A< Ath , the zero intensity solution is the only stable steady state. If A
is progressively decreased from A > Ath , the periodic solution branch suddenly
stops as the limit-cycle touches the intermediate part of the S-shaped steady state
branch (A = Ath). The period of the oscillations is then infinite. The limit-cycle
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orbit in the phase plane is called homoclinic because the closed orbit first leaves
a saddle-point and then returns to it (homoclinic bifurcation [8]). If A> Ath , the
laser jumps into high amplitude pulsating intensities (PQS). For AH < A< APL P ,
where AH and APL P denote a Hopf bifurcation point and a limit point of periodic
solutions, respectively, the pulsating intensity regime coexists with a stable non-
zero intensity steady state. Bistability of distinct steady states is not possible for
the values of the parameters of Figure 8.8 because the Hopf bifurcation point has
destabilized the upper branch of steady states in the region of coexistence.

Linear stability

The linearized equations for the non-zero intensity steady state are given by

⎛⎜⎝
du

dt
dv

dt

⎞⎟⎠ =
⎛⎝ AaI

(1 + aI )2
I

−γ D −γ (1 + I )

⎞⎠(u
v

)
. (8.19)

The characteristic equation for the growth rate is then of the form

σ 2 − Tσ +� = 0, (8.20)

where

T =
[

AaI

(1 + aI )2
− γ (1 + I )

]
, (8.21)

� = γ I

[
− Aa(1 + I )

(1 + aI )2
+ D

]

= γ I

[
− Aa(1 + I )

(1 + aI )2
+ 1 + A

1 + aI

]
. (8.22)

Note that �= γ I dA
dI , where dA/dI is defined by (8.14). We may therefore pro-

pose a geometrical condition for stability. A negative � implies real roots with
opposite signs, meaning instability like a saddle-node. Therefore, the branch
I = I (A) with negative slope corresponds to an unstable solution. Determining
whether the part with a positive slope is stable or not requires a more refined
approach.
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Table 8.2 Low and high intensity Hopf bifurcations.

I ω2 A

Low intensity γ /(a A) γ I (Ath − Aa) > 0 �Ath

High intensity
√

A/(γ a) γ I
√

A/(γ a)

A Hopf bifurcation occurs if σ = ±iω. Substituting this into Eq. (8.20), we
obtain the conditions

T = 0 and � > 0. (8.23)

The condition T = 0 implies

AaI

(1 + aI )2
− γ (1 + I ) = 0. (8.24)

For γ = 0, we find that either I = 0 or I = ∞ suggesting a small and a large root
for γ �= 0 small. Assuming I << 1, we obtain from Eq. (8.24) the approximation

AaI − γ = 0 or I = γ

a A
. (8.25)

On the other hand, assuming I large, we obtain from Eq. (8.24)

AaI

a2 I 2
− γ I = 0 or I =

√
A

γ a
. (8.26)

We thus find two candidates for a Hopf bifurcation. We still need to verify the
second condition in (8.23). For the small intensity Hopf point (8.25) we have

� � γ I
(−Aa + 1 + A

)
> 0 (8.27)

provided that −Aa + 1 + A > 0, which is the condition for a supercritical branch
of steady states (A > Ath). For the high intensity Hopf point (8.26) we have

� � γ I > 0, (8.28)

which is always verified. The properties of the two possible Hopf bifurcation points
are summarized in Table 8.2. Note that the low intensity Hopf bifurcation occurs
only if the steady bifurcation is supercritical (Ath − Aa > 0). Both Hopf frequen-
cies are O(γ 1/2) small and the high intensity Hopf frequency exactly matches the
RO frequency of the solitary laser.
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In summary, we have found that sustained oscillations are possible through
a Hopf bifurcation. But a Hopf bifurcation only reveals the existence of small
amplitude (stable or unstable) solutions and does not explain the strongly pulsat-
ing oscillations observed experimentally and numerically. We need a different tool
to describe analytically the large amplitude oscillations.

Pulsating solutions

In order to obtain an analytical understanding of the fast pulsating solutions, we
consider a method that we already used for the turn-on pulse and for the strongly
modulated laser. The PQS regimes are characterized by high intensity pulses sepa-
rated by long time intervals where the intensity is almost zero. Figure 8.9 shows a
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Fig. 8.9 Pulsating oscillations. Between successive pulses, the intensity is almost
zero (upper right) and the population inversion slowly increases exponentially
(lower right). A single pulse is shown in the upper left figure and the limit-cycle
orbit is shown in the phase plane in the lower left figure. The periodic solution
has been obtained numerically from Eqs. (8.17) and (8.18) with A = 2.1, A = 1,
a = 5, and γ = 10−2.
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typical example. Numerical simulations for progressively smaller values of γ indi-
cate that the high intensity pulses occur on an O(1) time interval with an intensity
proportional to γ−1. Moreover the interpulse period increases like γ−1. This sug-
gests seeking two separate approximations for the low and high intensity regimes.
This analysis is proposed as an exercise in Section 8.5.1. It leads to equations
for a map that provide the value of the population inversions at the end of each
pulse, D = Dn−, as well as the interpulse period �tn+1. These equations are
given by

(A − 1 − A)γ�tn+1 − (Dn− − A)(exp(−γ�tn+1)− 1) = 0, (8.29)

ln(Dn+1−/Dn+)− (Dn+1− − Dn+) = 0, (8.30)

where Dn+ denotes the population at the beginning of the nth pulse and is
defined by

Dn+ ≡ (Dn− − A) exp(−γ�tn+1)+ A. (8.31)

A T -periodic limit-cycle solution oscillating between D = D− and D = D+
therefore satisfies Eqs. (8.29)–(8.31) with Dn+1− = Dn− or, equivalently, the
conditions

(A − 1 − A)γ T − (D− − A)(exp(−γ T )− 1) = 0, (8.32)

ln(D−/D+)− (D− − D+) = 0, (8.33)

where D+ is
D+ = (D− − A) exp(−γ T )+ A. (8.34)

Equations (8.32) and (8.33) are transcendental equations which must be solved
numerically. However, we note that, numerically, D+ > Ath . If A is sufficiently
large, D+ will be large and from (8.33), we then note that

D− � D+ exp(−D+) (8.35)

is small. Neglecting D− in (8.32) leads to an implicit solution for the period T as
a function of A given by

A − Ath � Ath(1 − exp(−γ T ))

γ T + exp(−γ T )− 1
. (8.36)

This approximation is compared to the numerically computed period as a function
of the pump parameter in Figure 8.10. The hyperbolic behavior of the period as
A − Ath → 0+ is captured analytically by assuming γ T large in the expression
(8.36). We find that
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T � γ−1 Ath

A − Ath
. (8.37)

The maximum intensity is provided by the large-I approximation of the pulse.
It is given by

I � γ−1(D+ − 1 − ln(D+)), (8.38)

where D+ � (A−Ath)γ T . In Exercise 8.5.1, we propose to derive frequently used
formulae for the repetition rate and pulse width. These expressions require several
approximations that may lead to erroneous results if their domain of validity is not
respected.

A few remarks are in order. We were successful in describing the PQS train of
pulses because the limit-cycle solution could be constructed using two separate
approximations. The low intensity approximation satisfies a two-variable linear
problem that we were able to solve. The high intensity approximation comes from
a nonlinear problem for which we could find a first integral. In order to determine
the intensity pulse waveform, a second integration is needed, however. Neverthe-
less, we were able to describe the bifurcation diagram for the period and the max-
ima of the intensity. A second point that is worthwhile emphasizing is the fact that
parameter a does not appear in the leading approximations of the period or max-
ima. This is not the case if we apply the same construction technique for the three-
variable LSA.
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8.3.3 Three-variable rate equations model

The two-variable model is deduced from the three-variable one in the limit γ →
∞. Therefore both models have the same steady state solutions but their stability
properties may be different. In this section we consider the complete three-variable
model and analyze the stability of the steady states. We then examine the limit
γ → ∞ of our results.

Linear stability

The characteristic equation for the three-variable equation is obtained from the
following determinant

det

⎛⎜⎜⎜⎝
−1 + D + D − σ I I

−γ D −γ (1 + I )− σ 0

−γ aD 0 −γ (1 + aI )− σ

⎞⎟⎟⎟⎠ = 0,

(8.39)
which we will evaluate for both the zero and the non-zero intensity solutions.

Stability of the zero intensity solution

For the zero intensity steady state, (8.39) reduces to

det

⎛⎜⎜⎜⎝
−1 + A − A − σ 0 0

−γ A −γ − σ 0

γ a A 0 −γ − σ

⎞⎟⎟⎟⎠ = 0 (8.40)

and leads to three solutions given by

σ1 = A − Ath , σ2 = −γ , and σ3 = −γ . (8.41)

The zero intensity solution is thus stable (unstable) if A < Ath (if A > Ath).

Stability of the non-zero intensity solution

For the non-zero intensity steady state (8.10)–(8.11), (8.39) leads to the following
third order polynomial in σ

σ 3 + C1σ
2 + C2σ + C3 = 0. (8.42)
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The coefficients C j ( j = 1, 2, 3) are defined by

C1 ≡ γ (1 + I )+ γ (1 + aI ),

C2 ≡ I

(
γ

A

1 + I
− aγ

A

1 + aI

)
+ γ γ (1 + I )(1 + aI ),

C3 ≡ γ γ I

(
A(1 + aI )

1 + I
− a A(1 + I )

(1 + aI )

)
. (8.43)

The necessary and sufficient conditions for all σ having a negative real part are the
Routh–Hurwitz conditions [29] given by

C1 > 0, C3 > 0, and C1C2 − C3 > 0. (8.44)

Note that the three conditions imply C2 > 0. The first condition in (8.44) is always
satisfied since intensities are positive. In order to analyze the second one, we use
(8.14) and rewrite C3 as

C3 = γ γ I (1 + aI )

(
A

1 + I
− a A(1 + I )

(1 + aI )2

)

= γ γ I (1 + aI )
dA

dI
. (8.45)

The condition C3 > 0 thus requires that

dA/dI > 0 (8.46)

as we already found from the two-variable model. The slope of the steady state
branch I = I (A)must be positive. The third condition is associated with the Hopf
bifurcation condition.

Hopf bifurcation

The conditions for a Hopf bifurcation resulting from the change of stability of the
non-zero steady state can be analyzed in the following way. After introducing the
decomposition σ = σr + iσi into the characteristic equation, we seek a solution
for σr and σi assuming |σr | << 1 in the vicinity of the Hopf bifurcation. We
obtain
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σr = 1

2C2
(C3 − C1C2) and σ 2

i = C2 + O(σr ). (8.47)

Since for stable solutions we have C2 > 0, the Routh–Hurwitz condition C1C2 −
C3 > 0 clearly means σr < 0. The Hopf bifurcation occurs if σr = 0 or

C1C2 − C3 = 0. (8.48)

The condition (8.48) can be rewritten as

I

(1 + I )(1 + aI )

(
γ

γ
A − γ

γ
a A

)
+ γ (1 + I )+ γ (1 + aI ) = 0. (8.49)

We next recall that γ and γ are small dimensionless parameters (see Table 8.1)
and explore two limit cases.

Powell and Wolga approximation for the high intensity Hopf bifurcation Assuming
that the steady state intensity is not too large, we may neglect the last two terms in
(8.49) and obtain the elegant stability condition

A < AH 1 =
(
γ

γ

)2

a A, (8.50)

which was derived by Powell and Wolga in 1971 [59]. The intensity IH and the
frequency ωH at the Hopf bifurcation are obtained from Eq. (8.10) and ω2

H = C2,
respectively. For small γ and γ , ω2

H admits the approximation

ω2
H = IH

1 + aIH

(
γ (Ath + aIH )− aγ A

)
> 0. (8.51)

However, the approximation (8.50) is asymptotically valid only if I = O(1) and
γ = O(γ ) as γ → 0, which is obviously wrong for the Nd3+:YAG + Cr4+ laser
but correct for the semiconductor LSAs and only fair for the CO2 + SF6 LSA. We
may take into account the high value of a for the CO2 + SF6 laser by assuming
a = O(γ−1) and γ = O(γ ). We then find that the intensity at the Hopf bifurcation
point is given by

IH = −1

2
+
√

1

4
+ A

γ a
, (8.52)

which matches the expression of the two-variable approximation if γ a >> 1 (see
Table 8.2).
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Very low intensity Hopf bifurcation There exists another limit of Eq. (8.49) which
verifies the scaling I = O(γ ). This leads to the occurrence of a different Hopf
bifurcation in the case of a steady supercritical bifurcation. From Eqs. (8.10) and
(8.49), and ω2

H = C2, we find that the Hopf bifurcation location and frequency are

IH 2 = γ + γ(
γ
γ

a A − γ
γ

Ath

) , (8.53)

AH 2 = Ath + I (Ath − a A), (8.54)

ω2
H 2 = I (γ Ath − aγ A + γ γ ) > 0 (8.55)

provided that

γ

γ
a A − γ

γ
Ath > 0. (8.56)

Note that the double requirement of a supercritical steady bifurcation (Ath −
a A > 0) and the necessary condition (8.56) for a Hopf bifurcation implies the
inequality

γ > γ . (8.57)

The physical meaning of this condition is that a weak absorber (a < 1) admits a
low intensity Hopf bifurcation provided that the absorber is relaxing faster than the
active medium (γ > γ ). The scaling imposes a very stringent condition for many
lasers and only the microchip solid state laser verifies this necessary condition (see
Table 8.1).

The limit γ /γ → ∞ of the present approximation correctly matches the low
intensity Hopf bifurcation of the two-variable model.

In summary, the linear stability analysis of the non-zero intensity steady state
indicates that Hopf bifurcations to sustained oscillations are possible. However,
it doesn’t anticipate the highly pulsating intensities observed experimentally and
numerically. We may use the same technique as for the two-variable model
by seeking separate approximations for the interpulse and pulse regimes of the
high intensity pulsating oscillations (see Section 8.3.2). The detailed analysis for
the three-variable LSA is documented in [192]. A transcendental equation pro-
vides the period, and an asymptotic approximation for the pulse intensity allows
one to describe the bifurcation diagram. The main difference from the results
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obtained for the two-variable model is the appearance of the saturability a in these
expressions. Szabo and Stein correctly derived the approximation for the pulse
intensity in 1965 [193]. The equation for the period was never properly derived,
presumably because of the difficulty of obtaining a root of a transcendental
equation.

Bifurcation diagrams

The analysis in the previous sections provides us with expressions for the
steady states and information on their linear stability properties. In this sub-
section, we investigate the bifurcation diagram numerically using A as control
parameter.

If the condition (8.13) is satisfied, the steady state bifurcation at A = Ath is sub-
critical and the branch of steady states that emerges from it is unstable (C3 < 0).
This branch of steady states then folds back at a higher intensity but remains unsta-
ble (C3 > 0 but C1C2 − C3 < 0) until a Hopf bifurcation point A = AH is
reached. The bifurcation diagram in Figure 8.7 shows that stable pulsating oscil-
lations (PQS) typically appear at A = Ath with a large period. This branch of
sustained oscillations first coexists with an unstable non-zero intensity steady state
and then with a stable steady state if A > AH . But other bifurcation diagrams are
possible. We investigate two specific cases that apply to the CO2 + SF6 laser and
to the microchip YAG laser, respectively.

CO2 + SF6 laser The high value of parameter a motivates a rescaling of the LSA
equations. Indeed if D = O(1), Eq. (8.8) indicates that D will decay rapidly
until it reaches low O(a−1) values. Introducing then D = a−1 F , Eqs. (8.6)–(8.8)
become

dI

dt
= (−1 + D + a−1 F)I , (8.58)

dD

dt
= γ [A − D(1 + I )] , (8.59)

d F

dt
= aγ

[
−A − F(I + a−1)

]
. (8.60)

Assuming now aγ >> γ , we may eliminate F and reduce the three-variable LSA
equations to the two-variable LSA equations (8.17) and (8.18). Figure 8.11 shows
the bifurcation diagram of the possible solutions. The unstable periodic solutions
have been determined numerically by integrating Eqs. (8.17) and (8.18) backward
in time. The bifurcation diagram is similar to the one shown in Figure 8.7 except
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Fig. 8.11 CO2 + SF6 laser. Numerical solutions of Eqs. (8.17) and (8.18) with the
values of the parameters listed in Table 8.1. Left: Bifurcation diagram. Because of
the large value of a, the upper branch of the steady state hysteresis curve comes
very close to A = 1. From A = Ath = 3.78 to A � 15, stable PQS oscillations of
large amplitude coexist with a stable steady state (branch of PQS solutions not
shown). At A = AH � 1.40, a branch of unstable limit-cycles emerges from a
subcritical Hopf bifurcation and its amplitude progressively increases with A.
Right: Two periodic orbits coexist in the phase plane if A>Ath . A stable and
large amplitude limit-cycle coexists with an unstable limit-cycle of smaller ampli-
tude, a stable steady state at (D, I )= (1, 4), and an unstable saddle-point at
(D, I )= (5, 0).

that AH < Ath . This allows bistability between a zero and a non-zero intensity
steady state in the domain AH < A< Ath .

Nd3+:YAG + Cr4+ laser On the other hand, if (8.12) is satisfied, a completely
different diagram is obtained (see Figure 8.12). The steady state bifurcation is
supercritical and a low intensity Hopf bifurcation at A = AH 1 appears close
to threshold. Detailed comparison of numerical and experimental bifurcation
diagrams are difficult because of the large range of values of some of the param-
eters. The stable coexistence between PQS and a stable non-zero intensity steady
state, as suggested by the diagram in Figure 8.11, was observed in 1982 [194]
although the bifurcation mechanisms responsible for this coexistence were not
understood at that time. Systematic experimental bifurcation studies came later
using CO2 LSAs. They show that PQS always occurs just above the lasing
threshold A = Ath and that it disappears as the pump parameter is significantly
increased.
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Fig. 8.12 Nd3+:YAG + Cr4+ laser. Bifurcation diagram of the periodic solutions,
obtained numerically from Eqs. (8.6)–(8.8) with γ = 10−2, γ = 10−1, A = 4,
and a = 0.5. The branch of steady states emerges at A = Ath = 5 and its intensity
changes linearly with A. A branch of stable periodic solutions connects the two
Hopf bifurcation points A = AH1 and AH2. AH1 is slightly larger than Ath . The
inset in the figure details the Hopf bifurcation vicinity and shows that the branch
becomes vertical near A = 5.02. The values of γ and γ have been voluntarily
taken larger than the real values (the real values are 1.8 × 10−6 and 6.4 × 10−5,
respectively) to reveal the details of the bifurcation transition. Computations have
been done in double precision. If γ and γ are decreased, the bifurcation dia-
gram near AH1 becomes more and more vertical (from Figure 1 of Kozyreff and
Erneux [123]).

8.4 PQS in CO2 lasers

The CO2 laser has been one of the most studied LSAs and a great variety of
gases have served as saturable absorbers. The first studies were motivated by
the possibility of using PQS pulses for isotope separation or as efficient pumps
for far-infrared lasers. Although they have lost their main application domain,
these lasers have become interesting tools for the experimental study of non-
linear responses. In particular, the CO2/N2O LSAs exhibit a large variety of
pulse shapes that cannot be described by the simple three-variable model used
so far. This has motivated the development of an improved rate equation model
that has led to quantitative comparisons between experiments and theory (see
Section 8.4.2).
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8.4.1 Experiments

Two major observations have marked the progress in the experimental study of
the CO2 pulsating outputs. First, the observation of the Hopf bifurcation transition
from damped relaxation oscillations to self-sustained large amplitude oscillations
demonstrated that the CO2 LSA was indeed an optical system for which the theory
of dynamical systems was relevant. Second, the transition to chaos via period dou-
bling bifurcations and Shilnikov’s saddle-focus dynamics were studied in detail
and simulated using rate equations.

Hopf bifurcation transition

The LSA is presumably the first optical system where the Hopf bifurcation tran-
sition has been explored. The bifurcation diagram shown in Figure 8.8 indicates
a hard transition to sustained oscillations as the pump parameter A is progres-
sively decreased from a large value (subcritical Hopf bifurcation). But the Hopf
bifurcation can be supercritical allowing a smoother transition (see Figure 8.13).
Experiments were carried out in the late 1970s using a CO2 laser with low pressure
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Fig. 8.13 Supercritical Hopf bifurcation. The bifurcation diagram has been
obtained numerically from Eqs. (8.6)–(8.8) with A = 4, a = 0.5, γ = 10−2, and
γ = 5 × 10−2. From the exact Hopf conditions, we determine a Hopf bifurcation
point at A � 23.52. The period of the oscillations at the Hopf point is T � 18.78.
As soon as the minimum of the oscillations comes close to zero, i.e. A � 22,
the oscillations become strongly pulsating (PQS regime). The inset shows the
period of the oscillations, which smoothly increases from T as we progressively
decrease A.
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CH3I as a saturable absorber, which was designed for spectroscopic studies. The
intensity emitted by such a laser was monitored for different values of A and A.
The damping and the frequency of the oscillations were measured on both sides
of a Hopf bifurcation point A = AH � 0.09 W. If A < AH , the period of the
oscillations was determined by the PQS oscillations. If A > AH , the absorber was
subjected to pulsed electric fields that modulated the absorption coefficient through
Stark shifting of the energy levels of the absorber. The return to the stable steady
state was followed by measurement of the damping and the period of the transient
oscillations of the laser output intensity (see Figure 8.14). The figure indicates
that (1) the period of the damped oscillations corresponds to the RO oscillations
(T ∼ 1/

√
A − 1) and that it follows the PQS period as A passes through AH , and

(2) the damping time tends to infinity as we approach the Hopf bifurcation point
AH (critical slowing down). Figure 8.14 suggests a smooth transition through a
supercritical Hopf bifurcation as the pump parameter is decreased. For other param-
eter values, a hard transition was more often observed. The onset of sustained RO
oscillations through a Hopf bifurcation (called sinusoidal self-modulation) has been
further analyzed experimentally and numerically by Tanii et al. [62].

Complex oscillations in the CO2 LSA

Pulse shapes produced by CO2/N2O LSAs are much richer than in the YAG lasers.
In addition to sinusoidal oscillations and repetitive spikes, pulses with a long tail
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Fig. 8.14 Transients oscillations for a CO2 laser with a CH3I absorber. The oscil-
lation period (dots) and damping time (squares) are represented as a function of
the laser power in the vicinity of the Hopf bifurcation. Reprinted Figure 2 with
permission from Arimondo and Glorieux [195]. Copyright 1978 by the American
Institute of Physics.
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and sometimes with damped or undamped small oscillations superimposed on
plateaus were observed (see Figures 8.4 and 8.15). In the mid 1980s, there was
a definite breakthrough for lasers when experiments clarified the role of Hopf and
homoclinic bifurcations. Figure 8.4 shows a variety of pulse shapes for a CO2 laser
with CH3I as a saturable absorber in terms of two parameters (the laser detuning
and the absorber pressure). Analyzing the two regimes on the extreme left and
right sides of Figure 8.4, we find these two bifurcation mechanisms for the birth
of oscillating regimes. Specifically, the low absorber pressure domain corresponds
to a steady state and the laser destabilizes through small sinusoidal oscillations
for positive detunings (right part of Figure 8.4) suggesting a supercritical Hopf
bifurcation. On the large negative detuning side (left part of the diagram), the
oscillation period increases and the pulses become stiffer as the laser threshold
(high absorber pressure) is approached (homoclinic bifurcation). The central part

(a)

(b)

(c)

(d)

(a´)

(b´)

i = 3.00 mA

i = 4.50 mA

i = 5.75 mA

i = 7.40 mA

50 μs /div
50 μs /div

(c´)

(d´)

Fig. 8.15 Evolution of the PQS pulses in the CO2 laser with HCOOH as a
saturable absorber. Left: experiments; right: numerical simulations. With kind
permission from Springer Science+Business Media (Figure 2 from Tachikawa
et al. [61]).
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of Figure 8.4 demonstrates that there is a continuous transition between pulsat-
ing and nearly harmonic oscillations. Chaotic oscillations are also observed in this
parameter domain.

Using another absorber leads to similar observations. The series of pulses
obtained by Tachikawa et al. on CO2 LSAs [61, 63, 64] are shown in Figure 8.15.
They illustrate different forms of bursting oscillations where rapid oscillations are
separated by almost static regimes. These oscillations correspond to the central
region of the parameter domain in Figure 8.4 but they exhibit longer plateaus.

8.4.2 Bursting oscillations in the CO2 LSA

The multiplicity of timescales exhibited by the pulsating outputs shown in Figure
8.15 cannot be described mathematically by a simple Hopf or homoclinic bifur-
cation mechanism. This has motivated the development of a more sophisticated
model that we now introduce.

Model equations for a CO2 LSA

The key ingredient for obtaining a satisfactory description of chaos in these lasers
was found by Tachikawa et al. [63] who revived the model of Dupré et al. [58],
introducing a third energy level with slow dynamics. This accounts for the com-
plicated population dynamics due to the transfer between the different vibrational
levels involved in the lasing process (pumping and relaxation). From the dynam-
ical system point of view, this third energy level weakly coupled to the previous
ones allows the emergence of a new slow time scale. Excellent agreement was then
obtained with the experimental observations.

In dimensionless form, the new LSA equations are given by1

dI

dt
= I (U − U − 1), (8.61)

dU

dt
= ε [−(I + 1)U + W ] , (8.62)

dW

dt
= ε [bU − W + A] , (8.63)

dU

dt
= ε

[
A − U(1 + aI )

]
(8.64)

and only four independent parameters are required. Comparing these equations
with Eqs. (8.6)–(8.8) used in our previous study of the LSA, we note that the

1 These equations are the same as the equations studied in [65] with n = φ, N = M , Bg fg = A, Ba = A,
lg
L = ζ , la

L = ζ , k = 2κ , Ri j = γi j , r = γ , N∗ = M∗ , and M = N .
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Table 8.3 Parameters used for the simulations of the CO2 LSA. The two columns
for SF6 correspond to different operating conditions. Note that SF6 is highly
saturable compared to CH3I (larger values of a).

Tachikawa et al. [64]a Lefranc et al. [65]b

Absorber SF6 SF6 CH3I

ε 0.076 2 0.076 2 0.137
ε 1.664 0.42 1.2
a 14.840 2 91.322 4.17
b 0.989 5 0.989 5 0.85
A 1.312 9 1.260 7 1.4–2.1
A 2.72 20 2.16

a [64].
b [65].

variables I , U , and U are equivalent to the variables I , D, and D, respectively.
Moreover, the relaxation rates ε and ε correspond to γ and γ , respectively. The
main difference from our previous model equations comes from the fact that the
population inversion in the active medium is not directly controlled by the pump
A but is mediated through a new population variable W .

Bursting oscillations exhibiting fast and slow evolutions were found experimen-
tally by Tachikawa et al. [63, 64] and they were simulated numerically using Eqs.
(8.61)–(8.64). Excellent quantitative agreement was obtained using the values of
the parameters listed in Table 8.3 (the first two columns correspond to the data for
Figures 1c’ and 1d’ in [64]).

We have found numerically that the bursting response remains unchanged if we
make a quasi-steady state approximation for the variable U . Mathematically, this
is justified if εA is sufficiently large. From Eq. (8.64), U is then given by

U = A

1 + aI
(8.65)

and Eqs. (8.61)–(8.64), reduce to the following three equations

dI

dt
= I (U − A

1 + aI
− 1), (8.66)

dU

dt
= ε [−(I + 1)U + W ] , (8.67)

dW

dt
= ε [bU − W + A] . (8.68)

We next analyze the bifurcation diagram for these equations.
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Steady states, stability, and bifurcation diagram

Equations (8.66)–(8.68) admit the zero intensity steady state

I = 0, U = W = A

1 − b
(8.69)

and the non-zero intensity steady state (in implicit form)

A = (1 − b + I )

(
1 + A

1 + aI

)
(8.70)

U = 1 + A

1 + aI
, W = (1 + I )

(
1 + A

1 + aI

)
. (8.71)

The laser threshold appears at A = Ath ≡ (1 − b)(1 + A) and requires that b < 1.
Expanding (8.70) for small I indicates that A = Ath is a bifurcation point of the
zero intensity steady state. The bifurcation is supercritical (subcritical) if

1 + A − a A(1 − b) > 0 (< 0). (8.72)

We may analyze the stability of the steady states in the same way as we did for Eqs.
(8.6)–(8.8). For the zero intensity solution, we find that the steady state is stable if
A < Ath . For the non-zero intensity steady state, the characteristic equation takes
the form

σ 3 − T1σ
2 + T2σ − T3 = 0 (8.73)

where the coefficients are defined by

T1 = AaI

(1 + aI )2
− ε(2 + I ) (8.74)

T2 = −ε(2 + I )
AaI

(1 + aI )2
+ εI

(
1 + A

1 + aI

)
+ ε2(1 + I − b) (8.75)

T3 = −ε2 I

[
−(1 − b + I )

Aa

(1 + aI )2
+ 1 + A

1 + aI

]
. (8.76)

A Hopf bifurcation is possible if T1T2 − T3 = 0 and T2 > 0 but needs to be
explored numerically. In the limit ε → 0, this condition simplifies and provides a
simple expression for the Hopf bifurcation point given by
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Fig. 8.16 Bifurcation diagram of the Tachikawa et al. LSA equations (8.66)–
(8.68). The values of the parameters are ε = 0.076, A = 2.72, a = 14.84,
and b = 0.989. Dark and gray points correspond to the maxima and minima,
respectively. The broken line is the non-zero intensity steady state. The labels
1, 2, . . . 5 denote the number of low-amplitude oscillations.

IH = 1

a

[√
A(2a − 1)− 1

]
> 0 (8.77)

AH =
(

1 − b + 1

a

[√
A(2a − 1)− 1

])⎛⎝1 +
√

A

2a − 1

⎞⎠ .
(8.78)

The bifurcation diagram of the stable solutions of Eqs. (8.66)–(8.68) is shown in
Figure 8.16. The values of the fixed parameters ε, A, a, and b are given by the
first column of Table 8.3. From left to right, we note the emergence of successive
periodic solutions with a progressively increasing number of extrema. The bifur-
cation diagram starts with a homoclinic orbit located at or close to the laser steady
bifurcation point at A = Ath . This orbit leads to large-period oscillations remi-
niscent of the PQS oscillations of our previous LSA models. Close to A = 0.27,
the high-amplitude pulsating oscillations exhibit one extra low-amplitude oscilla-
tion. A second, extra low-amplitude oscillation appears close to A = 0.76. This
process continues until A = 1.2 where the oscillations are no longer periodic. All
oscillatory activities stop close to the Hopf bifurcation point at AH = 1.31. The
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Fig. 8.17 Periodic solutions of the Tachikawa et al. LSA equations (8.66)–(8.68)
for two specific values of A and the parameters listed in Figure 8.16. Specific
domains of values of A admit periodic solutions with n low-amplitude extrema.
The broken line indicates a plateau where these oscillations appear during a
progressively increasing interval of time as A is increased.

non-zero intensity steady state then becomes the only stable solution. Figure 8.17
shows two typical periodic solutions corresponding to this diagram.

Bursting oscillations

The new dynamical phenomenon revealed by the model equations (8.66)–(8.68)
is obviously the onset of the low-amplitude oscillations. They do not correspond
to a well-known bursting mechanism based on a hysteresis cycle in a slow–fast
phase plane. Nevertheless, it is possible to identify a slowly varying process that
explains how the laser low-amplitude oscillations appear. As noted in Figure 8.17,
these oscillations remain close to a non-zero intensity plateau (broken line in the
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figure). Analyzing these oscillations in more detail indicates that U oscillates close
to 1 while W is slowly decaying exponentially. From Eqs. (8.66)–(8.68) with the
new variables U = 1 + √

εu and s = √
εt , we obtain

dI

ds
= I

(
u − A√

ε(1 + aI )

)
, (8.79)

du

ds
= −(I + 1)(1 + √

εu)+ W , (8.80)

dW

ds
= √

ε
[
b(1 + √

εu)− W + A
]

. (8.81)

From Eq. (8.81), we note that W is a slowly decaying function of
√
εs approaching

W = A + b. We then examine the remaining equations for I and u with W treated
as a slowly varying parameter. By analyzing the stability of the non-zero intensity
steady state, we find that it is stable (unstable) if W > WH (W < WH ), where
WH � 2.43 denotes a Hopf bifurcation point (IH � 1.10 and UH � 1.16). As
W progressively decreases, we slowly pass a Hopf bifurcation. See Figure 8.18.
In summary, we have shown that the emergence of the low-amplitude oscilla-
tions results from the passage through a subcritical Hopf bifurcation point. A
deeper analysis is necessary, however, to find out how the number of low-amplitude
oscillations is related to the control parameter A.

Comparison with experimental results

In the first experimental investigations of laser dynamical instabilities, a single
parameter was progressively changed and reasonable agreement with theory was
obtained by fitting parameters. The model developed in the previous section has
excellent predictive possibilities and reproduces accurately the observations on
CO2 LSAs with absorbers as different as CH3I and SF6. This then allowed inves-
tigations where at least two parameters were changed. As a result, a more global
understanding of dynamical phenomena became possible through the identifica-
tion of particular points in parameter space or subtle changes in the waveforms.2

By the end of the 1980s, researchers armed with a collection of new theoret-
ical tools (phase portraits, Poincaré maps, one-dimensional maps) were ready
to explore the chaotic dynamics of the LSA. Chaos in CO2 lasers with various
saturable absorbers (CH3I, SF6) was observed almost simultaneously in sev-
eral laboratories [188, 196, 197]. The transition to chaos was later analyzed by
Lefranc et al. [65] in great detail using Eqs. (8.61)–(8.64) for the simulations.
Experimental chaotic regimes have been shown to display the typical features of
homoclinic chaos.

2 A similar approach has been followed more recently for the optically injected laser (see Section 9.4).
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Fig. 8.18 Top: limit-cycle solution in the phase plane (W , I ) for A = 1.15. It
has been obtained numerically from Eqs. (8.66)–(8.68) with the values of the
parameters listed in Figure 8.16. The broken line represents the branch of steady
states of the reduced two-variable equations. Bottom: blow-up. The parabolic full
and broken lines correspond to the stable and unstable parts of the steady states,
respectively. The Hopf bifurcation is subcritical and the dots are the extrema of
a branch of unstable periodic solutions. The limit-cycle solution passes the Hopf
bifurcation, then spirals out before jumping to a nearly zero intensity regime.

Bifurcation diagrams, temporal sequences and first return maps can be obtained
numerically, and give us precious indications of the possible routes to chaos. In
experiments where only one or sometimes two variables are accessible, trajectories
may be reconstructed from single-variable measurements using the time delayed
method. This method relies on the fact that a pseudo-trajectory reconstructed from
time-shifted values of a single variable such as {I (t), I (t + τ ), I (t + 2τ ) . . .} has
the same topological properties as the real trajectory. This technique has been
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Fig. 8.19 (a) PQS regime for a CO2 +SF6 LSA and (b) reconstructed phase space
trajectory with τ = 0.6 μs (from Figure 4 of de Tomasi et al. [196]).

extensively used for the analysis of chaotic signals, through either dimensional
or topological analyses.3 Figure 8.19 shows an example for a CO2 laser with SF6

as a saturable absorber. It clearly illustrates the saddle-focus character of I+. How-
ever it is misleading for the exact role played by I0 because of the low resolution
near the origin.

In spite of their simplicity, the model equations (8.61)–(8.64) reproduce in detail
the evolution of the dynamical regimes observed in the pulsating CO2 LSAs.
Because comparative studies between experiments and simulations are possible,
the LSA as well as other laser devices are used to investigate new ideas in the
nonlinear dynamics community. In the 1990s interest shifted significantly to the
control of chaos in low-dimensional systems. Several control schemes were used
to stabilize chaotic lasers, which is an important achievement from a practical as
well as a fundamental perspective (see [200] for a recent review).

8.5 Exercises and problems

8.5.1 Asymptotic analysis of the pulsating solutions

As pulsating intensity oscillations develop in time, they exhibit two distinct
regimes that we call the interpulse regime and the pulse. During the interpulse
regime, the intensity is very small and the increase of D is slow. On the other
hand, the pulse part is characterized by a large intensity and a rapid change of both
I and D.

(1) Derive simplified equations for the interpulse and pulse regimes. Hint:
the reduced equations for the interpulse regime are linear and can be solved
exactly using the initial conditions D(0)= D1− and I (0)= I0<< 1 (see

3 The LSA was the first optical system for which topological methods were tested [198]. By unfolding the
topological organization of the unstable periodic orbits embedded inside the chaotic attractor, Papoff et al.
[199] demonstrated that the chaotic output of a CO2 LSA could be explained by low-dimensional dynamics.
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D2– = D1–

slow

fast

I

Fig. 8.20 Analytical description of the limit-cycle in the phase plane. It consists
of a slow increase from D− to D+ with an almost zero intensity, followed by a
quick change from D+ to D2− with a high intensity.

Figure 8.20). This solution provides the interpulse period T as well as D = D1+,
the point where the fast pulse emerges. The expressions for both T and D1+
are independent of I0, in first approximation as γ → 0. The reduced equations
for the pulse are nonlinear but can be integrated in the phase plane leading to
an expression for I = I (D). The limit-cycle trajectory satisfies the conditions
I (D1+) = I (D2−) = 0 which then provides an equation for D2− as a function of
D1+. Finally, we require that D2− = D1− to close the orbit.

Answer: the interpulse period is the non-zero root of the transcendental equation

(A − Ath)γ T − (D1− − A)(exp(−γ T )− 1) = 0. (8.82)

The maximum value of D = D1+ is given by

D1+ = A + (D1− − A) exp(−γ T ) (8.83)

and the relation between D1+ and D1− is

ln(D1−/D1+)− (D1− − D1+) = 0. (8.84)

(2) Analyze these equations for A − Ath → 0 (close to threshold) assuming that
γ T → ∞ in this limit. Show that the repetition rate, defined as f ≡ T −1, admits
the approximation

f = γ
A − Ath

Ath

1

�D
, (8.85)



210 Laser with a saturable absorber

where �D ≡ D1+ − D1− is defined as the gain reduction (D1+ = Ath , in first
approximation as A − Ath → 0).

(3) Consider the additional limit A → 0 and show that �D = 2A, in first
approximation as A → 0. The resulting expression for f is used in the engineering
literature as a guide for improving the repetition rate (see Eq. (7) in [191]).

8.5.2 Dimensionless formulation

Spühler et al. [191] investigated microchip lasers with semiconductor saturable
absorbers. They formulated the following rate equations for the laser power P(t),
the intensity gain coefficient per cavity round trip g(t), and the intensity saturable
loss coefficient per cavity round-trip time q(t)

TR
dP

dt
= (g − q − l)P ,

dg

dt
= −g − g0

τL
− g P

EL
,

dq

dt
= −q − q0

τA
− q P

E A
,

where TR is the cavity round-trip time, EL is the saturation energy of the gain,
τL is the upper-state lifetime of the gain medium, E A is the saturation energy
of the absorber, and τA is the relaxation time of the absorber. l denotes the total
nonsaturable loss coefficient per round trip. g = g0 and q = q0 are the equilibrium
values of g and q for P = 0. The values of the fixed parameters are

TR = 2.61 ps, l = 14%, τL = 50 μs,

τA = 200 ps, EL/E A = 103, and q0 = 5%.

The pump parameter is defined as r ≡ g0/gc, where gc ≡ l + q0 is the laser
threshold.

Reformulate these equations in the dimensionless form (8.6)–(8.8) and dis-
cuss the values of the dimensionless parameters. Note that γ a/γ is large, which
motivates the adiabatic elimination of D. Moreover A is small.

8.5.3 Symmetric pulse and pulse width

Derive approximate analytical expressions for the pulse shape and its width on the
basis of the analysis proposed in Exercise 8.5.1.
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Within the approximations used above, the equations for the pulse are

I ′ = I (−1 + D), D′ = −γ DI , and D(−∞) = D1+,

where D1+ → Ath = 1 + A if A − Ath → 0. The time variable is s = t − tp,
where tp is defined as the time at which the pulse is maximum.

Solve these equations in the limit A → 0. Introducing ε = A, the boundary
condition suggests the new variable X = (D − 1)/ε. The leading-order equations
for ε → 0 then become

I ′ = εX I , εX ′ = −γ I , and X(−∞) = 1.

Show that the solution of these equations is

X = − tanh
(εs

2

)
and I = ε2

2γ
sech2

(εs
2

)
.

The expression for I represents a symmetric pulse. Its width at half maximum is

�s = 4ar cosh(
√

2)

ε
� 3.52

ε
= 3.53

A
.

This expression for the pulse width is used in the engineering literature as a guide
(see Eq. (9) in [191]).

8.5.4 The LSA with two-photon absorber

A GaAs plate inserted inside the cavity of a Nd3+:YAG laser acts as a saturable
absorber because two-photon absorption of the 1.06 μm photons dominates at high
irradiance and is intensity-dependent. Gu et al. [201] numerically simulated the
pulsating oscillations by using the following equations for the photon density �
and the population inversion N

d�

dt
= 1

τR

[(
2σ l N − γ − 2αlq

)
�− B�2

]
,

dN

dt
= −cσN�− N

τ
+ P(NT − N ).
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They considered the following values of the parameters: τR = 2.7 ns, σ = 7.6 ×
10−19 cm2, l = 10 mm, γ = 0.02, α= 1.1 cm−1, lq = 0.628 mm, B = 7.88 ×
10−17 cm2W−1, τ = 230 μs, NT = 1.5 × 1020 cm−3, c = 3 × 108 ms−1, and
P = 50 s−1.

(1) Reformulate these equations in dimensionless form and determine the number of
independent parameters.

(2) Determine the steady state solutions and their linear stability properties.
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Optically injected semiconductor lasers

There is a recurrent need for high power, frequency-stable lasers in applications
as diverse as laser radar, remote sensing, gravitational wave interferometry, and
nonlinear optics. This need is often satisfied by using a low power, frequency-
stable laser followed by a chain of amplifiers, but a preferred approach is to
injection-lock a high power (slave) laser to a lower power, frequency-stable
(master) laser. Other advantages of the injection-locking technique are the pos-
sibility of ensuring single-mode operation, eliminating mode partition noise,
mode hopping, preventing spurious feedback effects, and synchronizing one or
more free-running lasers to the same pump. As explained in Section 3.4, the
main benefits of optical injection occur when the frequencies of both lasers
are close together and for sufficiently large injected power. The slave laser
then gets the spectral properties of the master one in terms of frequency and
linewidth [202, 203, 204]. Stover and Steier [77] did the first optical injec-
tion experiment in 1966 using gas lasers. The first optical injection experiment
using semiconductor lasers (SLs) came much later and was done by Kobayashi
and Kimura in 1980 [205]. At that time, it was not clear that SLs would be
useful lasers, but the performance of these lasers has dramatically improved
during the last 30 years, providing reliable devices for a large variety of appli-
cations. Optical injection is used to reduce noise (frequency noise [206, 207, 208],
mode partition noise [209], or intensity noise [210]), to generate microwave sig-
nals [205, 211, 212], or to produce chaotic outputs for secure communication
[116, 213, 214, 215].

Besides phase-locking, optically injected SLs admit a rich variety of dynam-
ical responses that have motivated quantitative comparisons between theory and
experiments [216]. Most comparisons have been performed by comparing experi-
mental data with numerical simulations of rate equations. Here, preference is given
to asymptotic studies which provide analytical information of physical signifi-
cance. How good is Adler’s theory of phase-locking for a SL? What is the effect

213
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of the linewidth enhancement factor α? Can we describe the separate effects of the
detuning and the RO frequency of the solitary laser?

9.1 Semiconductor lasers

Before we introduce the rate equations, we need to stress three important features
of a SL that have an immediate impact on the way we examine the experimental
observations. First, SLs are highly sensitive to noise because of their particular
geometries and their small size. SLs are produced in two geometries, namely edge-
emitting lasers (EELs) and vertical cavity surface emitting lasers (VCSELs). See
Figure 9.1. For edge-emitting lasers, light propagates in a guided mode parallel to
different layers of semiconductor, and the lateral facets are coated with mirrors. In
VCSELs, Bragg mirrors are epitaxially grown on both sides of a very thin active
layer and light freely propagates perpendicular to the layers. Table 9.1 summarizes
the main properties of these two lasers. The circular geometry of VCSELs leads to
several advantages compared to EELs. The output beam of the fundamental mode
has a circular cross section, a small divergence (between 10◦ and 20◦), and no
astigmatism. As a result, the laser beam can be focused or coupled into an optical
fiber more easily. The threshold current of a VCSEL can be orders of magnitude
smaller than that of an EEL, implying higher efficiency. Finally, due to the short
cavity, VCSELs are inherently single longitudinal mode lasers.

Because of their geometries and/or guided character of propagation, both
EELs and VCSELs efficiently collect spontaneous emission in contrast to open

5 mm

500 mm

Mirror

Active Layer

Mirror

Fig. 9.1 In an EEL (left), the cavity is oriented parallel to the wafer surface while
in a VCSEL (right), the orientation of the cavity is perpendicular to the surface
(vertical). Despite their success and implementation in various applications, EELs
have some disadvantages. For example, the shape of the output beam is elliptical
and has astigmatism, which is not appropriate for efficient coupling into an optical
fiber. By contrast, the output beam of a VCSEL has a circular cross section, a
small divergence, and no astigmatism, allowing easier coupling to an optical fiber.
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Table 9.1 Cavity length and shape, dimensions, reflectivity of the mirrors, and
beam shape of EELs and VCSELs.

laser cavity length cavity shape dimensions reflectivity beam

EEL ∼500 μm rectangular ∼(50 × 5) μm ∼30% elliptical
VCSEL ∼10 μm cylindrical diameter 5 μm ∼99.9% circular

Fabry–Pérot cavities used for gas or solid state lasers. Unavoidable mechanical
or thermal fluctuations then induce large frequency variations for the short cavity
SLs. For example, a length change of 1 μm in a 500 μm long diode laser operating
at a wavelength of 1 μm produces a frequency shift as large as 60 MHz while the
same length change causes a shift of only 3 kHz in a 1 m long CO2 laser oper-
ating at a wavelength of 10.6 μm. Any quantitative comparison between theory
and experiments for a SL will need a theory that takes into account these laser
fluctuations.

A second feature of SLs is the experimental difficulty of investigating time
series. The intrinsic time scales of SLs are extremely fast, of the order of tens
of picoseconds or smaller. It is impossible to have measurements of representative
time series of the intensity of a diode laser, except when a streak camera is used,
but then only a good resolution on a short time interval or a poor resolution on
a long time interval are possible. The preferred method of investigation for SLs
relies on spectral analysis. We can measure the radiofrequency spectrum of the
laser intensity with a radiofrequency spectrum analyzer and the optical spectrum
of the laser with a monochromator. Physically, they provide the squared modu-
lus of the Fourier transforms of the intensity and the electrical field, respectively.
Such spectra are time averaged quantities and must be interpreted carefully. But
combining optical and power spectra, we may identify specific bifurcations and
determine regions in parameter space where a particular response is possible. A
drawback of this approach is the identification of possible coexisting attractors
with the same spectral content or transient attractors, leading to incorrect spectral
signatures. Sometimes numerical simulations of the equations that describe the
system dynamics must be used to actually interpret the spectra. In such cases, we
must use equations that have been tested before and have good predictive power,
and must also be certain of the specific values of the parameters that appear in
these equations.

Finally, SLs differ from other lasers in that the free carriers which control the
optical gain of the system also have a strong effect on the refractive index, giving
it the characteristics of a detuned oscillator. This phenomenon is parametrized by
a single parameter, the α parameter, which is defined as the ratio of the real and
imaginary parts of the pump-induced susceptibility. In 1967, Lax [217] and Haug
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and Haken [218] separately noted that the linewidth of the laser field is enhanced
by a factor 1 +α2. But in 1982 it was found by Henry [40] that α is of the order of
5, which explained the origin of the large linewidth. Since then, the α parameter
has been known as the linewidth enhancement factor or Henry’s α.

9.2 Injection-locking

As described in Section 1.7, emission in SLs results from electron–hole recom-
binations between energy bands rather than discrete energy levels. Fortunately,
the dynamical response of a single-mode SL can still be described in terms
of two rate equations [33, 34, 44]. A typical experimental set-up is shown in
Figure 9.2. If we consider the injection of a monochromatic optical field, Ein(τ ) =
Ein exp(i(ωinτ +φ)), Eq. (1.94) for the carrier density remains unchanged but Eq.
(1.93) for the amplitude of the field admits an additional term. The new equation
is given by

dE

dτ
= �G N

2
(1 + iα)nE + κEin exp(iντ ), (9.1)

where ν ≡ ωin − ω0 is defined as the detuning frequency between the injected
signal and the solitary laser, and κ is the injection rate. (The phase φ can be elim-
inated by simply changing the origin of time.) We reformulate the dimensionless
equations using t and Z defined in (1.95) and Y given by

Y ≡
√
τsG N

2
E exp(−iντ ). (9.2)

MLD

L
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M

M

BS

L

M

D

BS
OSA

MSA
L

SLD

Fig. 9.2 The output field from a master laser diode (MLD) of frequency ωin is
injected into a slave laser diode (SLD) exhibiting a field with frequency ω0 close
to ωin . An optical isolator guarantees that the injection is unidirectional and that
no feedback light goes back to the master laser. L: lens; M: mirror; A: variable
attenuator; BS: beam splitter; D: fast photodiode; OSA: optical spectrum ana-
lyzer; MSA: RF/microwave spectrum analyzer. The solid lines are optical paths
and the dashed line is an electrical signal path. Reprinted Figure 1 from Simpson
[219] with permission from Elsevier.
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In terms of the new variables, Eqs. (1.94) and (9.1) become

dY

dt
= (1 + iα)Y Z − i�Y + η, (9.3)

T
dZ

dt
= P − Z − (1 + 2Z) |Y |2 , (9.4)

where the new parameters

η ≡
√
τsG N

2
τpκEin and � ≡ ντp (9.5)

are our control parameters. η is proportional to the injection rate and � is propor-
tional to the detuning between the frequency of the master laser and the frequency
of the free-running slave laser. It will be convenient to introduce the amplitude and
the phase of the field Y . Inserting Y = R exp(iψ) into (9.3) and (9.4) leads to the
following equations for R, ψ , and Z

dR

dt
= Z R + η cos(ψ), (9.6)

dψ

dt
= −�+ αZ − η

R
sin(ψ), (9.7)

T
dZ

dt
= P − Z − (1 + 2Z)R2. (9.8)

These equations are now in a convenient form for analysis.

9.3 Adler’s equation

Adler’s equation is expected to be a valid description of the master–slave locking
phenomenon for low values of both the injection rate η and the detuning �. The
asymptotic analysis is not so obvious as in Section 3.4 for a class A laser and we
examine the problem in detail. Specifically, we consider η as a small parameter
and expand� in power series of η as

� = η�1 + η2�2 + . . . (9.9)

We next seek a solution of Eqs. (9.6)–(9.8) of the form

R = R0(t , τ )+ ηR1(t , τ )+ . . . (9.10)
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ψ = ψ0(t , τ )+ ηψ1(t , τ )+ . . . (9.11)

Z = ηZ1(t , τ )+ . . . , (9.12)

where τ ≡ ηt is defined as a slow time variable. This slow time variable is sug-
gested by the right hand side of Eq. (9.7) which is O(η) small since both � and Z
are proportional to η. Introducing (9.10)–(9.12) into Eqs. (9.6)–(9.8), we obtain a
sequence of problems to solve. From the first two problems we find that

R = P1/2 +
[
η

1 + 2P

2P
cos(ψ0)+ EDT

]
+ O(η2) (9.13)

Z = η
[
−P−1/2 cos(ψ0)+ EDT

]
+ O(η2), (9.14)

where ψ0 = ψ0(τ ) is a function of τ and EDT means exponentially decaying
functions of t that we do not need to describe. Solvability of the ψ1 equation with
respect to the fast time t then leads to an equation for ψ0. In terms of the original
time variable and parameters, this equation is given by

dψ

dt
= −�− ηP−1/2 (α cos(ψ)+ sin(ψ)) (9.15)

= −�− ηloc sin(ψ + ψloc), (9.16)

where

ηloc ≡
√

1 + α2

P
η and ψloc ≡ arctan(α). (9.17)

Equation (9.16) is Adler’s equation for an optically injected SL. It differs from the
one derived in Section 3.4 by the α factor. Steady state locking is possible only if
ηloc > |�| . Equivalently, the locking range is given by

�� = 2

√
(1 + α2)

η2

P
(9.18)

and increases with α. The expression (9.18) is documented in many textbooks
(see, for example, Siegman [20]). Adler’s equation (9.15) admits an exact solution
and offers the possibility of analyzing the behavior of the slave laser both in the
locking region and outside the locking region.

Outside the locking range, the phase ψ is an unbounded periodic function of τ
although R and Z given by (9.13) and (9.14) are bounded periodic functions of τ .
They are called four-wave mixing (FWM) regimes [220] because of their typical
optical spectra: the optical field emitted by the laser exhibits a strong component
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at frequency ω1 � ω0 where ω0 is the solitary laser frequency, and two weaker
components, one at the injection frequency ω2 = ωin and one at the conjugate
frequency 2ω1 − ω2.1 Another property of the FWM pulsating oscillations is the
frequency pulling phenomenon, which is best observed far from the locking region.
Recall Adler’s frequency (3.12). For Eq. (9.16), it is given by

�out =
√
�2 − P2/(1 + α2). (9.19)

Well outside the locking region (|�| sufficiently large), (9.19) can be expanded as

�out � −�
[

1 − P2

2(1 + α2)�2

]
, (9.20)

where the minus sign in front of � comes from Eq. (9.16), indicating dψ/dτ =
−� as |�| → ∞. Using (9.2) for E and ψ = �out t , the optical field E exp(iω0τ )

has the form

E exp(iω0τ ) ∼ Y exp[i(ω0 + ν)τ ]
= R exp[i(ωoutτ )], (9.21)

where τ is the original time and ωout ≡ ω0 + ν + �outτp. With the expression
(9.20) and noting that τp� = ν, the optical frequency becomes

ωout � ω0 + ν − τp�+ τp
P2

2(1 + α2)�

= ω0 + τ 2
p P2

2(1 + α2)ν
(9.22)

meaning that it is pulled from ω0.
The derivation of Adler’s equations is valid for low injection rate and low

detuning. It ignores the time scales of the laser intensity given by the relaxation
oscillation frequency ωR = O(T −1/2) and the damping rate ξ = O(T −1) defined
by (1.99). If Eq. (9.16) is a valid description of the long time behavior of the
laser, the evolution of the laser phase ψ should be slower than the decay of
the laser relaxation oscillations, which is a function of T −1t . This then implies
the inequality

ηloc ≡
√

1 + α2

P
η << T −1. (9.23)

1 The FWM pulsating intensity oscillations typically appear outside the locking region but they may coexist
with a stable locked state near the locking boundary [216].
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This condition considerably restricts the domain of injection rate since (9.23)
requires that

η <<

√
P

1 + α2

1

T
. (9.24)

This condition is valid for all lasers subject to an injected signal but is more restric-
tive for a SL because the upper bound decreases with α. In Section 9.6.3, we
concentrate on the case η = O(T −1) and show that a series of new bifurcations
appear which cannot be described by Adler’s equation. The interaction between
Adler locking dynamics and the laser relaxation oscillations is investigated in
Section 9.7.

9.4 Experiments and numerical simulations

From low to moderate injection powers, three distinct long time phenomena are
observed depending on the detuning. At a fixed injection rate, steady state locking
occurs if the detuning is sufficiently small. Outside the locking region, the FWM
pulsating intensities are observed and they appear as soon as the injection rate
is increased. Stable locking occurs predominantly at negative detunings relative
to the frequency of the free-running laser. But as the detuning is progressively
increased from negative to positive values, the locked steady state may transfer
its stability to sustained relaxation oscillations (ROs). This transition is a Hopf
bifurcation.

Numerical simulations of the laser rate equations and experiments indicate that
the domain of stable locking is limited in size and that different dynamical outputs
are possible. Because of the large number of these regimes, it was important to draw
a map of the injected slave behavior in parameter space defined by the injected
power and the detuning. The mapping of the locking area was presented by
Mogensen in 1985 [221]. Then multiple regimes were mapped out, such as relax-
ation regime [222], chaos [223], and wave-mixing [223]. More recently, accurate
injection maps were obtained [224–227]. In Figure 9.3, full lines represent stability
boundaries obtained numerically and dots correspond to experiments. Only the
cross-hatched region for negative detuning corresponds to the region of stable
locking. The experiments were done using a distributed feedback (DFB) semi-
conductor laser operating at 1.557 μm, which is strictly single-mode throughout
the entire range of injection values. All the fixed parameters have been estimated
experimentally [228]. They are given by α= 2.6, P = 0.22, and T = 125. The
parameters � and � correspond to the injection rate and detuning normalized by
the RO frequency, respectively. They are defined as� = η/

(√
PωR

)
,� = �/ωR ,

where ωR = √
2P/T . The lines emerging from the origin (�,�)= (0, 0) are lines

above which steady state locking is possible as we keep the detuning fixed and
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Fig. 9.3 Experimental and numerical stability diagram. Only the stable bound-
aries are shown, i.e. those corresponding to stable solutions. Full lines were
obtained numerically. Experimental data are denoted by dots, squares, and tri-
angles: • Hopf, � SN or steady locking, © Torus, � first period doubling, and �
second period doubling. Adapted Figure 1 with permission from Wieczorek et al.
[228]. Copyright 2002 by the American Physical Society.

progressively increase the injection rate (SN or saddle-node bifurcation). The curve
denoted by H is the line of Hopf bifurcations where a stable steady state loses its
stability and time-periodic solutions appear. The lines PD1 and PD2 mark period-
doubling bifurcations. Two PD1 lines appear symmetrically for low injection for
� close to �= ±2. The line T means a line of torus bifurcations from periodic
to quasi-periodic oscillations. The two lines SL (saddle-node of limit cycles) that
appear for positive detuning are lines of limit points where a periodic solution
appears.

We wish to investigate how these different bifurcations appear and how they are
related to the physical parameters. As in all dynamical system problems, we first
concentrate on the steady state solutions and analyze their linear stability proper-
ties. From Figure 9.3, we note that the domain of stable steady states is bounded by
the SN curve, above which locking is possible, and by the Hopf curve, above which
oscillatory regimes appear. Both stability boundaries can be derived analytically
and admit interesting approximations.
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9.5 Stability of the steady states

9.5.1 Multiple steady states

The steady state solutions satisfy the conditions dR/dt = dψ/dt = dZ/dt = 0
and from Eqs. (9.6)–(9.8), we obtain

ZR + η cos(ψ) = 0, (9.25)

−�+ αZ − η

R
sin(ψ) = 0, (9.26)

P − Z − (1 + 2Z)R2 = 0. (9.27)

Eliminating the trigonometric functions in Eqs. (9.25) and (9.26) leads to

η2 = R2
(

Z2 + (αZ −�)2
)

. (9.28)

Using then Eq. (9.27), we find an expression for R2(Z) given by

R2 = P − Z

1 + 2Z
> 0. (9.29)

Finally, substituting (9.29) into Eq. (9.28) gives η2(Z) as

η2 = P − Z

1 + 2Z

(
Z2 + (αZ −�)2

)
. (9.30)

The expressions (9.29) and (9.30) provide a parametric solution for the intensity
of the laser field I ≡ R2 as a function of the injection rate η (Z is the parameter
and −1/2 < Z ≤ P).

We first consider the case � = 0 and P > 0. Equation (9.30) simplifies as

η2 =
(

1 + α2
) P − Z

1 + 2Z
Z2 (9.31)

and implies two solutions for η2 = 0, namely

(1) Z = P and (2) Z = 0. (9.32)

They correspond to the steady state solutions of the free-running laser with R2 = 0
and R2 = P , respectively. From these two points a Z-shaped branch of solutions
emerges in the Z vs. η diagram (see Figure 9.4, broken lines). The hysteresis of
the steady state curve does not necessarily mean bistability, i.e. two stable steady
states coexisting for the same value of η. In order to claim for bistability, we need
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Fig. 9.4 Z-shaped branch of steady states for the carrier density Z = Z(η), and
S-shaped branch of steady states for the intensity R2 = R2(η). These are obtained
using (9.29) and (9.30) with α = 3 and P = 0.1. The broken and full lines
correspond to � = 0 and � = −0.3, respectively.

to investigate the stability properties of the two steady states. In general, the middle
and lower branches of the R2 = R2(η) steady state curve are unstable. For lower
values of the pump parameter (P = O(ε)), the lower branch can be either fully
stable or partially stable (see Exercise 9.8.1).

We next consider the case |�| �= 0. As |�| progressively increases from zero, the
Z-shaped curve unfolds (see Figure 9.4, solid lines) and only Z = P is a possible
solution for η = 0. The curve exhibits two limit points (L P1 and L P2) which
we would like to determine. They satisfy the geometrical condition dη2/d Z = 0.
Using (9.30), we find

dη2

d Z
= F(�, Z)

(1 + 2Z)2
= 0, (9.33)

where the numerator is defined by

F ≡ − (αZ −�)2(1 + 2P)+ 2α(αZ −�)(P − Z)(1 + 2Z)

+ 2Z(P − Z)(1 + 2Z)− (1 + 2P)Z2. (9.34)

The condition (9.33) implies F = 0, which gives a quadratic equation for αZ −
�. We solve this equation for αZ − � at fixed values of Z and then extract �.
Having �(Z), and with η2(Z) given by (9.30), we have a parametric solution for
the limit points. Figure 9.5 shows the limit point curves LP1 and LP2 in the η
vs. � parameter space. Hysteresis is possible for both � positive and � negative.
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Fig. 9.5 Steady and Hopf stability boundaries. The parameters are α= 3,
P = 10−1, and ε ≡ T −1 = 8 × 10−3. The dot marks the crossing of the SN
and Hopf bifurcation lines. The curves LP1 and H1 correspond to SN and Hopf
bifurcation points to stable solutions, respectively. The curves LP2 and H2 refer
to SN and Hopf bifurcation points to unstable solutions, respectively.

The region bounded by the L P1 and H1 lines corresponds to the cross-hatched
region in Figure 9.3.

9.5.2 Linear stability analysis

The starting point of all bifurcation studies is the linear stability analysis of the
steady states. For the laser subject to injection, two stability boundaries are of
particular interest. First, the transition to locking is marked by a limit point of
the steady states. Second, the transition from steady to time-periodic intensi-
ties appears through a Hopf bifurcation. These two stability boundaries can be
determined analytically.

The linearized equations for the deviations (u, v,w) from the steady state
(R,ψ , Z) are given by

d

dt

⎛⎝u
v

w

⎞⎠ = L

⎛⎝u
v

w

⎞⎠, (9.35)



9.5 Stability of the steady states 225

where

L ≡
⎛⎝ Z −(αZ −�) R R
(αZ −�) R−1 Z α

−2R(1 + 2Z)ε 0 −(1 + 2R2)ε

⎞⎠ (9.36)

is the Jacobian matrix. We have eliminated cos(ψ) and sin(ψ) by using Eqs. (9.25)
and (9.26). The small parameter ε is defined as

ε ≡ T −1 (9.37)

and is useful if we look for approximations of the Hopf bifurcation point. We now
seek a solution of Eq. (9.35) of the form u = c1 exp(σ t), v = c2 exp(σ t), and
w = c3 exp(σ t). The condition for a nontrivial solution leads to the following
characteristic equation for σ

σ 3 + C1σ
2 + C2σ + C3 = 0, (9.38)

where the coefficients are defined as

C1 ≡ −2Z + ε
1 + 2P

1 + 2Z
, (9.39)

C2 ≡ −2εZ
1 + 2P

1 + 2Z
+ 2ε(P − Z)+ Z2 + (αZ −�)2, (9.40)

C3 ≡ −2ε(P − Z) (α(αZ −�)+ Z)+ ε
1 + 2P

1 + 2Z

(
Z2 + (αZ −�)2

)
.

(9.41)

We have used (9.29) in order to express R2 in terms of Z . As for the laser with
a saturable absorber, the stability of the steady states can be determined by the
Routh–Hurwitz conditions [29] given by

C1 > 0, C3 > 0, C1C2 − C3 = 0. (9.42)

These conditions lead to the steady and Hopf bifurcation boundaries as we shall
now describe.

9.5.3 Limit point or saddle-node bifurcation

By comparing (9.41) and (9.33), we note that

C3 = −ε(1 + 2Z)
dη2

d Z
, (9.43)
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where η2 = η2(Z) is the implicit steady state solution (9.30). Since Z > −1/2,
the sign of C3 is directly related to the direction of branching dη2/d Z . A limit
point verifies the condition dη2/d Z = 0 and thus implies

C3 = 0, (9.44)

which also means a zero eigenvalue of Eq. (9.38). The condition (9.44), or
equivalently Eq. (9.33), is the equation for the limit points.

9.5.4 Hopf bifurcation

A Hopf bifurcation point satisfies the two conditions

C1C2 − C3 = 0 (9.45)

and
C2 > 0. (9.46)

These conditions are found by substituting σ = iμ into Eq. (9.38) and separating
the real and imaginary parts. The real part gives (9.45) and the imaginary part gives
μ2 = C2, which implies (9.46). The first condition leads to the following quadratic
equation for αZ −�:

(αZ −�)2 Z − εα(αZ −�)(P − Z)− ε
(
ε(P − Z)+ 2Z2

) 1 + 2P

1 + 2Z

+ Z3 + εZ(P − Z)+ ε2 Z
(1 + 2P)2

(1 + 2Z)2

= 0. (9.47)

Solving this equation for αZ − � and then extracting � leads to zero, one, or
two real roots. Together with (9.30), we have the Hopf bifurcation point in the
parametric form�(Z) and η(Z). Figure 9.5 shows a typical stability diagram with
the Hopf bifurcation lines.

9.5.5 Approximations of SN and Hopf bifurcation points

Because ε = O(10−3) is small and the detuning� is proportional to the relaxation
oscillation frequencyωR = √

2Pε = O(ε1/2), it is reasonable to look for approxi-
mations of the SN and Hopf bifurcation lines [229]. From (9.34) with Z = O(ε1/2)

and � = O(ε1/2), we find

ηSN = ±
√

P

1 + α2
�, (9.48)

which matches Adler’s estimate but becomes inaccurate for larger η.
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Inspecting the Hopf bifurcation condition (9.47) for small ε suggests two differ-
ent scalings of the parameters. First, we may assume � = O(ε1/2) and find that
Z = O(ε1/2), which implies η = O(ε1/2). From (9.47), the leading order problem
is O(ε3/2), given by

(αZ −�)2 Z − εα(αZ −�)P + Z3 + εZ P = 0, (9.49)

which must be solved for αZ −�. From (9.30), we then determine η2 as

η2 = P
(

Z2 + (αZ −�)2
)

. (9.50)

Using (9.49) and (9.50), we determine Z as

Z = −εαP�

η2 P−1 + εP(1 − α2)
. (9.51)

We then eliminate Z in (9.50) and obtain � = �H (η) as

�H = ± η√
P

η2 P−1 + εP(1 − α2)√
ε2α2 P2 + (η2 P−1 + εP)2

. (9.52)

The expressions (9.52) provide a good approximation of the two Hopf bifurcation
lines (H1 and H2 in Figure 9.5) except in the vicinity of � = 0 where a different
approximation with different scaling laws is needed (see Eq. (9.58)). Note that
there exist two Hopf bifurcation points if |�| is sufficiently small. This can be
seen by looking for the zeros of (9.52): � = 0 at η = 0 and at

η = P
√
ε(α2 − 1) (9.53)

if α > 1. This second Hopf bifurcation at high injection rate is responsible for
the stability recovery of the steady state. This was ignored in early studies of the
optically injected SL, which mainly concentrated on low injection regimes. The
frequency of the Hopf bifurcation is defined by ω2

H = C2 > 0. Using (9.40)
with � = O(ε1/2) and Z = O(ε1/2), and then (9.50), we find the elegant
approximation

ωH =
√

2Pε + η2. (9.54)
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Fig. 9.6 Resonance frequency (in GHz) as a function of the injection rate r .
r is proportional to η, and r = 0.008 at the first Hopf bifurcation point. Solid
line corresponds to the numerically estimated Hopf frequency from the linearized
theory. Triangles are computed frequencies from the full rate equations. Dots are
the experimental data. The mode calculations used experimentally determined
parameters for the slave laser. Reprinted Figure 1 with permission from Simpson
et al. [230]. Copyright 1994 by the American Institute of Physics.

The expression (9.54) indicates that ωH is close to the relaxation oscillation
frequency ωR = √

2Pε for small injection rates but approaches the straight line

ωH = η (9.55)

for large injection rates. In Figure 9.6, experimental data for the main resonance
frequency as a function of the injection rate are compared with theoretical predic-
tions [231]. The monotonically increasing full line is the Hopf frequency obtained
numerically from ωH = √

C2. The dots are the experimental data for the main res-
onance frequency. The numerically computed frequencies using the full nonlinear
rate equations are shown by triangles. The expression (9.54) suggests that the Hopf
bifurcation frequency approaches a straight line for sufficiently large injection rate
(this line is indicated by an arrow in Figure 9.6). This limit is clearly followed by
the experimental and numerically computed frequencies. The possibility of reach-
ing higher frequencies by operating the laser close to the second Hopf bifurcation
was successfully used to produce a source for photonic microwave transmission.
Microwave frequencies over six times the RO frequency were generated [232].

Another distinct approximation of the Hopf bifurcation appears if we concen-
trate on the small detuning regime. Assuming � = O(ε) instead of O(ε1/2) we
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find that Z needs to be scaled as Z = O(ε), implying η = O(ε). From (9.47), the
leading approximation is now O(ε2) and given by

εP [−α(αZ −�)− ε(1 + 2P)+ Z ] = 0. (9.56)

The solution for Z then is

Z = ε(1 + 2P)− α�

1 − α2
(9.57)

and using (9.50), we find

ηH =
√

P

|α2 − 1|
[
(1 + α2)(1 + 2P)ε2 − 4εα�(1 + 2P)+ (1 + α2)�2

]1/2
.

(9.58)
If α = 0, we find the expression derived for a solid state laser (see Exercise 9.8.4).
In the (η,�) stability diagram, the Hopf bifurcation line (9.58) crosses the SN
bifurcation line (9.48) (� > 0) at a critical point called a fold-Hopf bifurcation
point (see Exercise 9.8.2). From ηSN = ηH , we find

�FH = ε(1 + 2P)

2

(1 + α2)

α
, (9.59)

and then using (9.48)

ηFH = ε(1 + 2P)

2

√
P(α2 + 1)

α
. (9.60)

This point is shown by a black dot in Figure 9.5. Such degenerate Hopf bifurcation
points are called organizing centers because several bifurcation lines may emerge
from this point (see Section 9.6.3). Note that the expressions (9.59) and (9.60) are
the product of the damping of the RO oscillations (namely, �RO = ε(1 + 2P)/2)
and a nonlinear function of α. If α → 0, this point moves to infinity leading to a
dynamically more stable laser.

9.6 Nonlinear studies

As is largely the case for engineers and applied scientists, a model is often consid-
ered as a numerical model. The difficulty with this approach is that computation
limits insight because of an inability to pose questions properly. We cannot ignore
the possibilities offered by our PCs but we also need to think about the objec-
tives of our research. To this end, asymptotic approaches based on the natural
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Fig. 9.7 Analytical bifurcation lines. H, T, PD, and SN denote the Hopf, torus,
period-doubling, and saddle-node bifurcation lines, respectively. The stability
diagram compares quantitatively with the experimental and numerical diagram
of Figure 9.3.

values of the parameters smoothly complement detailed simulations by empha-
sizing particular features of our model equations. From an applied mathematical
point of view the SL rate equations offer challenging (singular) limits requiring us
to adapt known techniques to our laser equations. In this section, we summarize
some of the most pertinent results and propose a stability diagram in Figure 9.7
solely based on analytical results using the same values of the parameters as the
experimental-numerical diagram in Figure 9.3.

9.6.1 Formulation

The simplest limit to analyze is the limit of small injection rate. In this limit, we
expect that the free running laser is weakly perturbed by the injected signal. From
Chapter 1, we know that the free running laser exhibits 2π/ωR ROs that slowly
decay in time. This suggests the introduction of the laser time (5.36) as our basic
time scale. We next proceed as in Section 5.2.1 and remove the large T parameter
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multiplying dZ/dt in Eq. (9.8) by introducing the following dependent variables
y and z

R = √
P(1 + y) and Z = ωRz. (9.61)

Inserting (9.61) into Eqs. (9.6)–(9.8) and simplifying leads to the following
equations for y, z, and ψ

y′ = (1 + y)z +� cos(ψ), (9.62)

ψ ′ = −�+ αz − �

1 + y
sin(ψ), (9.63)

z′ = −1

2
(2y + y2)− ξ

1 + 2P
z
(

1 + 2P(1 + y)2
)

, (9.64)

where

� ≡ η√
PωR

, � ≡ �

ωR
, and ξ ≡ 1 + 2P

2P
ωR = 1 + 2P√

2PT
. (9.65)

Prime means differentiation with respect to time s. The RO frequency now equals
1 in the time s variable and the large T parameter appears through the small
parameter ξ . The new control parameters� and� are properly scaled by ωR . The
low injection limit implies the limit �→ 0 but the solution of Eqs. (9.62)–(9.64)
depends on �.

9.6.2 � is arbitrary

The first step of our analysis is to determine a solution in power series of� assum-
ing the small damping rate ξ = O(�). The analysis is long and tedious but reveals
simple results. We find that x is of the form

z � �a exp(i(s + φ))+ c.c., (9.66)

where a and φ denote slowly varying functions of τ = �2s. In terms of the original
time s, the amplitude a(s) satisfies a linear ordinary differential equation given by

a′ = a

2

[
−ξ + α�2

�(1 −�2)

]
. (9.67)

Equation (9.67) implies that the steady state a = 0 is stable either if

�(1 −�2) < 0 (9.68)

or if

�(1 −�2) > 0 and � < �T ≡
√
ξ�(1 −�2)

α
. (9.69)
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Fig. 9.8 Torus bifurcation line. Outside the locking region, the FWM pulsating
intensity regime may change stability through a torus bifurcation as � > �T .
For negative detuning, the torus bifurcation line emerges at � = −1 and then
crosses the SN bifurcation line for large negative detunings. Stable steady and
periodic solutions may then coexist in the domain bounded by the SN and T lines.
For positive detuning, the torus bifurcation line emerges at � = 1 and connects
� = 0. However a finer analysis near � = 0 indicates that the T line ends at the
SN line (see Figure 9.9).

The critical point �T represents a torus bifurcation point to quasi-periodic
oscillations. See Figure 9.8. A second result of our analysis is that the expan-
sion of the solution becomes nonuniform or singular at and near the critical
points � = 0, ±1, . . . meaning points of resonance where the solution locks
into a specific time-periodic regime. Each case needs to be examined indepen-
dently by an appropriate new expansion of the solution. We summarize the main
results.

9.6.3 |�| is small

If |�| = O(�), the expansion of the solution obtained assuming � arbitrary is
singular and a refined analysis near � = � = 0 is necessary. The leading order
solution is now given by

z � �1/2a exp(i(s + φ))+ c.c., (9.70)

ψ = ψ0 −�1/2αa exp(i(s + φ))+ c.c., (9.71)
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where a, φ, and ψ0 are functions of the slow time τ = �s. In terms of the original
time, the amplitude a(s) and phase ψ0(s) satisfy two coupled equations given by

a′ = −a

2
[ξ +�(α sin(ψ0)+ cos(ψ0))] , (9.72)

ψ ′
0 = −�−�(α cos(ψ0)+ sin(ψ0)) . (9.73)

Equation (9.73) is equivalent to Adler’s equation (9.15). However its steady or
time-dependent solution will affect the stability of the laser steady state. First,
Eqs. (9.72) and (9.73) admit a steady state solution a = 0 and ψ0 = ψs , where ψs

satisfies the condition

�+�(α cos(ψs)+ sin(ψs)) = 0. (9.74)

From (9.74), we determine the steady state limit point given by

�L P = |�|√
1 + α2

, (9.75)

which is a well-known approximation of the steady state locking point [229].
Second, the steady state exhibits a Hopf bifurcation point given by ψ0 = ψH

at � = �H , where ψH and �H satisfy the two conditions

ξ +�H (α sin(ψH )+ cos(ψH )) = 0 (9.76)

�+�H (α cos(ψH )+ sin(ψH )) = 0. (9.77)

Eliminating the trigonometric functions, we find

�H = 1

|α2 − 1|
√[
(αξ −�)2 + (�α − ξ)2

]
, (9.78)

which matches the approximation of the Hopf bifurcation point for small |�|
[229]. Third, there exists a quasi-periodic solution characterized by an unbounded
phase ψ0 satisfying Eq. (9.73). This equation as well as Eq. (9.72) can be solved
exactly. We note that ψ ′

0 is P-periodic, where P is defined by

P ≡ 4π√
�2 −�2(1 + α2)

(9.79)

and ψ0(s + P) = ψ0(s) + 4π . Integrating then Eq. (9.72) from s = 0 to s = P
shows that a = 0 is stable either if

� < �∗ ≡ ξ

2α
(1 + α2) (9.80)
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Fig. 9.9 Organizing center. The three curves of saddle-node (SN), Hopf (H), and
torus (T) bifurcations cross at the same point, called the organizing center. The
SN and H curves are unstable as the detuning is increased past this point, i.e. they
correspond to unstable solutions.

or if

� > �∗ but � < �Q P ≡
√
ξ

α

[
�− ξ

4α
(1 + α2)

]
. (9.81)

The critical point� = �QP is a quasi-periodic bifurcation point. As� is progres-
sively increased from zero, this bifurcation point appears at � = �∗ and� = �∗,
where �∗ = �QP(�

∗). Note that �QP matches the expression (9.69) as � fur-
ther increases (i.e. the limit � large of (9.81) is identical to the limit � small of
(9.69)). A uniform expression for the quasi-periodic bifurcation can be derived
using (9.69) and (9.81) and is given by

�QP =
√
ξ

α

[
�(1 −�2)− ξ

4α
(1 + α2)

]
. (9.82)

Figure 9.9 shows the three bifurcation lines in the � vs. � diagram. They either
emerge or change stability at the fold-Hopf bifurcation point (9.59) and (9.60)
(�∗ = �FH/ωR and �∗ = ηFH/(

√
PωR); dot in Figure 9.9).

9.7 A third order Adler’s equation

Asymptotic methods are used to determine specific solutions of our laser equa-
tions, for example by seeking a periodic solution near a Hopf bifurcation point.
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Fig. 9.10 Bifurcation of the third order Adler equation (9.88). � = 0, ξ = 0.1,
α = 5. The extrema of y (y = −α−1ψ ′′ + O(ξ)) are determined as a function
of �.

But asymptotic theories are also powerful tools for simplifying the original equa-
tions. Taking account of the large values of T and redefining the time variable
as the time of the relaxation oscillations allowed us to highlight the laser con-
servative equations subject to weak damping. A further simplification is possible
if we consider α as a large parameter. We know that relatively large values of
α contribute to laser dynamical instabilities and we are interested in the limit α
large. As we shall demonstrate, the laser equations are then reduced to the equa-
tions for a weakly damped harmonic oscillator subject to a strong feedback of
the phase.

Specifically, we consider Eqs. (9.62)–(9.64) and examine the limit α large

� = O(α−1), y = O(α−1), and z = O(α−1).

From Eqs. (9.62)–(9.64), we then find that the leading order problem is given by

y′ = z +� cos(ψ), (9.83)

ψ ′ = −�+ αz, (9.84)

z′ = −y − ξ z. (9.85)

Expressing y and z as functions of ψ using (9.84) and (9.85), we derive from
Eq. (9.83) a third order equation for ψ only. Specifically, we sequentially find

z = α−1(ψ ′ +�), (9.86)

y = −α−1ψ ′′ − ξα−1(ψ ′ +�), (9.87)
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and
ψ ′′′ + ξψ ′′ + ψ ′ +�+ α� cos(ψ) = 0. (9.88)

The first three terms in (9.88), namely ψ ′′′ + ξψ ′′ + ψ ′ = 0, correspond to the
equation of a damped linear oscillator. The last three terms in (9.88), namely ψ ′ +
�+ α� cos(ψ) = 0, represent the Adler equation. Equation (9.88) is the simplest
equation that describes the interaction between the free laser oscillations and the
injected field. It is also a convenient equation for analysis [233].

We consider the case � = 0. The steady state solutions are ψ = ±π/2. The
linear stability analysis indicates that ψ = −π/2 is always unstable as a saddle
while ψ = π/2 undergoes a Hopf bifurcation at � = α−1ξ . We may progress
further with the nonlinear analysis by considering the limit ξ → 0 and assuming
� = O(ξ) small. Specifically, we assume

� = ξ�1 + ξ2�2 + . . . (9.89)

and seek a solution of the form

ψ = ψ0(s)+ ξψ1(s)+ . . . (9.90)

Introducing (9.89) and (9.90) into Eq. (9.88), we equate to zero the coefficients of
each power of ξ . The first two problems are given by

ψ ′′′
0 + ψ ′

0 = 0 (9.91)

ψ ′′′
1 + ψ ′

1 = −ψ ′′
0 − α�1 cos(ψ0). (9.92)

The periodic solution of Eq. (9.91) is

ψ0 = A sin(s)+ B, (9.93)

where A and B are two unknown amplitudes. Inserting (9.93) into the right
hand side of Eq. (9.92) and expanding cos(ψ0) in Fourier modes, we apply two
solvability conditions. They are given by

J0(A) cos(B) = 0, (9.94)

−A + 2α�1 J1(A) sin(B) = 0, (9.95)

where J0(A) and J1(A) are the Bessel functions of order zero and one, respec-
tively. These equations admit two nontrivial solutions given by (in implicit
form)

(1) : B = π/2, �1 = A

2α J1(A)
(9.96)
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and

(2) : J0(A) = 0, �1 = A

2α J1(A) sin(B)
. (9.97)

The first solution corresponds to the Hopf bifurcation branch emerging at �1 =
α−1. The second solution implies that A equals a root of the Bessel function
J0(A) (the first root is A1 � 2.4). The equation for B then indicates that �1

is proportional to 1/ sin(B), implying an isolated C-shaped branch of solutions.
For A = A1, J1(A1) > 0 and the branch emerges from a limit point at �1 =
A1/(2α J1(A1)), where B = π/2. The upper and lower parts of the branch are
bounded by the lines B = 0 and B = π .

In summary, our analysis has allowed us to predict the coexistence of a Hopf
bifurcation branch and isolated branches of periodic solutions.

9.8 Exercises and problems

9.8.1 Hopf bifurcation close to the laser threshold

Investigate the possibility of a Hopf bifurcation for low values of the pump
parameter P .

Solution: Equation (9.30) for the steady state requires that Z ≤ P . Assuming
then Z = O(P) small, (9.30) reduces to

η2 � (P − Z)�2 (9.98)

and the Hopf bifurcation condition (9.47) simplifies as

�2 Z + εα�(P − Z)− ε2 P + 2ε2 Z � 0. (9.99)

Solving Eq. (9.99) for Z , we obtain

Z = ε2 − εα�

�2 − εα�+ 2ε2
P (9.100)

and from (9.98)

η2 = �2 + ε2

�2 − εα�+ 2ε2
P�2 ≥ 0. (9.101)

The expression (9.101) tells us that a Hopf bifurcation point emerges from η = 0 if
the inequality in (9.101) is verified. From the second Hopf conditionω2 = C2 > 0,
we also find that the Hopf bifurcation frequency is ω � |�|, in first approximation.
This means that the Hopf bifurcation is initiated by the detuning rather than the RO
frequency as is the case for P = O(1).
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9.8.2 Fold-Hopf bifurcation

A fold-Hopf bifurcation (or Gavrilov–Guckenheimer or zero-pair or Hopf-SN
bifurcation) appears when a single Hopf bifurcation line crosses the SN bifurcation
line in the injection vs. detuning stability diagram. It is characterized by one zero
eigenvalue and a pair of purely imaginary eigenvalues. The conditions for such a
point are given by

C1 = C3 = 0 and C2 > 0. (9.102)

Investigate these conditions in the limit ε → 0.
Solution: using (9.39), we obtain from C1 = 0 a quadratic equation for Z

4Z2 + 2Z − ε(1 + 2P) = 0. (9.103)

After solving Eq. (9.103) for Z , we use (9.41) and determine from C3 = 0 a
quadratic equation for �− αZ given by

−2(P − Z) (α(αZ −�)+ Z)+ 1 + 2P

1 + 2Z

(
Z2 + (αZ −�)2

)
= 0. (9.104)

If ε → 0, Z → ε
2 (1 + 2P) from (9.103). Using (9.104) and (9.30), we obtain the

expressions (9.59) and (9.60) for the small ε fold-Hopf bifurcation point.

9.8.3 Bogdanov--Takens bifurcation

A Bogdanov–Takens (or double zero) bifurcation appears if

C2 = C3 = 0. (9.105)

The additional condition
C1 > 0 (9.106)

guarantees that the third eigenvalue is real and negative. Show that these conditions
cannot be satisfied in the limit ε → 0.

Solution: using (9.40) and (9.41), condition (9.105) implies

−2εZ
1 + 2P

1 + 2Z
+ 2ε(P − Z)+ Z2 + (αZ −�)2 = 0 (9.107)

and

−2(P − Z) (α(αZ −�)+ Z)+ 1 + 2P

1 + 2Z

(
Z2 + (αZ −�)2

)
= 0. (9.108)

If ε → 0, Eq. (9.107) requires that

Z2 + (αZ −�)2 = 0,
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which is equivalent to η = 0. This condition cannot be satisfied unless Z = � = 0.
A different conclusion is possible if we assume P = O(ε).

9.8.4 Injected solid state laser

In 2005, Valling et al. [226, 234] studied the stability diagram of a solid state
Nd:YVO4 laser. The interesting feature of the solid state laser is the fact that
α should be zero. Best agreement between experimental and numerical maps is
actually obtained by introducing an effective α factor (α = 0.35). The α fac-
tor was later measured using pump modulation experiments, providing the result
α = 0.25 ± 0.13 [235]. The authors considered the following rate equations (we
neglect the gain saturation terms because γp/γc ∼ 10−5 and use the fact that
γn � γs J̃ )

da

dt
=
[

1

2
(1 − iα)γc(n − 1)+ i�

]
a + κ (9.109)

dn

dt
= γs

[
1 − n + J̃ (1 − |a|2)+ J̃ |a|2(1 − n)

]
, (9.110)

where � ≡ 2π(νM L − νSL) and J̃ ≡ (J − Jth)/Jth . By introducing the new
variables

Y =
√

J̃

2
a, Z = n − 1

2
, s = γct , (9.111)

show that Eqs. (9.109) and (9.110) can be rewritten as Eqs. (9.3) and (9.4), where

T ≡ γc/γs , P ≡ J̃

2
, η ≡

√
J̃

2

κ

γc
,

α → −α, and � → −�
γc

.

Using the values of the parameters in [226], we determine T = 1.53 × 106 and
P = 1.25. Taking into account the large value of T (ε = T −1 << 1), determine
the leading approximations of the Hopf and SN stability boundaries for the case
α = 0.

Solution: We first consider the Hopf bifurcation condition (9.47) with α = 0.
Assuming� = O(ε) and Z = O(ε), we find

Z = ε(1 + 2P) (9.112)
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W
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Fig. 9.11 Stability diagram for α = 0. The Hopf bifurcation line emerges at a
finite injection rate at � = 0 and approaches the SN bifurcation boundaries as
|�| >> ε increases from zero.

and then, using (9.30) with α = 0, we obtain

η =
√

P
[
ε2(1 + 2P)2 +�2

]
. (9.113)

Similarly, from the SN bifurcation condition, we find

Z = 0 (9.114)

in first approximation and, using (9.30), we find

η = ±|�|. (9.115)

See Figure 9.11.
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Delayed feedback dynamics

In the study of the laser subject to an electrical feedback (see Section 4.1), we
assumed that the response time of the feedback was instantaneous. The time to
sense information and react to it was neglected because it was much smaller than
any time scale of the CO2 laser. This is, however, not the case for semiconductor
lasers (SLs) exhibiting a very short photon lifetime inside the cavity (∼10−12 s)
and optical feedback response times 103 times larger.

In this chapter, we consider a variety of systems in which the dynamics are
greatly affected by the response time of the feedback. We first concentrate on the
so-called low frequency fluctuations or LFF observed with SLs, because they have
been the topic of many investigations in the last 30 years. We first describe the
LFF from an experimental point of view and then interpret the phenomenon in
terms of numerical bifurcation diagrams. In the second part of this chapter, we
show how optical feedback may also be used to improve the sensitivity of imaging
systems. The last section is dedicated to optoelectronic feedback systems for which
pulsating instabilities appear as a possible source of high frequency (microwave)
electrical signals.

10.1 History

Optical feedback (OFB) cannot be fully avoided in experiments. Any optical ele-
ment placed in front of a laser, such as a detector or even an antireflection coated
lens, back-scatters part of the laser beam. This retroreflected light may re-enter the
laser cavity and interfere with the field already existing inside the cavity, leading
to a serious perturbation of the laser output. Soon after the development of the first
laser, it was discovered that even a small amount of back-reflected radiation could
strongly alter the response of a laser and that the intensity of the laser emission was
modulated “through one cycle as the distance between the laser and the reflector
was varied by one half-wavelength” [236]. If the reflecting target is moving, the

241
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frequency of the radiation reinjected inside the laser is Doppler shifted, producing
a temporal modulation of the laser emission.

The extreme sensitivity of the laser to feedback permitted the determination of
tiny effects such as the refractive index variations through laser reflection from
a plasma [237]. It was also useful for more common practical applications such
as Doppler velocimetry and range-finding. Doppler velocimetry is applied for
instance to blood flow and pressure checks in human tissue (laser dopplerome-
try). Range-finding techniques using OFB allow imaging and profiling of surface
microstructures to 20 nm depth resolution [238]. OFB is also used in extended-
cavity SLs to improve their frequency stability and spectral purity or to increase
their tunability.

Systematic experimental investigations of the influence of OFB started in the
early 1970s and were particularly relevant for SLs. In contrast to most other lasers
emitting a low divergence beam, SL divergence is large. The diffraction limit in
a standard laser1 is typically one milliradian or better for most modern lasers and
it reaches a fraction of a radian for edge-emitting lasers [239]. As the SL is emit-
ting over a large angle, it will efficiently collect light backscattered from many
directions (reciprocity principle). So even small amounts of feedback will add up,
making the SL very sensitive to feedback from any backscattering object. Even
tiny amounts of OFB (less than 0.01%) can cause the laser to enter a state of
erratic pulsating instabilities and irregular chaotic transitions.

Besides practical applications which most often rely on stable operation, the
interest in studying OFB in SLs clearly arises from the rich phenomenology
observed, ranging from multistability, bursting, intermittency, irregular intensity
drops (LFF), and transition to developed chaos (coherence collapse). An analytical
understanding of the physical mechanisms responsible for such complex behaviors
is, however, still missing. In particular, the origin of the LFF (stochastic, determin-
istic, or both) has been under debate since their very first observations and yet this
puzzling problem has not been fully solved.

Practically speaking, the dynamical regimes observed as the feedback strength
is progressively increased from zero are quite different for short feedback response
times (OFB from an optical fiber tip in telecommunications applications) and for
large feedback response times (OFB due to reflection from a faraway target in a
laser range-finder). If the external cavity formed by the retroreflecting target and
the laser is of the order of 1 m, noise peaks appear at GHz frequencies and are
referred to as “high frequency noise”. In addition, “low frequency” noise dom-
inates at frequencies less than 100 MHz and appears to be proportional to the
external cavity length (see [240] for a recent review).

1 ∼λ/πw0, where w0 is the minimum beam waist of the Gaussian laser beam.
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Key to this effect is the coherence of the reflected light.2 Modeling OFB
therefore requires introducing the electrical field as a dynamical variable instead
of the field intensity. Experiments indicate that an important parameter is the
laser–mirror–laser round-trip time, rather than the single dephasing caused by
the feedback loop. The necessity of explicitly introducing this round-trip time
in the laser rate equations significantly increases the complexity of the prob-
lem because they are now delay differential equations (DDEs). A widely used
system of rate equations was formulated by Lang and Kobayashi (LK) [243]
in 1980 in an effort to provide a simplified but effective analysis of a SL
optically coupled with a distant reflector. Thanks to intensive computer simu-
lations, many observed phenomena were successfully reproduced using the LK
equations.

10.1.1 Low frequency fluctuations

Because of OFB, the laser exhibits pulsating intensity outputs which result from
a combination of effects involving delay and relaxation oscillations (RO) that
sometimes fall in the same range of times. More quantitatively, the typical time
scales of the semiconductor laser are the photon lifetime τp ∼ 1 ps, the carrier
lifetime τc ∼ 1 ns, and the laser–mirror–laser round-trip time τ ≡ 2L/c ∼ 1 ns =
10−9 s (L is the laser–mirror distance and c is the speed of light3). The nor-
malized delay θ ≡ τ/τp is a large quantity like 103 and the relative decay rate
of the carrier �≡ τp/τc is small like 10−3. A small � means that the solitary laser
is weakly stable and exhibits damped RO oscillations (see Chapter 1). A large
delay generally generates Hopf bifurcation instabilities [245] and this is enhanced
by the fact that the laser–mirror–laser round-trip time is of the order of the RO
period which is typically ∼1 ns. As a consequence these lasers are particularly
sensitive to GHz signals, threatening reliable performance at the high-speed trans-
mission rates which are now common. In addition, the linewidth enhancement
factor α – unique to SLs – introduces a strong coupling between the amplitude
and the phase of the laser field, which may be another source of instabilities. A
recent and excellent review of the experimental literature on OFB is presented by
Gavrielides and Sukow in [240]. Here, we emphasize some basic properties of
the LFF.

2 Incoherent OFB may be useful as demonstrated by Houlihan et al. [241] and Lu et al. [238] (see [242] for a
recent application). For coherent OFB, as considered in this chapter, the coherence length of the laser
emission must exceed twice the feedback distance.

3 If L = 15 cm and c = 3 × 108 m s−1, we compute τ = 2L/c = 10−9s. L = 15 cm is typical for a laboratory
experiment. Distances in telecom devices are smaller but the ratio θ = τ/τp remains large compared to 1,
except if L decreases below 1 mm.
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Mirror

Iso.Pol.

OSA
Streak
Camera

Laser

Fig. 10.1 Experimental set-up. A temperature-stabilized laser diode is subject
to delayed optical feedback from a semitransparent dielectric mirror. The laser
beam is collimated using an aspheric lens, and feedback strength is controlled
with a polarizer (Pol.). The optical isolator (Iso.) shields this external cav-
ity configuration from eventual perturbations from the detection branch. The
light is analyzed using a single-shot streak camera and the optical spectrum
is monitored with a grating spectrometer (OSA). Figure 1 adapted with per-
mission from Heil et al. [244]. Copyright 2001 by the American Physical
Society.

Typical experiments in the laboratory consider the case of an external mir-
ror located at 0.1 to 1 m from the laser [247]; see Figure 10.1. The round-trip
frequency of light νEC = τ−1 corresponds to the intermode spacing of the ”exter-
nal cavity” formed by one facet of the laser diode and the external mirror. It
is then some hundreds of MHz and is substantially lower than the GHz range
of the RO frequency νRO . If the laser is operated close to the solitary laser
threshold and the feedback is comparable with the laser facet’s reflectivity (i.e.
a few percent), the output intensity exhibits irregular drop-offs (LFF), a behavior
characterized by at least two distinct time scales. Figure 10.2 shows an exam-
ple of LFF recorded under these conditions. Figure 10.2 (top) shows irregular
fluctuations of the laser intensity on a time scale of microseconds, which is
very slow compared with the round-trip time and the RO period. Figure 10.2
(bottom) shows the same dynamics on faster time scales indicating that indeed
there is a faster dynamics in the frequency range of the ROs (νaverage � νRO )

underlying the slow dynamics. Note in Figure 10.2 (top) the irregular intensity
drops.

However, in many practical applications such as fiber couplers or compact discs,
the external cavity is only a few millimeters long. The ratio of the two basic fre-
quencies νEC and νRO is reversed and a different laser response is possible [244].
See Figure 10.3. Note that the intensity output is more regular than the one shown
in Figure 10.2. The laser intensity shows a periodic emission of regular pulse pack-
ages separated by short intervals of very low intensity. The dynamics on the short
time scale are now dominated by the delay time.
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Fig. 10.2 Intensity time series recorded for a laser operating close to its thresh-
old. Top: oscilloscope single-shot measurement, bandwith 1 GHz. Bottom: streak
camera single-shot measurement, bandwidth more than 50 GHz (from Figure 1 of
Heil et al. [246]).
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Fig. 10.3 Streak camera measurements of the intensity time series of a laser
operating in the short cavity regime. The injection current is I = 1.15Ith,sol.
The external cavity is 3.2 cm long corresponding to νEC = 4.7 GHz. Reprinted
Figure 2 with permission from Heil et al. [244]. Copyright 2001 by the American
Physical Society.

Mathematically, we consider the idealized case of a single-mode laser subject
to a weak optical feedback so that multiple reflection can be ignored. With the
injection of the delayed optical field Y (t −θ), the laser equations for the amplitude
of the field Y and the carrier density Z are given by [44, 243]
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dY

dt
= (1 + iα)ZY + η exp(−i�0θ)Y (t − θ), (10.1)

T
dZ

dt
= P − Z − (1 + 2Z)|Y |2, (10.2)

where t = t ′/τp. P is the pump parameter above threshold (P = O(1)), T ≡ τc/τp

and θ ≡ τL/τp are ratios of times, η is the feedback rate (η<< 1) and�0θ ≡ω0τ is
a phase called the feedback phase. �0 is the solitary (stand-alone) laser resonance
frequency. The delay θ appears in the delayed field amplitude Y (t − θ) and in the
phase factor exp(−i�0θ). Varying the position of the external mirror over one-half
an optical wavelength (250–750 nm) corresponds to a variation in the phase �0θ

of 2π .
Equations (10.1) and (10.2) are known as the (dimensionless) Lang and

Kobayashi (LK) equations. These equations have been extensively studied both
analytically and numerically. Computer simulations have shown that they correctly
describe the dominant effects observed experimentally. These include the occur-
rence of mode hopping [248, 249], LFF [250, 251, 252], the onset of coherence
collapse [248, 253], and coexisting time-periodic attractors. This motivates further
analytical investigations of the solutions of these equations.

10.1.2 ECM solutions

The LK equations admit simple solutions known as external cavity modes (ECMs).
These modes are the building blocks for all analytical or numerical bifurcation
studies developed here. A basic ECM solution of Eqs. (10.1) and (10.2) is the
single-frequency solution

Y = A exp (i(�−�0)t) and Z = B, (10.3)

where A, �, and B are constants. Substituting (10.3) into Eqs. (10.1) and (10.2)
leads to three equations for A, B, and� ≡ �θ given by

B = −η cos(�), (10.4)

�−�0θ = −ηθ (α cos(�)+ sin(�)), (10.5)

A2 = P + η cos(�)

1 − 2η cos(�)
≥ 0. (10.6)

� is called the ECM frequency.4 It satisfies the transcendental equation (10.5) and
the implicit solution is

4 This definition of � may seem unnatural. In fact the accumulated phase shift rules the constructive/destructive
character of OFB and the present definition of � allows for simpler expressions of, e.g., Eqs. (10.4)–(10.7).
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Fig. 10.4 Bifurcation diagram of the ECMs. The upper and lower figures rep-
resent the ECM frequency � and amplitude A, respectively. The values of
the parameters are P = 10−3, T = θ = 103, α= 4, and�0θ = −1. Full and broken
lines represent stable and unstable solutions, respectively. Black squares denote
Hopf bifurcation points which were obtained numerically.

ηθ = − �−�0θ

α cos(�)+ sin(�)
. (10.7)

In the case of weak feedback (η << 1), Eq. (10.7) reduces to A2 = P +η cos(�),
which opens the possibility of negative pumping if cos� > 0. This means that, in
agreement with intuitive thinking, feedback lowers the effective laser threshold if
the reflected wave constructively interferes with the intracavity wave, resulting in
an effective loss reduction by an amount O(η).

By continuously changing� from negative to positive values, we determine ηθ
from Eq. (10.7) and find several branches of solutions. See Figure 10.4. In the very
weak feedback limit (η → 0), there is only one ECM mode and this can be useful
for imaging techniques (see Section 10.2). Except for the first mode that appears
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Fig. 10.5 ECM fixed points located on the ECM ellipse. The values of the param-
eters are P = 10−3, �0θ = −1, η = 0.003, and α = 4. The labels a denote
antimodes which are dynamically unstable like a saddle-point. Other ECMs are
stable or unstable with respect to the ROs. The maximum of A2 on the ellipse
is referred to as the maximum gain mode. An ECM located close to this point
has the best chance of being stable. The open circle refers to the solitary laser
solution.

at η= 0, all other modes emerge by pairs from limit points and their number pro-
gressively increases with η. As expected, increasing the feedback rate allows more
and more modes to oscillate because the feedback reduces the effective losses for
these modes in the external cavity.

10.1.3 ECM ellipse, maximum gain mode, and LFF

The ECMs result from the interference between the laser field and the delayed
field returning from the external cavity. If the laser is replaced by a pas-
sive resonator, the resulting eigenfrequencies will have constant spacing and
show alternative constructive (even multiples of π ) and destructive (odd multi-
ples of π ) interference. Since the semiconductor laser exhibits gain as well as
phase–amplitude coupling (the α parameter), the fixed points will have more
complicated properties. A popular way to represent the ECMs at a fixed feed-
back rate is with a diagram showing the power A2 vs. the frequency shift � (see
Figure 10.5). The so-called “ellipse” is obtained by eliminating the trigonometric
functions in Eqs. (10.4) and (10.5). This leads to the following relation between
� and B.
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(�−�0 − αB)2 + B2 = η2. (10.8)

Using then the expression (10.6), we may determine the intensity A2 of each mode.
As found in the numerical simulations (see Figure 10.4), only a finite number of
ECM points are possible,5 and they are shown by dots on the ellipse. The points
labeled “a” are called antimodes and are associated with destructive interference.
The other ECMs fall into two categories: a stable fixed point near the maximum
power, and points subject to undamped ROs caused by Hopf bifurcations. Finally
we observe that the ellipticity of the ellipse is determined by the value of α. A
standard class B laser (with α = 0) does not display the rich dynamics of the SC
laser with feedback.

We next introduce two particular ECM points. The “maximum gain mode” is
defined by the condition� = 0 mod 2π . From the expression (10.4), we then note
that this maximum gain mode corresponds to the maximum possible suppression
of carriers. The system is then benefiting maximally from the feedback and the
resulting power is

A2 = P + η

1 − 2η
. (10.9)

This state is also referred to as the “minimum threshold state,” which can be under-
stood in the following way. Without feedback, the system is characterized by the
field intensity A2 = P and the threshold current is simply P = 0. With feedback,
many ECMs may exist, each with its own effective threshold current. But for the
maximum gain mode, we note from (10.9) that the effective threshold is reduced
maximally to P = −η.

The second ECM fixed point is the “minimum linewidth mode,” defined by the
condition

� = �0θ = − arctan(α), (10.10)

which implies � � −π/2 mod 2π for α sufficiently large. From Eq. (10.3), we
note that there is no frequency change since � = �0. It was long believed that
this mode is the most stable mode because it has the minimum linewidth. But
this conclusion was derived by an analysis of the phase equation considered as
decoupled from the population equation. In other words, it ignores the stability of
the ECMs with respect to the ROs.

We may analyze the possibility of a change of stability of ECMs due to a Hopf
bifurcation by taking advantage of the large value of T and assuming a low feed-
back rate η = O(T −1).6 With α �= 0, the large T approximation of the first Hopf
bifurcation is given by [254]

5 A graphical solution of the problem is obtained by plotting the ellipse (10.8) together with the sine-wave
curve (10.4) in the (�, B) plane. ECM solutions correspond to the intersections of these two curves.

6 The asymptotic analysis is done in Section 10.2.1 for the special case α = 0.
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Fig. 10.6 Dynamical responsesofa semiconductor laser subject to optical feedback
infeedback(γ )−current (I ) space.TheLFFregimeisdepicted in lightgray; thedark
gray region embedded in the LFF regime corresponds to the region of coexistence
of the stable emission state and the LFF state. The unshaded region encompassed
by the dashed line is the transition region between the LFF regime and the fully
developed coherence collapse regime (CC). Reprinted Figure 2 with permission
from Heil et al. [256]. Copyright 1998 by the American Physical Society.

ηH = − 1 + 2P

2T sin2
(
ωRθ

2

)
(cos(�)+ α sin(�))

, (10.11)

where ωR ≡ √
2P/T is the RO frequency. In the case of the maximum gain mode

(� = 0 mod 2π), ηH < 0, meaning stability for low η. In the case of the minimum
linewidth (� = − arctan(α)mod 2π), ηH > 0 if α > 1, meaning instability [255].

The conclusions of this asymptotic analysis are limited to small feedback rates
but lead to the idea that LFF may coexist with a stable emission on the maxi-
mum gain mode occurring for a wide parameter range. This was later verified
experimentally [256, 257] and further explored numerically [258].

10.1.4 LFF experimental results

Experiments reported on a systematic investigation of the possible dynamical
regimes by progressively increasing the pump current from below threshold
through the whole accessible range. This procedure was repeated for several values
of the feedback strength ranging over three orders of magnitude. See Figure 10.6
for the transition region. Increasing the pump current along the vertical dotted
line in Figure 10.6 (γ = 25 ns−1),7 all possible regimes appearing in the (γ , I )

7 η = γ τP .
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Fig. 10.7 Intensity time series of a SL subject to optical feedback and three dif-
ferent pump currents I . The optical feedback amounts to γ ≈ 25 ns−1, which
corresponds to the vertical line in Figure 10.6. We note the progressive transition
from LFF to CC as the current is increased. Reprinted Figure 3 with permission
from Heil et al. [257]. Copyright 1999 by the American Physical Society.

diagram have been observed. After passing the feedback-reduced laser threshold
(Ith, f eed ) the laser emission is stable on a single longitudinal diode mode and
several ECM modes. The mode-beating of the ECMs appears as sharp peaks in
the power spectrum. The LFF regime is reached by increasing the injection cur-
rent by approximately 1 mA above threshold. There, a dominant low frequency
contribution builds up in the power spectrum; the ECM beatings broaden signif-
icantly. The emission of the laser is still dominated by one longitudinal diode
mode. Figure 10.7 (a) shows a time series of the dynamical behavior within the
LFF regime. With increasing injection current, the time intervals between dropouts
decrease. Finally a continuous transition to a fully developed coherence collapse
(CC) takes place, accompanied by a broad power spectrum and completely irreg-
ular intensity time series. This dynamical behavior is illustrated in Figures 10.7
(b) and (c) showing a time series of the transition regime and the fully devel-
oped coherence collapse regime, respectively. Moreover, there exists a large region
within the LFF domain where discrete transitions between LFF and stable emission
on a single ECM occur. An example of such a behavior is presented in Figure 10.8.
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Fig. 10.8 Intensity time series for a SL subject to OFB with I = 60 mA and
γ = 45 ns−1. The inset shows the optical spectrum of the stable emission state.
Reprinted Figure 4 with permission from Heil et al. [257]. Copyright 1999 by the
American Physical Society.

This figure shows the intensity time series of a transition from the LFF state to
a stable emission state appearing at 3 μs. We note that the intensity stabilizes on a
higher level than the LFF. Accordingly, the transition to stable emission is charac-
terized by a sudden increase in the time-averaged recorded intensity. Second, the
power spectrum is completely flat; no frequency component remains. Third, the
stable emission occurs on a single ECM, resolved by the scanning Fabry–Pérot
interferometer. The inset of Figure 10.8 shows the optical spectrum of the stable
emission state, showing a single sharp peak. All these checks support the interpre-
tation of the behavior shown in Figure 10.8 as due to the coexistence of a stable
state with LFF.

10.1.5 Numerical simulations and bridges

Optical sources pulsating with high frequencies of several tens of gigahertz are
required for a number of signal processing applications. By the end of the 1990s,
the group of Bernd Sartorius from the Heinrich-Hertz-Institut (HHI) in Berlin had
started to be interested in generating tunable self-pulsations (SPs) with frequen-
cies above 20 GHz in laser devices. It was later discovered that Tager and Elenkrig
(1993) [259] and Tager and Petermann (1994) [260] already were concerned with
this problem. Using the single-mode LK equations, they analyzed the possibility
of a Hopf bifurcation to a high frequency mode-antimode beating (MB) regime.
They found that a short external cavity8 and a high feedback rate were necessary

8 A simple rule of thumb suggests that a short cavity favors high frequency MB oscillations because of a larger
intermode spacing. This is confirmed by mathematical analysis.
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for this type of output. But the authors didn’t give any clue as to the stability of
such high frequency SPs. Could a stable mode and an unstable mode combine
and produce a stable two-mode regime? Starting in 1999, a series of workshops
was organized at the Weierstrass Institute for Applied Analysis and Stochastics
(WIAS) with the aim of attracting mathematicians and engineers and discussing
these issues. In 2000, an asymptotic analysis of the LK equations based on the
limit T large showed that the high frequency MB regimes belong to branches
that are connecting isolated ECM branches (bridges) [261, 262]. Therefore, the
LK equations may exhibit two types of Hopf bifurcations, namely, the bifurca-
tion to RO oscillations or the bifurcation to MB regimes. How these bifurcations
interact in parameter space was carefully investigated in [263]. In 2002, Sieber
[264] proposed a detailed bifurcation analysis of the traveling wave laser equa-
tions, emphasizing the domains of parameters where the high frequency pulsations
are possible. To achieve the required high feedback, Bauer et al. [265] from the
HHI have attached to the passive short external cavity an active amplifier section.
The carriers in the amplifier introduce an additional degree of freedom leading to
a stabilization of the MB regime [266] as well as a complex dynamics including
chaos [267]. High frequency dynamical regimes of passive feedback lasers were
reported by Ushakov et al. in 2004 [268] using an integrated distributed feedback
device that allows the control of the feedback phase.

We first summarize numerical results. The bifurcation diagram of the maxima
and minima of |Y | obtained by integrating the LK equations in time for gradually
increasing (or decreasing) values of η is shown in Figure 10.9 top (same values
of the parameters as in Figure 10.4). The figure shows successive stable ECM
branches, each undergoing a Hopf bifurcation. The same diagram now obtained
by a continuation method (BIFTOOL) for the steady and time-periodic solutions
is shown in the bottom figure. Only the maxima are shown. The figure reveals that
bridges do connect two Hopf bifurcation points belonging to distinct ECMs. What
is the nature of these bridges?

It can be shown by an asymptotic analysis of the LK equations based on the limit
T large that these bridges correspond to solutions combining two single ECMs of
the form [261]

Y = A1 exp (i(�1 −�0)t)+ A2 exp (i(�2 −�0)t)+ O(T −1). (10.12)

In contrast to a single ECM for which the intensity I = A2 is constant, the intensity
of the two-ECM solution (10.12) exhibits time-periodic intensity oscillations of
the form

I = |A1|2 + |A2|2 + 2 |A1| |A2| cos
(
(�1 −�2)θ

−1t + φ
)

, (10.13)
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Fig. 10.9 Top: bifurcation diagram of the stable solutions obtained by integra-
tion. Bottom: bifurcation diagram of the stable and unstable steady and periodic
solutions obtained by a continuation method. Reprinted Figure 1 with permission
from Pieroux et al. [262]. Copyright 2001 by the American Physical Society.

where φ is a constant phase. The period of the oscillations is the mode-beating
period

PM B = 2πθ |�1 −�2|−1 , (10.14)

which is clearly proportional to the delay θ .
Numerical bifurcation studies suggest that bridges are either unstable or are

partially stable [261, 262, 269]. However, stable bridges are possible if α is suffi-
ciently low (α ≤ 1) [269]. For an arbitrary value of α > 1, a stable bridge may
change its stability at a torus bifurcation point as we increase the feedback rate. The
torus bifurcation leads to quasi-periodic oscillations with two distinct frequencies.
The first and second frequencies are the bridge intensity frequency which coin-
cides with the MB frequency P−1

M B , and the usual RO frequency ωR = √
2P/T

[262, 269]. This confirms our initial intuition of a simple interaction between the
RO and MB dynamics. The different ECM modes are interconnected through
bridges but this was not predicted by our first analysis of the steady states (see
Figure 10.4).
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10.2 Imaging using OFB

Few people need to inspect an object in a glass of milk. If, however, an imaging
technique can see through milk, it can probably image objects effectively through
other diffusing media such as blood or even a suspension of silica powder in a
polishing workshop. It then becomes an effective inspection tool in applications as
diverse as manufacturing inspection, medical imaging of living tissues, even tasks
requiring undersea visibility.

Current options for imaging through diffusing media include techniques such as
time-resolved holography, optical coherence tomography, and scanning confocal
microscopy. Each has its benefits and limitations. With confocal techniques, for
example, researchers can avoid some problems intrinsic to tomography, such as
the requirement to solve an inverse problem. There are, however, issues related to
limited imaging sensitivity and the complexity and cost of required equipment.

In 1999 Frédéric Stoeckel at the Laboratoire de Spectrométrie Physique of the
Université Joseph Fourier de Grenoble had the idea of taking advantage of opti-
cal feedback using Nd3+:YAG microchip lasers [270, 271, 272]. Together with
his colleague Eric Lacot, they developed a new technique called LaROFI for laser
relaxation oscillation frequency imaging [273]; see Figure 10.10. The technique
relies on the resonant sensitivity of a short-cavity laser to optical feedback pro-
duced by ballistic photons retrodiffused from the medium. The method produces
two- and three-dimensional imaging in turbid media that is similar to heterodyne
scanning confocal microscopy, but resolves some of the limitations just discussed.
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Fig. 10.10 Two-dimensional (262 × 262 pixels) image of a French one-franc
coin using the laser relaxation oscillation frequency imaging technique. The coin
is immersed in a glass of milk (milk depth 1 cm). The pixel dimensions are
100 μm ×100 μm (from Figure 3 of Lacot et al. [271]).
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Fig. 10.11 In confocal microscopy, spatial filtering is controlled by the size of
the hole, and the quality of the detection depends on the detector. In LFI and
LaROFI imaging, spatial filtering is achieved by selection of one laser mode, and
the quality of the detection depends on the laser.

One important advantage of the LaROFI method is that the laser source is also the
detector. In addition to its optical amplification duties, it provides self-aligned spa-
tial and temporal coherent detection (acts as both a spatial and a temporal filter).
See Figure 10.11. Another novelty of the LaROFI technique is that the frequency
of the intensity relaxation oscillations is measured together with the intensity of
the laser field. This provides 100 times higher sensitivity compared to previous
techniques based on external cavity frequency measurements (laser feedback inter-
ferometry or LFI). The main objective of the next two subsections is to explain why
this is the case using the LK equations. Our analysis provides approximations of
the laser intensity and laser relaxation oscillations that compare quantitatively with
the experimental data.

10.2.1 Stability analysis

The LK equations (10.1) and (10.2) describe the response of a single-mode laser
subject to optical feedback from a distant mirror. Introducing the amplitude R and
the phase φ of the field Y = R exp(iφ), these equations with α= 0 (we are dealing
with microchip solid state lasers where α is zero) can be rewritten as

dR

dt
= Z R + ηR(t − θ) cos(φ(t − θ)− φ −�0θ), (10.15)

dφ

dt
= η

R(t − θ)

R
sin(φ(t − θ)− φ −�0θ), (10.16)
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T
dZ

dt
= P − Z − (1 + 2Z)R2. (10.17)

Equations (10.15)–(10.17) admit the ECMs (10.3) as the basic solutions. In terms
of R, φ, and Z , they are given by

R = A, φ = (�−�0)t , and Z = B, (10.18)

where A, B, and � = �θ are constants given by (10.4), (10.5), and (10.6) with
α = 0. We investigate their linear stability properties by introducing the small
perturbations u, v, and w. The linearized equations are the following equations for
u, v, and w

du

dt
= Bu + η cos(�)u(t − θ)+ ηA sin(�)(v(t − θ)− v)+ Aw, (10.19)

dv

dt
= − η

R
(u(t − θ)− u) sin(�)+ η cos(�)(v(t − θ)− v)+ αw, (10.20)

dw

dt
= −T −1

[
(1 + 2B)2Au + w(1 + 2A2)

]
. (10.21)

We solve these equations by looking for a solution of the form u = a exp(λt),
v = b exp(λt), and w = c exp(λt). We then obtain the following problem for the
coefficients a, b, and c

λ

⎛⎝a
b
c

⎞⎠ = L

⎛⎝a
b
c

⎞⎠ , (10.22)

where the Jacobian matrix L is defined by

L ≡

⎛⎜⎜⎝
η cos(�)F ηA sin(�)F A

−η sin(�)

A
F η cos(�)F α

−(1 + 2B)2Aε 0 −(1 + 2A2)ε

⎞⎟⎟⎠ (10.23)

with
F ≡ exp(−λθ)− 1 and ε ≡ T −1. (10.24)

A nontrivial solution is possible only if λ satisfies the condition det(L − λI ) = 0.
This condition leads to the characteristic equation for the growth rate λ

0 =
[
−(1 + 2A2)ε − λ

]
[η cos(�)F − λ]2 + η2 sin2(�)F2

+ (1 + 2B)2A2ε [η cos(�)F − λ] . (10.25)



258 Delayed feedback dynamics

10.2.2 Low feedback rate approximation

Equation (10.25) is hard to solve even numerically. Several approximations have
been investigated in the past [254]. In this section, we propose to investigate the
solution of Eq. (10.25) for low values of η, which is the case for imaging through
a diffuse medium since very few photons return back into the laser.

If ηθ is small, there is only one ECM. From (10.5), (10.6), and (10.4), we find
the simple approximation

� = �0θ + O(ηθ), A2 = P + O(η), and B = O(η). (10.26)

If η = 0, the characteristic equation (10.25) reduces to

λ
[
λ2 + λ(1 + 2P)ε + 2Pε

]
= 0, (10.27)

which we recognize as the characteristic equation for the solitary laser (see Chapter
1). For small ε and λ �= 0, Eq. (10.27) has the solution

λ = ±i
√

2Pε − ε
1 + 2P

2
+ O(ε3/2). (10.28)

The leading term is the RO frequency, defined by

ωR ≡ √
2Pε. (10.29)

These are the solutions for our standard rate equations reformulated in terms of the
notations of the LaROFI problem.

The expression (10.28) motivates seeking a solution of (10.25) of the form

λ = ε1/2λ0 + ελ1 + . . . (10.30)

and in order to balance terms with η in Eq. (10.25), we assume η as an O(ε)
quantity. Specifically, we expand η as

η = εη1 + ε3/2η2 + . . . (10.31)

Introducing (10.30) and (10.31) into Eq. (10.25), taking into account (10.26), we
equate to zero the coefficients of each power of ε1/2. The first two problems are

O(ε3/2) : 0 = −λ3
0 − 2Pλ0, (10.32)
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O(ε2) : 0 = −(3λ2
0 + 2Pε)λ1 + 2λ2

0η1 cos(�0θ)F0

−(1 + 2P)λ2
0 + 2P F0η1 cos(�0θ), (10.33)

where
F0 ≡ exp(−ε1/2λ0θ)− 1 (10.34)

and we have assumed ε1/2θ = O(1). From Eq. (10.32) and then Eq. (10.33), we
determine λ0 and λ1. Together, the growth rate λ is then given by

λ � ±iωR + 1

2

[
−ε(1 + 2P)− 2 sin2(ωRθ)η cos(�0θ)

∓i sin(ωRθ)η cos(�0θ)
]
. (10.35)

The LaROFI imaging technique as invented by Lacot et al. [273] is based on the
change in the RO frequency predicted by (10.35). Specifically, they determined the
modification of the relaxation oscillation frequency of the laser as the feedback rate
increases. In the case of constructive interference,

cos(�0θ) = 1, (10.36)

the ECM solution (10.26) is stable since Re(λ) < 0. The imaginary part in (10.35)
provides the correction to the RO frequency ωR due to optical feedback. This
relative change of the RO frequency is thus given by

ωO F − ωR

ωR
= − η

2ωR
sin(ωRθ). (10.37)

Furthermore, if ωRθ is small, we have sin (ωRθ)�ωRθ , and the expression
(10.37) can be further simplified as

ωO F − ωR

ωR
= −ηθ

2
. (10.38)

In terms of the original parameters (using η = γc
√

Re f f , where γc is the damping
rate and Re f f is the effective feedback reflectivity), (10.37) and (10.38) lead to

F ≡ �O F −�R

�R
√

Re f f
= − γc

2�R
sin(�Rτ ) (10.39)

and

F ≡ �O F −�R

�R
√

Re f f
= −γc

2
τ = −γc

c
d , (10.40)
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Fig. 10.12 Modified RO frequency due to optical feedback. The figure repre-
sents the relative change of the relaxation frequency |F | as a function of the
laser–target distance d . Dashed line: small d approximation. Full line: exact
expression valid for arbitrary d . Dots are experimental results documented
in [271].

respectively.�R and τ are defined by

�R ≡ √
γ1γc(P − 1) and τ ≡ 2d

c
, (10.41)

where d is the laser–target distance and c = 3 × 108 m s−1 is the speed of light.
In Stoeckel’s device, the population inversion damping rate is γ1 = 1/(255 μs) =
3.92 × 103 s−1, the cavity damping rate is γc = 1.55 × 1010 s−1, and the pump
parameter above threshold is P = 2. With Re f f = 10−4 and d ∼ 1 m, we note
from (10.40) that the relative change of the RO frequency resulting from the feed-
back, |�O F −�R|/�R, is of the order of 10−2 which is easily measured (dots in
Figure 10.12).

To determine the two-dimensional image shown in Figure 10.10, the laser beam
is focused by a microscope objective on a French one-franc coin that is localized
2 m from the laser source. The sampling step is 100 μm in both the x and y direc-
tions (see Figure 10.13). In this experiment, the effective reflectivity was taken
very small (of the order of 10−7) in order to demonstrate the high sensitivity of the
method.

However, there are theoretical and technical limits to the sensitivity enhance-
ment if the delay becomes large. Variations of F with d as given by (10.39)
and (10.40) are shown in Figure 10.12 by the full and the broken line,
respectively. We note that the increase of |F | does not remain linear but
exhibits a maximum near d = 30 m. This behavior results from the sine function
in (10.39).
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Fig. 10.13 The laser beam is focused on a target. Only photons back-scattered
from points located near the center of the laser beam on the target are reinjected by
mode matching into the laser. The laser dynamics is modified by the interference
effects taking place between the back-scattered field and the standing wave inside
the laser cavity. This interference effect depends on the reflectivity, distance, and
motion of the target. The laser output power is detected by a photodetector and the
laser relaxation frequency is determined by a spectrum analyzer via the intensity
noise spectrum of the laser. In order to obtain an image, a micrometric translation
unit combined with a PZT moves the target. Figure 5 adapted with permission
from Lacot et al. [272]. Copyright 2001 by the American Physical Society.

10.3 Optoelectronic oscillator

High repetition rate pulse sources are usually implemented by active mode-locking
of fiber or diode lasers, which requires a microwave-driving source whose phase
noise determines or limits the resultant jitter.9 Passively mode-locked lasers, on the
other hand, do not need a microwave drive but they tend to have more jitter than
actively mode-locked lasers. A completely different approach for obtaining sus-
tained pulse sources is to use optoelectronic oscillators (OEOs). OEOs typically
incorporate a nonlinear modulator, an optical-fiber delay line, and optical detection
in a closed-loop resonating configuration. These devices can generate radiofre-
quency oscillations with extremely high spectral purity and low phase noise in the
microwave range at up to tens of GHz. Here, we concentrate on OEOs composed
by a Mach–Zehnder modulator, an optical fiber delay line, a photodiode, and a
radiofrequency amplifier. See Figure 10.14. Specifically, a continuous-wave semi-
conductor laser provides the energy source of power P0 (0–10 mW). It illuminates
a Mach–Zehnder (MZ) modulator that produces the essential nonlinearity for the
feedback loop. The transmission of the MZ modulator is a nonlinear function of

9 Jitter is an unwanted variation of the signal characteristics of the laser output. Jitter may be seen in the
interval between successive pulses, or the amplitude, frequency, or phase of successive cycles.
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Fig. 10.14 Schematic description of the feedback loop. It is formed by a
Mach–Zehnder modulator (MZ), a fiber delay line, a photodiode (PD), and a
radiofrequency amplifier. A semiconductor laser provides the energy source and
an oscilloscope measures the fast time dynamics of the feedback loop. Figure
1 adapted with permission from Kouomou et al. [274]. Copyright 2005 by the
American Physical Society.
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Fig. 10.15 Bursting oscillations in an OEO device. Rapid oscillations are mod-
ulated by a slowly varying envelope. Reprinted Figure 5 with permission from
Kouomou et al. [274]. Copyright 2005 by the American Physical Society.

the applied voltage, where we independently apply a time-dependent voltage to
the radiofrequency (RF) port of the device (half-wave voltage VπRF = 4.0 V) and
a DC voltage VDC to bias it at any point on the transmission curve (half-wave
voltage VπDC = 4.0 V). The light power at the output of the modulator then is a
sinusoidal function of VDC with an amplitude that depends on the power P . The
output of the modulator is injected into a long optical fiber with delay time τD

(τD ∼ 40 ns) and a photodiode (PD) of gain g converts the light into an electri-
cal current. Finally, the radiofrequency amplifier with gain G converts the signal
from the photodiode into an electronic voltage VRF (t) that is fed back in the MZ
modulator. This voltage, added to VDC , changes the output of the modulator and
the feedback loop is completed. The overall attenuation of the loop (delay line,
connectors, and so on) is described by the parameter A. The electronic bandwidth
of the feedback loop is assumed to result from cascaded linear first order low-pass
and high-pass filters, with low and high cutoff frequencies fL and fH , respec-
tively. Figure 10.15 shows experimentally observed bursting oscillations where
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fast oscillations are modulated by a slowly varying envelope. The rapid oscilla-
tions operate on the ns time scale while the period of the slow envelope is on the
μs time scale. This large time-scale difference motivates asymptotic studies of the
model equations. According to our usual approach, we introduce dimensionless
variables and identify the different time scales of the problem. Introducing the
dimensionless voltage x(t) ≡ πVRF(t)/2Vπ RF , the dynamical response of the
system as recorded from the photodiodes PD or PD′ (see Figure 10.14) is well
described by the following delay-integro-differential equation ([275])

x + τ
dx

dt
+ θ−1

∫ t

0
x(s)ds = β

[
cos2 (x(t − τD)+ φ)− cos2(φ)

]
, (10.42)

where β ≡ πg AGP/2Vπ RF, proportional to the source power P , measures the
feedback strength and φ ≡ πVDC/2VπDC is the offset phase that is proportional to
the bias voltage VDC of the MZ. The time constants θ ≡ 1/2π fL and τ ≡ 1/2π fH

are inversely proportional to the cutoff frequencies fL and fH of the filter. In these
experiments, the three time parameters τ , τD , and θ have quite different orders of
magnitude, namely

τ = 25 ps, τD = 30 ns, and θ = 5 μs. (10.43)

The OEO system differs from the Ikeda delay differential equation (DDE) (4.20)
by the integral term in (10.42). Ikeda ignores the low cutoff frequency by assuming
fL = 0 (equivalently, θ−1 = 0). In the absence of delay, however, the integral term
allows for a new degree of freedom that generates new oscillatory regimes. This
can best be seen by introducing the new variable

z ≡
∫ t

0
x(s)ds (10.44)

and rewriting Eq. (10.42) as the following system of two first order equations

x + τ dx

dt
+ θ−1z = β

[
cos2 (x(t − τD)+ φ)− cos2(φ)

]
, and

dz

dt
= x .

(10.45)
Further differentiating the first equation allows the elimination of z and the
reformulation of Eq. (10.45) as a second order DDE of the form

dx

dt
+ τ

d2x

dt2
+ θ−1x = β

d

dt

[
cos2 (x(t − τD)+ φ)

]
. (10.46)

It is now necessary to introduce a dimensionless time so that we may evaluate the
contribution of each term in Eq. (10.46). If β = 1.5–3, a stable periodic solution
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is found numerically and exhibits a large period (3–10 μs), which is proportional
to the slowest time constant θ . This motivates the introduction of the new time
variable

s ≡ θ−1t (10.47)

as our basic time. In terms of (10.47), Eq. (10.46) then becomes

x ′ + εx ′′ + x = β
[
cos2 (x(s − δ)+ φ)

]′
, (10.48)

where prime means differentiation with respect to s. This equation now exhibits
two small parameters, namely

ε ≡ τθ−1 = 5 × 10−6 and δ ≡ τDθ
−1 = 6 × 10−3, (10.49)

which we would like to neglect. However, the εx ′′ term could be important if x ′
is changing fast like ε−1, and the delay δ could lead to high frequency nearly
δ-periodic solutions. We shall proceed in two stages. First we shall look for a
slowly varying periodic solution and neglect the small delay δ. We then shall look
for the stability of this solution with respect to the δ short time scale.

10.3.1 Slowly varying oscillations (δ = 0, ε �= 0)

We first concentrate on the low frequency oscillations that modulate the rapid
bursting oscillations. We ignore the effect of the delay, in first approximation, and
seek a time-periodic solution of Eq. (10.48) with δ = 0, given by

x ′ + εx ′′ + x = β
[
cos2 (x + φ)

]′
. (10.50)

We solve Eq. (10.50) numerically and find a limit-cycle that consists of slowly
varying parabolic plateaus connected by fast transition layers. See Figure 10.16.
Like the Van der Pol equation [15], we may analyze Eq. (10.50) in the phase
plane for ε small (see Exercise 10.4.4). The starting point of our analysis is a
reformulation of Eq. (10.50) as the following system of two first order differential
equations

x ′ = y, (10.51)

εy′ = −x − y [1 + β sin (2x + 2φ)] . (10.52)

Neglecting ε, the trajectory y = y(x) corresponding to the slowly varying plateaus
is given by

y = − x

1 + β sin (2x + 2φ)
. (10.53)
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Fig. 10.16 Time-periodic numerical solution of Eq. (10.50) for φ = −π/10,
ε = 10−3, and β = 2.5. Four points on X mark important changes in the time
evolution. Approximations of these points are determined in the text.

This solution is valid until the denominator in (10.53) approaches zero. This
happens when x = x±, which are the first two roots of

1 + β sin (2x + 2φ) = 0. (10.54)

From (10.54), we obtain

x+ ≡ −1

2
arcsin(1/β)− φ, (10.55)

x− ≡ 1

2
(−π + arcsin(1/β))− φ. (10.56)

Ifβ = 2.5 andφ=−π/10, we find x+ � 0.1084 and x− �−1.0509 (see Figure 10.16).
They clearly mark the beginning of the fast transition layers. Assuming y>> x ,
the leading approximation of the transition layer trajectory is given by

εy = −(x − x±)+ β

2

[
cos(2x + 2φ)− cos(2x± + 2φ)

]
. (10.57)

The transition layers end at x = x∗± when εy = 0. Solving Eq. (10.57) for εy = 0,
we obtain x∗+ � −1.7424 and x∗− � 0.8000 for β = 2.5 and φ = −π/10 (see
Figure 10.16). Finally, the leading approximation for the period is obtained by
integrating Eq. (10.51) over time for the evolutions along the two plateaus.

10.3.2 Fast bursting oscillations (ε = 0, δ �= 0)

The rapid bursting oscillations observed numerically and found experimentally
(see Figure 10.15) motivate a stability analysis of the slowly varying plateaus
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in Figure 10.16. We cannot ignore the delay any more, but we may neglect
ε because the slowly varying plateaus do not depend on ε, in first approximation.
We therefore consider the DDE (10.48) with ε = 0, given by

x ′ + x = β
[
cos2 (x(s − δ)+ φ)

]′
. (10.58)

We analyze this equation by a multi-time scale analysis where ζ ≡ δ−1s is the
fast time and s is the slow time. For mathematical clarity, we summarize the main
results. The leading approximation x = x0(ζ , s) satisfies the following equation
for a map

x0 = β cos2 (x0(ζ − 1)+ φ)+ F , (10.59)

where F is the constant of integration and ζ is now a discrete time. Equation
(10.59) provides the successive maxima and minima, x0 = xn , of a square-wave-
like solution. The successive extrema xn are obtained by solving

xn = β cos2 (xn−1 + φ)+ F . (10.60)

Note now that we have obtained (10.60) by integrating Eq. (10.58) with respect to
the fast time ζ . Consequently, we need to assume that the constant of integration
F is a function of the slow time s. In order to obtain an equation for F , we pro-
ceed as usual, i.e. we investigate the higher order problem and apply a solvability
condition. This condition is

dF

ds
= − lim

ζ→∞
1

ζ

∫ ζ

0
x0(s, ξ)dξ . (10.61)

The bifurcation equation is given by Eq. (10.60) where the parameter F is slowly
varying according to Eq. (10.61). A Period 1 fixed point of Eq. (10.60) corresponds
to xn = xn−1 = x∗. Equations (10.60) and (10.61) then simplify as

x∗ = β cos2 (x∗ + φ
)+ F , (10.62)

dF

ds
= −x∗. (10.63)

Differentiating (10.62) with respect to s and using (10.63), we correctly obtain Eq.
(10.58) with δ = 0, which is the leading equation for the slowly varying plateaus.
Thus, the Period 1 fixed point solution of Eqs. (10.60) and (10.61) correctly
matches the slowly varying envelope of the rapid oscillations.
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In order to determine if fast oscillations are possible, we need to determine if
a Period 2 fixed point is possible. To this end, we propose to analyze the linear
stability of x = x∗. We consider x = x∗ as our reference solution and keep F
constant. F is defined by means of Eq. (10.62), i.e.

F = x∗ − β cos2 (x∗ + φ
)

. (10.64)

From Eq. (10.60), we then determine the following linearized equation for x = x∗

un = −β sin
(
2x∗ + 2φ

)
un−1, (10.65)

where un ≡ xn − x∗ is defined as a small perturbation. Seeking then a solution of
the form un = rn, the characteristic equation for r is

r = −β sin
(
2x∗ + 2φ

)
. (10.66)

The solution x = x∗ (F constant) is stable if |r | < 1, i.e. when

|β sin
(
2x∗ + 2φ

)| < 1.

The critical condition r = 1 marks a saddle-point. The condition is β sin
(2x∗ + 2φ) = −1, which exactly matches the condition (10.54) for the onset of
the fast transition layers. On the other hand, the critical condition r = −1 marks a
Hopf bifurcation point and it is given by

β sin
(
2x∗ + 2φ

) = 1. (10.67)

The solutions of Eq. (10.67) are

xH+ = 1

2
arcsin(1/β)− φ, (10.68)

xH− = 1

2
(−π − arcsin(1/β))− φ. (10.69)

For φ= −π/10 and β = 2.5, we find xH+ = 0.5199 and xH− = −1.462.
Figure 10.17 shows the location of these Hopf bifurcation points as well as the
bifurcation diagram of all the stable solutions of the map (10.60) obtained numer-
ically. Note that we have ignored the slow evolution of F and treated it as fixed. If
we now consider its slow variation using Eq. (10.61), the actual solution will show
successive slow passages through all the bifurcations of the map.
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Fig. 10.17 The bifurcation diagram of the extrema of the rapid oscillations over-
lap the slowly varying envelope. φ = −π/10 and β = 2.5. The pitchfork on the
upper branch indicates the position of a Hopf bifurcation.

10.4 Exercises

10.4.1 Optoelectronic feedback

A feedback system where the intensity of the field and the carrier density are the
only dependent variables can be realized if the intensity of the laser field is detected
electronically, amplified, and then reinjected into the pumping current of the laser
[276]. The laser rate equations modeling this system are given by

dI

dt
= 2N I , (10.70)

T
dN

dt
= P + ηI (t − τ )− N − (1 + 2N )I , (10.71)

where I and N represent the intensity of the laser field and the electronic car-
rier density, respectively. These equations are our dimensionless SL rate equations
where P is replaced by P + η |Y (t − τ )|2 to take into account the effect of the DC
coupled optoelectronic feedback.

(1) Introducing the RO frequency ωRO = √
2P/T , reformulate these equations as

x ′ = −y + η (1 + y(s − θ))− εx

[
1 + 2P

1 + 2P
y

]
, (10.72)

y′ = (1 + y)x , (10.73)

where prime now means differentiation with respect to time s = ωRO t and

ωRO =
√

2P

T
<< 1, ε ≡ ωRO

(1 + 2P)

2P
, and θ ≡ ωROτ . (10.74)
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(2) Formulate the linearized equations for (x , y)= (0, 0) and then the characteristic
equation for the growth rate σ . Determine the conditions for a Hopf bifurcation
by introducing σ = iω into the characteristic equation and by separating the real and
imaginary parts. Plot the Hopf bifurcation lines in the η vs. θ parameter space. Consider
the case ε = 0 first.

10.4.2 Delayed incoherent feedback

For a laser subject to optoelectronic feedback, the bandwidth of the electronics
must be very large and flat since the chaotic dynamics of the SL can span tens of
GHz. If the bandwidth of the electronics does not match the speed of the optical
intensity fluctuations, the response of the laser system will be dominated by this
bandwidth limitation. An alternative way to investigate this specific delayed feed-
back problem is to consider a SL subject to incoherent optical feedback [7, 277].
The output field of a SL is reinjected into the laser cavity after rotation of the
polarization to the orthogonal state, providing a delayed feedback that affects only
the carriers. The advantage is that the feedback remains purely optical. The laser
device is described by the following equations for the intensity of the laser field I
and the carriers N

dI

dt
= 2N I , (10.75)

T
dN

dt
= P − N − (1 + 2N ) [I + ηI (t − τ )] , (10.76)

where the last term in Eq. (10.76) represents the reinjected orthogonal polarization
intensity. Reformulate these equations as

x ′ = −y − η (1 + y(s − θ))

−εx

[
1 + 2P

1 + 2P
(y + η(y + y(s − θ)))

]
, (10.77)

y′ = (1 + y)x . (10.78)

If η is O(ε) small, we may neglect the εη term in Eq. (10.77) and we find Eq.
(10.72). If η = O(1), we may neglect the terms multiplying ε in (10.72) and
(10.77) and we again obtain the same reduced problem.

10.4.3 Adler’s equation with delay

The following Adler’s phase equation

φ′ = ω + μ sin(φ − φ(t − τ )) (10.79)
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has been analyzed by Beta et al. [278] to explain the emergence of bistable
branches of periodic solutions for sufficiently large delay. Introduce φ = �t and
analyze the implicit solution τ = τ (�). Investigate the conditions for nascent
hysteresis, dτ/d� = d2τ/d�2 = 0.

Another Adler’s equation has been derived by Wünsche et al. [279] and was
motivated by synchronization experiments between two delayed coupled lasers.
This equation is of the form

�′ = �

2
− κ sin(�+�(t − τ )). (10.80)

The authors were interested in the case �>> 2κ . Determine an asymptotic
solution for large �.

Hint: if � → ∞, the leading equation is �′ = �/2 implying the solution
� = s/2 +�, where � is a constant. Seek a solution of the form

� = �

2
s +�+�−1�1(s)+�−2�2(s)+ . . . , (10.81)

where s = �t . � is expanded as

� = 1 +�−2�2 + . . . (10.82)

and takes into account possible corrections to � = 1. We have anticipated that the
first non-zero correction is O(�−2). �2 is determined by requiring that the func-
tions �1 and �2 are bounded 2π -periodic functions of s. Show that the averaged
frequency<�′> has a snake-like behavior as a function of �τ .
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Fig. 10.18 Limit-cycle in the phase plane (x , εy). φ = −π/10, ε = 10−3, and
β = 2.5. The two quasi-horizontal lines correspond to slow increases of the x
manifold while the parabolic lines are rapid transition layers. The arrow indicates
the direction of rotation.
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10.4.4 Phase plane analysis

Figure 10.18 shows the bird-shaped limit-cycle solution of Eqs. (10.51) and
(10.52) in the phase plane (x , εy). Determine separate approximations for the slow
and fast parts of the limit-cycle orbit. The slow parts are determined by analyzing
Eqs. (10.51) and (10.52) with ε = 0. Equations for the fast parts are determined
by assuming y >> x and neglecting −x in Eq. (10.52).
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Far-infrared lasers

Far-infrared (FIR) molecular lasers have a restricted domain of application because
their technology in the 100 μm to 1 mm spectral range is not yet mature.1 This
wavelength range is, however, unavoidable in radioastronomy because of the trans-
parency windows of the Earth’s atmosphere, and in semiconductor physics because
of the energy domain of some lattice excitations. So far, applications of FIR lasers
are limited. They have been used for checking high-voltage cable insulation [280]
and, more recently, for security-screening systems [281]. On the other hand, FIR
lasers are highly interesting for their instabilities and they have been studied in
several laboratories.

TheanalogyfoundbyHaken[99]betweentheLorenzequations [282]andthe laser
(Maxwell–Bloch) equations for the homogeneously broadened laser triggered the
search for an experimental laser system that could be well described by these equa-
tions. Haken’s model of the laser is based on a semiclassical approach in which the
electric polarization is explicitly considered, contrary to the standard rate equations
where this variable is absent. By contrast to the laser rate equations, Haken–Lorenz
equations admit sustained pulsating intensities and could be relevant for lasers that
exhibit spontaneous pulsating instabilities. We have already discussed the compli-
cated case of the ruby laser spiking. The 3.51 μm Xe laser self-pulsations were also
known and investigated in detail but the mechanism responsible for this particular
instability was partly masked by the difficulty in accounting for the inhomoge-
neous broadening,2 which is a dominant process in this laser. In the early 1980s,

1 Semiconductor lasers based on the quantum cascade effect recently appeared as an interesting alternative to
the bulky molecular FIR lasers.

2 In a homogeneously broadened laser, all the active centers (atoms, molecules, ions etc.) have the same
resonant frequency. Relaxation processes are responsible for the broadening of the atomic resonances. In
an inhomogeneously broadened laser, the resonance frequencies of the different atoms are spectrally spread
because the latter have different velocities (Doppler effect) or because they experience different local fields
(Stark effect). If the associated frequency spread is much larger than the (homogeneous) relaxation
broadening, the medium is said to be inhomogeneously broadened.

272
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researchers expended considerable effort on finding a laser system that was well
described by the Haken–Lorenz equations. The search was impeded by the opposing
requirements of a bad cavity operating far above the laser threshold, but it was felt
that the conditions could be fulfilled using a class of laser-pumped FIR lasers [283].

Besides the possibility of realizing experiments on a system close to a Haken–
Lorenz system, the FIR laser is interesting because it exhibits different instabilities
depending on the operating conditions. In large-diameter lasers, the relaxation of
molecules from the lower laser level is so slow that the population accumulates and
the laser output power decreases at the millisecond time scale. The reasons for this
“vibrational bottleneck effect” can be simply explained in terms of time scales,
as we shall see in Section 11.1. More subtle dynamical outputs are observed on
shorter time scales. At low pressures, the gain vs. frequency curve splits into two
symmetrical components, leading to a different instability now associated with a
Hopf bifurcation (see Section 11.3). The FIR laser also exhibits a very clean tran-
sition to chaotic regimes via a period-doubling cascade similar to the one observed
in the Lorenz equations (Section 11.2).

11.1 Vibrational bottleneck

The processes involved in an FIR laser can be described by a model in which
we consider three rotational levels, with populations N1, N2, and N3 belong-
ing to two vibrational states of a molecule (see Figure 11.1). The lower energy
state is often the ground vibrational state. In order to generate a population
inversion between levels 2 and 3, a strong infrared (IR) radiation resonant or quasi-
resonant with levels 1 and 2 is coupled to the medium. Practically speaking, the

IR

g

g

g

N1

N3

N2

FIR M

N

G

Fig. 11.1 Model of the energy levels for an FIR laser.
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population inversion is created by optical pumping with an infrared laser (for
example, a CO2 laser). When the medium is set inside a properly tuned cavity, a
stimulated emission can appear at the 2 → 3 transition frequency if the gain of the
medium is sufficient. Each rotational level denoted by 1, 2, or 3 is not only coupled
to IR and FIR fields but also by rotational relaxation to all other rotational levels
of its own vibrational state. We assume that all rotational relaxation rates are equal
to γ (γ ∼ 108 s−1 Torr−1). The two vibrational states with population densities M
and N are also coupled to each other by incoherent processes represented by an
average decay rate � independent of the rotational state. Vibrational de-excitation
occurs via two processes: during wall collisions through diffusion (�diff ∼ p−1,
where p is the gas pressure) and by intermolecular collisions leading to the transfer
of vibrational energy to translational and rotational energy (�int ∼ p). In low-
pressure FIR lasers the total decay rate � = �diff + �int may be as large as
103 s−1 Torr−1, i.e. it has an order of magnitude much smaller than γ , which implies
that the slow vibrational relaxation controls the long time evolution of the laser.

Typical signals obtained from a D2CO laser pumped by a CO2 laser are shown
in Figure 11.2. The rise time of the emission is first very fast but then decays and

53 mTorr

42 mTorr

31 mTorr

19 mTorr

13 mTorr

7 mTorr

OFFONCO2

0 2 4 6 8
t (ms)

Fig. 11.2 Time dependence of FIR emission following sudden switch-on of the
pump power for different pressures in a D2CO laser. The evolution at the millisec-
ond time scale is due to the slow relaxation between the reservoir populations N
and M . The rise time of the observed signal is limited here by the observation
technique (from Figure 8.3 of Glorieux and Dangoisse [284]).
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approaches a steady state. This decay becomes more prominent as the pressure
decreases (the so called “bottleneck effect”) and is almost perfectly exponen-
tial (the decay is proportional to exp(−�t), where � = �(p) is the vibrational
relaxation rate).

11.2 Lorenz chaos in the FIR laser

Deterministic aperiodic solutions of single-mode laser equations were found in
1964 by Grasyuk and Oraevsky [285] and by Buley and Cummings [286]. How-
ever, the link of irregular laser pulsations with the more general field of nonlinear
dynamics came much later when it was recognized that the laser equations are
isomorphic to the Lorenz equations. In 1975, Haken [99] showed that the semi-
classical equations for a single-mode, homogeneously broadened, and resonantly
tuned ring laser are equivalent to three ordinary differential equations originally
introduced by Lorenz as a simple model of fluid convection [282]. But the Lorenz
equations would not be of interest if irregular sustained pulsating regimes had not
been seen numerically. These regimes are highly sensitive to initial conditions and
are globally called “chaotic”. They immediately generated a series of questions of
mathematical and physical relevance. For the laser community, the question was
raised whether a real laser could exhibit Haken–Lorenz chaos. Haken equations
are derived from the Maxwell–Bloch equations in many textbooks (see [6, 21]).
But it is worth recalling the conditions for their derivation. First, the laser needs
to operate between two homogeneously broadened energy levels. Because of the
importance of the Doppler effect, this condition requires a long wavelength laser.
Second, Haken assumed a ring cavity for mathematical convenience but most real-
world lasers use a Fabry–Pérot (finite) cavity. Even if we find a laser that can
reasonably be modeled by Haken equations, there are additional conditions on the
laser parameters in order to observe chaotic outputs. First, a high pump power, typ-
ically 10–20 times the threshold pump power, is necessary. This requires a laser
with relatively low threshold. Second, the field lifetime must be shorter than the
inversion lifetime (the so-called “bad cavity” condition). To meet this condition
without introducing too large losses, the relaxation rate of the population inversion
should not be too large.

It was only in 1985 that Haken–Lorenz chaotic self-pulsing was observed in
NH3 FIR single-mode lasers [287, 288]. Many of the features (thresholds, period-
doubling sequences) of the chaotic pulsations for high pressures are in agreement
with predictions from the Haken–Lorenz model. At lower pressures, three-level
coherence effects seem to become relevant and cannot be described by the Haken–
Lorenz equations.

The formal justification for modeling optically pumped FIR lasers (in the high
pressure regime) by the simple Haken–Lorenz model has been widely disputed
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(see [4, 6]) because the coherent optical pumping appears to prevent reduction
of the three-level FIR laser model to the simpler form of a two-level laser model.
More complex models have been developed but most laser physicists agree that the
Haken–Lorenz equations are a good starting point when interpreting experimental
data from an FIR laser.

In their simplest form, the Haken–Lorenz equations are three equations for the
normalized electric field x , the normalized amplitude of the polarization y, and the
normalized inversion z, given by

dx

dt
= σ(y − x),

dy

dt
= r x − y − xz,

dz

dt
= x y − bz. (11.1)

Three parameters steer the behavior of these equations: σ is the cavity decay rate
divided by the polarization decay rate (σ = κ/γ⊥), b is the population inver-
sion decay rate divided by the polarization decay rate (b = γ‖/γ⊥), and r is the
pumping rate, where r = 1 gives the lasing threshold.

The standard rate equations (1.7) and (1.8), which have been the basis of our
analysis of laser dynamics up to now, have been derived using a purely phe-
nomenological approach. On the other hand, the Haken–Lorenz equations (11.1)
have been deduced from first principles (Maxwell equations and quantum mechan-
ics). The standard rate equations can also be obtained from (11.1) by eliminating
adiabatically the polarization y (see Section 11.4.2).

Equations (11.1) have received extensive mathematical attention [289]. Here,
we describe only the results that are relevant for interpretation of the experiments.
In addition to the zero solution (x , y, z) = (0, 0, 0), Eqs. (11.1) admit non-zero
steady state solutions given by

x = y = ±√b(r − 1) and z = r − 1. (11.2)

The trivial solution corresponds to the laser OFF and (11.2) to the laser ON. The
existence of two ON solutions is related to the invariance of the Lorenz equations
under the transformation (x , y, z) → (−x , −y, z). Physically this corresponds to
the invariance of the Maxwell–Bloch equations with respect to the reversal of the
orientation of the electric field.

The linear stability analysis of these solutions as found in textbooks reveals
that the OFF solution is stable if r < 1 and unstable if r > 1. The laser ON
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solutions exist only for r > 1 and are always stable if σ − 1 − b< 0. On the other
hand, if

σ − 1 − b > 0 (11.3)

the ON solutions are stable in the interval

1 < r < rH ≡ σ
(σ + b + 3)

(σ − 1 − b)
. (11.4)

The critical point r = rH is a Hopf bifurcation point. The frequency of the oscil-
lations at the Hopf bifurcation is obtained from the characteristic equation and is
given by

ωH ≡
(

2σb (σ + 1)

σ − b − 1

)1/2

. (11.5)

Consequently, the ON steady state solution may become unstable if r > rH pro-
vided the condition (11.3) is satisfied. In terms of the original laser parameters,
(11.3) implies the inequality

κ > γ⊥ + γ‖, (11.6)

i.e. the field relaxation rate must exceed the sum of the polarization and population
damping rates. This is the so-called “bad cavity condition”. The function rH =
rH (b) has a minimum at σ = σm = b + 1 + [2 (b + 1) (b + 2)]1/2. Substituting
this expression into rH , we find that the lowest possible numerical value occurs
for b = 0 and is rH = 9. This implies that the pump parameter must be about 10
times larger than the threshold value (r = 1).

The experiments were performed by Weiss and coworkers on an 81μm
14NH3 cw (FIR) laser pumped optically by an N2O laser. Figure 11.3 shows an
example of the chaotic emission where the FIR laser detuning is close to zero and
in a high pressure range where homogeneous broadening dominates. In [290], the
experimental pump rate is r = 15 and the values of b and σ were estimated at
b = 0.25 and σ = 2. For those values of the parameters, Eqs. (11.1) admit a
chaotic output similar to the one observed experimentally (see Figure 11.4). The
presence of oscillations with increasing amplitudes in the temporal evolution sug-
gests a saddle-focus behavior near the steady states which is typical of Lorenz
dynamics. As mentioned earlier, it remains difficult to conclude that the observed
oscillations indeed correspond to pure Lorenz chaos. This situation is complicated
because of the nonproportionality between theoretical and experimental physical
parameters. In other words, changing one experimental parameter usually alters
several parameters of the model. For instance, changing the pressure in the active
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Fig. 11.3 Spiral-type pulsing of the laser intensity. The pressure varied in cases
(a) to (e) from 8 to 10 Pa and the pump intensity was about 14 times above thresh-
old. Reprinted Figure 2 with permission from Hübner et al. [290]. Copyright 1989
by the American Physical Society.
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Fig. 11.4 Numerical solution of the Haken–Lorenz equations. r = 15, b = 0.25,
and σ = 2. (a) Phase-plane trajectories in the z vs. x plane (about 850 loops). (b)
Time trace for the laser intensity x2 vs. time t (about 175 pulses). The average
period is T = 28.6. Reprinted Figure 7a and 7b with permission from Hübner
et al. [290]. Copyright 1989 by the American Physical Society.

medium mainly controls the relaxation rates γ and γ‖ , but it also modifies r and
the ratio of homogeneous to inhomogeneous widths, bringing the system out of
the range of validity of the model. Similarly, the pump power mainly changes r
but to a minor extent alters the inhomogeneous width.3 Consequently a part of the
challenge was to find kill checks that would permit an answer to the question of

3 In the case of the FIR laser, the contribution of inhomogeneous broadening is highly nontrivial. These effects
have been studied in the steady state [291] and their contribution to laser dynamics was confirmed by heavy
numerical simulations.
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the existence of Lorenz chaos in a real laser. The Haken–Lorenz model may be
considered satisfactory if it quantitatively reproduces the following features:

• the ratio of the first (laser OFF → ON) to second (cw stable → pulsing) thresholds
• the sequences of bifurcations obtained as the pump parameter is increased (for zero and

non-zero detuning)
• the double-sided (symmetric) character of the Lorenz attractor.

Although the observed instability threshold closely corresponded to that pre-
dicted by the model, there was some controversy concerning the measurements
because they could not distinguish between motion about two unstable steady
states as shown in Figure 11.3 (a). This ambiguity arose because the intensity of
the laser field emitted by the laser was recorded, rather than the field amplitude. To
quell the controversy, Weiss and coworkers [290, 292] set up a laser-heterodyne
detector that could measure the field amplitude. They observed that the field expe-
rienced abrupt π phase changes as shown in Figure 11.5 (left), which corresponds
to the trajectory switching from one spiral to the other. Figure 11.5 (right) shows
results for a lower pressure. We again observe the spiral Lorenz type pulsations
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Fig. 11.5 Left: high pressure (p = 9 Pa) chaotic pulsing of the NH3 FIR laser in
the case of resonant tuning. (a) and (b) represent the in-phase and in-quadrature
heterodyne signals measuring the laser field; (c) shows the laser intensity pulses;
(d) gives the phase changes of the laser field and has been reconstructed from the
field traces. One division of the vertical axis corresponds to a phase change of π
rad. Pulsating period is 1μs. Right: lower pressure (p = 5 Pa) chaotic pulsing.
No more π phase jump is observed. Traces marked as in the left hand figures,
with the same time and phase scales. Note that there are no π jumps at the end of
each spiral. Reprinted Figures 1 and 2 with permission from Weiss et al. [292].
Copyright 1988 by the American Physical Society.
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(a)

(b)

Fig. 11.6 Comparison of (a) the Lorenz attractor and (b) the attractor recon-
structed from measured laser pulses. The laser field strength E is plotted as a
function of dE/dt (from Weiss and Vilaseca [4], p. 98).

in Figure 11.5 (c). However, the reconstructed phase for lower pressure measure-
ments (Figure 11.5 (d)) shows no switching by π at the end of each spiral. In this
case the attractor is “one-sided” (asymmetric in the field amplitude) in accordance
with the predictions from the complex Lorenz equations, which are appropriate
if the detuning is not zero. Reconstruction of the attractor by the time-delayed
technique confirms that the experimental attractor for the higher-pressure mea-
surements is symmetrical with respect to the origin and that it reproduces many
features of the Lorenz attractor [290]. An example of such a reconstruction based
on the field evolution is given in Figure 11.6. It clearly shows that for a cen-
trally tuned laser, the attractor is doubled-sided and symmetrical, showing the
same heteroclinic behavior as the Lorenz attractor. Similar experiments performed
with mid-infrared lasers confirm that other lasers may indeed exhibit Lorenz-type
chaos. A good review on the experiments and model predictions for the NH3 FIR
is presented in [293]. The question of whether the NH3 FIR laser is correctly
described by the Haken–Lorenz equations should not be pushed too far. As stated
by Khanin [6], many approximations which are known to be crude are required for
reducing this laser to a Haken–Lorenz system. Among these are:

• The level degeneracy: lasing occurs between levels with angular momentum J , and con-
sequently of degeneracy (2J + 1). They are not two nondegenerate levels as stated in the
model but a transition from (2J + 1) to (2J − 1) levels4 with transition moments (i.e.
matrix elements of the dipole moment) depending on the magnetic quantum numbers
and on the polarization of the electric fields.

4 Here J = 2, 4, or 7.
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Fig. 11.7 Dual-peaked gain curve resulting from off-resonant pumping of the FIR
laser at low pressures. Full lines: FIR gain associated with one velocity group and
one propagation direction for the pump. Dotted line: total FIR gain (from Figure
8.21a of Glorieux and Dangoisse [284]).

• The laser field is not a plane wave and the cavity losses (up to 20%) are such that the
uniform field limit is not valid.

• Most of the molecular relaxation parameters are unknown and the relaxation effects may
not be reducible to the two damping phenomena accounted for by γ and � (see Section
11.1). Moreover there is no measurement of the different values of γ for the transi-
tions involved in the FIR emission. The only relaxation measurements available are line
broadening coefficients, which provide a value of γ for the pump transition (see, e.g.,
[294]).

11.3 Dual gain line instability

Quite different behaviors are observed in the laser when its frequency is detuned
from the atomic transition frequency. New routes to chaos can be identified that
had not been observed previously. These results show that the dynamics of optical
systems are rich, and complement the studies of hydrodynamic systems.

11.3.1 Experiments

The FIR laser may exhibit a new kind of spontaneous instability at low pressures if
the pump laser is sufficiently detuned from resonance. In this regime the gain curve
appears as the combination of two Lorentzian profiles (see Figure 11.7). This may
be interpreted as the result of inhomogeneous broadening. Detuning the pump from
resonance means that molecules with a given non-zero velocity component along
the laser axis are pumped, so that their Doppler effect compensates for the pump
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Fig. 11.8 Transient build-up of laser emission following a switch-on of the pump.
The laser exhibits undamped oscillation at a frequency of about 200 kHz. Upper
trace: pump power. Lower trace: FIR response. The total time interval is 50 μs
(from Figure 8.18 of Glorieux and Dangoisse [284]).

frequency offset. However, as these molecules have a non-zero velocity along the
cavity axis, the corresponding FIR gain curve is also Doppler shifted.5 In a Fabry–
Pérot cavity, the laser field propagates back and forth along the cavity axis so that
the global gain peak for molecules of a given velocity shifts in both directions, each
corresponding to a propagation direction for the FIR laser beam. In most lasers,
this effect is symmetrized by the fact that the pump also propagates back and forth
since it is only weakly absorbed in the low-pressure gas. As a result, two velocity
groups are pumped, each of them having opposite Doppler-shifted gain curves. As
a consequence the global gain curve presents a double-peaked symmetric structure
as shown in Figure 11.7. An example of the intensity oscillations is given in Figure
11.8 where the laser emission is monitored just after a switch-on of the pump
radiation. The laser starts with some delay (5 μs in Figure 11.8) and an initial spike
as with any turn-on experiment (see Section 1.3.1), but in the present case it does
not reach a stable steady state. Instead, it undergoes undamped oscillations, here at
a frequency of about 100 to 200 kHz. This is a manifestation of the destabilization
of the steady state through a mechanism that will be explained in the next section.

11.3.2 Model

The physical model considers a single-mode ring laser with two homogeneously
broadened groups of two-level atoms with different resonance frequencies as

5 Note that the Doppler effect on the FIR line is greatly reduced with respect to its value on the pump line since
the Doppler shift is proportional to the optical (i.e. far-infrared vs. infrared) frequency. Therefore the
inhomogeneous broadening of the FIR gain is negligible, except at low pressures, typically below 2 Pa.
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shown on Figure 11.1 (for a discussion of the approximations leading to this model,
see [295]). The evolution equations for the amplitude of the electric field X , the
polarizations P1 and P2, and the population inversions D1 and D2 are given by

P ′
1 = −(1 + iδ)P1 + X D1, (11.7)

D′
1 = −γ (D1 − 1)− γ

2
(X P∗

1 + X∗ P1), (11.8)

P ′
2 = −(1 − iδ)P2 + X D2, (11.9)

D′
2 = −γ (D2 − 1)− γ

2
(X P∗

2 + X∗ P2), (11.10)

X ′ = −(κ − i�)X + κ

2
A(P1 + P2). (11.11)

δ and � are the detunings of the complex polarization and the cavity, respectively,
and κ and γ are the cavity and population relaxation rates, respectively. All fre-
quency and relaxation rates have been normalized to the polarization relaxation
rate. A is the pump parameter, normalized so that the pump parameter at threshold
is A = 1. These equations were also derived by Idiatulin and Uspenskii [296],
who examined how the presence of two groups of atoms could reduce instability
thresholds. They are a special case of the general theory of lasers with inhomo-
geneously broadened atoms which considers a continuous distribution of atomic
resonance frequencies.

Steady-state intensity solutions

In this section we determine the steady state intensity solutions for � = 0 (per-
fectly tuned laser cavity) for which instabilities were experimentally observed. We
first have the trivial OFF solution given by

X = P1 = P2 = D1 − 1 = D2 − 1 = 0. (11.12)

Second, we note from Eq. (11.11) with X ′ = 0 that

X = A

2
(P1 + P2). (11.13)

Introducing (11.13) into Eqs. (11.7) and (11.9) with P ′
1 = P ′

2 = 0 then leads to
a homogeneous system of two equations for P1 and P2. From the condition of a
nontrivial solution we find that D1 = D2 = D and

D = 1 + δ2

A
(δ �= 0). (11.14)
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Adding Eqs. (11.8) and (11.10) with D′
1 = D′

2 = 0 and using Eq. (11.13) provides
the intensity as

|X |2 = A − 1 − δ2 ≥ 0. (11.15)

The inequality requires that A ≥ Ath where

Ath = 1 + δ2. (11.16)

The solution (11.15) represents the ON state, now including the effect of the
detuning δ.

Third, the particular structure of Eqs. (11.7) and (11.10) with D′
1 = D′

2 = 0 and
� = 0 allows us to determine another steady state intensity solution. Specifically,
we seek a solution of the form X = x exp(iμt) and Pj = p j exp(iμt) ( j = 1, 2),
where x and p j are (complex) constants. From Eqs. (11.7) and (11.10), we obtain
the following equations for μ, x , p j , and D j

iμp1 = −(1 + iδ)p1 + x D1, (11.17)

0 = D1 − 1 + 1

2
(x p∗

1 + x∗ p1), (11.18)

iμp2 = −(1 − iδ)p2 + x D2, (11.19)

0 = D2 − 1 + 1

2
(x p∗

2 + x∗ p2), (11.20)

iμx = −κx + κ

2
A(p1 + p2). (11.21)

From Eqs. (11.18) and (11.20), we determine D1 and D2 as functions of x and
p j ( j = 1, 2). Eliminating D1 and D2 in Eqs. (11.17) and (11.19), we obtain two
equations for p1, p∗

1, p2, and p∗
2. Together with the complex-conjugate equations,

we determine p1 = p1(x) and p2 = p2(x). Finally, we use Eq. (11.21) and obtain
two conditions for xx∗ and μ from the real and imaginary parts. These conditions
lead to the solution

μ2 =
(

κδ

κ + 1

)2

− κA

2 (κ + 1)
≥ 0, (11.22)

|x |2 = κA

2 (κ + 1)
−
(

δ

κ + 1

)2

− 1 ≥ 0. (11.23)

For this solution the laser emits radiation with an optical frequency shifted from
the μ = 0 solution by an offset ±μ. Its domain of existence is determined by
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the inequalities in (11.22) and (11.23). Equation (11.22) requires that A ≤ Amax,
where

Amax = 2κδ2/ (κ + 1) (11.24)

and (11.23) requires that A ≥ Amin, where

Amin = 2
[
δ2 + (κ + 1)2

]
/ [κ (κ + 1)] . (11.25)

The birth of this solution occurs if Amax(δ) = Amin(δ). Using (11.24) and (11.25),
we find that it appears if δ ≥ δc, where

δc ≡ √
(κ + 1) / (κ − 1). (11.26)

The critical value Ac = Amax(δc) = Amin(δc) = 2κ/(κ− 1) then exactly matches
Ath defined by (11.16). The three solutions are shown in Figure 11.9.
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Fig. 11.9 Top: intensity of the steady state solutions vs. pumping parameter
A. Bottom: the frequency μ of the solution bounded by Amin and Amax.
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Linear stability

For the zero intensity solution (11.12), the linearized equations for P1, P2, and X
are of the form

P ′
1 = −(1 + iδ)P1 + X , (11.27)

P ′
2 = −(1 − iδ)P2 + X , (11.28)

X ′ = −κX + κ

2
A(P1 + P2). (11.29)

The characteristic equation for the growth rate λ is then given by

λ3 + λ2(2 + κ)+ λ
(
δ2 + 1 + 2κ − κA

)
+ κ

(
δ2 + 1 − A

)
= 0 (11.30)

and predicts two bifurcations. A steady bifurcation point appears at A = Ath ,
where λ = 0, and a Hopf bifurcation is possible if δ > δc. It is located at A = Amin

where λ = i� ≡ i
√
(δ/δc)

2 − 1. Note that because P2 = P∗
1 and X = X∗, each

root of the characteristic equation has an algebraic multiplicity of two.
For the non-zero intensity steady state (11.14) and (11.15), the linear stability

analysis is harder. Partial information may, however, be obtained if we assume X
real, P1 = P∗

2 = P1 = Pr + i Pi , and D1 = D2 = D. Equations (11.7)–(11.11)
then become

P ′
r = −Pr + δPi + X D, (11.31)

P ′
i = −Pi − δPr , (11.32)

D′ = −γ (D − 1)− γ X Pr , (11.33)

X ′ = −κX + κAPr . (11.34)

In terms of the new variables Pr , Pi , D, and X , the non-zero intensity steady state
is given by

Pr = 1

A

√
A − 1 − δ2, Pi = −δPr , D = 1 + δ2

A
, and X =

√
A − 1 − δ2.

(11.35)
From the linearized equations, we then determine a fourth order characteristic
equation for the growth rate λ. If γ = 1, one root is λ = −1 and the characteristic
equation can be rewritten as

(λ+ 1)
[
λ3 + λ2(2 + κ)+ λ

(
A − κδ2 + κ

)
+ 2κ

(
A − 1 − δ2

)]
= 0. (11.36)
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Fig. 11.10 Stability diagram. A = Ath denotes a bifurcation point from the OFF
to the ON steady state. A = Amin and A = AH represent Hopf bifurcation points
from the OFF state and from the ON state, respectively. The critical point δ2

c = 1.5
(δc � 1.23). If κ → ∞, Amin approaches the horizontal line A = 2 and AH
approaches the vertical line δ2 = 1.

From the cubic equation in λ, we determine a Hopf bifurcation point located at

AH = κ(4 + κ(1 − δ2))

κ − 2
(11.37)

and admitting the frequency

�2
H = 2κ(κ − 1)

κ − 2
(δ2 − δ2

c ) > 0. (11.38)

The stability diagram in the (δ2, A) parameter space is shown in Figure 11.10.

11.3.3 Comparison with the experiments

The parameters for the FIR laser in which the instabilities have been observed are
given in Table 11.1 and correspond to the conditions of the phase diagram shown
in Figure 11.10. Only the lower left corner of Figure 11.10 was accessible in the
experiment.
κ and δ are normalized to γ⊥ and A is in units of the pump power at threshold.

The agreement between the experimental observations and the model predictions
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Table 11.1 Parameters for the HCOOH FIR laser operating at 4 mTorr used for
the demonstration of the dual-gain line instability. κ and δ are normalized to γ⊥
and A is in units of the pump power at threshold.

Physical quantities In physical units In reduced units

molecular relaxation 5 × 105 s−1 (80 kHz) γ⊥ = γ‖ = 1
cavity loss 3–5 × 106 s−1 κ = 6–10
pump power 300 mW–1.1 W A = 1–3
cavity detuning 0–400 kHz δ = 0–5

is evaluated through the range of parameters in which pulsating instabilities are
observed. The theoretical analysis suggests two conditions on the parameters in
order to observe pulsating intensities. The “bad cavity” condition κ > 1 is satis-
fied in the experiments since the evaluation of the laser losses leads to κ ∼ 6−10,
depending on the pressure. The detuning condition δ > δc (δc � 1.23 for κ = 5 and
δc = 1 for κ→ ∞) is satisfied by the experimental value of δ∼ 1.26. A detailed
comparison is, however, complicated by the fact that the single-frequency CO2

laser used for pumping the FIR laser admits an output power (A) that depends on
the detuning (δ).6

Throughout the region of stable pulsing, the period T of the pulsations
decreases with increasing A values (as in experiments, where T = 8 → 6 μs for
PCO2 = 300 → 1100mW). The instability frequency (125–160 kHz) is approxi-
mately equal to the value calculated at resonance (120 kHz) from (11.38) and
the values of Table 11.1. For A values in excess of 14.5 (not accessible in these
experiments), the regular pulsing breaks down into chaotic pulsing. There have
been presumed observations of chaotic behavior at larger incident power but there
have not been further investigations of the dual-gain instabilities discussed in the
present section because other experiments gave much more characteristic chaotic
signals, as explained in Section 11.2. Numerical simulations show that the intensity
pulsations begin as 100% sinusoidal amplitude modulation. The initial pulsation
frequency is exactly twice the value of μ for the Xss(μ) solution predicted analyt-
ically. This is consistent with two equal amplitudes at optical frequencies located
at +μ and −μ from the reference frequency.

Most features of the experimentally observed pulsations are well described
within the framework of the model described here. Because κ can be considered a
large parameter, further analytical work on Eqs. (11.7)–(11.11) is possible.

6 It was assumed that A(δ) = A(0) exp(−δ2/1.44) exp(− (δ − 1)2 /1.44), where 1.44 corresponds to a
Gaussian half-width at half-maximum of 0.99. The latter is necessary to obtain quantitative agreement but it is
slightly different from the experimental value of 0.63.



11.3 Dual gain line instability 289

11.3.4 FIR laser dynamics in the “bad cavity limit”

Pulsating intensities were observed for κ ∼ 6–10 and suggest an analysis of Eqs.
(11.7)–(11.11) in the limit κ large. If κ→∞, X can be eliminated from Eq. (11.11)
by a quasi-steady state approximation. With � = 0, we find

X = A

2
(P1 + P2) (11.39)

and inserting this expression into the remaining equations with γ = 1, we obtain

P ′
1 = −(1 + iδ)P1 + A

2
(P1 + P2)D1, (11.40)

D′
1 = −(D1 − 1)− A

4

[
(P1 + P2)P

∗
1 + (P∗

1 + P∗
2 )P1

]
, (11.41)

P ′
2 = −(1 − iδ)P2 + A

2
(P1 + P2)D2, (11.42)

D′
2 = −(D2 − 1)− A

4

[
(P1 + P2)P

∗
2 + (P∗

1 + P∗
2 )P2

]
. (11.43)

Introducing the amplitude–phase decomposition Pj = R j exp(iφ j ) ( j = 1, 2) into
Eqs. (11.40)–(11.43) leads to five equations for R1, R2, D1, D2, and� = φ2 −φ1.
The nontrivial steady state D1 = D2 = D given by (11.14) suggests a consider-
ation of the pure symmetric case where R1 = R2 = R and D1 = D2 = D. This
assumption reduces the five original equations to three equations for R, D, and �
given by

R′ = R

[
−1 + AD

2
(1 + cos(�))

]
, (11.44)

D′ = −(D − 1)− A

2
R2(1 + cos(�)), (11.45)

�′ = 2δ − AD sin(�), (11.46)

where the phase equation (11.46) has meaning only if R �= 0. We now hope
that some of the bifurcations of the original FIR equations are well captured
by Eqs. (11.44)–(11.46). Eq. (11.46) is an Adler-type equation with a restoring
term proportional to the population inversion D. In addition to the zero intensity
solution

R = D − 1 = 0 (11.47)
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there exists a non-zero intensity steady state given by

R =
√

1 + δ2

A2
(A − Ath), D = Ath

A
, and � = 2 arctan(δ) (11.48)

if A ≥ Ath , where Ath is defined by (11.16). We have already determined these
steady states but the linear stability analysis will be simplified because we are con-
sidering the three equations (11.44)–(11.46) rather than the original five equations.
We first examine the stability of the zero intensity solution (11.47). Assuming R
small, Eq. (11.45) tells us that D → 1 as t → ∞. The long time solution is then
described by the remaining equations for R and � with D = 1 given by

R′ = R

[
−1 + A

2
(1 + cos(�))

]
, (11.49)

�′ = 2δ − A sin(�). (11.50)

Equation (11.50) is an Adler equation for the phase �. If A ≥ |2δ| , it admits the
steady state solution � = arcsin(2δ/A). Inserting this expression into the right
hand side of Eq. (11.49), we note that R = 0 is stable if A< Ath , where Ath

is defined by (11.16). On the other hand, if A< |2δ|, the solution of Eq. (11.50)
is unbounded in time. Integrating Eq. (11.49) for R using (11.50) leads to the
result7

R = C exp

[(
−1 + A

2

)
t

]
1√

2δ − A sin(�)
, (11.51)

where C is a constant of integration that depends on the initial conditions. The
exponential in (11.51) clearly indicates a change of stability as

A > Amin = 2. (11.52)

7 Eq. (11.49) is separable:

R−1d R =
(
−1 + A

2

)
dt + A

2
cos(�)dt

=
(
−1 + A

2

)
dt + A

2

cos(�)d�

2δ − A sin(�)

=
(
−1 + A

2

)
dt − 1

2
duu−1,

where u = 2δ − A sin(�). Integrating both sides then gives

ln(R) =
(

−1 + A

2

)
t + ln(u−1/2)+ C .
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Fig. 11.11 Numerical solutions of Eqs. (11.44)–(11.46) in the vicinity of the Hopf
bifurcation from R = 0 (AH = 2).

At A = 2, the solution is periodic and oscillates with Adler’s frequency ω =√
4δ2 − A2. This is not a conventional Hopf bifurcation point because the bifur-

cation at A = 2 is from R = 0 but R(t) > 0 as soon as A > 2. The long time
solution of Eqs. (11.44)–(11.46) near the Hopf bifurcation A = 2 (δ > 1) is shown
in Figure 11.11 for two different values of A.

The linear stability analysis of the non-zero steady state (11.48) leads to a third
order polynomial for the characteristic equation. It is given by

λ3 + a1λ
2 + a2λ+ a3 = 0, (11.53)

where

a1 = 2 − δ2, a2 = 2(A − Ath)+ 1 − δ2, and a3 = 2(A − Ath). (11.54)

The Routh–Hurwitz stability conditions are a1> 0, a3> 0, and a1a2 − a3> 0.
The first two conditions require δ2< 2 and A> Ath . The last condition
simplifies as

a1a2 − a3 = (1 − δ2)
[(

2(A − Ath)+ 2 − δ2
)]
> 0. (11.55)

Together with the two previous conditions, it requires that δ2 < 1. In summary,
the non-zero steady state is stable if

A > Ath and δ2 < 1. (11.56)

The critical point δ = 1 corresponds to a Hopf bifurcation with frequency equal
to

√
a2 = √

2(A − 2) if δ= 1 and A> 2. It has meaning only if we treat δ as the
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Fig. 11.12 Stability of the steady states in the large κ limit. The horizontal line
A = 2 and vertical lines δ2 = 1 are Hopf bifurcation boundaries for the zero
intensity steady state and the non-zero intensity steady states, respectively. The
straight line A = Ac = 1 + δ2 corresponds to a bifurcation between the zero and
non-zero intensity steady states.

bifurcation parameter (fixed A). If δ < 1, we have a bifurcation at A = Ath from
the OFF to the ON state and there are no Hopf bifurcations. Figure 11.12 displays
the stability diagram for both the zero and non-zero steady states. It represents
the “bad cavity limit” (κ→ ∞) of general diagrams such as Figure 11.18 and
provides a reasonable approximation in the accessible (A< 4) range of the pump
parameter.

11.4 Exercises

11.4.1 Real Haken--Lorenz equations

In the case of central tuning of the laser cavity (δ = � = 0), Eqs. (11.57) reduce
to Eqs. (11.1).

(1) Derive the characteristic equation for the stability of the steady state solutions of these
equations.

(2) Find the condition linking κ , γ , and γ‖ for the existence of instabilities of the nontrivial
solution.

(3) Derive the angular frequency ωH of the instabilities at the bifurcation point.

11.4.2 Complex Haken--Lorenz equations

The complex Haken–Lorenz equations for a single-mode laser apply when we take
detunings into account. They are given by [21]
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X ′ = κ [− (1 − i�) X + AP] ,

P ′ = −(1 + iδ)P + X D,

D′ = γ

[
1 − D − 1

2

(
X P∗ + X∗ P

)]
(11.57)

with the same notations as in Section 11.3 except for a different normalization of
� ≡ (ωc −�) /κ . P and X are complex variables and D is real.

(1) Using the fact that D is real, show that � + δ = 0 at steady state. This is called the
dispersion relation and sets the laser frequency. Investigate the linear stability of the
two steady state solutions of Eqs. (11.57). Show that the trivial solution is always stable
below threshold.

(2) For the nontrivial solution, the stability problem is five-dimensional. Show that one
root of the characteristic equation is always 0. Interpret this in terms of a physical
invariance. Derive from this an instability criterion and interpret it physically by com-
parison with, for example, the results of the rate equations (use the fact that the constant
term of the characteristic equation is equal to the product of its roots and that it must
cancel at the instability threshold).
Solution: the solution is fully documented in [21].

(3) Check that the adiabatic elimination of the polarization in Eqs. (11.57) leads to the
standard rate equations. Analyze why the frequency variables disappear in the reduced
equations.
Solution: the adiabatic elimination of P leads to P = X D/(1 + iδ). After inserting
this expression into Eqs. (11.57), we obtain

X ′ = κX

[
−(1 − i�)+ AD

1 + iδ

]
,

D′ = γ

[
1 − D − 1

2
X X∗ D

(
1

1 + iδ
+ 1

1 − iδ

)]
.

Introducing the intensity I = |X |2 , we eventually obtain

I ′ = 2κ I

[
−1 + AD

1 + δ2

]
,

D′ = γ

[
1 − D − DI

1 + δ2

]
,

which are our standard rate equations with detuning δ.
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Optical parametric oscillator

Optical Parametric Oscillators (OPOs) are based on multiwave interaction in a
nonlinear medium. They have been realized in a variety of configurations, giving
rise to an extended range of new dynamical problems. Like lasers, OPOs admit a
steady state bifurcation at threshold and, in addition, they may exhibit bistability
or Hopf bifurcations. Moreover, thermal effects may be dominant in cw oscillators
leading to interesting slow–fast responses where the temperature is a new dynam-
ical variable. Second-harmonic generation (SHG) is in a sense the inverse process
of degenerate parametric amplification. Devices based on SHG are described by
similar evolution equations but show different phenomena.

12.1 Parametric processes

An OPO is a light source similar to a laser, but based on optical gain from para-
metric amplification in a nonlinear crystal rather than from stimulated emission.
Like a laser, such a device exhibits a threshold for the pump power, below which
there is negligible output power. A main attraction of OPOs is that the signal and
idler wavelengths, which are determined by a phase-matching condition, can be
varied in wide ranges. We may thus access wavelengths (e.g. in the mid-infrared,
far-infrared, or terahertz spectral region) which are difficult or impossible to obtain
from any laser and we may also realize wide wavelength tunability. The downside
is that any OPO requires a pump source with high intensity and relatively high spa-
tial coherence. Therefore, we always need a laser as the pump source, generally a
diode-pumped solid state laser.

The potential application areas for OPOs are diverse. Spectroscopy and many
other scientific applications can profit from the ability of OPOs to cover very wide
spectral regions, and to deliver outputs with narrow linewidth and high power. A
common military application is the generatation of broadband high power light
in the 3–5 μm region for the blinding of heat-seeking missiles when they attack

294
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airplanes. But despite their interesting capabilities, OPOs have so far not found
widespread use in commercial products. One of the reasons is that an OPO system
which includes pump laser, OPO, and possibly a temperature-stabilized crystal
oven, is more complex to build than a pure laser system. Another reason is that
a detailed understanding of the physics of parametric amplification is not very
widespread in the laser industry [297].

Optical parametric processes are multiwave interactions which occur in
nonlinear media. Typically, several optical waves excite a medium whose
nonlinear response produces new radiation at a frequency which is a simple
combination (e.g. sum or difference) of the incoming ones. Evolution equa-
tions describing these interactions require fewer approximations than those for
lasers. Light–matter interaction in OPOs is ruled by the nonlinear suscepti-
bility χ . The dielectric polarization P in the most commonly used nonlin-
ear materials may be expanded as the following power series of the electric
field(s) E

P = ε0χ(E)E = ε0

(
χ(1)E + χ(2)E ⊕ E + χ(3)E ⊕ E ⊕ E + . . .

)
, (12.1)

where χ(n) stands for the components of the nonlinear susceptibility tensors. Writ-
ing the field–matter interaction as Eq. (12.1) assumes instantaneous response so
that the material variables are adiabatically eliminated. Equation (12.1) is valid
as long as the material variables relax faster than the electric fields. In nonlinear
optics, this approximation applies at time scales larger than 10−15 s.1 In nonab-
sorbing materials, the first order term is a refractive index contribution and may
be included by introducing ε ≡ ε0χ

(1). The higher order terms are responsi-
ble for various nonlinear parametric processes. For instance, the χ(2)contributions
account for second harmonic generation (SHG), optical parametric amplification
(OPA), and sum and difference frequency generation (SFG and DFG), while the
third harmonic generation (THG) and Raman and Kerr effects are linked to the
χ(3) contributions. Because χ(2) effects are the most efficient and commonly used
processes, this chapter concentrates on devices using only a second order nonlin-
earity. Practically speaking, χ(2) �= 0 only in noncentrosymmetric materials, so
that the parametric amplification may be realized in solid state systems such as
crystals with suitable symmetry, or poled glass.

In the following section, we briefly introduce the OPO and SHG evolution
equations. We then concentrate on specific dynamical phenomena.

1 Subfemtosecond pulse propagation may require more sophisticated treatment.
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12.1.1 Optical parametric amplification

In optical parametric amplification, an electromagnetic field experiences gain
through a three-wave process. More specifically a nonlinear medium subjected to
a strong field at frequency ωp (the pump) emits two waves, the signal (s) and the
idler (i) at frequencies ωs and ωi , respectively, such that ωp = ωs +ωi . It is some-
times said that one (pump) photon is converted into two photons with frequencies
satisfying the energy conservation law.

In OPOs, the active medium is placed inside an optical cavity which may be res-
onant for one, two, or the three fields involved in the parametric amplification, and
corresponds to singly (SROPO), doubly (DROPO), or triply (TROPO) resonant
OPOs, respectively. As a consequence one, two, or three (complex) equations are
required for describing the OPO, assuming that only one electromagnetic mode of
the cavity is involved for each field (monomode OPOs). Multimode operation will
not be treated here.

The equations for the triply resonant monomode OPO are given by

E ′
p = −(γp + iδp)E p − χEs Ei + E ,

E ′
s = −(γs + iδs)Es + χE p E∗

i ,

E ′
i = −(γi + iδi )Ei + χE p E∗

s , (12.2)

where E j stands for the electric field amplitudes ( j = p, s, or i), γ j and δ j are the
corresponding loss and cavity detuning coefficients, and χ is the relevant compo-
nent of the dielectric tensor. E is the input pump field. All quantities are in physical
units.

Equations for DROPOs and SROPOs may be derived from Eqs. (12.2) by adi-
abatic elimination of the nonresonant fields. Mathematically, we assume that the
cavity is nonresonant (γ large) or strongly detuned (� large) for the nonresonant
fields (see Exercise 12.10.1).

By far the most widely studied OPO problem corresponds to the situation where
the cavity losses are similar for the signal and the idler, either because they have
exactly the same frequency as in the degenerate OPO (called DOPO) or because
their frequencies are close to each other (ωs � ωi ). One of these two fields, e.g.
i , may be eliminated and equations for the triply resonant but nearly degenerate
OPO become (Exercise 12.10.2)

A′
0 = −(γ + i�0)A0 − A2

1 + E , (12.3)

A′
1 = −(1 + i�1)A1 + A∗

1 A0. (12.4)



12.1 Parametric processes 297

In these equations, γ ≡ γp/γs is the ratio of the cavity losses for the pump and
signal radiation. �0 ≡ (ω0 − 2ω)/γs and �1 ≡ (ω1 − ω)/γs are the detunings in
units of the cavity field damping rate γp. ω0 and ω1 are the cavity resonances clos-
est to the pump and signal frequencies, respectively, and ω is the signal frequency.
Indices 0 and 1 refer to the pump and the signal, respectively. The source terms
associated with parametric amplification in the right hand sides of Eqs. (12.3) and
(12.4) involve products of two fields as expected from the nature of the nonlinearity
responsible for this so-called “second order process”.

Comparing these equations with the rate equations of a class B laser, we find
that four independent parameters control the response of a DOPO instead of two
for the standard laser rate equations. Moreover, recall that A0 and A1 are complex
variables and Eqs. (12.3) and (12.4) are then equivalent to four real equations.

12.1.2 Second harmonic generation

Crudely speaking, second harmonic generation (SHG) may be considered the
reverse of degenerate optical parametric amplification. In SHG, a crystal irradi-
ated by a laser at frequency ω emits a wave at frequency 2ω. In terms of photons,
we can consider that two identical photons are “added” to generate a new photon
with twice the energy of the original photons (ω + ω → 2ω), i.e. the opposite of
degenerate optical parametric amplification. Photons interacting with a nonlinear
material are effectively “combined” to form new photons with twice the energy,
and therefore twice the frequency and half the wavelength of the initial photons.
Historically, SHG was discovered before optical parametric amplification (OPA),
and its experimental demonstration by Peter Franken and coworkers at the Uni-
versity of Michigan [298] was made possible by the invention of the laser, which
created the required high intensity monochromatic light. Specifically, they focused
a ruby laser with a wavelength of 694 nm onto a quartz sample. They sent the out-
put light through a spectrometer, recording the spectrum on photographic paper,
which indicated the production of light at 347 nm. In recent years, SHG has been
extended to biological applications such as imaging molecules that are intrinsi-
cally second-harmonic-active in live cells or whose position at an interface breaks
inversion symmetry.

In cw SHG, the nonlinear crystal is most often placed inside a cavity which is
resonant for both the pump and the frequency-doubled wave so that the general
model equations for intracavity SHG are given by [21]

dE1

dt
= −(γ1 + iδ1)E1 + iaE2 E∗

1 + Eext ,

dE2

dt
= −(γ2 + iδ2)E2 + ibE2

1, (12.5)



298 Optical parametric oscillator

which, after rescaling (Exercise 12.10.3), become

A′
1 = −(γ + i�1)A1 + A2 A∗

1 + E ,

A′
2 = −(1 + i�2)A2 − A2

1. (12.6)

Indices 1 and 2 refer to the fundamental and harmonic radiations, respectively. The
number of independent parameters and dynamical variables is the same as for the
DOPO.

12.2 Semiclassical model for the DOPO

The degenerate OPO (DOPO) equations are compact and simple. They have been
used to study a variety of dynamical effects such as walk-off and thermal runaway.
The fact that an OPO delivers twin photons also makes it a perfect tool for quan-
tum optics experiments [299]. Surprisingly, there have been few experiments on
OPO classical dynamics. This may be due to the fact that OPOs are most often
operated under pulsed pump conditions, so that dynamical effects have no time to
fully develop during the pulse duration. Practically speaking, pulsed optical para-
metric generation is relatively easy to achieve in single-pass crystals (without a
cavity) while most cw OPO cavities need highly reflecting mirrors. Indeed, the
OPO signal gain is directly proportional to the pump field amplitude, which is typ-
ically 103–104 times smaller in the cw regime. Moreover, cw operation of OPOs
requires special attention since it is technically difficult to simultaneously control
pump and signal cavity detunings.

Like lasers, cw OPOs admit a pump threshold where the parametric gain com-
pensates the cavity losses. The nature of the bifurcation at threshold may be
anticipated qualitatively. Depending on the signs of the detunings and of the imag-
inary parts of the coupling term, the parametric gain may be pulling towards
or pushing away from the resonance frequency of the cavity, meaning either an
increase or a decrease of the gain process, so we expect to switch from sub-
critical or supercritical bifurcation as the detuning changes sign. In the next
subsections, we analyze the steady states and their stability for the special case of
the DOPO.

12.2.1 Steady state solutions and bistability

The steady state solutions of Eqs. (12.3) and (12.4) satisfy the conditions

−(γ + i�0)A0 − A2
1 + E = 0, (12.7)

−(1 + i�1)A1 + A∗
1 A0 = 0. (12.8)



12.2 Semiclassical model for the DOPO 299

Consider Eq. (12.8). One solution is A1 = 0 and we determine |A0| from (12.7).
The OFF solution where the signal field is absent is given by

A1 = 0, |A0|2 = E2/
(
γ 2 +�2

0

)
. (12.9)

Equation (12.8) and its complex conjugate form a homogeneous system of two
equations for A1 and A∗

1. The condition for a nontrivial solution gives

|A0|2 = 1 +�2
1. (12.10)

Moreover, we have a relation between A1 and A∗
1 given by

A∗
1 = (1 + i�1)A1 A−1

0 . (12.11)

Using (12.7), we determine E E∗ and simplify the resulting expression using
(12.11). This leads to the signal intensity for the ON solution (in implicit form)

E2 = |A1|4 + 2 |A1|2 (γ −�0�1)+
(
γ 2 +�2

0

) (
1 +�2

1

)
. (12.12)

Setting |A1| equal to zero in (12.12) gives the threshold for the ON solution as

E2
th =

(
γ 2 +�2

0

) (
1 +�2

1

)
. (12.13)

We now briefly comment on these results. In (12.13), the term (1 +�2
1) is similar

to what was obtained for a detuned class B laser and accounts for the efficiency
loss due to the off-resonance of the cavity for the signal. Moreover, we expect a
higher threshold if the cavity is detuned for the pump radiation as indicated by the
second term (γ 2 +�2

0). We also note from (12.12) that the output power increases
like

|A1|2 � E (12.14)

as E → ∞, implying a square-root law as we could expect for a conversion process
2ω→ω+ω. Above threshold, the intracavity pump is clamped to its threshold
value given by (12.10) and is independent of the input power. Its increase with
signal detuning simply reflects the fact that a detuned cavity requires a larger pump
intensity to operate.

Depending on the values of the parameters, there are either one or two ON
solutions. By analyzing the quadratic equation (12.12), we find that the case of
two ON solutions is possible provided that (Exercise 12.10.4)

�0�1 > γ . (12.15)
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Fig. 12.1 Steady state solutions for the degenerate OPO. Single ON solution for
�0 = 0.5, �1 = γ = 1 (black line); two ON solutions for �0 = 4, �1 = γ = 1
(gray line).

The linear stability analysis of the OFF solution shows that it is stable below
threshold and unstable above. If (12.15) is satisfied and the upper ON solution
is stable, we have a domain of coexistence of stable OFF and stable ON states
(bistability). See Figure 12.1. The steady state solution (12.12) accurately fits the
experimental observations in the vicinity of the threshold including the existence
of bistability for detunings satisfying (12.15), as we shall see later.

12.2.2 Hopf bifurcation

We now concentrate on the case �0�1 < γ (no bistability). Increasing the pump
rate, the ON solution may become unstable through a Hopf bifurcation to sustained
oscillations [300, 301, 302, 303]. A necessary condition for this bifurcation is [303]

�0�1 < −1

2

(
γ 2 + 2γ +�2

0

)
, (12.16)

which ensures that there is a positive signal intensity given by

|A1H |2 = − γ
(
γ 2 +�2

0

) [
�2

0 + (2 + γ )2
]

2 (1 + γ )2
(
�2

0 + 2�0�1 + γ 2 + 2γ
) . (12.17)
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Fig. 12.2 The two domains for a Hopf bifurcation are shown in terms of the signal
field detuning�1 and the pump field detuning�0 (γ = 1). The gray lines delimit
the domains where bistability of steady states is possible.

The corresponding input field E = EH is then deduced from (12.12). The domains
where the inequality (12.16) is verified are shown in Figure 12.2. The bound-
aries admit a minimal value at |�1| = √

γ (γ + 2). This indicates that a Hopf
bifurcation is possible only for sufficiently high signal field detuning �1.

OPOs are known to experience mode hops where the system jumps to the
mode of lowest cavity detuning. This phenomenon significantly limits the range
of accessible detunings and could prevent the experimental observations of the
Hopf bifurcation [304]. The Hopf bifurcation frequency� is

�2 = 2 |A1H |2 + γ 2 +�2
0

1 + γ
. (12.18)

It is interesting to evaluate this frequency in the limiting cases γ << 1 and γ >> 1.
For simplicity we assume perfectly tuned cavities (�0 =�1 = 0). In both lim-
its, we found that the Hopf bifurcation frequency is proportional to γ ≡ γp/γs .
Because time is scaled by the damping rate of the signal field γs , the oscillations
appearing at the Hopf bifurcation are expected to physically occur at the damping
rate of the pump field γp.

12.3 Experiments on TROPO-DOPO

Optical parametric amplification is a highly nonlinear process with little efficiency
at low light intensities. Therefore cw oscillation needed for the observation of the
steady state solutions can only be achieved in low loss cavities. Such cavities were



302 Optical parametric oscillator

designed only when low loss mirrors at the different wavelengths (and high gain
media) became available. Practically speaking, one often takes advantage of the
enhancement of the pump field inside a resonant cavity to reach a pump threshold
consistent with the power levels delivered by cw lasers.2 For these reasons, all
the experiments discussed in this section have been made on TROPOs or quasi-
degenerate DOPOs because they admit the lowest pump threshold.

In this section, we review some experimental results that illustrate the analyti-
cal results obtained in the previous section, namely the power law dependence of
the output power, the bistability phenomenon, and the relaxation oscillations. The
Hopf bifurcation was theoretically predicted in 1978 [300, 301, 302] but has not
been observed experimentally. Oscillatory responses have been reported but they
result from either thermal effects [305, 306] or from the interaction of transverse
modes. The thermal effects are analyzed in Section 12.4.

12.3.1 Power 1/2 law for the output power

Equation (12.12) predicts the existence of a threshold for cw oscillation and a
power 1/2 dependence for the evolution of the OPO signal (i.e. output) power
vs. pump (i.e. input) power (see Eq. (12.14)). The evolution of the input/output
characteristics in the static regime was investigated by Lee et al. [307] and indeed
fits a square law dependence as shown in Figure 12.3.
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Fig. 12.3 Evolution of the signal power vs. the pump power. The solid line is
a fit to a power 1/2 law. It also yields a pump threshold of 16 mW. With kind
permission from Springer Science+Business Media (Figure 2 of Lee et al. [307]).

2 Typical pump powers at threshold are of the order of 1 mW, 10–100 mW, and 1 W for TROPO, DROPO, and
SROPO, respectively.
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Fig. 12.4 Signal output power of a cw OPO for increasing and decreasing values
of the pump power. Top: no bistability of the steady states. Bottom: bistability of
the steady states. The full line superimposed on the bottom figure is a theoreti-
cal fit of the branch of steady states for �0 = 2 and �1 = 2.6. The experimental
bifurcation diagrams are deformed because the control parameter is slowly chang-
ing in time and experiences delays before jumping (from Figures 4 and 6 of Richy
et al. [308]).

12.3.2 Bistability for large detunings

Bistability in the near threshold regimes of a continuous OPO has been observed by
Richy et al. [308] in a triply resonant, nearly degenerate OPO. By rapidly sweep-
ing the pump power back and forth, they recorded variations of the OPO output
intensity as displayed in Figure 12.4. The experimental bifurcation diagrams are
deformed because the pump parameter is continuously changed in time. As a con-
sequence, the expected transitions to a new state are delayed as seen in Figure 12.4.
Passages through bifurcation points are discussed in detail in Chapter 7.

12.3.3 Relaxation oscillations

In an OPO, noise is induced by technical fluctuations and/or by purely quantum
fluctuations. Noise actually drives the system by a broadband excitation and the
response spectrum reflects its dynamical properties. As a consequence, the noise
spectrum of the output intensity gives direct access to the relaxation oscillation
(RO) frequencies and damping rates, provided that the spectrum of these driv-
ing fluctuations is wide enough and any technical (e.g. mechanical) resonance is
avoided. If these conditions are met, the OPO’s intensity exhibits a wide noise
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Fig. 12.5 RF intensity noise spectra of the signal measured for the OPO operated
at different pump powers: (a) 3.3, (b) 4.7, (c) 15.8 times the threshold power.
The full lines represent the predicted shapes of the noise spectrum. With kind
permission from Springer Science+Business Media (Figures 4a–4c of Lee et al.
[307]).

spectrum with a broad peak as shown in Figure 12.5. This peak coalesces to zero
as the threshold is approached. The frequency of this peak thus corresponds to the
RO frequency, which can be compared to the analytical expression obtained by the
linearized equations. The RF noise spectrum of a continuous OPO was measured
by Lee et al. [307] for several values of the pump power in the near threshold
region. They observed tendency laws as shown in Figure 12.6. Such laws may be
deduced from a linear stability analysis of the ON state, as we shall now see.

In order to determine expressions for the RO frequency and the RO damp-
ing rate, Lee et al. [307] considered the case of a triply resonant OPO at exact
resonance for the three fields. Setting all δ j = 0 and introducing the decomposi-
tion E j = A j exp(iφ j ) and E = F exp(i�) into Eqs. (12.2), the authors further
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Fig. 12.6 RO frequency (left) and RO damping rate (right) as functions of the
pumping rate. With kind permission from Springer Science+Business Media
(Figures 5 and 6 of Lee et al. [307]).

assumed φp − (φs +φi )= 0, which allows maximum parametric interaction. The
intracavity pump field is fixed to the phase of the pump laser (φp =�). The
evolution equations are then

A′
p = −γp A p − χ As Ai + E ,

A′
s = −γs As + χ A p Ai ,

A′
i = −γi Ai + χ A p As . (12.19)

The ON steady state is given by

A p =
√
γsγi

χ
, As = 1

χ

√
γiγp (P − 1), and Ai = 1

χ

√
γsγp (P − 1),

(12.20)
where P = E/Eth and Eth = γp A p. To analyze its stability, we determine the
characteristic equation3 given by

λ3 + λ2(γp + γs + γi )+ λγp(γs + γi )P + 4γiγsγp (P − 1) = 0. (12.21)

For large values of the pump parameter above threshold P , we seek a large root of
the form λ = P1/2λ0 + λ1 + . . . Inserting this expression in (12.21) and equating
the coefficients of each power of P1/2 to zero gives

λ0 = i
√
γp(γs + γi ) and λ1 = −1

2
(γp + γs + γi)+ 4γiγs

γs + γi
. (12.22)

We conclude that, in this limit, the RO frequency is given by

ω = √
γp(γs + γi)P (12.23)

3 The characteristic equation derived by Lee et al. [307] is obtained using approximations. The exact equation
has been later derived by Wei et al. [309].
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and is proportional to the square root of the pump power. On the other hand, the
damping rate of the relaxation oscillations is given by

� = 1

2
(γp + γs + γi )− 4γiγs

γs + γi
(12.24)

and does not depend on P . These two scaling laws coincide with those which have
been tested experimentally by Lee et al. [307] (see Figure 12.6).

12.4 TROPO-DOPO and temperature effects

In this section, we reexamine our results taking into account the influence of the
temperature variation associated with radiation absorption inside the nonlinear
crystal. We show how thermal effects produce slow ON–OFF alternations in a
monomode cw OPO.

12.4.1 Experimental results

Slow oscillations at frequencies typically in the 20 kHz range are observed experi-
mentally in monomode cw OPOs. They consist of periodic switching between ON
and OFF states (see Figure 12.7) at a rate which is about 103 times slower than
that of the relaxation oscillations (RO) (10–20 MHz). Therefore these oscillations
are too slow to be the result of a Hopf bifurcation from the ON state. On the other
hand, thermal changes of a parameter could be responsible for an ON–OFF slow
oscillatory modulation. In a laser with macroscopic dimensions, thermal oscilla-
tions typically appear in the 10−4–1 s range, i.e. much slower than the ROs. Such
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Fig. 12.7 Thermally induced cycles in the OPO. The signal (upper trace) displays
ON–OFF square-wave oscillations and the pump (lower trace) switches simulta-
neously between two well-identified regimes. Reprinted Figure 2 with permission
from Suret et al. [305]. Copyright 2000 by the American Physical Society.
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effects are well known in lasers; for instance thermal lensing is known to be detri-
mental for high-power Nd3+:YAG lasers. However their action in OPOs is far from
trivial. Experiments performed by Suret et al. [305] demonstrated that the temper-
ature rise due to residual absorption of radiation is indeed responsible for a drift of
the cavity length, possibly leading to instabilities. Thermal variations of the cavity
length are expected to either stabilize or destabilize the OPO output, depending
on the cavity detuning, since they may shift the cavity towards resonance or away
from resonance. If the thermal shift is large enough, a cyclic behavior is possible,
as we shall now demonstrate.

12.4.2 Model for thermally induced cavity drift

Suret et al. [305] described the influence of temperature variations by intro-
ducing temperature dependent detunings. Instead of Eqs. (12.3) and (12.4), the
dimensionless DOPO equations are given by

A′
0 = E − (γ + iσ0(θ))A0 − A2

1, (12.25)

A′
1 = −(1 + iσ1(θ))A1 + A0 A∗

1, (12.26)

where σ0(θ) and σ1(θ) are the detunings and θ is the temperature. Provided the
variations of θ remain small, the detunings are assumed to be linear functions of θ
of the form

σ0(θ) = �0 − 2θ/γ and σ1(θ) = �1 − θ . (12.27)

The additional factor 2 in σ0 comes from the fact that the pump wavelength is
exactly half that of the signal wavelength in a DOPO. An equation for θ is obtained
from the heat equation assuming that the main heating contribution comes from the
two intracavity fields. It has the form

θ ′ = ε(−θ + a|A0|2 + b|A1|2), (12.28)

where a and b are coefficients proportional to the optical absorptions at the pump
and signal wavelengths, respectively. ε << 1 measures the effective thermal con-
stant of the OPO cavity. Equation (12.28) simply says that the temperature slowly
relaxes towards its equilibrium value θeq = a|A0|2 + b|A1|2 fixed by the absorbed
pump and signal powers inside the OPO crystal. Table 12.1 provides typical val-
ues of the parameters.4 The dimensionless time is measured in units of the cavity
decay time for the signal, τ = 7×10−2 μs. The parameters a and ε have been cho-
sen so that the numerical simulations correctly reproduce the time scales observed
experimentally.

4 The parameters σ0, a, b, and E are related to the parameters defined in [305] as σ0 = γ σp , a = α,
b = β/

√
γ , and E → γ E .
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Table 12.1 Typical parameter values for a cw DOPO.

γ E a b ε �0 �1

10 40 1.5 0.06 10−3 −20 2.6
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t ´ 7 ´ 10–2 ms (50 ms/div)

|A1|
2

Fig. 12.8 Numerical solution of Eqs. (12.25)–(12.28) with γ = 10, E = 40,
a = 1.5, b = 0.06, ε= 10−3, �0 = − 20, and �1 = 2.6.

Periodic switching between OFF and ON states has been obtained numerically
with the parameters of Table 12.1 (see Figure 12.8). Experimental and numerical
periods are close to 90 μs.

12.4.3 Thermal cycles in the single-mode OPO

Because θ is slowly varying (ε << 1), we first examine the bifurcation diagram
of the fast subsystem (12.25) and (12.26) keeping θ as a parameter. The steady
state solutions are given by (12.9) and (12.10)–(12.12) with �0 and �1 replaced
by σ0 and σ1, respectively. The steady state intensities with the parameters listed
in Table 12.1 are shown in Figure 12.9 with their stability properties. A subcritical
steady bifurcation from the OFF to the ON state appears at θbi f � 3.55 and allows
the overlap of stable ON and OFF states for the interval θbi f <θ < θL P , where
θL P � 3.85 corresponds to the steady state limit point.

We are now ready to consider the time dependent temperature. We note that
θ ′> 0 if the right hand side of Eq. (12.28) is evaluated along the upper ON state
while θ ′< 0 if it is evaluated along the OFF state. Taking into account the stabil-
ity properties of the ON and OFF states, we anticipate a cyclic behavior between
the slowly varying OFF and ON states. This is indeed observed in Figure 12.9 but
the fast jumps between the two slowly varying states do not occur at the bifur-
cation and limit points. The analysis of simple slow passage through bifurcation
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Fig. 12.9 ON and OFF steady state solutions of the DOPO equations vs. θ (gray
lines) and cyclic behavior between the slowly varying OFF and ON states (black
line). Same values of the parameters as in Figure 12.8.

points (see Chapter 7) indicates that the delay near a limit point is typically pro-
portional to ε2/3 but that it may be large and independent of ε if the slow passage
is through a bifurcation point and if noise is sufficiently small. This is indeed the
case in our DOPO problem and we wish to have an analytical understanding of
this phenomenon.

The OPO equations are equivalent to five real ordinary differential equations
but we may take advantage of the relatively large value of γ in typical OPOs (see
Table 12.1). To this end, we must put the equations in a form such that γ appears
as a global multiplying factor in an evolution equation. To this end, we introduce
Ap = A0, As = γ−1/2 A1, E = γ−1 E , σp = γ−1σ0 (�p = γ−1�0), and σs = σ1

into Eqs. (12.25)–(12.28) and obtain

A′
p = γ

[
−(1 + iσp)A p − A2

s + E
]

, (12.29)

A′
s = −(1 + iσs)As + A∗

s A p, (12.30)

θ ′ = ε(−θ + α|A p|2 + β|As |2), (12.31)
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where σp(θ) = �p − 2θ/γ , σs(θ) = �s − θ , α = a, and β = γ b. The equations
are now in a form suitable for simplification. Because γ is large, we may eliminate
Ap by a quasi-steady state approximation. From (12.29), we find

Ap = E − A2
s

(1 + iσp)
. (12.32)

Inserting (12.32) into (12.30)–(12.31) leads to the following three equations for
As = R exp(iφ) and θ

R′ = R

⎡⎢⎣−1 +
−R2 + E

√
1 + σ 2

p cos(2φ + φ0)

1 + σ 2
p

⎤⎥⎦ , (12.33)

φ′ = −σ1 +
σp R2 − E

√
1 + σ 2

p sin(2φ + φ0)

1 + σ 2
p

, (12.34)

θ ′ = ε

[
−θ + α

R4 + E2 − 2ER2 cos(2φ)

1 + σ 2
p

+ βR2

]
, (12.35)

where φ0 = arctan(σp). We now concentrate on the evolution of the system in the
vicinity of the slowly varying OFF state where R is almost zero. Neglecting all
nonlinear terms in Eqs. (12.33)–(12.35), we obtain

R′ = R

⎡⎢⎣−1 + E cos(2φ + φ0)√
1 + σ 2

p

⎤⎥⎦ , (12.36)

φ′ = −σ1 − E sin(2φ + φ0)√
1 + σ 2

p

, (12.37)

θ ′ = ε

[
−θ + αE2

1 + σ 2
p

]
. (12.38)

The last equation indicates that the OPO slowly warms up and that the heating
contribution is given by the dissipation of the pump power inside the cavity. The
slowly varying temperature is obtained by integrating Eq. (12.38) from the limit
point θ0 where the slow change with R << 1 starts (i.e. cooling due to the absence
of radiation, hence no power dissipation). This value is set by the limit point of the
ON solution. In the conditions of Figure 12.9, θ0 = 3.86. Because this cooling
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evolution is slow, the signal phase φ quickly relaxes to its quasi-steady state value,
namely

φ = 1

2
arcsin

[
−σ1

√
1 + σ 2

p/E
]

− φ0

2
+ nπ , (12.39)

where n is an integer. With (12.39), Eq. (12.36) for the evolution of the signal
amplitude simplifies as

R′ = R

[
−1 +

√
E2

1 + σ 2
p

− σ 2
s

]
. (12.40)

Eq. (12.40) tells us that the signal decays due to cavity losses (first term in the
right hand side) and that it is amplified with a gain (second term in the right hand
side) proportional to the pump field inside the cavity. The right hand side of Eq.
(12.40) is slowly varying in time because σs(θ) and σp(θ) are functions of the
slowly varying temperature. The right hand side is first negative at θ = θ0 and
changes sign at θ = θbi f . But the bifurcation point is not the point where R grows
exponentially. Indeed the solution for R is given by R = R(0) exp(ε−1 F(εt)),
where the growth rate F is

F(εt) =
∫ εt

0

[
−1 +

√
E2

1 + σ 2
p(s)

− σ 2
s (s)

]
ds (12.41)

with σs = σs(θ(εt)) and σp = σp(θ(εt)). This integral has been computed numer-
ically and is shown in Figure 12.10. The fact that the evolution of R is ruled by

3.3 3.4 3.5 3.6 3.7 3.8 3.9
–0.1

0.0

0.1

F(q (et ))

R(t )

q0qbif

q

Fig. 12.10 The slowly varying growth rate F(θ(εt)) given by (12.41) is repre-
sented as a function of θ when the signal intensity R(t) is exponentially close
to zero. It is not the bifurcation point θbi f that marks the change of stability of
R = 0, but F = 0. Same parameters as in Figure 12.8.
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an integral such as (12.41) means that we need to take into account the cumulative
effect, i.e. the former history of the slowly varying detunings, in order to find the
real change of stability of R = 0. Practically speaking, the delay of the bifurcation
transition is not easily observed in experiments because the decrease of R associ-
ated with negative F values is limited by the background blackbody radiation and
residual stray fields which set lower bounds on the value of R.

12.5 Intracavity singly resonant parametric oscillator

As mentioned earlier, the TROPO threshold is significantly lower (by one or two
orders of magnitude) than for the DROPO and SROPO. A simple way to achieve a
similar cavity enhancement for the pump is to put the OPO inside the cavity of the
pump laser. Separate cavities (see Figure 12.11) are often used for the pump and
the signal waves in order to avoid the mode-hopping problem encountered while
tuning the OPO. This way, it is possible to change the OPO cavity length while
keeping the pump laser cavity constant. Intracavity OPOs have been considered in
the monomode and multimode regimes.

A simple model of the continuous-wave (cw) intracavity singly resonant para-
metric oscillators (ICOPOs) is obtained by writing the rate equations for the signal
power Ps , the laser power Pp, and the gain (or population inversion) N . These
equations are given by [310]

τs P ′
s = Ps(Pp − 1), (12.42)

τp P ′
p = Pp(N − 1 − F Ps), (12.43)

τN ′ = σ − N (1 + x Pp), (12.44)

nonlinear
crystal

signal

idleridler

z = 0

pump

laser
crystal external

pumping

laser cavity

OPO cavity

Fig. 12.11 Intracavity OPO. OPO operation inside the cavity of the pump laser
allows us to take advantage of the larger intensity inside this cavity. The geometry
of the device also allows separate tuning of the cavities at the pump and the OPO
wavelengths (from Figure 1 of Turnbull et al. [310]).
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where F is the ratio between the laser and signal cavity finesses,5 and the τ j are
lifetimes. σ is the pump parameter normalized so that σ = 1 corresponds to the
laser threshold, and x is a saturation parameter. Equations (12.42)–(12.44) admit
the following steady state solutions

(1) : Ps = 0, Pp = 0, N = σ , (12.45)

(2) : Ps = 0, Pp = σ − 1

x
≥ 0, N = 1, (12.46)

(3) : Ps = σ − 1 − x

F(1 + x)
≥ 0, Pp = 1, N = σ

1 + x
. (12.47)

Solutions (12.45), (12.46), and (12.47) describe the laser OFF state, the laser
ON state, and the OPO ON state, respectively. The bifurcation diagram of the
steady states (see Figure 12.12) exhibits two successive thresholds, namely the
laser threshold σlas = 1 and the OPO threshold σOPO = 1 + x . We now denote
one of the steady states by (Ps , Pp, N ) and formulate the linearized equations.

Pp

Ps

0

1

2

s

0

1

2

slas sOPO

laser
OFF

la
se

r O
N

OPO ON

Fig. 12.12 Bifurcation diagram of the steady states (F = x = 1).

5 The finesse of an optical cavity (or resonator) is defined as its free spectral range divided by the bandwidth
(full width at half-maximum) of its resonance (http://www.rp-photonics.com/finesse.html).

http://www.rp-photonics.com/finesse.html
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The growth rates λ j are then obtained by determining the eigenvalues of the
following Jacobian matrix⎛⎝(Pp − 1)τ−1

s Psτ
−1
s 0

−F Ppτ
−1
p (N − 1 − F Ps)τ

−1
p Ppτ

−1
p

0 −N xτ−1 −(1 + x Pp)τ
−1

⎞⎠ . (12.48)

For the laser OFF state (12.45), we find that λ1 = −τ−1
s , λ2 = −τ−1, and

λ3 = (σ − 1)τ−1
p . The third eigenvalue indicates a change of stability at the laser

threshold σ = σlas .
For the laser ON state (12.46), we find that λ1 = (σ − 1 − x)(τsx)−1 and that

the two remaining eigenvalues satisfy the quadratic equation

λ2 + λστ−1 + (σ − 1)τ−1
p τ−1 = 0. (12.49)

λ1 indicates a change of stability at the OPO threshold σ = σOPO. The fact that
the coefficients in Eq. (12.49) are both positive if σ > 1 implies that the real parts
of the two remaining eigenvalues are negative. Equation (12.49) is identical to the
characteristic equation of the standard laser equations in Chapter 1. As τ → ∞,
the eigenvalues approach the limit

λ2,3 = ±i
√
(σ − 1)τ−1

p τ−1 − στ−1

2
+ O(τ−3/2). (12.50)

The leading term exhibits the frequency of the relaxation oscillations ωRO ≡√
(σ − 1)τ−1

p τ−1 and the correction term gives their decay rate �RO ≡ στ−1/2.
For the OPO ON state (12.47), we determine the characteristic equation and

obtain
λ3 + C1λ

2 + C2λ+ C3 = 0, (12.51)

where the coefficients are defined by

C1 = (1 + x)τ−1,

C2 = τ−1
p (1 + x)−1((σ − 1 − x)τ−1

s + σ xτ−1),

C3 = τ−1
s τ−1

p τ−1(σ − 1 − x).

The stability conditions are given by the Routh–Hurwitz conditions, namely
C1> 0, C3> 0, and C1C2 − C3> 0. The first condition is always satisfied. The
second condition is satisfied if σ >σOPO. Finally the third condition simplifies as
C1C2 − C3 = τ−2τ−1

p σ x > 0, which is always satisfied.
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Table 12.2 Intracavity OPO parameters.

laser τs (μs) τp (μs) τ (μs) x

Ti:Sapphire 0.3 0.2 3.2 3
Nd:YVO4 1 1 98 7

Typical values of the parameters are listed in Table 12.2.6

The relatively large value of τ compared to τs and τp suggests that we look
for an approximation of the growth rates. If τ−1 = 0, the roots are λ1 = 0 and
λ2,3 = ±iω, where

ω ≡
√
τ−1

p τ−1
s (1 + x)−1(σ − 1 − x). (12.52)

For the real root λ1 we then assume that λ1 = O(τ−1) as τ−1 → 0 and find from
(12.51)

λ1 = −τ−1(1 + x)+ O(τ−2). (12.53)

For the complex roots λ1,2, we assume that the real part is small as τ−1 → 0 and
using (8.47) we find

λ = ±iω − τ−2τ−1
p σ x

2ω2
+ O(iτ−2, τ−3). (12.54)

In summary, as τ → ∞, the relaxation oscillations (RO) exhibit a frequency pro-

portional to
√
τ−1

p τ−1
s but their damping rate is very slow and is proportional

to τ−2τs . These properties significantly differ from those of the ROs for class
B lasers where the RO frequency and damping rate scale like τ−1/2 and τ−1,
respectively. Using the values of the parameters for the Nd:YVO4 laser (see
Table 12.2), this means that the RO period is of the order of 1 μs and that the
damping time is of the order of 10 ms, which is quite surprising. When the
OPO is ON, the transient response of the OPO exhibits new time scales due
to the nonlinear interaction between all three variables. This couldn’t have been
anticipated by simple examination of the time scales τp, τs , and τ appearing
in Eqs. (12.42)–(12.44).

6 From [310]. For a typical OPO inside a Ti:Sapphire laser, the laser and OPO thresholds are 1 W and 4 W of
argon-ion laser pump power, respectively. This implies that σOPO = 1 + x = 4 and hence x = 3. For the
Nd:YVO4 laser, the laser and OPO thresholds are 0.5 W and 4 W of diode pump power, respectively. The
dimensionless OPO threshold value is then σOPO = 1 + x = 8 leading to x = 7. The value of F is not
necessary since F can be eliminated from the rate equations by redefining Ps and τs .
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12.6 Intracavity SHG

Although there has been no experimental evidence of pure SHG instabilities up
to now, we present here the model for a cavity containing an SHG crystal as
an introduction to more complicated systems which combine SHG with other
nonlinearities. Intracavity SHG was among the first non-laser systems for which
dynamical instabilities were predicted [300]. Schiller et al. [311], Marte [313],
and Lodahl et al. [316] investigated devices suitable for the observation of these
instabilities but other processes overcame them, as we shall see in the following
sections.

12.6.1 Intracavity SHG model

Intracavity SHG was theoretically studied in a doubly resonant system, i.e. the
purely real equivalent of the doubly resonant DOPO. Practical systems (see, for
instance, Figure 12.13) are usually designed so the cavity is highly resonant for the
pump field and weakly resonant for the doubled field, so that the pump radiation is
trapped inside the cavity to achieve a high power and therefore a high efficiency.
The output coupling at the pump frequency may be small because this radiation
is not wanted for further use. Simultaneously the generated doubled frequency
field may be efficiently coupled out. Of special interest is the ideal converter limit
(γ1 << γ2 in Eqs. (12.5)), in which the cavity is perfectly resonant and only the
useful radiation, i.e. the second harmonic radiation, can escape the cavity.

The ideal converter limit is obtained by setting γ = γ1/γ2 = 0 in Eqs. (12.6)
with �1 = �2 = 0, leading to

A′
1 = A2 A∗

1 + E ,

m

frequency-doubled

C

p

S

Fig. 12.13 Intracavity SHG (TA-SHG 110, TOPTICA Photonics). A single-
frequency signal from the left enters a resonant doubling cavity (thick lines) and
produces a frequency-doubled signal at the right. m: intensity monitor photo-
diode; c: crystal; s: photodiode for cavity length stabilization; p: piezo (a control
loop via the piezo actuator regulates the length of the enhancement cavity).
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A′
2 = −A2 − A2

1. (12.55)

The steady state solution of Eqs. (12.55) is

A1 = E1/3 and A2 = −E2/3, (12.56)

which implies the quadratic relation |A2| = |A1|2. We next examine its linear
stability. Introducing A j = R j exp(iφ j ) into Eq. (12.55) and separating real and
imaginary parts, we obtain

R′
1 = R1 R2 cos(2φ1 − φ2)+ E cos(φ1),

R′
2 = −R2 − R2

1 cos(2φ1 − φ2),

φ′
1 = −R2 sin(2φ1 − φ2)− E

R1
sin(φ1),

φ′
2 = − R2

1

R2
sin(2φ1 − φ2). (12.57)

The steady state solution (12.56) is now given by

R1 = E1/3, R2 = E2/3, φ1 = 0, and φ2 = π . (12.58)

The linearized equations lead to the following Jacobian matrix⎛⎜⎜⎜⎜⎜⎜⎝
−R2 −R1 0 0
2R1 −1 0 0

0 0 2R2 − E

R1
−R2

0 0 2
R2

1

R2
− R2

1

R2

⎞⎟⎟⎟⎟⎟⎟⎠ ,

which is a block diagonal matrix. This then allows us to formulate the characteris-
tic equation as the following product of two square brackets[

λ2 + (1 + E2/3)λ+ 3E2/3
] [
λ2 − λ(E2/3 − 1)+ E2/3

]
= 0. (12.59)

Equating the first bracket to zero leads to roots with a negative real part because all
coefficients are positive. Equating the second bracket to zero provides roots with a
negative real part only if

E < 1. (12.60)

The corresponding critical point E = 1 is a Hopf bifurcation with frequency
ω = 1.
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Fig. 12.14 Schematic diagram of a green laser pointer using a composite multiple
crystal assembly (Nd:YVO4/KTP). The wavelength of the laser beam is originally
at 808 nm and then is 532 nm (green) after passing the crystal assembly.

12.6.2 Intracavity SHG

SHG is also most efficient when the doubling crystal is placed inside the cavity
of the laser. This way one benefits from the cavity enhancement for both the fun-
damental and the doubled fields, but the nonlinear material may be damaged by
higher power densities. This set-up architecture is that used in commercial lasers
such as the simple green laser pointers (e.g. see Figure 12.14) and the Verdi laser
(Coherent Inc.), both delivering power at 532 nm. These lasers are designed so
as to avoid self-pulsing. However, spontaneous oscillations were observed in the
multimode regime of YAG lasers with internal SHG [317]. It is left as an exercise
to show that in the monomode regime, SHG inside the cavity of a class B laser
such as the Nd:YVO4 laser does not lead to instabilities (Exercise 12.10.5).

12.7 Antiphase dynamics in intracavity SHG

Antiphase dynamics is a property displayed by systems in which N (>1) oscil-
lators synchronize with a strong phase correlation. In laser physics, this type
of dynamics gave a new stimulus to the study of multimode lasers when the
phenomenon was first observed in an N -mode Nd3+:YAG laser with intracav-
ity doubling crystal [318, 319]. Almost simultaneously, antiphase regimes were
reported for solid state Fabry–Pérot lasers [320] and Nd-doped fiber lasers [321].
In its simplest form, antiphase dynamics implies a highly ordered state in which
each modal intensity is time-periodic with the same waveform but shifted by
1/N of a period from its neighbor. That is, the modal intensities are of the
form Ik = I0(t + T k/N ), k = 1, . . . N , where I0 is a waveform of period T .
Antiphase states appear with high multiplicity because there is no preferential
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mode if all the modes are equally coupled. Specific antiphase solutions have been
studied mathematically in the context of Josephson-junction arrays (“splay states”
[322] or “ponies on a merry-go-round” [323]) and in the context of coupled laser
arrays (“splay phase states” [324, 325]). For multimode lasers, the large variety of
responses and frequencies has been reviewed in [21].

12.7.1 Antiphase dynamics in YAG/KTP lasers

The equations describing the evolution of the multimode laser with an intracavity
doubling crystal are [317]

η
dIk

dt
=
⎡⎣Gk − α − gεIk − 2ε

∑
j( �=k)

μ j I j

⎤⎦ Ik , (12.61)

dGk

dt
= γ −

⎡⎣1 + Ik + β
∑
j( �=k)

I j

⎤⎦Gk , (12.62)

where time t = t ′/τ f is normalized by fluorescence time τ f (= 240 μs), and
η = τc/τ f (= 8.3 × 10−7), where τc (= 0.2 ns) is the cavity round-trip time.
Ik and Gk are, respectively, the intensity and gain associated with the kth longi-
tudinal mode. α (= 10−2) is the cavity loss parameter, γ (= 0.05) is the gain
parameter, β (= 0.7) is the cross-saturation parameter, ε (= 5 × 10−6) is a param-
eter that depends on the nature of the second-harmonic generating crystal, and g
(= 0.1) is a geometrical factor whose value depends on the orientation of the YAG
crystal relative to the KTP doubling crystal as well as the phase delays due to bire-
fringence (the values of the parameters are taken from [319]). Here μ j = g for
modes having the same polarization as the kth mode, while μ j = 1 − g for modes
having the opposite polarization. For simplicity, we assume that the gain γ , the
cross-saturation parameter β, and the cavity loss parameter α are the same for all
modes. Cross-saturation of the active medium (represented by the β I j Gk term)
and sum-frequency generation in the intracavity nonlinear crystal (represented by
the εμ j I j Ik term) introduce global coupling among laser modes.

We first introduce the experimental results [318]. The laser operates above
threshold and three modes oscillate simultaneously. The experimental set-up is
such that two of three modes are x-polarized and one is y-polarized. To an excel-
lent approximation, only one mode is ON at any given instant. The dynamical state
coexists with another symmetry-related state. Physically, the two states are distin-
guished by which x-polarized mode immediately follows the y-polarized mode.
Numerical simulations indicate that we are dealing with a T -periodic regime where
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Ix

time (20 ms/div)

Ix+ Iy

Iy

Fig. 12.15 Antiphase x- and y-polarized longitudinal laser mode intensities and
the total intensity. Reprinted Figure 2 with permission from Wiesenfeld et al.
[318]. Copyright 1990 by the American Physical Society.

each modal intensity exhibits the same waveform, I0(t), successively phase-shifted
by a factor T /3. The higher complexity of the waveform of Ix compared to Iy , seen
in Figure 12.15, comes from the fact that Ix is the sum of two distinct modal inten-
sities (Ix = I0(t +T /3)+ I0(t +2T /3)) while Iy is single-mode (Iy = I0(t +T )).
Another remarkable feature of the antiphase collective behavior that we note from
Figure 12.15 is the quite regular behavior of the total intensity Ix + Iy , oscillating
with a larger frequency than the individual modes.

12.7.2 Analysis of the two-mode case

We shall limit our analysis of Eqs. (12.61) and (12.62) to the case of two modes
(N = 2) exhibiting the same polarization. As we shall demonstrate, two distinct
frequencies emerge from a linear stability analysis and they are respectively asso-
ciated with an in-phase and an out-of-phase eigenvector of the linear stability
analysis of the non-zero solution. We start from an analysis of the in-phase regimes
and derive the associated relaxation frequency and damping, and then proceed to
the analysis of the more general case where the two modal intensities may be
different.

In-phase regimes

An in-phase regime corresponds to the solution I1 = I2 = I (t) and G1 = G2 =
G(t). I and G satisfy the following equations

η
dI

dt
= [

G − α − 3gεI
]

I , (12.63)
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dG

dt
= γ − [1 + I (1 + β)] G. (12.64)

The zero intensity solution (I , G) = (0, γ ) is stable if γ − α < 0. On the other
hand, if

γ − α > 0 (12.65)

a non-zero intensity steady state I = Is is possible and is the positive root of

(1 + β)3gεI 2
s + [α(1 + β)+ 3gε

]
Is + α − γ = 0. (12.66)

Having Is , we determine Gs from (12.63) as

Gs = α + 3gεIs . (12.67)

From the linearized equations, we then formulate the characteristic equation for
the growth rate λ. It is given by

λ2 +
[
3gεη−1 Is + 1 + Is(1 + β)

]
λ+ 3gεη−1 I (1 + I (1 + β))

+ (1 + β)Gs Isη
−1 = 0. (12.68)

Because all coefficients are positive, the non-zero steady state is always stable. The
values of ε = 5 × 10−6 and η = 8.3 × 10−6 are comparable in magnitude which
motivates the scaling

ε = O(η). (12.69)

With (12.69) the term multiplied by εη−1 in the coefficient of λ will contribute
with the other terms to the damping of the relaxation oscillations. From (12.66),
(12.67), and (12.68), we determine the following approximations for Is , Gs , and λ

Is = γ − α

α(1 + β)
+ O(ε), Gs = α + O(ε), λ = ±i

√
γ − α

η
+ O(1), (12.70)

where the O(1) correction of λ is real and negative. We conclude that a small
perturbation from the steady state exhibits slowly decaying relaxation oscillations
with frequency

ω1 �
√
γ − α

η
. (12.71)

The frequency (12.71) is equivalent to the laser RO frequency. The cross-saturation
parameter β and the crystal parameter ε do not appear in (12.71).
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Out-of-phase regimes

We now ask whether other solutions are possible, in particular those with fluc-
tuations that would be different for the two intensity components. The non-zero
intensity solution I1 = I2 = Is and G1 = G2 = Gs , where Is and Gs are deter-
mined from Eqs. (12.66) and (12.67), is still our basic solution. From Eqs. (12.61)
and (12.62), we formulate the linearized equations for the small perturbation u j

and v j of this steady state. Introducing then u j = c j exp(λt) and v j = d j exp(λt),
we obtain a homogeneous system of four equations given by

⎛⎜⎜⎜⎝
a − λ Isη

−1 2a 0

−Gs b − λ −βGs 0

2a 0 a − λ Isη
−1

−βGs 0 −Gs b − λ

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

c1

d1

c2

d2

⎞⎟⎟⎟⎠ = 0, (12.72)

where a ≡ −gεIsη
−1 and b ≡ −(1 + Is(1 + β)) . We already know one solution

which corresponds to the in-phase solution, i.e. c1 = c2 = c and d1 = d2 = d ,
since this solution must obey the general characteristic equation. Introducing this
result into (12.72) leads to a simpler problem for c and d given by

(−3gεIsη
−1 − λ Isη

−1

−(1 + β)Gs −(1 + Is(1 + β))− λ

)(
c
d

)
= 0. (12.73)

A nontrivial solution is possible only if the determinant of the 2 × 2 homogeneous
matrix is zero. This leads to Eq. (12.68). We next take advantage of the symmetry
of the matrix in (12.72) by seeking a solution of the form c1 = −c2 and d1 = −d2.
We again discover that the problem for (c1, d1) or for (c2, d2) is identical and is of
the form (

gεIsη
−1 − λ Isη

−1

−(1 − β)Gs −(1 + Is(1 + β))− λ

)(
c1

d1

)
= 0. (12.74)

The condition for a nontrivial solution now leads to the other characteristic
equation for λ

λ2 + λ

[
−g

ε

η
Is + 1 + Is(1 + β)

]
+ (1 − β)

η
IsGs = 0, (12.75)

which we analyze as usual.
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From (12.75), we note a change of stability through a Hopf bifurcation if

Is > IH ≡ 1

g ε
η

− 1 − β
(12.76)

provided that

g
ε

η
− 1 − β > 0. (12.77)

The location of the Hopf bifurcation point is at γ = γH ≡ α + α(1 + β)IH . The
frequency of the oscillations at the Hopf bifurcation point is

ω2 �
√

1 − β

1 + β

γH − α

η
(12.78)

and depends on the cross-saturation parameter β. Moreover, the linearized the-
ory indicates that the periodic solution at the Hopf bifurcation point exhibits
two intensities phase-shifted by half the period (π/ω2). Figure 12.16 shows the
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Fig. 12.16 Antiphase solution. Numerical solution of Eqs. (12.61) and (12.62)
with η= 8.3 ×10−7, ε= 5 × 10−6, α= 10−2, β = 0.7, g = 0.4, and γ = 0.036
(left) or γ = 0.06 (right). The period T is close to T = 2π . Top: the two inten-
sities (k = 1 and 2) are T -periodic and are phase-shifted by T /2. Bottom: the
total intensity is 2T -periodic and admits a much smaller amplitude than either of
the individual intensities.
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g
0.00 0.01 0.02 0.03 0.04 0.05 0.06

I1

0

1

2

3

4

a gH

g0.03 0.04

(I1 – Is)/Is

– 0.2

0.0

0.2

Fig. 12.17 Bifurcation diagram of the steady states and the antiphase oscillations
of Eqs. (12.61) and (12.62). The figure shows the extrema of I1 as a function
of γ . The values of the fixed parameters are the same as in Figure 12.16. The
steady and Hopf bifurcations are located at γ = α = 0.01 and γ = γH � 0.034,
respectively. The inset shows the typical parabolic change of the amplitude near
the Hopf bifurcation point.

antiphase regime close to and far from the Hopf bifurcation point (γ >γH ).
Close to the Hopf bifurcation, the oscillations are nearly harmonic and the total
intensity is nearly constant. Far from the Hopf bifurcation point, the oscillations
are no longer harmonic (the minimum is larger in magnitude than the maxi-
mum) but the two intensities remain synchronized with a phase shift of half the
period.

Figure 12.17 represents the bifurcation diagram of the antiphase periodic solu-
tions. Close to the bifurcation point, Hopf bifurcation theory tells us that the
intensities are of the form

I1 − Is = √
γ − γH

[
B exp(iω2t)+ c.c.

]+ O(γ − γH ), (12.79)

I2 − Is = −√
γ − γH

[
B exp(iω2t)+ c.c.

]+ O(γ − γH ). (12.80)

The leading expression in the O(γ − γH ) correction admits three terms multi-
plying B B, B2 exp(2iω2t), and its complex conjugate. They are identical for the
two intensities. Consequently, the oscillations of the individual intensities admit
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a leading amplitude proportional to
√
γ − γH and a frequency ω2 while the total

intensity exhibits a smaller amplitude, proportional to γ − γH , and an oscillation
frequency equal to 2ω2. These different properties are illustrated by the numerical
solutions displayed in Figure 12.16.

In summary, our analysis has showed that the general response of a two-
mode Nd3+:YAG laser with intracavity doubling crystal exhibits oscillations
with two distinct frequencies. Sustained in-phase solutions are not possible but
sustained antiphase solutions are possible and result from a Hopf bifurcation
phenomenon.

12.8 Frequencies

The determination of the oscillation frequencies is considerably simplified for an
arbitrary number of modes if we take into account the small value of η. As illus-
trated in other chapters, it is mathematically worthwhile to introduce the relaxation
oscillation basic time and rescale the dependent variables so that η multiplying the
left hand side of Eq. (12.61) can be removed. This is realized by introducing the
time s and the deviations Fk and Jk defined by

Gk = α + η1/2 Fk , Ik = I (1 + Jk), and t = η1/2s. (12.81)

Inserting (12.81) into Eqs. (12.61) and (12.62), where

I ≡ γ α−1 − 1

1 + β(N − 1)
(12.82)

is the leading expression of the steady state intensity for ε small, we obtain

dJk

ds
=
[

Fk + O
(
εη−1/2

)]
(1 + Jk), (12.83)

dFk

ds
= −α I

⎛⎝Jk + β
∑
j( �=k)

Jj

⎞⎠+ O
(
η1/2

)
. (12.84)

Assuming the scaling (12.69), Eqs. (12.83) and (12.84) reduce to

dJk

ds
= Fk(1 + Jk), (12.85)

dFk

ds
= −α I

⎛⎝Jk + β
∑
j( �=k)

Jj

⎞⎠ . (12.86)
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Some of the properties of these equations are analyzed in [326]. But we are
only interested in the behavior of a small perturbation from the steady state. The
linearized equations for Jk = Fk = 0 are

dJk

ds
= Fk , (12.87)

dFk

ds
= −α I

⎛⎝Jk + β
∑
j( �=k)

Jj

⎞⎠ (12.88)

or, equivalently, after eliminating Fk , the following coupled second order differen-
tial equations for Jk (k = 1, . . . , N )

d2 Jk

ds2
= −α I

⎛⎝Jk + β
∑
j( �=k)

Jj

⎞⎠ . (12.89)

We next anticipate that these equations only admit periodic solutions and introduce
Jk = ck exp(iωs) into Eq. (12.89). The resulting problem then forms an N × N
homogeneous system for the coefficients ck . The condition for a nontrivial solution
is given by equating the determinant of all the coefficients to zero

∣∣∣∣∣∣∣∣∣∣

ω2 − α I −α Iβ −α Iβ . . . −α Iβ
−α Iβ ω2 − α I −α Iβ . . . −α Iβ
−α Iβ −α Iβ ω2 − α I . . . −α Iβ

. . . . . . . . . . . . . . .
−α Iβ −α Iβ −α Iβ . . . ω2 − α I

∣∣∣∣∣∣∣∣∣∣
= 0. (12.90)

Adding the rows k = 2, . . . N to the first row leaves the determinant unchanged.
The elements of the first row are then all identical, which allows us to factorize the
common term. The determinant (12.90) reduces to

0 =
[
ω2 − α I (1 + (N − 1)β)

]

×

∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1
−α Iβ ω2 − α I −α Iβ . . . −α Iβ
−α Iβ −α Iβ ω2 − α I . . . −α Iβ

. . . . . . . . . . . . . . .
−α Iβ −α Iβ −α Iβ . . . ω2 − α I

∣∣∣∣∣∣∣∣∣∣
. (12.91)
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We next subtract the first column from the second in the (N − 1) × (N − 1)
determinant. The determinant remains unchanged after this operation and (12.91)
becomes

0 =
[
ω2 − α I (1 + (N − 1)β)

]

×

∣∣∣∣∣∣∣∣∣∣

1 0 1 . . . 1
−α Iβ ω2 − α I + α Iβ −α Iβ . . . −α Iβ
−α Iβ 0 ω2 − α I . . . −α Iβ

. . . . . . . . . . . . . . .
−α Iβ 0 −α Iβ . . . ω2 − α I

∣∣∣∣∣∣∣∣∣∣
.

Repeating sequentially the same operation with column k = 3, . . . N will
progressively reduce the problem to

0 =
[
ω2 − α I (1 + (N − 1)β)

]

×

∣∣∣∣∣∣∣∣∣∣

1 0 0 . . . 0
−α Iβ ω2 − α I + α Iβ 0 . . . 0
−α Iβ 0 ω2 − α I + α Iβ . . . 0

. . . . . . . . . . . . . . .
−α Iβ 0 0 . . . ω2 − α I + α Iβ

∣∣∣∣∣∣∣∣∣∣
.

The determinant is now easily evaluated and leads to a characteristic equation for
ω2 given by[

ω2 − α I (1 + (N − 1)β)
] [
ω2 − α I (1 − β)

]N−1 = 0. (12.92)

Equation (12.92) admits two possible solutions for ω2. The first solution is

ω2 = α I (1 + (N − 1)β) (12.93)

and, from the homogeneous system for the ck , we find the eigenvector (1, 1, . . . 1)t

corresponding to an in-phase regime. We already know that it does not lead to a
bifurcation but only to slowly decaying oscillations. The second solution of Eq.
(12.92) is (N − 1)-degenerate and is given by

ω2 = α I (1 − β). (12.94)

From the homogeneous system for the ck , we find that the N − 1 eigenvectors
satisfy the single condition

N∑
1

ck = 0. (12.95)
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Since the ck multiply the periodic function exp(iωs), it is worthwhile to deter-
mine ck in amplitude–phase complex form. Using a table of sums of trigonometric
functions [327], Eq. (12.95) is satisfied if

ck = exp(ik2π/N ). (12.96)

For example, if N = 3, we have (c1, c2, c3) = (exp(i2π/3), exp(i4π/3), 1) and
(c1, c2, c3) = (exp(i4π/3), exp(i2π/3), 1) as the two linearly independent eigen-
vectors. In order to determine whether a Hopf bifurcation branch is possible, we
would need to examine the higher order problem and apply solvability conditions.

12.9 Antiphase dynamics in a fiber laser

As mentioned at the beginning of this chapter, self-organized collective behaviors
such as antiphase oscillations are observed in several multimode laser systems.
The Nd3+-doped optical fiber laser pumped by a laser diode and exhibiting two
polarization modes is perhaps the simplest system exhibiting the antiphase phe-
nomenon. As the pump parameter is increased from zero, the laser exhibits a first
threshold, above which laser radiation is emitted in a linear polarization state.
Above a second threshold, radiation is also emitted in the orthogonal polariza-
tion. The relative position of these two thresholds can be adjusted by rotating the
pump polarization or changing the stress applied to the fiber. Figure 12.18 shows

I1 + I2

I1

I2

0 0.5
time (ms)

Fig. 12.18 Experimental recording of the response of an optical fiber laser to a
pulse excitation. Reprinted Figure 4a with permission from Otsuka et al. [320].
Copyright 1992 by the American Physical Society.
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I1 + I2

I1

I2

0

0 10 20
frequency (kHz)

Fig. 12.19 Power spectra of the oscillations shown in Figure 12.18. Reprinted
Figure 4b with permission from Otsuka et al. [320]. Copyright 1992 by the
American Physical Society.

the response of the individual and total intensities following a small square pulse
of the pump. The decaying oscillations of the polarization intensities are irregular
and out of phase but the oscillatory decay of the total intensity is smooth and sinu-
soidal. The power spectra shown in Figure 12.19 reveal that the oscillations of the
individual intensities depend on two distinct frequencies but that the total intensity
only decays with respect to the largest frequency. The rate equations analyzed in
[321] (without the spontaneous emission term) are given by

I ′
k = (Dk + βD j − 1)Ik , (12.97)

D′
k = γ

[
pk − (1 + Ik + β I j )Dk

]
, (12.98)

where k = 1 or 2 and j = 3 − k. Ik and Dk denote the intensities and population
inversions of the two laser modes, respectively. Prime means differentiation with
respect to the dimensionless time t = t ′/τc, where τc is the photon lifetime in the
cavity. p1 and p2 = α p1 are the pump parameters associated with mode 1 and
mode 2, respectively. The asymmetry parameter α = 0.86 is fixed by the pump
polarization and remains unchanged during the experiment. γ ≡ τ f /τc = 6.7 ×
10−4, where τ f is defined as the population inversion relaxation time. β = 0.43 is
the cross-saturation coefficient that describes the coupling of the laser field k with
the population inversion j = 3 − k. The rate equations (12.97) and (12.98) have
been used to explain the antiphase polarization dynamics in fiber lasers [321, 328]
and Nd3+:YAG lasers [329].
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12.9.1 Steady state solutions

The steady state solutions are given by (1) the zero intensity steady state I1 =
I2 = 0, the two pure mode solutions,

(2) I2 = 0

D1 = p1

1 + I1
, D2 = α p1

1 + β I1
,

p1 = (1 + I1)(1 + β I1)

[1 + β I1 + βα(1 + I1)]
, (12.99)

(3) I1 = 0

D1 = p1

1 + β I2
, D2 = α p1

1 + I2
,

p1 = (1 + β I2)(1 + I2)

[α(1 + β I2)+ β(1 + I2)]
, (12.100)

and a possible bimode solution of the form

(4) D1 = D2 = D = 1

1 + β
,

I1 = 1

1 − β2 (p1(1 + β)(1 − αβ)− 1 + β) ≥ 0,

I2 = 1

1 − β2 (p1(1 + β)(α − β)− 1 + β) ≥ 0. (12.101)

Figure 12.20 shows the bifurcation diagram of these steady states. P1 and P2

denote primary bifurcation points to pure mode solutions. They are obtained by
evaluating p1 in (12.99) for I1 = 0 and p1 in (12.101) for I2 = 0. They are
given by

P1 : p1 = 1

1 + αβ
, (12.102)

P2 : p1 = 1

α + β
. (12.103)

On the other hand, the point S marks a secondary bifurcation from the I1 �= 0
single-mode solution. From (12.101), the condition I2 = 0 gives

S : p1 = 1 − β

(1 + β)(α − β)
. (12.104)
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Fig. 12.20 Bifurcation diagram of the steady states given by (12.99)–(12.101).
p1 is the control parameter. P1 and P2>P1 denote two successive primary bifur-
cations to pure mode solutions. S> P2 marks a secondary bifurcation point to a
bimode solution. Full and broken lines represent stable and unstable solutions,
respectively. The values of the parameters are α= 0.86 and β = 0.43.

Using (12.102)–(12.104) with α= 0.86 and β = 0.43, we determine the successive
bifurcation points P1 at p1 = 0.73, P2 at p1 = 0.78, and S at p1 = 0.92. Note that
as α→ 1, all three points coalesce to the same point at p1 = (1 + β)−1.

12.9.2 Stability analysis

Small perturbations from the stable steady states slowly decay with relaxation
oscillations. We wish to determine the frequencies in the simplest possible way,
and again take advantage of the small value of γ .7 Specifically, we introduce the
new variables xk , yk, and s defined by

Ik = Iks(1 + yk), Dk = Dks + √
γ xk , and s = √

γ t , (12.105)

where (Ik , Dk) = (Iks , Dks) represents the stable steady state. For the pure mode
solution (12.99), we introduce I2 = y2. Inserting (12.105) into Eqs. (12.97) and
(12.98) and taking the limit γ → 0 leads to the following reduced problem

7 By changing the time variable in Eq. (12.61) from t to t/η, we note that γ plays the same role as η for the
Nd3+:YAG laser.
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y′
1 = (x1 + βx2)(1 + y1),

x ′
1 = −(I1 y1 + β y2)d1,

y′
2 = (−1 + D2 + βD1)y2,

x ′
2 = −(y2 + β I1y1)d2 (12.106)

for the pure mode solution (12.99), and

y′
1 = (x1 + βx2)(1 + y1),

x ′
1 = −(I1 y1 + β I2 y2)d1,

y′
2 = (x2 + βx1)(1 + y2),

x ′
2 = −(I2 y2 + β I1 y1)d2 (12.107)

for the two-mode solution (12.101). We have omitted the subscript s from Ik and
Dk , and prime now means differentiation with respect to time s. From (12.106),
we first note that y2 → 0 if

−1 + D2 + βD1 < 0. (12.108)

We then consider the remaining equations with y2 = 0. From the linearized equa-
tions for the zero solution, we determine the characteristic equation for the growth
rate. One solution is λ1 = 0 and the other solutions satisfy λ2 = −I1 D1(1 + β2),
which implies purely imaginary roots and the frequency

ω1 =
√

I1 D1(1 + β2). (12.109)

Next, we consider Eqs. (12.107). From the linearized equations for the zero
solution, we determine the characteristic equation for the growth rate. We find

λ4 + λ2(1 + β2)D(I1 + I2)+ I1 I2(1 − β)2 = 0, (12.110)

where D = (1 + β)−1. Equation (12.110) admits two pairs of purely imaginary
solutions. Near the secondary bifurcation point S where I2 = 0, they admit the
simple approximations λ2

1 � − (1+β2)DI1 and λ2
2 � −I2(1−β)2(1+β2)−1 D−1.

This then leads to two frequencies given by

ω1 �
√
(1 + β2)DI1, (12.111)

ω2 �
√

I2(1 − β)2(1 + β2)−1 D−1. (12.112)
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Fig. 12.21 Square of the relaxation oscillation frequency for the single-mode
regime with I2 = 0 (Eq. (12.109)) and for the bimode regime (Eq. (12.110)).
These are almost straight lines for the interval of p1 under consideration. ω2

1 for
the single-mode regime is shown only when it is stable (0.73 < p1 < 0.92). ω2

1
for the bimode regime emerges at p1 = 0.92 and admits a slope close to the one
for the single-mode regime.
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Fig. 12.22 Experimental oscillation frequencies as functions of the pump power.
The thresholds of the single-mode and bimode regimes are at 3 mW and 3.5 mW,
respectively. Reprinted Figure 5 with permission from Otsuka et al. [320].
Copyright 1992 by the American Physical Society.

Figure 12.21 represents the square of the frequency (12.109) and the frequencies
(12.111) and (12.112) obtained numerically from solving the quadratic equation
(12.110). The values of the parameters are the same as previously, i.e. α = 0.86,
β = 0.43, and γ = 6.7 × 10−4. The diagram exhibits two nearly straight lines that
are well confirmed experimentally (see Figure 12.22).
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In summary, a Hopf bifurcation is not possible for the optical fiber laser prob-
lem. Subject to a small pump pulse perturbation, the laser, however, exhibits
slowly decaying oscillations with frequencies ω1 and ω2. From the full linearized
equations, the intensities are of the form

I1 − I1s � A exp(iω1s)+ B exp(iω2s)+ c.c., (12.113)

I2 � A exp(iω1s)− B exp(iω2s)+ c.c., (12.114)

where the amplitudes A and B are exponentially decaying functions of
√
ηs. From

(12.113) and (12.114), we conclude that the oscillations of the individual inten-
sities are quasi-periodic with frequencies ω1 and ω2 but that the total intensity
only exhibits oscillations with frequency ω1. These properties have indeed been
observed experimentally as shown previously (see Figures 12.18 and 12.19).

12.10 Exercises

12.10.1 Thresholds for SROPO and DROPO

Derive the evolution equations for the two cases not investigated in Section 12.1.1.

(1) the DROPO with γi >> γp , γs as it occurs, for example, in OPOs with quite different
frequencies for the signal and the idler.

(2) the SROPO with γi and γp >> γs .

Determine and compare the OPO thresholds for these two cases.

12.10.2 Rescaling the OPO equations

Find the change of variables to reduce the original DOPO equations

dE p

dt
= −(γp + i�p)E p − χE2

s + E ,

dEs

dt
= −(γs + i�s)Es + χE p E∗

s

to Eqs. (12.3) and (12.4).

12.10.3 Rescaling the SHG equations

Find the change of variables to reduce the SHG equations (12.5) to Eqs. (12.6).
Answer: A1 = (

√
ab/γ2)E1, A2 = iaE2/γ2, τ = γ2t; the new parameters then

are E = Eext
√

ab/γ 2
2 , �1,2 = δ1,2/γ2, and γ = γ1/γ2.
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12.10.4 Linear Stability of the DOPO

Investigate the linear stability of the steady states of Eqs. (12.3) and (12.4). Show
that the OFF solution is stable below the threshold and unstable above. Find the
width of the bistability region. Derive the expression (12.18) for the frequency of
the periodic solution appearing at the Hopf bifurcation obtained if �0�1 < γ .

12.10.5 SHG inside the laser cavity

The single-mode laser equations for second harmonic generation inside a laser
cavity are

η
dI

dt
= (G − α − gεI )I , (12.115)

dG

dt
= γ − (1 + I )G, (12.116)

which differ from the class B laser equations by the extra term −gεI 2 which
describes the SHG losses. Show that these equations admit a stable non-zero
intensity steady state.
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weakly nonlinear, 112

exact solution, 80
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optically injected laser, 218
period, 65
phase-locking or drift, 64
third order, 234
two coupled lasers, 78
with delay, 269

Adler, Robert, 59
Antiphase dynamics

fiber laser, 328
intracavity SHG, 319

Asymptotic approximation
Adler’s equation near locking, 81
close to a Hopf bifurcation point, 101
close to the laser threshold, 22, 38
driven Adler’s equation, 74
eigenvalues, 49, 56
large α, 234
optically injected laser

weak injection limit, 217
periodically modulated laser

primary resonance, 124
subharmonic resonance, 130

quasi-steady state, 40
turn-on time, 15, 30

Asymptotic method
adiabatic elimination, 6, 40
change of variables

Adler’s equation, 116
class B laser, 119

high-frequency modulation, 74
matched asymptotic expansions, 82, 143
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slow–fast turn-on, 14, 29
weakly nonlinear, 124, 130

Bad cavity limit
FIR dynamics, 289

Bifurcation
Bogdanov–Takens, 238
delayed, 156
fold-Hopf, 233
homoclinic, 186
Hopf, 69, 85, 92, 98, 99, 300
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saddle-node, 92, 99, 104, 225
saddle-node of limit cycles, 186
steady, 7
steady imperfect, 27
supercritical or subcritical, 21, 86
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Bifurcation bridges, 252
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generalized, 137
of periodic solutions, 127
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Bogdanov–Takens bifurcation,
238
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Class A laser, 6, 11

optically injected, 68
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driven, 119
singular limit, 9
slow passage, 167
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Coherence collapse, 250
Coupled lasers, 75
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Adler’s equation, 65
laser equations, 24

Driven laser
class B laser, 119
dual tone modulation

effect of the phase, 151
small-signal detector, 149

primary resonance
hysteresis, 124

pump or loss modulation, 122
strongly modulated, 136

map, 144
period doubling, 143
subharmonic periodic solutions, 140

subharmonic modulation
period doubling, 130

Far-infrared lasers, 272
inhomogeneous broadening, 281

Feedback
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delayed incoherent, 269
delayed optical, 241

Ikeda equation, 96
map, 98

electrical, 87
Fold-Hopf bifurcation, 238
Frequency pulling

optically injected laser, 219

Haken, Hermann, 84, 272
Haken–Lorenz equations, 276

complex, 292
Hopf bifurcation, 85

approximation, 101
double

eye bifurcation diagram, 107
intracavity SHG, 316
laser with a saturable absorber, 186, 192
optically injected laser, 226

close to threshold, 237
second harmonic generation, 300

Hopf, Eberhard, 86
Hysteresis

periodically modulated laser, 124

Ikeda equation, 96

Lang–Kobayashi equations, 246
Laser conservative oscillations, 120
Laser gyros, 70

dead band, 71
dither control, 73
high-frequency modulation, 74

Laser subject to a magnetic field, 60
periodically modulated

strongly nonlinear, 115
weakly nonlinear, 112

Laser subject to feedback
bifurcation diagrams, 252

cavity length, 106
coherence collapse, 250
delayed incoherent feedback, 269
delayed optical feedback, 241
delayed optoelectronic feedback, 261

bursting oscillations, 263
low pass-high pass filtering, 261
slow–fast oscillations, 264

electrical, 87
bifurcation diagrams, 94
feedback, 92
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external cavity modes, 246
ellipse, 248
maximum gain mode, 248
mode-beating, 252

imaging, 255
low frequency fluctuations, 243

Laser threshold
laser with a saturable absorber, 179
single mode laser, 7

Laser with a saturable absorber, 175
bifurcation diagrams, 195
bursting oscillations, 199
four-variable rate equations, 201
Hopf bifurcation, 186

Powell and Wolga, 193
optical bistability, 178
passive Q-switching, 180

period and maxima, 188
saturability coefficient, 177
three-variable rate equations, 182

linear stability, 191
two-variable rate equations, 184

Laser with an injected signal
Bogdanov–Takens bifurcation, 238
class A, 68

stability boundaries, 82
experimental stability diagram, 220
fold-Hopf bifurcation, 238
four-wave mixing, 218
frequency pulling, 219
Hopf bifurcation, 226
large α, 234
linear stability, 224
locking range, 218
semiconductor lasers, 213
solid state laser, 239
steady states, 222
torus bifurcation, 231

Linear stability
class B laser, 8
CO2 laser, 47
intracavity SHG, 316
laser with a saturable absorber

four variables, 203
three variables, 191
two variables, 186

optical parametric oscillator, 314
Locking range

Adler’s equation, 65
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Locking range (cont.)
coupled lasers, 78
dead band, 71
optically injected laser, 69, 218

Lorenz equations, 275
chaos, 277

Low frequency fluctuations, 243

Map
fixed points, 99
Hopf bifurcation, 101
slowly varying in time, 265

NMR laser, 149
Normal form equation

Adler’s equation, 80
laser rate equations, 21

Optical bistability
laser with a saturable absorber, 178

Optical feedback
delayed optical, 255
delayed optoelectronic, 261

Optical parametric oscillator, 294
DOPO, 296
intracavity, 312
thermal effects, 306
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bursting

laser with a saturable absorber, 201
optoelectronic feedback, 265

harmonic to pulsating, 103

Passive Q-switching, 180
bursting oscillations, 199
in CO2 lasers, 197

Period doubling
CO2 laser, 168
NMR laser, 149
strongly modulated laser, 143
weakly modulated laser, 132

Phase locking, 59
Phase plane

laser conservative oscillations, 121
relaxation oscillations, 25
saddle-point, 35

Polarization dynamics
due to a magnetic field, 60

Quasi-periodic oscillations, 233

Rate equations
class A, 6, 11

optically injected, 68
class B, 3, 5, 20
CO2 laser, 46

four-level model, 52
three-level model, 44

critical slowing down, 24
delayed optical feedback

LK equations, 246

dimensionless formulation, 4
four-level lasers, 49
imperfect bifurcation, 26
laser power and gain, 35
laser threshold, 7
laser with a saturable absorber

four variables, 201
three variables, 182
two variables, 184

linear stability, 8
optical parametric oscillator, 296

Hopf, 300
intracavity, 312
steady states, 298
thermal effects, 307

optically injected laser, 216
phase plane, 25
pitchfork bifurcation, 20
relaxation oscillations, 9, 36
ruby laser, 42

reduction to class B, 44
second harmonic generation, 297

intracavity, 316, 319
semiconductor lasers, 31
singular limit, 9
solid state laser

reduction to class B, 52
spontaneous emission, 26, 29
steady state bifurcation, 9, 20
steady states, 7
three-level laser, 41
two coupled lasers, 77

Relaxation oscillations
close to the laser threshold, 36
damping rate, 10, 13, 34
effect of optical feedback, 255
frequency, 10, 12, 34, 38
high-speed lasers, 37
optically injected laser, 227
three level lasers, 49

Ring laser, 82
Routh–Hurwitz conditions, 92, 225

CO2 laser, 48
optical parametric oscillator, 314

Ruby laser, 42, 84

Sagnac effect, 82
Second harmonic generation, 297

intralaser cavity, 318
antiphase dynamics, 318

Secular term, 135
Semiconductor lasers

design of high-speed lasers, 37
linewidth enhancement factor, 33
rate equations, 31

Singular perturbation
high-frequency modulation, 74
laser turn-on, 14, 29
passive Q-switching oscillations, 188
relaxation oscillations, 9
singular Hopf bifurcation, 103
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singular limit, 119
slow passage, 160
two-time solution, 38

Slow passage
delay, 160

effect of noise, 160
forward and backward transition, 164
optical parametric oscillator, 308
slowly varying solutions, 167
through a Hopf bifurcation, 170
through a PD bifurcation, 168
through bifurcation points, 158
through limit points, 156

Solvability condition
driven Adler’s equation, 113
weakly modulated laser, 125, 131, 141

Spontaneous emission, 26
imperfect bifurcation, 26
reduced turn-on time, 29

Square waves, 98

Time scales
for different lasers, 5
lasers with a saturable absorber, 178

Transfer function, 17
amplitude and phase, 17

Turn-on experiment, 11
pump square pulse, 35
turn-on time, 14

approximation, 15
Two-time solution

Adler’s equation, 117
driven Adler’s equation

near resonance, 113
high-frequency modulation, 74
optoelectronic feedback, 264
singular Hopf bifurcation, 103
slow passage, 160
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Vertical cavity surface emitting laser, 214
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