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COVER ILLUSTRATIONS

Left: Poincaré sphere describing light’s polarization states is shown floating in front of a depo-
larized field of polarization ellipses, with linearly and circularly polarized fields propagating on 
its left and right, respectively. See Chaps. 12 and 15.

Middle: Triplet lens developed for photographic applications that can zero out the primary 
aberrations by splitting the positive lens of a doublet into two and placing one on each side of 
the negative lens. See Chap. 17.

Right: Micrographs of different optical storage media showing the straight and narrow tracks 
with 1.6-μm spacing between adjacent tracks. The recorded information bits appear as short 
marks along each track. See Chap. 35.
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EDITORS’ PREFACE

The third edition of the Handbook of Optics is designed to pull together the dramatic developments 
in both the basic and applied aspects of the field while retaining the archival, reference book value 
of a handbook. This means that it is much more extensive than either the first edition, published 
in 1978, or the second edition, with Volumes I and II appearing in 1995 and Volumes III and IV in 
2001. To cover the greatly expanded field of optics, the Handbook now appears in five volumes. Over 
100 authors or author teams have contributed to this work.

Volume I is devoted to the fundamentals, components, and instruments that make optics pos-
sible. Volume II contains chapters on design, fabrication, testing, sources of light, detection, and a 
new section devoted to radiometry and photometry. Volume III concerns vision optics only and is 
printed entirely in color. In Volume IV there are chapters on the optical properties of materials, non-
linear, quantum and molecular optics. Volume V has extensive sections on fiber optics and x ray and 
neutron optics, along with shorter sections on measurements, modulators, and atmospheric optical 
properties and turbulence. Several pages of color inserts are provided where appropriate to aid the 
reader. A purchaser of the print version of any volume of the Handbook will be able to download 
a digital version containing all of the material in that volume in PDF format to one computer (see 
download instructions on bound-in card). The combined index for all five volumes can be down-
loaded from www.HandbookofOpticsOnline.com.

It is possible by careful selection of what and how to present that the third edition of the 
Handbook could serve as a text for a comprehensive course in optics. In addition, students who take 
such a course would have the Handbook as a career-long reference.

Topics were selected by the editors so that the Handbook could be a desktop (bookshelf) general ref-
erence for the parts of optics that had matured enough to warrant archival presentation. New chapters 
were included on topics that had reached this stage since the second edition, and existing chapters from 
the second edition were updated where necessary to provide this compendium. In selecting subjects to 
include, we also had to select which subjects to leave out. The criteria we applied were: (1) was it a spe-
cific application of optics rather than a core science or technology and (2) was it a subject in which the 
role of optics was peripheral to the central issue addressed. Thus, such topics as medical optics, laser sur-
gery, and laser materials processing were not included. While applications of optics are mentioned in the 
chapters there is no space in the Handbook to include separate chapters devoted to all of the myriad uses 
of optics in today’s world. If we had, the third edition would be much longer than it is and much of it 
would soon be outdated. We designed the third edition of the Handbook of Optics so that it concentrates 
on the principles of optics that make applications possible.

Authors were asked to try to achieve the dual purpose of preparing a chapter that was a worth-
while reference for someone working in the field and that could be used as a starting point to 
become acquainted with that aspect of optics. They did that and we thank them for the outstanding 
results seen throughout the Handbook. We also thank Mr. Taisuke Soda of McGraw-Hill for his help 
in putting this complex project together and Mr. Alan Tourtlotte and Ms. Susannah Lehman of the 
Optical Society of America for logistical help that made this effort possible.

We dedicate the third edition of the Handbook of Optics to all of the OSA volunteers who, since 
OSA’s founding in 1916, give their time and energy to promoting the generation, application, 
archiving, and worldwide dissemination of knowledge in optics and photonics.

Michael Bass, Editor-in-Chief 
Associate Editors:

Casimer M. DeCusatis
Jay M. Enoch

Vasudevan Lakshminarayanan
Guifang Li

Carolyn MacDonald
Virendra N. Mahajan

Eric Van Stryland



This page intentionally left blank.
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PREFACE TO VOLUME I

The third edition of the Handbook of Optics has been completely reorganized, expanded, and updated. 
The four volumes of the second edition grew to five in the current edition. Each volume is divided 
into parts, where each part, sometimes referred to as a section, consists of several chapters related 
to a certain topic. Volumes I and II are devoted primarily to the basic concepts of optics and optical 
phenomena, sometimes called classical optics. Volume I starts with geometrical optics and continues 
with physical optics. This includes interference, diffraction, coherence theory, and scattering. A new 
chapter on tools and applications of coherence theory has been added. A several-chapter section fol-
lows devoted to issues of polarized light. The chapter on polarimetry has been updated and its con-
tent on the Mueller matrices now appears in a separate chapter by that title. Next there are chapters 
on components such as lenses, afocal systems, nondispersive and dispersive prisms, and special optics 
that include integrated, miniature and micro-, binary, and gradient index optics. Finally, there are 
several chapters on instruments. They include cameras and camera lenses, microscopes, reflective and 
catadioptric objectives, scanners, spectrometers, interferometers, xerographic systems, and optical 
disc data storage.

There are many other chapters in this edition of the Handbook that could have been included 
in Volumes I and II. However, page limitations prevented that. For example, in Volume V there is 
a section on Atmospheric Optics. It consists of three chapters, one on transmission through the 
atmosphere, another on imaging through atmospheric turbulence, and a third on adaptive optics to 
overcome some of the deleterious effects of turbulence.

The chapters are generally aimed at the graduate students, though practicing scientists and engi-
neers will find them equally suitable as references on the topics discussed. Each chapter has sufficient 
references for additional and/or further study.

The whole Handbook has been retyped and the figures redrawn. The reader will find that the 
figures in the new edition are crisp. Ms. Arushi Chawla and her team from Glyph International have 
done an outstanding job in accomplishing this monumental task. Many of the authors updated and 
proofread their chapters. However, some authors have passed away since the second edition and others 
couldn’t be located. Every effort has been made to ensure that such chapters have been correctly 
reproduced.

Virendra N. Mahajan
The Aerospace Corporation

Associate Editor
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xxix

GLOSSARY AND FUNDAMENTAL 
CONSTANTS

Introduction

This glossary of the terms used in the Handbook represents to a large extent the language of optics. 
The symbols are representations of numbers, variables, and concepts. Although the basic list was 
compiled by the author of this section, all the editors have contributed and agreed to this set of sym-
bols and definitions. Every attempt has been made to use the same symbols for the same concepts 
throughout the entire Handbook, although there are exceptions. Some symbols seem to be used for 
many concepts. The symbol  is a prime example, as it is used for absorptivity, absorption coeffi-
cient, coefficient of linear thermal expansion, and more. Although we have tried to limit this kind of 
redundancy, we have also bowed deeply to custom.

Units

The abbreviations for the most common units are given first. They are consistent with most of the 
established lists of symbols, such as given by the International Standards Organization ISO1 and the 
International Union of Pure and Applied Physics, IUPAP.2

Prefixes

Similarly, a list of the numerical prefixes1 that are most frequently used is given, along with both the 
common names (where they exist) and the multiples of ten that they represent.

Fundamental Constants

The values of the fundamental constants3 are listed following the sections on SI units.

Symbols

The most commonly used symbols are then given. Most chapters of the Handbook also have a glos-
sary of the terms and symbols specific to them for the convenience of the reader. In the following 
list, the symbol is given, its meaning is next, and the most customary unit of measure for the quan-
tity is presented in brackets. A bracket with a dash in it indicates that the quantity is unitless. Note 
that there is a difference between units and dimensions. An angle has units of degrees or radians and 
a solid angle square degrees or steradians, but both are pure ratios and are dimensionless. The unit 
symbols as recommended in the SI system are used, but decimal multiples of some of the dimen-
sions are sometimes given. The symbols chosen, with some cited exceptions, are also those of the 
first two references.

RATIONALE FOR SOME DISPUTED SYMBOLS

The choice of symbols is a personal decision, but commonality improves communication. This sec-
tion explains why the editors have chosen the preferred symbols for the Handbook. We hope that this 
will encourage more agreement.



Fundamental Constants

It is encouraging that there is almost universal agreement for the symbols for the fundamental con-
stants. We have taken one small exception by adding a subscript B to the k for Boltzmann’s constant.

Mathematics

We have chosen i as the imaginary almost arbitrarily. IUPAP lists both i and j, while ISO does not 
report on these.

Spectral Variables

These include expressions for the wavelength , frequency v, wave number ,  for circular or 
radian frequency, k for circular or radian wave number and dimensionless frequency x. Although 
some use f for frequency, it can be easily confused with electronic or spatial frequency. Some use 

 for wave number, but, because of typography problems and agreement with ISO and IUPAP, we 
have chosen  ; it should not be confused with the Stefan-Boltzmann constant. For spatial frequen-
cies we have chosen  and , although fx and fy are sometimes used. ISO and IUPAP do not report 
on these.

Radiometry

Radiometric terms are contentious. The most recent set of recommendations by ISO and IUPAP are L for 
radiance [Wcm–2sr–1], M for radiant emittance or exitance [Wcm–2], E for irradiance or incidance [Wcm–2], 
and I for intensity [Wsr–2]. The previous terms, W, H, N, and J, respectively, are still in many texts, notably 
Smith4 and Lloyd5 but we have used the revised set, although there are still shortcomings. We have tried to 
deal with the vexatious term intensity by using specific intensity when the units are Wcm–2sr–1, field intensity
when they are Wcm–2, and radiometric intensity when they are Wsr–1.

There are two sets to terms for these radiometric quantities, which arise in part from the terms 
for different types of reflection, transmission, absorption, and emission. It has been proposed that 
the ion ending indicate a process, that the ance ending indicate a value associated with a particu-
lar sample, and that the ivity ending indicate a generic value for a “pure” substance. Then one also 
has reflectance, transmittance, absorptance, and emittance as well as reflectivity, transmissivity, 
absorptivity, and emissivity. There are now two different uses of the word emissivity. Thus the words 
exitance, incidence, and sterance were coined to be used in place of emittance, irradiance, and radi-
ance. It is interesting that ISO uses radiance, exitance, and irradiance whereas IUPAP uses radiance 
excitance [sic], and irradiance. We have chosen to use them both, i.e., emittance, irradiance, and 
radiance will be followed in square brackets by exitance, incidence, and sterance (or vice versa). 
Individual authors will use the different endings for transmission, reflection, absorption, and emis-
sion as they see fit.

We are still troubled by the use of the symbol E for irradiance, as it is so close in meaning 
to electric field, but we have maintained that accepted use. The spectral concentrations of these 
quantities, indicated by a wavelength, wave number, or frequency subscript (e.g., L ) represent 
partial differentiations; a subscript q represents a photon quantity; and a subscript v indicates 
a quantity normalized to the response of the eye. Thereby, Lv is luminance, Ev illuminance, and 
Mv and Iv luminous emittance and luminous intensity. The symbols we have chosen are consis-
tent with ISO and IUPAP.

The refractive index may be considered a radiometric quantity. It is generally complex and is 
indicated by ñ = n – ik. The real part is the relative refractive index and k is the extinction coefficient. 
These are consistent with ISO and IUPAP, but they do not address the complex index or extinction 
coefficient.
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Optical Design

For the most part ISO and IUPAP do not address the symbols that are important in this area.
There were at least 20 different ways to indicate focal ratio; we have chosen FN as symmetri-

cal with NA; we chose f and efl to indicate the effective focal length. Object and image distance, 
although given many different symbols, were finally called so and si since s is an almost universal 
symbol for distance. Field angles are  and ; angles that measure the slope of a ray to the optical 
axis are u; u can also be sin u. Wave aberrations are indicated by Wijk, while third-order ray aberra-
tions are indicated by i and more mnemonic symbols.

Electromagnetic Fields

There is no argument about E and H for the electric and magnetic field strengths, Q for quantity 
of charge,  for volume charge density,  for surface charge density, etc. There is no guidance from 
Refs. 1 and 2 on polarization indication. We chose  and || rather than p and s, partly because s is 
sometimes also used to indicate scattered light.

There are several sets of symbols used for reflection transmission, and (sometimes) absorption, 
each with good logic. The versions of these quantities dealing with field amplitudes are usually 
specified with lower case symbols: r, t, and a. The versions dealing with power are alternately given 
by the uppercase symbols or the corresponding Greek symbols: R and T versus  and . We have 
chosen to use the Greek, mainly because these quantities are also closely associated with Kirchhoff ’s 
law that is usually stated symbolically as  = . The law of conservation of energy for light on a sur-
face is also usually written as  1.

Base SI Quantities

length m meter
time s second
mass kg kilogram
electric current A ampere
temperature K kelvin
amount of substance mol mole
luminous intensity cd candela

Derived SI Quantities

energy J joule
electric charge C coulomb
electric potential V volt
electric capacitance F farad
electric resistance ohm
electric conductance S siemens
magnetic flux Wb weber
inductance H henry
pressure Pa pascal
magnetic flux density T tesla
frequency Hz hertz
power W watt
force N newton
angle rad radian
angle sr steradian
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Prefixes

Symbol Name Common name Exponent of ten
F exa  18
P peta  15
T tera trillion 12
G giga billion 9
M mega million 6
k kilo thousand 3
h hecto hundred 2
da deca ten 1
d deci tenth –1
c centi hundredth –2
m milli thousandth –3

micro millionth –6
n nano billionth –9
p pico trillionth –12
f femto  –15
a atto  –18

Constants

c speed of light vacuo [299792458 ms–1]
c1 first radiation constant = 2 c2h = 3.7417749 × 10–16 [Wm2]
c2 second radiation constant = hc/k = 0.014838769 [mK]
e elementary charge [1.60217733 × 10–19 C]
gn free fall constant [9.80665 ms–2]
h Planck’s constant [6.6260755 × 10–34 Ws]
kB Boltzmann constant [1.380658 × 10–23 JK–1]
me mass of the electron [9.1093897 × 10–31 kg]
NA Avogadro constant [6.0221367 × 1023 mol–1]
R Rydberg constant [10973731.534 m–1]

o vacuum permittivity [ o
–1c –2]

Stefan-Boltzmann constant [5.67051 × 10–8 Wm–1 K–4]

o vacuum permeability [4  × 10–7 NA–2]

B Bohr magneton [9.2740154 × 10–24 JT–1]

General

B magnetic induction [Wbm–2, kgs–1 C–1]
C capacitance [f, C2 s2 m–2 kg–1]
C curvature [m–1]
c speed of light in vacuo [ms–1]
c1 first radiation constant [Wm2]
c2 second radiation constant [mK]
D electric displacement [Cm–2]
E incidance [irradiance] [Wm–2]
e electronic charge [coulomb]
Ev illuminance [lux, lmm–2]
E electrical field strength [Vm–1]
E transition energy [J]
Eg band-gap energy [eV]
f focal length [m]
fc Fermi occupation function, conduction band
fv Fermi occupation function, valence band
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FN focal ratio (f/number) [—]
g gain per unit length [m–1]
gth gain threshold per unit length [m1]
H magnetic field strength [Am–1, Cs–1 m–1]
h height [m]
I irradiance (see also E) [Wm–2]
I radiant intensity [Wsr–1]
I nuclear spin quantum number [—]
I current [A]
i 1
Im() imaginary part of
J current density [Am–2]
j total angular momentum [kg m2 s–1]
J1() Bessel function of the first kind [—]
k radian wave number =2 /  [rad cm–1]
k wave vector [rad cm–1]
k extinction coefficient [—]
L sterance [radiance] [Wm–2 sr–1]
Lv luminance [cdm–2]
L inductance [h, m2 kg C2]
L laser cavity length
L, M, N direction cosines [—]
M angular magnification [—]
M radiant exitance [radiant emittance] [Wm–2]
m linear magnification [—]
m effective mass [kg]
MTF modulation transfer function [—]
N photon flux [s–1]
N carrier (number)density [m–3]
n real part of the relative refractive index [—]
ñ complex index of refraction [—]
NA numerical aperture [—]
OPD optical path difference [m]
P macroscopic polarization [C m–2]
Re() real part of [—]
R resistance [ ]
r position vector [m]
S Seebeck coefficient [VK–1]
s spin quantum number [—]
s path length [m]
So object distance [m]
Si image distance [m]
T temperature [K, C]
t time [s]
t thickness [m]
u slope of ray with the optical axis [rad]
V Abbe reciprocal dispersion [—]
V voltage [V, m2 kgs–2 C–1]
x, y, z rectangular coordinates [m]
Z atomic number [—]

Greek Symbols

absorption coefficient [cm−1]
(power) absorptance (absorptivity)
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diclectric coefficient (constant) [—]
emittance (emissivity) [—]
eccentricity [—]

1 Re ( )

2 lm ( )
(power) transmittance (transmissivity) [—]
radiation frequency [Hz]
circular frequency = 2  [rads−1]
plasma frequency [H2]
wavelength [ m, nm]
wave number = 1/  [cm–1]
Stefan Boltzmann constant [Wm−2K−1]
reflectance (reflectivity) [—]

, angular coordinates [rad, °]
, rectangular spatial frequencies [m−1, r−1]

phase [rad, °]
lens power [m−2]
flux [W]
electric susceptibility tensor [—]
solid angle [sr]

Other

responsivity
exp (x) ex

loga (x) log to the base a of x
ln (x) natural log of x
log (x) standard log of x: log10 (x)

summation
product
finite difference

x variation in x
dx total differential

x partial derivative of x
(x) Dirac delta function of x

ij Kronecker delta
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1
GENERAL PRINCIPLES OF
GEOMETRICAL OPTICS

Douglas S. Goodman
Corning Tropel Corporation 
Fairport, New York

1.1 GLOSSARY

(NS) indicates nonstandard terminology

italics definition or first usage

gradient ( / x , / y , / z)

prime, unprime before and after, object and image space (not derivatives)

A auxiliary function for ray tracing

A, A area, total field areas, object and image points

AB directed distance from A to B

a unit axis vector, vectors

aO, aB, aI coefficients in characteristic function expansion

B matrix element for symmetrical systems

B auxiliary function for ray tracing

B, B arbitrary object and image points

b binormal unit vector of a ray path

interspace (between) term in expansion

C matrix element for conjugacy

C( , , ) characteristic function

c speed of light in vacuum

c surface vertex curvature, spherical surface curvature

cs sagittal curvature

ct tangential curvature

D auxiliary distance function for ray tracing

d distance from origin to mirror

d nominal focal distance

d, d arbitrary point to conjugate object, image points d AO, d A O

d, d axial distances, distances along rays

dH hyperfocal distance

dN near focal distance

dF far focal distance

1.3
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dA differential area

ds differential geometrical path length

E image irradiance

E0 axial image irradiance

E, E entrance and exit pupil locations

e eccentricity

ex, ey, ez coefficients for collineation

F matrix element for front side

F, F front and rear focal points

FN F-number

FNm F-number for magnification m

F( ) general function

F(x, y, z) general surface function

f, f front and rear focal lengths f PF, f P F

G diffraction order

g, g focal lengths in tilted planes

h, h ray heights at objects and images, field heights

hamiltonian

I, I incidence angles

I unit matrix

i, i' paraxial incidence angles

image space term in characteristic function expansion

L surface x-direction cosine

L paraxial invariant

l, l   principal points to object and image axial points l PO, l P O

axial distances from vertices of refracting surface l VO, l V O

lagrangian for heterogeneous media

M lambertian emittance

M surface z-direction cosine

m transverse magnification

mL longitudinal magnification

m angular magnification

mE paraxial pupil magnification

mN nodal point magnification n/n

mP pupil magnification in direction cosines

mO magnification at axial point

mx, my, mz magnifications in the x, y, and z directions

N surface z-direction cosine

N, N nodal points

NA, NA numerical aperture

n refractive index

n normal unit vector of a ray path

NS nonstandard

O, O axial object and image points

object space term in expansion
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P power (radiometric)

P, P principal points

P( , ; x, y) pupil shape functions

P ( , ; x , y )

p period of grating

p ray vector, optical direction cosine p n r (px, py, pz)

p pupil radius

px, py, pz optical direction cosines

Q x y( , ; , ) pupil shape functions relative to principal direction cosines

Q x y( , ; , )

q resolution parameter

qi coordinate for Lagrange equations
qi derivative with respect to a parameter

q, q auxiliary functions for collineation

q unit vector along grating lines

R matrix element for rear side

r radius of curvature, vertex radius of curvature

r ray unit direction vector r ( , , )

S surface normal S (L, M, N)
S x y x y( , , , ) point eikonal V x y z x y z( , , ; , , )0 0

s geometrical length

s axial length

s, s distances associated with sagittal foci

skew invariant

T( , ; , ) angle characteristic function

t thickness, vertex-to-vertex distance

t, t distances associated with tangential foci

t time

t tangent unit vector of a ray path

U, U meridional ray angles relative to axis

u, u paraxial ray angles relative to axis

uM paraxial marginal ray angle

uC paraxial chief ray angle

u1, u2, u3, u4 homogeneous coordinates for collineation

V optical path length

V(x; x ) point characteristic function

V, V vertex points

v speed of light in medium

WLMN wavefront aberration term

Wx, Wy, Wz wavefront aberration terms for reference shift

W( , ; x, y, z) wavefront aberration function

W'( , ; x , y ) angle-point characteristic function

W(x, y; , ) point-angle characteristic function

x (x, y, z) position vector

x( ) parametric description of ray path
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x( ) derivative with respect to a parameter

x( ) second derivative with respect to a parameter

y meridional ray height, paraxial ray height

yM paraxial marginal ray height

yC paraxial chief ray height

yP , yP paraxial ray height at the principal planes

z axis of revolution

z( ) surface sag

zsphere sag of a sphere

zconic sag of a conic

z, z focal point to object and image distances z FO, z F O

, , ray direction cosines

, , entrance pupil directions

, , exit pupil direction cosines

0, 0 principal direction of entrance pupil

0 , 0 principal direction of exit pupil

max, min extreme pupil directions

max, min extreme pupil directions

n  cos I − n cos I

x, y, z reference point shifts

, angular ray aberrations

x, y, z shifts

surface shape parameter

x, y transverse ray aberrations

, pupil coordinates—not specific

ray angle to surface normal

marginal ray angle 

plane tilt angle

conic parameter

curvature of a ray path

wavelength

azimuth angle 

field angle

power, surface power 

azimuth

radius of curvature of a ray path 

distance from axis 

radial pupil coordinate

ray path parameter 

general parameter for a curve

reduced axial distances 

torsion of a ray path

( , ; x , y ) pupil transmittance function

, reduced angle nu, n u

d differential solid angle
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1.2 INTRODUCTION

The Subject

Geometrical optics is both the object of abstract study and a body of knowledge necessary for design 
and engineering. The subject of geometrical optics is small, since so much can be derived from a 
single principle, that of Fermat, and large since the consequences are infinite and far from obvious. 
Geometrical optics is deceptive in that much that seems simple is loaded with content and impli-
cations, as might be suggested by the fact that some of the most basic results required the likes of 
Newton and Gauss to discover them. Most of what appears complicated seems so because of obscu-
ration with mathematical terminology and excessive abstraction. Since it is so old, geometrical 
optics tends to be taken for granted and treated too casually by those who consider it to be “under-
stood.” One consequence is that what has been long known can be lost if it is not recirculated by 
successive generations of textbook authors, who are pressed to fit newer material in a fairly constant 
number of pages.

The Contents

The material in this chapter is intended to be that which is most fundamental, most general, and 
most useful to the greatest number of people. Some of this material is often thought to be more 
esoteric than practical, but this opinion is less related to its essence than to its typical presentation. 
There are no applications per se here, but everything is applicable, at least to understanding. An 
effort has been made to compensate here for what is lacking elsewhere and to correct some com-
mon errors. Many basic ideas and useful results have not found their way into textbooks, so are 
little known. Moreover, some basic principles are rarely stated explicitly. The contents are weighted 
toward the most common type of optical system, that with rotational symmetry consisting of mir-
rors and/or lens elements of homogeneous materials. There is a section “Rays in Heterogeneous 
Media,” an application of which is gradient index optics discussed in Chap. 24. The treatment here 
is mostly monochromatic. The topics of caustics and anisotropic media are omitted, and there is 
little specifically about systems that are not figures of revolution. The section on aberrations is short 
and mostly descriptive, with no discussion of lens design, a vast field concerned with the practice of 
aberration control. Because of space limitations, there are too few diagrams.

Terminology

Because of the complicated history of geometrical optics, its terminology is far from standardized. 
Geometrical optics developed over centuries in many countries, and much of it has been rediscov-
ered and renamed. Moreover, concepts have come into use without being named, and important 
terms are often used without formal definitions. This lack of standardization complicates commu-
nication between workers at different organizations, each of which tends to develop its own optical 
dialect. Accordingly, an attempt has been made here to provide precise definitions. Terms are itali-
cized where defined or first used. Some needed nonstandard terms have been introduced, and these 
are likewise italicized, as well as indicated by “NS” for “nonstandard.”

Notation

As with terminology, there is little standardization. And, as usual, the alphabet has too few letters to 
represent all the needed quantities. The choice here has been to use some of the same symbols more 
than once, rather than to encumber them with superscripts and subscripts. No symbol is used in a 
given section with more than one meaning. As a general practice nonprimed and primed quantities 
are used to indicate before and after, input and output, and object and image space.
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References

No effort has been made to provide complete references, either technical or historical. (Such a list 
would fill the entire chapter.) The references were not chosen for priority, but for elucidation or inter-
est, or because of their own references. Newer papers can be found by computer searches, so the older 
ones have been emphasized, especially since older work is receding from view beneath the current 
flood of papers. In geometrical optics, nothing goes out of date, and much of what is included here 
has been known for a century or so—even if it has been subsequently forgotten.

Communication

Because of the confusion in terminology and notation, it is recommended that communication 
involving geometrical optics be augmented with diagrams, graphs, equations, and numeric results, 
as appropriate. It also helps to provide diagrams showing both first-order properties of systems, 
with object and image positions, pupil positions, and principal planes, as well as direction cosine 
space diagrams, as required, to show angular subtenses of pupils.

1.3 FUNDAMENTALS

What Is a Ray?

Geometrical optics, which might better be called ray optics, is concerned with the light ray, an entity 
that does not exist. It is customary, therefore, to begin discussions of geometrical optics with a theo-
retical justification for the use of the ray. The real justification is that, like other successful models 
in physics, rays are indispensable to our thinking, notwithstanding their shortcomings. The ray is a 
model that works well in some cases and not at all in others, and light is necessarily thought about 
in terms of rays, scalar waves, electromagnetic waves, and with quantum physics—depending on the 
class of phenomena under consideration.

Rays have been defined with both corpuscular and wave theory. In corpuscular theory, some def-
initions are (1) the path of a corpuscle and (2) the path of a photon. A difficulty here is that energy 
densities can become infinite. Other efforts have been made to define rays as quantities related to 
the wave theory, both scalar and electromagnetic. Some are (1) wavefront normals, (2) the Poynting 
vector, (3) a discontinuity in the electromagnetic field,1,2 (4) a descriptor of wave behavior in short 
wavelength or high frequency limit,3 and (5) quantum mechanically.4 One problem with these 
definitions is that there are many ordinary and simple cases where wavefronts and Poynting vectors 
become complicated and/or meaningless. For example, in the simple case of two coherent plane 
waves interfering, there is no well-defined wavefront in the overlap region. In addition, rays defined 
in what seems to be a reasonble way can have undesirable properties. For example, if rays are defined 
as normals to wavefronts, then, in the case of gaussian beams, rays bend in a vacuum.

An approach that avoids the difficulties of a physical definition is that of treating rays as math-
ematical entities. From definitions and postulates, a variety of results is found, which may be more 
or less useful and valid for light. Even with this approach, it is virtually impossible to think “purely 
geometrically”—unless rays are treated as objects of geometry, rather than optics. In fact, we often 
switch between ray thinking and wave thinking without noticing it, for instance in considering the 
dependence of refractive index on wavelength. Moreover, geometrical optics makes use of quantities 
that must be calculated from other models, for example, the index of refraction. As usual, Rayleigh5

has put it well: “We shall, however, find it advisable not to exclude altogether the conceptions of the 
wave theory, for on certain most important and practical questions no conclusion can be drawn 
without the use of facts which are scarcely otherwise interpretable. Indeed it is not to be denied that 
the too rigid separation of optics into geometrical and physical has done a good deal of harm, much 
that is essential to a proper comprehension of the subject having fallen between the two schools.”
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The ray is inherently ill-defined, and attempts to refine a definition always break down. A defini-
tion that seems better in some ways is worse in others. Each definition provides some insight into 
the behavior of light, but does not give the full picture. There seems to be a problem associated with 
the uncertainty principle involved with attempts at definition, since what is really wanted from a 
ray is a specification of both position and direction, which is impossible by virtue of both classical 
wave properties and quantum behavior. So the approach taken here is to treat rays without precisely 
defining them, and there are few reminders hereafter that the predictions of ray optics are imperfect.

Refractive Index

For the purposes of this chapter, the optical characteristics of matter are completely specified by its 
refractive index. The index of refraction of a medium is defined in geometrical optics as

n
speed of light in vacuum
speed of light in medium

c
v

(1)

A homogeneous medium is one in which n is the same everywhere. In an inhomogeneous or 
heterogeneous medium the index varies with position. In an isotropic medium n is the same at each 
point for light traveling in all directions and with all polarizations, so the index is described by a scalar 
function of position. Anisotropic media are not treated here.

Care must be taken with equations using the symbol n, since it sometimes denotes the ratio of 
indices, sometimes with the implication that one of the two is unity. In many cases, the difference 
from unity of the index of air ( 1.0003) is important. Index varies with wavelength, but this depen-
dence is not made explicit in this chapter, most of which is implicitly limited to monochromatic light. 
The output of a system in polychromatic light is the sum of outputs at the constituent wavelengths.

Systems Considered

The optical systems considered here are those in which spatial variations of surface features or 
refractive indices are large compared to the wavelength. In such systems ray identity is preserved; 
there is no “splitting” of one ray into many as occurs at a grating or scattering surface.

The term lens is used here to include a variety of systems. Dioptric or refractive systems employ 
only refraction. Catoptric or reflective systems employ only reflection. Catadioptric systems employ 
both refraction and reflection. No distinction is made here insofar as refraction and reflection can 
be treated in a common way. And the term lens may refer here to anything from a single surface to a 
system of arbitrary complexity.

Summary of the Behavior and Attributes of Rays

Rays propagate in straight lines in homogeneous media and have curved paths in heterogeneous 
media. Rays have positions, directions, and speeds. Between any pair of points on a given ray there is 
a geometrical path length and an optical path length. At smooth interfaces between media with dif-
ferent indices rays refract and reflect. Ray paths are reversible. Rays carry energy, and power per area 
is approximated by ray density.

Reversibility

Rays are reversible; a path can be taken in either direction, and reflection and refraction angles are 
the same in either direction. However, it is usually easier to think of light as traveling along rays in a 
particular direction, and, of course, in cases of real instruments there usually is such a direction. The 
solutions to some equations may have directional ambiguity.
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Groups of Rays

Certain types of groups of rays are of particular importance. Rays that originate at a single point 
are called a normal congruence or orthotomic system, since as they propagate in isotropic media they 
are associated with perpendicular wavefronts. Such groups are also of interest in image formation, 
where their reconvergence to a point is important, as is the path length of the rays to a reference 
surface used for diffraction calculations. Important in radiometric considerations are groups of 
rays emanating from regions of a source over a range of angles. The changes of such groups as they 
propagate are constrained by conservation of brightness. Another group is that of two meridional 
paraxial rays, related by the two-ray invariant.

Invariance Properties

Individual rays and groups of rays may have invariance properties—relationships between the posi-
tions, directions, and path lengths—that remain constant as a ray or a group of rays passes through 
an optical system.6 Some of these properties are completely general, e.g., the conservation of étendue 
and the perpendicularity of rays to wavefronts in isotropic media. Others arise from symmetries of 
the system, e.g., the skew invariant for rotationally symmetric systems. Other invariances hold in the 
paraxial limit. There are also differential invariance properties.7,8 Some ray properties not ordinarily 
thought of in this way can be thought of as invariances. For example, Snell’s law can be thought of 
as a refraction invariant n sin I.

Description of Ray Paths

A ray path can be described parametrically as a locus of points x( ), where  is any monotonic 
parameter that labels points along the ray. The description of curved rays is elaborated in the section 
on heterogeneous media.

Real Rays and Virtual Rays

Since rays in homogeneous media are straight, they can be extrapolated infinitely from a given 
region. The term real refers to the portion of the ray that “really” exists, or the accessible part, and 
the term virtual refers to the extrapolated, or inaccessible, part.

Direction

At each position where the refractive index is continuous a ray has a unique direction. The direction 
is given by its unit direction vector r, whose cartesian components are direction cosines ( ), i.e.,

r ( , , ) (2)

where | | .r 2 2 2 2 1  The three direction cosines are not independent, and one is often 
taken to depend implicitly on the other two. In this chapter it is usually , which is

( , ) 1 2 2 (3)

Another vector with the same direction as r is

p rn n p p px y z( , , ) ( , , ) (4)

where |p|2 n2. Several names are used for this vector, including the optical direction cosine and the 
ray vector.
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Geometrical Path Length

Geometrical path length is geometrical distance measured along a ray between any two points. The 
differential unit of length is

ds dx dy dz2 2 2 (5)

The path length between points x1 and x2 on a ray described parametrically by x( ), with derivative 
x x( ) ( )d d/  is

s ds
ds
d

d d( ; ) | ( )|x x x
x

x

x

x

x

x

1 2
2

1

2

1

2

1

22 (6)

Optical Path Length

The optical path length between two points x1 and x2 through which a ray passes is

Optical path length V n ds( ; ) ( )x x x
x

x

1 2
1

2
c

dds
d

v
tc (7)

The integral is taken along the ray path, which may traverse homogeneous and inhomogeneous 
media, and include any number of reflections and refractions. Path length can be defined for virtual 
rays. In some cases, path length should be considered positive definite, but in others it can be either 
positive or negative, depending on direction.9 If x0, x1, and x2 are three points on the same ray, then

V V V( ; ) ( ; ) ( ; )x x x x x x0 2 0 1 1 2 (8)

Equivalently, the time required for light to travel between the two points is

Time
optical path length

c c c v
V

n ds
ds1

1

( )x
x

xx

x

x 2

1

2 (9)

In homogeneous media, rays are straight lines, and the optical path length is V n ds (index) 
(distance between the points).

The optical path length integral has several interpretations, and much of geometrical optics 
involves the examination of its meanings. (1) With both points fixed, it is simply a scalar, the optical 
path length from one point to another. (2) With one point fixed, say x0, then treated as a function of 
x, the surfaces V(x0; x) constant are geometrical wavefronts for light originating at x0. (3) Most gen-
erally, as a function of both arguments V(x1; x2) is the point characteristic function, which contains all 
the information about the rays between the region containing x1 and that containing x2. There may 
not be a ray between all pairs of points.

Fermat’s Principle

According to Fermat’s principle10–15 the optical path between two points through which a ray passes 
is an extremum. Light passing through these points along any other nearby path would take either 
more or less time. The principle applies to different neighboring paths. The optical path length of a 
ray may not be a global extremum. For example, the path lengths of rays through different facets of 
a Fresnel lens have no particular relationship. Fermat’s principle applies to entire systems, as well 
as to any portion of a system, for example, to any section of a ray. In a homogeneous medium, the 
extremum is a straight line or, if there are reflections, a series of straight line segments.

The extremum principle can be described mathematically as follows.16 With the end points fixed, 
if a nonphysical path differs from a physical one by an amount proportional to , the nonphysical 
optical path length differs from the actual one by a quantity proportional to 2 or to a higher order. 
If the order is three or higher, the first point is imaged at the second-to-first order. Roughly speaking, 
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the higher the order, the better the image. A point is imaged stigmatically when a continuum of 
neighboring paths have the same length, so the equality holds to all orders. If they are sufficiently 
close, but vary slightly, the deviation from equality is a measure of the aberration of the imaging. An 
extension of Fermat’s principle is given by Hopkins.17

Ray and wave optics are related by the importance of path length in both.18,19 In wave optics, optical 
path length is proportional to phase change, and the extremum principle is associated with constructive 
interference. The more alike the path lengths are from an object point to its image, the less the differ-
ences in phase of the wave contributions, and the greater the magnitude of the net field. In imaging this 
connection is manifested in the relationship of the wavefront aberration and the eikonal.

Fermat’s principle is a unifying principle of geometrical optics that can be used to derive laws of 
reflection and refraction, and to find the equations that describe ray paths and geometrical wave-
fronts in heterogeneous and homogeneous media. It is one of a number of variational principles 
based historically on the idea that nature is economical, a unifying principle of physics. The idea 
that the path length is an extremum could be used mathematically without interpreting the refrac-
tive index in terms of the speed of light.

Geometrical Wavefronts

For rays originating at a single point, a geometrical wavefront is a surface that is a locus of constant 
optical path length from the source. If the source point is located at x0 and light leaves at time t0,
then the wavefront at time t is given by

V( ; ) ( )x x0 0c t t (10)

The function V(x; x0), as a function of x, satisfies the eikonal equation

n
V
x

V
y

V
z

( )

|

x 2

2 2 2

V( ; )|x x0
2

(11)

This equation can also be written in relativistic form, with a four-dimensional gradient as 
0 20( )V xi/ .

For constant refractive index, the eikonal equation has some simple solutions, one of which is 
V n x x y y z z[ ( ) ( ) ( )],0 0 0  corresponding to a parallel bundle of rays with directions 
( , , ). Another is V n x x y y z z[( ) ( ) ( ) ] ,/

0
2

0
2

0
2 1 2  describing rays traveling radially from a 

point (x0, y0, z0).
In isotropic media, the rays and wavefronts are everywhere perpendicular to each other, a condi-

tion referred to as orthotomic. According to the Malus-Dupin principle, if a group of rays emanating 
front a single point is reflected and/or refracted any number of times, the perpendicularity of rays to 
wavefronts is maintained. The direction of a ray from x0 at x is that of the gradient of V(x0; x)

p rn V

or

n
V
x

n
V
y

n
V
z

(12)

In a homogeneous medium, all wavefronts can be found from any one wavefront by a construction. 
Wavefront normals, i.e., rays, are projected from the known wavefront, and loci of points equidistant 
therefrom are other wavefronts. This gives wavefronts in both directions, that is, both subsequent and 
previous wavefronts. (A single wavefront contains no directional information.) The construction also 
gives virtual wavefronts, those which would occur or would have occurred if the medium extended 
infinitely. This construction is related to that of Huygens for wave optics. At each point on a wavefront 
there are two principal curvatures, so there are two foci along each ray and two caustic surfaces.8,21
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The geometrical wavefront is analogous to the surface of constant phase in wave optics, and 
the eikonal equation can be obtained from the wave equation in the limit of small wavelength.3,4 A 
way in which wave optics differs from ray optics is that the phase fronts can be modified by phase 
changes that occur on reflection, transmission, or in passing through foci.

Fields of Rays

In many cases the optical direction cosine vectors p form a field, where the optical path length is 
the potential, and the geometrical wavefronts are equipotential surfaces. The potential changes with 
position according to

dV n dx n dy n dz n d dr x p x (13)

If dx is in the direction of a ray, then dV/dx n, the maximum rate of change. If dx is perpendicular 
to a ray, then dV/dx 0. The potential difference between any two wavefronts is

V V dV2 1
1

2

x

x
(14)

where x1 and x2 are any two points on the respective wavefronts, and the integrand is independent of 
the path. Other relationships for rays originating at a single point are

0 p r p x( )n dand 0= (15)

where the integral is about a closed path.3 These follow since p is a gradient, Eq. (13). In regions 
where the rays are folded onto themselves by refraction or reflections, p and V are not single-valued, 
so there is not a field.

1.4 CHARACTERISTIC FUNCTIONS

Introduction

Characteristic functions contain all the information about the path lengths between pairs of points, 
which may either be in a contiguous region or physically separated, e.g., on the two sides of a lens. 
These functions were first considered by Hamilton,22 so their study is referred to as hamiltonian 
optics. They were rediscovered in somewhat different form by Bruns23,24 and referred to as eikonals, 
leading to a confusing set of names for the various functions. The subject is discussed in a number 
of books.25–36

Four parameters are required to specify a ray. For example, an input ray is defined in the 
z 0 plane by coordinates (x, y) and direction ( , ). So four functions of four variables specify 
how an incident ray emerges from a system. In an output plane z 0, the ray has coordinates 
x x x y y y x y( , , , ), ( , , , ), and directions ( , , , ), ( , , , ).x y x y
Because of Fermat’s principle, these four functions are not independent, and the geometrical optics 
properties of a system can be fully characterized by a single function.32

For any given system, there is a variety of characteristic functions related by Legendre transfor-
mations, with different combinations of spatial and angular variables.34 The different functions are 
suited for different types of analysis. Mixed characteristic functions have both spatial and angular 
arguments. Those functions that are of most general use are discussed next. The others may be use-
ful in special circumstances. If the regions have constant refractive indices, the volumes over which 
the characteristic functions are defined can be extended virtually from physically accessible to inac-
cessible regions.

From any of its characteristic functions, all the properties of a system involving ray paths can 
be found, for example, ray positions, directions, and geometrical wavefronts. An important use of 
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the characteristic functions is demonstrating general principles and fundamental limitations. Much 
of this can be done by using the general properties, e.g., symmetry under rotation. (Unfortunately, 
it is not always known how closely the impossible can be approached.)

Point Characteristic Function

The point characteristic function is the optical path integral V V x y z x y z( ; ) ( , , ; , , )x x taken as a 
function of both points x and x . At point x where the index is n,

n
V
x

n
V
y

n
V
z

Vor p (16)

Similarly, at x , where the index is n ,

n
V
x

n
V
y

n y
V
z

Vor p (17)

It follows from the above equations and Eq. (4) that the point characteristic satisfies two conditions:

n V n V2 2 2 2| | | |and (18)

Therefore, the point characteristic is not an arbitrary function of six variables. The total differential 
of V is

dV d d( ; )x x p x p x (19)

“This expression can be said to contain all the basic laws of optics”.36

Point Eikonal

If reference planes in object and image spaces are fixed, for which we use z0 and z0 , then the point 
eikonal is S x y x y V x y z x y z( , ; , ) ( , , ; , , ).0 0

This is the optical path length between pairs of 
points on the two planes. The function is not useful if the planes are conjugate, since more than one 
ray through a pair of points can have the same path length. The function is arbitrary, except for the 
requirement37 that

2 2 2 2

0
S

x x
S

y y
S

x y
S

x y
(20)

The partial derivatives of the point eikonal are

n
S
x

n
S
y

n
S
x

n
S
y

and (21)

The relative merits of the point characteristic function and point eikonal have been debated.37–39

Angle Characteristic

The angle characteristic function T( , ; , ), also called the eikonal, is related to the point char-
acteristic by

T V x y z x y z n x( , ; , ) ( , , ; , , ) ( y z

n x y z

)

( )

(22)

Here the input plane z and output plane z  are fixed and are implicit parameters of T.
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This equation is really shorthand for a Legendre transformation to coordinates p V xx / , etc. In 
principle, the expressions of Eq. (16) are used to solve for x and y in terms of  and , and likewise 
Eq. (17) gives x  and y  in terms of  and , so

T V x y z x( , ; , ) [ ( , ), ( , ), ; ( , ), ( , ), ]

[ ( , ) ( ,

y z

n x y )) ]

[ ( , ) ( , )

1

1

2 2 z

n x y 2 2 z ]

(23)

The angle characteristic is an arbitrary function of four variables that completely specify the direc-
tions of rays in two regions. This function is not useful if parallel incoming rays give rise to parallel 
outgoing rays, as is the case with afocal systems, since the relationship between incoming and outgo-
ing directions is not unique. The partial derivatives of the angular characteristic function are

T
n x z

T
n y z, (24)

T
n x z

T
n y z, (25)

These expressions are simplified if the reference planes are taken to be z 0 and z 0. The geo-
metrical interpretation of T is that it is the path length between the intersection point of rays with 
perpendicular planes through the coordinate origins in the two spaces, as shown in Fig. 1 for the 
case of constant n and n . If the indices are heterogeneous, the construction applies to the tangents 
to the rays. Of all the characteristic functions, T is most easily found for single surfaces and most 
easily concatenated for series of surfaces.

Point-Angle Characteristic

The point-angle characteristic function is a mixed function defined by

W x y z V x y z x y z( , , ; , ) ( , , ; , , ) nn x y z

T n x y

( )

( , ; , ) ( z)
(26)

FIGURE 1 Geometrical interpretation of the angle characteristic function for constant 
object and image space indices. There is, in general, a single ray with directions ( , , ) in
object space and ( , , ) in image space. Point O is the coordinate origin in object space, 
and O  is that in image space. From the origins, perpendiculars to the ray are constructed, 
which intersect the ray at Q and Q . The angle characteristic function T ( , , ) is the 
path length from Q to Q .
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As with Eq. (22), this equation is to be understood as shorthand for a Legendre transformation. The 
partial derivatives with respect to the spatial variables are related by equations like those of Eq. (16), 
so n2 | W|2, and the derivatives with respect to the angular variables are like those of Eq. (25). This 
function is useful for examining transverse ray aberrations for a given object point, since W/ ,

W/  give the intersection points (x , y ) in plane z for rays originating at (x, y) in plane z.

Angle-Point Characteristic

The angle-point characteristic function is

W x y z V x y z x y z( , ; , , ) ( , , ; , , ) n x y z

T n x y

( )

( , ; , ) ( z)
(27)

Again, this is shorthand for the Legendre transformation. This function satisfies relationships like 
those of Eq. (17) and satisfies n W2 2| | . Derivatives with respect to spatial variables are like 
those of Eq. (21). It is useful when input angles are given and output angles are to be found.

Expansions About an Arbitrary Ray

If two points on a ray that are not conjugate are taken as coordinate origins, and the z axes of the 
coordinate systems are taken to lie along the rays, then the expansion to second order of the point 
eikonal about these points is

S x y x y v a x b x y c y a x( , ; , )1 1 2 2 1 1
2

1 1 1 1 1
2

2 2
22

2 2 2 2 2
2

1 2 1 2 1 2 1 2

b x y c y

dx x ey y fx y gy x
(28)

The other characteristic functions have similar expansions. These expansions have three types of 
terms, those associated with the input space, the output space, and “interspace” terms. From the 
coefficients, information about imaging along a known ray is obtained. This subject is treated in the 
references for the section “Images About Known Rays.”

Expansions About the Axis

For rotationally symmetric systems, the building blocks for an expansion about the axis are

Object space term or: x y2 2 2 2 (29)

   Image space term or: x y2 2 2 2 (30)

     
Interspace term: or orxx yy x y

oor x y
(31)

(Here “between.”) The interspace term combines the variables included in  and . The general 
form can be written as a series

C aLMN
L M N

L M N( , , )
, ,

(32)

To second order, the expansion is

C a a a a a a( , , ) 0 100 010 001 200
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2
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a a a
(33)
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The constant term is the optical path length between coordinate origins in the two spaces. It is often 
unimportant, but it does matter if two systems are used in parallel, as in an interferometer. The three 
first-order terms give the paraxial approximation. For imaging systems, the second-order terms are 
associated with third-order ray aberrations, and so on.30 It is also possible to expand the characteristic 
functions in terms of three linear combinations of , , and . These combinations can be chosen 
so that the characteristic function of an aberration-free system depends on only one of the three 
terms, and the other two describe the aberrations.26,31,40

Paraxial Forms for Rotationally Symmetric Systems

These functions contain one each of the object space, image space, and interspace terms, with coef-
ficients aO, aI, and aB. The coefficients of the object and image space terms depend on the input and 
output plane locations. That of the interspace term depends on the system power. Point eikonal:

S x y x y a a x y a xx yy aO B I( , ; , ) ( ) ( ) (2 2 x y2 2) (34)

Angle characteristic:

T a a a aO B I( , ; , ) ( ) ( ) (2 2 2 2) (35)

Point-angle characteristic:

W x y a a x y a x y aO B I( , ; , ) ( ) ( ) (2 2 2 2) (36)

Angle-point characteristic:

W x y a a a x y aB I( , , , ) ( ) ( )O
2 2 (( )x y2 2 (37)

The corresponding coefficients in these expressions are different from each other. The familiar prop-
erties of paraxial and gaussian optics can be found from these functions by taking the appropriate 
partial derivatives.

Some Ideal Characteristic Functions

For a system that satisfies certain conditions, the form of a characteristic function can sometimes be 
found. Thereafter, some of its properties can be determined. Some examples of characteristic func-
tions follow, in each of which expression the function F is arbitrary.

For maxwellian perfect imaging (defined below) by a rotationally symmetric system between 
planes at z 0 and z 0 related by transverse magnification m, the point characteristic function, 
defined for z 0, is

V x y z x y F x y x mx y( , , ; , ) ( ) [( ) (2 2 2 mmy z) ] /2 2 1 2 (38)

Expanding the expression above for small x, x , y, y  give the paraxial form, Eq. (34). The form of the 
point-angle characteristic is

W x y F x y m n x n y( , ; , ) ( ) ( )2 2 (39)

The form of the angle-point characteristic is

W x y F x y
m

n x n y( , ; , ) ( ) ( )2 2 1 (40)

The functions F are determined if the imaging is also stigmatic at one additional point, for example, 
at the center of the pupil.26,34,40,41 The angular characteristic function has the form

T F n mn n mn( , ; , ) [( ) ( ) ]2 2 (41)

where F is any function.
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For a lens of power that stigmatically images objects at infinity in a plane, and does so in either 
direction,

S x y x y xx yy T( , ; , ) ( ) ( , ; ,and ) ( )
nn

(42)

Partially differentiating with respect to the appropriate variables shows that for such a system, the 
heights of point images in the rear focal plane are proportional to the sines of the incident angles, 
rather than the tangents.

1.5 RAYS IN HETEROGENEOUS MEDIA

Introduction

This section provides equations for describing and determining the curved ray paths in a heteroge-
neous or inhomogeneous medium, one whose refractive index varies with position. It is assumed 
here that n(x) and the other relevant functions are continuous and have continuous derivatives to 
whatever order is needed. Various aspects of this subject are discussed in a number of books and 
papers.42–49 This material is often discussed in the literature on gradient index lenses50–54 and in dis-
cussions of microwave lenses.55–58

Differential Geometry of Space Curves

A curved ray path is a space curve, which can be described by a standard parametric description, 
x( ) [ ( ), ( ), ( )],x y z  where  is an arbitrary parameter.46,59–62

Different parameters may be used according to the situation. The path length s along the ray is 
sometimes used, as is the axial position z. Some equations change form according to the parameter, 
and those involving derivatives are simplest when the parameter is s. Derivatives with respect to the 
parameter are denoted by dots, so x x( ) ( ) [ ( ), ( ), ( )].d d x y z/  A parameter other than s is a 
function of s, so d ds d d d dsx x( ) ( )( )./ / /

Associated with space curves are three mutually perpendicular unit vectors, the tangent vector t,
the principal normal n, and the binormal b, as well as two scalars, the curvature and the torsion. The 
direction of a ray is that of its unit tangent vector

t
x
x

x
( )

| ( )|
( ) ( , , )s (43)

The tangent vector t is the same as the direction vector r used elsewhere in this chapter. The rate of 
change of the tangent vector with respect to path length is

n t x( ) ( ) , ,s s
d
ds

d
ds

d
ds (44)

The normal vector is the unit vector in this direction

n
x
x

( )

| ( )|

s

s
(45)

The vectors t and n define the osculating plane. The curvature | ( )|x s  is the rate of change of 
direction of t in the osculating plane.

2
2

6
2| ( ) ( )|

| ( )|
| ( )|

x x
x

x s
d
ds

2 2 2
d
ds

d
ds

(46)



GENERAL PRINCIPLES OF GEOMETRICAL OPTICS  1.19

The radius of curvature is 1/ . Perpendicular to the osculating plane is the unit binormal vector

b t n
x x

x
( ) ( )
| ( )|
s s

s
(47)

The torsion is the rate of change of the normal to the osculating plane

b
n x x x

x
( )

( ) [ ( ) ( )] ( )

| ( )
s

d s
ds x

x x x

x( )|

[ ( ) ( )] ( )

| ( )|2 2

s s s

s
(48)

The quantity 1/  is the radius of torsion. For a plane curve, 0 and b is constant. The rates of 
change of t, n, and b are given by the Frenet equations:

t n n t b b n( ) ( ) ( )s s s, , (49)

In some books, 1/  and 1/  are used for what are denoted here by and .

Differential Geometry Equations Specific to Rays

From the general space curve equations above and the differential equations below specific to rays, 
the following equations for rays are obtained. Note that n here is the refractive index, unrelated to n.
The tangent and normal vectors are related by Eq. (59), which can be written

log ( log )n nn t t (50)

The osculating plane always contains the vector n. Taking the dot product with n in the above 
equation gives

log
log ( log )

n
N

n nn b x (51)

The partial derivative / N is in the direction of the principal normal, so rays bend toward regions 
of higher refractive index. Other relations46 are

n x x( ) [ log ( )]s n s (52)

b x b( ) logs n nand 0 (53)

( ( ) )

| ( )|

x

x

s n n

n s 2 (54)

Variational Integral

Written in terms of parameter , the optical path length integral, Eq. (7), is

V nds n
ds
d

d d (55)

The solution for ray paths involves the calculus of variations in a way analogous to that used 
in classical mechanics, where the time integral of the lagrangian  is an extremum.63 If  has 
no explicit dependence on , the mechanical analogue to the optics case is of no explicit time 
dependence.
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Differential Equations for Rays

General Differential Equations Because the optical path length integral is an extremum, the 
integrand  satisfies the Euler equations.46 For an arbitrary coordinate system, with coordinates 
q1, q2, q3 and the derivatives with respect to the parameter q dq di i / , the differential equations 
for the path are

0
d

d q q
d

d
n

q
ds
d q

n
i i i i

dds
d

i; , ,1 2 3 (56)

Cartesian Coordinates with Unspecified Parameter In cartesian coordinates ds d x y z/ ( ) ,/2 2 2 1 2

so the x equation is

0 2

d
d

n
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ds
d

ds
d

n
x

d
d

nx
x y( 22 2 1 2

2 2 2 1 2

z
x y z

n
x)

( )/
/ (57)

Similar equations hold for y and z.

Cartesian Coordinates with Parameter s With s, so ds/d 1, an expression, sometimes 
called the ray equation, is obtained.28

n
d
ds

n
d s

ds
n

d s

ds

dn s
ds

dx x x( ) ( ) [ ( )]2

2

xx( )s
ds

(58)

Using dn ds n/ x, the ray equation can also be written

n n n n nx x x x x x( ) log ( log )or (59)

Only two of the component equations are independent, since | | .x 1

Cartesian Coordinates with Parameter ds n/ The parameter ds /n, for which ds/d n
and n x y z2 2 2 2, gives44

d

d
n

2

2
1
2

2x
( ) (60)

This equation is analogous to Newton’s law of motion for a particle, F m d2x/dt2, so the ray paths 
are like the paths of particles in a field with a potential proportional to n2(x). This analogy describes 
paths, but not speeds, since light travels slower where n is greater, whereas the particles would have 
greater speeds.64,65

Euler Equations for Parameter z If z, then ds d x y/ ( ) /2 2 1 21  and ( , ; , ; ).x y x y z
This gives45,49

0
1 2

d
dz
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ds
dz

ds
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)
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/ (61)

with a similar equation for y. The equations can also be written (Refs. 51, app. A, and 66) as

nx x y
n
x

n
z

x ny x( ) (1 12 2 22 2y
n
y

n
z

y) (62)

This parameter is particularly useful when n is rotationally symmetric about the z axis.
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Hamilton’s Equations with Cartesian Coordinates for Parameter z A set of Hamilton’s equa-
tions can also be written in cartesian coordinates using z as the parameter.45,49 The canonical 
momenta in cartesian coordinates are the optical direction cosines

p
x

n p
y

nx y (63)

The hamiltonian is

( , ; , ; ) ( , , )x y p p z xp yp n x y zx y x y
2 ( )p px y

2 2 (64)

Hamilton’s equations are

dx
dz p

dy
dz p

dp

dz x

dp

dzx y

x y
, , ,

y
(65)

It is not possible to write a set of Hamilton’s equations using an arbitrary parameter and three 
canonical momenta, since they are not independent.67 Another equation is

z
d
dz

n
z

1 (66)

Paraxial Form of Hamilton’s Equations for  z In the paraxial limit, if n0 is the average index, the 
above set of equations gives49

d x z

dz n
n
x

d y z

dz n
n
y

2

2
0

2

2
0

1 1( ) ( )
(67)

Other Forms A variety of additional differential equations can be obtained with various parameters.67

Time cannot be used as a parameter.68 The equations can also be expressed in a variety of coordinate 
systems.56,58,69–71

Refractive Index Symmetries

When the refractive index has symmetry or does not vary with one or more of the spatial variables, 
the above equations may simplify and take special forms. If, in some coordinate system, n does not 
vary with a coordinate qi, so n/ qi 0, and if, in addition, / qi(ds/d ) 0, then

q q
n

q
ds
di

0 and constant (68)

There is an associated invariance of the ray path.44,49,56,58 (This is analogous to the case in mechanics 
where a potential does not vary with some coordinate.) A more esoteric approach to symmetries 
involves Noether’s theorem.72,73 There are a number of special cases.

If the index is rotationally symmetric about the z axis, n n x y z( , )2 2 , then / 0, where 
is the azimuth angle, and the constant of motion is analogous to that of the z component of angular 
momentum in mechanics for a potential with rotational symmetry. The constant quantity is the 
skew invariant, discussed in the section “Skew Invariant.”

If the refractive index is a function of radius, n n(r), there are two constants of motion. The 
ray paths lie in planes through the center (r 0) and have constant angular motion about an axis 
through the center that is perpendicular to this plane, so x p is constant. If the plane is in the x-y
plane, then n( y − x) is constant. This is analogous to motion of a particle in a central force field. 
Two of the best-known examples are the Maxwell fisheye48,74 for which n r r( ) ( ) ,1 2 1 and the 
Luneburg lens,45,75 for which n r r( ) 2 2  for r 1 and n 1 for r > 1.
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If n does not vary with z, then n  is constant for a ray as a function of z, according to 
Eq. (66).

If the medium is layered, so the index varies in only the z direction, then n  and n  are con-
stant. If  is the angle relative to the z axis, then n(z)sin (z) is constant, giving Snell’s law as a 
special case.

The homogeneous medium, where n/ x n/ y n/ z 0, is a special case in which there are 
three constants of motion, n , n , and n , so rays travel in straight lines.

1.6 CONSERVATION OF ÉTENDUE

If a bundle of rays intersects a constant z plane in a small region of size dx dy and has a small range 
of angles d d , then as the light propagates through a lossless system, the following quantity 
remains constant:

n dx dy d d n dAd d n dA d dx dy dp dpx y
2 2 2 cos (69)

Here dA dx dy is the differential area, d  is the solid angle, and  is measured relative to the normal 
to the plane. The integral of this quantity

n dxdy d d n dA d d n dA d dx dy dp dpx
2 2 2 cos yy

(70)

is the étendue, and is also conserved. For lambertian radiation of radiance Le, the total power 
transferred is P L n d d dx dye

2 . The étendue and related quantities are known by a variety 
of names,76 including generalized Lagrange invariant, luminosity, light-gathering power, light grasp,
throughput, acceptance, optical extent, and area-solid-angle-product. The angle term is not actually a 
solid angle, but is weighted. It does approach a solid angle in the limit of small extent. In addition, 
the integrations can be over area, giving n d d dA2 , or over angle, giving n dA d d2 .  A related 
quantity is the geometrical vector flux,77 with components ( , , ).dp dp dp dp dp dpy z x z x y

 In some 
cases these quantities include a brightness factor, and in others they are purely geometrical. The étendue 
is related to the information capacity of a system.78

As special case, if the initial and final planes are conjugate with transverse magnification m dx /
dx dy /dy, then

n d d n m d d2 2 2 (71)

Consequently, the angular extents of the entrance and exit pupil in direction cosine coordinates are 
related by

n d d n m d d2 2 2

exit pupilentrance pupil
(72)

See also the discussion of image irradiance in the section on apertures and pupils.
This conservation law is general; it does not depend on index homogeneity or on axial symmetry. 

It can be proven in a variety of ways, one of which is with characteristic functions.79–81 Phase space 
arguments involving Liouville’s theorem can also be applied.82–85 Another type of proof involves ther-
modynamics, using conservation of radiance (or brightness) or the principle of detailed balance.86–89

Conversely, the thermodynamic principle can be proven from the geometrical optics one.90–92 In 
the paraxial limit for systems of revolution the conservation of étendue between object and image 
planes is related to the two-ray paraxial invariant, Eq. (152). Some historical aspects are discussed by 
Rayleigh.93,94
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1.7 SKEW INVARIANT

In a rotationally symmetric system, whose indices may be constant or varying, a skew ray is one that 
does not lie in a plane containing the axis. The skewness of such a ray is

n y x p y p xx y( ) (73)

As a skew ray propagates through the system, this quantity, known as the skew invariant, does not 
change.95–104 For a meridional ray, one lying in a plane containing the axis, 0. The skewness can 
be written in vector form as

a x p( ) (74)

where a is a unit vector along the axis, x is the position on a ray, and p is the optical cosine vector at 
that position.

This invariance is analogous to the conservation of the axial component of angular momentum 
in a cylindrical force field, and it can be proven in several ways. One is by performing the rotation 
operations on , , x, and y (as discussed in the section on heterogeneous media). Another is by 
means of characteristic functions. It can also be demonstrated that  is not changed by refraction or 
reflection by surfaces with radial gradients. The invariance holds also for diffractive optics that are 
figures of rotation.

A special case of the invariant relates the intersection points of a skew ray with a given meridian. 
If a ray with directions ( , ) in a space of index n intersects the x 0 meridian with height y, then at 
another intersection with this meridian in a space with index n , its height y , and direction cosine 

 are related by

n y n y (75)

The points where rays intersect the same meridian are known as diapoints and the ratio y /y as the 
diamagnification.99

1.8 REFRACTION AND REFLECTION AT INTERFACES 
BETWEEN HOMOGENEOUS MEDIA

Introduction

The initial ray direction is specified by the unit vector r ( , , ). After refraction or reflection the 
direction is r ( , , ). At the point where the ray intersects the surface, its normal has direction 
S (L, M, N).

The angle of incidence I is the angle between a ray and the surface normal at the intersection 
point. This angle and the corresponding outgoing angle I  are given by

|cos | | | | |

|cos | | | |

I L M N

I L

r S

r S M N|
(76)

In addition

     |sin | | | |sin | | |I Ir S r Sand (77)

The signs of these expressions depend on which way the surface normal vector is directed. The surface 
normal and the ray direction define the plane of incidence, which is perpendicular to the vector cross 
product S r ( , , ).M N N L L M After refraction or reflection, the outgoing ray is in 
the same plane. This symmetry is related to the fact that optical path length is an extremum.
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The laws of reflection and refraction can be derived from Fermat’s principle, as is done in many 
books. At a planar interface, the reflection and refraction directions are derived from Maxwell’s 
equations using the boundary conditions. For scalar waves at a plane interface, the directions are 
related to the fact that the number of oscillation cycles is the same for incident and outgoing waves.

Refraction

At an interface between two homogeneous and isotropic media, described by indices n and n , the 
incidence angle I and the outgoing angle I  are related by Snell’s law:105

n I n Isin sin (78)

If sin I > 1, there is total internal reflection. Another relationship is

n I n n I n n n Icos sin cos2 2 2 2 2 2 2 (79)

Snell’s law can be expressed in a number of ways, one of which is

n n[ ( ) ] [ ( ) ]r r S S r r S S (80)

Taking the cross product of both sides with S gives another form

n n( ) ( )S r S r (81)

A quantity that appears frequently in geometrical optics (but which has no common name or 
symbol) is

n I n Icos cos (82)

It can be written in several ways

( ) cos sin cosn n n I n n I n I nr r S 2 2 2 2 n n I2 2 2cos (83)

In terms of , Snell’s law is

n nr r S (84)

or

n n L n n M n n N, , (85)

The outgoing direction is expressed explicitly as a function of incident direction by

n n n n n nr r S r S r S[ ( ) ]2 2 2 (86)

If the surface normal is in the z direction, the equations simplify to

n n n n n n n n, , 2 2 2 2 (87)

If 0, this reduces to n n , the familiar form of Snell’s law, written with direction cosines, 
with n n n( ) /2 2 2 1 2, corresponding to Eq. (79). Another relation from Eq. (85) is

n n

L

n n

M

n n

N
(88)

All of the above expressions can be formally simplified by using p nr and p n r . For a succession 
of refractions by parallel surfaces,

n I n I n I1 1 2 2 3 3sin sin sin (89)
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so the angles within any two media are related by their indices alone, regardless of the intervening 
layers. Refractive indices vary with wavelength, so the angles of refraction do likewise.

Reflection

The reflection equations can be derived from those for refraction by setting the index of the 
final medium equal to the negative of that of the incident medium, i.e., n −n, which gives 

2n Icos . The angles of incidence and reflection are equal

I I (90)

The incident and reflected ray directions are related by

S r S r (91)

Another expression is

r r S r S r S( ) ( cos )2 2 I (92)

The components are

2 2 2L I M I N Icos cos cos (93)

This relationship can be written in terms of dyadics106 as r (I − SS) · r. This is equivalent to the 
matrix form107–111

1 2 2 2
2 1 2 2
2

2

2

L LM LN
LM M MN
LLN MN N2 1 2 2

(94)

Each column of this matrix is a set of direction cosines and is orthogonal to the others, and likewise 
for the rows. The matrix associated with a sequence of reflections from plane surfaces is calculated 
by multiplying the matrices for each reflection. Another relationship is

L M N
(95)

If the surface normal is in the z direction, so (L, M, N) (0, 0, 1), then

(96)

Reflection by a Plane Mirror: Positions of Image Points

If light from a point (x, y, z) is reflected by a plane mirror whose distance from the coordinate origin 
is d, and whose surface normal has direction (L, M, N), the image point coordinates (x , y , z ) are 
given by

x
y
z

L LM LN dL
LM M

1

1 2 2 2 2
2 1 2

2

2 2 2
2 2 1 2 2
0 0 0 1

2

MN dM
LN MN N dN

x
y
z
11

(97)

This transformation involves both rotation and translation, with only the former effect applying if 
d 0. It is an affine type of collinear transformation, discussed in the section on collineation. The 
effect of a series of reflections by plane mirrors is found by a product of such matrices. The transfor-
mation can also be formulated in terms of quaternions.110,112
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Diffractive Elements

The changes in directions produced by gratings or diffractive elements can be handled in an ad hoc 
geometrical way113,114

n n GGr S r S q
p

(98)

Here  is the vacuum wavelength, p is the grating period, q is a unit vector tangent to the surface 
and parallel to the rulings, and G is the diffraction order. Equations (81) and (91) are special cases 
of this equation for the 0th order.

1.9 IMAGING

Introduction

Image formation is the principal use of lenses. Moreover, lenses form images even if this is not their 
intended purpose. This section provides definitions, and discusses basic concepts and limitations. 
The purposes of the geometrical analysis of imaging include the following: (1) discovering the 
nominal relationship between an object and its image, principally the size, shape, and location of the 
image, which is usually done with paraxial optics; (2) determining the deviations from the nomi-
nal image, i.e., the aberrations; (3) estimating image irradiance; (4) understanding fundamental 
limitations—what is inherently possible and impossible; and (5) supplying information for diffrac-
tion calculations, usually the optical path lengths.

Images and Types of Images

A definition of image (Webster 1934115) is: “The optical counterpart of an object produced by a lens, 
mirror, or other optical system. It is a geometrical system made up of foci corresponding to the parts 
of the object.” The point-by-point correspondence is the key, since a given object can have a variety 
of different images.

Image irradiance can be found only approximately from geometrical optics, the degree of accu-
racy of the predictions varying from case to case. In many instances wave optics is required, and for 
objects that are not self-luminous, an analysis involving partial coherence is also needed.

The term image is used in a variety of ways, so clarification is useful. The light from an object 
produces a three-dimensional distribution in image space. The aerial image is the distribution on a 
mathematical surface, often that of best focus, the locus of points of the images of object points. An 
aerial image is never the final goal; ultimately, the light is to be captured. The receiving surface (NS) 
is that on which the light falls, the distribution of which there can be called the received image (NS). 
This distinction is important in considerations of defocus, which is a relationship, not an absolute. 
The record thereby produced is the recorded image (NS). The recorded image varies with the posi-
tion of the receiving surface, which is usually intended to correspond with the aerial image surface. 
In this section, “image” means aerial image, unless otherwise stated.

Object Space and Image Space

The object is said to exist in object space; the image, in image space. Each space is infinite, with a 
physically accessible region called real, and an inaccessible region, referred to as virtual. The two 
spaces may overlap physically, as with reflective systems. Corresponding quantities and locations 
associated with the object and image spaces are typically denoted by the same symbol, with a prime 
indicating image space. Positions are specified by a coordinate system (x, y, z) in object space and 
(x , y , z ) in image space. The refractive indices of the object and image spaces are n and n .
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Image of a Point

An object point is thought of as emitting rays in all directions, some of which are captured by the 
lens, whose internal action converges the rays, more or less, to an image point, the term “point” being 
used even if the ray convergence is imperfect. Object and image points are said to be conjugate. Since 
geometrical optics is reversible, if A  is the image of A, then A is the image of A .

Mapping Object Space to Image Space

If every point were imaged stigmatically, then the entire object space would be mapped into the 
image space according to a transformation

x x x y z y y x y z z z x y z( , , ) ( , , ) ( , , ) (99)

The mapping is reciprocal, so the equations can be inverted. If n and n  are constant, then the mapping 
is a collinear transformation, discussed below.

Images of Extended Objects

An extended object can be thought of as a collection of points, a subset of the entire space, and its 
stigmatic image is the set of conjugate image points. A surface described by 0 F(x, y, z) has an 
image surface

0 F x y z F x x y z y x y( , , ) [ ( , , ), ( , , z z x y z), ( , , )] (100)

A curve described parametrically by x( ) [ ( ), ( ), ( )]x y z  has an image curve

x ( ) { [ ( ), ( ), ( )], [ ( ), ( ), ( )x x y z y x y z ]], [ ( ), ( ), ( )]}z x y z (101)

Rotationally Symmetric Lenses

Rotationally symmetric lenses have an axis, which is a ray path (unless there is an obstruction). All 
planes through the axis, the meridians or meridional planes, are planes with respect to which there is 
bilateral symmetry. An axial object point is conjugate to an axial image point. An axial image point 
is located with a single ray in addition to the axial one. Off-axis object and image points are in the 
same meridian, and may be on the same or opposite sides of the axis. The object height is the dis-
tance of a point from the axis, and the image height is that for its image. It is possible to have rota-
tional symmetry without bilateral symmetry, as in a system made of crystalline quartz,116 but such 
systems are not discussed here. For stigmatic imaging by a lens rotationally symmetric about the z axis, 
Eq. (99) gives

x x x z y y y z z z z( , ) ( , ) ( ) (102)

Planes Perpendicular to the Axis

The arrangement most often of interest is that of planar object and receiving surfaces, both perpen-
dicular to the lens axis. When the terms object plane and image plane are used here without further 
elaboration, this is the meaning. (This arrangement is more common for manufactured systems 
with flat detectors, than for natural systems, for instance, eyes, with their curved retinas.)
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Magnifications

The term magnification is used in a general way to denote the ratio of conjugate object and image 
dimensions, for example, heights, distances, areas, volumes, and angles. A single number is inad-
equate when object and image shapes are not geometrically similar. The term magnification implies 
an increase, but this is not the case in general.

Transverse Magnification

With object and image planes perpendicular to the axis, the relative scale factor of length is the 
transverse magnification or lateral magnification, denoted by m, and usually referred to simply as “the 
magnification.” The transverse magnification is the ratio of image height to object height, m h /h.
It can also be written in differential form, e.g., m dx /dx or m x / x. The transverse magnifica-
tion has a sign, and it can have any value from −  to + . Areas in such planes are scaled by m2. A 
lens may contain plane mirrors that affect the image parity or it may be accompanied by external 
plane mirrors that reorient images and change their parity, but these changes are independent of the 
magnification at which the lens works.

Longitudinal Magnification

Along the rotational axis, the longitudinal magnification, mL, also called axial magnification, is the 
ratio of image length to object length in the limit of small lengths, i.e., mL dz /dz.

Visual Magnification

With visual instruments, the perceived size of the image depends on its angular subtense. Visual 
magnification is the ratio of the angular subtense of an image relative to that of the object viewed 
directly. Other terms are used for this quantity, including “magnification,” “power,” and “magnifying 
power.” For objects whose positions can be controlled, there is arbitrariness in the subtense without the 
instrument, which is greatest when the object is located at the near-point of the observer. This distance 
varies from person to person, but for purposes of standardization the distance is taken to be 250 mm. 
For instruments that view distant objects there is no arbitrariness of subtense with direct viewing.

Ideal Imaging and Disappointments in Imaging

Terms such as perfect imaging and ideal imaging are used in various ways. The ideal varies with the 
circumstances, and there are applications in which imaging is not the purpose, for instance, energy 
collection and Fourier transformation. The term desired imaging might be more appropriate in cases 
where that which is desired is fundamentally impossible. Some deviations from what is desired are 
called aberrations, whether their avoidance is possible or not. Any ideal that can be approximated 
must agree in its paraxial limit ideal with what a lens actually does in its paraxial limit.

Maxwellian Ideal for Single-Plane Imaging

The most common meaning of perfect imaging is that elucidated by Maxwell,117 and referred to 
here as maxwellian ideal or maxwellian perfection. This ideal is fundamentally possible. The three 
conditions for such imaging of points in a plane perpendicular to the lens axis are: (1) Each point 
is imaged stigmatically. (2) The images of all the points in a plane lie on a plane that is likewise per-
pendicular to the axis, so the field is flat, or free from field curvature. (3) The ratio of image heights 
to object heights is the same for all points in the plane. That is, transverse magnification is constant, 
or there is no distortion.
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The Volume Imaging Ideal

A more demanding ideal is that points everywhere in regions of constant index be imaged stigmati-
cally and that the imaging of every plane be flat and free from distortion. For planes perpendicular 
to the lens axis, such imaging is described mathematically by the collinear transformation, discussed 
later. It is inherently impossible for a lens to function in this way, but the mathematical apparatus of 
collineation is useful in obtaining approximate results.

Paraxial, First-Order, and Gaussian Optics

The terms “paraxial,” “first order,” and “gaussian” are often used interchangeably, and their consid-
eration is merged with that of collineation. The distinction is often not made, probably because 
these descriptions agree in result, although differing in approach. One of the few discussions is 
that of Southall.118 A paraxial analysis has to do with the limiting case in which the distances of 
rays from the axis approach zero, as do the angles of the rays relative to the axis. The term first
order refers to the associated mathematical approximation in which the positions and directions 
of such rays are computed with terms to the first order only in height and angle. Gaussian refers 
to certain results of the paraxial optics, where lenses are black boxes whose properties are sum-
marized by the existence and locations of cardinal points. In the limit of small heights and angles, 
the equations of collineation are identical to those of paraxial optics. Each of these is discussed in 
greater detail below.

Fundamental Limitations

There are fundamental geometrical limitations on optical systems, relating to the fact that a given 
ray passes through many points and a given point lies on many rays. So the images of points on the 
same line or plane, or on different planes, are not independent. A set of rays intersecting at several 
points in object space cannot be made to satisfy arbitrary requirements in image space. Such limita-
tions are best studied by the methods of hamiltonian optics.

Stigmatic Imaging

If all rays from an object point converge precisely to an image point, the imaging of this point is said 
to be stigmatic. The optical path lengths of all rays between two such points are identical. A stigmatic 
image point is located by the intersection of any two rays that pass through the points. An absolute 
instrument is one which images all points stigmatically.119 For such imaging

n x n x n y n y n z n z, , (103)

where conjugate length elements are x and x , y and y , z and z

Path Lengths and Conjugate Points

All the rays from an object point to its stigmatic image point have the same optical path length. For 
focal lenses, the paths lengths for different pairs of conjugate points in a plane perpendicular to the 
axis are different, except for points on circles centered on the axis. For afocal lenses path lengths 
are nominally the same for all points in planes perpendicular to the axis. For afocal lenses with 
transverse magnification ±n/n , path lengths can be the same for all points. In general, the path 
lengths between different points on an object and image surface are equal only if the shape of the 
image surface is that of a wavefront that has propagated from a wavefront whose shape is that of 
the object surface.
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The Cosine Condition

The cosine condition relates object space and image space ray angles, if the imaging is stigmatic over 
some area.116,120,121 Let the x-y plane lie in the object surface and the x -y  plane in the conjugate 
surface (Fig. 2). Two rays leaving a point in the object region have direction cosines ( 1, 1) and ( 2, 2), 
and the rays on the image side have ( , )1 1  and ( , ).2 2 If the imaging is stigmatic, with local trans-
verse magnification m on the surface, then

m
n
n

n
n

( )
( )

( )
( )

1 2

1 2

1 2

1 2
(104)

In the limit as 1 2 and 1 2, the cosine condition gives

m
n d

n d
nd

n d
(105)

This condition also holds in the more general case of isoplanatic imaging, where there is aberration 
that is locally constant across the region in question.122,123

The Abbe Sine Condition

The sine condition or Abbe sine condition119,124 is a special case of the cosine condition for object and 
image planes perpendicular to the axis in regions about the axis. For a plane with transverse magni-
fication m, let  be the angle relative to the axis made by a ray from an axial object point, and  be 
that in image space. If the lens is free of coma
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n
n

n
n

n
sin
sin

(106)

FIGURE 2 The cosine condition. A small area in object space about the origin 
in the x-y plane is imaged to the region around the origin of the x -y  plane in image 
space. A pair of rays from the origin with direction cosines ( 1, 1) and ( 2, 2) arrive 
with ( 1, 1) and ( 2, 2). The direction cosines and the transverse magnification in 
the planes are related by Eq. (104).
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for all  and . There are signs associated with  and , so that m > 0 if they have the same sign, 
and m < 0 if the signs are opposite. This equation is sometimes written with m replaced by the ratio 
of paraxial angles. There is sometimes the implication that  and  refer only to the extreme angles 
passing through the lens, when in fact the sine condition dictates that the ratio of the sines is the 
constant for all angles. For an object at infinity, the sine condition is

sin
y
f

n yor (107)

where y is the height of a ray parallel to the axis, is the power of the lens, and f  is the rear focal 
length. These relationships hold to a good approximation in most lenses, since small deviations are 
associated with large aberrations. A deviation from this relationship is called offense against the sine 
condition, and is associated with coma.123,125–128 The sine condition does not apply where there are 
discontinuities in ray behavior, for example, in devices like Fresnel lenses, or to diffraction-based 
devices like zone plates.

The Herschel Condition

The Herschel condition is a relationship that holds if the imaging is stigmatic for nearby points along 
the axis.119,129,130 The two equivalent relations are
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The Herschel condition is inconsistent with the sine condition unless m n n/ . So, in general, stigmatic 
imaging in one plane precludes that in others.

Sine and Herschel Conditions for Afocal Systems

For afocal systems the sine condition and Herschel condition are identical. For rays entering parallel 
to the axis at y and leaving at y , they are

m
y

y
(109)

That is, the ratio of incoming and outgoing heights is independent of the incoming height. (Ref. 
128, chap. 3, “The Sine Condition and Herschel’s Condition”).

Stigmatic Imaging Possibilities

For object and image spaces with constant refractive indices, stigmatic imaging is only pos-
sible for the entire spaces for afocal lenses with identical transverse and longitudinal magnifications 
m ±n/n  and |mL| |m|. Such lenses re-create not only the intersection points, but the wavefronts, 
since the corresponding optical path lengths are the same in both spaces, Eq. (103). For other lenses 
with constant object and image space indices, the maxwellian ideal can be met for only a single sur-
face. In addition, a single point elsewhere can be imaged stigmatically.127,131 Nonplanar surfaces can 
be imaged stigmatically, a well-known example being the imaging of spherical surfaces by a spheri-
cal refracting surface, for a particular magnification.119 For systems with spherical symmetry, it is 
possible that two nonplanar surfaces be stigmatically imaged.132 In addition, various systems with 
heterogeneous indices can image stigmatically over a volume.
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1.10 DESCRIPTION OF SYSTEMS OF REVOLUTION

Introduction

This section is concerned with the optical description of lens and mirror systems that are figures of 
revolution.133–145 From a mechanical viewpoint, optical systems are comprised of lenses and mirrors. 
From the point of view of the light, the system is regions of media with different indices, separated 
by interfaces of various shapes. This section is limited to homogeneous isotropic media. It is further 
restricted to reflecting and refracting surfaces that are nominally smooth, and to surfaces that are 
figures of revolution arranged so their axes are collinear, so the entire system is a figure of revolution 
about the lens axis. (The often-used term “optical axis” is also used in crystallography. Moreover, the 
axis is often mechanical as well as “optical.”) The lens axis is the z axis of an orthogonal coordinate 
system, with the x-y plane perpendicular. The distance from a point to the axis is x y2 2 .
Along the axis, the positive direction is from left to right.

Terminology

A meridian or meridional plane contains the axis, all such planes being equivalent. Meridional 
planes are planes of bilateral symmetry if the indices are homogeneous and isotropic. Some optical 
systems are comprised of pieces of surfaces of revolution, in which case it is still useful to discuss 
the behavior about the axis.

Reflection, Unfolded Diagrams

Light passes through refractive systems more or less in the same direction relative to the axis. In 
reflective and catadioptric systems, the light may change directions. (It may not, in the case of graz-
ing incidence optics.) In order to consider all types of systems in a unified way, pictorially and alge-
braically, reflections can often be “unfolded,” i.e., represented pictorially as transmission, with mir-
rors replaced by hypothetical lenses with the same properties, Figs. 3 and 18. Some structures must 
be taken into account several times in unfolding. For example, a hole may block light at one point 
along a ray and transmit it at another. (In some considerations, unfolding can be misleading—for 
instance, those involving stray light.)

Description of Surfaces

A surface is an interface between media with different refractive indices—either refracting or 
reflecting. The surface is the optical element, produced by a lens, which is a mechanical element. 
Surfaces can be described mathematically in many ways. (For example, conics can be described as 
loci of points with certain relationships.) In optical instruments, the entire surface is rarely used, 
and the axial region is usually special, so the description usually begins there and works out. The 
vertex of a figure of revolution intersects with the axis, and is a local extremum. The plane perpen-
dicular to the axis and tangent to the vertex will be referred to as the vertex plane (NS). A surface 
can be described by its sag, the directed distance z( ) from the vertex plane to the surface, Fig. 4. 
The vertex is usually taken to have z(0) 0. The vertex curvature or paraxial curvature c and radius 
of curvature r are given by

c
r

z1 2

2
0

( )
(110)
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For an arbitrary surface, this curvature is identical to that of the sphere which is a best fit on axis. 
The sign convention for curvature and radius is that c and r are positive if the center of curvature is 
to the right of the vertex, as in the case shown in Fig. 4. In general, the curvature is mathematically 
more foolproof than radius, since curvature can be zero, but it is never infinite, whereas radius is 
never zero, but may be infinite.

FIGURE 3 Example of an unfolded diagram. The two-mirror system above 
has an unfolded representation below. The reflective surfaces are replaced by thin 
lens equivalents. Their obstructions and the finite openings are accounted for by 
dummy elements.

FIGURE 4 Description of a surface 
of revolution. The distance from the axis is 

, and the sag z( ) is the distance from the 
vertex tangent plane to the surface.
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Spherical Surfaces

The spherical surface is the most common in optics, since it is most naturally produced. Spherical 
is the default, and is assumed when no other mention is made. Aspheres are thought of as deviating 
from spheres, rather than spheres as special cases of more general forms. The equation for a sphere 
with radius r, curvature c, and a vertex at z 0 is

2 2 2( )z r r (111)

The sag is given by

z r r r c
c

c
( ) ( )2 2 2 2

2

2 2
1 1

1 1
(112)

The Taylor expansion is

z c c c c c( ) 1
2

2 1
8

3 4 1
16

5 6 5
128

7 8 7
256

9 100 (113)

At the point (x, y, z) on the surface of the sphere, the surface normal has direction cosines

( , , ) , , ( , , )L M N
x
r

y
r

z r
r

cx cy cz 1 (114)

Conics of Rotation

The general form of a conic of rotation about the z axis is

z
r

c
c

c
( ) ( )1 1

1 1
2 2

2

2 2
(115)

The value of  determines the type of conic, as given in the table below. It is common in optics to 
use , the conic parameter or conic constant, related by

1 1or (116)

Another parameter used to describe conics is the eccentricity e, used in the polar coordinate form for 
conics about their focus: r a e( ) / ( cos )1  where e2 − . In the case of paraboloids, the first 
form of Eq. (115) breaks down. A cone can be approximated by a hyperbola with − sec2 , where 

 is the cone half angle.

Conic Type and Value of Parameter

Parameter e

Oblate ellipsoid > 1 > 0 —
Sphere 1 0 0
Prolate ellipsoid 0 < < 1 −1 < < 0 0 < e < 1
Paraboloid 0 −1 e 1
Hyperboloid < 0 < −1 e > 1

The Taylor expansion for the sag is

z c c c c( ) 1
2

2 1
8

3 4 1
16

2 5 6 5
128

3 7 8 7
2566

4 9 10c (117)

The surface normals are

( , , ) [ ( ) ( ) ] ( , ,/L M N c z c z cx cy c1 2 1 12 2 1 2 zz 1) (118)
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The sagittal and tangential curvatures are

c
c

c
c

c

cs t[ ( ) ]
,

[ ( ) ]/ /1 1 1 12 2 1 2 2 2 3 2
(119)

General Asphere of Revolution

For an arbitrary figure of revolution all of whose derivatives are continuous, the Taylor expansion is

z c q q( ) 1
2

2
4

4
6

6 (120)

An asphere is often treated as a sphere that matches at the vertex and a deviation therefrom:

z z a a( ) ( )sphere 4
4

6
6 (121)

Alternatively, nonconic aspheres can be treated as conics and a deviation therefrom:

z z b b( ) ( )conic 4
4

6
6 (122)

The expansion coefficients are different in each case. Additional information on the coefficients is given 
by Malacara144 and Brueggemann.135 The sagittal and tangential curvatures are given in general by

c
z

z
c

z

zs t

( )

[ ( ) ]
,

( )

[ ( ) ]/1 12 1 2 2 3//2 (123)

Here z dz d( ) ( )/ and z d z d( ) ( ) .2 2/

1.11 TRACING RAYS IN CENTERED SYSTEMS 
OF SPHERICAL SURFACES

Introduction

Ray tracing is the process of calculating the paths of rays through optical systems. Two operations 
are involved, propagation from one surface to the next and refraction or reflection at the surfaces. 
Exact equations can be written for spherical surfaces and conics of revolution with homogeneous 
media.146–153 Conics are discussed by Welford.152 For general aspheres, the intersection position is 
found by iterating.153,154 Nonsymmetric systems are discussed by Welford.152

Description and Classification of Rays in a Lens

For optical systems with rotational symmetry, rays are typically described in terms of the axial 
parameter z. A ray crosses each constant z plane at a point (x, y) with direction cosines ( , , ), 
where  is not independent. Thus a ray is described by [x(z), y(z)] and [ (z), (z)].

For systems that are figures of revolution, meridional rays are those lying in a meridional plane, 
a plane that includes the axis, and other rays are skew rays. The axial ray corresponds to the axis of 
revolution. Rays are also classified according to their proximity to the axis. Paraxial rays are those in 
the limit of having small angles and small distances from the axis. Nonparaxial rays are sometimes 
referred to as finite rays or real rays. Ray fans are groups of rays lying in a plane. A tangential fan lies 
in a meridian, and intersects at a tangential focus. A sagittal fan lies in a plane perpendicular to a 
meridian, and intersects at a sagittal focus.
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Transfer

In propagating through a homogeneous medium, a ray originating at (x1, y1, z1) with directions ( , , )
intersects a z2 plane at

x x z z y y z z2 1 2 1 2 1 2 1( ) ( )and (124)

Intersection Points

Let the intersection points of the ray with the vertex plane at z 0 be (x0, y0, 0), Fig. 5. Define auxil-
iary functions

A x y c c x y B x y( , ; , ; ) ( ) ( , ,0 0 0 0 0 0and c c x y) ( )2
0
2

0
2 (125)

The distance D along the ray from this point to the surface is given by

cD A A B
B

A A B
2

2
(126)

The intersection point has the coordinates

x x D y y D z D0 0, , (127)

The incidence angle I at the intersection point is given by

cosI A B2 (128)

so

n A B n n n A B2 2 2 2 2( ) (129)

Mathematically, double intersection points are possible, so they must be checked for. If the ray 
misses the surface, then A2 < B. If there is total internal reflection, the second square root in Eq. (129) 
is imaginary.

FIGURE 5 Intersection points. A ray 
with direction cosines ( , , ) intersects 
the vertex tangent plane at (x0, y0, 0) and 
the optical surface at (x, y, z). The distance 
between these points is D, given by Eq. (126).
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Refraction and Reflection by Spherical Surfaces

Rays refract or reflect at surfaces with reference to the local normal at the intersection point. The 
surface normal given by Eq. (114) is substituted in the general form for refraction, Eq. (85), to give

n n cx n n cy n ny cz, , ( )1 (130)

For reflection, the above equations are used, with n − n, so 2 2 2n I n A Bcos .

Meridianal Rays

The meridian is customarily taken to be that for which x 0, so the direction cosines are (0, , ). 
Let U be the angle between the axis and the ray, so sin U and cos U. The transfer equation, 
Eq. (124), becomes

y y U z z2 1 2 1tan ( ) (131)

The second equation of Eq. (130) can be written

n U n U cy n I n Isin sin ( cos cos ) (132)

If the directed distance from the vertex to the intersection point of the incident ray with the axis is l,
the outgoing angle is

U U lc U
n

n
lc Uarcsin[( )sin ] arcsin ( )sin1 1 (133)

The directed distance l  from the vertex to the axial intersection of the refracted ray is given by

cl cl
n
n

U
U

1 1( )
sin
sin

(134)

For reflection, setting n −n gives

U U lc U2 1arcsin[( )sin ] (135)

1.12 PARAXIAL OPTICS OF SYSTEMS 
OF REVOLUTION

Introduction

The term paraxial is used in different ways. In one, paraxial rays are those whose distances from 
the axis and whose angles relative to the axis are small. This leaves questions of how small is small 
enough and how this varies from system to system. The other interpretation of the term, which is 
used here, is that paraxial rays represent a limiting case in which the distances from the axis and 
angles relative to the axis vanish. Paraxial optics then describes the behavior of systems in this limit. 
The ray-tracing equations in the paraxial limit are linear in angle and in distance from the axis, 
hence the term first-order optics, which is often considered equivalent to paraxial. (There are no 0th-
order terms since the expansion is taken about the axis, so a ray with an initial height and angle of 
zero, i.e., a ray along the axis, has the same outgoing height and angle.) The linearity of the paraxial 
equations makes them simple and understandable, as well as expressible in matrix form. Paraxial ray 
tracing is discussed to some extent by almost every book that treats geometrical optics.
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Paraxial ray tracing is done to determine the gaussian properties of lenses, to locate image posi-
tions and magnifications, and to locate pupils and determine their sizes. Another use of paraxial ray 
tracing, not discussed here, is the computation of third-order aberrations.155

Paraxial imaging is perfect in the sense that it agrees with the Maxwell ideal and with that 
of collineation. Point images everywhere are stigmatic, fields are flat, and there is no distortion. 
Aberration is often thought of as the difference between the behavior of finite rays and that of 
paraxial rays. If this approach is taken, then in the process of lens design, finite rays are made to 
agree, insofar as possible, with the paraxial ones, which cannot be similarly changed. In the paraxial 
limit, surfaces are described by their vertex curvatures, so conics, aspheres, and spheres are indis-
tinguishable, the difference being in the fourth power and above. Consequently, aberrations can be 
altered by changing the surface asphericity without changing paraxial properties. A paraxial treatment 
can be done even if a system is missing the axial region, as in the case with central obstructions and 
off-axis sections of figures of revolution.

This section is concerned with systems of mirrors and lenses with rotational symmetry 
and homogeneous refractive indices. In this case, it suffices to work in a single meridian. 
Generalizations are found in the sections in this chapter on images about known rays and rays in 
heterogeneous media. Other generalizations involve expansions about given rays in systems that 
are not rotationally symmetric.

The Paraxial Limit

The lens axis is the z axis, and rays in the x 0 meridian are considered. Ray heights are y, and angles 
relative to the axis are u. In the paraxial limit, the quantities u, tan u, and sin u  are indistinguish-
able. The z-direction cosine is cos .u 1  Since the ray angles and heights are small, incidence 
angles are likewise, so i isin , cos ,I 1 cos ,I 1  and n I n I n ncos cos .

Transfer

In traversing a distance t between two planes, the height of a meridional ray changes from y to y
according to Eq. (124), y y + t / . In the paraxial limit, this equation becomes

y y tu (136)

If a ray travels from one curved surface to the next, the distance t equals the vertex separation to first 
order, since the correction for the surface sag is of second order in height and angle. This term is 
given above in Eq. (127).

Refraction

The paraxial form of Snell’s law, Eq. (78), is

n i ni (137)

Reflection

The law of reflection is the same for paraxial as for finite rays,

i i (138)
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Angle of Incidence at a Surface

A ray with an angle u, which intersects a surface of curvature c at height y, makes an angle i with the 
local surface normal of the surface given by

i u yc (139)

This equation is easily remembered from two special cases. When y 0, the intersection is at the ver-
tex, so i u. When u −cy, the ray is directed through the center of curvature, so i 0.

Refraction at a Surface

The above equation combined with that for Snell’s law gives

n u nu yc n n( ) (140)

This equation can also be obtained from the exact equation, n n cy , Eq. (125). In the 
paraxial limit, n n, and the intersection height y is that in the vertex plane.

Reflection at a Surface

The relationship between incident and outgoing angles at a reflecting surface is found by combining 
Eqs. (138) and (139), to be

u u cy2 (141)

Refraction and Reflection United: Surface Power

Reflection and refraction can be treated the same way mathematically by thinking of reflection as 
refraction with n n,  in which case Eq. (140) gives Eq. (141). A reflecting surface can be repre-
sented graphically as a thin convex-plano or concave-plano thin lens with index − n, where n is the 
index of the medium, Fig. 18. For both refraction and reflection,

n u nu y (142)

where the surface power  is

c n n( ) (143)

If the surface is approached from the opposite direction, then n and n  are switched, as is the sign 
of c, so  is the same in both directions. Thus  is a scalar property of the interface, which can be 
positive, negative, or zero. The power is zero if n n or c 0. If n n, the surface is “invisible,” and 
the rays are not bent. If c 0, the rays are bent. For a planar refracting surface n u nu, and a pla-
nar reflecting surface gives u −u.

Principal Focal Lengths of a Surface

A ray approaching a surface parallel to the axis (u 0) with a height y has an outgoing angle given by

n u y (144)
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This ray intercepts the axis at the rear focal point, whose directed distance from the vertex is 
f y u n/ / . This directed distance is the rear focal length. Similarly, a ray entering from the 
right with u 0 intercepts the axis at the front focal point, a directed distance from the vertex of 
f y u n/ / , the front focal length. Thus, a surface has a single power and two focal lengths, 
among which the following relationships hold:

f
n

f
n n

f
n
f

f
f

n
n

, , , (145)

For a refracting surface, the signs of f  and f are opposite. For a reflecting surface f f.

Axial Object and Image Locations for a Single Surface

A ray from an axial point a directed distance l from the vertex of a surface that makes an angle u
with the axis intersects the surface at height y −l/u. After refraction or reflection, the ray angle is 
u , and the ray intersects the axis at a distance l − y/u  from the vertex, Fig. 6. Substituting for u
and u  in Eq. (142), the relationship between axial object and image distances is

n

l

n

l
(146)

This can also be written

n
r l

n
r l

1 1 1 1
(147)

This is a special case of the equations below for imaging about a given ray. The transverse magnifica-
tion is m l /l.

Paraxial Ray Tracing

Paraxial rays are traced through an arbitrary lens by a sequence of transfers between surfaces and 
power operations at surfaces. Each transfer changes height but not angle, and each power operation 
changes angle but not height. An image can be found by applying Eq. (136) and Eq. (142) succes-
sively. Alternatively, matrix methods described later or in Sec. 1.17 can be used.

O u

n i

i

n

O

u
C

r

FIGURE 6 Refraction at a single spherical surface with center C and radius r. Axial object 
point O is imaged at O .
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Linearity of Paraxial Optics

For both the transfer and power operations, the outgoing heights and angles depend linearly on the 
incoming heights and angles. So a system described by a sequence of such operations is also linear. 
Therefore, a ray that enters with height y and angle u leaves with y (y, u) and u (y, u) given by

y
y
y

y
y
u

u u
u
y

and y
u
u

u (148)

These equations can also be thought of as the first terms of Taylor expansions of exact expres-
sions for y (y, u) and u (y, u). These partial derivatives depend on the structure of the system, 
and they can be determined by tracing two rays through the system. The partial derivatives, other 
than u / y, also depend on the axial locations of the input and output surfaces. The changes with 
respect to these locations are treated easily by matrix methods.

The Two-Ray Paraxial Invariant

The various rays that pass through a lens are not acted upon independently, so there are several 
invariants that involve groups of rays. Consider two meridional paraxial rays that pass through a 
lens. At a given plane, where the medium has an index n, one ray has height y1 and angle ul, and the 
other has y2 and u2. The quantity

L n y u y u( )1 2 2 1 (149)

which we refer to as the paraxial invariant (NS), is unchanged as the rays pass through the system. 
Applying Eq. (136) and Eq. (142) to the above expression shows that this quantity does not change 
upon transfer or upon refraction and reflection. The invariant is also related to the general skew 
invariant, Eq. (73), since a paraxial skew ray can be decomposed into two meridional rays.

Another version of the invariance relationship is as follows. Two objects with heights y1 and 
y2 are separated axially by d12. If their image heights are y1

 and y2
, and the image separation is 

d12 , then

n
y y

d
n

y y

d
1 2

12

1 2

12

(150)

An additional version of the invariance relationship is

y
y

u
u

y
u

u
y

n
n

(151)

where the partial derivatives, Eq. (148), describe the action of any system.
The invariant applies regardless of the system. Thus, for example, if the lens changes, as with a 

zoom system, so that both of the outgoing rays change, their invariant remains. The invariant arises 
from basic physical principles that are manifested in a variety of ways, for example, as conservation 
of brightness and Liouville’s theorem, discussed earlier in the section on conservation of étendue. 
This invariance shows that there are fundamental limits on what optical systems can do. Given the 
paraxial heights and angles of two input rays, only three of the four output heights and angles can 
be chosen arbitrarily. Likewise, only three of the four partial derivatives above can be freely chosen. 
The invariant is not useful if it vanishes identically. This occurs if the two rays are scaled versions 
of one another, which happens if both u1 0 and u2 0 for some z, or if both rays pass through the 
same axial object point, in which case y1 0 and y2 0. The invariant also vanishes if one of the rays 
lies along the axis, so that y1 0 and u1 0.
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Image Location and Magnification

To locate an image plane, any ray originating at the axial object point can be traced through the 
system to determine where it again intersects the axis, Fig. 7. The magnification for these con-
jugates can be found in two ways. One is to trace an arbitrary ray from any off-axis point in the 
object plane. The ratio of its height in the image plane to that in the object plane is the trans-
verse magnification.

Alternately, the magnification can be found from the initial and final angles of the ray through 
the axial points. Let ray 1 leave the axial object point, so y1 0. Let ray 2 originate in the object 
plane some distance from the axis. At the object plane L ny2u1, and at the image plane y2 0, so 
L n y u2 1

. Therefore,

L ny u n y u2 1 2 1 (152)

So the magnification is

m
y

y

nu

n u
2

2

1

1

(153)

The relative signs of u and u  determine that of the magnification. Equation (153) is a paraxial form 
of the sine condition Eq. (106). Squaring this equation gives L n y u2 2

2
2

1
2, which is proportional to a 

paraxial form of the étendue. These matters are discussed further in the sections on conservation of 
étendue and on apertures. The quantity ny2u1 is sometimes referred to as the invariant, but it is not 
the most general form.

Three-Ray Rule

A further consequence of the paraxial invariant and of the linearity of paraxial optics is that once 
the paths of two paraxial meridional rays has been found, that of any third ray is determined. Its 
heights and angles are a linear combination of those of the other two rays. Given three rays, each 
pair has an invariant: L n y u y u12 1 2 2 1( ), L n y u y u23 2 3 3 2( ), and L n y u y u31 3 1 1 3( ). Therefore, in 
every plane
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L
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L
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12
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12
1

31

12

and uu2 (154)

This assumes that no pair of the three rays are simply scaled versions of one another, i.e., that both 
L23 0 and L31 0.

2

1
1

2

2

2

1

1

FIGURE 7 An object and image plane with ray 1 through the axial points and ray 2 through off-axis 
points. The location and magnification of an image plane can be found by tracing a ray from the axial 
object point O to axial image point O . The magnification is given by Eq. (153). In the figure, u1 and u1
have opposite signs, so the transverse magnification is negative.
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Switching Axial Object and Viewing Positions

If an axial object and axial viewing position are switched, the apparent size of the image is 
unchanged. Put more precisely, let an object lie in a plane intersecting the axial point A and let its 
image be viewed from an axial point B  in image space that is not conjugate to A. If the object and 
viewing positions are switched, so the eye is at A and the object plane is at B , the subtense of the 
object as seen by the eye is unchanged.156–159

1.13 IMAGES ABOUT KNOWN RAYS

Given a ray, referred to here as the central ray (also “base ray”), other rays from a point on the central 
ray making a small angle with respect to it are focused at or near other points on the central ray. These 
foci can be determined if the path of a central ray is known, as well as the indices of the media through 
which it passes, and the principal curvatures at the surfaces where it intersects. Here indices are con-
stant. At each intersection point with an optical surface, the wavefront has two principal curvatures, 
as does the surface. After refraction or reflection, the wavefront has two different principal curvatures. 
Accordingly, if a single point is imaged, there are two astigmatic focal lines at some orientation. These 
foci are perpendicular, but they do not necessarily lie in planes perpendicular to that of the central ray. 
The imaging of a small extended region is generally skewed, so, for example, a small square in a plane 
perpendicular to the central ray can be imaged as a rectangle, parallelogram, or trapezoid.

This is a generalization of paraxial optics, in which the central ray is the axis of a system of revo-
lution. While not difficult conceptually, the general case of an arbitrary central ray and an arbitrary 
optical system is algebraically complicated. This case can also be analyzed with a hamiltonian optics 
approach, using an expansion of a characteristic function about the central ray, like that of Eq. (28). 
The subject is sometimes referred to as parabasal optics, and the central ray as the base ray. This 
subject has been discussed by numerous authors160–186 under various names, e.g., “narrow beams,” 
“narrow pencils,” and “first order.”

The following is limited to the case of meridional central rays and surfaces that are figures of 
revolution. The surface, at the point of intersection, has two principal curvatures cs and ct. [See Eqs. 
(119) and (123).] For spherical surfaces, cs ct c, and for planar surfaces c 0. There is a focus for 
the sagittal fan and one for the tangential one, Fig. 8, the two foci coinciding if the imaging is stig-
matic. After one or more surfaces are encountered, the separated foci are the sources for subsequent 
imaging. Let s and t be the directed distances from the intersection point of the central ray and the 
surface to the object point, and s  and t  be the distances from intersection point to the foci. The 
separation |s − t | is known as the astigmatic difference.

For refraction

n
s

n
s

c
n I

t
n I

t
cs tand

cos cos2 2
(155)

where n I n Icos cos , Eq. (82). The sagittal equation is simpler, providing a mnemonic for 
remembering which equation is which: “S” sagittal simpler. If the surface is spherical, and the 
ray fan makes an arbitrary angle of  with the meridian, then175

n

d
I

n

d
I c( cos sin ) ( cos sin )1 12 2 2 2 (156)

where d and d  are the distances along the central ray from the surface to the object and image 
points. For normal incidence at a spherical surface n n , so both equations become

n

d

n

d
c n n( ) (157)

This also applies to surfaces of revolution if the central ray lies along the axis. This equation is iden-
tical to the paraxial equation, Eq. (146).
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The corresponding relations for reflection are obtained by setting n −n and I I in the refraction 
equations, giving

1 1
2

1 1 2
s s

c I
t t

c
Is

tcos
cos

and (158)

For stigmatic imaging between the foci of reflective conics, s t is the distance from one focus to 
a point on the surface, and s t  is that from the surface to the other focus. Therefore, ct cs cos2 I.
The reflection analogue to Eq. (156), for a spherical surface is

1 1 2

1 2 2d d

c I

I

cos

cos sin
(159)

These equations are known by several names, including Coddington’s equations, Young’s astigmatic 
formulae, and the s- and t-trace formulae.

1.14 GAUSSIAN LENS PROPERTIES

Introduction

The meaning of the term gaussian optics is not universally agreed upon, and it is often taken to be 
indistinguishable from paraxial optics or first-order optics, as well as collineation. Here the term is 
considered to apply to those aspects of paraxial optics discovered by Gauss,187 who recognized that 
all rotationally symmetric systems of lens elements can be described paraxially by certain system 
properties. In particular, lenses can be treated as black boxes described by two axial length parameters 
and the locations of special points, called cardinal points, also called Gauss points. Once a lens is so 

Object
point

Refracting
surface

Tangential
focus

Sagittal
focus

, 

FIGURE 8 Astigmatic imaging of a point by a single refracting surface. 
The distance from the surface to the object point along the central ray of the 
bundle is s = t. The distances from the surface to the sagittal focus is s , and 
that to the tangential focus is t , as given by Eq. (155).
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characterized, knowledge of its actual makeup is unnecessary for many purposes, and repeated ray 
traces need not be performed. For example, given the object location, the image location and mag-
nification are determined from the gaussian parameters. From the gaussian description of two or 
more lenses, that of a coaxial combination can be found. Another consequence of Gauss’s discovery 
is that there is an infinity of specific embodiments for any external prescription.

The lenses considered in this section are figures of revolution with uniform object space and 
image space indices n and n . All quantities discussed in this section are paraxial, so the prefix 
“paraxial” is not repeated. For the purposes of this section, no distinction is made between real and 
virtual rays. Those in each space are considered to extend infinitely, and intersection points may be 
either accessible or inaccessible. The quantities used in this section are found in Table 1.

TABLE 1 Gaussian Notation and Definitions

By convention, in the diagrams the object space is to the left of the lens, image space is to the right, and rays go 
left to right. Object space quantities are unprimed, and image space quantities are primed, and quantities or 
positions that correspond in some way have same symbol, primed and unprimed. This correspondence can have 
several forms, e.g., the same type of thing or conjugate. The term front refers to object space, or left side, and rear
to image space, or right side. A “front” entity may actually be behind a “rear” one. For example, a negative singlet 
has its object space focal point behind lens.

Scalars

n and n  object and image space refractive indices
power

m transverse magnification
mN nodal plane magnification n/n
mL longitudinal magnification
m  angular magnification
u and u  paraxial ray angles (the positive direction is counterclockwise from the axis)
y and y paraxial ray heights
yP paraxial ray height at the principal planes y P

Axial points

Cardinal points:
Focal points F and F , not conjugate
Principal points P and P , conjugate m +1
Nodal points N and N , conjugate mN n/n

Other points:
Axial object and image points O and O , conjugate
Arbitrary object and image points A and A , B and B
Vertices V and V , not conjugate, in general

Directed axial distances

These distances here are between axial points and are directed.
Their signs are positive if from left to right and vice versa.
Types of distances: entirely in object or image space, between spaces
Principal focal lengths: f PF and f P F
Principal points to object and image axial points: l PO and l P O
Front and rear focal points to object and image axial points: z = FO and z = F O

Relations: l f + z and l f + z
Arbitrary point to conjugate object and image points: d AO and d A O

Distances between object space and image space points involve distances within both spaces, as well as a distance 
between the spaces, e.g., PP , FF , VV  and OO . The distances between spaces depend on the particular structure 
of the lens. They can be found by paraxial ray tracing.
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Power, Focal Lenses, and Afocal Lenses

A paraxial ray entering a lens parallel to the axis at a height y leaves with some angle u , Fig. 9. 
Likewise, a ray entering from the opposite side with height y  leaves with angle u. The power of the 
lens is defined by

n
u
y

n
u
y

(160)

The outgoing ray can have any angle, and the power can be positive, negative, or zero. If u 0, 
then 0  and the lens is afocal or telescopic. Lenses for which 0  are referred to here as focal,
although the term “nonafocal” is more common. Afocal lenses are fundamentally different from 
focal ones, and are treated separately next. Power is the same in both directions, i.e., whether the 
ray enters from left to right or from right to left. The lens in Fig. 9 has 0 , and that in Fig. 10 

u

y

n n′

F′P′

f ′ u′ ≠

u ≠

F

P

y′

f
u′ = 

FIGURE 9 Diagrams for determining power, focal points, and 
focal lengths. Rays parallel to the axis in one space cross the axis in the 
other space at the focal points. The principal planes are at the intersec-
tions of entering and leaving rays. The power is given by Eq. (159). The 
lens in this diagram has positive power, a positive rear focal length, and 
a negative front focal length.

FIGURE 10 A lens with negative power and negative 
rear focal length. An incoming ray parallel to the axis with a 
positive height leaves the lens with a positive angle. The rear 
focal plane precedes the rear principal plane.
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has 0 . Diagrams such as Fig. 11 show the location of the principal focal point, but not the sign 
of the power; two rays enter and two leave, but there is no indication of which is which. (Note that 
some negative lenses have accessible rear focal points.) Another expression for power involves two 
rays at arbitrary angles and heights. If two incident rays have (yl, u1) and (y2, u2), and a nonzero 
invariant L n(y1u2 − y2u1), and the outgoing ray angles are u1

 and u2
, then

nn

L
u u u u( )1 2 2 1 (161)

Focal Lenses

Focal lenses are those for which 0 . Their cardinal points are the principal focal points, the 
principal points, and the nodal points. These points may be located anywhere on axis relative to 
the physical lens system. If they are inside a lens, then the intersection points referred to below are 
virtual. The cardinal points are pairs consisting of a member in object space and one in image space. 
The one in object space is often referred to as front, and the one in image space as rear, but this 
terminology may be misleading, since the points can be in any sequence along the axis.

Principal Focal Points Rays entering a lens parallel to its axis cross the axis at the principal focal 
points or focal points. Rays parallel to the axis in object space intersect the axis at the rear focal point 
F  in image space and those parallel in image space intersect at the front focal point F in object space, 
Fig. 9. The principal focal planes or focal planes are the planes perpendicular to the axis at the focal 
points. The terms focal point and focal plane are often used to refer to the images of any point or 
plane. In this chapter, image point is used for other points where rays are focused and image plane
for other planes.

Principal Planes The principal planes are the conjugate planes for which the transverse magnifica-
tion is unity, Fig. 12. The intersections of the principal planes and the axis are the principal points, 

FIGURE 11 An ambiguous diagram. Two rays 
that enter a lens parallel to its axis converge at the rear 
focal point F . Without specifying which ray is which, 
the sign of the power is not known.

FIGURE 12 Principal planes as effective ray-bending surfaces. 
Incoming and outgoing paraxial rays intersect the object and image 
space principal planes at the same height yP. The angles are related by 
Eq. (161).
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denoted by P and P . The rear principal plane is the locus of intersections between u 0 rays incident 
from the left and their outgoing portions, Fig. 9. Likewise, the front principal plane is the intersection 
so formed with the rays for which u 0. A ray intersecting the first principal plane with height yP
and angle u leaves the second principal plane with height y = yP and an angle given by

n u nu yP (162)

The lens behaves as if the incoming ray intercepts the front principal plane, is transferred to the 
second with its height unchanged, and is bent at the second by an amount proportional to its height 
and to the power of lens. The power of the lens determines the amount of bending. For rays passing 
through the principal points, yP 0, so u /u n/n .

Principal Focal Lengths The focal lengths, also called effective focal lengths, are the directed dis-
tances from the principal points to the focal points. The front and rear focal lengths are

PF f
n

P F f
n

and (163)

The two focal lengths are related by

n
f

n
f

f
f

n
n

and (164)

This ratio is required by the paraxial invariant.188 If n n , then f −f. If n n 1, then

f f
1 (165)

The focal lengths are the axial scaling factors for the lens, so axial distances in all equations can be 
scaled to them.

Nodal Points The nodal points are points of unit angular magnification. A paraxial ray entering 
the object space nodal point N leaves the image space point N  at the same angle, Fig. 13. The planes 
containing the nodal points are called nodal planes. A nodal ray is one that passes through the nodal 
points. Such a ray must cross the axis, and the point where it does so physically is sometimes called 
the lens center. In general, this point has no special properties. (Gauss suggested an alternate “lens 
center,” the point midway between the principal points. Rotating a lens front to rear about this point 
would leave object and image positions and magnifications unchanged.)

If the refractive indices of the object space and image space are the same, the nodal points cor-
respond to the principal points. If not, both nodal points are shifted according to

PN P N
n n

f f (166)

FIGURE 13 Nodal points. A paraxial ray through 
the object space nodal point N passes through image space 
nodal point N with the same angle.
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The distances from the nodal points to the focal points are

N F f NF fand (167)

The nodal points are conjugate, and the transverse magnification of the nodal planes is

m
n
nN

(168)

These equations can be recalled by the simple example of the single refracting surface, for which 
both nodal points correspond to the center of curvature.

Conjugate Equations For an object plane perpendicular to the axis at point O, there is an image 
plane perpendicular to the axis at O , in which the transverse magnification is m. Note that 
specifying magnification implies both object and image positions. There is a variety of conju-
gate equations (NS) that relate their positions and magnifications. The equations differ in which 
object space and image space reference points are used from which to measure the directed dis-
tances to the object and image. These equations can be written in several ways, as given below, 
and with reference to Fig. 14. Axial distances can be scaled to the focal lengths, or the distances 
can be scaled to the indices, with a common power term remaining.

The simplest conjugate equation is Newton’s equation, for which the reference points are the focal 
points and the lengths therefrom are z FO and z F O . The equation can be written in several 
forms:

zz ff
z
f

z
f

z
n

z
n

or or1
1

2 (169)

More generally, if A and A  are any pair of axial conjugate points, as are B and B , then

FA F A FB F B (170)

Another form is that for which the reference points are the principal points and the directed 
distances are l PO and l P O :

1
f
l

f
l

n
l

n
l

or (171)

If the reference points are arbitrary conjugates with magnification mA and the axial distances are 
d AO and d A O , then

m
n
d m

n
d

d
f

m
d
f

m
d
f

A
A

A

A

1

1

2

or (172)

F F O

P P

O

z

l l

z

FIGURE 14 Directed distances used in common conjugate equations for 
focal lenses. Distances z and z  are from the focal points to axial conjugate points. 
Distances l and l  are from the principal points to axial conjugate points.
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This equation also relates the curvatures of a wavefront at conjugate points. For a point source at A
the radius of the wavefront at O is d, so at O  the radius is d

If the reference points are the nodal points, mA mN n/n , and the axial distances are d NO
and d N O , then

1
f

d
f
d

n
d

n
d

or (173)

The most general equation relating conjugate points is obtained when both reference points are 
arbitrary. Let the reference point in object space be a point A, at which the magnification is mA, and 
that in image space be B , associated with magnification mB

. If d AO and d B O , then

1
1

1

1

m
m m

d m d d d
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d
m

B

A A
B
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m
d m

1
1

(174)

All the other conjugate equations are special cases of this one with the appropriate choice of mA
and mB.

If the reference point in object space is the focal point, and that in image space is the principal 
plane, then mA  and mB 1, giving

n
z

l
n

f
z

l
f

1 1or (175)

Likewise, if the object space reference point is P and the image space reference is F , then

n
l

z
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f
l

z
f

1 1or (176)

A relationship between distances to the object and image from the principal points and those 
from the focal points is

1
z

l

z

l

F O

P O

FO

PO
(177)

Transverse Magnification In planes perpendicular to the axis, the transverse magnification, usually 
referred to simply as the magnification, is

m
x

x

y

y

dx

dx

dy

dy
(178)

There are several equations for magnification as a function of object position or image position, 
or as a relationship between the two. Newton’s equations are

m
f
z

z
f

f
f l

f l
f

(179)

Other relationships are
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n
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z
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l
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(180)
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If n n , then m l /l. Another form, with respect to conjugate planes of magnification mA is

mm
n

d

d

n

f

d

d

fA (181)

If d and d  are distances from the nodal points, m d /d. The change of magnification with respect 
to object or image positions with conjugacy maintained is
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dz f
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and (182)

Images of Distant Objects If an object at a great distance from the lens subtends an angle  from 
the axis at the lens, then its paraxial linear extent is y z . The image height is

y my
f

z
y f

n
n

f
dy
d

n
n

fand (183)

If a distant object moves perpendicularly to the axis, then its image moves in the opposite direction 
if f > 0 and in the same direction if f < 0, so long as n and n  have the same sign.

Distance Between Object and Image The directed distance from an axial object point to its image 
contains three terms, one in object space, one in image space, and one relating the two spaces. The 
first two depend on the magnification and focal lengths. The interspace term depends on the partic-
ular structure of the lens, and is found by paraxial ray tracing. The most commonly used interspace 
distance is PP , since it equals zero for a thin lens, but the equations using FF  are simpler. Newton’s 
equations give z −f/m and z −mf , so the object-to-image distance is

OO FF z z FF f m
f

m
FF n m

n
m

1
(184)

This is the basic equation from which all others are derived. If the reference points are the principal 
points, then

OO PP f m f
m

PP n m n( ) ( )1 1
1 1

1 11
1
m

(185)

If the object-to-image distance is given, the magnification is

m
n

q q nn
1

2
42( )

(186)where q OO PP n n( ) .

There are two magnifications for which OO  is the same. The magnitude of their product is n/n
The derivative of the object-to-image distance with respect to the magnification is

d
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1
(187)

Extrema occur at m n n/ , giving m n n1 if . The extrema are

OO FF nn ff
2

2 (188)

or

OO PP n n nn f f ff
1

2 2( ) (189)
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For the common case of n n, the object-to-image distance is

OO PP f m
m

2
1

(190)

OO  is the same for magnifications m and 1/m. For a lens with f > 0, the extremum object-to-image 
distances are OO − PP 4f  with m −1 and OO − PP 0 for m +1. If the object-to-image 
distance and the focal length are given, then the magnification is

m s s
1
2

1
4

12

(191)where s
f

OO PP
1

2.

The two values of m are reciprocal of each other.

Axial Separations and Longitudinal Magnification Two axial points A and B are imaged at A  and 
B  with magnifications mA and mB. Newton’s equations give the object separation

z z z
m m

m m
fA B

A B

B A
(192)

The separation of their images is

z z z m m fA B B A( ) (193)

The ratio of the image and object separations is

z
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z z
z z
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m mA B
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A B A B

(194)

If mA and mB have different signs, then the direction of A B  is opposite to that of AB. This occurs 
when A and B are on opposite sides of the front focal point. In the limit as the separation between A
and B vanishes, mA and mB both approach the same magnification m. The longitudinal magnification
mL is the ratio of axial separations in the limit of small separations

m
A B
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dz
dz

n
n

m
z
zL A B

LIMIT 2 (195)

This quantity is also called the axial magnification. Since m2 is always positive, as an object moves 
axially in a given direction, its image moves in a constant direction. There is a discontinuity in image 
position when the object crosses the focal point, but the direction of motion stays the same. At the 
nodal points, the transverse and longitudinal magnifications are equal.

Angular Magnification The ratio of the outgoing to incoming ray angles, u /u, is sometimes called 
the angular magnification m . If the ray passes through conjugate axial points with magnification m,
then the angular magnification is

m
u
u

n
n m

1 (196)

If the ray leaves an object point with height y in a plane for which the magnification is m, the outgoing 
ray angle is given by

n u
m

nu y
m

nu y
1 1

( ) (197)

The ratio u /u is not constant unless y 0 or 0.
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Relationship Between Magnifications The transverse, angular, and longitudinal magnifications 
are related by

m m mL (198)

This relationship is connected to the paraxial invariant and also holds for afocal lenses.

Reduced Coordinates Many relationships are formally simplified by using reduced axial distances 
z/n and z /n  and reduced angles nu, n u , which are paraxial optical direction 

cosines. For example, the angular magnification is / 1/m, and the longitudinal magnification 
is d /d m2.

Mechanical Distances The cardinal points can be located anywhere on axis relative to the physical 
structure of the lens. The vertex of a lens is its extreme physical point on axis. The object space vertex 
is denoted by V and the image space vertex by V . The two vertices are not, in general, conjugate. The 
front focal distance FV is that from the vertex to the front focal point, and the rear focal distance V F  is 
that from the rear vertex to the rear focal point. Likewise, the front working distance OV is the distance 
from the object to the vertex, and the rear working distance V O  is that from the vertex to the image. 
These lengths have no significance to the gaussian description of a lens. For example, a lens of a given 
focal length can have any focal distance and vice versa. For a telephoto lens the focal length is greater 
than the focal distance, and for a retrofocus lens the focal distance is greater than the focal length.

Afocal Lenses

An afocal or telescopic lens189–191 is one for which 0. A ray entering with u 0 leaves with u 0, 
Fig. 15. There are no principal focal points or focal lengths. In general, the u 0 ray leaves at a 
different height than that at which it enters. The ratio y /y is the same for all such rays, so the trans-
verse magnification m is constant. Likewise, the longitudinal magnification is constant, equaling 
mL (n /n)m2, as is the angular magnification u /u m n/(n m). A parallel bundle of rays enter-
ing at angle u leaves as a parallel bundle at u m u, Fig. 16. Summarizing:

m m
n
n

m m
n
n m

m mL Lconst, const, const,2 1
mm (199)

Any two of these magnifications provide the two scaling factors that describe the system. If m n/n ,
then mL m and m 1, so image space is a scaled version of object space.

Afocal lenses differ fundamentally from focal lenses. Objects at infinity are imaged by afocal 
lenses at infinity, and objects at finite distances are imaged at finite distances. An afocal lens has no 
cardinal points and the focal length is undefined. Afocal lenses have no principal planes. If m 1
there are no unit magnification conjugates, and if m 1 there is only unit magnification. Likewise, 
there are no nodal points; the angular magnification is either always unity or always differs from unity. 

FIGURE 15 Afocal lens. Paraxial rays entering parallel 
to the axis leave parallel, in general at a different height. The 
ratio of the heights is the transverse magnification, which is 
constant.
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It is sometimes stated or implied that an afocal lens is a focal one with an infinite focal length, but 
this description is dubious. For example, the above equations relating magnification and conjugate 
positions to focal length are meaningless for afocal lenses, and they cannot be made useful by sub-
stituting f . The equations for the afocal lenses can be obtained from those for focal lenses with a 
limiting process, but for most purposes this approach is not helpful.

If the positions for a single axial conjugate pair A and A  are known, other pairs are located from 
the property of constant longitudinal magnification. If O and O  are another pair of conjugates, then

A O m AOL
(200)

As a function of distance AO, the object-to-image distance OO  is

OO AA m AOL( )1 (201)

where AA  is the separation between the initially known conjugates. If mL 1, the object-to-image 
distance is constant. Otherwise, it can take any value. For all afocal lenses, except those for which 
mL 1, there is a position, sometimes called the center, at which OO 0, so the object and image 
planes coincide.

A principal use of afocal lenses is in viewing distant objects, as with binoculars. An object of 
height h at a great distance d from the lens subtends an angle h d/ . The image height is h mh,
and the image distance is approximately d m2d. So the image subtends an angle m m/ .
Thus a telescope used visually produces an image which is actually smaller, but which is closer by a 
greater factor, so the subtense increases.

Determination of Gaussian Parameters

If a lens prescription is given, its gaussian properties can be obtained by paraxially tracing any two 
meridional rays whose invariant is not zero. A common choice for focal lenses is the rays with u 0
and u 0, which give F, P, F , and P . If a lens is known to be afocal, a single ray not parallel to the 
axis suffices, since such a ray gives a pair of conjugates and the angular magnification. If it is not 
known that the lens is afocal, two rays show that it is, as well as giving the required information 
about conjugates. Alternately, a matrix representation of the lens can be determined, from which 
the cardinal points are found, as described in the matrix section. The gaussian properties can also be 
determined experimentally in a number of ways.

Basic Systems

Single Refracting Surface Media of indices n and n  are separated by a surface of curvature c and 
radius r. The power is ( ) .n n c The principal points coincide at the vertex. The nodal points 
coincide at the center of curvature. The distance from principal points to nodal points is r.

FIGURE 16 Afocal lens. Groups of paraxial rays 
entering parallel leave parallel, in general at a different 
angle. The ratio of the angles is the angular magnification, 
which is constant.
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Thick Lens The term thick lens usually denotes a singlet whose vertex-to-vertex distant is not 
negligible, where negligibility depends on the application. For a singlet of index n in vacuum with 
curvatures c1 and c2 and thickness t, measured from vertex to vertex

1
1

1
1 2 1 2f

n c c
n

n
tc c (202)

A given power may be obtained with a variety of curvatures and indices. For a given power, higher 
refractive index gives lower curvatures. The principal planes are located relative to the vertices by
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These equations can be derived by treating the lens as the combination of two refracting surfaces. 
Two additional relationships are
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and (204)

Thin Lens A thin lens is the limiting case of a refracting element whose thickness is negligible, so 
the principal planes coincide, and the ray bending occurs at a single surface, Fig. 17. In the limit as 
t 0, for a lens in vacuum the thick lens expressions give

1
1 0 01 2f

n c c VP V P PP( )( ), , (205)

Single Reflecting Surface A reflecting surface has power 2 2n r nc/ . The principal points are 
located at the vertex. The nodal points are at the center of curvature.

Mirror as a Thin Lens In unfolding systems, a mirror can be thought of as a convex or concave 
plano thin lens, with an index −n, where n is the index of the medium in which it works, Fig. 18. 
All the thin lens equations apply, as well as those for third-order aberration equations, which are 
not discussed here.

FIGURE 17 The thin lens approximation. 
The thickness of the lens is negligible, and the 
principal planes are coincident, so rays bend at 
the common plane.

FIGURE 18 Reflecting surface represented 
unfolded. A convex mirror is represented as a con-
vex plano thin lens with index n −n, where n is 
the index of the medium.
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1.15 COLLINEATION

Introduction

Collineation is a mathematical transformation that approximates the imaging action of a lens 
with homogeneous refractive indices in both spaces. This transformation takes points to points, 
lines to lines, and planes to planes. With an actual lens, incoming rays become outgoing rays, so 
lines go exactly to lines. In general, however, rays that intersect in object space do not intersect in 
image space, so points do not go to points, nor planes to planes. The collinear transformation is an 
approximate description of image geometry with the intervening optical system treated as a black 
box, not a theory that describes the process of image formation. Collineation is also referred to as 
projective transformation. The historical development of this approach, which was first applied to 
optics by Möbius,192 is discussed by Southall.193 Several authors give extensive discussions.193–197

Projective transformation is used in computer graphics, and is discussed in this context in a number 
of recent books and papers.

The imaging described by collineation is, by definition, stigmatic everywhere, and planes are 
imaged without curvature. And for rotationally symmetric lenses, planes perpendicular to the 
axis are imaged without distortion. So the three conditions of maxwellian perfection are satis-
fied for all conjugates. Consequently, collineation is often taken as describing ideal imaging of 
the entire object space. However, it is physically impossible for a lens to image as described by 
collineation, except for the special case of an afocal lens with m mL n/n . The putative ray 
intersections of collineation violate the equality of optical path lengths for the rays involved in 
the imaging of each point. The intrinsic impossibility manifests itself in a variety of ways. As 
an example, for axial points in a plane with transverse magnification m and ray angles  and 
relative to the axis, collineation gives m  tan /tan , but optical path length considerations 
require that m  sin /sin . Another violation is that of the skew invariant n y x( ).
The ratio of this quantity before and after collineation is not unity, but / / , where  is 
the axial direction cosine in object space and  is that in image space.

The expressions for collineation do not contain refractive indices, another manifestation of their 
not accounting for optical path length. Rather than the refractive index ratio n /n, which occurs in 
many imaging equations, the expressions of collineation involve ratios of focal lengths. For afocal 
lenses there are ratios of transverse and longitudinal magnifications or ratios of the focal lengths of 
the lenses making up the afocal system.

The expressions for actual ray behavior take the form of collineation in the paraxial, and, more 
generally, parabasal limits. So paraxial calculations provide the coefficients of the transformation for 
any particular system.

Collineation is most often treated by starting with the general form, and then reducing its 
complexity by applying the symmetries of a rotationally symmetric system, to give familiar simple 
equations such as Newton’s.198 Alternatively, it is possible to begin with the simple forms and to 
derive the general ones therefrom with a succession of images, along with translations and rota-
tions. However, the more important use of these properties is in treating lenses lacking rotational 
symmetry. This includes those comprising elements that are arbitrarily oriented, that is, tilted or 
decentered—either intentionally or unintentionally. Other examples are nonplanar objects, tilted 
object planes, and arbitrary three-dimensional object surfaces.

Lenses, along with plane mirror systems, can form a succession of images and can produce 
translations and rotations. Correspondingly, a succession of collinear transformations is a col-
linear transformation, and these transformations form a group. It is associative, corresponding to 
the fact that a series of imaging operations can be associated pairwise in any way. There is a unit 
transformation, corresponding physically to nothing or to a unit magnification afocal lens. There is 
an inverse, so an image distorted as a result of object or lens tilt can be rectified by an appropriately 
designed system—to the extent that collineation validly describes the effects.
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General Equations

The general form of the collinear transformation is

x
a x b y c z d

ax by cz d
y

a x b y c z1 1 1 1 2 2 2,
dd

ax by cz d
z

a x b y c z d

ax by cz d
2 3 3 3 3, (206)

At least one of the denominator coefficients, a, b, c, d, is not zero. The equations can be inverted, 
so there is a one-to-one correspondence between a point (x, y, z) in object space and a point (x ,
y , z) in image space. The inverted equations are formally identical, and can be written by replac-
ing unprimed quantities with primed ones and vice versa in the above equation. It is seen that a 
plane is transformed to a plane, since a x b y c z d 0 has the same form as a function 
of (x, y, z). An intersection of two planes gives a line. It can also be shown that a line transforms 
to a line by writing the equation for a line in parametric form, with parameter , x x( ) 0
y y( ) ,0 z z( ) 0 Substituting in the transformation equations, it is found that dx /
dy (dx /d )/(dy /d ) is constant, as are other such ratios.

These equations contain 16 coefficients, but it is possible to divide all three equations through 
by one of the coefficients, so there are 15 independent coefficients in general. Since the location of 
an image point is described by three coordinates, five points that are not coplanar determine the 
transformation.

The ratios of the coefficient dimensions are determined by the fact that x, y, z and x , y , z  are 
lengths. A variety of schemes can be used and, in the expressions below, a given symbol may have 
different dimensions.

There are two major categories of the transformation, according to whether the denominator 
varies or is constant. That with a varying denominator corresponds to focal lenses. For afocal lenses, 
the demonimator is constant, and the general form of the transformation is

x a x b y c z d y a x b y c z d z a x1 1 1 1 2 2 2 2 3, , bb y c z d3 3 3 (207)

Here coefficient d has been normalized to unity. Such a transformation is called affine or telescopic.

Coordinate Systems and Degrees of Freedom

The transformation involves two coordinate systems. The origin of each is located by three param-
eters, as is the orientation of each. This leaves three parameters that describe the other aspects of the 
transformation for the most general case of no symmetry. The number is reduced to two if there is 
rotational symmetry.

In addition to considering the transformation of the entire space, there are other cases, especially 
the imaging of planes. In each situation, there are specific coordinate systems in which the aspects 
of the relationship, other than position and orientation, are most simply expressed. Accordingly, 
different coordinate systems are used in the following sections. Thus, for example, the z axis in one 
expression may not be the same as that for another.

Simplest Form of the General Transformation

For focal lenses, the denominators are constant for a set of parallel planes

ax b y c z d constant (208)

Each such plane is conjugate to one of a set of parallel planes in the other space. Within each of 
these planes, the quantities x x/ , x y/ , x z/ are constant, as are the other such derivatives. 
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Therefore, magnifications do not vary with position over these planes, although they do vary with 
direction. There is one line that is perpendicular to these planes in one space whose conjugate is 
perpendicular to the conjugate planes in the other space. It can be taken to be the z axis in one 
space and the z  axis in the other. The aximuths of the x-y and x -y  axes are found by imaging a 
circle in each space, which gives an ellipse in the other. The directions of the major and minor axes 
determine the orientations of these coordinate axes. The principal focal planes are the members of 
this family of planes for which

0 ax by cz d (209)

Lines that are parallel in one space have conjugates that intersect at the principal focal plane in the 
other. The principal focal points are the intersection of the axes with the focal planes.

Using these simplifying coordinate systems, the general transformation is

x
a x

cz d
y

b y

cz d
z

c z d

cz d
1 1 3 3, , (210)

One of the six coefficients can be eliminated, and two of the others are determined by the choice of 
origins for the z axis and z  axis. If the origins are taken to be at the principal focal points, the trans-
formation equations are

x
e x

z
y

e y

z
z

e

z
x y z, , (211)

where ex, ey, ez are constants. Unless ex ey the images of shapes in constant z planes vary with their 
orientations. Squares in one orientation are imaged as rectangles, and in others as parallelograms. 
Squares in planes not perpendicular to the axes are imaged, in general, with four unequal sides.

For afocal lenses, the simplest form is

x m x y m y z m zx y z, , (212)

Spheres in one space are imaged as ellipsoids in the other. The principal axes of the ellipsoids give 
the directions of the axes for which the imaging equations are simplest.

Conjugate Planes

A pair of conjugate planes can be taken to have x 0 and x 0, so the general transformation 
between such planes is

y
b y c z d

by cz d
z

b y c z d

by cz d
2 2 2 3 3 3, (213)

There are eight independent coefficients, so four points that are not in a line define the transforma-
tion. In each space, two parameters specify the coordinate origins and one the orientation. Two 
parameters describe the other aspects of the transformation.

The simplest set of coordinates is found by a process like that described above. For focal lenses, 
constant denominators define a line set of parallel lines

by cz d constant (214)

with similar conjugate lines in the other space. There is a line that is perpendicular to this family in 
one space, whose conjugate is perpendicular in the other, which can be taken as the z axis on one 
side and the z  axis on the other. There is a principal focal line in the plane in each space, and a principal
focal point, at its intersection with the axis. In this coordinate system the transformation is

y
b y

cz d
z

c z d

cz d
2 3 3, (215)
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Of the six coefficients, four are independent and two are fixed by the choice of origins. If z 0 and 
z 0 are at the principal focal points, then

y
e y

z
z

e

z
y z, (216)

where ey and ez are constants.
For afocal lenses, the general transformation between conjugate planes is

y b y c z d z b y c z d2 2 2 3 3 3, (217)

The simplest form of the transformation is

y m y z m zy z, (218)

where my and mz are constants.

Conjugate Lines

A line can be taken to have x  0, y  0, x  0, y 0, so its transformation is

z
c z d
cz d
3 3 (219)

There are three independent coefficients, so three points determine them. The origins in the two 
spaces account for two of the parameters, leaving one to describe the relative scaling. The simplest 
forms are

Focal Afocal: ; :z
e

z
z m zz

z
(220)

There is a relationship between distances along a line (or ray) that is unchanged in collineation.193,199

If four points on a line A, B, C, D have images A , B , C , D , the double ratio or cross ratio is invariant 
under projective transformation, that is,

AC
BC

BD
AD

A C
B C

B D
A D

(221)

where AC is the distance from A to C, and likewise for other pairs.

Matrix Representation of the Transformation

The transformation can be expressed in linear form by using the variables (u1, u2, u3, u4) and 
( , , , )u u u u1 2 3 4 , where x u1/u4, y u2/u4, z u3/u4 and x u u1 4/ , y u u2 4/ , z u u3 4/ . These are 
referred to as homogeneous coordinates. The transformation can be written

u
u
u

u

a b c d
a b c d
a

1

2

3

4

1 1 1 1

2 2 2 2

3 bb c d

a b c d

u
u
u

u
3 3 3

1

2

3

4

(222)

In terms of the cartesian coordinates and an additional pair of terms q and q , the transformation 
can be expressed as

q x
q y
q z
q

a b c d
a b c d
a

1 1 1 1

2 2 2 2

3 bb c d

a b c d

qx
qy
qz
q

3 3 3

(223)
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The dimensions of q and q  depend on the choice of coefficient dimensions. Here q q ax by cz d/ ,
the equation for the special set of planes.

Certain sections of the matrix are associated with various aspects of the transformation.200 The 
first three elements in the rightmost column have to do with translation. This is shown by setting 
(x, y, z) (0, 0, 0) to locate the conjugate in the other space. The first three elements in the bottom 
row are related to perspective transformation. The upper left-hand 3 3 array expresses rotation, 
skew, and local magnification variation.

For the simple form of the transformation expressed in Eq. (211), a1 ex, b2 ey, d3 ez, c 1, and 
the rest of the coefficients vanish. The general matrix representation for the afocal transformation is

x
y
z

a b c d
a b c d
a b c d

1 0

1 1 1 1

2 2 2 2

3 3 3 3

00 0 1 1

x
y
z

(224)

The quantities q and q  can also be included, in which case q q. In the simplest afocal form, 
Eq. (212), the matrix is diagonal with a1 mx, b2 my, d3 mz, and the rest of the nondiagonal 
coefficients vanishing. A succession of collineations can be treated by multiplying the matrices that 
describe them.201 To combine lenses with arbitrary orientations and to change coordinate systems, 
compatible rotation and translation matrices are required. The transformation for a pure rotation 
with direction cosines (L, M, N) is

x
y
z

L LM LN
LM M

1

1 2 2 2 0
2 1 2 2

2

2 MMN
LN MN N

x
y
z

0
2 2 1 2 0
0 0 0 1 1

2 (225)

The transformation for translation by ( x, y , z) is

x
y
z

x
y
z

1

1 0 0
0 1 0
0 0 1
0 0 0 1

x
y
z
1

(226)

The quantities q and q  can be included if necessary. The transformations associated with con-
jugate planes can likewise be expressed with 3 3 matrices, and the transformations of lines with 
2 2 matrices.

Rotationally Symmetric Lenses

For rotationally symmetric lenses, the simplest forms are obtained with the z and z  axes corre-
sponding to the lens axis in the two spaces. There is one less degree of freedom than in the general 
case, and a1 b2 in Eq. (210). The general transformation is thus

x
a x

cz d
y

a y

cz d
z

c z d

cz d
1 1 3 3, , (227)

There are four degrees of freedom, two associated with the lens and two with the choice of coordi-
nate origins. For focal lenses, the two axial length parameters are f and f . If the coordinate origins 
are at the focal points,

x
fx
z

y
fy
z

z
f f
z

, , (228)
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If the coordinate origins are conjugate and related by magnification m0, then

x
m x

z f
y

m y

z f
z

f f m z

z f
0 0 0

2

1 1 1/ /

/

/
, ,

( )
(229)

The constant term in the numerator of the z  expression is the longitudinal magnification for z 0, 
for which point dz dz f f m/ /( ) .0

2 A special case of these equations is that for which the principal 
points are the origins, so m0 1.

For rotationally symmetric afocal lenses, the two degrees of freedom are the transverse magnifi-
cation mx my m, and the longitudinal magnification mz mL. The simplest set of transformation 
equations is

x mx y my z m zL, , (230)

where z 0 and z 0 are conjugate. If m ±1 and mL 1 the image space replicates object space, 
except possibly for orientation. If mL m, the spaces are identical except for overall scaling and ori-
entation. The m and mL appear as functions of ratios of focal lengths of the lenses that make up the 
afocal system.

Rays for Rotationally Symmetric Lenses

A skew ray with direction cosines ( , , ) in object space is described in parametric form with 
parameter z as follows

x z x z y z x z( ) , ( )0 0
(231)

For a focal lens, if z 0 is taken to be the front focal plane, and z 0 is the rear focal plane, the para-
metric form of the ray in image space is

x z f
x

f
z y z f( ) , ( )0 y

f
z0 (232)

So x f0 / , y f0 / , / /x f0 , / /y f0 . For meridional rays with x 0, if  and 
 are the ray angles in the two spaces, then tan / , tan y0/f , and

tan
tan

f
f

m (233)

where m is the transverse magnification in a plane where the meridional ray crosses the axis.
For afocal lenses, if z 0 and z 0 are conjugate planes, the ray in image space is given by

x z mx
m
m

z y z my
m
mL L

( ) , ( )0 0 z (234)

For meridianal rays with x 0,

tan
tan

m
m

L (235)

Tilted Planes with Rotationally Symmetric Lenses

A plane making an angle  with the lens axis in object space has an image plane that makes an angle ,
given by Eq. (233), the so-called Scheimpflug condition.202,203 A tilted plane and its image are per-
pendicular to a meridian of the lens, Fig. 19. There is bilateral symmetry on these planes about the 



1.62  GEOMETRICAL OPTICS

intersection line with the meridian, which is taken to be the z axis in object space and the z  axis in 
image space. The perpendicular coordinates are y and y . Letting m0 be the transverse magnification 
for the axial point crossed by the planes, the transform equations are

y
m y

z g
z

g g m z

z g
0 0

2

1 1/
,

/

/

( )
(236)

Here g and g  are the focal lengths in the tilted planes, the distances from the principal planes to the 
focal planes of the lens, measured along the symmetry line, so

g
f

g
f g

g
f
fcos cos

and cos, ,
2

2 1

mm0
2

2sin (237)

As 90°, g and g  become infinite, and (g /g)m0 1, giving y m0 y and z m0z. (Forms like 
Newton’s equations may be less convenient here, since the distances from the axes to the focal points 
may be large.)

For an afocal lens with transverse magnification m and longitudinal magnification mL, the object 
and image plane angles are related by Eq. (235). The conjugate equations for points in the planes are

y my z m m zL, ( cos sin ) /2 2 2 2 1 2 (238)

Here the origins may be the axial intersection point, or any other conjugate points.

Some General Properties

For all collinear transformations, points go to points, lines to lines, and planes to planes. In general, 
angles at intersections, areas, and volumes are changed. The degree of a curve is unchanged, so, for 
example, a conic is transformed into a conic. For focal systems, a “closed” conic, an ellipse or circle, 
may be imaged as either a closed or an “open” one, a parabola or hyperbola. For afocal systems, the 

FIGURE 19 The image plane for a tilted object plane. The y-z
plane is the object plane and the y -z  plane is the image plane. The 
angles between the planes and the lens axis are  and , which are 
related by Eq. (232). The conjugate points in these planes are related 
by Eq. (235).
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closedness and openness are preserved. With focal systems, the imaging of a shape varies with its 
location, but for afocal systems it does not. For afocal systems parallelness of lines is maintained, but 
for focal systems the images of parallel lines intersect. For afocal systems, equal distances along lines 
are imaged as equal distances, but are different unless the magnification is unity.

1.16  SYSTEM COMBINATIONS: GAUSSIAN 
PROPERTIES

Introduction

This section deals with combinations of systems, each of which is of arbitrary complexity. From a 
gaussian description of each lens and the geometry of the combination, the gaussian description of the 
net system can be found. If two rotationally symmetric lenses are put in series with a common axis, the 
resultant system is also rotationally symmetric. Its gaussian description is found from that of the two 
constituent lenses and their separations. The net magnification is the product of the two contributions, 
i.e., m m1 m2. Matrix methods are particularly convenient for handling such combinations, and the 
results below can be demonstrated easily thereby. If two rotationally symmetric lenses are combined so 
their axes do not coincide, the combination can be handled with appropriate coordinate translations 
and rotations in the intermediate space, or by means of collineation. In the most general case, where 
subsystems without rotational symmetry are combined, the general machinery of collineation can be 
applied. There are three classes of combinations: focal-focal, focal-afocal, and afocal-afocal.

Focal-Focal Combination: Coaxial

The first lens has power 1 and principal points at P1 and P1,  Fig. 20. The index preceding the lens 
is n and that following it is n12. The second lens has power 2 and principal points at P2 and P2 ,
with preceding index n12 and following index n . The directed distance from the rear principal point 
of the first lens to the first principal point of the second lens is d P P1 2 , which may be positive or 
negative, since the lenses may have external principal planes. The power of the combination is

1 2
12

1 2

1

n
d (239)

The two principal planes of the combination are located relative to those of the contributing lenses 
by directed distances

P P
n

n
d P P

n
n

d1
12

2
2

12

1 (240)
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P1 P1 P2
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F2 F

P F

d

s

FIGURE 20 Coaxial combination of two focal lenses. The cardinal points of the two 
lenses are shown above the axis and those of the system below. The directions in this drawing 
are only one possible case.
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If 0 , the combination is afocal and there are no principal planes. In applying these equations, 
the inner-space index n12 must be the same as that for which the two lenses are characterized. For 
example, if two thick lenses are characterized in air and combined with water between them, these 
equations cannot be used by simply changing n12. It would be necessary to characterize the first lens 
with water following it and the second lens with water preceding it.

Another set of equations involves the directed distance from the rear focal point of the first lens 
to the front focal point of the second, s F F1 2.  The power and focal lengths of the combination are

1

12
1 2

1 2 1 2

n
s f

f f

s
f

f f

s
, , (241)

The focal points are located with respect to those of the contributing lenses by
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f
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(242)

Another relationship is (F1F)(F2 F ) ff . The system is afocal if s 0. There are many special cases 
of such combinations. Another case is that when the first principal point of the second lens is at the 
rear focal point of the first, in which case the system focal length is that of the first. These relation-
ships are proven by Welford.204

Focal-Afocal: Coaxial

A focal lens combined with an afocal lens is focal, Fig. 21. Here we take the afocal lens to be to 
the left, with magnification m1. The focal lens to the right has power 2 and rear focal length 
f2 . The power of the combination is 2 1m , and the rear focal length of the combination is 
f f m2 1/ . On the side of the focal lens, the location of the principal focal point is unchanged. 
On the side of the afocal lens, the system focal point is located at the image of the focal point of 
the focal lens in the space between the two. Changing the separation between the lenses does not 
change the power or the position of the principal focal point relative to that of the focal lens. 
The principal focal point on the afocal lens side does move.

Afocal-Afocal: Coaxial

The combination of two afocal lenses is itself afocal, Fig. 22. If the two lenses have transverse magni-
fications m1 and m2, the combination has m m1m2. A pair of conjugate reference positions is found 
from the conjugates in the outer regions to any axial point in the inner space. If the separation 

FIGURE 21 Coaxial combination of a focal lens and an afocal lens. In this drawing the 
afocal lens has a transverse magnification 0 < m1 < 1 and the focal lens has a positive power. 
The combination is a focal lens with focal length f f /m1. The focal point on the side of the 
focal lens is at the focal point of that lens alone.

Afocal Focal

P′2P′

F′2, F′

f ′2
f ′
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between the two lenses changes, the combination remains afocal and the magnification is fixed, but 
the conjugate positions change. This result extends to a combination of any number of afocal lenses.

Noncoaxial Combinations: General

The most general combinations can be handled by the machinery of collineation. The net col-
lineation can be found by multiplying the matrices that describe the constituents, with additional 
rotation and translation matrices to account for their relative positions. After obtaining the overall 
matrix, object and image space coordinate systems can be found in which the transformation is sim-
plest. This approach can also be used to demonstrate general properties of system combinations. For 
example, by multiplying matrices for afocal systems, it is seen that a succession of afocal lenses with 
any orientation is afocal.

1.17 PARAXIAL MATRIX METHODS

Introduction

Matrix methods provide a simple way of representing and calculating the paraxial properties 
of lenses and their actions on rays. These methods contain no physics beyond that contained 
in the paraxial power and transfer equations, Eq. (136) and Eq. (142), but they permit many 
useful results to be derived mechanically, and are especially useful for lens combinations. The 
matrix description of systems is also useful in elucidating fundamental paraxial properties. With 
the symbolic manipulation programs now available, matrix methods also provide a means of 
obtaining useful expressions.

The optical system is treated as a black box represented by a matrix. The axial positions of the 
input and output planes are arbitrary. The matrix describes the relationship between what enters 
and what leaves, but contains no information about the specifics of the system within, and there is 
an infinity of systems with the same matrix representation.

The origin of matrix methods in optics is not clear. Matrices were used by Samson205 who 
referred to them as “schemes.” Matrices appear without comment in a 1908 book.206 Matrix meth-
ods are treated in papers207,208 and in many books.209–218 Notation is not standardized, and many 
treatments are complicated by notation that conceals the basic structures.

This section is limited to rotationally symmetric lenses with homogeneous media. References are 
provided for systems with cylindrical elements. This treatment is monochromatic, with the wave-
length dependence of index not made explicit.

The matrices are simplified by using reduced axial distances t/n and reduced angles nu.
The paraxial angles u are equivalent to direction cosines, and the reduced angles are optical direc-
tion cosines in the paraxial limit. For brevity,  and are usually referred to in this section simply as 
“angle” and “distance.”

FIGURE 22 Coaxial combination of two afocal lenses. An internal point 
A  has an object space conjugate A and an image space conjugate A  These two 
points can be used for position references in the overall object and image spaces.
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Basic Idea: Linearity

Paraxial optics is concerned with the paraxial heights and paraxial angles of rays. A meridional ray 
entering a system has a given height y and angle  and leaves with another height y  and angle .
Paraxial optics is linear, as discussed above, in the sense that both the outgoing height and angle 
depend linearly on the incoming height and angle. Writing Eq. (148) in terms of s gives

y
y
y

y
y

y
and y (243)

The partial derivatives are constant for a given system. This linearity is the basis of the matrix treatment, 
since these equations can be written in matrix form:

y y
y

y

y

y

(244)

Basic Operations

The basic operations in paraxial ray tracing are transfer, Eq. (136), between surfaces and refraction 
or reflection at surfaces, Eq. (142).

Transfer Matrix

Transfer changes the height of a ray, in general, leaving the angle unchanged. In terms of reduced 
quantities, the relationships are

y y tu y
t
n

un y and (245)

The transfer matrix is

1
0 1

(246)

For left-to-right transfer, 0. This gives a difference in signs between some of the terms in expres-
sions here and those in the gaussian section, where directed distances are measured from a reference 
point related to the lens to the object.

Power Matrix

Refraction or reflection changes the angle of a ray, but not its height. The equations for reduced 
quantities are

n u nu y y y yand (247)

Here c n n( ) for refraction and 2nc  for reflection, where c is the surface curvature, Eq. (143). 
The power matrix is

1 0
1

(248)

A planar reflecting or refracting surface has 0, so it is represented by the unit matrix.
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Arbitrary System

A general system consists of a series of surfaces with powers 1 2, , . . .  that are separated from one 
another by distances 1, 2, . . . Its matrix is the product

1

0 1
1 0

1
1
0 1

1 0
12

2

1

N 1
0 1

1 (249)

By convention, the successive matrices are concatenated from right to left, whereas ray tracing is 
done left to right.

A special case is a succession of transfers, itself a transfer.

Succession of transfers:
1
0 1

1 2 (250)

Another is a series of refractions with no intervening transfer, itself a power operation.

Succession of powers:
1 0

11 2( )
(251)

Matrix Elements

Each matrix element has a physical significance, and the terms can be given mnemonic symbols 
associated with the conditions under which they are zero. (This practice is not standard.) If the ini-
tial ray angle is zero, the outgoing angles depend on the incident ray heights and the power of the 
system, according to y , so / y . If the initial surface is at the front focal plane, the 
outgoing ray angles depend only on the incident height, so / 0. This term is denoted by 
F for “front.” Similarly, if the final surface is at the real focal plane, the outgoing ray heights depend 
only on the incoming angles, so y y R/  for “rear.” If the initial and final planes are conjugate, 
then all incoming rays at a given height y have the outgoing height y my, regardless of their 
angle, so y / 0  for conjugate planes. Since this term is related to the condition of conjugacy, 

y C/  for “conjugate.” With this notation, the general matrix is

R C
F

(252)

Dimensions

The terms R and F are dimensionless. C has the dimensions of length, and those of  are inverse 
length. Dimensional analysis, as well as the consideration of Eq. (248), shows that the F and R
terms will always contain products of equal numbers of l ’s and k’s, such as k l. The  expression 
contains terms like k and k l m, with one more power term than distance terms. Similarly, C has 
terms like k and k l m .

Determinant

Both the transfer and power matrices have unit determinants. Therefore, any product of such matri-
ces has a unit determinant, a fact that is related to the two-ray paraxial invariant.

R C
F

FR C 1 (253)

This provides an algebraic check. For afocal lenses and conjugate arrangements, FR 1.
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Possible Zeros

The possible arrangements of zeros in a system matrix is limited by the unit determinant restric-
tion. There can be a single zero anywhere. In this case, either C 1/  or F 1/R, and the remaining 
nonzero term can have any value. There can be two zeros on either diagonal. No row or column can 
contain two zeros, since a system represented by such a matrix would violate conservation of bright-
ness. A matrix with double zeros in the bottom row would collimate all rays, regardless of their 
incoming position and direction. A matrix with all zeros in the top row represents a system that 
would bring all incoming light to a single point. A system whose matrix has double zeros in the first 
column would bring all incoming light to a focus on the axis. For double zeros in the second row, 
the system would concentrate all light diverging from an input point in a single output point with a 
single direction.

Operation on Two Rays

Instead of considering a single input and output ray, the matrix formalism can be used to treat a 
pair of rays, represented by a 2 2 matrix. In this case

y y R C
F

y y1 1

1 2

1 2

1 2

(254)

Since the system matrix has a unit determinant, the determinants of the incoming and outgoing ray 
matrices are identical:

L y y y y12 1 2 2 1 1 2 2 1
(255)

This is the paraxial invariant, Eq. (149). It is possible to operate on more than two rays, but never 
necessary, since any third ray is a linear combination of two, Eq. (154). Operations on two rays can 
also be handled with a complex notation in which two ray heights and two angles are each repre-
sented by a complex number.219,220

Conjugate Matrix

For conjugate planes, y my, so C 0, R m, and F 1/m, giving

m
m
0

1/
(256)

The 1/m term gives the angular magnification, u /u n/n m, Eq. (196). This matrix also holds for 
afocal lenses, in which case 0 .

Translated Input and Output Planes

For a given system, the locations of the input and output planes are arbitrary. If the input plane is 
translated by  and the output plane by , the resultant matrix is

R C R F
F

(257)

Note that the object-space translation term is grouped with F and the image-space term with R.
The equation C R F0  gives all pairs of  and for which the input and output surfaces 
are conjugate.
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Principal Plane-to-Principal Plane

If the input and output planes are the principal planes, then the matrix is a conjugate one, for which 
m 1.

1 0
1

(258)

This is also the matrix representing a thin lens.

Nodal Plane-to-Nodal Plane

The nodal points are conjugate, with unit angular magnification, so u u and n /n. Thus

n n
n n

/
/
0

(259)

The transverse magnification mN n/n  equals unity when n n . This matrix has no meaning for 
afocal lenses.

Focal Plane-to-Focal Plane

If the initial surface is at the front principal focal plane and the final surface is at the rear focal plane, 
the matrix is

0 1
0
/

(260)

This is the “Fourier transform” arrangement, in which incident heights are mapped as angles and 
vice versa.

Translation from Conjugate Positions

If the input plane is translated  from a plane associated with magnification m and the output plane 
is translated a distance from the conjugate plane, the matrix is

m m m
m

/
/1

(261)

Setting C 0 gives an equation that locates all other pairs of conjugate planes relative to the first 
one, Eq. (172).

Translation from Principal Planes

If the initial conjugate planes are the principal planes, then

1
1

(262)

The equation for other conjugates is C 0 , corresponding to Eq. (170). It follows 
that the distance from the input surface to the first principal plane is ( )/1 F  and the distance 
from the output surface to the second principal plane is ( )1 R / .
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Translation from Focal Planes

If the input plane is a distance  from the front focal plane and the output plane a distance from 
the rear focal plane, the matrix is

1
1 2( )

(263)

Thus F and R are proportional to the distances of the input and output surfaces from the object 
space and image space focal planes. Using Newton’s formulas, this can also be written

m
m

m

m

1
1

1
(264)

Here m  is the magnification that would obtain if the image point were as located by R, and m is that 
if the object point were located by F. The conjugate term vanishes when m m .

Conjugate Relative to Principal Focal Planes

If Eq. (263) is a conjugate matrix, it becomes

0
(265)

The vanishing C term gives 0 1/ , which is the Newton equation usually written as zz f f .
The magnification terms are the other Newton’s equations,  m  and 1/m , which are 
usually written as m z f f z/ / .

Afocal Lens

For afocal lenses 0. Since the determinant is unity, F 1/R. And since the transverse magnification 
is constant, R m, giving

m C
m0 1/

(266)

A ray with 0 has y my, and /m for all y. At conjugate positions, an afocal lens has the 
matrix

m
m

0
0 1/

(267)

Performing a translation in both object and images spaces from the conjugate position gives

m m
m

m0 1/
(268)

Setting C 0 gives −m2 , which relates the location of a single conjugate pair to all others, 
Eq. (200).
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Symmetrical Lenses

For lenses with symmetry about a central plane and symmetrically located input and output surfaces, 
F R, so the matrix has the form

B C
B

(269)

where B C2 1 . The conjugate matrix has m ±1.

Reversing Lenses

When a lens is flipped left to right along with their media, the matrix of the reversed system is 
obtained from that of the original one by switching the F and R terms.

F C
R

(270)

This reversal maintains the exterior references planes, that is, the input surface for the initial system 
becomes the output surface for the flipped one and vice versa.

Inverse Systems

By the “inverse” of a lens is meant a second system that undoes the effect of a given one. That is, the 
rays at the output surface of the second system have the same height and angle as those at the input 
of the first system. The combination of a system and its inverse is afocal with unit magnification. 
The matrix representing the inverse system is the inverse of that representing the system.

F C
R

(271)

The matrix provides no instruction as to how such a lens is made up. Alternatively, the inverse 
matrix can be interpreted as that whose input is y  and , with outputs y and .

Series of Arbitrary Lenses

The matrix for two successive lenses is

R R C C R C F
F R F F C

1 2 2 1 1 2 2 1

1 2 2 1 1 2 1 2

R C
F

R C
F

2 2

2 2

1 1

1 1

(272)

For example, two given lenses separated by some distance have the matrix

R C
F

R C
F

2 2

2 2

1 1

1 1

1
0 1

(273)

Multiplying from right to left gives a running product or “cumulative matrix,” that shows the effect 
of the system up to a given plane.

Decomposition

Matrix multiplication is associative, so the system representation can be broken up in a number of 
ways. For example, the portion of a lens before and after the aperture stop can be used to find the 
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pupil locations and magnifications. An arbitrary lens matrix can be written as a product of three 
matrices:221

R C
F R

R
R

C R1 0
1

0
0 1

1
0 1/ /

/
(274)

or

R C
F

C F F
F F

1
0 1

1 0
0

1 0
1

/ /
/

(275)

Thus a general lens is equivalent to a succession of three systems. One has power and works at unit 
magnification. The second is a conjugate afocal matrix. The third is a translation. Each of these sys-
tems is defined by one of the three terms, either, R, /R , C/R or F, /F , C/F . This is another mani-
festation of the three degrees of freedom of paraxial systems.

Matrix Determination by Two-Ray Specification

If a two-ray input matrix is given along with the desired output, or the two input and output rays 
are measured to determine the matrix of an unknown lens, Eq. (254) gives

R C
F

y y y y1 2

1 2

1 2

1 2

1

(276)

so

R C
F y y

y y y y y y1

1 2 2 1

1 2 2 1 2 1 1 22

1 2 2 1 2 1 2 1y y
(277)

The denominator of the multiplicative factor is the paraxial invariant associated with the two rays, 
Eq. (149). As a special case, the two rays could be the marginal and chief rays. The input and output 
pairs must have the same invariant, or the matrix thus found will not have a unit determinant.

Experimental Determination of Matrix Elements

The matrix elements for an unknown lens can, in principle, be determined experimentally. One 
method, as mentioned in the preceding section, is to measure the heights and angles of an arbitrary 
pair of rays. Another method is as follows. The power term is found in the usual way by sending 
a ray into the lens parallel to the axis and measuring its outgoing angle. To find C y / , the 
input ray angle is varied, while its height is unchanged. If the output height is graphed, its slope is C.
Likewise, the other partial derivatives in Eq. (243) can be found by changing one of the input 
parameters while the other is fixed. The four measurements are redundant, the unit determinant 
providing a check of consistency.

Angle Instead of Reduced Angle

The matrices above can be modified to use the angles u and u , instead of the reduced angles. In 
terms of matrix theory, this amounts to a change in basis vectors, which is accomplished by multi-
plying by diagonal vectors with elements 1 and n or 1 and n , The result is

y

u

R nC

n
n
n

F

y

u
1 (278)

This matrix has a constant determinant n/n . The form of Eq. (252) is simpler.
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Other Input-Output Combinations

Referring to Eq. (244), any pair of the four quantities y, , y , and  can be taken as inputs, with the 
other two as outputs, and the relationships can be expressed in matrix form. The four matrices in 
this section cannot be multiplied to account for the concatenation of lenses. If the angles are given, 
the heights are

y

y

F
R

1 1
1

(279)

The matrix is undefined for afocal lenses, for which the relationship of  and  is independent of 
heights. Similarly, the angles can be expressed as functions of the heights by

1 1
1C
R

F

y

y
(280)

For conjugates the expression breaks down, since there is no fixed relationship between heights and 
angles. If the input is a height on one side and an angle on the other, then

y

F
C y1 1
1

(281)

For the inverse situation,

y

R
C y1 1
1

(282)

The determinants of these matrices are, respectively, C, , R, and F.

Derivative Matrices

If the axial position of the input surface changes, the rate of change of the output quantities is

dy dz

d dz

R y/

/

0
0

(283)

If the axial position of the output surface can change, the rate of change of output quantities is

dy dz

d dz

F y/

/ 0 0
(284)

Higher derivatives vanish.

Skew rays

The matrix formalism can be used to treat a paraxial skew ray, represented by a 2 2 matrix of x and y
positions and directions  and . In this case

x y
n n

R C
F

x y
na n

(285)

Since the lens matrix has a unit determinant, the determinants of the incoming and outgoing ray 
matrices are identical:

n y x n y x( ) ( ) (286)

From Eq. (73), this is the skew invariant.
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Relationship to Characteristic Functions

A lens matrix can be related to any one of the four paraxial characteristic functions, Eqs. (34) 
through (37), each of which has three first coefficients, associated with the three degrees of freedom 
of the matrix. Brouwer and Walther222 derive the paraxial matrices from more general matrices based 
on the point angle characteristic function.

Nonrotationally Symmetric Systems

Systems comprising cylindrical lenses can also be treated paraxially by matrices.223–228,221 The more 
general case of a treatment around an arbitrary ray is also represented by a 4 4 matrix.229 This is 
treated by several of the references to the section “Images About Known Rays.”

1.18 APERTURES, PUPILS, STOPS, FIELDS, 
AND RELATED MATTERS

Introduction

This section is concerned with the finite size of lenses and their fields, as expressed in various limita-
tions of linear dimensions and angles, and with some of the consequences of these limits. (Other 
consequences, for example, resolution limitations, are in the domain of wave optics.) Terminology 
in this area is not well defined, and the terms typically used are insufficient for all the aspects of the 
subject, so this section deals considerably with definitions.

Field Size and Field Stop

The field or field of view of a lens is the region of object space from which light is captured or 
the region of image space that is used. The field size may be described in angular, linear, or area 
units, depending on the circumstances. (It can be described in still other ways, e.g., the number of 
pixels.) In and of itself, a lens does not have a definite field size, but beyond a certain size, image 
quality diminishes, both with respect to aberration correction and to light collection. A field stop
is a physical delimiter of the field, which may be in either object or image space. A detector may 
be the delimiter.

Aperture Stop

Each object point can be thought of as emitting rays in all directions. Since lenses are finite in size, 
only some of the rays pass through them. The rays that do pass are referred to as image-forming
rays, the ensemble of which is the image-forming bundle, also called the image-forming cone,
although the bundle may not be conical. The bundle associated with each object point is delimited 
by one or more physical structures of the lens. For axial object points, the delimiting structure is 
called the aperture, the stop, or the aperture stop. The aperture may be either within the lens or 
outside of it on either side, Fig. 23. The aperture may be a structure whose sole purpose is delimit-
ing the bundle, or it may be the edge of an optical element or a lens mount. The aperture stop may 
be fixed or adjustable, for instance, an iris. Which structure acts as the aperture can change with 
object position, Fig. 24. The size and position of the aperture do not effect the gaussian properties 
of the lens, i.e., the cardinal points and the conjugate locations and magnifications. They do affect 
the image irradiance, the aberrations, and the effects of defocus. The aperture is most commonly 
centered on axis, but this is not always so. With visual instruments, the aperture stop for the entire 
system may be either an aperture in the optics or the iris of the observer’s eye.
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Marginal Rays and Chief Rays

Ray bundles are described to a considerable extent by specifying their central and extreme rays. For 
object planes perpendicular to the lens axis, there are two meridional rays of particular importance, 
defining the extremities of field and aperture, Fig. 25. These rays are reciprocal in that one is to the 
pupil what the other is to the field.

The marginal ray originates at the axial object point, intersects the conjugate image point, and 
passes through the edge of the aperture. This term is also used for rays from other field points that pass 
through the extremes of the aperture. The paraxial marginal ray is the marginal ray in the paraxial limit.

The chief ray or principal ray originates at the edge of the object field, intersects the edge of the 
image field, and passes approximately through the center of the aperture, and hence approximately 
through the center of the pupils. (Here we use “chief ray,” since the prefix “principal” is so commonly 
used for other entities.) The term is also used for the central ray of other bundles. The paraxial chief
ray passes exactly through the centers of the aperture and both paraxial pupils.

Field Angle

The field angle is that subtended by the field of view at the lens. This term is ambiguous, since several 
angles can be used, as well as angles in both object and image space. A nodal ray angle is the same in 
both spaces. If the nodal points are not at the pupils, the chief ray angle differs on the two sides. The ratio 

FIGURE 24 An example of change of aperture with axial 
object position. For distant points the aperture is the nominal stop. 
For near points the aperture is the rim of the lens.

Internal
aperture

External
aperture

FIGURE 23 Axial ray cone and aperture stop. 
The upper lens has an internal aperture, and the lower 
one has an external aperture on the object side.
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of paraxial chief ray angles is proportional to the paraxial pupil magnification, as discussed later, 
Eq. (289). If the lens is telecentric, the chief ray angle is zero. An afocal lens has no nodal points, 
and the paraxial ratio of output angles to input angles is constant. The concept of field angle is most 
useful with objects and/or images at large distances, in which case on the long conjugate side the 
various ray angles are nearly identical. On the short conjugate side, ambiguity is removed by giving 
the focal length, the linear size of the detector, and the principal plane and exit pupil positions. For 
finite conjugates, such information should be provided for both spaces.

Pupils

The term pupil is used in several ways, and care should be taken to distinguish between them. There 
are paraxial pupils, “real” pupils, pupils defined as ranges of angles, and pupil reference spheres used 
for aberration definition and diffraction calculations. The entrance pupil is the aperture as seen 
from object space—more precisely, as seen from a particular point in object space. If the aperture 
is physically located in object space, the entrance pupil is identical to the aperture. Otherwise, the 
entrance pupil is the image of the aperture in object space formed by the portion of the lens on the 
object side of the aperture. If the aperture is in image space, the entrance pupil is its image formed 
by the entire lens. Similarly, the exit pupil is the aperture as seen from image space. A real pupil is a 
physically accessible image of the aperture or the aperture itself, and a virtual pupil is an inacces-
sible image. Visual instruments often have external pupils, where the user’s eye is located. The axial 
entrance pupil point is denoted here by E and the exit pupil by E .

The pupils can be located anywhere on axis, except that they cannot coincide with the object 
or image. It is common to draw pupils as shown in Fig. 25, but they can also be on the side of the 
object or image away from the lens. The pupils are usually centered on axis, but not necessarily. 
Aberrations may shift pupils from nominal axial centration.

Both pupils are conjugate to the aperture, so they are conjugate to each other. The term pupil
imaging refers to the relationship of the pupils with respect to each other and to the aperture. In 
pupil imaging, the chief ray of the lens is the marginal ray and vice versa. The pupil magnification
mP denotes the ratio of exit pupil size to entrance pupil size. The size may be specificed as linear or 
an angular extent, and the pupil magnification may be a transverse magnification, finite or paraxial, 
or a ratio of angular subtenses. In general, there is pupil aberration, so the image of the aperture in 
each space is aberrated, as is that of the imaging of one pupil to the other. Pupil imaging is subject to 
chromatic aberration, so positions, sizes, and shapes of pupils may vary with wavelength.

There is ambiguity about pupil centers and chief rays for several reasons. The center can be taken 
with respect to linear, angular, or direction cosine dimensions. Because of spherical pupil aberration, 
a ray through the center of the pupil may not also pass through the center of the aperture, and vice 
versa. The angular dimensions of pupils may change with field position. Pupil aberrations cause the 
actual pupil shape to be different from that of the paraxial pupil.

FIGURE 25 Schematic diagram of a lens with object and image planes, entrance and exit 
pupils, and marginal and chief rays. The entrance pupil is located at E and the exit pupil at E .
The chief ray passes through the edges of the fields and the centers of the pupils. The marginal 
ray passes through the axial object and image points and the edges of the pupils.
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Pupils that are not apertures can have any linear size, since the aperture can be imaged at any 
magnification. If the aperture is within the lens, there is no particular relationship between the posi-
tions and linear sizes of the entrance and exit pupils, since the portions of the lens that precede and 
follow the aperture have no specific relationship. There is a relationship between the angular sub-
tense of the pupils, as discussed below.

The angular size and shape of the pupils can vary with field position, and the pupils can change 
position if the aperture changes with object position. If the lens changes internally, as with a zoom, 
the sizes and positions of the pupils change.

Paraxial Description

The paraxial pupils are the paraxial images of the aperture. They are usually planar and perpendicu-
lar to the axis and are implicitly free from aberration. The paraxial chief ray passes through the cen-
ter of both pupils and the aperture, and the paraxial marginal ray through the edges. The object and 
pupil magnifications and the distances from object to entrance pupil and from exit pupil to image 
are related by Eq. (194). If the object at O is imaged at O  with magnification m, and the pupil mag-
nification from entrance pupil at E to exit pupil at E  is mE, then from Eq. (194)

O E
n

n
mm OEE

(287)

Paraxial Invariant for Full Field and Full Aperture

Let the height of the paraxial marginal ray be yM at the entrance pupil and yM at the exit pupil, and 
that of the paraxial chief ray by yC, at the object plane and yC  at the image plane, Fig. 25. Let the angles 
of these rays be uM, uC , uM , uC . The two-ray paraxial invariant, Eq. (149), is

L ny u ny u n y u n y uC M M C M C C M
(288)

This relationship was rediscovered several times, so the conserved quantity is referred to by a variety 
of names, including the Lagrange invariant, the Helmholtz invariant, the Smith invariant, and with 
various hyphenated combinations of the proper names.230, 231 Further discussions are found in the 
sections on paraxial optics and on the étendue. The paraxial transverse magnification and paraxial pupil 
magnifications are related to the paraxial marginal and chief ray angles by

m
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n u
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C

and (289)

Pupil Directions

For some purposes, pupils are best described as ranges of directions, specified in direction cosines, 
rather than by linear extents of aperture images. Here the term pupil directions (NS) is used. This 
is particularly the case when dealing with a given region of the object. The construction for this 
description is shown in Fig. 26. The x and y axes of the object-space coordinate system lie in the 
object surface, and the x  and y  axes of the image-space coordinate system lie in the image surface. 
From a point on the object plane, the extreme set of rays that passes through the lens is found. Its 
intersection with a unit sphere about the object point is found, and perpendiculars are dropped to 
the unit circle on (or tangent to) the object plane, giving the extent in direction cosines.

The entrance pupil is delimited by a closed curve described by a relationship 0 P( , ; x, y), 
and the exit pupil is likewise defined by 0 P ( , ; x , y ). The spatial argument is included to 
indicate that the shape varies, in general, with the field position. There may be multiple regions, as 
in the case of central obstructions. It is usually preferable to define the pupils relative to principal
directions (NS) ( 0, 0) in object space and ( , )0 0  in image space, where the two directions are 
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those of the same ray in the two spaces, usually a meridional ray. The principal directions are analogous 
to the chief rays. The entrance pupil is then given by 0 Q( − 0, − 0; x, y) and the exit pupil by 
0 0 0Q x y( , ; , ). For example, for a field point on the x 0 meridian, the expression for 
the pupil might be well approximated by an ellipse, 0 a 2 b( − 0)

2, where (0, 0) is the chief ray 
direction. If the imaging is stigmatic, the relationship between entrance and exit pupil angular shapes 
is provided by the cosine condition, Eq. (104).

Q x y Q m m xP P, ; , , ; ,0 0 yy (290)

The entrance and exit pupils have the same shapes when described in direction cosine space. 
They are scaled according to the pupil angular magnification (NS) mP n/n m. The orientations may 
be the same or rotated 180°. There is no particular relationship between ( 0, 0) and ( , )0 0  which 
can, for example, be changed by field lenses. The principal directions are, however, usually in the 
same meridian as the object and image points, in which case 0 0 0 0/ / . If the field point is in 
the x meridian, and the central ray is in this meridian, then 0 0 and 0 0. Even with aberrations, 
Eq. (290) usually holds to a good approximation. The aberration pupil distortion refers to a deviation 
from this shape constancy.

Pupil Directional Extent: Numerical Aperture 
and Its Generalizations

The angular extent of a pupil extent is limited by some extreme directions. In the example above of 
the elliptical shape, for instance, there are two half widths

1
2

1
2

( ) ( )max min max minand (291)

For a rotationally symmetric lens with a circular aperture, the light from an axial object point in a 
medium of index n is accepted over a cone whose vertex angle is max. The object space numerical
aperture is defined as

NA n n n nsin max max max max( )2 2 (292)

FIGURE 26 Construction for the description of the pupils with direction cosines. An 
x-y plane is tangent to the object surface at the object point, and a unit sphere is centered 
on the point. The intersections with the unit sphere of the rays are projected to the tangent 
plane to give the pupil direction cosines.
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Likewise, on the image side, where the index is n  and the maximum angle is max , the image space
numerical aperture is

NA n n n nsin max max max m( )2 2
aax

(293)

If the lens is free of coma, the sine condition, Eq. (106), gives for finite conjugates

m
n

n
NA
NA

sin

sin
max

max

(294)

For infinite conjugates

sin or sinmax
max

max max ma

y

f
n NA n y xx

(295)

If there is coma, these relationships are still good approximations. For a given lens and a given aper-
ture size, the numerical aperture varies with the axial object position.

F-Number and Its Problems

The F-number is written in a variety of ways, including F/no. and F/#. It is denoted here by FN. The 
F-number is not a natural physical quantity, is not defined and used consistently in the literature, 
and is often used in ways that are both wrong and confusing.232,233 Moreover, there is no need to 
use the F-number, since everything that it purports to describe or approximately describes is treated 
properly with direction cosines. The most common definition for F-number, applied to the case of 
an object at infinity, is

FN
focal length

entrance pupil diameter ta
1

2 nn
(296)

where  is the outgoing angle of the axial imaging cone. In general, the F-number is associated with 
the tangents of collinear transformations, rather than the sines (or direction cosines) that are physi-
cally appropriate. It presumes that a nonparaxial ray entering parallel to the axis at height y leaves 
the rear principal plane at the same height and intersects the rear focal point, so that tan y/f .
However, this particular presumption contradicts Eq. (294), and in general, collineation does not 
accurately describe lens behavior, as discussed above.

Other problems with F-number, as it is used in the literature, include the following: (1) It is 
not defined consistently. For example, the literature also contains the definition F-number (focal 
length)/(exit pupil diameter). (2) For lenses used at finite conjugates, the F-number is often stated 
for an object at infinity. In fact, given only the numerical aperture for an object at infinity, that 
for other conjugates cannot be determined. (3) There are confusing descriptions of variation 
of F-number with conjugates, for example, the equation FNm (1 m)FN , where FNm is the 
F-number for magnification m and FN  is that for an object at infinity. In fact, numerical aper-
tures for various magnifications are not so related. (4) The object and image space numerical 
apertures are related by Eq. (294), but there is no such relationship for tangents of angles, except 
that predicted by collineation, Eq. (232), which is approximate. (5) With off-axis field points and 
noncircular pupils, the interpretation of F-number is more ambiguous. (6) Afocal systems have 
finite numerical apertures when used at finite conjugates, but they have no analogue to Eq. (295). 
(7) Object and image space refractive indices are not accounted for by the F-number, whereas 
they are by the numerical aperture. (8) The F-number is often used as a descriptor of radiometric 
throughput, rather than of ray angles per se.

A related quantity is the T-number,234 which accounts for both the convergence angle of the 
imaging cone and the fraction of power transmitted by the lens. This is useful as a single-number 
descriptor, but it is subject to all the confusion associated with the F-number.
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Image Irradiance for Lambertian Objects

If the light from a region of an object is lambertian with a power/area M, then the emitted power per 
angle with angle according to (M/ ) cos d (M/ ) d d . The power captured by the entrance 
pupil from a small object area dA is

dP M dA d d
1

entrance pupil
(297)

(For a full hemisphere d d , giving dP M dA.) If there are no losses within the lens, the 
power reaching the conjugate image region dA  is the same. Using the conservation of étendue equa-
tion, Eq. (72), the image irradiance is

E
dP

dA
M

n

n
d d

1 2

2 exit pupil
(298)

The image irradiance does not depend explicitly on the magnification, but magnification is included 
implicitly, since, for a given lens, the subtense of the exit pupil varies with conjugates.

This equation applies everywhere in the field, and it applies to arbitrary object surface positions 
and orientations, so long as the direction cosines are defined with respect to the local object and 
image surface normals. These equations apply regardless of the chief ray angles, so they are appli-
cable, for example, with telecentricity. In general, the pupil shape and principal direction vary with 
field position, so there is a gradation of irradiance in the image of a uniform lambertian object.

These equations do not account for all that influences image irradiance, for example, lens 
absorption and reflection. These effects can be included in the above expressions by adding an 
appropriate weighting function of angle and field in the above integrals, giving

E x y
dP
dA

M x y
n
n

x y( , ) ( , ) ( , ; , )
1 2

2 dd d (299)

where ( , ; x , y ) is the lens transmittance as a function of the direction cosines for the image 
point (x , y ). With externally illuminated objects that are not lambertian scatterers, these relation-
ships do not hold. For example, in optical projectors the illumination is matched to the object and 
imaging lens to give nominally uniform image irradiance.

Axial Image Irradiance for Lambertian Objects

In the special case of circular pupils and axial object surfaces perpendicular to the axis, the collected 
power and image irradiance given above are

dP M dA E M
n

n
sin and sin2

2

2
2 (300)

Power/Pixel

From wave optics, a lens working at the “resolution limit” has an image pixel size q /n sin
where  is the vacuum wavelength and q is a dimensionless factor, typically of the order of unity. 
Applying Eq. (300) gives

Power/pixel q M
n

2

2

(301)

M( /n)2 is the energy emitted per square wavelength of object area. This is a fundamental radiometric 
quantity. Increasing q gives a greater numerical aperture than is nominally required for resolution, 
but in practice the aberration correction may be such that the actual resolution is not greater.
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Cosine-to-the-Fourth Approximation

For distant, planar, uniform lambertian objects perpendicular to the lens axis, if the entrance pupil 
is well approximated by a circle, then the image irradiance varies approximately with the object 
space field angle  according to the cosine-to-the-fourth relationship

E E( ) 0
4cos (302)

where E0 is the axial irradiance. There are three contributions to this dependence. (1) The angular 
distribution of a lambertian emitter varies as cos . (2) The distance from the field point to the 
entrance pupil varies as 1/d2  cos2 . (3) Insofar as the pupil behaves as a rigid circle, its projected 
solid angle varies approximately as cos . The cosine-to-the-fourth relationship should be used only 
as a guideline, since ray tracing permits more accurate calculations, and because of the ambiguities 
in the meaning of the field angle, as discussed above, and elsewhere.235–239 For example, field angle is 
meaningless with telecentricity. Some lenses, especially wide-angle ones, are specifically designed so 
the pupil subtense increases with the field angle in order to compensate for effects (1) and (2) above, 
to produce a sufficiently uniform image.240

Total Lens Étendue

The total amount of power from a lambertian object that can be transferred through a lens is

1
M dx dy d d

field pupil
(303)

The pupil integral may vary over the field. If the pupil is round and constant over the field, the éten-
due is proportional to A(NA)2, where A is the area of the field. This quantity is also related to the 
total number of pixels in the field, and the ability of the lens to transfer information.241 The term 
“area-solid angle product” is sometimes used, but this is an approximation. The total étendue is pro-
portional paraxially to ~ L2, where L is given by Eq. (288).

Vignetting

Vignetting occurs when an image-forming bundle is truncated by two or more physical structures 
in different planes, Fig. 27. Typically, one is the nominal aperture and another is the edge of a lens. 
Another case is that of central obstructions away from the aperture. When vignetting occurs, the 
image irradiance is changed, and its diminution with field height is faster than it otherwise would 
be. Aberration properties are also changed, so vignetting is sometimes used to eliminate light that 
would unacceptably blur the image.

FIGURE 27 Example of vignetting. The dashed ray passes through the 
aperture, but misses the lens.
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Lens Combinations and Field Lenses

When lenses are used to relay images, the light is transferred without loss only if the exit pupil of one 
corresponds with the entrance pupil of the next. An example of the failure to meet this requirement 
is shown in Fig. 28. The axial point is reimaged satisfactorily, but off-axis bundles are vignetted. To 
transfer the light properly, a field lens in the vicinity of the intermediate image is used to image the 
exit pupil of the preceding lens into the entrance pupil of the next one. If the field lens is a thin lens 
in the image plane, then its magnification with respect to the image is unity. In practice, the field 
lens is usually shifted axially, so scratches or dust on its surface are out of focus. Its magnification 
then differs from unity. The focal length of a thin field lens in air is given by 1/f 1/a 1/b, where 
a is the distance from exit pupil of first lens to the field lens, and b is that from field lens to the 
entrance pupil of the second lens. The exit pupil is reimaged with a magnification b/a. If the sizes of 
the various pupils and their images are not matched, then the aperture of the combination is deter-
mined by the smallest. Field lenses affect aberrations.

Defocus

When the object and image-receiving surface are not conjugate there is defocus. If either the object 
or the receiving surface is considered to be correctly positioned, the defocus is associated with the 
other. Another situation is that in which the object and receiving surfaces are conjugate, but both 
are wrongly located, so that the image is sharp but the magnification is not what is desired.

Defocus has two basic geometrical effects, if there are no aberrations, Fig. 29. One is blurring, 
since the rays from an object point do not converge to a single point on the receiving surface. The 
blur size varies linearly with the axial defocus in image space and with the cone angle of the image-
forming bundle. The shape of the blur is that of the exit pupil, projected on the receiving surface. 
The other effect of defocus is a lateral shift in position of the blur’s centroid relative to that of the 
correctly focused point. The shift depends on the chief ray angle on the side of the lens where the 
defocus occurs. In the simplest case, the shift is approximately linear with field height, so acts as a 

FIGURE 28 A pair of lenses relaying an image with and without a field lens. In the 
top figure, there is no field lens, and some of the light forming the intermediate image 
does not pass through the second lens. The amount lost depends on the two numerical 
apertures and increases with distance from the axis. In the lower figure, a field lens at the 
intermediate image forms an image of the exit pupil of the first lens into the entrance 
pupil of the next. No light is lost unless the numerical aperture of the second lens is less 
than that of the first.
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change of magnification. If the object is tilted or is not flat, the effects of defocus vary across the 
field in a more complicated way. Aberrations affect the nature of the blur. With some aberrations, 
the blur is different on the two sides of focus. With spherical aberration, the blur changes in quality, 
and with astigmatism the orientation of the blur changes.

In considering the geometrical imaging of a small region of a lambertian object, there is an 
implict assumption that the pupil is filled uniformly with light. In imaging an extended object that 
is externally illuminated, the light from a given region may not fill the pupil uniformly, so the char-
acter of the blurring is affected by the angular properties of the illumination and scattering proper-
ties of the object.

The amount of defocus can be described in either object or image space, and it can be measured 
in a variety of ways, for example, axial displacement, displacement along a chief ray, geometrical blur 
size, and wavefront aberration. The axial displacements in object and image space differ, in general, 
and are related by the longitudinal magnification. As expressed in wavefront aberration, i.e., optical 
path length, defocus is the same in both spaces. There are also various functional measurements of 
defocus, for example, the sizes of recorded images through focus.

Telecentricity

A lens is telecentric if the chief rays are parallel to one another. Most commonly, they are also parallel 
to the lens axis and perpendicular to the object and/or image planes that are perpendicular to the 
axis, Fig. 30. Telecentricity is often described by speaking of pupils at infinity, but the consideration 
of ray angles is more concrete and more directly relevant. A lens is telecentric in object space if the 
chief rays in object space are parallel to the axis, 0 0 and 0 0. In this case the image of the aper-
ture formed by the portion of the lens preceding it is at infinity and the aperture is at the rear focal 
plane of the portion preceding it. Similarly, a lens is telecentric in image space if the aperture is at the 

FIGURE 29 Defocus of the receiving surface. A receiving surface is 
shown in focus and shifted axially. The image of a point on the shifted surface 
is blurred, and its centroid is translated radially.

FIGURE 30 Example of telecentricity. The lens shown is telecentric in 
image space, in which chief rays are parallel to the axis. An axial shift in the 
receiving surface results in blurring, but does not translate the centroid, so 
there is no change in image scale.
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front focal point of the subsequent optics, so 0 0 and 0 0. More generally, but less commonly, 
the chief rays can be parallel to each other, but not necessarily to the axis, and not necessarily per-
pendicular to a (possibly tilted) object or image plane.

With tilted object and image surfaces and nonaxial pupils, the chief rays are not perpendicular to 
the object and/or image surfaces, but their angles are everywhere the same, so defocus can result in a 
rigid shift of the entire image.

A focal lens can be nontelecentric or telecentric on either side, but it cannot be doubly telecen-
tric. An afocal lens can be nontelecentric, or doubly telecentric, but it cannot be telecentric on one 
side. A doubly telecentric lens must be afocal, and a singly telecentric lens cannot be afocal.

For a lens that is telecentric in image space, if the receiving surface is defocused, the image of a 
point is blurred, but its centroid stays fixed. However, if it is not telecentric in object space, then the 
scale changes if the object is defocused. The converse holds for object-space telecentricity without 
image-space telecentricity. For a doubly telecentric lens, an axial shift of either the object or the 
receiving plane produces blurring without a centroid shift. Although the magnification of an afocal lens 
does not change with conjugates, there can be an effective change with defocus if it is not telecentric. 
If the pupil is not on the axis or if the object and image planes are tilted, there can be telecentricity 
without the chief rays being perpendicular to the object and/or image planes. In these cases, defocus 
results in a rigid shift of the entire image.

Nominal telecentricity can be negated in several ways. Pupil aberrations may change the chief 
ray angles across the field. For an extended object that is externally illuminated the pupil may not be 
filled uniformly by light from a given region, so defocus can product a lateral image shift.

Depth of Focus and Depth of Field

The depth of focus and depth of field are the amounts of defocus that the receiving surface or 
object may undergo before the recorded image becomes unacceptable. The criterion depends on 
the application—the nature of the object, the method of image detection, and so on, and there 
are both ray and wave optics criteria for goodness of focus. For example, a field of separated 
point objects differs from that of extended objects. Depth of focus is usually discussed in terms 
of blurring, but there are cases where lateral shifts become unacceptable before blurring. For 
example, in nature photography blurring is more critical than geometrical deformation, while 
the opposite may be true in metrology.

Range of Focus and Hyperfocal Distance

In some cases, a geometrical description of defocus is applicable, and the allowable blur is specified 
as an angle.242, 243, 234 The hyperfocal distance is

Hyperfocal distance
diameter of the entrancee pupil

maximum acceptable angular blur
= dH (304)

Let the object distance at which the lens is focused be d, the nearest distance at which the image is 
acceptable be dN, and the furthest distance be dF . All of these quantities are positive definite. The fol-
lowing relations are obtained:

d
d d

d d
d

d d
d dF

H

H
N

H

H
and (305)

The distances to either side of best focus are

d d
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d d
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and (306)
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The total range of focus is

d d
d d

d d
d

d dF N
H

H H

2 2
1

2

2 2 2( )/
(307)

For d > dH the above quantities involving dF are infinite (not negative). If the lens is focused at the 
hyperfocal distance or beyond, then everything more distant is adequately focused. If the lens is focused 
at the hyperfocal distance, i.e., d dH, the focus is adequate everywhere beyond half this distance, and 
this setting gives the greatest total range. If the lens is focused at infinity, then objects beyond hyperfocal 
distance are adequately focused. The hyperfocal distance decreases as the lens is stopped down.

1.19  GEOMETRICAL ABERRATIONS OF POINT 
IMAGES: DESCRIPTION

Introduction

In instrumental optics, the term aberration refers to a departure from what is desired, whether or not it 
is physically possible. Terms such as “perfect system” and “ideal system” indicate what the actual is com-
pared to, and these terms themselves are not absolute, but depend on what is wished for. The ideal may 
be intrinsically impossible, in which case a deviation therefrom is not a defect. A further distinction is 
between aberrations inherent in a design and those that result from shortcomings in fabrication.

This section considers only the description of aberrations of point images, with the lens treated 
as a black box, whose action with respect to aberrations is accounted for by what leaves the exit 
pupil. A full consideration of aberrations involves, among other things, their causes, their correction, 
their various manifestations, and their evaluation. Aberrated images of extended objects are formed 
by overlapping blurs from the individual points. The analysis of such images is object- and application-
dependent, and is beyond the scope of this section. Aberrations do vary with wavelength, but most 
of this discussion involves monochromatic aberrations, those at a single wavelength. In addition, 
aberrations vary with magnification. Aberrations are discussed to some extent in many books that 
treat geometrical optics.244–253

Descriptions

Aberration has many manifestations, and can be described in a variety of ways. For example, geo-
metrical wavefronts, path lengths, ray angles, and ray intersection points can all differ from the 
nominal (and in wave optics there are additional manifestations). Terms such as “wavefront aber-
ration” and “ray aberration” do not refer to fundamentally different things, but to different aspects 
of the same thing. Often, a single manifestation of the aberration is considered, according to what is 
measurable, what best describes the degradation in a particular application, or what a lens designer 
prefers to use for optimization during the design process.

Classification

Aberrations are classified and categorized in a variety of ways. These include pupil dependence, 
field dependence, order, evenness and oddness, pupil and field symmetry, and the nature of change 
through focus—symmetrical and unsymmetrical. In addition, there are natural groupings, e.g., 
astigmatism and field curvature. The classification systems overlap, and the decompositions are not 
unique. The complete aberration is often described as a series of terms, several schemes being used, 
as discussed below. The names of aberrations, such as “spherical,” “coma,” and “astigmatism,” are not 
standardized, and a given name may have different meanings with respect to different expansions. 
Furthermore, the effects of aberrations are not simply separated. For example, “pure coma” can have 
effects usually associated with distortion. Defocus is sometimes taken to be a type of aberration, and 
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it is useful to think of it in this way, since it is represented by a term in the same expansion and since 
the effects of aberrations vary with focus. The number of terms in an expansion is infinite, and familiar 
names are sometimes associated with unfamiliar terms. To improve clarity, it is recommended that all 
the terms in an expansion be made explicit up to agreed-upon values too small to matter, and that, 
in addition, the net effect be shown graphically. Further, it is often helpful to show more than one of 
an aberration’s manifestations.

Pupil and Field Coordinates

In this section, all the quantities in the equation are in image space, so primes are omitted. Field 
coordinates are x and y, with h2 x2 y2, and (x, y) is the nominal image point in a plane z 0. 
Direction cosines equally spaced on the exit pupil should be used for pupil coordinates but, in practice, 
different types of coordinates are used, including linear positions, spatial frequencies, and direction 
cosines. Here the pupil coordinates are  and , which are dimensionless, with 2 2 2. The 
overall direction of the pupil may vary with field. Here the ( , ) (0, 0) is always taken at the pupil 
center, the meaning of which may not be simple, as discussed in the section on pupils above. The 
angle of a meridian in the pupil is . Entrance and exit pupil coordinates must be distinguished. For 
diffraction calculations, the exit pupil should be sampled at equal intervals in direction cosines, but 
a set of rays from an object point that is equally spaced in direction cosines may leave with uneven 
spacing, as a result of aberrations.

Wavefront Aberration

If an object point is imaged stigmatically, then the optical path lengths of all rays from the object 
point to its image are identical, and the geometrical wavefronts leaving the exit pupil are spherical. In 
the presence of aberrations, the wavefront is no longer spherical. Rather than describing the wave-
front shape, it is usually preferable to consider the difference between the actual wavefront, and a 
nominal wavefront, often called the reference sphere, centered at a reference point that is usually the 
nominal image point. This reference sphere is usually taken to intersect the center of the pupil, since 
this gives the most accurate diffraction calculations. The wavefront aberration W is the optical path 
length from reference sphere to wavefront, or vice versa, according to the convention used, Fig. 31. 
Two sign conventions are in use; a positive wavefront aberration may correspond either to a wave-
front which lags or leads the reference sphere. For each nominal image point (x, y, z), the wavefront 
aberration is a function of the pupil coordinates ( , ), so the functional form is W( , ; x, y, z),

FIGURE 31 Wavefront aberration. The reference 
sphere is concentric with the nominal image point. 
The wavefront is taken that is tangent to the reference 
sphere in the center of the pupil. The wavefront aberra-
tion function is the distance from the reference sphere 
to the wavefront as a function of pupil coordiantes.
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with the z usually suppressed, since the image plane is usually taken to be fixed. For a given lens 
prescription, W is found by tracing a set of rays from each object point to the reference sphere and 
calculating their path lengths. If the absolute path length is unimportant, the choice of the reference 
sphere’s radius is not critical. Considered from the point of view of wave optics, the image of a point 
is degraded by phase differences across the reference sphere, so absolute phase is of no consequence, 
and the zero of the wavefront aberration can be chosen arbitrarily. By convention and convenience, 
the zero is usually taken at the center of the pupil, so W(0, 0, x, y) 0. Absolute optical path lengths 
are significant for imaging systems with paths that separate between object and image in cases where 
there is coherence between the various image contributions. An error in absolute optical path length 
is called piston error. This results in no ray aberrations, so it is omitted from some discussions.

Ray Aberrations

In the presence of aberrations, the rays intersect any surface at different points than they would 
otherwise. The intersection of the rays with the receiving surface, usually a plane perpendicular to 
the axis, is most often of interest. The transverse ray aberration is the vectorial displacement ( x, y)
between a nominal intersection point and the actual one. The displacement is a function of the 
position of the nominal image point (x, y) and the position in the pupil through which the ray 
passes ( , ). A complete description of transverse ray aberrations is given by

x yx y x y( , ; , ) ( , ; , )and (308)

The longitudinal aberration is the axial displacement from nominal of an axial intersection point. 
This description is useful for points on the axis of rotationally symmetrical systems, in which case 
all rays intersect the axis. Such aberrations have both transverse and longitudinal aspects. The inter-
section with a meridian can also be used. The diapoint is the point where a ray intersects the same 
meridian as that containing the object point.247 For an image nominally located at infinity, aberra-
tions can be described by the slope of the wavefront relative to that of the nominal, that is, by ray 
angles rather than intersection points. A hypothetical ideal focusing lens can also be imagined to 
convert to transverse aberrations.

A ray intercept diagram shows the intersection points of a group of rays with the receiving 
surface.254 The rays are usually taken to arise from a single object point and to uniformly sample 
the pupil, with square or hexagonal arrays commonly used. The ray intercept diagrams can suffer 
from artifacts of the sampling array, which can be checked for by using more than one type of array. 
Other pupil loci, for instance, principal meridians and annuli, can be employed to show particular 
aspects of the aberration. Intercept diagrams can also be produced for a series of surfaces through focus. 
Image quality may be better than ray diagrams suggest, since destructive interference can reduce the 
irradiance in a region relative to that predicted by the ray density.

Relationship of Wavefront and Ray Aberrations

Since rays are normal to geometrical wavefronts, Fig. 32, transverse ray aberrations are proportional 
to the slope of the wavefront aberration function. For systems of rotation with image space index n
and marginal ray angle , the transverse aberrations are to a good approximation251

x yn
W

n
W1 1

sin sin
(309)

The refractive index appears since W is an optical path length. If the rays are nominally parallel, then 
the partial derivatives give the angular ray errors

1 1
np

W
np

W
(310)
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where p is the linear radius of the exit pupil, which cannot be infinite if the image is at infinity. 
These expressions may also have a multiplicative factor of −1, depending on the sign conventions. A 
sum of wavefront aberrations gives a transverse aberration that is the sum of the contributing ones.

Ray Densities

The density of rays near the nominal image point is251

1 2

2

2

2

2

Density
W W W

2

(311)

Caustics are the surfaces where ray densities are infinite. Here, geometrical optics predicts infinite 
power/area, so the ray model is quantitatively inaccurate in this case.

Change of Reference Points

The center of the reference sphere may be displaced from the nominal image point. If the reference 
point is changed by linear displacement ( x, y, z), then the wavefront aberration function changes 
from W to W  according to

W x y x y z W x y Wx( , ; , ; , , ) ( , ; , ) W Wy z( )2 2 (312)

where Wx n sin x

Wy n sin y (313)

W n zz
1
2

2sin

The transverse ray aberration x and y with respect to the new reference points are

x x y yx z y zsin sin (314)

The change through focus is accounted for by varying z. Setting x y 0 gives the parametric 
equations x( z) and y( z) for a ray with pupil coordinates ( , ), relative to the nominal ray near 
the nominal image point.

FIGURE 32 Ray aberration. Rays intersect the receiving 
plane at positions shifted from the nominal.
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Aberration Symmetries for Systems 
with Rotational Symmetry

If the lens, including the aperture, is a figure of rotation, only certain aberration forms are possible. 
For object points on axis, the wavefront aberration and the image blur are figures of revolution. For 
off-axis points, both wavefront aberration and blur are bilaterally symmetrical about the meridional 
plane containing the object point. For object points on a circle centered on the axis, the wavefront 
and ray aberrations are independent of azimuth, relative to the local meridian. In practice, there is 
always some imperfection, so the symmetries are imperfect and additional aberration forms arise.

Wavefront Aberration Forms for Systems 
with Rotational Symmetry

Here the pupil is taken to be circular, with the coordinate origin taken at the center. The field coordi-
nates are normalized so x2 y2 h2 1 at the edge of the field. The pupil coordinates are normalized, 
so that 2 2 2 1 on the rim of the pupil. The algebra is simplified by using dimensionless coor-
dinates. To add dimensions and actual sizes, replace the  by / max, and likewise for other variables. 
The simplest combinations of pupil and field coordinates with rotational symmetry are

x y h x y2 2 2 2 2, ,2 (315)

The general wavefront aberration function can be expressed as a series of such terms raised to inte-
gral powers,

W x y W x y x yLMN
L M N

L

( , ; , ) ( ) ( ) ( )2 2 2 2

,, ,M N 0
(316)

where L, M, N are positive integers. The terms can be grouped in orders according to the sum 
L M N, where, by convention, the order equals 2(L M N) −1. The order number refers more 
directly to ray aberration forms than to wavefront forms, and it is always odd. The first-order terms 
are those for which L M N 1, for the third-order terms the sum is two, and so on. The number of 
terms in the Qth order is 1 (Q 1)(Q 7)/8. For orders 1, 3, 5, 7, 9 the number of terms is 3, 6, 10, 
15, 21. For each order, one contribution is a piston error, which is sometimes excluded from the count.

The expression of Eq. (316) is related to the characteristic function for a rotationally symmetrical 
system, Eq. (32). If the spatial coordinates are taken to be those of the object point, this is the point-
angle characteristic function. In the hamiltonian optics viewpoint, the characteristic function is a 
sum of two parts. The first-order terms specify the nominal properties, and those of higher orders 
the deviation therefrom. This is discussed in the references given in that section. The term for which 
L M N 0 has to do with absolute optical path length.

Since there is bilateral symmetry about all meridians, the expansion can be simplified by consid-
ering object points in a single meridian, customarily taken to be that for which x 0. Doing so and 
letting the fractional field height be y h gives the wavefront aberration function

W h W h W hLMN
L N M N

ABC
A B C

A B C

( ; , )
, ,

2 2

LL M N, , 0
(317)

where A 2L N, B 2M, C N, and the order equals (A B C) − 1. Another form is obtained 
with the fractional pupil radius  and the pupil azimuth , the angle from the x 0 meridian, so 

 cos . With these pupil variables the wavefront aberration function is

W h W h W hLMN
L N M N N

ABC
A B( ; , ) cos co2 2 ssC

A B CL M N , ,, , 0
(318)
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where A 2L N, B 2M N, C N, and the order is A B − 1. For orders above the first, the 
WLMN

, WABC , and WABC are the wavefront aberration coefficients.
For a given field position, the wavefront aberration function for circular pupils can also be 

decomposed into the Zernike polynomials, also called circle polynomials, a set of functions complete 
and orthonormal on a circle.249,255–257

Third-Order Aberrations and Their Near Relatives

There are six third-order terms. The Seidel aberrations are spherical, coma, astigmatism, field cur-
vature, distortion, and there is also a piston-error term. Expressions for these aberrations are given 
below, along with some higher-order ones that fall in the same classification. The terminology of 
higher-order aberrations is not standardized, and there are forms that do not have third-order ana-
logues. This section uses the notation of the second expression of Eq. (318), without the primes on 
the coefficients.

It is useful to include defocus as a term in aberration expansions. Its wavefront aberration and 
transverse ray aberrations are

W W W Wx y020
2

020 0202 2 (319)

Coefficient W020 is similar to Wz, Eq. (313).
In spherical aberration the wavefront error is a figure of revolution in the pupil. The individual 

terms of the expansion have the form 2N. The form that appears on axis, and which is independent 
of field position is

W W W W020
2

040
4

060
6 (320)

where defocus has been included. The W040 term is the third-order term, the W060 is the fifth-order 
term, etc. The ray aberrations are
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There are also higher-order off-axis terms, called oblique spherical aberration, with forms h2L 2M.
Spherical is an even aberration.

In coma, the wavefront aberration varies linearly with field height, so the general form is 
h 2M h 2M 1 cos . Coma is an odd aberration. The wavefront expansion is

W W W h W W( ) ( )131
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The ray aberrations are
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In astigmatism the wavefront aberration is cylindrical. The third-order term is

W W h W h222
2 2

222
2 2 2cos (324)

with ray aberration

x y W h0 2 222
2 (325)
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Field curvature, also known as Petzval curvature, is a variation of focal position in the axial direc-
tion with field height. In its presence, the best image of a planar object lies on a nonplanar surface. 
Its absence is called field flatness. The wavefront aberration form is

W W h W h W h( )220
2
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4
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6 2 (326)

with symmetrical blurs given by
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The curvature of the best focus surface may have the same sign across the field, or there may be cur-
vatures of both signs.

Astigmatism and field curvature are often grouped together. Combining defocus, third-order 
astigmatism, and third-order field curvature, the wavefront aberration can be written

W W W W W h020
2 2

220
2

220 222
2 2( ) [ ( ) ] (328)

The resultant ray aberration is

x yW W h W W W h[ ] , [ ( ) ]020 220
2

020 222 220
2 (329)

A tangential fan of rays, one that lies in the x 0 meridian, has 0, so x 0. The tangential 
focus occurs where y 0, which occurs for a defocus of W020 −(W220 W222)h2. Combining this 
result with Eq. (314) gives z h2, the equation for the tangential focal surface. A sagittal fan of rays 
crosses the pupil in the 0 meridian, so y 0. The sagittal focus occurs where x 0, i.e., on the 
surface given by W020 −W220h

2.
In general, distortion is a deviation from geometrical similarity between object and image. For 

rotationally symmetrical lenses and object and image planes perpendicular to the axis, the error is 
purely radial, and can be thought of as a variation of magnification with field height. The aberration 
forms are

W W h W h W h( )111 311
3

511
5 (330)

with

x y W h W h W h0 111 311
3

511
5, (331)

In pincushion distortion the magnitude of magnification increases monotonically with field 
height, so the image is stretched radially. In barrel distortion the magnitude decreases, so the image 
is squeezed. In general, the aberration coefficients can be both positive and negative, so the direction 
of distortion can change as a function of field height and the distortion may vanish for one or more 
field heights.

For piston error the wavefront differs uniformly across the pupil from its nominal in a way that 
varies with field height.

W W W h W h W h x y000 200
2

400
4

600
6 0, (332)

There are no transverse ray aberrations.

Chromatic Aberrations

In general, the properties of optical systems vary with wavelength. The term chromatic aberration
often refers to the variation in paraxial properties as a function of wavelength. Thus, axial color is 
related to differences of focal length and principal plane location with wavelength, and lateral color
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is related to variations of magnification with wavelength. Also, the monochromatic aberrations vary 
in magnitude with wavelength. Reflective systems have identical ray properties at all wavelengths, 
but their wave properties vary with color, since a given variation in path length has an effect on 
phase that varies with wavelength.

Stop Size and Aberration Variation

For a given system, if the size of the aperture is changed, the marginal ray is changed, but not the 
chief ray. If the aperture is reduced, depth of focus and depth of field increase and image irradiance 
decreases. The rays from axial object points are more nearly paraxial, so the imaging tends to be better 
corrected. For off-axis points, some aberrations are changed and others are not. Distortion, as defined 
with respect to the chief ray, is not changed. Field curvature per se does not change, since the aperture 
size does not change the location of the best image surface (if there are no other aberrations), but the 
depth of focus does change, so a flat detector can cover a larger field.

Stop Position and Aberration Variation

For a given system, if the aperture is moved axially, the image-forming bundle passes through differ-
ent portions of the lens elements. Accordingly, some aberrations vary with the position of the stop. 
Lens design involves an operation called the stop shift, in which the aperture is moved axially while 
its size is adjusted to keep the numerical apertures constant. In this operation, the marginal ray is 
fixed, while the chief ray is changed. This does not change the aberrations on axis. Most of those for 
off-axis points are changed, but third-order field curvature is unchanged.
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2.1 GLOSSARY

A amplitude

E electric field vector

r position vector

x, y, z rectangular coordinates

phase

2.2 INTRODUCTION

Interference results from the superposition of two or more electromagnetic waves. From a classical 
optics perspective, interference is the mechanism by which light interacts with light. Other phenom-
ena, such as refraction, scattering, and diffraction, describe how light interacts with its physical envi-
ronment. Historically, interference was instrumental in establishing the wave nature of light. The earli-
est observations were of colored fringe patterns in thin films. Using the wavelength of light as a scale, 
interference continues to be of great practical importance in areas such as spectroscopy and metrology.

2.3 WAVES AND WAVEFRONTS

The electric field vector due to an electromagnetic field at a point in space is composed of an ampli-
tude and a phase

E A( ) ( ) ( , , , )x y z t x y z t ei x y z t, , , , , , (1)

or

E r A r r( ) ( ) ( , ), ,t t ei t (2)

2.3
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where r is the position vector and both the amplitude A and phase  are functions of the spatial 
coordinate and time. As described in Chap. 12, “Polarization,” the polarization state of the field is 
contained in the temporal variations in the amplitude vector.

This expression can be simplified if  a linearly polarized monochromatic wave is 
assumed:

E A( ) ( ) [ ( , , )]x y z t x y z t ei t x y z, , , , , , (3)

where  is the angular frequency in radians per second and is related to the frequency v by

2 v (4)

Some typical values for the optical frequency are 5 × 1014 Hz for the visible, 1013 Hz for the infra-
red, and 1016 Hz for the ultraviolet. Note that in the expression for the electric field vector, the time 
dependence has been eliminated from the amplitude term to indicate a constant linear polarization. 
The phase term has been split into spatial and temporal terms. At all locations in space, the field 
varies harmonically at the frequency .

Plane Wave

The simplest example of an electromagnetic wave is the plane wave. The plane wave is produced by 
a monochromatic point source at infinity and is approximated by a collimated light source. The 
complex amplitude of a linearly polarized plane wave is

E E r A k r( ) ( ) [ ]x y z t t ei t, , , , (5)

where k is the wave vector. The wave vector points in the direction of propagation, and its magni-
tude is the wave number k 2 / , where  is the wavelength. The wavelength is related to the tem-
poral frequency by the speed of light in the medium:

v
c

nv
c

n
2 2 (6)

where n is the index of refraction, and c is the speed of light in a vacuum. The amplitude A of a 
plane wave is a constant over all space, and the plane wave is clearly an idealization.

If the direction of propagation is parallel to the z axis, the expression for the complex amplitude 
of the plane wave simplifies to

E A( ) [ ]x y z t ei t kz, , , (7)

We see that the plane wave is periodic in both space and time. The spatial period equals the wave-
length in the medium, and the temporal period equals 1/v. Note that the wavelength changes with 
index of refraction, and the frequency is independent of the medium.

Spherical Wave

The second special case of an electromagnetic wave is the spherical wave which radiates from an iso-
tropic point source. If the source is located at the origin, the complex amplitude is

E r t A r ei t kr( ) ( ) [ ], / (8)

where r (x2 y2 z2)1/2. The field is spherically symmetric and varies harmonically with time 
and the radial distance. The radial period is the wavelength in the medium. The amplitude of the 
field decreases as 1/r for energy conservation. At a large distance from the source, the spherical 
wave can be approximated by a plane wave. Note that the vector characteristics of the field (its 
polarization) are not considered here as it is not possible to describe a linear polarization pattern 
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of constant amplitude that is consistent over the entire surface of a sphere. In practice, we only 
need to consider an angular segment of a spherical wave, in which case this polarization concern 
disappears.

Wavefronts

Wavefronts represent surfaces of constant phase for the electromagnetic field. Since they are nor-
mally used to show the spatial variations of the field, they are drawn or computed at a fixed time. 
Wavefronts for plane and spherical waves are shown in Fig. 1a and b. The field is periodic, and a 
given value of phase will result in multiple surfaces. These surfaces are separated by the wavelength. 
A given wavefront also represents a surface of constant optical path length (OPL) from the source. 
The OPL is defined by the following path integral:

OPL n s ds
S

P
( ) (9)

where the integral goes from the source S to the observation point P, and n(s) is the index of refrac-
tion along the path. Variations in the index or path can result in irregularities or aberrations in the 
wavefront. An aberrated plane wavefront is shown in Fig. 1c. Note that the wavefronts are still sepa-
rated by the wavelength.

The local normal to the wavefront defines the propagation direction of the field. This fact pro-
vides the connection between wave optics and ray or geometrical optics. For a given wavefront, a set 
of rays can be defined using the local surface normals. In a similar manner, a set of rays can be used 
to construct the equivalent wavefront.

2.4 INTERFERENCE

The net complex amplitude is the sum of all of the component fields,

E E( ) ( )x y z t x y z ti
i

, , , , , , (10)

and the resulting field intensity is the time average of the modulus squared of the total complex 
amplitude

I x y z t x y z t( ) | ( )|, , , , , ,E 2
(11)

FIGURE 1 Examples of wavefronts: (a) plane wave; (b) spherical wave; and (c) aberrated 
plane wave.

(a) (c)(b)
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where  indicates a time average over a period much longer than 1/v. If we restrict ourselves to two 
interfering waves E1 and E2, this result simplifies to

I x y z t( ) | | | |, , , 2 2
2 1 (12)

or

I x y z t I I( ), , , 1 2 2 1 2 (13)

where I1 and I2 are the intensities due to the two beams individually, and the (x, y, z, t) dependence 
is now implied for the various terms.

This general result can be greatly simplified if we assume linearly polarized monochromatic 
waves of the form in Eq. (3):

E Ai i
i t x yx y z t x y z t e i i( ) ( ) [ ( , ,, , , , , , zz)] (14)

The resulting field intensity is

I x y z t I I t( ) ( ) ( ) (, , , cos[1 2 1 2 1 22 A A 11 2( ) ( ))x y z x y z, , , , ] (15)

The interference effects are contained in the third term, and we can draw two important conclusions 
from this result. First, if the two interfering waves are orthogonally polarized, there will be no visible 
interference effects, as the dot product will produce a zero coefficient. Second, if the frequencies of 
the two waves are different, the interference effects will be modulated at a temporal beat frequency 
equal to the difference frequency.

Interference Fringes

We will now add the additional restrictions that the two linear polarizations are parallel and that 
the two waves are at the same optical frequency. The expression for the intensity pattern now 
becomes

I x y z I I I I x y z( ) [ ( )], , cos , ,1 2 1 22 (16)

where 1 2  is the phase difference. This is the basic equation describing interfer-
ence. The detected intensity varies cosinusoidally with the phase difference between the two 
waves as shown in Fig. 2. These alternating bright and dark bands in the intensity pattern 

FIGURE 2 The variation in intensity as a function of the phase difference between two 
interfering waves.
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are referred to as interference fringes, and along a particular fringe, the phase difference is 
constant.

The phase difference is related to the difference in the optical path lengths between 
the source and the observation point for the two waves. This is the optical path difference
(OPD):

OPD OPL OPL1 2 2
(17)

or

2
OPD (18)

The phase difference changes by 2  every time the OPD increases by a wavelength. The OPD is 
therefore constant along a fringe.

Constructive interference occurs when the two waves are in phase, and a bright fringe or 
maximum in the intensity pattern results. This corresponds to a phase difference of an integral 
number of 2 ’s or an OPD that is a multiple of the wavelength. A dark fringe or minimum in the 
intensity pattern results from destructive interference when the two waves are out of phase by 
or the OPD is an odd number of half wavelengths. These results are summarized in Table 1. For 
conditions between these values, an intermediate value of the intensity results. Since both the 
OPD and the phase difference increase with the integer m, the absolute value of m is called the 
order of interference.

As we move from one bright fringe to an adjacent bright fringe, the phase difference changes by 
2 . Each fringe period corresponds to a change in the OPD of a single wavelength. It is this inher-
ent precision that makes interferometry such a valuable metrology tool. The wavelength of light is 
used as the unit of measurement. Interferometers can be configured to measure small variations in 
distance, index, or wavelength.

When two monochromatic waves are interfered, the interference fringes exist not only in the 
plane of observation, but throughout all space. This can easily be seen from Eq. (16) where the 
phase difference can be evaluated at any z position. In many cases, the observation of interference 
is confined to a plane, and this plane is usually assumed to be perpendicular to the z axis. The z
dependence in Eq. (16) is therefore often not stated explicitly, but it is important to remember that 
interference effects will exist in other planes.

Fringe Visibility

It is often more convenient to rewrite Eq. (16) as

I x y I x y x y x y z( ) ( , ){ ( ) [ ]}, , cos ( , , )0 1 (19)

or

I x y I x y x y x y( ) ( ){ ( ) [ ( ), , , cos OPD , /0 1 2 ]]} (20)

TABLE 1 The Phase Difference and OPD for 
Bright and Dark Fringes (m an Integer)

OPD

Bright fringe 2m m
Dark fringe 2(m 1) (m 1/2)
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where I x y I x y I x y0 1 2( ) ( ) ( ), , , , and

( )
[ ( ) ( )]

( ) (

/

x y
I x y I x y

I x y I x
,

, ,

,

2 1 2
1 2

1 2 ,, y)
(21)

Since the cosine averages to zero, I0 (x, y) represents the average intensity, and (x, y) is the local 
fringe contrast or visibility. The fringe visibility can also be equivalently calculated using the standard 
formula for modulation:

( , )
( , ) ( , )

( , ) ( ,
max min

max min

x y
I x y I x y

I x y I x yy)
(22)

where Imax and Imin are the maximum and minimum intensities in the fringe pattern.
The fringe visibility will have a value between 0 and 1. The maximum visibility will occur when 

the two waves have equal intensity. Not surprisingly, the visibility will drop to zero when one of 
the waves has zero intensity. In general, the intensities of the two waves can vary with position, so 
that the average intensity and fringe visibility can also vary across the fringe pattern. The average 
intensity in the observation plane equals the sum of the individual intensities of the two interfering 
waves. The interference term redistributes this energy into bright and dark fringes.

Two Plane Waves

The first special case to consider is the interference of two plane waves of equal intensity, polar-
ization and frequency. They are incident at angles 1 and 2 on the observation plane, as shown 
in Fig. 3. The plane of incidence is the x-z plane (the two k-vectors are contained in this plane). 
According to Eq. (5), the complex amplitude for each of these plane waves is

E Ai
i t kz kxx y z t e i i( ) [ ( ) ( )], , , cos sin (23)

where the dot product has been evaluated. For simplicity we will place the observation plane at 
z = 0, and the phase difference between the two waves is

( , ) (sin sin ) ( )(sin sinx y kx x1 2 1 22 / )) (24)

FIGURE 3 The geometry for the interference of two plane waves.
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The resulting intensity from Eq. (19) is

I x y I x( ) { cos[( )(sin sin )]}, /0 1 21 2 (25)

where I0 2A2 is twice the intensity of each of the individual waves. Straight equispaced fringes are 
produced. The fringes are parallel to the y axis, and the fringe period depends on the angle between 
the two interfering beams.

The fringe period p is

p
sin sin1 2

(26)

and this result can also be obtained by noting that a bright fringe will occur whenever the phase 
difference equals a multiple of 2 . A typical situation for interference is that the two angles of inci-
dence are equal and opposite, 1 2 . The angle between the two beams is 2 . Under this con-
dition, the period is

p
2 2sin (27)

and the small-angle approximation is given. As the angle between the beams gets larger, the period 
decreases. For example, the period is 3.8  at 15  (full angle of 30 ) and is  at 30  (full angle of 
60 ). The interference of two plane waves can be visualized by looking at the overlap or moiré of 
two wavefront patterns (Fig. 4). Whenever the lines representing the wavefronts overlap, a fringe 
will result. This description also clearly shows that the fringes extend parallel to the z axis and exist 
everywhere the two beams overlap.

Plane Wave and Spherical Wave

A second useful example to consider is the interference of a plane wave and a spherical wave. 
Once again the two waves have the same frequency. The plane wave is at normal incidence, 
the spherical wave is due to a source at the origin, and the observation plane is located at 
z R. The wavefront shape at the observation plane will be a spherical shell of radius R. 

FIGURE 4 The interference of plane waves incident at  resulting in straight fringes.
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Starting with Eq. (8), the complex amplitude of the spherical wave in the observation 
plane is

E t A R e A R ei t k R i t( ) ( ) ( )[ ( ) ] [/
, / /

2 2 1 2 kk R R( / )]2 2 (28)

where ( )x y2 2 1 2, and the square root has been expanded in the second expression. This expan-
sion approximates the spherical wave by a parabolic wave with the same vertex radius. An additional 
assumption is that the amplitude of the field A/R is constant over the region of interest. The field for 
the plane wave is found by evaluating Eq. (23) at z R and 0. The phase difference between the 
plane and the sphere is then

( )
2

R
(29)

and the resulting intensity pattern is

I I
R

( ) 0

2

1 cos (30)

The fringe pattern comprises concentric circles, and the radial fringe spacing decreases as the radius 
 increases. The intensities of the two waves have been assumed to be equal at the observation plane. 

This result is valid only when  is much smaller than R. 
The radius of the mth bright fringe can be found by setting 2 m :

m mR2 (31)

where m is an integer. The order of interference m increases with radius. Figure 5 shows a visualiza-
tion of this situation using wavefronts. This fringe pattern is the Newton’s ring pattern and is dis-
cussed in more detail later, under “Fizeau Interferometer.” This picture also shows that the radii of 
the fringes increase as the square root of R.

The analysis of the spherical wave could also have been done by using the sag of a spherical 
wavefront to produce an OPD and then converting this value to a phase difference. The qua-
dratic approximation for the sag of a spherical surface is 2/2R. This corresponds to the OPD 

FIGURE 5 The interference of a plane wave and a spherical wave.
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between the spherical and planar wavefronts. The equivalent phase difference [Eq. (18)] is then 
2 / R , as before.

Two Spherical Waves

When considering two spherical waves, there are two particular geometries that we want to exam-
ine. The first places the observation plane perpendicular to a line connecting the two sources, and 
the second has the observation plane parallel to this line. Once again, the sources are at the same 
frequency.

When the observations are made on a plane perpendicular to a line connecting the two sources, 
we can use Eq. (28) to determine the complex amplitude of the two waves:

E t A R ei
i t k R Ri i( ) ( ) [ ( / )], /

2 2 (32)

Let d R R1 2 be the separation of the two sources. For simplicity, we have also assumed that the 
amplitudes of the two waves are equal (R is an average distance). The phase difference between the 
two waves is

2

1 2

21 1 2 2
R R

d d d

R2
(33)

where the approximation R1R2 R2 has been made. There are two terms to this phase difference. 
The second is a quadratic phase term identical in form to the result obtained from spherical and 
plane waves. The pattern will be symmetric around the line connecting the two sources, and its 
appearance will be similar to Newton’s rings. The equivalent radius of the spherical wave in Eq. (29) 
is R2/d. The first term is a constant phase shift related to the separation of the two sources. If this 
term is not a multiple of 2 , the center of the fringe pattern will not be a bright fringe; if the term is 

, the center of the pattern will be dark. Except for the additional phase shift, this intensity pattern 
is not distinguishable from the result in the previous section. It should be noted, however, that a 
relative phase shift can be introduced between a spherical wave and a plane wave to obtain this same 
result.

An important difference between this pattern and the Newton’s ring pattern is that the order 
of interference (|m| defined by 2 m) or phase difference is a maximum at the center of 
the pattern and decreases with radius. The Newton’s ring pattern formed between a plane and 
a spherical wave has a minimum order of interference at the center of the pattern. This distinc-
tion is important when using polychromatic sources.

There are several ways to analyze the pattern that is produced on a plane that is parallel to a 
line connecting the two sources. We could evaluate the complex amplitudes by using Eq. (28) and 
moving the center of the spherical waves to ±d/2 for the two sources. An equivalent method is to 
compare the wavefronts at the observation plane. This is shown in Fig. 6. The OPD between the two 
wavefronts is

OPD ,
/ /

( )
[( ) ] [( ) ]

x y
x d y

L

x d y

L

2

2

2

2

2 2 2 2

(34)

where the quadratic approximation for the wavefront sag has been assumed, and L is the dis-
tance between the sources and the observation plane. After simplification, the OPD and phase 
differences are

OPD ,( )x y
xd
L

(35)
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and

( )x y
xd
L

,
2

(36)

Straight equispaced fringes parallel to the y axis are produced. The period of the fringes is L/d. This 
fringe pattern is the same as that produced by two plane waves. Note that these fringes increase in 
spacing as the distance from the sources increases. The approximations used require that L be much 
larger than  and d.

Figure 7 shows the creation of the fringe patterns for two point sources. The full three-
dimensional pattern is a series of nested hyperboloids symmetric about the line connecting the 
sources. Above the two sources, circular fringes approximating Newton’s rings are produced, 
and perpendicular to the sources, the fringes appear to be straight and equispaced. The actual 
appearance of these patterns is modified by the approximations used in the derivations, and as a 
result, these two specific patterns have limited lateral extent.

Aberrated Wavefronts

When an aberrated or irregularly shaped wavefront is interfered with a reference wavefront, an 
irregularly shaped fringe pattern is produced. However, the rules for analyzing this pattern are 
the same as with any two wavefronts. A given fringe represents a contour of constant OPD or 
phase difference between the two wavefronts. Adjacent fringes differ in OPD by one wavelength 

W2

OPD

–d/2

d/2

W1

Sources

L

x

z

FIGURE 6 The interference of two spherical waves on a plane parallel to the sources.
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or equivalently correspond to a phase difference of 2 . If the reference is a plane wave, the abso-
lute shape of the irregular wavefront is obtained. If the reference is a spherical wave, or another 
aberrated wave, the measured OPD or phase difference map represents the difference between 
the two wavefronts.

Temporal Beats

In Eq. (15) it was noted that if the waves are at different frequencies, the interference effects are 
modulated by a beat frequency. Rewriting this expression assuming equal-intensity parallel-polar-
ized beams produces

I x y t I vt x y( ) { cos[ ( )]}, , ,0 1 2 (37)

where v v v1 2. The intensity at a given location will now vary sinusoidally with time at the beat 
frequency v. The phase difference appears as a spatially varying phase shift of the beat fre-
quency. This is the basis of the heterodyne technique used in a number of interferometers. It is com-
monly used in distance-measuring interferometers.

In order for a heterodyne system to work, there must be a phase relationship between the 
two sources even though they are at different frequencies. One common method for obtaining 
this is accomplished by starting with a single source, splitting it into two beams, and frequency-
shifting one beam with a known Doppler shift. The system will also work in reverse; measure 
the interferometric beat frequency to determine the velocity of the object producing the 
Doppler shift.

FIGURE 7 The interference of two spherical waves.
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Coherence

Throughout this discussion of fringe patterns, we have assumed that the two sources producing the 
two waves have the same frequency. In practice, this requires that both sources be derived from a 
single source. Even when two different frequencies are used [Eq. (37)] there must be an absolute 
phase relation between the two sources. If the source has finite size, it is considered to be com-
posed of a number of spatially separated, independently radiating point sources. If the source has 
a finite spectral bandwidth, it is considered to be composed of a number of spatially coincident 
point sources with different frequencies. These reductions in the spatial or temporal coherence of 
the source will decrease the visibility of the fringes at different locations in space. This is referred 
to as fringe localization. These effects will be discussed later in this chapter and also in Chap. 5, 
“Coherence Theory.”

There are two general methods to produce mutually coherent waves for interference. The 
first is called wavefront division, where different points on a wavefront are sampled to produce 
two new wavefronts. The second is amplitude division, where some sort of beamsplitter is used 
to divide the wavefront at a given location into two separate wavefronts. These methods are dis-
cussed in the next sections.

2.5 INTERFERENCE BY WAVEFRONT DIVISION

Along a given wavefront produced by a monochromatic point source, the wavefront phase is con-
stant. If two parts of this wavefront are selected and then redirected to a common volume in space, 
interference will result. This is the basis for interference by wavefront division.

Young’s Double-Slit Experiment

In 1801, Thomas Young performed a fundamental experiment for demonstrating interference and 
the wave nature of light. Monochromatic light from a single pinhole illuminates an opaque screen 
with two additional pinholes or slits. The light diffracts from these pinholes and illuminates a view-
ing screen at a distance large compared to the pinhole separation. Since the light illuminating the 
two pinholes comes from a single source, the two diffracted wavefronts are coherent and interfer-
ence fringes form where the beams overlap.

In the area where the two diffracted beams overlap, they can be modeled as two spherical waves 
from two point sources, and we already know the form of the solution for the interference from 
our earlier discussion. Equispaced straight fringes are produced, and the period of the fringes is 

L d/ , where L is the distance to the screen and d is the separation of the pinholes. The fringes are 
oriented perpendicular to the line connecting the two pinholes.

Even though we already know the answer, there is a classic geometric construction we should 
consider that easily gives the OPD between the two wavefronts at the viewing screen. This is shown 
in Fig. 8. S0 illuminates both S1 and S2 and is equidistant from both slits. The OPD for an observa-
tion point P at an angle  or position x is

OPD S P S P2 1 (38)

We now draw a line from S1 to B that is perpendicular to the second ray. Since L is much larger than 
d, the distances from B to P and S1 to P are approximately equal. The OPD is then

OPD S B d d
dx
L2 sin (39)
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and constructive interference or a bright fringe occurs when the OPD is a multiple of the wave-
length: OPD m , where m is an integer. The condition for the mth order bright fringe is

Bright fringe or: sin( )
m

d
x

m L

d
(40)

This construction is useful not only for interference situations, but also for diffraction analysis.

Effect of Slit Width

The light used to produce the interference pattern is diffracted by the pinholes or slits. Interference 
is possible only if light is directed in that direction. The overall interference intensity pattern is 
therefore modulated by the single-slit diffraction pattern (assuming slit apertures):

I x I
Dx

L
x

xd
L

( ) ( )0
2 1

2
sinc cos (41)

where D is the slit width, and a one-dimensional expression is shown. The definition of a sinc 
function is

sinc( )
sin( )

(42)

where the zeros of the function occur when the argument is an integer. The intensity variation in the 
y direction is due to diffraction only and is not shown. Since the two slits are assumed to be illuminated 
by a single source, there are no coherence effects introduced by using a pinhole or slit of finite size.

The term (x) is included in Eq. (41) to account for variations in the fringe visibility. These 
could be due to unequal illumination of the two slits, a phase difference of the light reaching the 
slits, or a lack of temporal or spatial coherence of the source S0.

d

P

x

zL
S0

S1

S2
OPD

B

FIGURE 8 Young’s double-slit experiment.
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Other Arrangements

Several other arrangements for producing interference by division of wavefront are shown in 
Fig. 9. They all use a single source and additional optical elements to produce two separate and 
mutually coherent sources. Fresnel’s biprism and mirror produce the two virtual source images, 
Billet’s split lens produces two real source images, and Lloyd’s mirror produces a single virtual 
source image as a companion to the original source. Interference fringes form wherever the two 
resulting waves overlap (shaded regions). One significant difference between these arrange-
ments and Young’s two slits is that a large section of the initial wavefront is used instead of just 
two points. All of these systems are much more light efficient, and they do not rely on diffrac-
tion to produce the secondary wavefronts.

In the first three of these systems, a bright fringe is formed at the zero OPD point between the 
two sources as in the double-slit experiment. With Lloyd’s mirror, however, the zero OPD point has 
a dark fringe. This is due to the phase shift that is introduced into one of the beams on reflection 
from the mirror.

1

0

2

(a)

0

1

2

(b)

FIGURE 9 Arrangements for interference by division of wavefront: (a) Fresnel’s biprism; 
(b) Fresnel’s mirror; (c) Billet’s split lens; and (d) Lloyd’s mirror.
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Source Spectrum

The simple fringe pattern produced by the two-slit experiment provides a good example to examine 
the effects of a source with a finite spectrum. In this model, the source can be considered to be a col-
lection of sources, each radiating independently and at a different wavelength. All of these sources 
are colocated to produce a point source. (Note that this is an approximation, as a true point source 
must be monochromatic.) At each wavelength, an independent intensity pattern is produced:

I x I
xd
L

I( ) cos cos, 0 01
2

1
2 OOPD

(43)

where the period of the fringes is L d/ , and a fringe visibility of one is assumed. The total intensity 
pattern is the sum of the individual fringe patterns:

I x S I x d S v I x v dv( ) ( ) ( ) ( ) ( ), ,
0 0

(44)

where S( ) or S(v) is the source intensity spectrum which serves as a weighting function.
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FIGURE 9 (Continued)
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The effect of this integration can be seen by looking at a simple example where the source is 
composed of three different wavelengths of equal intensity. To further aid in visualization, let’s use 
Blue (400 nm), Green (500 nm), and Red (600 nm). The result is shown in Fig. 10a. There are three 
cosine patterns, each with a period proportional to the wavelength. The total intensity is the sum of 
these curves. All three curves line up when the OPD is zero (x 0), and the central bright fringe is 
now surrounded by two-colored dark fringes. These first dark fringes have a red to blue coloration 
with increasing OPD. As we get further away from the zero OPD condition, the three patterns get 
out of phase, the pattern washes out, and the color saturation decreases. This is especially true when 
the source is composed of more than three wavelengths.

It is common in white light interference situations for one of the two beams to undergo an addi-
tional phase shift. This is the situation in Lloyd’s mirror. In this case, there is a central dark fringe 
at zero OPD with colored bright fringes on both sides. This is shown in Fig. 10b, and the pattern is 
complementary to the previous pattern. In this case the first bright fringe shows a blue to red color 
smear. The dark central fringe is useful in determining the location of zero OPD between the two 
beams.

The overall intensity pattern and resulting fringe visibility can be computed for a source with a 
uniform frequency distribution over a frequency range of v :

I x
v

I x v dv
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(45)

where v0 is the central frequency, and the 1/ v term is a normalization factor to assure that the aver-
age intensity is I0. After integration and simplification, the result is

I x I
xd v
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v xd

cL
( ) 0

01
2

sinc cos (46)

where the sinc function is defined in Eq. (42). A fringe pattern due to the average optical frequency 
results, but it is modulated by a sinc function that depends on v and x. The absolute value of the 
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FIGURE 10 The interference pattern produced by a source with three separate wave-
lengths: (a) zero OPD produces a bright fringe and (b) zero OPD produces a dark fringe.
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sinc function is the fringe visibility (x), and it depends on both the spectral width and position of 
observation. The negative portions of the sinc function correspond to a  phase shift of the fringes.

It is informative to rewrite this expression in terms of the OPD:

I x I
v

c
( ) cos0

0

1
2

sinc
OPD OPD

(47)

where 0 is the wavelength corresponding to v0. Good fringe visibility is obtained only when either 
the spectral width is small (the source is quasi-monochromatic) or the OPD is small. The fringes 
are localized in certain areas of space. This result is consistent with the earlier graphical representa-
tions. In the area where the OPD is small, the fringes are in phase for all wavelengths. As the OPD 
increases, the fringes go out of phase since they all have different periods, and the intensity pattern 
washes out.

This result turns out to be very general: for an incoherent source, the fringes will be localized 
in the vicinity of zero OPD. There are two other things we should notice about this result. The 
first is that the first zero of the visibility function occurs when the OPD equals c / v. This distance 
is known as the coherence length as it is the path difference over which we can obtain interference. 
The second item is that the visibility function is a scaled version of the Fourier transform of the 
source frequency spectrum. It is evaluated for the OPD at the measurement location. The Fourier 
transform of a uniform distribution is a sinc function. We will discuss this under “Coherence and 
Interference” later in the chapter.

2.6 INTERFERENCE BY AMPLITUDE DIVISION

The second general method for producing interference is to use the same section of a wavefront 
from a single source for both resulting wavefronts. The original wavefront amplitude is split into 
two or more parts, and each fraction is directed along a different optical path. These waves are then 
recombined to produce interference. This method is called interference by amplitude division. There 
are a great many interferometer designs based on this method. A few will be examined here, and 
many more will be discussed in Chap. 32, “Interferometers.”

Plane-Parallel Plate

A first example of interference by amplitude division is a plane-parallel plate illuminated by a 
monochromatic point source. Two virtual images of the point source are formed by the Fresnel 
reflections at the two surfaces, as shown in Fig. 11. Associated with each of the virtual images is a 
spherical wave, and interference fringes form wherever these two waves overlap. In this case, this is 
the volume of space on the source side of the plate. The pattern produced is the same as that found 
for the interference of two spherical waves (discussed earlier under “Two Spherical Waves”), and 
nonlocalized fringes are produced. The pattern is symmetric around the line perpendicular to the 
plate through the source. If a screen is placed along this axis, a pattern similar to circular Newton’s 
ring fringes are produced as described by Eq. (33), where d 2t/n is now the separation of the vir-
tual sources. The thickness of the plate is t, its index is n, and the distance R is approximately the 
screen-plate separation plus the source-plate separation. We have ignored multiple reflections in 
the plate. As with the interference of two spherical waves, the order of interference is a maximum at 
the center of the pattern.

The interference of two plane waves can be obtained by illuminating a wedged glass plate with 
a plane wavefront. If the angle of incidence on the first surface is and the wedge angle is , two 
plane waves are produced at angles and 2n due to reflections at the front and rear surfaces. 
Straight equispaced fringes will result in the volume of space where the two reflected waves over-
lap. The period of these fringes on a screen parallel to the plate is given by Eq. (26), where the two 
reflected angles are used.
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Extended Source

An extended source is modeled as a collection of independent point sources. If the source is quasi-
monochromatic, all of the point sources radiate at the same nominal frequency, but without a phase 
relationship. Each point source will produce its own interference pattern, and the net intensity pat-
tern is the sum or integral of all the individual intensity patterns. This is the spatial analogy to the 
temporal average examined earlier under “Source Spectrum.”

With an extended source, the fringes will be localized where the individual fringe position or 
spacing is not affected by the location of the point sources that comprise the extended source. We 
know from our previous examples that a bright fringe (or a dark fringe, depending on phase shifts) 
will occur when the OPD is zero. If there is a location where the OPD is zero independent of source 
location, all of the individual interference patterns will be in phase, and the net pattern will show 
good visibility. In fact, the three-dimensional fringe pattern due to a point source will tend to shift 
or pivot around this zero-OPD location as the point source location is changed. The individual pat-
terns will therefore be out of phase in areas where the OPD is large, and the average intensity pattern 
will tend to wash out in these regions as the source size increases.

The general rule for fringe visibility with an extended quasi-monochromatic source is that the 
fringes will be localized in the region where the OPD between the two interfering wavefronts is 
small. For a wedged glass plate, the fringes are localized in or near the wedge, and the best visibility 
occurs as the wedge thickness approaches zero and is perhaps just a few wavelengths. The allowable 
OPD will depend on the source size and the method of viewing the fringes. This result explains why, 
under natural light, interference effects are seen in thin soap bubbles but not with other thicker glass 
objects. An important exception to this rule is the plane-parallel plate where the fringes are localized 
at infinity.

Fringes of Equal Inclination

There is no section of a plane-parallel plate that produces two reflected wavefronts with 
zero OPD. The OPD is constant, and we would expect, based on the previous section, that 
no high-visibility fringes would result with an extended source. If, however, a lens is used 

t

S0

Screen

S1 S2

Index = n

FIGURE 11 Interference from a plane-parallel plate and a point source.
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to collect the light reflected from the plate, fringes are formed in the back focal plane of the 
lens. This situation is shown in Fig. 12, and any ray leaving the surface at a particular angle 

 is focused to the same point P. For each incident ray at this angle, there are two parallel 
reflected rays: one from the front surface and one from the back surface. The reflections 
from different locations on the plate at this angle are due to light from different points in 
the extended source. The OPD for any pair of these reflected rays is the same regardless of 
the source location. These rays will interfere at P and will all have the same phase difference. 
High-visibility fringes result. Different points in the image plane correspond to different 
angles. The formation of these fringes localized at infinity depends on the two surfaces of the 
plate being parallel.

The OPD between the reflected rays is a function of the angle of incidence , the plate index n,
and thickness t :

OPD cos2nt (48)

FIGURE 12 The formation of fringes of equal inclination.
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where  is the internal angle. Taking into account the half-wave shift due to the phase change 
difference of  between an internal and an external reflection, a dark fringe will result for angles 
satisfying

2
2

nt m
m

nt
cos or cos (49)

where m is an integer. Since only the angle of incidence determines the properties of the interference 
(everything else is constant), these fringes are called fringes of equal inclination. They appear in the 
back focal plane of the lens and are therefore localized at infinity since infinity is conjugate to the 
focal plane. As the observation plane is moved away from the focal plane, the visibility of the fringes 
will quickly decrease.

When the axis of the lens is normal to the surfaces of the plate, a beamsplitter arrangement is 
required to allow light from the extended source to be reflected into the lens as shown in Fig. 13. 
Along the axis, 90 , and symmetry requires that the fringes are concentric about the axis. 
In this special case, these fringes are called Haidinger fringes, and they are identical in appearance 
to Newton’s rings [Eq. (30)]. If there is an intensity maximum at the center, the radii of the other 
bright fringes are proportional to the square roots of integers. As with other fringes formed by a 
plane-parallel plate (discussed earlier), the order of interference decreases with the observation 
radius on the screen. As  increases, the value of m decreases.

Fringes of Equal Thickness

The existence of fringes of equal inclination depends on the incident light being reflected by two 
parallel surfaces, and the angle of incidence is the mechanism which generates changes in the OPD. 
There are many arrangements with an extended source where the reflections are not parallel, and 
the resulting changes in OPD dominate the angle-of-incidence considerations. The fringes pro-
duced in this situation are called fringes of equal thickness, and we have stated earlier that they will be 
localized in regions where the OPD between the two reflections is small.

FIGURE 13 The formation of Haidinger fringes.
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An example of fringes of equal thickness occurs with a wedged glass plate illuminated by a quasi-
monochromatic extended source. We know that for each point in the source, a pattern comprising 
equispaced parallel fringes results, and the net pattern is the sum of all of these individual patterns. 
However, it is easier to examine this summation by looking at the OPD between the two reflected 
rays reaching an observation point P from a source point S. This is shown in Fig. 14. The wedge 
angle is , the thickness of the plate at this location is t, its index is n, and the internal ray angle is 

 The exact OPD is difficult to calculate, but under the assumption that  is small and the wedge is 
sufficiently thin, the following result for the OPD is obtained:

OPD cos2nt (50)

As other points on the source are examined, the reflection needed to get light to the observation 
point will move to a different location on the plate, and different values of both t and  will result. 
Different source points may have greatly different OPDs, and in general the fringe pattern will wash 
out in the vicinity of P.

This reduction in visibility can be avoided if the observation point is placed in or near the wedge. 
In this case, all of the paths between S and P must reflect from approximately the same location on 
the wedge, and the variations in the thickness t are essentially eliminated. The point P where the two 
reflected rays cross may be virtual. The remaining variations in the OPD are from the different ’s 
associated with different source points. This variation may be limited by observing the fringe pattern 
with an optical system having a small entrance pupil. This essentially limits the amount of the source 
that is used to examine any area on the surface. A microscope or the eye focused on the wedge can 
be used to limit the angles. If the range of values of  is small, high-visibility fringes will appear to 
be localized at the wedge. The visibility of the fringes will decrease as the wedge thickness increases.

It is common to arrange the system so that the fringes are observed in a direction approximately 
normal to the surface. Taking into account the additional phase shift introduced at the reflection 
from one of the surfaces, the conditions for bright and dark fringes are then

Bright: 2
2

nt m (51)

and

Dark: 2nt m (52)

FIGURE 14 The ray path between a point source and an observation 
point for a wedged plate.
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where m is an integer greater than or equal to zero. Since t increases linearly across the wedge, the 
observed pattern will be straight equispaced fringes.

These same conditions hold for any plate where the two surfaces are not parallel. The surfaces 
may have any shape, and as long as the surface angles are small and the plate is relatively thin, high-
visibility fringes localized in the plate are observed. Along a given fringe the value of m is constant, 
so that a fringe represents a contour of constant optical path length nt. If the index is constant, we 
have fringes of equal thickness. The fringes provide a contour map of the plate thickness, and adja-
cent fringes correspond to a change of thickness of /2n . An irregularly shaped pattern will result 
from the examination of a plate of irregular thickness.

Thin Films

With the preceding background, we can easily explain the interference characteristics of thin films.
There are two distinct types of films to consider. The first is a thin film of nonuniform thickness, 
and examples are soap bubbles and oil films on water. The second type is a uniform film, such as 
would be obtained by vacuum deposition and perhaps used as an antireflection coating. Both of 
these films share the characteristic of being extremely thin—usually not more than a few wave-
lengths thick and often just a fraction of a wavelength thick.

With a nonuniform film, fringes of equal thickness localized in the film are produced. 
There will be a dark fringe in regions of the film where it is substantially thinner than a half 
wave. We are assuming that the film is surrounded by a lower-index medium such as air so 
that there is an extra  phase shift. If white light is used for illumination, colored bands will 
be produced similar to those diagramed in Fig. 10b (the curves would need to be modified 
to rescale the x axis to OPD or film thickness). Each color will produce its first maximum in 
intensity when the optical thickness of the film is a quarter of that wavelength. As the film 
thickness increases, the apparent fringe color will first be blue, then green, and finally red. 
These colored fringes are possible because the film is very thin, and the order of interference 
m is often zero or one [Eqs. (51) and (52)]. The interference patterns in the various colors 
are just starting to get out of phase, and interference colors are visible. As the film thickness 
increases, the various wavelength fringes become jumbled, and distinct fringe patterns are no 
longer visible.

When a uniform thin film is examined with an extended source, fringes of equal inclina-
tion localized at infinity are produced. These fringes will be very broad since the thickness 
of the film is very small, and large angles will be required to obtain the necessary OPD for 
a fringe [Eq. (49)]. A common use of this type of film is as an antireflection coating. In this 
application, a uniform coating that has an optical thickness of a quarter wavelength is applied 
to a substrate. The coating index is lower than the substrate index, so an extra phase shift is 
not introduced. A wave at normal incidence is reflected by both surfaces of the coating, and 
these reflected waves are interfered. If the incident wavelength matches the design of the 
film, the two reflected waves are out of phase and interfere destructively. The reflected inten-
sity will depend on the Fresnel reflection coefficients at the two surfaces, but will be less than 
that of the uncoated surface. When a different wavelength is used or the angle of incidence 
is changed, the effectiveness of the antireflection coating is reduced. More complicated film 
structures comprising many layers can be produced to modify the reflection or transmission 
characteristics of the film.

Fizeau Interferometer

The Fizeau interferometer compares one optical surface to another by placing them in close prox-
imity. A typical arrangement is shown in Fig. 15, where the extended source is filtered to be quasi-
monochromatic. A small air gap is formed between the two optical surfaces, and fringes of equal 
thickness are observed between the two surfaces. Equations (51) and (52) describe the location of 
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the fringes, and the index of the thin wedge is now that of air. Along a fringe, the gap is of constant 
thickness, and adjacent fringes correspond to a change of thickness of a half wavelength. This inter-
ferometer is sometimes referred to as a Newton interferometer.

This type of interferometer is the standard test instrument in an optical fabrication shop. 
One of the two surfaces is a reference or known surface, and the interferometric comparison of 
this reference surface and the test surface shows imperfections in the test part. Differences in 
radii of the two surfaces are also apparent. The fringes are easy to interpret, and differences of 
as little as a twentieth of a wavelength can be visually measured. These patterns and this inter-
ferometer are further discussed in Chap. 13, “Optical Testing,” in Vol. II. The interferometer is 
often used without the beamsplitter, and the fringes are observed in the direct reflection of the 
source from the parts.

The classic fringe pattern produced by a Fizeau interferometer is Newton’s rings. These are 
obtained by comparing a convex sphere to a flat surface. The parabolic approximation for the sag of 
a sphere of radius R is

sag( )
2

2R
(53)

and  is the radial distance from the vertex of the sphere. If we assume the two surfaces are in con-
tact at 0, the OPD between the reflected waves is twice the gap, and the condition for a dark 
fringe is

m R (54)

Optical surfaces Air gap

B.S.

Extended
source

Eye

FIGURE 15 Fizeau interferometer.
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Circular fringes that increase in radius as the square root of  are observed. Note that a dark fringe 
occurs at the center of the pattern. In reflection, this point must be dark, as there is no interface at 
the contact point to produce a reflection.

Michelson Interferometer

There are many two-beam interferometers which allow the surfaces producing the two 
wavefronts to be physically separated by a large distance. These instruments allow the two 
wavefronts to travel along different optical paths. One of these is the Michelson interferometer
diagramed in Fig. 16a. The two interfering wavefronts are produced by the reflections from 
the two mirrors. A plate beamsplitter with one face partially silvered is used, and an identical 
block of glass is placed in one of the arms of the interferometer to provide the same amount of 
glass path in each arm. This cancels the effects of the dispersion of the glass beamsplitter and 
allows the system to be used with white light since the optical path difference is the same for 
all wavelengths.

Figure 16b provides a folded view of this interferometer and shows the relative optical 
position of the two mirrors as seen by the viewing screen. It should be obvious that the two 

FIGURE 16 Michelson interferometer: (a) schematic view and (b) folded view 
showing the relative optical position of the two mirrors.
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mirrors can be thought of as the two surfaces of a “glass” plate that is illuminated by the 
source. In this case, the index of the fictitious plate is one, and the reflectivity at the two sur-
faces is that of the mirrors. Depending on the mirror orientations and shapes, the interferom-
eter either mimics a plane-parallel plate of adjustable thickness, a wedge of arbitrary angle and 
thickness, or the comparison of a reference surface with an irregular or curved surface. The 
type of fringes that are produced will depend on this configuration, as well as on the source 
used for illumination.

When a monochromatic point source is used, nonlocalized fringes are produced, and the 
imaging lens is not needed. Two virtual-source images are produced, and the resulting fringes 
can be described by the interference of two spherical waves (discussed earlier). If the mirrors 
are parallel, circular fringes centered on the line normal to the mirrors result as with a plane-
parallel plate. The source separation is given by twice the apparent mirror separation. If the 
mirrors have a relative tilt, the two source images appear to be laterally displaced, and hyper-
bolic fringes result. Along a plane bisecting the source images, straight equispaced fringes are 
observed.

When an extended monochromatic source is used, the interference fringes are localized. If the 
mirrors are parallel, fringes of equal inclination or Haidinger fringes (as described earlier) are pro-
duced. The fringes are localized at infinity and are observed in the rear focal plane of the imaging 
lens. Fringes of equal thickness localized at the mirrors are generated when the mirrors are tilted. 

Extended
source

B.S.

Screen

1

2

FIGURE 16 (Continued)
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The apparent mirror separation should be kept small, and the imaging lens should focus on the 
mirror surface.

If the extended source is polychromatic, colored fringes localized at the mirrors result. 
They are straight for tilted mirrors. The fringes will have high visibility only if the apparent 
mirror separation or OPD is smaller than the coherence length of the source. Another way 
of stating this is that the order of interference m must be small to view the colored fringes. 
As m increases, the fringes will wash out. The direct analogy here is a thin film. As the mirror 
separation is varied, the fringe visibility will vary. The fringe visibility as a function of mir-
ror separation is related to the source frequency spectrum (see under “Source Spectrum” and 
“Coherence and Interference”), and this interferometer forms the basis of a number of spec-
trometers. When the source spectrum is broad, chromatic fringes cannot be viewed with the 
mirrors parallel. This is because the order of interference for fringes of equal inclination is a 
maximum at the center of the pattern.

An important variation of the Michelson interferometer occurs when monochromatic colli-
mated light is used. This is the Twyman-Green interferometer, and is a special case of point-source 
illumination with the source at infinity. Plane waves fall on both mirrors, and if the mirrors are 
flat, nonlocalized equispaced fringes are produced. Fringes of equal thickness can be viewed by 
imaging the mirrors onto the observation screen. If one of the mirrors is not flat, the fringes rep-
resent changes in the surface height. The two surfaces are compared as in the Fizeau interferom-
eter. This interferometer is an invaluable tool for optical testing.

2.7 MULTIPLE BEAM INTERFERENCE

Throughout the preceding discussions, we have assumed that only two waves were being interfered. 
There are many situations where multiple beams are involved. Two examples are the diffraction 
grating and a plane-parallel plate. We have been ignoring multiple reflections, and in some instances 
these extra beams are very important. The net electric field is the sum of all of the component fields. 
The two examples noted above present different physical situations: all of the interfering beams have 
a constant intensity with a diffraction grating, and the intensity of the beams from a plane-parallel 
plate decreases with multiple reflections.

Diffraction Grating

A diffraction grating can be modeled as a series of equispaced slits, and the analysis bears a strong 
similarity to the Young’s double slit (discussed earlier). It operates by division of wavefront, and the 
geometry is shown in Fig. 17. The slit separation is d, the OPD between successive beams for a given 
observation angle  is d sin ( ), and the corresponding phase difference 2 d sin /( ) . The field 
due to the nth slit at a distant observation point is

E Ae j Nj
i j( ) ( )1 1 2, , . . ., (55)

where all of the beams have been referenced to the first slit, and there are N total slits. The net 
field is

E E A ej
i j

j

N

j

N

( ) ( ) ( ) 1

11

(56)

which simplifies to

E A
e

e

iN

i
( )

1

1
(57)
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The resulting intensity is

I I

N

( )

sin

sin
0

2

2

2

2

I

N d

d0

2

2

sin
sin( )

sin
sin( )

(58)

where I0 is the intensity due to an individual slit.
This intensity pattern is plotted in Fig. 18 for N 5. The result for N 2, which is the double-

slit experiment, is also shown. The first thing to notice is that the locations of the maxima are 
the same, independent of the number of slits. A maximum of intensity is obtained whenever the 
phase difference between adjacent slits is a multiple of 2 . These maxima occur at the diffraction 
angles given by

sin( )
m
d

(59)

where m is an integer. The primary difference between the two patterns is that with multiple slits, 
the intensity at the maximum increases to N 2 times that due to a single slit, and this energy is con-
centrated into a much narrower range of angles. The full width of a diffraction peak between inten-
sity zero corresponds to a phase difference of 4 /N .

The number of intensity zeros between peaks is N − 1. As the number of slits increases, the angu-
lar resolution or resolving power of the grating greatly increases. The effects of a finite slit width can 
be added by replacing I0 in Eq. (58) by the single-slit diffraction pattern. This intensity variation 
forms an envelope for the curve in Fig. 18.

d
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S

FIGURE 17 Diffraction grating: multiple-beam interference 
by division of wavefront.
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Plane-Parallel Plate

The plane-parallel plate serves as a model to study the interference of multiple waves obtained 
by division of amplitude. As we shall see, the incremental phase difference between the interfer-
ing beams is constant but, in this case, the beams have different intensities. A plate of thickness 
t and index n with all of the reflected and transmitted beams is shown in Fig. 19. The amplitude 
reflection and transmission coefficients are  and , and  and , where the primes indicate 

4p/

6p4p2p0

4 0

25 0

 = 5

 = 2

f

FIGURE 18 The interference patterns produced by gratings with 2 and 5 slits.
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FIGURE 19 Plane-parallel plate: multiple-beam interference by division of amplitude.
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reflection or transmission from within the plate. The first reflected beam is 180  out of phase 
with the other reflected beams since it is the only beam to undergo an external reflection, and 

− . Note that  occurs only in odd powers for the reflected beams. Each successive reflected 
or transmitted beam is reduced in amplitude by 2. The phase difference between successive 
reflected or transmitted beams is the same as we found when studying fringes of equal inclination 
from a plane-parallel plate:

4 nt cos( )
(60)

where is the angle inside the plate.
The transmitted intensity can be determined by first summing all of the transmitted amplitudes:

E E A ej
i j

jj

( ) ( )2 1

11

(61)

where the phase is referenced to the first transmitted beam. The result of the summation is

E
A

ei
( )

1 2
(62)

The transmitted intensity It is the squared modulus of the amplitude which, after simplification, 
becomes

I

I
t

0

2

2

2

1

1
2

1
2sin ( )/

(63)

where I0 is the incident intensity. We have also assumed that there is no absorption in the plate, and 
therefore 2 1. Under this condition of no absorption, the sum of the reflected and transmit-
ted light must equal the incident light: It Ir = I0. The expressions for the transmitted and reflected 
intensities are then

I

I F
t

0
2

1

1 2sin ( )/
(64)

and
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I
F

F
r

0

2

2

2

1 2

sin ( )

sin ( )

/

/
(65)

and F is defined as

F
2

1 2

2

(66)

F is the coefficient of finesse of the system and is a function of the surface reflectivity only. The value 
of F will have a large impact on the shape of the intensity pattern. Note that the reflected intensity 
could also have been computed by summing the reflected beams.

A maximum of transmitted intensity, or a minimum of reflected intensity, will occur when 
/2 m , where m is an integer. Referring back to Eq. (60), we find that this corresponds to the 

angles

cos
m

nt2
(67)
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This is exactly the same condition that was found for a plane-parallel plate with two beams 
[Eq. (49)]. With an extended source, fringes of equal inclination are formed, and they are 
localized at infinity. They must be at infinity since all of the reflected or transmitted beams 
are parallel for a given input angle. The fringes are observed in the rear focal plane of a view-
ing lens. If the optical axis of this lens is normal to the surface, circular fringes about the axis 
are produced. The locations of the maxima and minima of the fringes are the same as were 
obtained with two-beam interference

The shape of the intensity profile of these multiple beam fringes is not sinusoidal, as it 
was with two beams. A plot of the transmitted fringe intensity [Eq. (64)] as a function of 

 is shown in Fig. 20 for several values of F. When the phase difference is a multiple of 2 ,
we obtain a bright fringe independent of F or . When F is small, low-visibility fringes are 
produced. When F is large, however, the transmitted intensity is essentially zero unless the 
phase has the correct value. It drops off rapidly for even small changes in . The transmit-
ted fringes will be very narrow bright circles on an essentially black background. The reflected 
intensity pattern is one minus this result, and the fringe pattern will be very dark bands on a 
uniform bright background. The reflected intensity profile is plotted in Fig. 21 for several 
values of F.

The value of F is a strong function of the surface reflectivity R 2. We do not obtain appre-
ciable values of F until the reflectivity is approximately one. For example, R 0.8 produces F 80,
while R 0.04 gives F 0.17. This latter case is typical for uncoated glass, and dim broad fringes in 
reflection result, as in Fig. 21. The pattern is approximately sinusoidal, and it is clear that our earlier 
assumptions about ignoring multiple reflections when analyzing a plane-parallel plate are valid for 
many low-reflectivity situations.

The multiple beam interference causes an energy redistribution much like that obtained from 
a diffraction grating. A strong response is obtained only when all of the reflected beams at a given 
angle add up in phase. The difference between this pattern and that of a diffraction pattern is that 
there are no oscillations or zeros between the transmitted intensity maxima. This is a result of the 
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FIGURE 20 The transmitted intensity of a multiple-beam interference pattern produced 
by a plane-parallel plate.
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unequal amplitudes of the interfering beams. With a diffraction grating, all of the beams have equal 
amplitude, and the resultant intensity oscillates as more beams are added.

Multiple-beam fringes of equal thickness can be produced by two high-reflectivity surfaces in 
close proximity in a Fizeau interferometer configuration. The dark fringes will narrow to sharp lines, 
and each fringe will represent a contour of constant OPD between the surfaces. As before, a dark 
fringe corresponds to a gap of an integer number of half wavelengths. The area between the fringes 
will be bright. The best fringes will occur when the angle and the separation between the surfaces is 
kept small. This will prevent the multiple reflections from walking off or reflecting out of the gap.

Fabry-Perot Interferometer

The Fabry-Perot interferometer is an important example of a system which makes use of multiple-
beam interference. This interferometer serves as a high-resolution spectrometer and also as an opti-
cal resonator. In this latter use, it is an essential component of a laser. The system is diagrammed in 
Fig. 22, and it consists of two highly reflective parallel surfaces separated by a distance t. These two 
separated reflective plates are referred to as a Fabry-Perot etalon or cavity, and an alternate arrange-
ment has the reflected coatings applied to the two surfaces of a single glass plate. The two lenses 
serve to collimate the light from a point on the extended source in the region of the cavity and to 
then image this point onto the screen. The screen is located in the focal plane of the lens so that 
fringes of equal inclination localized at infinity are viewed. As we have seen, light of a fixed wave-
length will traverse the etalon only at certain well-defined angles. Extremely sharp multiple-beam 
circular fringes in transmission are produced on the screen, and their profile is the same as that 
shown in Fig. 20.

If the source is not monochromatic, a separate independent circular pattern is formed for each 
wavelength. Equation (67) tells us that the location or scale of the fringes is dependent on the wave-
length. If the source is composed of two closely spaced wavelengths, the ring structure is doubled, 

FIGURE 21 The reflected intensity of a multiple-beam interference pattern produced by a 
plane-parallel plate.
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and the separation of the two sets of rings allows the hyperfine structure of the spectral lines to be 
evaluated directly. More complicated spectra, usually composed of discrete spectral lines, can also 
be measured. This analysis is possible even though the order of interference is highest in the center 
of the pattern. If the phase change due to the discrete wavelengths is less than the phase change 
between adjacent fringes, nonoverlapping sharp fringes are seen.

A quantity that is often used to describe the performance of a Fabry-Perot cavity is the finesse 
. It is a measure of the number of resolvable spectral lines, and is defined as the ratio of the phase 

difference between adjacent fringes to the full width-half maximum FWHM of a single fringe. Since 
the fringe width is a function of the coefficient of finesse, the finesse itself is also a strong function of 
reflectivity. The phase difference between adjacent fringes is 2 , and the half width-half maximum 
can be found by setting Eq. (64) equal to 1

2
 and solving for . The FWHM is twice this value, and 

under the assumption that F is large,

FWHM
4

F
(68)

and the finesse is

2
2 1 12FWHM

F R
R

(69)

where  is the amplitude reflectivity, and R is the intensity reflectivity. Typical values for the finesse 
of a cavity with flat mirrors is about 30 and is limited by the flatness and parallelism of the mirrors. 
There are variations in  across the cavity. Etalons consisting of two curved mirrors can be con-
structed with a much higher finesse, and values in excess of 10,000 are available.

Another way of using the Fabry-Perot interferometer as a spectrometer is suggested by rewriting 
the transmission [Eq. (64)] in terms of the frequency v :

T
I

I F tv c
t

0
2

1

1 2sin ( )/
(70)

where Eq. (60) relates the phase difference to the wavelength, t is the mirror separation, and 
an index of one and normal incidence ( 0) have been assumed. This function is plotted in 
Fig. 23, and a series of transmission spikes separated in frequency by c/2t are seen. A maximum 
occurs whenever the value of the sine is zero. The separation of these maxima is known as the 
free spectral range, FSR. If the separation of the mirrors is changed slightly, these transmission 
peaks will scan the frequency axis. Since the order of interference m is usually very large, it takes 

FIGURE 22 Fabry-Perot interferometer.



INTERFERENCE  2.35

only a small change in the separation to move the peaks by one FSR. In fact, to scan one FSR, the 
required change in separation is approximately t/m. If the on-axis transmitted intensity is moni-
tored while the mirror separation is varied, a high-resolution spectrum of the source is obtained. 
The source spectrum must be contained within one free spectral range so that the spectrum is 
probed by a single transmission peak at a time. If this were not the case, the temporal signal 
would contain simultaneous contributions from two or more frequencies resulting from different 
transmission peaks. Under this condition there are overlapping orders, and it is often prevented 
by using an auxiliary monochromator with the scanning Fabry-Perot cavity to preselect or limit 
the frequency range of the input spectrum. The resolution v of the trace is limited by the finesse 
of the cavity.

For a specific cavity, the value of m at a particular transmission peak, and some physical insight 
into the operation of this spectrometer, is obtained by converting the frequency of a particular 
transmission mode mc/2t into wavelength:

2
2

t
m

t mor (71)

For the mth transmission maximum, exactly m half waves fit across the cavity. This also implies 
that the round-trip path within the cavity is an integer number of wavelengths. Under this condi-
tion, all of the multiply-reflected beams are in phase everywhere in the cavity, and therefore all 
constructively interfere. A maximum in the transmission occurs. Other maxima occur at different 
wavelengths, but these specific wavelengths must also satisfy the condition that the cavity spacing is 
an integer number of half wavelengths.

These results also allow us to determine the value of m. If a 1-cm cavity is used and the 
nominal wavelength is 500 nm, m 40,000 and FSR 1.5 × 1010 Hz. The wavelength interval 
corresponding to this FSR is 0.0125 nm. If a 1-mm cavity is used instead, the results are m 4000 
and FSR 1.5 × 1011 Hz 0.125 nm. We see now that to avoid overlapping orders, the spectrum 
must be limited to a very narrow range, and this range is a function of the spacing. Cavities with 
spacings of a few tens of m’s are available to increase the FSR. Increasing the FSR does have 
a penalty. The finesse of a cavity depends only on the reflectivities, so as the FSR is increased 
by decreasing t, the FWHM of the transmission modes increases to maintain a constant ratio. 
The number of resolvable spectrum lines remains constant, and the absolute spectral resolution 
decreases.

FSR

2
(  + 1)

2
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FIGURE 23 The transmission of a Fabry-Perot cavity as a function of frequency.
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A mirror translation of a half wavelength is sufficient to cover the FSR of the cavity. The usual 
scanning method is to separate the two mirrors with a piezoelectric spacer. As the applied voltage is 
changed, the cavity length will also change. An alternate method is to change the index of the air in 
the cavity by changing the pressure.

2.8 COHERENCE AND INTERFERENCE

The observed fringe visibility is a function of the spatial and temporal coherence of the source. 
The classical assumption for the analysis is that every point on an extended source radiates inde-
pendently and therefore produces its own interference pattern. The net intensity is the sum of 
all of the individual intensity patterns. In a similar manner, each wavelength or frequency of a 
nonmonochromatic source radiates independently, and the temporal average is the sum of the 
individual temporal averages. Coherence theory allows the interference between the light from two 
point sources to be analyzed, and a good visual model is an extended source illuminating the two 
pinholes in Young’s double slit. We need to determine the relationship between the light trans-
mitted through the two pinholes. Coherence theory also accounts for the effects of the spectral 
bandwidth of the source.

With interference by division of amplitude using an extended source, the light from many point 
sources is combined at the observation point, and the geometry of the interferometer determines 
where the fringes are localized. Coherence theory will, however, predict the spectral bandwidth 
effects for division of amplitude interference. Each point on the source is interfered with an image 
of that same point. The temporal coherence function relates the interference of these two points 
independently of other points on the source. The visibility function for the individual interference 
pattern due to these two points is computed, and the net pattern is the sum of these patterns for the 
entire source. The temporal coherence effects in division of amplitude interference are handled on a 
point-by-point basis across the source.

In this section, the fundamentals of coherence theory as it relates to interference are introduced. 
Much more detail on this subject can be found in Chap. 5, “Coherence Theory.”

Mutual Coherence Function

We will consider the interference of light from two point sources or pinholes. This light is derived 
from a common origin so that there may be some relationship between the complex fields at the 
two sources. We will represent these amplitudes at the pinholes as E1(t) and E2(t), as shown in 
Fig. 24. The propagation times between the two sources and the observation point are t1 and t2,

FIGURE 24 Geometry for examining the mutual coherence of two 
sources.
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where the times are related to the optical path lengths by ti OPLi c. The two complex ampli-
tudes at the observation point are then E1(t − t1) and E2(t − t2), where the amplitudes have been 
scaled to the observation plane. The time-average intensity at the observation point can be found 
by returning to Eq. (13), which is repeated here with the time dependence:

I I I E t t E t t E t t E t1 2 1 1 2 2 1 1 2( ) ( ) ( ) ( tt2) (72)

where I1 and I2 are the intensities due to the individual sources. If we now shift our time origin by t2,
we obtain

I I I E t E t E t E t1 2 1 2 1 2( ) ( ) ( ) ( ) (73)

where

t t
c c2 1

2 1OPL OPL OPD
(74)

The difference in transit times for the two paths is . The last two terms in the expression for the 
intensity are complex conjugates, and they contain the interference terms.

We will now define the mutual coherence function 12( ):

12 1 2( ) ( ) ( )E t E t (75)

which is the cross correlation of the two complex amplitudes. With this identification, the intensity 
of the interference pattern is

I I I1 2 12 12( ) ( ) (76)

or, recognizing that a quantity plus its complex conjugate is twice the real part,

I I I1 2 122Re{ ( )} (77)

It is convenient to normalize the mutual coherence function by dividing by the square root of the 
product of the two self-coherence functions. The result is the complex degree of coherence:
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and the intensity can be rewritten:

I I I I I1 2 1 2 122 Re{ ( )} (79)

We can further simplify the result by writing 12( ) as a magnitude and a phase:

12 12 12
12 12( ) | ( )| | ( )|( ) [ ( )e ei i ( )] (80)

where 12( ) is associated with the source, and ( ) is the phase difference due to the OPD 
between the two sources and the observation point [Eq. (18)]. The quantity | ( )|12 is known as the 
degree of coherence. The observed intensity is therefore

I I I I I1 2 1 2 12 122 | ( )|cos[ ( ) ( )] (81)

The effect of 12( ) is to add a phase shift to the intensity pattern. The fringes will be shifted. A sim-
ple example of this situation is Young’s double-slit experiment illuminated by a tilted plane wave 
or a decentered source. With quasi-monochromatic light, the variations of both | ( )|12  and 12( )
with are slow with respect to changes of ( ), so that the variations in the interference pattern in 
the observation plane are due primarily to changes in  with position.
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A final rewrite of Eq. (81) leads us to the intensity pattern at the observation point:

I I
I I

I I0
1 2

1 2
12 121

2
| ( )|cos[ ( ) ( )] (82)

where I I I0 1 2. The fringe visibility is therefore

( ) | ( )|
2 1 2

1 2
12

I I

I I
(83)

and is a function of the degree of coherence and . Remember that is just the temporal measure 
of the OPD between the two sources and the observation point. If the two intensities are equal, the 
fringe visibility is simply the degree of coherence: ( ) | ( )|12 . The degree of coherence will take 
on values between 0 and 1. The source is coherent when | ( )|12 1, and completely incoherent 
when | ( )|12 0. The source is said to be partially coherent for other values. No fringes are observed 
with an incoherent source, and the visibility is reduced with a partially coherent source.

Spatial Coherence

The spatial extent of the source and its distance from the pinholes will determine the visibility of the 
fringes produced by the two pinhole sources (see Fig. 25). Each point on the source will produce a 
set of Young’s fringes, and the position of this pattern in the observation plane will shift with source 
position. The value of 12( ) changes with source position. The existence of multiple shifted pat-
terns will reduce the overall visibility. As an example, consider a quasi-monochromatic source that 
consists of a several point sources arranged in a line. Each produces a high modulation fringe pat-
tern in the observation plane (Fig. 26a), but there is a lateral shift between each pattern. The net pat-
tern shows a fringe with the same period as the individual patterns, but it has a reduced modulation 
due to the shifts (Fig. 26b). This reduction in visibility can be predicted by calculating the degree of 
coherence | ( )|12  at the two pinholes.

Over the range of time delays between the interfering beams that are usually of interest, 
the degree of coherence is a slowly varying function and is approximately equal to the value at

0 : | 12( )| | 12(0)| | 12|. The van Cittert–Zernike theorem allows the degree of coherence in 
the geometry of Fig. 25 to be calculated. Let be the angular separation of the two pinholes as seen 
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FIGURE 25 An extended source illuminating two pinholes.
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from the source. This theorem states that degree of coherence between two points is the modulus of 
the scaled and normalized Fourier transform of the source intensity distribution:

| |
( , )

( , )

( / )( )

12

2I e d d

I d

i

S

x y

d
S

(84)

where x and y are the x and y components of the pinhole separation , and the integral is over the 
source.

Two cases that are of particular interest are a slit source and a circular source. The application of 
the van Cittert–Zernike theorem yields the two coherence functions:

Slit source of width sincw
w x: | |12 ssinc

wa
z

(85)

Circular source of diameter d

J
d x

: | |12

12

d

J
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z

x

2 1
 (86)

FIGURE 26 The interference pattern produced by a linear source: (a) the individual fringe 
patterns and (b) the net fringe pattern with reduced visibility.
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where a is the separation of the pinholes, z is the distance from the source to the pinholes, the sinc 
function is defined by Eq. (42), and J1 is a first-order Bessel function. The pinholes are assumed to 
be located on the x axis. These two functions share the common characteristic of a central core sur-
rounded by low-amplitude side lobes. We can imagine these functions of pinhole spacing mapped 
onto the aperture plane. The coherence function is centered on one of the pinholes. If the other 
pinhole is then within the central core, high-visibility fringes are produced. If the pinhole spacing 
places the second pinhole outside the central core, low-visibility fringes result.

Michelson Stellar Interferometer

The Michelson stellar interferometer measures the diameter of stars by plotting out the degree of 
coherence due to the light from the star. The system is shown in Fig. 27. Two small mirrors sepa-
rated by the distance a sample the light and serve as the pinholes. The spacing between these mir-
rors can be varied. This light is then directed along equal path lengths into a telescope, and the two 
beams interfere in the image plane. To minimize chromatic effects, the input light should be filtered 
to a small range of wavelengths. The modulation of the fringes is measured as a function of the mir-
ror spacing to measure the degree of coherence in the plane of the mirrors. This result will follow 

FIGURE 27 Michelson stellar interferometer.
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Eq. (86) for a circular star, and the fringe visibility will go to zero when a 1.22 , where = d/z
is the angular diameter of the star. We measure the mirror separation that produces zero visibility 
to determine . In a similar manner, this interferometer can be used to measure the spacing of two 
closely spaced stars.

Temporal Coherence

When examining temporal coherence effects, we use a source of small dimensions (a point source) 
that radiates over a range of wavelengths. The light from this source is split into two beams and 
allowed to interfere. One method to do this is to use an amplitude-splitting interferometer. Since 
the two sources are identical, the mutual coherence function becomes the self-coherence function

11( ). Equal-intensity beams are assumed. The complex degree of temporal coherence becomes

11
11

11

1 1

1
0

( )
( )

( )

( ) ( )

| ( )|

E t E t

E t 22
(87)

After manipulation, it follows from this result that 11( ) is the normalized Fourier transform of the 
source intensity spectrum S(v):
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The fringe visibility is the modulus of this result. Since 11( ) has a maximum at 0, the maxi-
mum fringe visibility will occur when the time delay between the two beams is zero. This is consis-
tent with our earlier observation under “Source Spectrum” that the fringes will be localized in the 
vicinity of zero OPD.

As an example, we will repeat the earlier problem of a uniform source spectrum:

S v
v v

v
( ) rect 0 (89)

where v0 is the average frequency and v is the bandwidth. The resulting intensity pattern is

I I I v v0 12 0 01 1 2{ Re{ ( )}} [ ( )cos( )sinc ]] (90)

where the sinc function is the Fourier transform of the rect function. Using OPD/c from 
Eq. (74), we can rewrite this equation in terms of the OPD to obtain the same result expressed 
in Eq. (47).

Laser Sources

The laser is an important source for interferometry, as it is a bright source of coherent radiation. 
Lasers are not necessarily monochromatic, as they may have more than one longitudinal mode, and 
it is important to understand the unique temporal coherence properties of a laser in order to get 
good fringes. The laser is a Fabry-Perot cavity that contains a gain medium. Its output spectrum 
is therefore a series of discrete frequencies separated by c/2nL, where L is the cavity length. For gas 
lasers, the index is approximately equal to one, and we will use this value for the analysis. If G(v) is 
the gain bandwidth, the frequency spectrum is

S v G v
Lv
c

( ) ( ) comb
2 (91)
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where a comb function is a series of equally spaced delta functions. The number of modes contained 
under the gain bandwidth can vary from 1 or 2 up to several dozen. The resulting visibility function 
can be found by using Eq. (88):

( ) | ( )| ( ) ( )11 2
G

c
L

Gcomb commb
OPD

2L
(92)

where G( ) is the normalized Fourier transform of the gain bandwidth, and  indicates convolu-
tion. This result is plotted in Fig. 28, where G( ) is replicated at multples of 2L. The width of these 
replicas is inversely proportional to the gain bandwidth. We see that as long as the OPD between 
the two optical paths is a multiple of twice the cavity length, high-visibility fringes will result. This 
condition is independent of the number of longitudinal modes of the laser. If the laser emits a single 
frequency, it is a coherent source and good visibility results for any OPD.

2.9 APPLICATIONS OF INTERFERENCE

The fundamental measurement unit associated with interference is the wavelength of light. Every 
time the OPD in the system changes by one wave, an additional fringe is produced. Because of this 
sensitivity, interferometers find widespread use in many metrology and optical testing applica-
tions. Many of these applications are detailed in subsequent chapters of this Handbook, includ-
ing Chap. 32, “Interferometers,” in this volume, and Chap. 12, “Optical Metrology,” and Chap. 13, 
“Optical Testing,” in Vol. II. The applications of interferometry include distance and angle mea-
surement, surface figure and finish metrology, profilometry, and spectroscopy. Techniques such as 
phase-shifting interferometry, heterodyne interferometry, and stitching interferometry have enabled 
the analysis of the interference patterns associated with the many interferometric measurement 
techniques in use.

The use of lasers in interferometers has greatly increased their utility. Because of their long 
coherence length, interference fringes can be produced even when there is a large OPD between the 
two interfering beams. Instruments such as the Tywman-Green interferometer and the laser-Fizeau 
interferometer can be used in a compact form to test very large optical surfaces.
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3.1 GLOSSARY

A amplitude 

E electric field

f focal length

G Green function 

E irradiance

p, q, m direction cosines

r spatial vector

S Poynting vector

t time

dielectric constant

permeability

frequency

wave function

^ Fourier transform

3.2 INTRODUCTION

Starting with waves as solutions to the wave equation obtained from Maxwell’s equations, the basics 
of diffraction of light are covered in this chapter. The discussion includes those applications where 
the geometry permits analytical solutions. At appropriate locations references are given to the literature 
and/or textbooks for further reading. The discussion is limited to an explanation of diffraction, and 
how it may be found in some simple cases with plots of fringe structure. 

3.1
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3.3 LIGHT WAVES

Light waves propagate through free space or a vacuum. They exhibit the phenomenon of diffraction 
with every obstacle they encounter. Maxwell’s equations form a theoretical basis for describing light 
in propagation, diffraction, scattering and, in general, its interaction with material media. Experience 
has shown that the electric field E plays a central role in detection of light and interaction of light 
with matter. We begin with some mathematical preliminaries. 

The electric field E obeys the wave equation in free space or vacuum:

2
2

2

2

1
0E

E

c t
(1)

where c is the velocity of light in vacuum. Each Cartesian component Ej ( j  x, y, z) obeys the 
equation and, as such, we use a scalar function (r, t) to denote its solutions, where the radius 
vector r has components, r ix jy kzˆ ˆ ˆ . The wave equation is a linear second-order partial dif-
ferential equation. Linear superposition of its linearly independent solutions offers the most 
general solution. It has traveling plane waves, spherical waves, and cylindrical waves as examples 
of its solutions. These solutions represent optical wave forms. A frequently used special case of 
these solutions is the time harmonic version of these waves. We start with the Fourier transform 
on time,

( , ) ˆ ( , ) exp ( )r rt i t d2 (2)

where  is a temporal (linear) frequency in hertz. The spectrum ˆ ( , )r  obeys the Helmholtz 
equation,

2 2 0ˆ ˆk (3)

with the propagation constant k  2 /  2 /c /c, where  is the wavelength and  is the cir-
cular frequency. A Fourier component traveling in a medium of refractive index n , where  is 
the dielectric constant, is described by the Helmholtz equation with k2 replaced by n k2 2. As a further 
special case, a plane wave may be harmonic in time as well as in space.

( ) cos ( )r k r, t tA (4)

where k kŝ, ŝ is a unit vector in the direction of propagation, and A is a constant. An expanding 
spherical wave may be written in the form

( , ) cos ( )r t
A
r

kr t (5)

For convenience of operations, a complex function is frequently used. For example, we write 

( , ) ( )]r k rexp[t A i t (6)

in place of Eq. (4) bearing in mind that only its real part corresponds to the optical wave form. 
The function ( , )r t  is called the optical “disturbance” while the coefficient A is the amplitude.

In the general discussion of diffraction phenomenon throughout this chapter several classic 
source books have been used.1–10 This discussion is a blend of ideas contained in these sources.

The mathematical solutions described heretofore, although ideal, are nevertheless often approxi-
mated in practice. A suitable experimental arrangement with a self-luminous source and a condens-
ing lens to feed light to a small enough pinhole fitted with a narrowband spectral filter serves as a 
quasi-monochromatic, or almost monochromatic, point source. In Fig. 1, light behind the pinhole 
S is in the form of ever-expanding spherical waves. These waves are of limited spatial extent; all are 
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approximately contained in a cone with its apex at the pinhole. When intercepted by a converging 
lens L1

, with the pinhole on its axis and at the front focal point, these spherical waves are converted 
to plane waves behind L1. These plane waves also are limited spatially to the extent dictated by the 
aperture of the converging lens. A second converging lens, L2, is behind the first converging lens and 
is oriented so that both lenses have a common optical axis and can form an image of the pinhole. 
The image S is on the axis at the focal point behind the second lens and is formed by converging 
spherical waves. These waves, which converge toward the image, are limited spatially to the extent 
dictated by the aperture of the second lens and are approximately contained in a cone with its apex 
at the image of the pinhole.

It is necessary to clarify that ‘‘a small enough pinhole’’ means that the optics behind the pinhole 
are not able to resolve its structure.1 A ‘‘narrowband filter” means that its pass band  is much 
smaller than the mean frequency , that is, . In this situation, the experimental arrange-
ment may be described by a quasi-monochromatic theory, provided that the path differences l
of concern in the optics that follow the pinhole are small enough, as given by, l c/ . If the path 
differences l  involved are unable to obey this condition, then a full polychromatic treatment of the 
separate Fourier components contained within is necessary, even if . See, for example, 
Beran and Parrent11 and Marathay.12

Limiting the extent of plane waves and spherical waves, as discussed before, causes diffraction, 
a topic of primary concern in this chapter. The simplifying conditions stated above are assumed to 
hold throughout the chapter, unless stated otherwise.

As remarked earlier, the electric field E [V/m] plays a central role in optical detection. There are 
detectors that attain a steady state for constant incident beam power [W], and there are those like 
the photographic plate that integrate the incident power over a certain time. For a constant beam 
power, the darkening of the photographic plate depends on the product of the power and exposure 
time. Since detectors inherently take the time average, the quantity of importance is the average 
radiant power [W]. Furthermore, light beams have a finite cross-sectional area, so it is meaningful 
to talk about the average power in the beam per unit area of its cross-section measured in square 
meters or square centimeters. In the standard radiometric nomenclature, this sort of measurement 
is called irradiance, E [Wcm 2]. For a plane wave propagating in free space, the irradiance may be 
expressed in terms of the Poynting vector S by

E S E E
1
2

0

0

1 2/

(7)

The constants given in Eq. (7) may not be displayed with every theoretical result. The Poynting vec-
tor and irradiance are discussed further in Ref. 12 (pp. 280–285).

Light is properly described by a transverse vector field. Nevertheless, a scalar field is a conve-
nient artifice to use in understanding the wave nature of light without the added complication of 
the vector components. The transverse nature of the field will be accounted for when the situation 
calls for it. 

S

LL

S

FIGURE 1 Experimental layout to describe the notation used for spherical and plane 
waves. S: pinhole source. L1, L2: lenses. S': image.
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3.4 HUYGENS-FRESNEL CONSTRUCTION 

Without the benefit of a fundamental theory based on Maxwell’s equations and the subsequent 
mathematical development, Huygens sought to describe wave propagation in the days before 
Maxwell. Waves are characterized by constant-phase surfaces called wavefronts. If the initial shape 
at time t of such a wavefront is known in a vacuum or in any medium, Huygens proposed a geo-
metrical construction to obtain its shape at a later time, t t. He regarded each point of the initial 
wavefront as the origin of a new disturbance that propagates in the form of secondary wavelets in all 
directions with the same speed as the speed of propagation of the initial wave in the medium. These 
secondary wavelets of radii c t are constructed at each point of the initial wavefront. A surface tan-
gential to all these secondary wavelets, called the envelope of all these wavelets, is then the shape and 
position of the wavefront at time t t. With this construct, Huygens explained the phenomena 
of reflection and refraction of the wavefront. To explain the phenomenon of diffraction, Fresnel 
modified Huygens’ construction by attributing the property of mutual interference to the second-
ary wavelets. The modified Huygens’ construction is called the Huygens-Fresnel construction. With 
further minor modifications it helps explain the phenomenon of diffraction and its various aspects, 
including those that are not so intuitively obvious. 

Fresnel Zones

Let P0 be a point source of light that produces monochromatic spherical waves. A typical spherical 
wave, A/r0 exp[ i( t  kr0)], of radius r0 at time t is shown in Fig. 2. The coefficient A stands for 
the amplitude of the wave at unit distance from the source P0. At a later time this wave will have 
progressed to assume a position passing through a point of observation P with radius, r0 b. Fresnel 
zone construction on the initial wave offers a way to obtain the wave in the future by applying the 
Huygens-Fresnel construction. The zone construction forms a simple basis for studying and under-
standing diffraction of light. 

From the point of observation P, we draw spheres of radii b, b /2, b 2 /2, b  3 /2, . . . , 
b  j /2, . . . , to mark zones on the wave in its initial position, as shown in Fig. 2. The zones are 

PbC

s

Z
Z

Z

Zn

S

q

P

r

Q

c

FIGURE 2 Fresnel zone construction. P0: point source. S: wavefront. r0: radius of 
the wavefront. b: distance CP. s: distance QP. (After Born and Wolf.1)
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labeled z1, z2, . . . zj. The zone boundaries are successively half a wavelength away from the point of 
observation P. By the Huygens-Fresnel construction, each point of the wave forms a source of a 
secondary disturbance. Each secondary source produces wavelets that are propagated to the point P.
A linear superposition of the contribution of all such wavelets yields the resulting amplitude at 
the point P. It is reasonable to expect that the contribution of the secondary wavelets is not uni-
form in all directions. For example, a wavelet at C is in line with the source P0 and the point of 
observation P, while a wavelet at Q sees the point P at an angle with respect to the radius vector 
from the source P0.

To account for this variation, an obliquity or inclination factor K( ) is introduced. In the phe-
nomenological approach developed by Fresnel, no special form of K( ) is used. It is assumed to have 
the value unity at C where  0, and it is assumed to decrease at first slowly and then rapidly as 
increases. The obliquity factors for any two adjacent zones are nearly equal and it is assumed that it 
becomes negligible for zones with high enough index j. 

The total contribution to the disturbance at P is expressed as an area integral over the primary 
wavefront,

( )
( ) exp( )

( )P A
i t kr

r
iks

s
K dS

s

exp[ ]0

0

(8)

where dS is the area element at Q. The subscript S on the integrals denotes the region of integration 
on the wave surface. The integrand describes the contribution of the secondary wavelets. Fresnel-
zone construction provides a convenient means of expressing the area integral as a sum over the 
contribution of the zones. 

For optical problems, the distances involved, such as r0 and b, are much larger than the wave-
length . This fact is used very effectively in approximating the integral. The phases of the wavelets 
within a zone will not differ by more than . The zone boundaries are successively /2 further away 
from the point of observation P. The average distance of successive zones from P differs by /2; the 
zones, therefore, are called half-period zones. Thus, the contributions of the zones to the disturbance 
at P alternate in sign,

( )P 1 2 3 4 5 6
(9)

where j stands for the contribution of the jth zone, j  1, 2, 3, . . . . The contribution of each annu-
lar zone is directly proportional to the zone area and is inversely proportional to the average dis-
tance of the zone to the point of observation P. The ratio of the zone area to its average distance 
from P is independent of the zone index j. Thus, in summing the contributions of the zones we 
are left with only the variation of the obliquity factor K( ). To a good approximation, the obliq-
uity factors for any two adjacent zones are nearly equal and for a large enough zone index j the 
obliquity factor becomes negligible. The total disturbance at the point of observation P may be 
approximated by

( ) / ( )P n1 2 1
(10)

where the index n stands for the last zone contributing to P. The  sign is taken according to whether n
is odd or even. For an unobstructed wave, the integration is carried out over the whole spherical 
wave. In this case, the last term n is taken to be zero. Thus, the resulting disturbance at the point of 
observation P equals one-half of the contribution of the first Fresnel zone,

( ) /P 1 2 1 (11)

The contribution 1 is found by performing the area integral of Eq. (8) over the area of the first 
zone. The procedure results in 

( ) { [ ( ) ]}P
A

r b
i t k r b

0

exp /0 2 (12)
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whereas a freely propagating spherical wave from the source P0 that arrives at point P is known to 
have the form

( ) exp{ [ ( )]}P
A

r b
i t k r b

0
0 (12 )

The synthesized wave of Eq. (12) can be made to agree with this fact, if one assumes that the com-
plex amplitude of the secondary waves, exp (iks)/s of Eq. (8) is [1/ exp ( i /2)] times the primary 
wave of unit amplitude and zero phase. With the time dependence exp ( i t), the secondary wave-
lets are required to oscillate a quarter of a period ahead of the primary. 

The synthesis of propagation of light presented above has far-reaching consequences. The phe-
nomenon of light diffraction may be viewed as follows. Opaque objects that interrupt the free prop-
agation of the wave block some or parts of zones. The zones, or their portions that are unobstructed, 
contribute to the diffraction amplitude (disturbance) at the point of observation P. The obstructed 
zones do not contribute. 

Diffraction of Light from Circular Apertures and Disks

Some examples of unobstructed zones are shown in Fig. 3. Suppose a planar opaque screen with a 
circular aperture blocks the free propagation of the wave. The center C of the aperture is on the axis 
joining the source point S and the observation point P, as shown in Fig. 4. The distance and the size of 
the aperture are such that, with respect to point P, only the first two zones are uncovered as in Fig. 3a. 
To obtain the diffraction amplitude for an off-axis point such as P, one has to redraw the zone struc-
ture as in Fig. 4. Figure 3b shows the zones and parts of zones uncovered by the circular aperture in 
this case. Figure 3c shows the uncovered zones for an irregularly shaped aperture.

1

2

(a) (b)

1

2
3

(c)

FIGURE 3 Some examples of unobstructed Fresnel zones 
that contribute to the amplitude at the observation point P.
(After Andrews.9)
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In Fig. 3a the first two zones are uncovered. Following Eq. (9), the resulting diffraction amplitude 
at P for this case is

( )P 1 2 (13)

but, since these two contributions are nearly equal, the resulting amplitude is (P)  0! 
Relocating point P necessitates redrawing the zone structure. The first zone may just fill the aper-

ture if point P is placed farther away from it. In this case the resulting amplitude is

( )P 1 (14)

which is twice what it was for the unobstructed wave! Therefore the irradiance is four times as large!
On the other hand, if the entire aperture screen is replaced by a small opaque disk, the irradiance 

at the center of the geometrical shadow is the same as that of the unobstructed wave! To verify this, 
suppose that the disk diameter and the distance allows only one Fresnel zone to be covered by the 
disk. The rest of the zones are free to contribute and do contribute. Per Eq. (9) we have

(P) 2 3 4 5 6

The discussion after Eq. (9) also applies here and the resulting amplitude on the axis behind the 
center of the disk is 

( )P
1
2 2

(15)

which is the same as the amplitude of the unobstructed wave. Thus, the irradiance is the same at 
point P as though the wave were unobstructed. As the point P moves farther away from the disk, the 
radius of the first zone increases and becomes larger than the disk.

Alternatively one may redraw the zone structure starting from the edge of the disk. The analysis 
shows that the point P continues to be a bright spot of light. As the point P moves closer to the disk, 
more and more Fresnel zones get covered by the disk, but the analysis continues to predict a bright 
spot at P. There comes a point where the unblocked zone at the edge of the disk is significantly 
weak; the point P continues to be bright but has reduced irradiance. Still closer to the disk, the 
analysis ceases to apply because P enters the near-field region, where the distances are comparable to 

FIGURE 4 The redrawn zone structure for use with an off-axis point P'. (After Andrews.9)
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the size of the wavelength. In Fig. 5, the variation of irradiance on the axial region behind the disk is 
shown. It is remarkable that the axial region is nowhere dark! For an interesting historical note, see 
Refs. 1 and 5. 

For comparison, we show the variation of on-axis irradiance behind a circular opening in Fig. 6. 
It shows several on-axis locations where the irradiance goes to zero. These correspond to the situa-
tion where an even number of zones are exposed through the circular aperture. Only the first few 
zeros are shown, since the number of zeros per unit length (linear density) increases as the point P is
moved closer to the aperture. The linear density increases as the square of the index j when P moves 

E P

E

R

FIGURE 5 Variation of on-axis irradiance behind an opaque disk. R: distance along the axis 
behind the disk. (From Marion and Heald.5)

FIGURE 6 Variation of on-axis irradiance behind a circular opening. R: distance 
along the axis behind the opening. (From Marion and Heald.5)
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closer to the aperture. While far enough away, there comes a point where the first zone fills the aper-
ture and, thereafter, there are no more zeros as the distance increases. 

Figure 7 shows a series of diffraction patterns from a circular aperture. The pictures are taken at 
different distances from the aperture to expose one, two, three, etc., zones. Each time an odd num-
ber of zones is uncovered the center spot becomes bright. As we approach the pictures at the bottom 
right, more zones are exposed. 

Babinet Principle 

Irradiances for the on-axis points are quite different for the circular disk than for the screen with a 
circular opening. The disk and the screen with a hole form of a pair of complementary screens, that 
is, the open areas of one are the opaque areas of the other and vice versa. Examples of pairs of such 
complementary screens are shown in Fig. 8. Observe that the open areas of screen Sa taken with the 
open areas of the complementary screen Sb add up to no screen at all. 

The Babinet principle states that the wave disturbance S(P) at any point of observation P due 
to a diffracting screen Sa added to the disturbance CS(P) due to the complementary screen Sb at the 
same point P equals the disturbance at P due to the unobstructed wave, that is,

S P P P( ) ( ) ( )CS UN (16)

Recall that the wave disturbance at any point of observation P behind the screen is a linear superpo-
sition of the contributions of the unobstructed zones or portions thereof. This fact, with the obser-
vation that the open areas of screen Sa taken with the open areas of the complementary screen Sb
add up to no screen at all, implies the equality indicated by the Babinet principle. 

The application of Babinet’s principle to diffraction problems can reduce the complexity of the 
analysis considerably. For an example of this, we once again return to diffraction of light due to a 
circular aperture and an opaque disk. For on-axis amplitude, the Rayleigh-Sommerfeld diffraction 
integral [see Eq. (43) later] can be evaluated in closed form.6

FIGURE 7 A series of pictures of diffraction patterns from circular apertures. (After 
Andrews.9)
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FIGURE 8 Examples of complementary screens, 
labeled Sa and Sb. (After Jackson13 and Andrews.9)

A circular aperture of radius a in a dark screen is illuminated by a normally incident plane wave,
A ikzexp ( ), where z is the axis perpendicular to the plane of the aperture. The on-axis diffracted 
field cir is

cir( ) exp( ) expz A ikz
Az

a z
ik a z

2 2

2 2 (17)

The corresponding irradiance at z is

E z A
z

a z

z

a z
k a zcir cir cos( ) | |2 2

2

2 2 2 2

21
2 22 z (18)

See Fig. 9 for the on-axis irradiance plotted against the distance z from the circular aperture.
Next consider the dark screen and circular aperture is replaced by an opaque disk of the same 

radius a. Applying Babinet’s principle, the on-axis diffracted field for the opaque disk illuminated by 
a normally incident plane wave is

disk cirA ikzexp( ) (19)

disk( ) expz
Az

a z
ik a z

2 2

2 2 (20)
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The corresponding irradiance at z is

E z A
z

a zdisk disk( ) | |2 2
2

2 2
(21)

See Fig. 10 for the variation of the on-axis irradiance with distance z from the opaque disk of radius a.
The behavior of the on-axis irradiance for the case of the opaque disk is quite different from that 

of the complementary circular aperture. There is no simple relationship between the irradiances of 
the two cases because they involve a squaring operation that brings in cross-terms. 

It is important to note that the closed form expressions of Eq. (17) through Eq. (21) are valid 
only within the approximations of the Rayleigh-Sommerfield theory. The value of unity obtained by 
Eq. (18) reproduces the assumed boundary conditions of the theory.

Zone Plate 

If alternate zones are blocked the contribution of the unblocked zones will add in phase to yield a 
large irradiance at the point of observation. An optical device that blocks alternate zones is called 
a zone plate. Figure 11 shows two zone plates made up of concentric circles with opaque alternate 

FIGURE 9 Normalized on-axis irradiance behind a circular aperture of radius 8 ,
plotted as a function of z, the distance from the aperture in terms of wavelengths. At z  0, 
the assumed boundary condition of unity is obtained. The maxima of the oscillations 
increases monotonically to a maximum value of 4 at z d2/4  when one Fresnel zone 
fills the aperture. For z > d2/4  the irradiance decreases monotonically to zero.

FIGURE 10 Normalized on-axis irradiance behind a disk of radius 8 , plotted as 
a function of z, the distance from the aperture in terms of wavelengths. The irradiance is 
zero at z  0 and increases monotonically to unity for large z.
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zones. They block odd-indexed or even-indexed zones, respectively. The radii of the zone boundar-
ies are proportional to the square root of natural numbers.

We place a point source at a distance r0 in front of the zone plate. If Rm is the radius of the mth
zone, a bright image of this source is observed at a distance b behind the plate, so that

1 1

0
2r b

m

Rm

(22)

where  is the wavelength of light from the source. This equation for the condition on the distance 
b is like the paraxial lens formula from which the focal length of the zone plate may be identified or 
may be obtained by setting the source distance r0 .

The focal length f1 so obtained is

f
R

m
m

1

2

(23)

and is called the primary focal length. For unlike, the case of the lens, the zone plate has several sec-
ondary focal lengths. These are given by

f
R

n mn
m

2 1

2

2 1( )
(24)

where n 1, 2, 3, . . . . In the case of the primary focal length, each opaque zone of the zone plate cov-
ers exactly one Fresnel zone. The secondary focal length f3 is obtained when each opaque zone covers 
three Fresnel zones. It is a matter of regrouping the right-hand side of Eq. (9) in the form

( ) ( ) ( )P 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15( )
(25)

The zone plate in Fig. 11b, for example, blocks all even-indexed zones. It corresponds to omitting 
the terms enclosed in the angular brackets, . . .  in Eq. (25). The remaining terms grouped in paren-
theses add in phase to form a secondary image of weaker irradiance. The higher-order images are 
formed successively closer to the zone plate and are successively weaker in irradiance.

Further discussion may be found in several books listed in the references, for example, Ref. 10 
(p. 375). The radii of the concentric circles in a zone plate are proportional to the square root of 
natural numbers. For equidistant source and image locations, say 10 cm at a wavelength of 500 nm,

FIGURE 11 Two zone plates made up of concentric circles with 
alternate zones made opaque. They block odd-indexed or even-indexed 
zones, respectively. The radii of the zone boundaries are proportional 
to the square root of natural numbers. (From Hecht and Zajac.10)
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Rm m  0.16 mm. Due to the smallness of the radii, a photographic reduction of a large-scale 
drawing is used.

Incidentally, the pair of zone plates of Fig. 11 form a pair of complementary screens. Per the Babinet 
principle, the groupings are

UN CS( ) ( ) ( )

(

P P PS

1 3 5 7 9 11

2 4

)

( 6 8 10 12 )

(26)

The first group of terms corresponds to the zone plate of Fig. 11b and the second group of items 
corresponds to Fig. 11a. 

3.5 CYLINDRICAL WAVEFRONT

A line source generates cylindrical wavefronts. It is frequently approximated in practice by a slit 
source, which, in turn, can illuminate straight edges and rectangular or slit apertures (see Fig. 12a).
In this case, as we shall see, the phenomena of diffraction can be essentially reduced to a one-
dimensional analysis for this source and aperture geometry. 

Fresnel zones for cylindrical wavefronts take the form of rectangular strips, as shown in Fig. 12a. 
The edges of these strip zones are /2 farther away from the point of observation P. The treatment 
for the cylindrical wave parallels the treatment used for the spherical wave in Sec. 3.4. The line M0
on the wavefront intersects at right angles to the line joining the source S and the point of observa-
tion P. Refer to M0 as the axis line of the wavefront with respect to the point P. Let a be the radius 
of the wavefront with respect to the source slit and let b be the distance of P from M0. Fresnel 
zones are now in the form of strips above and below M0 and are parallel to it. The line pairs M M1 1

,
M M2 2 , etc., are marked /2 farther away from the point of observation P. Fresnel zones are now half-
period strips. Thus PMm  b m /2 and, to a good approximation, the arc length (MmMm 1)

mab a b m m/( )( )1 . For small values of m such as 1, 2, etc., the arc widths decrease rapidly 
while, for large values of m the neighboring strips have nearly equal widths. The lower-order strips 
have much larger areas compared to the ones further up from M0. This effect is much more domi-
nant than the variation of the obliquity factor K( ) which has been neglected in this analysis. 

Consider one single strip as marked in Fig. 12b. Imagine that this strip is divided into half-period 
sections as shown. The wavefront is almost planar over the width of this strip. All the sections on 
either side of the arc M1M2 contribute to the disturbance at P. The boundaries of these are marked 
N1, N2 , etc. The area of these sections are proportional to c n n( )1 . The areas of those half-
period sections decrease rapidly at first and then slowly. The contribution to the disturbance at P
from the higher-order sections is alternately positive and negative with respect to the first section 
near M1M2. Consequently, their contribution to the total disturbance at P is nearly zero. 

The disturbance at P due to a single strip consists of the dominant contribution of the two sec-
tions from N1 to N’1. This conclusion holds for all the strips of the cylindrical wave. Following the 
procedure of Eq. (9) employed for the spherical wave,

( )P 1 2 3 4 5 6 (9')

where (P) is the disturbance at P and m denotes the secondary wavelet contributions from 
strip zones of either side of the axis line M0 of Fig. 12a. As in Eq. (11) the series can be summed, 
but here we need to account for the strip zone contribution from both sides of the axis line M0:
therefore, we have

( )P 1 (11')



3.14  PHYSICAL OPTICS

The first zone contributions can be computed and compared with the freely propagating cylindrical 
wave. 

Fresnel Diffraction from Apertures 
with Rectangular Symmetry

Straight Edge A cylindrical wave from a slit source S illuminates an opaque screen with a straight 
edge AB oriented parallel to the slit, as shown in Fig. 13. It shows three special positions of the point 
of observation P. In Fig. 13a, P is such that all the strip zones above the axis line M0 are exposed, 
while those below are blocked. The point P in Fig. 13b is such that the strip zones above M0 and 
one zone below, marked by the edge M1, are exposed. In Fig. 13c, P has moved into the geometrical 
shadow region. The strip M1M0 and all those below M0 are blocked. 

Following the discussion in Sec. 3.4, we discuss the disturbance at P for the three cases of Fig. 13. 
At the edge of the geometrical shadow

a P( ) /1 2 1 (27)

For Fig. 13b we have

b P( ) / /1 2 3 21 1 1 (28)

As P is moved further up, there comes a point for which two strip zones below M0 are exposed, 
resulting in (P)  3/2 1 2. As P explores the upper half of the observation plane, the amplitude 
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b + 4
2

FIGURE 12 Fresnel zones for cylindrical wavefront. S: slit source. a: radius of the cylindrical 
wavefront. b: distance M0 P. M1, M1', etc.: zone boundaries. (Adapted from Jenkins and White.2)
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and, hence, the irradiance go through maxima and minima according to whether an odd or even 
number of (lower) strip zones is exposed. Furthermore, the maxima decrease gradually while the 
minima increase gradually until the fringes merge into a uniform illumination that corresponds to 
the unobstructed wave. 

In the geometrical shadow (see Fig. 13c)

c P( ) /1 2 2 (29)

As P goes further down, we get (P)  1/2 3; in general, the number of exposed zones decreases 
and the irradiance falls off monotonically.

A mathematical analysis of Fresnel diffraction from apertures with rectangular symmetry is 
possible with the use of Fresnel integrals and the Cornu’s spiral (vibration curve). Irradiance of the 
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(b)
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FIGURE 13 Fresnel zones for a cylindrical wavefront. The edges of these 
strip zones are /2 farther away from the point of observation P. S: slit source. 
P: point of observation. M0: axis line of the cylindrical wave. AB: straight-edge 
opaque obstruction. (After Jenkins and White.2)
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diffraction pattern from a straight edge illuminated by a cylindrical wave is found by relating the 
spiral to the cylindrical wavefront and to the plane of observation. Figure 13 shows the diffraction 
geometry. The line or slit source is aligned parallel to the straight edge. The on-axis point of observation 
P is as shown in Fig. 13 and is defined as P(0). An off-axis point of observation (see Fig. 13b and c)
is defined as P(x) at x. The plane passing through P(0) and P(x) is perpendicular to the edge. As 
shown in Fig. 12a, the radius of the cylindrical wave is a and the distance between M0 and P(0) is b.
The distance of a point on the wavefront above M0 labeled Mm to the point P(0) is b b m /2. 
The path difference b b . To a good approximation,

s
a b

ab
2

2
(30)

where s is the arc length between M0 and Mm but is approximated by the corresponding chord 
length. For computational purposes the arc length s is converted to a dimensionless parameter v by 
defining the phase difference as

2 2

2 2

22 2s
a b

ab
v v s

a b

ab

( ) (31)

With Fig. 12 we can relate the arc length s with the coordinate x in the plane of observation,

x s
a b

a
(32)

and therefore,

v s
a b

ab
x

a

b a b

2 2( )

( )
(33)

Cornu’s Spiral The diffraction amplitude [see Eq. (8)] is given by

( )
( ) exp( )

( )P A
i t kr

r
iks

s
K dS

s

exp[ ]0

0

(34)

For a cylindrical wave illumination of the straight edge, the double integral reduces to a single 
integral. The single integral describes integration along a line on the cylindrical wavefront parallel 
to the line source. For r0 a s band  much larger than the width of the strip of Fresnel zone on the 
cylindrical wavefront, we use the approximation,

( )
exp( ( ))

( ) exp( )P C
ik a b
ab

K ik ds
s

s

1

2 (35)

In this expression, C A i texp( ). The formal limits of integration s s1 2and  designate the limit 
of integration appropriate for a slit aperture oriented parallel to the line source. For the straight 
edge problem, the upper limit is  and the lower limit s1 describes the location of the straight-edge 
with respect to the position of the point of observation P along the x axis. Thus, the amplitude is 
proportional to

( ) exp( ) exp( )P C ik dS C ik
s1 0

ddS ik dS
s

exp( )
0

1

(36)

( ) ( ) ( )P C C v i S v
1

2

1

21 1
(37)
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E P P C C v S v( ) | ( )| | | ( ) ( )2 2
1

2

1

1
2

1
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2

(38)

We have defined

C C
ik a b
ab

K
exp( ( ))

( ) and | |
| | ( )

C
C K

a b
2

2 2

2 2

For the case of a cylindrical wave incident, Cornu’s spiral helps in the calculation of the diffraction 
amplitude (Plane wave incidence is a special case in the limit where radius a of the cylindrical wave 
becomes very large compared to the distance b of the observation screen.) Cornu’s spiral is defined in 
terms of the dimensionless parameter v. The description of this spiral begins with the definitions

C v v dv
v

( ) cos
2

2

0
S v v dv

v
( ) sin

2
2

0
(39)

1. Cornu’s spiral is a plot of S v( ) along the vertical axis and C v( ) along the horizontal axis with v as 
a parameter, v .

2. The arc length measured along the spiral from the origin is v; v C[ ( )] [ ( )]2 2S ; C(v)
and S(v) are the projections of the arc length on the horizontal and vertical axes, respectively.

3. The vector length from the origin to any point v on the spiral is proportional to diffracted 
amplitude.

4. The angle  made by the vector measured from the horizontal equals the phase of the diffracted light; 

tan tan
S
C

v v
2 2

2 2.

5. The radius of curvature 
dv
d v

1
.

6. For large v, the spiral winds about two limit points 

v C S

v C S

( ) ( )

( ) ( )

1
2

1
2

1
2

1
22

7. The magnitude of the diffraction integral has its maximum value when 

3
4

=
3
2

v .

8. Subsidiary maxima at 
3
4

4+2 =
3
2

where =1, 2, 3, . . . .n n , n

9. Minimum values at 
7
4

4+ 2 =
7
2

where =0, 1, 2, 3,m m m, .. . . .

Cornu’s spiral is plotted in Fig. 14 and tabulated in Table 1.
Figure 15 shows a plot of the irradiance in the diffraction pattern of light from a straight edge.  

The maxima and minima follow the description given in 8 and 9 in the above list. It is interesting 
to observe that the edge is neither at the maximum of the first fringe nor at the halfway point. It 
appears at one-fourth of the irradiance of the unobstructed wave. For a complete vectorial solution 
of diffraction of light by a straight edge, see Sommerfeld.14
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FIGURE 14 Cornu’s spiral (vibration curve) for use with cylindrical waves and 
apertures with rectangular symmetry. (Adapted from Jenkins and White .2)

FIGURE 15 The plot of irradiance in the diffraction pattern of a 
straight edge AB. The plot is normalized to unity for the irradiance of 
the unobstructed wave. Labels 1 and 2 show points P in the geometrical 
shadow. Label 3 is at the edge of the geometrical shadow, while labels 4 
and 5 are in the illuminated region.  is a unitless variable to label dis-
tances along the plane of observation. (From Hecht and Zajac.10)
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TABLE 1 Table of Fresnel Integrals

v C(v) S(v) v C(v) S(v)

0.00 0.0000 0.0000 4.50 0.5261 0.4342
0.10 0.1000 0.0005 4.60 0.5673 0.5162
0.20 0.1999 0.0042 4.70 0.4914 0.5672
0.30 0.2994 0.0141 4.80 0.4338 0.4968
0.40 0.3975 0.0334 4.90 0.5002 0.4350
0.50 0.4923 0.0647 5.00 0.5637 0.4992
0.60 0.5811 0.1105 5.05 0.5450 0.5442
0.70 0.6597 0.1721 5.10 0.4998 0.5624
0.80 0.7230 0.2493 5.15 0.4553 0.5427
0.90 0.7648 0.3398 5.20 0.4389 0.4969
1.00 0.7799 0.4383 5.25 0.4610 0.4536
1.10 0.7638 0.5365 5.30 0.5078 0.4405
1.20 0.7154 0.6234 5.35 0.5490 0.4662
1.30 0.6386 0.6863 5.40 0.5573 0.5140
1.40 0.5431 0.7135 5.45 0.5269 0.5519
1.50 0.4453 0.6975 5.50 0.4784 0.5537
1.60 0.3655 0.6389 5.55 0.4456 0.5181
1.70 0.3238 0.5492 5.60 0.4517 0.4700
1.80 0.3336 0.4508 5.65 0.4926 0.4441
1.90 0.3944 0.3734 5.70 0.5385 0.4595
2.00 0.4882 0.3434 5.75 0.5551 0.5049
2.10 0.5815 0.3743 5.80 0.5298 0.5461
2.20 0.6363 0.4557 5.85 0.4819 0.5513
2.30 0.6266 0.5531 5.90 0.4486 0.5163
2.40 0.5550 0.6197 5.95 0.4566 0.4688
2.50 0.4574 0.6192 6.00 0.4995 0.4470
2.60 0.3890 0.5500 6.05 0.5424 0.4689
2.70 0.3925 0.4529 6.10 0.5495 0.5165
2.80 0.4675 0.3915 6.15 0.5146 0.5496
2.90 0.5624 0.4101 6.20 0.4676 0.5398
3.00 0.6058 0.4963 6.25 0.4493 0.4954
3.10 0.5616 0.5818 6.30 0.4760 0.4555
3.20 0.4664 0.5933 6.35 0.5240 0.4560
3.30 0.4058 0.5192 6.40 0.5496 0.4965
3.40 0.4385 0.4296 6.45 0.5292 0.5398
3.50 0.5326 0.4152 6.50 0.4816 0.5454
3.60 0.5880 0.4923 6.55 0.4520 0.5078
3.70 0.5420 0.5750 6.60 0.4690 0.4631
3.80 0.4481 0.5656 6.65 0.5161 0.4549
3.90 0.4223 0.4752 6.70 0.5467 0.4915
4.00 0.4984 0.4204 6.75 0.5302 0.5362
4.10 0.5738 0.4758 6.80 0.4831 0.5436
4.20 0.5418 0.5633 6.85 0.4539 0.5060
4.30 0.4494 0.5540 6.90 0.4732 0.4624
4.40 0.4383 0.4622 6.95 0.5207 0.4591

Note: This table is adapted from Jenkins and White.2

Rectangular Aperture Figure 16 is a series of diagrams of irradiance distributions for light dif-
fracted by single-slit apertures. A pair of marks on the horizontal axis indicate the edges of the geo-
metrical shadow of the slit relative to the diffraction pattern. In all cases, relatively little light falls in 
the geometrical shadow region. The last diagram corresponds to a rather wide slit. It appears as two 
opposing straightedge diffraction patterns corresponding to the two edges of the slit. 
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These patterns may be interpreted as obtained with the plane of observation fixed for different-
size slits. Alternately, the slit size may be held fixed but move the plane of observation. For the first 
diagram the plane is far away. For the successive diagrams the plane is moved closer to the slit. The plane 
of observation is the closest for the last diagram of Fig. 16. The important parameter is the angular 
subtense of the slit to the observation plane. A similar comment applies to the case of the circular 
aperture2,9 as shown in Fig. 7.

Opaque Strip Obstruction A slit aperture and an opaque strip or a straight wire form a pair of 
complementary screens. In Fig. 17 photographs of Fresnel diffraction patterns produced by nar-
row wires are shown with the corresponding theoretical curves. These theoretical curves show some 
more detail. Generally, the figures show the characteristic unequally spaced diffraction fringes of a 
straight edge on either side of the geometrical shadow. These fringes get closer and closer together, 
independent of the width of the opaque obstruction, and finally merge into a uniform illumination. 
Figure 17 also shows the maximum in the center and equally spaced narrow fringes within the 
shadow. The width of these fringes is inversely proportional to the width of the obstruction. We 
shall now discuss this detail. 

Figure 18 shows the arrangement of the source S, opaque strip AB, and the plane of observation. 
A point x in the geometrical shadow receives light from Fresnel zones of both sides of the opaque 
strip. At each edge of the opaque strip the exposed zones add up effectively to one-half of the contri-
bution of a single zone adjacent to that edge. Owing to the symmetry, the resulting disturbance from 
each edge starts out in phase. Light from the two edges adds constructively or destructively accord-
ing to whether the path difference to the point x in the shadow region is an even or an odd multiple 
of /2. The situation is similar to two coherent sources separated by the width of the opaque strip. 
Young examined these fringes inside the geometrical shadow. In particular, he showed that if an 
opaque screen is introduced on one side of the opaque strip to block that part of the wave, then the 
straightedge diffraction fringes due to that edge, as well as the interference fringes in the shadow 
region, vanished. 

FIGURE 16 A series of diagrams of irradiance distributions for light diffracted 
by single-slit apertures of different widths. (From Jenkins and White.2)
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FIGURE 17 Fresnel diffraction patterns produced by narrow wires are 
shown with the corresponding theoretical curves. (From Jenkins and White.2)
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FIGURE 18 Arrangement of the source S, opaque strip AB, and the plane of 
observation. Point x is in the geometrical shadow region.
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3.6 MATHEMATICAL THEORY OF DIFFRACTION

Kirchhoff showed that the Huygens-Fresnel construction follows from an integral theorem starting 
from the wave equation. The resulting mathematical expression is called the Fresnel-Kirchhoff dif-
fraction formula.1 This theory was further refined by Rayleigh and Sommerfeld.7,12
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It is well known in wave theory that the field values inside a volume enclosed by a bounding sur-
face are determined by the values of the field and/or its normal derivative on this bounding surface. 
The solution is expressed in terms of the Green function of the problem, as in

( )P
G
n

G
n

1
4

dS
S

(40)

where G is the Green function of the problem. The integral is over the arbitrary closed surface S. The 
symbol / n stands for the normal derivative with the normal pointing into the volume enclosed by 
the surface.1 A convenient Green function is the expanding spherical wave, exp(iks)/s from the point 
of observation P. The closed surface for the diffraction problem is made up of the aperture plane 
and a large partial sphere centered at the point of observation P, as shown in Fig. 19.

This is the starting point of Kirchhoff theory. It requires specifying the field values and its nor-
mal derivative on the bounding surface to obtain the field (P) at P in the volume enclosed by the 
surface. It is possible to show that the contribution of the surface integral on the partial sphere is 
zero. Kirchhoff assumed that the field and its normal derivative are zero on the opaque portion of 
the aperture plane. On the open areas of the aperture plane he assumed the values to be the same 
as incident (unperturbed) values. If the incident field is an expanding spherical wave (a/r) exp(ikr),
then the field (P) is given by

( )
exp ( ) exp ( )

P
ia ikr

r
iks

sA2
[[ ( , ) ( , )]cos cosn r n s dS (41)

The area integral is over the open areas A of the aperture. As shown in Fig. 19, (n, s) and (n, r) are 
the angles made by s and r, respectively, with the normal to the aperture plane. The above equation is 
referred to as the Fresnel-Kirchhoff diffraction formula. From a strictly mathematical point of view 
the specification of field and its normal derivative over-specifies the boundary conditions. It is possible 
to modify the Green function so that only the field or its normal derivative / n needs to be specified. 
With this modification one obtains

( )
exp( ) exp( )

P
ia ikr

r

iks

sA
n s dScos ( , ) (42)

FIGURE 19 The closed surface for the diffraction problem. It is made up of the aperture plane 
and a large partial sphere centered at the point of observation P. (From Born and Wolf.1)
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This is referred to as the Rayleigh-Sommerfeld diffraction formula. Other than mathematical 
consistency, both formulas yield essentially similar results when applied to practical optical situa-
tions. They both use the approximate boundary conditions, namely, that the field is undisturbed in 
the open areas of the aperture and zero on the opaque regions of the aperture plane. The cosine fac-
tors in the above formulas play the role of the obliquity factor of the Huygens wave used in Eq. (8), 
more generally, the field (for a single temporal frequency) at the point of observation P(x, y, z) may 
be expressed by12

( , , ) ( )
exp (

x y z x y
z

ik
i

s sA
( , , 0)

1
2

1
kk

dx dys s

)
2 (43)

where (xs, ys, 0) are the values of the field in the aperture A, at z  0. The expression in the square 
brackets is the normal derivative of the modified Green function. In this expression  [(x  xs)

2

(y  ys)
2  z2]1/2 is the distance between a point in the aperture and the point of observation P, and

the ratio z/  is the direction cosine of the difference vector. In the far zone where k  >> 1, Eq. (43) 
reduces to Eq. (42) for the case of spherical wave illumination. Since the expression in the square 
brackets depends on the coordinate difference, (x  xs) and (y  ys), Eq. (43) has the form of a convolu-
tion integral. It is well known that the convolution integral has a corresponding product relationship 
in the Fourier-spatial-frequency domain. The two-dimensional Fourier decomposition of the field is

( , , ) ˆ ( , )exp[ ( )x y z p q z i px qy/ / , /2 ]] ( ) (d p d q/ / ) (44)

where p and q are the two-direction cosines. The third-direction cosine m is defined by
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A similar decomposition as in Eq. (44) is used for the field in the aperture at z  0, wherein the 
finite area of the aperture is included in the description of the incident field. With the help of Weyl’s 
plane-wave decomposition of a spherical wave,

exp ( )
e ( ) ( )

ikr
r

i
m

ikmz
i

px qy
1

xp exp
2

dp dq (46)

the Fourier transform of the expression in square brackets in Eq. (43) can be found. The relation-
ship in the Fourier domain has the form

ˆ ( ) ˆ ( ) exp( )p q z p q ikmz/ , / , / , / , 0 (47)

The inverse Fourier transform yields the disturbance in x, y, z space at point P. At z  0 it reproduces 
the assumed boundary conditions, a property not shared by the Fresnel-Kirchhoff formula.

A plane-wave decomposition describes a function in (x, y, z) space in terms of the weighted sum 
of plane waves, each propagating in a direction given by the direction cosines (p, q, m). Equation (47) 
may be referred to as the angular spectrum formulation of diffraction. For application of this for-
mulation see Ref. 15.

Fresnel and Fraunhofer Approximations 

In practical optical situations, diffraction is mainly studied in the forward direction, that is, for small 
angles from the direction of propagation of the incident field. Furthermore, the distances involved 
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are much larger than the wavelength , r  >> . In this situation the distance  of Eq. (43) may be 
approximated by the low-order terms in the binomial expansion of the square root
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xx yy

r

x
s s

s s s2 2 2
1 2 2 yy

r
s
2

2
(48)

where r is the radial distance of the observation point P, r x y z2 2 2 . When the terms quadratic 
in the aperture variables are retained, namely (x2

s  y2
s), we have a description of Fresnel diffraction. 

Let d be the maximum dimension of the aperture. If the plane of observation is moved to distance 
z >> d2/ , the quadratic terms are negligible and Eq. (43) is approximated by

( , , ) exp( ) ( , , )exx y z
i

r
ikr x ys s 0 pp

( )
A

s s
s s

ik xx yy

r
dx dy (49)

This is the formula for Fraunhofer diffraction. 

Fraunhofer Diffraction

Far enough away from the aperture, z >> d2/ , Fraunhofer-type diffraction is found. Equation (49) 
shows that it has the form of a Fourier transform of the light distribution in the aperture. For more 
general conditions on the distance and angles to obtain Fraunhofer diffraction, see Born and Wolf.1

Thus, instead of moving the observation plane to the far field, parallel light incident on the aperture 
can be brought to a focus by a converging lens as in Fig. 20, thus producing a Fraunhofer pattern of 
the aperture in the focal plane. 

In an imaging situation (see Fig. 21), a diverging spherical wave is brought to a focus in the 
image plane. This is also an example of Fraunhofer diffraction pattern of the light distribution in 
the aperture A by a converging spherical wave. To realize Fraunhofer diffraction, a similar situation 
is obtained when a narrow diffracting aperture is held next to the eye focused on a distant point 
source. The diffraction pattern is observed in the plane of the source. 

An optical processing setup is shown in Fig. 22 where collimated or parallel light is incident 
normally on plane 1. In this arrangement an inverted image of plane 1 is formed in plane 3. The 
imaging process may be thought of as a Fourier transform (Fraunhofer diffraction) of the light dis-
tribution in plane 1 onto plane 2, followed by another Fourier transform of the light distribution in 
plane 2 onto plane 3. 

Recall our earlier discussion in relation to Eqs. (48) and (49). When the quadratic phase factor, 
exp[i (x2

s  y 2
s)/ r], may be approximated by unity, we are in the domain of Fraunhofer diffraction. 

N
L1

L2

H

M

S P0

P

FIGURE 20 Arrangement to observe a Fraunhofer diffraction by a slit aperture. 
(After Rossi.8)
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From the point of view of Fresnel zone construction, the far-field condition, z >> d2/ , means that 
for these distances z the first Fresnel zone overfills the aperture. The entire aperture contributes to 
the disturbance at any point in the Fraunhofer pattern. In Fresnel diffraction only relatively small 
portions of the aperture contribute to any one point in the pattern. 

In this context, the term Fresnel number is frequently used. It is defined in terms of the product 
of two ratios. The radius r of the aperture to the wavelength  times the radius of the aperture to the 
distance b measured from the aperture to the plane of observation:

Fresnel number N
r r

b b

d1

4

2

(50)

Thus, the Fresnel number can also be expressed as the ratio of the far-field distance, d 2/ , to the dis-
tance b from the aperture. With the definition of the Fresnel zones in Sec. 3.4, these ratios indicate 
that the Fresnel number equals the number of Fresnel zones that may be drawn within the aperture 
from a point P at a distance b from the aperture.

Thus, well within the Fresnel region, b << d2/ , the Fresnel number is large. There are many 
zones in the aperture. As seen in Figs. 7 and 16, very little light falls within the geometrical shadow 
region; most of the light is in the confines of the aperture boundary dictated by geometrical optics. 
In the study of cavity resonators16,17 and modes it is found that diffraction losses are small for large 
Fresnel numbers, N >> 1. In the Fraunhofer region b > d2/ , N < 1 where the first Fresnel zone over-
fills the aperture as pointed out before.

In Figs. 23 and 24 the theoretical plots of Fraunhofer patterns of a rectangular aperture and 
a circular aperture, respectively, are shown. In the rectangular case the central maximum has 
equally spaced zeros on either side, while in the circular case the central maximum is surrounded 
by unequally spaced concentric dark rings. In both cases the central maximum occurs at the geo-
metrical image of the point source that produced parallel light illumination on the aperture. 

FIGURE 21 Fraunhofer diffraction of an aperture A, with a converging 
spherical wave. S: point source. L: converging lens. S': image.

FIGURE 22 Optical processing arrangement. Collimated or parallel light is incident nor-
mally on plane 1. The system images plane 1 onto plane 3 with a Fourier transform in plane 2.
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The unitless variable x shown in the plots is defined as follows. (1) In the case of rectangular aper-
ture, x  2 ap/ , where 2a is the width of the aperture in the xs direction. In the other dimension 
y 2 bq/ , and 2b is the dimension in the ys direction. As before, p and q are the direction cosines 
of the vector joining the center of the aperture to the point of observation. (2) In the case of circu-
lar aperture, the unitless radial variable x  2 aw/ , where 2a is the diameter of the aperture in the
xs , ys plane and w p q2 2 .

In the far field the size of the diffraction pattern is very large compared to the aperture that 
produced it. In the focal plane of the lens, z = f and the size of the diffraction pattern is much 
smaller than the aperture. In both cases the patterns are in a reciprocal width relationship, that is, 
if the aperture is narrow in the xs direction compared to ys , the pattern is broader in the x direction 
compared to the y. A converging spherical lens illuminated by a plane wave produces in the focal 
plane a Fraunhofer diffraction pattern of the amplitude and phase of the aperture of a circular 
lens. When the lens has negligible phase errors, the diffraction pattern has a bright disk in the cen-
ter surrounded by concentric dark rings. This is called an Airy disk and it plays an important role 
in the Rayleigh criterion of resolving power.

Fraunhofer Diffraction Pattern of a Double Slit

The diffraction pattern of two slits may be observed by using the optical arrangement of Fig. 25. The 
center-to-center separation of the two slits is h. The off-axis point P is in the direction  from the 
axis as shown in the figure. The maxima and minima are determined according to whether the path 

FIGURE 23 Rectangular aperture (in coordinates xs and ys) and one section of the diffraction pattern. 
Normalized irradiance y plotted against a unitless variable x as discussed in the text. (From Born and Wolf.1)
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difference O1H is an even or odd multiple of a half-wave. Let E0 be the irradiance at the center of the 
single-slit diffraction pattern. The irradiance distribution in the plane of observation is given by

E E4 0

2

2sin
cos( ) (51)

where h(sin )/ . The irradiance at the center of the double-slit pattern is 4E0. The second term, 
(sin / )2, describes the diffraction pattern of a single slit of width 2a. Here  2 a(sin )/ .

FIGURE 24 A section of the diffraction pattern 
of a circular aperture. The normalized irradiance E
is plotted against a unitless variable x in the plane 
of observation as discussed in the text. (From Born 
and Wolf.1)

x

E

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9

y =
2J1 (x)

x

2

FIGURE 25 Arrangement to observe the Fraunhofer diffraction of an aperture 
consisting of two slits. S: point source. P: point of observation. O1, O2: two slit apertures 
with center-to-center separation h. (From Rossi.8)
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The term (cos )2 is the interference pattern of two slits. These two patterns as well as their prod-
uct are sketched in Fig. 26. 

Diffraction Grating

In Fig. 27, an arrangement similar to Fig. 25 permits observation of the Fraunhofer diffraction pattern 
of a grating, of N parallel and equidistant slits. The center-to-center separation between neighboring 
slits is h. As in the two-slit case, the Fraunhofer pattern consists of the diffraction due to one slit times 
the interference pattern of N slits. The irradiance distribution in the plane of observation is given by

E N E
N

N
2

0

2 2
sin sin

sin
(52)

FIGURE 26 (a) Plot of a single-slit diffrac-
tion pattern D( ); (b) plot of a two-slit interference 
pattern; and (c) their product E/E0. (From Rossi.8)

D(a)

cos2 d
sinJ

sinJ

sinJ

(a)

(b)

(c)

0

E
E0

–l
a

l
a



DIFFRACTION  3.29

where h(sin )/  and N 2E0 is proportional to the irradiance at the center of the N-slit pat-
tern. The term (sin / )2 is the single-slit pattern as used with Eq. (51). In the case of multiple slits 
each slit is very narrow; hence, this pattern is very broad, a characteristic of Fraunhofer diffraction. 
The interference term (sin N /N sin )2 shows prominent maxima when both the numerator and 
denominator are simultaneously zero; this happens when h(sin )/  m , where m is an inte-
ger. It leads to the grating equation, namely,

h msin (53)

There are several, (N 1), subsidiary minima in between the principal maxima. This happens when 
the numerator is zero but the denominator is not,  m /N. For the case of N  10, these effects are 
sketched in Fig. 28, which shows the effect of the product of the diffraction and interference terms.

In general, as N increases the subsidiary maxima become more nearly negligible, while the prin-
cipal maxima become narrower, being proportional to (1/N). The location of the principal maxima 
other than the zeroth order (m  0) are proportional to the wavelength . The diffraction grating 
thus forms an important spectroscopic tool. Further discussion of gratings is given by Petit18 and 
Gaylord and Moharam.19

3.7 STATIONARY PHASE APPROXIMATION

The diffracted field in the Rayleigh-Sommerfeld diffraction theory is given by

( , , ) ( , , ) ( )
exp(

x y z x y
z

ik
i

s sA
0

1
2

1
kk

dx dys s

)
2

(54)

where ( , , )x ys s 0  is the field in aperture A. The diffracted field can also be represented by

( , , ) ( , , ) (x y z L M i Lx My N
A

/ / exp0 2 zz d L d M) ( ) ( )/ / / (55)

The phase term in this integral is

( , ) ( )/ [ ( )]L M Lx My Nz Lx My L M2
2

1 2 2 zz (56)

FIGURE 27 Arrangement to observe the Fraunhofer diffraction of an aperture 
consisting of N slits. S: slit source. P : point of observation. G: grating. (From Rossi.8)
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–l l0
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(a) sin J

sin J

sin J

FIGURE 28 (a) Irradiance plot of a single-slit diffraction pattern; (b) partial plot of an N 10
slit interference pattern; and (c) their product. (From Rossi.8)
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The special values of L and M that make the first derivatives of the phase zero, 

L M
0 (57)

are 

L
x

r
M

y

r0 0and (58)

where r x y z2 2 2. The negative sign is omitted for forward propagation, z 0. The phase is 
approximated by

( , ) ( , ) [ ( ) ( ) (L M L M L L M M L0 0 0
2

0
21

2
2 L M M0 0)( )]

where the higher-order terms are neglected and , , and are the second derivatives evaluated at 
L L M M0 0and . These constant coefficients are given by

( , )L M kr0 0 (59)
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The resulting phase function is used in the double integral to obtain the diffracted field, ( , , )x y z .
The reader may also refer to Ref. 1, app. III, Eq. (20). The above procedure yields the stationary 
phase approximation for the diffracted field given by
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The diffracted field on a hemisphere is simply the spatial Fourier transform of the field dis-
tribution in the aperture as long as the distance r to the observation point satisfies the far-field 
condition

r
N a2 2

(62)

where N z r/ cos( ), the third direction cosine, a is the radius of the aperture, and  is the 
wavelength of the light incident on the aperture. (  is measured from the z axis, and as  increases 
the far-field condition is weakened.) For observation points not satisfying the far-field condition, 
the higher-order terms of the stationary phase approximation cannot be neglected. Harvey20 and 
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Harvey and Shack21 have shown that these terms can be considered as aberrations of the spatial 
Fourier transform of the aperture field on the hemisphere of observation. In the stationary phase 
approximation, there is no restriction on the direction cosines, L, M, and N. Hence the diffracted 
field amplitude in Eq. (61) is valid over the entire hemisphere.

3.8 VECTOR DIFFRACTION

The popularity of the Fresnel-Kirchhoff diffraction formula in the scalar case stems from the fact 
that it is widely applicable and relatively easy to use. In the study of electromagnetic diffraction,13,22

a similar formula can be obtained [see Ref. 13, Eq. (9.156)] but it has limited applicability because 
of the boundary conditions that must be satisfied. 

These conditions are the ones related to perfectly conducting screens. They are not adequately 
approximated at optical frequencies. The study with finite conductivity makes for complicated 
mathematical procedures. From the point of view of instrumental optics the applicability of the 
theory then is severely limited.

In the optical literature, periodic structures such as gratings (both shallow and deep compared to 
the wavelength) have been studied. Boundary conditions are applied to perfectly conducting grat-
ing profiles.18,19 The equation of the grating dictating the angular positions of the diffraction orders 
such as Eq. (53) continues to apply; the amount of power found in the different orders is signifi-
cantly different in the vector theory compared to the scalar theory. 

A special case of interest is discussed in detail by Jackson.13 Consider a plane wave incident at an 
angle  on a thin, perfectly conducting screen with a circular hole of radius a in the x-y plane. The 
polarization vector (E field) of the incident wave lies in the x-z plane, which is taken to be the plane 
of incidence. The arrangement is shown in Fig. 29 where k0 stands for the wave vector of the inci-
dent wave and k is used for the diffracted field. 

FIGURE 29 Coordinate system and aperture geometry for vector 
diffraction. : angle of incidence. The E field is in the xz plane. k0: the wave 
vector of the incident wave. k: the diffracted field. (From Jackson.13)
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The vector and scalar approximations are compared in Fig. 30. The angle of incidence is equal to 
45°and the aperture is one wavelength in diameter, ka . The angular distribution is shown in Fig. 30 
for two cases. Figure 30a shows the distribution of the power per unit solid angle in the plane of 
incidence which contains the E field and Fig. 30b the distribution for the plane perpendicular to it. 
Both vector and scalar theories contain the Airy-disk-type distribution; the differences show in the 
angular distribution. 

For normal incidence  0 and ka >> 1 the polarization dependence is unimportant and the dif-
fraction is confined to very small angles in the forward direction (Airy-disk-type distribution) as we 
found before in Fig. 24 under Fraunhofer diffraction. 

The Vector Huygens-Fresnel Secondary Source

Ideally, the fundamental model of any diffraction theory of light would retain the simplicity of 
Huygens’ scalar secondary source and wavefront construction theory but also account for its vector 
nature. It has been shown that an electromagnetic wavefront can be modeled as a set of fictitious 
oscillating electric and magnetic surface charge and current densities existing at all points on the 
wavefront. The vector Huygens secondary source is a unit composed of two fictitious coincident 
dipoles; one electric and the other magnetic their magnitudes and orientation dictated by the 
wavefront boundary conditions. The fields of the vector Huygens secondary source are composed 
of the linear, vector superposition of the fields of these electric and magnetic dipoles. The electric 
dipole’s axis lies in the plane of the page, is oriented in the vertical direction, and is located at the 
origin. The magnetic dipole’s axis is perpendicular to the plane of the page and is also located at 
the origin. The vector of (a) the radiated electric field (Fig. 31a) is tangent to the spherical wave-
front (represented by the outer circle) and lies in the plane of the page and (b) the radiated mag-
netic field (Fig. 31b) is tangent to the spherical wavefront (represented by the outer circle) and is 
perpendicular to the plane of the page. The Poynting vector (Fig. 31c) points radially outward. The 
magnitude of the irradiance is proportional to the length of the chord from the origin to the irra-
diance plot along the radius to the point of tangency. The strength of these vectors is proportional 
to the length of the chord from the origin to the field plot along the radius to the point of tangency. 

FIGURE 30 Fraunhofer diffraction pattern for a circular opening one wavelength 
in diameter in a thin-plane conducting screen. The angle of incidence is 45 . (a) Power-
per-unit solid angle (radiant intensity) in the plane of incidence and (b) perpendicular 
to it. The solid (dotted) curve gives the vector (scalar) approximation in each case. 
(From Jackson.13)
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The plot is rotationally symmetric about k̂ EM which lies in the plane of the page and is in the direction 
of the vector from the origin to 0 degrees.

The diffracted field at any observation point is the summation of the fields radiated from the 
electriomagnetic dipoles in the aperture visible to the observation point as given by

E r
i

R E r R R Hs s s
o

o
s( ) ˆ ( ) ˆ ˆ (

2 2
r

ikR

R
d rsEPW
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FIGURE 31a This figure is the mapping of the EM dipole’s normalized electric field strength on the 
radiated spherical wavefront in the far zone of the EM dipole as a function of the angle between the direction 
of observation and k̂ EM which lies in the plane of the page and is in the direction of the vector from the origin 
to 0 degrees.
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In these expressions, E r( ) and H r( ) are, respectively, the diffracted electric and magnetic fields at 
the point of observation r . In the integrands, E rs( ) and H rs( ) are the fields of the wavefront incident  
on the aperture at point rs

 and are related by

H r n r E rs
o

o
s s( ) ˆ( ) ( ) (65)

Here ˆ( )n rs  is the normal to the wavefront. We have defined R r rs s and use Rs for the magnitude 
and R̂s for the unit vector in the direction of Rs. The letters EPW under the volume integral stand 
for “exposed parts of the primary wavefront.” The integration is restricted to the open areas of the 
aperture. 
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FIGURE 31b This figure is the mapping of the EM dipole’s normalized magnetic field strength on the 
radiated spherical wavefront in the far zone of the EM dipole as a function of the angle between the direction 
of observation and k̂ EM which lies in the plane of the page and is in the direction of the vector from the origin 
to 0 degrees. 
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FIGURE 31c This figure is the mapping of the EM dipole’s normalized irradiance on the radiated 
spherical wavefront in the far zone of the EM dipole as a function of the angle between the direction of 
observation and k̂ EM which lies in the plane of the page and is in the direction of the vector from the origin 
to 0 degrees. 

By use of vector identities, the curly bracket in Eq. (63) may be rewritten in the form

ˆ ( ) ˆ ˆ ( )R E r R R H rs s s
o

o
s s

E r E r n r Es s s( ) ( )( ) ˆ( )( (cos rrs))

(66)

In this expression E rs( ) is the transverse component of E rs( ) perpendicular to the direction R̂s  and 
E rs( ) is the longitudinal component of E rs( ) parallel to the direction R̂s. The symbol  stands for 
the angle between the unit vectors ˆ ˆ( )R n rs sand . In the special case where the angle  is zero, the curly 
bracket reduces to 2E rs( ).

For further details and additional references, we refer to McCalmont23 and Marathay and 
McCalmont.24 Figure 32 is a sequence of irradiance profiles due to the diffraction of light by a 
narrow slit based on Eqs. (63) and (64). The sequence describes diffraction from deep within the 
Fresnel region into the Fraunhofer zone.
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FIGURE 32 Flux density profiles along the horizontal x axis on an 
observation screen at the following distances: (a) 5 , (b) 100 , (c) 500 , and 
(d) 15,000 . These profiles are due to diffraction by a rectangular slit and 
are based on Eqs. (63) and (64). The slit is of width 20 . The first zero of the 
Fraunhofer pattern is at 2.81° from the optical axis. The incident field is a 
plane wave of unit amplitude, at normal incidence on the plane of the aper-
ture and polarized in the vertical y-direction. The position on the x axis is in 
terms of wavelengths from the origin of the observation plan.
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4.1 GLOSSARY

B spot full width

CTF contrast transfer function (square wave response)

e(x) edge response

FN focal ratio

F( , ) Fourier transform of f(x, y)

f(x, y) object function

G( , ) Fourier transform of g(x, y)

g(x, y) image function

H( , ) Fourier transform of h(x, y)

h(x, y) impulse response

( )x line response

S( , ) power spectrum

W detector dimension

( )x delta function

( , ) phase transfer function

two-dimensional convolution

4.2 INTRODUCTION

Transfer functions are a powerful tool for analyzing optical and electro-optical systems. The inter-
pretation of objects and images in the frequency domain makes available the whole range of linear-
systems analysis techniques. This approach can facilitate insight, particularly in the treatment of 
complex optical problems. For example, when several optical subsystems are combined, the overall 
transfer function is the multiplication of the individual transfer functions. The corresponding analysis, 
without the use of transfer functions, requires convolution of the corresponding impulse responses.

4.1
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4.3 DEFINITIONS

The image quality of an optical or electro-optical system can be characterized by either the system’s 
impulse response or its Fourier transform, the transfer function. The impulse response h(x, y) is the 
two-dimensional image formed in response to a delta-function object. Because of the limitations 
imposed by diffraction and aberrations, the image quality produced depends on the following: the 
wavelength distribution of the source; the F-number (FN) at which the system operates; the field 
angle at which the point source is located; and the choice of focus position.

A continuous object f(x, y) can be decomposed, using the sifting property of delta functions, 
into a set of point sources, each with a strength proportional to the brightness of the object at that 
location. The final image g(x, y) obtained is the superposition of the individually weighted impulse 
responses. This result is equivalent to the convolution of the object with the impulse response:

f x y h x y g x y( , ) ( , ) ( , ) (1)

where the double asterisk denotes a two-dimensional convolution.
The validity of Eq. (1) requires shift invariance and linearity. Shift invariance is necessary for the 

definition of a single impulse response and linearity is necessary for the superposition of impulse 
responses. These assumptions are often violated in practice, but the convenience of a transfer-
function analysis dictates that we preserve this approach if possible. While most optical systems are 
linear, electro-optical systems that include a receiver (such as photographic film, detector arrays, and 
xerographic media) are often nonlinear. A different impulse response (and hence transfer function) 
is obtained for inputs of different strengths. In optical systems with aberrations that depend on field 
angle, separate impulse responses are defined for different regions of the image plane.

Although h(x, y) is a complete specification of image quality (given a set of optical parameters), 
additional insight is gained by use of the transfer function. A transfer-function analysis considers 
the imaging of sinusoidal objects, rather than point objects. It is more convenient than an impulse-
response analysis because the combined effect of two or more subsystems can be calculated by a 
point-by-point multiplication of the transfer functions, rather than by convolving the individual 
impulse responses. Using the convolution theorem of Fourier transforms, we can rewrite the convo-
lution of Eq. (1) as a multiplication of the corresponding spectra:

F H G( , ) ( , ) ( , ) (2)

where the uppercase variables denote the Fourier transforms of the corresponding lowercase variables: 
F( , ) is the object spectrum; G( , ) is the image spectrum; H( , ) is the spectrum of the 
impulse response. As a transfer function, H( , ) multiplies the object spectrum to yield the image 
spectrum. The variables and  are spatial frequencies in the x and y directions. Spatial frequency is 
the reciprocal of the crest-to-crest distance of a sinusoidal waveform used as a basis function in the 
Fourier analysis of an object or image. In two dimensions, a sinusoid of arbitrary orientation has a 
spatial period along both the x and y axes. The reciprocals of these spatial periods are the spatial fre-
quencies and . Typical units of spatial frequency are cycles/millimeter when describing an image, 
and cycles/milliradian when describing an object at a large distance. For an object located at infinity, 
these two representations are related through the focal length of the image-forming optical system:

angular cycles/mrad cycles/mm][ ] . [0 001 f [[ ]mm (3)

The function H( , ) in Eq. (2) is usually normalized to have unit value at zero frequency. This 
yields a transfer function relative to the response at low frequency, and ignores frequency-independent 
attenuations, such as losses caused by Fresnel reflection or by obscurations. This normalization is 
appropriate for most optical systems, because1 the transfer function of an incoherent optical system 
is proportional to the two-dimensional autocorrelation of the exit pupil, which is maximum at zero 
frequency. For more general imaging systems (for example, the human eye, photographic film, and 
electronic imaging systems), the transfer function is not necessarily maximum at the origin, and may 
be more useful in an unnormalized form.
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With the above normalization, H( , ) is called the optical transfer function (OTF). In general, 
OTF is a complex function, having both a magnitude and a phase portion:

OTF( , ) exp{H H j( , ) | ( , )| ( , )} (4)

The magnitude of the OTF, | ( , )|,H  is referred to as the modulation transfer function (MTF), 
while the phase portion of the OTF, ( , ), is referred to as the phase transfer function (PTF).

MTF is the magnitude response of the imaging system to sinusoids of different spatial frequen-
cies. This response is described in terms of the modulation depth, a measure of visibility or contrast:

M
A A

A A
max min

max min

(5)

where A refers to a value of the waveform (typically W/cm2 vs position) that describes the object or 
image. These quantities are nonnegative, so the sinusoids always have a dc bias. Modulation depth is 
thus a number between 0 and 1. The effect of the finite-size impulse response is that the modulation 
depth in the image is less than that in the object. This attenuation is usually more severe at high frequen-
cies. MTF is the ratio of image modulation to object modulation, as a function of spatial frequency:

MTF( )
image

object

,
( , )

( , )

M

M
(6)

PTF describes the relative phases with which the various sinusoidal components recombine in the 
image. A linear phase such as PTF x0  corresponds to a shift of the image by an amount x0, each 
frequency component being shifted the amount required to reproduce the original waveform at the 
displaced location. For impulse responses that are symmetric about the ideal image point, the PTF 
exhibits phase reversals, with a value of either 0 or  radians as a function of spatial frequency. A 
general impulse response that is real but not even yields a PTF that is a nonlinear function of fre-
quency, resulting in image degradation. Linearity of PTF is a sensitive test for aberrations (such as 
coma) which produces asymmetric impulse responses, and is often a design criterion.

4.4 MTF CALCULATIONS

OTF can be calculated from wave-optics considerations. For an incoherent optical system, the OTF is 
proportional to the two-dimensional autocorrelation of the exit pupil. This calculation can account 
for any phase factors across the pupil, such as those arising from aberrations or defocus. A change of 
variables is required for the identification of an autocorrelation (a function of position in the pupil) 
as a transfer function (a function of image-plane spatial frequency). The change of variables is

x

di

(7)

where x is the autocorrelation shift distance in the pupil,  is the wavelength, and di is the distance 
from the exit pupil to the image. A system with an exit pupil of full width D has an image-space cut-
off frequency consistent with Eq. (7):

cutoff FN
1

( )
(8)

where FN equals (focal length)/D for a system with the object at infinity, and di/D for a system oper-
ating at finite conjugates.

A diffraction-limited system has a purely real OTF. Diffraction-limited MTFs represent the best 
performance that a system can achieve, for a given FN and , and accurately describe systems with 
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negligible aberrations, whose impulse-response size is dominated by diffraction effects. A diffraction-
limited system with a square exit pupil of dimensions D D has a linear MTF along  or :

MTF
cutoff cutoff

1 (9)

For a system with a circular exit pupil of diameter D, the MTF is circularly symmetric, with profile:2

MTF cos
cutoff cutoff c

2 1

uutoff cutoff

1

2
1 2/

if

if

cutoff

cutoff0

(10)

Equation (10) is plotted in Fig. 1, along with MTF curves obtained for annular pupils, which arise in 
obscured systems such as Cassegrain telescopes. The plots are functions of the obsuration ratio, and 
the emphasis at high frequencies has been obtained by an overall decrease in flux reaching the image, 
proportional to the obscured area. If the curves in Fig. 1 were plotted without normalization to 1 at 

0, they would all be contained under the envelope of the unobscured diffraction-limited curve.
A system exhibiting effects of both diffraction and aberrations has an MTF curve bounded by the 

diffraction-limited MTF curve as the upper envelope. Aberrations broaden the impulse response, 
resulting in a narrower and lower MTF, with less integrated area.

The effect of defocus on the MTF is shown in Fig. 2. The MTF curves resulting from third-order 
spherical aberration are shown in Fig 3. MTF results for specific cases of other aberrations are 
contained in Ref. 3.

A geometrical-aberration OTF can be calculated from ray-trace data, without regard for diffrac-
tion effects. Optical-design computer programs typically yield a diagram of ray-intersection density 
in the image plane, a geometrical-optics spot diagram. A geometrical-aberration OTF is calculated 
by Fourier transforming the spot-density distribution. The OTF thus obtained is accurate if the 
impulse-response size is dominated by aberration effects. A one-dimensional uniform blur spot of 
full width B has the following OTF in the direction:

OTF( )
sin( )B

B
(11)

Sm

So
A

B

C

D

FIGURE 1 (A) Diffraction-limited MTF for system with circular 
pupil (no obscuration: So/Sm 0). (B) through (D) are diffraction-limited 
MTF for a system with an annular pupil: (B) So/Sm 0.25; (C) So/Sm 0.5; 
(D) So/Sm = 0.75. (Adapted from Ref. 4, p. 322.)
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which has a zero at 1/B, and also exhibits the phase reversals mentioned above. When an MTF 
has been calculated from ray trace data, an approximation to the total system MTF may be made4 by 
multiplying the diffraction-limited MTF of the proper FN and  with the ray-trace data MTF. This 
is equivalent to a convolution of the spot profiles from diffraction and geometrical aberrations.

In electronic imaging systems, an electronics subsystem performs signal-handling and signal-
processing functions. The performance characterization of electronic networks by transfer-
function techniques is well established. The usual independent variable for these time-domain 
transfer functions is the temporal frequency f (Hz). To interpret the electronics transfer function 
in the same units as the image-plane spatial frequency (cycles/mm), the temporal frequencies are 
divided by the scan velocity (mm/s). For a scanning system, this is the velocity of the instantaneous 
field of view, referred to as image coordinates. For a staring system, an effective scan velocity is the 

A
B

C
D

E

FIGURE 2 Diffraction MTF for a defocused system: (A) in focus, 
OPD 0.0; (B) defocus /2N sin2 u, OPD /4; (C) defocus /N sin2 u, 
OPD /2; (D) defocus 3 /2N sin2 u, OPD 3 /4; and (E) defocus 2 /N
sin2 u, OPD . (Adapted from Ref. 4, p. 320.)

FIGURE 3 Diffraction MTF for system with third-order spherical 
aberration (image plane midway between marginal and paraxial foci): 
(A) LAm 0.0, OPD 0; (B) LAm 4 /N sin2 u, OPD /4; (C) LAm 8 /N
sin2 u, OPD /2; and (D) LAm 16 /N sin2 u, OPD . (Adapted from 
Ref. 4, p. 322.)

A
B

C

D



4.6  PHYSICAL OPTICS

horizontal dimension of the image plane divided by the video line time. With this change of vari-
ables from temporal frequencies to spatial frequencies, the electronics can be analyzed as simply 
an additional subsystem, with its own transfer function that will multiply the transfer functions 
of the other subsystems. It should be noted that an electronics transfer function is not bounded 
by a pupil autocorrelation the way an optical transfer function is. Thus, it need not be maximum 
at the origin, and can amplify certain frequencies and have sharp cutoffs at others. Thus, the usual 
normalization of MTF may not be appropriate for analysis of the electronics subsystems, or for the 
entire imaging system including the electronics.

An unavoidable impact of the electronics subsystem is the contribution of noise to the image. 
This limits the amount of electronic amplification that is useful in recovering modulation depth 
lost in other subsystems. A useful figure of merit, which has been validated to correlate with image 
visibility,5 is the area between two curves: the MTF and the noise power spectrum. To facilitate com-
parison on the same graph, the noise power spectrum is expressed in modulation depth units, and is 
interpreted as a noise-equivalent modulation depth (the modulation needed for unit signal-to-noise 
ratio) as a function of spatial frequency.

The detector photosensitive area has finite size, rather than being a true point. It thus performs 
some spatial averaging6 on any irradiance distribution that falls on it. Large detectors exhibit more 
attenuation of high spatial frequencies than do small detectors. For a detector of dimension W in
the x direction, the MTF is

MTF( )
sin( )W

W
(12)

which has a zero at 1/W. This MTF component applies to any system with detectors, and will 
multiply the MTFs of other subsystems.

In electronic imaging systems, the image is typically sampled in both directions. The distance 
between samples will determine the image-plane spatial frequency at which aliasing artifacts will 
occur. Care must be taken in the calculation of MTF, because different impulse responses are pos-
sible depending on the location of the impulse response with respect to the sampling positions. This 
violates the assumption of shift-invariance needed for a transfer-function analysis.7 One approach 
for defining a generalized MTF is to average over all possible positions of the impulse response with 
respect to the sampling lattice [Eq. (4) in Ref. 8]. Research is still underway on the specification of 
MTF for sampled-image systems.

4.5 MTF MEASUREMENTS

In any situation where the measurement of MTF involves the detection of the image-plane flux, 
one component of the measurement-system MTF is caused by the finite aperture of the detector, 
which can be accounted for in the calibration of the instrument by dividing out the detector MTF 
seen in Eq. (12).

When OTF is measured with a point-source object, the image formed by the system under test 
is the impulse response. The two-dimensional impulse response can be Fourier transformed in 
two dimensions to yield OTF ( , ). If an illuminated pinhole is used, it should be as small as pos-
sible. However, flux-detection considerations dictate a finite size for any source. The object is small 
enough not to affect the measurement if its angular subtense is much smaller than the angular 
subtense of the impulse response, when both are viewed from the aperture stop of the system. For 
sources of larger extent, a Fourier analysis can be made of the object, and an OTF can be calculated 
using Eq. (2), over the range of spatial frequencies provided by the source.

If higher flux levels are needed to maintain signal-to-noise ratio, a line response can be mea-
sured. The system under test is presented with an illuminated line source, which acts as a delta 
function in one direction and a constant in the other: ( ) ( ).x y1 The system forms an image, the 
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line response ( ),x which is a summation of vertically displaced impulse responses. In general 
( ) ( , )x h x 0 2. The line response only yields information about one profile of OTF ( , ). The 

one-dimensional Fourier transform of the line response produces the corresponding profile of the 
two-dimensional OTF: { ( )}x OTF( , 0). To obtain other profiles of the OTF, the line source is 
reoriented. Line response data are also available from the response of the system to a point source, 
using a receiver that integrates the impulse response along one direction: a detector that is long 
in one dimension and is scanned perpendicularly, or a long slit that is scanned in front of a large-
area detector.

Another measurement of OTF uses the edge response e ( ),x which is the response of the 
system to an illuminated knife edge. Each line in the open part of the aperture produces a dis-
placed line response, so e(x) is a cumulative distribution, related to the line response as follows: 
d dx x x/ { ( )} ( ),e which Fourier transforms to the profile of the OTF. The derivative opera-
tion increases the effect of noise. Any digital filter used for data smoothing has its own impulse 
response, and hence its own OTF contribution. The edge response can also be measured by using 
a scanning knife edge in front of a detector in the image plane, with a point-source or a line-
source object.

An MTF calculated from a measured profile is the product of a diffraction MTF and a geometrical-
aberration MTF. When combining the separately-measured MTFs of several optical subsystems, 
care should be taken to ensure that the diffraction MTF (determined by the aperture stop of the 
combined system) contributes only once to the calculation. The geometrical-aberration MTFs for 
each subsystem will cascade if each subsystem operates independently on an irradiance basis, with 
no partial coherence effects.9 The major exception to this condition occurs when two subsystems are 
designed to correct for each other’s aberrations, and the MTF of the combined system is better than 
the individual MTFs would indicate.

MTF can also be obtained by the system’s response to a sine-wave target, where the image modu-
lation depth is measured as a function of spatial frequency. PTF can also be measured from the 
position of the waveform maxima as a function of frequency. Sine-wave targets are available as pho-
tographic prints or transparencies, which are suitable for testing visible-wavelength systems. Careful 
control in their manufacture is exercised10 to avoid harmonic distortions, including a limitation to 
relatively small modulation depths. Sine-wave targets are difficult to fabricate for testing infrared 
systems, and require the use of half-tone techniques.11

A more convenient target to manufacture is the three- or four-bar target of equal line and space 
width, with a binary transmission or reflection characteristic. These are widely used for testing both 
visible-wavelength and infrared systems. The square-wave response is called the contrast transfer 
function (CTF) and is not equivalent to the sine-wave response for which MTF is defined. CTF is a 
function of the fundamental spatial frequency f  inverse of the bar-to-bar spacing) and is measured 
on the peak-to-valley variation of image irradiance. For any particular fundamental frequency, the 
measured response to bar targets will be higher than that measured for sinewaves of the same fre-
quency, because additional harmonic components contribute to the modulation. For a square-wave 
pattern of infinite extent, an analytical relationship exists12 between CTF( )f and MTF( ). Each 
Fourier component of the square wave has a known transfer factor given by MTF( ), and the modu-
lation depth as a function of f of the resultant waveform can be calculated by Eq. (5). This process 
yields the following series:

CTF( ) MTF( ) MTF(3 ) MTF(5 ) Mf f f f

4 1

3

1

5

1

7
TTF(7 ) MTF(9 )f f

1

9
(13)

CTFs for the practical cases of three- and four-bar targets are slightly higher than the CTF curve for an 
infinite square wave. Figure 413 compares the MTF for a diffraction-limited circular-aperture system 
with CTFs obtained for infinite, three- and four-bar targets. Because of the broad spectral features 
associated with bar patterns of limited extent, a finite level of modulation is present in the image, 
even when the fundamental frequency of the bar pattern equals the cutoff frequency of the system 
MTF.14 The inverse process of expressing the MTF in terms of CTFs is more difficult analytically, 
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since square waves are not an orthogonal basis set for the expansion of sinusoids. A term-by-term 
series subtraction12 yields the following:

MTF( ) CTF( ) CTF(3 ) CTF(5 ) Cf f f f4

1

3

1

5

1

7
TTF(7 ) CTF(11 )f f

1

11
(14)

Narrowband electronic filtering can be used to isolate the fundamental spatial-frequency compo-
nent for systems where the image data are available as a time-domain waveform. These systems do 
not require the correction of Eq. (14), because the filter converts bar-target data to sinewave data.

The MTF can also be measured by the response of the system to a random object. Laser speckle pro-
vides a convenient means to generate a random object distribution of known spatial-frequency content. 
The MTF relates the input and output spatial-frequency power spectra of the irradiance waveforms:

S MTF( , )output input( , ) | | ( , )2 S (15)

This method is useful in the measurement of an average MTF for sampled-image systems,15 since 
the speckle pattern has a random position with respect to the sampling sites.

A number of interferometric methods have been developed for measuring MTF.16 An inter-
ferogram of the wavefront exiting the system is reduced to find the phase map. The distribution of 
amplitude and phase across the exit pupil contains the information necessary for calculation of OTF 
by pupil autocorrelation.
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5
COHERENCE THEORY

William H. Carter
Naval Research Laboratory
Washington, D.C.

5.1 GLOSSARY

I intensity (use irradiance or field intensity)

k radian wave number

p unit propagation vector

t time

U field amplitude

u Fourier transform of U

W cross-spectral density function

x spatial vector

12( ) mutual coherence function

coherence length

coherence time

complex degree of spatial coherence

phase

radian frequency

Real ( ) real part of ( )

5.2 INTRODUCTION

Classical Coherence Theory

All light sources produce fields that vary in time with highly complicated and irregular waveforms. 
Because of diffraction, these waveforms are greatly modified as the fields propagate. All light detectors 
measure the intensity time averaged over the waveform. This measurement depends on the integration 

5.1
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time of the detector and the waveform of the light at the detector. Generally this waveform is not 
precisely known. Classical coherence theory1−8 is a mathematical model which is very successful in 
describing the effects of this unknown waveform on the observed measurement of time-averaged 
intensity. It is based on the electromagnetic wave theory of light as formulated from Maxwell’s equa-
tions, and uses statistical techniques to analyze the effects due to fluctuations in the waveform of the 
field in both time and space.

Quantum Coherence Theory

Classical coherence theory can deal very well with almost all presently known optical coherence 
phenomena; however, a few laboratory experiments require a much more complicated mathematical 
model, quantum coherence theory9−11 to explain them. This theory is not based on classical statisti-
cal theory, but is based on quantum electrodynamics.12−14 While the mathematical model underlying 
classical coherence theory uses simple calculus, quantum coherence theory uses the Hilbert space 
formulation of abstract linear algebra, which is very awkward to apply to most engineering problems. 
Fortunately, quantum coherence theory appears to be essential as a model only for certain unusual 
(even though scientifically very interesting) phenomena such as squeezed light states and photon 
antibunching. All observed naturally occuring phenomena outside of the laboratory appear to be 
modeled properly by classical coherence theory or by an approximate semiclassical quantum theory. 
This chapter will deal only with the simple classical model.

5.3 SOME ELEMENTARY CLASSICAL CONCEPTS

Analytical Signal Representation

Solutions of the time-dependent, macroscopic Maxwell’s equations yield six scalar components of the 
electric and the magnetic fields which are functions of both time and position in space. As in conven-
tional diffraction theory, it is much more convenient to treat monochromatic fields than it is to deal 
with fields that have complicated time dependencies. Therefore, each of these scalar components is 
usually represented at some typical point in space (given with respect to some arbitrary origin by the 
radius vector x (x, y, z) by a superposition of monochromatic real scalar components. Thus the field 
amplitude for a typical monochromatic component of the field with radial frequency  is given by

U U tr( , ) ( ) [ ( ) ]x x xcos0 (1)

where U0(x) is the field magnitude and (x) is the phase. Trigonometric functions like that in Eq. (1) 
are awkward to manipulate. This is very well known in electrical circuit theory. Thus, just as in cir-
cuit theory, it is conventional to represent this field amplitude by a “phasor” defined by

U U ei( , ) ( ) ( )x x x
0 (2)

The purpose for using this complex field amplitude, just as in circuit theory, is to eliminate the need 
for trigonometric identities when adding or multiplying field amplitudes. A time-dependent complex 
analytic signal (viz., Ref. 15, sec. 10.2) is usually defined as the Fourier transform of this phasor, i.e.,

u t U e di t( , ) ( , )x x
0

(3)

The integration in Eq. (3) is only required from zero to infinity because the phasor is defined with 
hermitian symmetry about the origin, i.e., U(–x, ) U (x, ). Therefore, all of the information 
is contained within the domain from zero to infinity. To obtain the actual field component from 
the analytical signal just take the real part of it. The Fourier transform in Eq. (3) is well defined if the 
analytical signal represents a deterministic field. However, if the light is partially coherent, then the 
analytic signal is usually taken to be a stationary random process. In this case the Fourier inverse of 
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Eq. (3) does not exist. It is then possible to understand the spectral decomposition given by Eq. (3) 
only within the theory of generalized functions (viz., see Refs. 16, the appendix on generalized func-
tions, and 17, pp. 25–30).

Scalar Field Amplitude

Each monochromatic component of an arbitrary deterministic light field propagating through a 
homogeneous, isotropic medium can always be represented using an angular spectrum of plane 
waves for each of the six scalar components of the vector field. The six angular spectra are coupled 
together by Maxwell’s equations so that only two are independent.18–20 Any two of the six angular 
spectra can be used to define two scalar fields from which the complete vector field can be deter-
mined. A polarized light field can be represented in this way by only one scalar field.20,21 Thus it is 
often possible to represent one polarized component of a vector electromagnetic field by a single 
scalar field. It has also been found useful to represent completely unpolarized light by a single scalar 
field. In more complicated cases, where the polarization properties of the light are important, a vec-
tor theory is sometimes needed as discussed later under “Explicit Vector Representations.”

Temporal Coherence and Coherence Time

Within a short enough period of time, the time dependence of any light field at a point in space can 
be very closely approximated by a sine wave (Ref. 15, sec. 7.5.8). The length of time for which this is 
a good approximation is usually called the coherence time . The coherence time is simply related 
to the spectral bandwidth for any light wave by the uncertainty principle, i.e.,

1 (4)

For a light wave which is also highly directional within some region of space (like a beam) so that it 
propagates generally in some fixed direction (given by the unit vector p), the field amplitude is given by

u t f ct( , ) ( )x p x (5)

Such a traveling wave will be approximately sinusoidal (and hence coherent) over some coherence 
length in the direction of p where from Eq. (4) we see that

c c/ (6)

so that the coherence length varies inversely with bandwidth.

Spatial Coherence and Coherence Area

The time-dependent waveform for any light field is approximately the same at any point within a 
sufficiently small volume of space called the coherence volume. The projection of this volume onto a 
surface is termed a coherence area. If we have a field that, within some region, is roughly directional 
so that its field amplitude is given by Eq. (5), then the coherence length gives the dimension of the 
coherence volume in the direction of propagation p, and the coherence area gives the dimensions of 
the coherence volume normal to this direction.

Measurements of Coherence

Coherence is usually measured by some form of interferometer that takes light from two test points 
in a light field, x1 and x2, and then allows them to interfere after introducing a time advance  in the 
light from x1 relative to that from x2. If the field intensity of the interference pattern is measured as a 
function of , then in general it has the form (see Ref. 15, sec. 10.3.1)

I I I( ) ( ) ( ) ( ( ))x x1 2 2Real2 1 (7)
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where I(x1) is the intensity at the ith test point, and 12( ) is the mutual coherence function which 
measures the  advanced correlation between the waveforms at the two test points (as subsequently 
defined under “Mutual Coherence Function”). There are many interferometers which have been 
developed to measure 12( ) in this way. One of the earliest techniques was developed by Thompson 
and Wolf.22 They used a diffractometer to measure the coherence over a surface normal to the direc-
tion of propagation for a collimated beam from a partially coherent source. More recently, Carter23

used an interferometer made from a grating and a microscope to similarly measure the coherence of 
a beam transverse to the direction of propagation.

5.4 DEFINITIONS OF COHERENCE FUNCTIONS

Mutual Coherence Function

In an older form of coherence theory1 the principal coherence function was the mutual coherence 
function defined by24

12 1 2

1
2

( ) ( , ) ( , )
T T

T

T
u t u t dtx x (8)

where u(x, t) represents the complex analytic time-dependent signal at some point x and some 
time t as defined in Eq. (3). This definition was originally motivated by the fact that the intensity, 
as actually measured, is precisely this time averaged function with x1 x2 and 0, and that this 
function is the most readily measured since it appears directly in Eq. (7). Thus it was clearly pos-
sible to measure 12( ) over some input plane, propagate it to an output plane,25 and then find the 
intensity over the output plane from 12( ). It was assumed in this definition in Eq. (8) that u(x, t)
is stationary in time so that 12( ) is only a function of and not of t. In most of the older literature, 
sharp brackets were usually used to represent this time average rather than an ensemble average 
(see Ref. 15, sec. 10.3.1). In the early 1960s it was found to be much more convenient to treat u(x, t)
as an ergodic, stationary random process so that Eq. (8) could be replaced by

12 1 2( ) ( , ) ( , )u t u tx x (9)

where (everywhere in this chapter) the sharp brackets denote an ensemble average. After the change 
to ensemble averages the cross-spectral density function (to be defined shortly) became the most 
used correlation function in the coherence literature, because of the simpler and more general rules 
for its propagation (as discussed later under “Representations” on p. 5.16).

Complex Degree of Coherence

To obtain a function that depends only on the coherence properties of a light field it is often useful 
to normalize the mutual coherence function in the manner of

12
1 2

1 1

( )
( , ) ( , )

( , ) ( ,

u t u t

u t u

x x

x x t u t u t) ( , ) ( , )x x2 2

(10)

This is called the complex degree of coherence. It is a properly normalized correlation coefficient, 
so that 11(0) 22(0) 1. This indicates that the field at a point in space must always be perfectly 
coherent with itself. All other values of 12( ) are generally complex with an amplitude less than one. 
This indicates that the fields at two different points, or at the same point after a time delay , are 
generally less than perfectly coherent with each other. The magnitude of the complete degree of spa-
tial coherence (from zero to one) is a measure of the mutual coherence between the fields at the two 
test points and after a time delay .
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Cross-Spectral Density Function

Just as in classical diffraction theory, it is much easier to propagate monochromatic light than light 
with a complicated time waveform. Thus the most frequently used coherence function is the cross-
spectral density function, W (x1, x2), which is the ensemble-averaged correlation function between 
a typical monochromatic component of the field at some point x1 with the complex conjugate of the 
same component of the field at some other point x2. It may be defined by

( ) ( , ) ( , ) ( , )W U Ux x x x1 2 1 2 (11)

The amplitude U(x, ) for a field of arbitrary coherence is taken to be a random variable. Thus U(x, )
represents an ensemble of all of the possible fields, each of which is represented by a complex pha-
sor amplitude like that defined in Eq. (2). The sharp brackets denote an ensemble average over all of 
these possible fields weighted by the probability for each of them to occur. The correlation functions 
defined by Eqs. (11) and (9) are related by the Fourier transform pairs

12 1 20
( ) ( , )W e dix x (12)

and

W e di( , ) ( )x x1 2 12

1
2

(13)

which is easily shown, formally, by substitution from Eq. (3) into (9) and then using (11). These 
relations represent a form of the generalized Wiener-Khintchine theorem (see Ref. 26, pp. 107–108).

Complex Degree of Spectral Coherence

Because the cross-spectral density function contains information about both the intensity (see 
“Intensity,” which follows shortly) and the coherence of the field, it is useful to define another 
coherence function which describes the coherence properties only. This is the complex degree of 
spectral coherence (not to be confused with the complex degree of spatial coherence, which is a 
totally different function), which is usually defined by27

( , )
( , )

( , ) ( , )
x x

x x

x x x x
1 2

1 2

1 1 2 2

W

W W
(14)

It is easy to show that this function is a properly normalized correlation coefficient which is always 
equal to unity if the field points are brought together, and is always less than or equal to unity as 
they are separated. If the magnitude of (x1, x2) is unity, it indicates that the monochromatic field 
component with radial frequency  is perfectly coherent between the two points x1 and x2. If the 
magnitude of this function is less than unity it indicates less-than-perfect coherence. If the magni-
tude is zero it indicates complete incoherence between the field amplitudes at the two test points. 
For most partially coherent fields the cross-spectral density function has significantly large values 
only for point separations which keep the two field points within the same coherence volume. This 
function depends only on the positions of the points and the single radial frequency that the field 
components at the two points share. Field components of different frequency are always uncorre-
lated (and therefore incoherent), even at the same point.

Spectrum and Normalized Spectrum

Recently, the changes in the spectrum of light due to propagation have been studied using coher-
ence theory. It is therefore useful to define the spectrum of light as just the monochromatic intensity 
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(which is just the trace of the cross-spectral density function) as a function of omega, and the spec-
trum of a primary source as a very similar function, i.e.,

S U U W

S

U U

Q

( , ) ( ) ( ) ( , )

( , )

x x x x x

x (( ) ( ) ( , )x x x xWQ

(15)

where the subscript Q indicates that this is a primary source spectrum, and the subscript U indicates 
that this is a field spectrum. The spectrum for the primary source is a function of the phasor (x)
which represents the currents and charges in this source as discussed under “Primary Sources” in the 
next section. It is also useful to normalize these spectra in the manner

s
S

S d
A

A

A

( , )
( , )

( , )
x

x

x
0

(16)

where the subscript A can indicate either U or Q, and the normalized spectrum has the property

s dA( , )x 1
0

(17)

so that it is independent of the total intensity.

Angular Correlation Function

A new coherence function, introduced for use with the angular spectrum expansion of a monochro-
matic component of the field,28 is the angular correlation function defined by

( , ) ( ) ( )p p p p1 2 1 2A A (18)

where A (pi) is the angular spectrum which gives the complex amplitude of the plane wave compo-
nent of the field which propagates in the direction given by the unit vector pi. This is related to the 
cross-spectral density function over the z 0 plane by the equation

( , ) ( , )( ) (p p x x p x p
1 2 4

0
1 2

1
1 1 2W e ik x x x2 2

1
2

2
)d d (19)

This is the four-dimensional Fourier transform of the cross-spectral density function over the z 0
plane. It represents a correlation function between the complex amplitudes of two plane wave com-
ponents of the field propagating in the directions given by the unit vectors p1 and p2, respectively. 
It can be used to calculate the cross-spectral density function (as described later under “Angular 
Spectrum Representation”) between any pair of points away from the z 0 plane, assuming that the 
field propagates in a source-free homogeneous medium. In this chapter we will use single-primed 
vectors, as in Eq. (19), to represent radius vectors from the origin to points within the z 0 plane, 
i.e., x (x , y , 0), as shown in Fig. 1.

All other vectors, such as x or x , are to be taken as three-dimensional vectors. Generally s and p are 
three-dimensional unit vectors indicating directions from the origin, a superscript (0) on a function 
indicates that it is the boundary condition for that function over the z 0 plane, and a superscript 
( ) on a function indicates that it is the asymptotic value for that function on a sphere of constant 
radius R from the origin as R .
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Intensity

The intensity is usually considered to be the observable quantity in coherence theory. Originally it 
was defined to be the trace of the mutual coherence function as defined by Eq. (8), i.e.,

I
T

u t u t dt
T T

T
( ) ( ) ( , ) ( , )x1 11 1 10

1
2

x x (20)

which is always real. Thus it is the time-averaged square magnitude of the analytic signal. This repre-
sents the measurement obtained by the electromagnetic power detectors always used to detect light 
fields. Since the change to ensemble averages in coherence theory, it is almost always assumed that the 
analytic signal is an ergodic random process so that the intensity can be obtained from the equation

I u t u t( ) ( ) ( , ) ( , )x x x1 11 1 10 (21)

where the sharp brackets indicate an ensemble average. Usually, in most recent coherence-theory 
papers, the intensity calculated is actually the spectrum, which is equivalent to the intensity of a 
single monochromatic component of the field which is defined as the trace of the cross-spectral 
density function as given by

I W U U( ) ( , ) ( , ) ( , )x x x x x1 1 1 1 1 (22)

Since different monochromatic components of the field are mutually incoherent and cannot inter-
fere, we can always calculate the intensity of the total field as the sum over the intensities of its 
monochromatic components in the manner

I I d( ) ( )x x1 10
(23)

Since in most papers on coherence theory the subscript omega is usually dropped, the reader should 
be careful to observe whether or not the intensity calculated is for a monochromatic component 
of the field only. If it is, the total measurable intensity can be obtained simply by summing over all 
omega, as indicated in Eq. (23).

Radiant Emittance

In classical radiometry the radiant emittance is defined to be the power radiated into the far field 
by a planar source per unit area. A wave function with some of the properties of radiant emittance 
has been defined by Marchand and Wolf using coherence theory [see Refs. 29, eq. (32), and 30]. 

FIGURE 1 Illustrating the coordinate 
system and notation used for planar sources in 
the z 0 plane.
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However, because of interference effects, the far-field energy cannot be subdivided into components 
that can be traced back to the area of the source that produced them. The result is that the radiant 
emittance defined by Marchand and Wolf is not nonnegative definite (as it is in classical radiometry) 
except for the special case of a completely incoherent source. Since, as discussed in the next section 
under “Perfectly Incoherent Source,” perfectly incoherent sources exist only as a limiting case, radi-
ant emittance has not been found to be a very useful concept in coherence theory.

Radiant Intensity

In classical radiometry the radiant intensity is defined to be the power radiated from a planar source 
into a unit solid angle with respect to an origin at the center of the surface. This can be interpreted 
in coherence theory as the field intensity over a portion of a surface in the far field of the source, in 
some direction given by the unit vector s, which subtends a unit solid angle from the source. Thus 
the radiant intensity for a monochromatic component of the field can be defined in coherence 
theory as

J W R R R
R

( ) ( , )( )s s s 2 (24)

To obtain the total radiant intensity we need only sum this function over all omega.

Radiance

In classical coherence theory the radiance function is the power radiated from a unit area on a pla-
nar source into a unit solid angle with respect to an origin at the center of the source. In the geomet-
rical optics model, from which this concept originally came, it is consistent to talk about particles of 
light leaving an area at a specified point on a surface to travel in some specified direction. However, 
in a wave theory, wave position and wave direction are Fourier conjugate variables. We can have a 
configuration space wave function (position) or a momentum space wave function (direction), but 
not a wave function that depends independently on both position and direction. Thus the behavior 
of a wave does not necessarily conform to a model which utilizes a radiance function.31 Most natu-
rally occurring sources are quasi-homogeneous (discussed later). For such sources, a radiance func-
tion for a typical monochromatic component of the field can be defined as the Wigner distribution 
function32–35 of the cross-spectral density function over the z 0 plane, which is given by

B W( , ) ( ,( )x s x x x
cos

/
2

0 2 xx xs x/2 2)e dik (25)

where  is the angle that the unit vector s makes with the z axis. For quasi-homogeneous fields 
this can be associated with the energy radiated from some point x  into the far field in the direction 
s. Such a definition for radiance also works approximately for some other light fields, but for light 
which does not come from a quasi-homogeneous source, no such definition is either completely 
equivalent to a classical radiance function31 or unique as an approximation to it. Much progress has 
been made toward representing a more general class of fields using a radiance function.36 In general, 
waves do not have radiance functions.

Higher-Order Coherence Functions

In general, the statistical properties of a random variable are uniquely defined by the probability 
density function which can be expanded into a series which contains correlation functions of all 
orders. Thus, in general, all orders of correlation functions are necessary to completely define the 
statistical properties of the field. In classical coherence theory we usually assume that the partially 
coherent fields arise from many independent sources so that, by the central limit theorem of statistics, 
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the probability distribution function for the real and imaginary components of the phasor field 
amplitude are zero-mean gaussian random variables (See Ref. 8, sec. 2.72e). Thus, from the gaussian 
moment theorem, the field correlation functions of any order can be calculated from the second-
order correlation functions, for example,

U U U U I( , ) ( , ) ( , ) ( , ) (x x x x1 1 2 2 xx x x x1 2 1 2
2) ( ) | ( , )|I W (26)

Thus, for gaussian fields, the second-order correlation functions used in coherence theory completely 
define the statistical properties of the field. Some experiments, such as those involving intensity inter-
ferometry, actually measure fourth- or higher-order correlation functions.37

5.5 MODEL SOURCES

Primary Sources

In coherence theory it is useful to talk about primary and secondary sources. A primary source 
distribution is the usual source represented by the actual charge and current distribution which 
give rise to the field. For propagation from a primary source through a source-free media, the field 
amplitude is defined by the inhomogeneous Helmholtz equation [see Ref. 38, eq. (6.57)], i.e.,

2
2

2
4

c
U ( ) ( )x x (27)

where (x) represents the charge-current distribution in the usual manner. A solution to this wave 
equation gives

W W K KU Q( , ) ( , ) ( , ) ( ,x x x x x x x1 2 1 2 1 1 2 x x x2
3

1
3

2)d d (28)

for the cross-spectral density function, where k /c 2 /

K
eik

( , )
| |

| |

x x
x x

x x
(29)

is the free-space propagator for a primary source, WU(x1, x2) is the cross-spectral density function 
for the fields (with suppressed -dependence), as defined by Eq. (11), and

WQ( , ) ( ) ( )x x x x1 2 1 2 (30)

is the cross-spectral density function for the source. This three-dimensional primary source can be 
easily reduced to a two-dimensional source over the z 0 plane by simply defining the charge cur-
rent distribution to be

( ) ( , ) ( )x x y z (31)

where (z) is the Dirac delta function.

Secondary Sources

Often, however, it is more convenient to consider a field which arises from sources outside of the 
region in space in which the fields are of interest. Then it is sometime useful to work with bound-
ary conditions for the field amplitude over some surface bounding the region of interest. In many 
coherence problems these boundary conditions are called a planar secondary source even though they 
are actually treated as boundary conditions. For example, most conventional diffraction equations 
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assume the boundary condition over the z 0 plane is known and use it to calculate the fields in the 
z > 0 half-space. Then the field obeys the homogeneous Helmholtz equation [See Ref. 38, eq. (7.8)], i.e.,

2
2

2
0

c
U ( )x (32)

which has the solution

W W h h( , ) ( , ) ( , ) ( ,( )x x x x x x x1 2
0

1 2 1 1 2 x x x2
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2)d d (33)

where W ( )( , )0
1 2x x is the boundary condition for the cross-spectral density function of the fields 

over the z 0 plane (as shown in Fig. 1), W (x1, x2) is the cross-spectral density function anywhere 
in the z > 0 half-space, and

h
d
dz

eik

( , )
| |

| |

x x
x x

x x1
2

(34)

is the free-space propagator for the field amplitude. This is a common example of a secondary 
source over the z 0 plane.

Perfectly Coherent Source

The definition of a perfectly coherent source, within the theory of partial coherence, is somewhat 
complicated. The light from an ideal monochromatic source is, of course, always perfectly coherent. 
Such a field produces high-contrast interference patterns when its intensity is detected by any suit-
able instrument. However, it is possible that light fields exist that are not monochromatic but can 
also produce similar interference patterns and therefore must be considered coherent. The ability of 
light fields to produce interference patterns at a detector is measured most directly by the complex 
degree of coherence 12( ), defined by Eq. (10). If a field has a complex degree of coherence that has 
unit magnitude for every value of  and for every point pair throughout some domain D, then light 
from all points in D will combine to produce high-contrast interference fringes.39 Such a field is 
defined to be perfectly coherent within D. Mandel and Wolf27 have shown that the mutual coherence 
function for such a field factors within D in the manner

12 1 2( ) ( ) ( )x x e i (35)

We will take Eq. (35) to be the definition of a perfectly coherent field. Coherence is not as easily 
defined in the space-frequency domain because it depends on the spectrum of the light as well as on 
the complex degree of spectral coherence. For example, consider a field for which every monochro-
matic component is characterized by a complex degree of spectral coherence which has unit magni-
tude between all point pairs within some domain D. Mandel and Wolf 40 have shown that for such a 
field the cross-spectral density function within D factors is

W U U( ) ( , ) ( , )x x x x1 2 1 2
(36)

However, even if Eq. (36) holds for this field within D, the field may not be perfectly coherent [as 
perfect coherence is defined by Eq. (35)] between all points within the domain. In fact it can be 
completely incoherent between some points within D.41 A secondary source covering the z 0 plane 
with a cross-spectral density function over that plane which factors as given by Eq. (36) will produce a 
field in the z > 0 half-space (filled with free space or a homogeneous, isotopic dielectric) which has a 
cross-spectral density function that factors in the same manner everywhere in the half-space. This can 
be easily shown by substitution from Eq. (36) into Eq. (28), using Eq. (29). But, even if this is true 
for every monochromatic component of the field, Eq. (35) may not hold within the half-space for 
every point pair, so we cannot say that the field is perfectly coherent there. Perfectly coherent light 
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sources never actually occur, but sometimes the light from a laser can behave approximately in this 
way over some coherence volume which is usefully large. Radio waves often behave in this manner 
over very large coherence volumes.

Quasi-Monochromatic Source

In many problems it is more useful not to assume that a field is strictly monochromatic but instead 
to assume that it is only quasi-monochromatic so that the time-dependent field amplitude can be 
approximated by

u t u t e i t( , ) ( , )x x0 (37)

where u0(x, t) is a random process which varies much more slowly in time than e–i t. Then the 
mutual coherence function and the complex degree of spatial coherence can be usefully approxi-
mated by (see Ref. 15, sec. 10.4.1)
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i
(38)

within coherence times much less than the reciprocal bandwidth of the field, i.e., 1/ . In the 
pre-1960 coherence literature, 12(0) was called the mutual intensity. Monochromatic diffraction 
theory was then used to define the propagation properties of this monochromatic function. It was 
used instead of the cross-spectral density function to formulate the theory for the propagation of 
a partially coherent quasi-monochromatic field. While this earlier form of the theory was limited 
by the quasi-monochromatic approximation and was therefore not appropriate for very wideband 
light, the newer formulation (in terms of the cross-spectral density function) makes no assumptions 
about the spectrum of the light and can be applied generally. The quasi-monochromatic approxima-
tion is still very useful when dealing with radiation of very high coherence.42

Schell Model Source

Other, more general, source models have been developed. The most general of these is the Schell 
model source (see Refs. 43, sec. 7.5, and 44), for which we only assume that the complex degree of 
spectral coherence for either a primary or secondary source is stationary in space, so that from Eq. (14) 
we have

W W WA A A A( , ) ( ) ( , ) ( , )x x x x x x x x1 2 1 2 1 1 2 2
(39)

where the subscript A stands for U in the case of a Schell model secondary source and Q in the case 
of a Schell model primary source. The Schell model does not assume low coherence and, therefore, 
can be applied to spatially stationary light fields of any state of coherence. The Schell model of the 
form shown in Eq. (39) has been used to represent both three-dimensional primary sources45,46 and 
two-dimensional secondary sources.43,47,48

Quasi-Homogeneous Source

If the intensity of a Schell model source is essentially constant over any coherence area, then Eq. (39) 
may be approximated by

W IA A A( , ) ( ) [( ) ]x x x x x x1 2 1 2 1 1 2/ (40)



5.12  PHYSICAL OPTICS

where the subscript A can be either U, for the case of a quasi-homogeneous secondary source or 
Q, for the case of a quasi-homogeneous primary source. This equation is very useful in coherence 
theory because of the important exact mathematical identity.49

/( ) ( ) (( ) [( ) ]0
1 2

0
1 2 2 1x x x x x pI e ik 11 2 2

1 1 2 2
x p )dx dy dx dy

( ) ( ) (( )0 x e dx dy Iik x p 00) ( )( )x x pe dx dyik

(41)

where

x x x x x x( )/1 2 1 22

and

p p p p p p( )/1 2 1 22

which allows the four-dimensional Fourier transforms that occur in propagating the correlation 
functions for secondary sources [for example, Eqs. (49) or (54)] to be factored into a product of 
two-dimensional Fourier transforms. An equivalent identity also holds for the six-dimensional 
Fourier transform of the cross-spectral density function for a primary source, reducing it to the 
product of two three-dimensional Fourier transforms. This is equally useful in dealing with propa-
gation from primary sources [for example, Eq. (53)]. This model is very good for representing two-
dimensional secondary sources with sufficiently low coherence that the intensity does not vary over 
the coherence area on the input plane.49,50 It has also been applied to primary three-dimensional 
sources.45,46 to primary and secondary two-dimensional sources,51,52 and to three-dimensional scat-
tering potentials.53,54

Perfectly Incoherent Source

If the coherence volume of a field becomes much smaller than any other dimensions of interest 
in the problem, then the field is said to be incoherent. It is believed that no field can be incoherent 
over dimensions smaller than the order of a light wavelength. An incoherent field can be taken as 
a special case of a quasi-homogeneous field for which the complex degree of spectral coherence is 
approximated by a Dirac delta function, i.e.,
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where the two-dimensional Dirac delta function is used for any two-dimensional source and a 
three-dimensional Dirac delta function is used only for a three-dimensional primary source. Even 
though this approximation is widely used, it is not a good representation for the thermal sources 
that predominate in nature. For example, the radiant intensity from a planar, incoherent source is 
not in agreement with Lambert’s law. For thermal sources the following model is much better.

Thermal (Lambertian) Source

For a planar, quasi-homogeneous source to have a radiant intensity in agreement with Lambert’s law 
it is necessary for the complex degree of spectral coherence to have the form

A
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k
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1 2

1 2

sin
(43)
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to which arbitrary spatial frequency components with periods less than a wavelength can be added 
since they do not affect the far field.55 It can also be shown that, under frequently obtained condi-
tions, blackbody radiation has such a complex degree of spectral coherence.56 It is believed that most 
naturally occurring light can be modeled as quasi-homogeneous with this correlation function.

5.6 PROPAGATION

Perfectly Coherent Light

Perfectly coherent light propagates according to conventional diffraction theory. By substitution 
from Eq. (36) into Eq. (33) using Eq. (34) we obtain

U U
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eik
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2
1

2
0

|| |x x
xd2 (44)

which is just Rayleigh’s diffraction integral of the first kind. Perfectly coherent light does not lose 
coherence as it propagates through any medium which is time-independent. For perfectly coherent 
light propagating in time-independent media, coherence theory is not needed.

Hopkin’s Formula

In 1951 Hopkins57 published a formula for the complex degree of spatial coherence for the field 
from a planar, secondary, incoherent, quasi-monochromatic source after propagating through a lin-
ear optical system with spread function h( , )x x , i.e.,
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where I ( )( )0 x is the intensity over the source plane. This formula can be greatly generalized to give 
the complex degree of spectral coherence for the field from any planar, quasi-homogeneous, second-
ary source58 after transmission through this linear optical system, i.e.,
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provided that the spread function h( , )x x can be assumed to be constant in its x  dependence over 
any coherence area in the source plane.

van Cittert–Zernike Theorem

Hopkins’ formula can be specialized for free-space propagation to calculate the far-field coherence 
properties of planar, secondary, quasi-homogeneous sources of low coherence. In 1934 van Cittert59

and, later, Zernike60 derived a formula equivalent to
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for the complex degree of spectral coherence between any pair of points in the field radiated from 
an incoherent planar source, assuming that the points are not within a few wavelengths of the
source. We can obtain Eq. (47) by substitution from Eq. (34) into Eq. (46) and then approximating 
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the propagator in a standard manner [see Ref. 61, eq. (7)]. Assume next, that the source area is con-
tained within a circle of radius a about the origin in the source plane as shown in Fig. 4. Then, if the 
field points are both located on a sphere of radius R, which is outside of the Rayleigh range of the 
origin (i.e., | | | |x x1 2

2R ka ), we can apply the Fraunhofer approximation to Eq. (47) to obtain

12 1 2

1 2

01
( , )

( ) ( )
( )( )x x

x x
x

I I
I eikk Rdx x x x( )/1 2 2 (48)

This formula is very important in coherence theory. It shows that the complex degree of spectral 
coherence from any planar, incoherent source with an intensity distribution I ( )( )0 x has the same 
dependence on (x1 − x2), over a sphere of radius R in the far field, as the diffraction pattern from a 
closely related perfectly coherent planar source with a real amplitude distribution proportional to
I ( )( )0 x (see Ref. 15, sec. 10.4.2a). Equation (48) can also be applied to a planar, quasi-homogeneous 
source49 that is not necessarily incoherent, as will be shown later under “Reciprocity Theorem.”

Angular Spectrum Representation

Much more general equations for propagation of the cross-spectral density function can be 
obtained. Equation (33) is one such expression. Another can be found if we expand the fields in a 
source-free region of space into an angular spectrum of plane waves. Then we find that the cross-
spectral density function over any plane can be calculated from the same function over a parallel 
plane using a linear systems approach. For an example, consider the two planes illustrated in Fig. 2.

We assume that the cross-spectral density function is known over the z 0 plane in the figure, 
and we wish to calculate this function over the z d plane. To do this we first take the Fourier trans-
form of the cross-spectral density function over the z 0 plane according to Eq. (19)

in ( , ) ( , )( ) (p p x x p
1 2 4

0
1 2

1
1W e ik x p x x x1 2 2 2

1
2

2
)d d (49)

to obtain the angular correlation function in which all of the phase differences between the plane 
wave amplitudes are given relative to the point at the origin. Second, we shift the phase reference 

FIGURE 2 Illustrating the coordinate system for propagation of the 
cross-spectral density function using the angular spectrum of plane waves.
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from the origin to the point on the z axis in the output plane by multiplying the angular correlation 
function by a transfer function, i.e.,

out in( , ) ( , ) exp [ ( ) ]p p p p1 2 1 2 1 2ik m m d (50)

where d is the distance from the input to the output plane along the z axis (for back propagation d
will be negative) and mi is the third component of the unit vector pi (pi, qi, mi), i 1 or 2, which is 
defined by

m p q p q

i p q p q

i i i i i

i i i i

1 1

1

2 2 2 2

2 2 2 2

if

if 1
(51)

and is the cosine of the angle that pi makes with the z axis for real mi. Finally, to obtain the cross-
spectral density function over the output plane, we simply take the Fourier inverse of out ( , )p p1 2 , i.e.,

W ed ik( ) (( ) ( , )x x p p p x
1 2 1 2

1, out
11 2 2 2

1
2

2
p x p p)d d (52)

where, in this equation only, we use xi to represent a two-dimensional radius vector from the point 
(0, 0, d) to a field point in the z d plane, as shown in Fig. 2. This propagation procedure is similar 
to the method usually used to propagate the field amplitude in Fourier optics. In coherence theory, it 
is the cross-spectral density function for a field of any state of coherence that is propagated between 
arbitrary parallel planes using the linear systems procedure. The only condition for the validity 
of this procedure is that the volume between the planes must either be empty space or a uniform 
dielectric medium.

Radiation Field

The cross-spectral density function far away from any source, which has finite size, can be calculated 
using a particularly simple equation. Consider a primary, three-dimensional source located within 
a sphere of radius a, as shown in Fig. 3. For field points, x1 and x2 which are much farther from 

FIGURE 3 Illustrating the coordinate system used to cal-
culate the cross-spectral density function in the far field of a 
primary, three-dimensional source.
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the origin than the Rayleigh range (| | )x i ka2 , in any direction, a form of the familiar Fraunhofer 
approximation can be applied to Eq. (28) to obtain [see Ref. 62, eq. (2.5)]
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xe ik x x x x x x x1 1 2 2 2 3
1

3
2

/| | /| |] d d

(53)

Thus the cross-spectral density function of the far field is proportional to the six-dimensional 
Fourier transform of the cross-spectral density function of its sources. A very similar expression can 
also be found for a two-dimensional, secondary source distribution over the z 0 plane, as illus-
trated in Fig. 4.

If the sources are all restricted to the area within a circle about the origin of radius a, then the 
cross-spectral density function for all points which are outside of the Rayleigh range (| | )x i ka2

from the origin and also in the z > 0 half-space can be found by using a different form of the 
Fraunhofer approximation in Eq. (33) [see Ref. 62, eq. (3.3)] to get
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(54)

Because of both their relative simplicity (as Fourier transforms) and great utility, Eqs. (53) and (54) 
are very important in coherence theory for calculating both the radiant intensity and the far-field 
coherence properties of the radiation field from any source.

Representations

Several equations have been described here for propagating the cross-spectral density function. The 
two most general are Eq. (33), which uses an expansion of the field into spherical Huygens wavelets, 

FIGURE 4 Illustrating the coordinate system for 
calculating the far field cross-spectral density function 
for a planar, secondary source distribution in the z 0
plane. Single-primed coordinates indicate radius vec-
tors from the origin to points within the z 0 plane.



COHERENCE THEORY  5.17

and Eqs. (49), (50), and (52), which use an expansion of the field into an angular spectrum of plane 
waves. These two formulations are completely equivalent. Neither uses any approximation not also 
used by the other method. The choice of which to use for a particular calculation can be made 
completely on a basis of convenience. The far-field approximations given by Eqs. (53) and (54), for 
example, can be derived from either representation. There are two bridges between the spherical and 
plane wave representations, one given by Weyl’s integral, i.e.,

e i
m

e
ik

ik p x x q y y
| |

[ ( ) ( )

| |

x x

x x
1 m z z dp dq| |] (55)

where
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and the other by a related integral
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qq y y m z z dp dq( ) | |] (57)

which can be easily derived from Eq. (55). In Eq. (57) the ± sign holds according to whether 
( )z z 0. With these two equations it is possible to transform back and forth between these two 
representations.

Reciprocity Theorem

The radiation pattern and the complex degree of spectral coherence obey a very useful reciprocity 
theorem for a quasi-homogeneous source. By substituting from Eq. (40) into Eq. (53), and using Eq. (24) 
and the six-dimensional form of Eq. (41), it has been shown that the radiant intensity in the direc-
tion of the unit vector s from any bounded, three-dimensional, quasi-homogeneous primary source 
distribution is given by [see Ref. 45, eq. (3.11)]

J J e dQ
ik( ) ( )s x xx s

0
3 (58)

where Q ( )x  is the (spatially stationary) complex degree of spectral coherence for the source distri-
bution as defined in Eq. (40), and

J I dQ0
3( )x x (59)

where IQ ( )x  is the intensity defined in Eq. (40). Note that the far-field radiation pattern depends, not 
on the source intensity distribution, but only on the source coherence. We also find from this calcu-
lation that the complete degree of spectral coherence between any two points in the far field of this 
source is given by [see Ref. 45, eq. (3.15)]

( )
( )

( , ) ( )u R R
e

J
I e

ik R R

Q
ik

1 1 2 2
0

1 2

s s x x s s x( )1 2 3d (60)

Note that the coherence of the far field depends, not on the source coherence, but rather on the 
source intensity distribution, IQ ( ).x  Equation (60) is a generalization of the van Cittert–Zernike 
theorem to three-dimensional, primary quasi-homogeneous sources, which are not necessarily 
incoherent. Equation (59) is a new theorem, reciprocal to the van Cittert–Zernike theorem, which 
was discovered by Carter and Wolf.45,49 Equations (58) and (60), taken together, give a reciprocity 
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relation. For quasi-homogeneous sources, far-field coherence is determined by source intensity alone 
and the far-field intensity pattern is determined by source coherence alone. Therefore, coherence and 
intensity are reciprocal when going from the source into the far field. Since most sources which occur 
naturally are believed to be quasi-homogeneous, this is a very useful theorem. This reciprocity theo-
rem has been found to hold much more generally than just for three-dimensional primary sources. 
For a planar, secondary source, by substitution from Eq. (40) into Eq. (54) and then using Eq. (41), 
we obtain49

J J eU
ik( ) ( )( )s x x s

0
2 0cos d2x (61)

where  is the angle that s makes with the z axis, and where

J I dU0
0 2( )( )x x (62)

and we also obtain

U U
ikR R

J
I e( ) ( ) ()( , ) ( )1 1 2 2

0

01
s s x x ss s x1 2 2) d (63)

Very similar reciprocity relations also hold for scattering of initially coherent light from quasi-
homogeneous scattering potentials,53,54 and for the scattering of laser beams from quasi-homogeneous 
sea waves.63 Reciprocity relations which apply to fields that are not necessarily quasi-homogeneous 
have also been obtained.64

Nonradiating Sources

One additional important comment must be made about Eq. (58). The integrals appearing in this 
equation form a three-dimensional Fourier transform of Q ( ).x  However, J ( ),s  the radiant inten-
sity that this source radiates into the far field at radial frequency , is a function of only the direc-
tion of s, which is a unit vector with a constant amplitude equal to one. It then follows that only the 
values of this transform over a spherical surface of unit radius from the origin affect the far field. 
Therefore, sources which have a complex degree of spectral coherence, Q ( ),x  which do not have 
spatial frequencies falling on this sphere, do not radiate at frequency . It appears possible from this 
fact to have sources in such a state of coherence that they do not radiate at all. Similar comments can 
also be made in regard to Eq. (53) which apply to all sources, even those that are not quasi-homogeneous. 
From Eq. (53) it is clear that only sources which have a cross-spectral density function with spatial 
frequencies (with respect to both x1  and x 2 ) on a unit sphere can radiate. It is believed that this is 
closely related to the phase-matching condition in nonlinear optics.

Perfectly Incoherent Sources

For a completely incoherent primary source the far-field radiant intensity, by substitution from Eq. (42) 
into Eq. (58), is seen to be the same in all directions, independent of the shape of the source. By 
substitution from Eq. (40) into Eq. (28), and then using Eqs. (14), (29), and (42), we find that the 
complex degree of spectral coherence for this incoherent source is given by

U Q
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Thus it is only the source intensity distribution that affects the field coherence. Comparison of this 
equation with Eq. (47) shows that this is a generalization of the van Cittert–Zernike theorem to primary 
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sources. It is clear from this equation that the complex degree of spectral coherence depends only on 
the shape of the source and not the fact that the source is completely incoherent. For a completely 
incoherent, planar, secondary source the radiant intensity is given by

J J( )s 0
2cos (65)

independent of the shape of the illuminated area on the source plane, where  is the angle that s
makes with the normal to the source plane. This can be proven by substitution from Eq. (42) into 
Eq. (61). Note that such sources do not obey Lambert’s law. The far-field coherence, again, depends 
on the source intensity as given by the van Cittert–Zernike theorem [see Eq. (47)] and not on the 
source coherence.

Spectrum

For a quasi-homogeneous, three-dimensional primary source the spectrum of the radiation 
S RU

( )( , )s  at a point Rs in the direction s (unit vector) and at a distance R from the origin, in the 
far field of the source, can be found, as a function of the source spectrum SQ

( )( ),0  by substitution 
from Eqs. (24) and (15) into Eq. (58) to get

S R
c S

R
eU

Q
Q

ik( )( , )
( )

( , )s x x
3

3 2
s xd k3( ) (66)

where we explicitly indicate the dependence of the complex degree of spectral coherence on fre-
quency. Notice that the spectrum of the field is not necessarily the same as the spectrum of the 
source and, furthermore, that it can vary from point to point in space. The field spectrum depends 
on the source coherence as well as on the source spectrum. A very similar propagation relation can 
be found for the far-field spectrum from a planar, secondary source in the z 0 plane. By substitu-
tion from Eqs. (24) and (15) into Eq. (61) we get

S R
S

R
eU

U
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ik( )
( )

( )( , )
( )

( , )s x x
0

2
0 s xd k2( ) (67)

This shows that the spectrum for the field itself is changed upon propagation from the z 0 plane 
into the far field and is different in different directions s from the source.65

5.7 SPECTRUM OF LIGHT

Limitations

The complex analytic signal for a field that is not perfectly coherent, as defined in Eq. (3), is usually 
assumed to be a time-stationary random process. Therefore, the integral

u t e dti t( , )x (68)

does not converge, so that the analytic signal does not have a Fourier transform. Therefore, it is only 
possible to move freely from the space-time domain to the space-frequency domain along the path 
shown in Fig. 5. Equation (3) does not apply to time-stationary fields within the framework of ordi-
nary function theory.
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Coherent Mode Representation

Coherent mode representation (see Wolf66,67) has shown that any partially coherent field can be repre-
sented as the sum over component fields that are each perfectly self-coherent, but mutually incoherent 
with each other. Thus the cross-spectral density function for any field can be represented in the form

WA n A n
n

A n( , ) ( ) ( ), ,x x x x1 2 1 2 (69)

where A n i, ( )x  is a phasor amplitude for its nth coherent component. This representation can be 
used either with primary (A Q), or secondary (A U) sources. The phasor amplitudes A n i, ( )x  and 
the complex expansion coefficients n in Eq. (69) are eigenfunctions and eigenvalues of WA(x1, x2), 
as given by the equation

W dA A n n A n( , ) ( ) ( ) ( ), ,x x x x x1 2 2
3

2 1 (70)

Since WA( , )x x1 2  is hermitian, the eigenfunctions are complete and orthogonal, i.e.,

A n A n
n

, ,( ) ( ) ( )x x x x1 2
3

1 2 (71)

and

A n A m nmd, ,( ) ( )x x x1 1
3

1 (72)

where nm is the Kronecker delta function, and the eigenvalues are real and nonnegative definite, i.e.,
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n

n

0

0
(73)

This is a very important concept in coherence theory. Wolf has used this representation to show that 
the frequency decomposition of the field can be defined in a different manner than was done in Eq. (3). 
A new phasor,

U aA n A n
n

( , ) ( ) ( , ),x x (74)

( , ) ( ,w)

w( 1, 2)

< >

Forbidden

FT

< >

G12 (t)

FIGURE 5 Illustrating the transfor-
mations which are possible between four 
functions that are used in coherence theory.
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where an( ) are random coefficients such that

a an m n nm( ) ( ) ( ) (75)

can be introduced to represent the spectral components of the field. It then follows66 that, if the 

A n i, ( )x  are eigenfunctions of the cross-spectral density function, WA( , )x x1 2  then the cross-spectral 
density function can be represented as the correlation function between these phasors at the two 
spatial points x1 and x2, i.e.,

W U UA A A( , ) ( , ) ( , )x x x x1 2 1 2 (76)

in a manner very similar to the representation given in Eq. (11) in respect to the older phasors. 
Notice, by comparison of Eqs. (11) and (76), that the phasors UA i( , )x  and UA i( , )x are not the 
same. One may formulate coherence theory either by defining u(x, t) in Fig. 5 and then moving in 
a counterclockwise direction in this figure to derive the correlation functions using the Wiener-
Khintchene theory or, alternatively, defining UA i( , )x  and moving in a clockwise direction to 
define the correlation functions using the coherent mode expansion.

Wolf Shift and Scaling law

From Eqs. (66) and (67) it is clear that the spectrum of a radiation field may change as the field 
propagates. It is not necessarily equal to the source spectrum as it is usually assumed. This brings up 
an important question. Why do the spectra for light fields appear so constant, experimentally, that a 
change with propagation was never suspected? Wolf 65 has provided at least part of the answer to this 
question. He discovered a scaling law that is obeyed by most natural fields and under which the nor-
malized spectrums for most fields do remain invariant as they propagate. We can derive this scaling 
law by substitution from Eqs. (66) and (67) into Eq. (16). We then find that, if the complex degree 
of spectral coherence for the source is a function of kx_ only, i.e.,

A f k( , ) ( )x x (77)

(so that this function is the same for each frequency component of the field, provided that the 
spatial separations of the two test points are always scaled by the wavelength), then the normalized 
spectrum in the far field is given by
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if SQ( ) is the complex degree of spectral coherence for a primary, quasi-homogeneous source [see 
Additional Reading, Ref. 3, eq. (65)], and
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if sU
( )( )0  is the normalized spectrum for a secondary, quasi-homogeneous source [see Additional 

Reading, Ref. 3, eq. (51)]. In each case the field spectrum does not change as the field propagates. 
Since the cross-spectral density function for a thermal source [see Eq. (43)] obeys this scaling law, it 
is not surprising that these changes in the spectrum of a propagating light field were never discovered 
experimentally. The fact that the spectrum can change was verified experimentally only after coherence 
theory pointed out the possibility.68–72
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5.8 POLARIZATION EFFECTS

Explicit Vector Representations

As discussed earlier under “Scalar Field Amplitude,” the scalar amplitude is frequently all that is 
required to treat the vector electromagnetic field. If polarization effects are important, it might be 
necessary to use two scalar field amplitudes to represent the two independent polarization compo-
nents. However, in some complicated problems it is necessary to consider all six components of the 
vector field explicitly. For such a theory, the correlation functions between vector components of the 
field become tensors,73,74 which propagate in a manner very similar to the scalar correlation functions.

5.9 APPLICATIONS

Speckle

If coherent light is scattered from a stationary, rough surface, the phase of the light field is random-
ized in space. The diffraction patterns observed with such light displays a complicated granular 
pattern usually called speckle (see Ref. 8, sec. 7.5). Even though the light phase can be treated as a 
random variable, the light is still perfectly coherent. Coherence theory deals with the effects of time 
fluctuations, not spatial variations in the field amplitude or phase. Despite this, the same statisti-
cal tools used in coherence theory have been usefully applied to studying speckle phenomena.75,76

To treat speckle, the ensemble is usually redefined, not to represent the time fluctuations of the 
field but, rather, to represent all of the possible speckle patterns that might be observed under the 
conditions of a particular experiment. An observed speckle pattern is usually due to a single mem-
ber of this ensemble (unless time fluctuations are also present), whereas the intensity observed in 
coherence theory is always the result of a weighted average over all of the ensemble. To obtain the 
intensity distribution over some plane, as defined in coherence theory, it would be necessary to 
average over all of the possible speckle patterns explicitly. If this is done, for example, by moving 
the scatterer while the intensity of a diffraction pattern is time-averaged, then time fluctuations 
are introduced into the field during the measurement; the light becomes partially coherent; and 
coherence theory can be properly used to model the measured intensity. One must be very careful 
in applying the coherence theory model to treat speckle phenomena, because coherence theory was 
not originally formulated to deal with speckle.

Statistical Radiometry

Classical radiometry was originally based on a mechanical treatment of light as a flux of particles. It 
is not totally compatible with wave theories. Coherence theory has been used to incorporate classi-
cal radiometry into electromagnetic theory as much as has been found possible. It has been found 
that the usual definitions for the radiance function and the radiant emittance cause problems when 
applied to a wave theory. Other radiometric functions, such as the radiant intensity, have clear mean-
ing in a wave theory.

Spectral Representation

It was discovered, using coherence theory, that the spectrum of a light field is not the same as that of 
its source and that it can change as the light field propagates away from its source into the radiation 
field. Some of this work was discussed earlier under “Perfectly Incoherent Sources” and “Coherent 
Mode Representation.” This work has been found very useful for explaining troublesome experi-
mental discrepancies in precise spectroradiometry.71
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Laser Modes

Coherence theory has been usefully applied to describing the coherence properties of laser modes.77

This theory is based on the coherent mode representation discussed under “Spectrum of Light.”

Radio Astronomy

Intensity interferometry was used to apply techniques from radio astronomy to observation with 
light.37 A lively debate ensued as to whether optical interference effects (which indicate partial 
coherence) could be observed from intensity correlations.78 From relations like Eq. (26) and similar 
calculations using quantum coherence theory, it quickly became clear that they could.79,80 More 
recently, coherence theory has been used to model a radio telescope42 and to study how to focus 
an instrument to observe emitters that are not in the far field of the antenna array.81 It has been 
shown82 that a radio telescope and a conventional optical telescope are very similar, within a coherence 
theory model, even though their operation is completely different. This model makes the similarities 
between the two types of instruments very clear.

Noncosmological Red Shift

Cosmological theories for the structure and origin of the universe make great use of the observed 
red shift in the spectral lines of the light received from distant radiating objects, such as stars.83 It is 
usually assumed that the spectrum of the light is constant upon propagation and that the observed 
red shift is the result of simple Doppler shift due to the motion of the distant objects away from 
the earth in all directions. If this is true, then clearly the observed universe is expanding and must 
have begun with some sort of explosion, called “the big bang.” The size of the observable universe 
is estimated based on the amount of this red shift. A new theory by Wolf 84–87 shows that red shifts 
can occur naturally without Doppler shifts as the light propagates from the source to an observer if 
the source is not in thermal equilibrium, i.e., a thermal source as discussed earlier under “Thermal 
(Lambertian) Source.” The basis of Wolf ’s theory was discussed in this papers.84,85
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6.1 GLOSSARY

Fourier transform operator

I Intensity

k wave number

u complex field amplitude

mutual coherence function

J mutual intensity function

complex degree of coherence

x spatial vector
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6.2 INTRODUCTION

The formalisms of coherence theory have been extensively developed over the past century, with roots 
extending back much further. An understanding of key concepts of the coherence properties of light 
waves and of their accompanying mathematical models can be exploited in specific applications to 
extract information about objects (e.g., stellar interferometry, microscopy1,2), to encrypt signals trans-
mitted by optical fiber (coherence modulation), to explain puzzling phenomena observed in nature 
(sunlight-produced speckle, enhanced backscatter), and to prevent significant errors in the measure-
ment of optical quantities (measurement of the reflectivity of diffuse surfaces), among other examples. 
There are cases where using a coherence-theory–based analysis provides not only insight into under-
standing system behavior but simplifies the analysis through reduced computational steps. 

In Chap. 5, Carter provides a compendium of basic definitions from coherence theory, introduces 
mathematical models for light sources of fundamental importance, discusses how the coherence 
properties of optical wave fields evolve under propagation, and shows how the spectral properties of 
light waves relate to their coherence properties.3 He also notes briefly several areas in which coherence 
theory has been exploited to advance significantly the understanding of optical phenomena. References 
1-8 in Chap. 5 provide a suitable introduction to most aspects of classical (i.e., nonquantum) coher-
ence theory. Since the publication of Vol. I of this Handbook series, Mandel and Wolf have written a 
comprehensive review of coherence theory and a brief discussion of specific applications.4 Other infor-
mative sources include a compilation of early papers on coherence edited by Mandel and Wolf.5

The formal structures of coherence theory can be intimidating to the nonexpert trying to ascer-
tain, for example, the effect of a particular light source on a given optical system. One has only to 
review the myriad of defined quantities or look at a six- or seven-dimensional integral expression 
describing an image-forming system to understand why. Nevertheless, the basic concepts of coher-
ence theory, and certain of their key formulas, can be helpful even to the nonexpert when they are 
applied to the understanding of a variety of optical systems and phenomena. That said, it should be 
noted that sometimes the application of coherence theory formalisms only serves to obfuscate the 
operation of a given system. One objective of this chapter is to provide guidance as to when coher-
ence theory can help and when it might serve largely to confuse. We note that coherence theory is 
not generally needed if the optical wave fields of concern can be modeled as being monochromatic 
or quasi-monochromatic. The subject of interferometry is easily treated without the inclusion of 
coherence theory if the source of light is a laser operating in a single mode, and optical coherence 
tomography is easily understood without appeal to much more than an understanding of temporal 
coherence theory.6–10 It is with this latter point in mind that we emphasize on analyses involving the 
spatial coherence properties of the light.

6.3 KEY DEFINITIONS AND RELATIONSHIPS

We begin with the presentation of a set of tools that are critical to the analysis of certain applica-
tions. Although the cross-spectral density function3,4 is often preferred in the modeling of the spatio-
temporal coherence properties of light, in a discussion of the applications of coherence theory where 
physical understanding is important we find it preferable to work instead with the mutual coher-
ence function, defined by11

12 1 2( ) ( , ( )) ( , )u t u tx x (1)

where u(x, t) denotes the complex analytic signal associated with the scalar wave amplitude 
at position x = (x, y, z

The nature of the time average is discussed later in this chapter. Note that in Chap. 5 Carter uses angular brackets to denote 
ensemble averages rather than time averages.
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This function has the advantage of relating directly to quantities that can be measured by an 
easily visualized Young’s two-pinhole interferometer. In theoretical developments u(x, t) is 
usually treated as an ergodic random process, and the time average is replaced with an ensem-
ble average. However, because such conditions are not satisfied in all applications of interest, 
we maintain specific reference to time averages. The mutual intensity function, unlike the 
complex amplitude itself, is a measurable quantity. The temporal frequency bandwidth of 
optical signals typically far exceeds the bandwidth of any optical detector, thus preventing the 
direct measurement of u(x, t). As discussed by Greivencamp, a Young’s two-pinhole interfer-
ometer can be used, at least conceptually, in the measurement process.12

In many cases we can assume the light to be quasi-monochromatic.13 The narrowband condi-
tion  is satisfied, where denotes the spectral bandwidth of the light and where  is 
the mean wavelength, and the coherence length of the light,3 l 2 / , is much greater than 
the maximum path length difference encountered in the passage of light from a source of interest 
to the measurement plane of concern. Under such conditions11 the mutual coherence function is 
given by 

12 12( ) J e i t (2)

where  is the mean angular frequency of the radiation and where J12, the mutual intensity func-
tion, is given by

J12 12 0( ) (3)

Note that J12 depends on the spatial coordinates x1 and x2 but not on .

Effect of Transmissive Planar Object

In most of the applications considered in this chapter we are concerned with the behavior of J12
in a two-dimensional systems framework. Assume, therefore, that x1 and x2 represent the coor-
dinates of a pair of points in a plane of constant z. The complex amplitude u(x, t) can then be 
written as u(x, y, t), and J12 can be written in the form J(x1, y1; x2, y2). If the wave field uinc(x, y, t)
is incident upon a thin transmissive object of complex transmittance t(x, y), the transmitted wave 
utrans(x, y, t) has amplitude uinc(x, y, t)t(x, y), and it is easily shown that the corresponding mutual 
intensity is given by

J x y x y J x y x ytrans inc( , ; , ) ( , ; , )1 1 2 2 1 1 2 2 tt x y t x y( , ) ( , )1 1 2 2 (4)

Of particular interest later is the case when the object is a thin spherical lens. The transmittance 
function of such a lens is given, in the paraxial approximation and ignoring an accompanying pupil 
function, by

t x y i
k
f

x ylens( , ) exp ( )
2

2 2 (5)

where f denotes the focal length of the lens and where k  2 / . Assuming a lens that is not the lim-
iting aperture in a system and substitution in Eq. (4) yields

J x y x y J x y x ytrans inc( , ; , ) ( , ; , )1 1 2 2 1 1 2 2 eexp i
k
f

x x y y
2 1

2
2
2

1
2

2
2 (6)

Effect of a General Linear System

If the wave amplitude u(x, y, t) is input to a space-invariant two-dimensional linear opti-
cal system with spatial impulse response h(x, y), the output wave amplitude has the form 
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u x y t u x y t h x yout in( , ; ) ( , ; ) ( , ) , where  denotes a two-dimensional convolution operation. 
The relationship for the corresponding mutual intensity functions is given by

J x y x y J x y x y hout in( , ; , ) ( , ; , )1 1 2 2 1 1 2 2 (( , ) ( , )x y h x y1 1 2 2 (7)

The cascade of two-dimensional convolutions in this equation can, if desired, be rewritten in the form 
of a four-dimensional convolution of J x y x yin( , ; , )1 1 2 2  with a separable four-dimensional kernel:

J x y x y J x y x yout in( , ; , ) ( , ; , )1 1 2 2 1 1 2 2 [ ( , ) ( , )]h x y h x y1 1 2 2
(8)

Propagation of the Mutual Intensity

It is a straightforward matter to show how the mutual intensity of a wave field propagates.14–16 In 
most applications, concern is with propagation in the Fresnel (paraxial) regime, in which case h(x, y)
in Eq. (7), denoted now by hz(x, y), is given by 

h x y
ikz

i z
ikz x y

zz( , )
exp( ) ( )

exp
2 2

2
(9)

where z is the plane-to-plane propagation distance. The factor ( ) exp( )i ikz1  can often be ignored.  
If we assume the source distribution to be planar, quasi-monochromatic, and spatially incoher-

ent [the latter condition implying that J Io12 1 1 2( ) ( )x x x , where I denotes the optical intensity 
of the wave field and where o is a constant that depends on characteristics of the source at the scale 
of a wavelength] with optical intensity Io(x, y), it can be shown by combining Eqs. (8) and (9) that 
the mutual intensity a distance z away from the source is given by

J x y x y
i

z
Iz o( , ; , )

exp( )

( )
( , )exp1 1 2 2 2

ii
z

x y d d

i

2
( )

exp( )

( z
I

x
z

y
zo)

ˆ ,
2

(10)

where ˆ ( , )I x yo denotes the two-dimensional Fourier transform of the source-plane intensity, 
x x1 x2 , y y1 y2, and where

z
x y x y2

2
2
2

1
2

1
2 (11)

Equation (10) is a compact statement of the van Cittert-Zernike theorem. If the wave field correspond-
ing to Jz in  Eq. (10) is incident on a thin spherical lens of focal length f z , then, through Eqs. (10) 
and (4), the quadratic phase factors of Eq. (11) are removed and the resulting mutual intensity has the 
simple form ( ) ˆ ( , )1 2/ / /z I x z y zo . This distribution, it is noted, is a function of x and y alone, 
that is, it is a function only of the vector separation between the two sample points x1 and x2.

The Issue of Time Averages

The nature of the time average implied by the angular brackets in Eq. (1) will depend on the par-
ticular situation of concern. If, for example, u(x, t) corresponds to the wave field produced by a white 
light source, adequate averaging is obtained over a time interval of roughly a picosecond (10 12 s). If, 
on the other hand, the light source is a stabilized laser with a temporal frequency bandwidth of sev-
eral tens of kilohertz, the period over which the average is evaluated might be milliseconds in dura-
tion. Often the bandwidth of a detector determines the appropriate duration of the averaging process. 
If we are viewing white-light interference fringes by eye, the integration interval can be anywhere 

Although this expression does not appear in the standard textbooks on coherence theory, it is easily derived.
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from a picosecond to perhaps a thirtieth of a second. If the same fringes are being observed with 
a megahertz-bandwidth measurement system, on the other hand, integration for times greater than a 
microsecond is inappropriate. 

6.4  PROPAGATION, DIFFRACTION, AND SCATTERING:  
ENHANCED BACKSCATTER AND THE LAU EFFECT

Coherence theory can provide a useful tool for describing certain phenomena encountered in con-
nection with wave field propagation, scattering, and diffraction by gratings. Two examples of cases 
where a coherence theory approach is especially enlightening are the phenomenon of enhanced 
backscatter (EBS) and the Lau effect, as discussed in the following subsections. 

Enhanced Backscatter 

Enhanced backscatter is observed when a laser beam, after passing through a fine-grained mov-
ing diffuser, is reflected back through the same moving diffuser. As illustrated in Fig. 1a, the far 
field contains, in addition to a broad background irradiance distribution, a tightly focused spot of 
light, corresponding to the diffraction-limited focusing of the partially recollimated incident beam. 
This result contrasts with that obtained with two different moving diffusers, as shown in Fig. 1b, in 
which case there is no focused light spot. Although a ray-optics model can provide some insight 

FIGURE 1 Scattering by moving diffusers: (a) enhanced backscatter (partial phase conjuga-
tion scattering) produced by double passage of light through the same diffuser and (b) conventional 
scattering produced by two different diffusers.
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into this counter-intuitive phenomenon, coherence theory allows us to develop much greater 
understanding. 

Consider the case where the incident wave field is quasi-monochromatic and of arbitrary spatial 
coherence properties. To simplify the math we work with a one-dimensional model. The moving dif-
fuser is represented by a thin dynamic random phase screen with complex amplitude transmittance 

(x, t). Transmission of the incident wave u(x, t) through the diffuser results in wave field u(x, t) (x, t), 
which propagates a distance z to be scattered a second time by an identical random phase screen. The 
doubly-scattered wave amplitude u'(x, t) is given by17

u x t x t u t t h x dz( , ) ( , ) ( , ) ( , ) ( ) (12)

where hz(x) represents the wave propagation kernel of Eq. (9). The mutual intensity of the doubly-
scattered wave field is calculated as

J x x u x t u x t

x t u

( , ) ( , ) ( , )

( , ) (

1 2 1 2

1 , ) ( , ) ( ) ( , )t t h x d x t uz 1 2 ( , ) ( , ) ( )

( ,

t t h x d

u

z 2

t u t x t x t t) ( , ) ( , ) ( , ) ( , ) ( ,1 2 t h x h x d dz z) ( ) ( )1 2

(13)

where in expressing the effect of the time average it has been assumed that u and  vary indepen-
dently. To simplify this expression we note that u t u t( , ) ( , )  is the mutual intensity J( , ) of 
the input wave field. Additionally, if x, t) represents a spatially stationary, delta-correlated scatterer 
with suitably large excursions in phase, the second term in brackets in the integral of Eq. (13) can 
be modeled by

( , ) ( , ) ( , ) ( , ) [ (x t x t t t1 2
2 xx x x x1 2 1 2) ( ) ( ) ( )] (14)

where

( , ) ( , )t t d0 (15)

Making the appropriate substitutions in Eq. (13) yields

J x x a x x x b x x J x x( , ) ( ) ( ) ( , ) ( ,1 2 1 1 2 1 2 1 2)) (16)

where 

a x I x h xz( ) ( ) | ( )|1
2

1 1
2 (17)

b x x h x x h x xz z( , ) ( ) ( )1 2
2

1 2 1 2
(18)

and where the function I(x) in Eq. (17) is the optical intensity of the incident wave. If the one-
dimensional form of the Fresnel propagation kernel is substituted for hz(x),

h x
i z

i
z

xz( ) exp
1 2 (19)

calculation of a(x1) and b(x1, x2) yields

J x x x x I d J x( , ) ( ) ( ) ( ,1 2 1 2
2 2

1inc inc xx2) (20)



COHERENCE THEORY: TOOLS AND APPLICATIONS  6.7

The doubly-scattered wave, u'(x, t), can thus be thought of as consisting of two components. 
One component has the characteristics of a spatially incoherent wave and produces a general 
background glow in the far field. The second component, on the other hand, effectively repli-
cates coherence properties of the incident wave, having mutual intensity J inc(x1, x2), the complex 
conjugate of that of the incident wave. A wave field with mutual intensity J inc(x1, x2) behaves 
like a time-reversed (or “backward-propagating”) version of a wave field with mutual intensity 
Jinc(x1, x2). Thus, if the incident wave is diverging, the doubly-scattered wave will contain, in 
addition to an incoherent component, a coherence-replicated component that is converging 
at the same rate. For the case illustrated in Fig. 1a, since the incident beam is collimated, the
coherence-replicated component of the doubly-scattered wave also behaves like a collimated 
light beam.

It should be noted that evaluation of the time average for the term u t u t( , ) ( , )  in Eq. (13) 
may be satisfactorily complete in a fraction of a microsecond—that is, after an interval large com-
pared to the reciprocal bandwidth of the light incident on the diffuser—whereas calculation of the 
second brackets term, ( , ) ( , ) ( , ) ( , )x t x t t t1 2 , may require milliseconds or even seconds, 
depending on how rapidly the random phase screen evolves with time. What is essential is that (x, t)
evolves satisfactorily over the duration of the time average. In the terminology of random processes, 
we require that (x, t) goes through a sufficient number of realizations as to provide a good statisti-
cal average of the bracketed quantity. 

The enhanced backscatter phenomenon can be exploited, at least in theory, in the imaging 
of diffuser-obscured objects. Let the mirror in the system of Fig. 1a be replaced by a planar
object with amplitude reflectance r(x), assuming that the incident wave is monochromatic and 
planar. Through an analysis quite similar to that above, one can show that the mutual intensity 
of the doubly-scattered wave field Jds(x1, x2) again contains two components, a coherent one 
and a spatially incoherent one. The coherent component, which can be measured by interfero-
metric means, is proportional to the modulus of the Fresnel transform of the object reflectance 
function18

J rdscoh( , ) /x x
x x

z1 2
2

2
1 2

2

2
(21)

where rz x/ ( )2 , defined by

r rz x
ik x

z
d/ ( ) ( )exp

( )
2

2
(22)

is proportional to the wave field that would result from illuminating the object with a normally 
incident plane wave and propagating the reflected wave a distance z /2. The resulting distribution 
is the object function blurred by Fresnel diffraction. This Fresnel-blurred image is less distinct than 
a normal image of the object; however, it is significantly less blurred than would be a conventional 
image obtained through the diffuser. 

Lau Effect

In the Lau effect, an incoherently illuminated amplitude grating with grating constant d is 
followed by a second identical grating at a distance z0.19 If the second grating is followed by 
a converging spherical lens, fringes appear in the back focal plane of the lens whenever the dis-
tance z0 is an integral multiple of d2/2 . The experimental geometry for observing this effect is 
illustrated in Fig. 2. If white light illumination is used, colored fringes are observed. Although 
the effect can be explained in terms of geometrical optics and scalar diffraction theory,20

a much more elegant explanation results from a straightforward application of coherence 
theory.21–25

The essence of a coherence-based analysis using the mutual intensity function (expressed 
in one-dimensional coordinates for simplicity) is as follows: The incoherently illuminated 
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grating constitutes a periodic spatially incoherent source with period d with an intensity func-
tion described by

I x
x

d
x md

m
0

2
( ) ( )rect (23)

From the van Cittert-Zernike theorem [Eq. (10)] we know that the mutual intensity function of the 
propagated wave field arriving at the second grating can be expressed as
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(24)

where  denotes the fourier transform operation. The presence of the Dirac delta functions in 
the above expression indicates that the propagated wave reaching the second grating is spatially 
coherent only for transverse separations that are integer multiples of the distance z0 /d. If the 
second grating is treated as a transmissive planar object with a transmission function analytically 
equivalent to the previously defined intensity function I0(x), Eq. (4) can be used to describe the 
mutual intensity of the light leaving the grating, obtaining

J x x
x

d

x

d
x kd x2 1 2

1 2
1

2 2
( , ) , ( ,rect 22
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2 2
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i
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d
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d x
z

x
m z
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0

(25)

The first half of the above equation describes a two-dimensionally periodic spatial filter in the 
coherence domain with a period equal to d in both directions acting upon the mutual intensity 
of the light incident upon the grating. Maximum coherence (and hence maximum interference 
fringe-forming capability) is preserved when the period of the one-dimensional Dirac delta 
function in the second half of the equation (i.e., the nonzero coherence components of the 
incident light) is equal to the period of the two-dimensional Dirac delta function describing the 
coherence filter or d z0/d. A grating separation of z0 d2/  meets this condition which is a 
special case of Lau’s more general condition.

Grating 1 Grating 2 Lens
Observation

plane

0

FIGURE 2 Geometry for examination of the Lau effect.
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6.5  IMAGE FORMATION: LUKOSZ-TYPE 
SUPER-RESOLVING SYSTEM 

It was in the analysis of imaging systems that coherence theory saw its first major application. Frits 
Zernike, in his classic 1938 paper on “The concept of degree of coherence and its application to opti-
cal problems,” showed how the mutual coherence function could be employed in the wave-optics 
analysis of systems of lenses and apertures in such a way that modification of the system through 
extension, for example, through the addition of a field lens, did not necessarily require a return to 
the starting point in the analysis, that is, to the source of illumination.16 In this section we illustrate 
the utility of Zernike’s approach through application to a particular super-resolving imaging system.

In the 1960s Lukosz published a pair of papers on super-resolution imaging systems that con-
tinue to interest and intrigue people.26,27 Lukosz-type systems can be used to increase the space-
bandwidth product—in contemporary terms, the number of pixels—that can be transmitted from 
the object plane to the image plane with a system of a given numerical aperture. The intriguing 
nature and popularity of Lukosz-type imaging systems notwithstanding, they are surprisingly dif-
ficult to analyze in detail, and Lukosz’s original papers present challenging reading for one who 
wants to understand quickly just how to model the systems mathematically. We show in this section 
how coherence theory tools can be used to good effect in the analysis of a super-resolution imaging 
system of our invention that is closely related to those described by Lukosz.28 Closely related systems 
are described in Refs. 29 and 30. 

The system of interest, illustrated in Fig. 3, consists of a quasi-monochromatic object, a pair of 
identical time-varying diffusers, a pair of lenses, and a pinhole aperture. The complex wave ampli-
tude following Mask 2 (one-dimensional notation is used for simplicity) for an arbitrary pupil 
(aperture) function is given by

u u3( , ) ( , ) ( , ) ( , ) (x t x t t t h xinc sysM M )d (26)

where hsys(x) is the complex-amplitude point spread function for the imaging system and M(x, t) is 
the complex amplitude transmittance of the masks. The wave field incident on Mask 1 is related to 
the object complex amplitude by uinc(x) uobj(x) hd(x), where hd(x) is the Fresnel kernel appropri-
ate for propagation through a distance d. Because of the dynamic (moving) diffusers and the effect 
of the small aperture, calculation of the corresponding optical intensity tells us virtually nothing 
about the object distribution. The mutual intensity in the output plane, on the other hand, can tell 
us a great deal about the object.

The mutual intensity of the wave incident on Mask 1 contains information about the mutual 
intensity of the object distribution through the relationship:

J x x J x x h x h xd dinc obj( , ) ( , ) ( ) ( )1 2 1 2 1 2 (27)

ApertureMask 1 Mask 2

inc (x, t) 3 (x, t)
f ff fd

Object

P1 P2 P3

FIGURE 3 Geometry for Lukosz-type super-resolution optical system.
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Because of the reversibility of the wave propagation phenomenon (manifested by the absence of 
nulls in the wave propagation transfer function), the mutual intensity of the object may be inferred 
from the mutual intensity of this incident wave field through

J x x J x x h x h xd dobj inc( , ) ( , ) ( ) ( )1 2 1 2 1 2 (28)

It is the nature of the system of Fig. 3 that this information can be transmitted to the 
output plane. As was done in the enhanced backscatter analysis, let the temporal behavior 
of the incident complex wave amplitude and the masks be statistically independent so that 
u uinc inc( , ) ( , ) ( , ) ( , )x t x t x t x tM M . In addition, assume that the masks are statistically homoge-

nous random phase screens that satisfy the fourth-moment theorem, as reflected by Eq. (14), so that 
the time average with respect to the diffusers within the integral simplifies to a product of second-
order moments and the autocorrelation function of the mask is sufficiently narrow that it can be 
modeled by a delta function within an integral.31 Exploiting these conditions and exploiting the 
sifting property of the delta function, we can calculate the mutual intensity of the wave immediately 
following the second mask, that is, in plane 3: 

J x x J x x
x x

f3 1 2
2

1 2
1 2

2

( , ) ( , ) ˆ
inc P

( ) ( ) ˆ ˆx x I
x

f

x
1 2

1 2
inc P P

f
d

(29)

where (x) is the autocorrelation of the mask function and where Iinc is the optical intensity of the 
incident wave field.

The first term on the right in this equation is proportional to | ˆ()|P 2, the modulus of the imaging sys-
tem impulse response (P̂ denotes the Fourier transform of the pupil function associated with the aper-
ture), times the mutual intensity of the wave field incident on Mask 1. The second term corresponds to a 
spatially incoherent wave field. Through interferometric measurements, it is possible to infer the mutual 
intensity of the incident wave field, that is, to determine Jinc and thus Jobj.

6.6  EFFICIENT SAMPLING OF COHERENCE FUNCTIONS

Several schemes for optical imaging rely on the measurement or transmission of the spa-
tiotemporal coherence function produced at an aperture by the waves from a distant 
object.32,33 If the object is planar and spatially incoherent, this coherence function, described 
by the van Cittert-Zernike theorem,34 is, to within a known quadratic phase factor, a function 
of the vector separation ( x, y) between pairs of points in the measurement plane, as illus-
trated in Eq. (10). As a consequence, the number of measurements required to characterize 
the function in a Nyquist sense is comparatively small. It is not necessary to sample the optical 
wave field at all possible pairs of points on a grid but, rather, only at a single pair of points for 
a given spacing ( x, y). For nonplanar objects, on the other hand, the coherence function 
has a more general form,35 and the number of samples required of the coherence function 
necessarily increases. In order to keep the measurement time as small as possible, an efficient 
sampling strategy is desirable.

Nonuniform sampling grids have been shown to reduce the total number of samples required 
to unambiguously characterize the complex amplitude associated with a quasi-monochromatic 
optical wave field in certain cases.36,37 In the following analysis it is shown that a nonuniform 
sampling scheme can also be effectively applied to the problem of sampling the mutual intensity 
produced in an aperture by a quasi-monochromatic, spatially incoherent three-dimensional 
object distribution. The analysis presented is of brief out of necessity, missing details being pre-
sented elsewhere.38
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The source object, described by optical intensity I(x, z), is assumed to be contained within a 
rectangular area of transverse width Wx and longitudinal depth Wz centered about the origin of the 
coordinate system, as shown in Fig. 4 (only one transverse dimension is considered for simplic-
ity, extension to two being straightforward). If Fresnel-regime conditions are satisfied, the mutual 
intensity in the measurement plane can be shown to be given by the equation

J x x
z

I j
z

x( , )
( )

( , )exp
( )

( )1 2 1
21

(( )x d d2
2 (30)

This function is conveniently expressed in terms of parameters x x x( )1 2 2/  and x x x( )1 2 ,
with the result

J x x
z

I j
x

z
x( , )

( )
( , )exp

( )
( )

1 2
d d (31)

Criteria for both uniform and nonuniform sampling of this function are most easily determined 
if it is Fourier transformed, once with respect to the sample separation x and once with respect to 
sample-pair center coordinate x :
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( )

J x
z

I
x
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1
d d (32)
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x
z
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If the finite support of the object in x and z is taken into account, these functions can be shown to 
have regions of support bounded by lines given by the equations

1
2 2 2

1

z
W

x
W x

z
Wz x z

1

(34)

For distances z satisfying the condition z Wx, the corresponding information bandwidths are well 
approximated by the expressions

B
W

z
x B

W x

z
z

2
(35)

x
x

Wx

Wz

I x, z

D

FIGURE 4 The optical coherence of the wave field generated by the source inten-
sity distribution I(x, z) is sampled in a plane some distance away from the center of the 
rectangular area bounding I(x, z).
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A straightforward analysis based on the standard Nyquist criterion shows that uniform sample loca-
tions should be located according to the equations (letting D denote the size of the aperture in the 
measurement plane)

x
m z

D
x

n z
D Wm n

x2
 (36)

whereas a generalized Nyquist analysis, appropriate for nonuniform sampling, yields the results

x
mW z

nW
x

n z
Wm n

x

z
n

x
, (37)

where the double subscripts m, n denote the sample order. The number of samples required is found 
by counting all valid indices (m,n), given the extent D of the measurement area. A comparison of the 
two sampling regimes shows that nonuniform sampling reduces the number of samples required by 
a factor [( )( )]1 1 2 1D W D zx/ /  and that the minimum separation between measurement points is 
increased by a factor ( )1 D Wx/ . This latter difference is beneficial because a constraint on the mea-
surement apparatus is relaxed. Numerical demonstration based on system specifications given in 
Ref. 35 yields excellent results.

6.7  AN EXAMPLE OF WHEN NOT TO USE 
COHERENCE THEORY

Coherence theory can provide an extremely valuable and sometimes indispensible tool in the 
analysis of certain phenomena. On the other hand, it can be applied unnecessarily to certain opti-
cal systems where it tends to obfuscate rather than clarify system operation. An example is given 
by the Koehler-illumination imaging system modeled in Fig. 5. In this system, a uniform, spatially 
incoherent source is imaged by condenser lens 1 into the pupil plane of the imaging optics, the lat-
ter formed by lenses 2 and 3. Beginning with the source distribution, one can calculate, through 
a succession of operations based on relationships presented in Sec. 6.3, the coherence functions 
appropriate for the object plane, the pupil plane, and the image plane. The effect on the irradiance 
distributions in these planes can through this means be investigated. But is this the best way to pro-
ceed? In fact, if only the image-plane irradiance is of ultimate interest, it is not, the method being 
unnecessarily complicated.

Frits Zernike made an important but sometimes forgotten observation in his 1938 paper on the 
concept of the degree of coherence.16 A coherence-function–based analysis of a system consisting of a 
cascade of subsystems, such as that just considered, can be advantageous if an objective is to calculate 
the irradiance of the wave field in more than a single plane. Thus, with regard to the system of Fig. 5, 
if calculations of the object illumination, the pupil-plane irradiance, and the image distribution are all 

FIGURE 5 Koehler-illumination imaging model.
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desired, then, assuming a quasi-monochromatic source, an analysis based on the plane-to-plane propa-
gation of the mutual intensity of the light is the proper choice. In each plane of interest, the irradiance 
can be calculated from the mutual intensity without loss of the ability to propagate that mutual intensity 
function further in the system. If, on the other hand, the objective is simply the calculation of the image-
plane irradiance distribution, given the source, object, and pupil functions, then, so long as the source 
is spatially incoherent, the precoherence theory approach to analysis is preferable. The image plane 
irradiance produced by light from a single source point is calculated, with an integration over the source 
distribution following. In many cases, this form of analysis provides greater insight into the operation 
of the system under investigation. For example, in the case of Koehler illumination, it shows that the 
source distribution should be uniform and that its image should overfill the aperture stop (pupil) by an 
amount proportional to the spatial-frequency bandwidth of the object wave amplitude transmittance 
function. Such insight is not readily available through a coherence-theory–based analysis. 

6.8 CONCLUDING REMARKS

Some important points are summarized here:

1. Although it often appears in the analysis of optical systems, the complex amplitude associated 
with an optical wave field cannot be measured directly because of the very high frequencies of 
the wave field oscillations.

2. The optical intensity of the wave, which involves a time average, can be measured.

3. The mutual intensity of the wave can also be determined from measurements made using an 
interferometer.

4. Knowledge of the optical intensity of the wave in a given plane of an optical system does not, in 
general allow calculation of the mutual intensity and/or optical intensity of the wave in subse-
quent planes. (An exception is when the wave in that plane is spatially incoherent.)

5. By way of contrast, knowledge of the mutual intensity of the wave in a given plane does allow 
calculation of the mutual intensity and/or the optical intensity of the wave in subsequent planes.

6. If circular complex gaussian statistics for the wave field can be assumed, third- and higher-order 
moments of the wave field can be inferred from the second-order statistics—that is, from the 
mutual intensity—of the wave.11,31

Taken together, these statements imply that the mutual intensity of the quasi-monochromatic wave 
field in an optical system conveys all of the information that is measurable—and, in a valid sense, 
meaningful—through the system. Restating point (5) from this perspective, if the mutual intensity 
of a wave in one plane of an optical system is known, the mutual intensity—and, hence, the infor-
mation content of the wave—can be determined in subsequent planes of that system. 
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SCATTERING BY PARTICLES
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7.1 GLOSSARY

a radius

an, bn scattering coefficients

C cross section

Dn logarithmic derivative, d d n/ [ln ( )]

E Electric field strength

ex unit vector in the x direction

f N

G projected particle area

h thickness

I irradiance

I, Q, U, V Stokes parameters

j running index

k imaginary part of the refractive index, 2 /

m relative complex refractive index

N number

n running index

Pn associated Legendre functions of the first kind

p phase function, normalized differential scattering cross section

Q efficiencies or efficiency factors

r distance

S element of the amplitude-scattering matrix

volume

W power

X scattering amplitude

7.1
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x size parameter, ka

absorption coefficient

angle

wavelength

n
Pn

1/sin

n
dP dn

1/

, Riccati-Bessel functions

solid angle

radian frequency

|| Parallel

perpendicular

Re real part of

Subscripts

abs absorbed

ext extinction

sca scattered

7.2 INTRODUCTION

Light scattering by particles plays starring and supporting roles on a variety of stages: astronomy, 
cell biology, colloid chemistry, combustion engineering, heat transfer, meteorology, paint technol-
ogy, solid-state physics—the list is almost endless. The best evidence of the catholicity of scattering 
by particles is the many journals that publish papers about it.

Scattering by single particles is the subject of monographs by van de Hulst,1 Deirmendjian,2 Kerker,3

Bayvel and Jones,4 Bohren and Huffman,5 Barber and Hill,6 and of a collection edited by Kerker.7 Two 
similar collections contain papers on scattering by atmospheric particles8 and by chiral particles9 (ones 
not superposable on their mirror images); scattering by chiral particles is also treated by Lakhtakia 
et al.10 Papers on scattering by particles are included in collections edited by Gouesbet and Gréhan11

and by Barber and Chang.12 Within this Handbook scattering by particles is touched upon in Chap. 9, 
“Volume Scattering in Random Media,” in this volume and Chap. 3, “Atmospheric Optics,” in Vol. V. A 
grand feast is available for those with the juices to digest it. What follows is a mere snack.

A particle is an aggregation of sufficiently many molecules that it can be described adequately 
in macroscopic terms (i.e., by constitutive parameters such as permittivity and permeability). It is 
a more or less well-defined entity unlike, say, a density fluctuation in a gas or a liquid. Single mole-
cules are not particles, even though scattering by them is in some ways similar (for a clear but dated 
discussion of molecular scattering, see Martin13).

Scattering by single particles is discussed mostly in the wave language of light, although mul-
tiple scattering by incoherent arrays of many particles can be discussed intelligibly in the photon 
language. The distinction between single and multiple scattering is observed more readily on paper 
than in laboratories and in nature. Strict single scattering can exist only in a boundless void con-
taining a lone scatterer illuminated by a remote source, although single scattering often is attained 
to a high degree of approximation. A distinction made less frequently is that between scattering by 
coherent and incoherent arrays. In treating scattering by coherent arrays, the wave nature of light 
cannot be ignored: phases must be taken into account. But in treating scattering by incoherent 
arrays, phases may be ignored.

Pure water is a coherent array of water molecules; a cloud is an incoherent array of water drop-
lets. In neither of these arrays is multiple scattering negligible, although the theories used to describe 
them may not explicitly invoke it.
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The distinction between incoherent and coherent arrays is not absolute. Although a cloud of 
water droplets is usually considered to be an incoherent array, it is not such an array for scattering 
in the forward direction. And although most of the light scattered by pure water is accounted for 
by the laws of specular reflection and refraction, it also scatters light—weakly yet measurably—in 
directions not accounted for by these laws.13

A single particle is itself a coherent array of many molecules, but can be part of an incoherent 
array of many particles, scattering collectively in such a way that the phases of the waves scattered 
by each one individually are washed out. Although this section is devoted to single scattering, it 
must be kept in mind that multiple scattering is not always negligible and is not just scaled-up 
single scattering. Multiple scattering gives rise to phenomena inexplicable by single-scattering 
arguments.14

7.3 SCATTERING: AN OVERVIEW

Why is light scattered? No single answer will be satisfactory to everyone, yet because scattering by 
particles has been amenable to treatment mostly by classical electromagnetic theory, our answer lies 
within this theory.

Although palpable matter may appear to be continuous and is often electrically neutral, it 
is composed of discrete electric charges. Light is an oscillating electromagnetic field, which can 
excite the charges in matter to oscillate. Oscillating charges radiate electromagnetic waves, a 
fundamental property of such charges with its origins in the finite speed of light. These radi-
ated electromagnetic waves are scattered waves, waves excited or driven by a source external to 
the scatterer: an incident wave from the source excites secondary waves from the scatterer; the 
superposition of all these waves is what is observed. If the frequency of the secondary waves is 
(approximately) that of the source, these waves are said to be elastically scattered (the term coherently 
scattered is also used).

Scientific knowledge grows like the accumulation of bric-a-brac in a vast and disorderly closet 
in a house kept by a sloven. Few are the attempts at ridding the closet of rusty or obsolete gear, at 
throwing out redundant equipment, at putting things in order. For example, spurious distinctions 
are still made between reflection, refraction, scattering, interference, and diffraction despite centu-
ries of accumulated knowledge about the nature of light and matter.

Countless students have been told that specular reflection is localized at smooth surfaces, and 
that photons somehow rebound from them. Yet this interpretation is shaky given that even the 
smoothest surface attainable is, on the scale of a photon, as wrinkled as the back of a cowboy’s neck. 
Photons conceived of as tiny balls would be scattered in all directions by such a surface, for which it 
is difficult even to define what is meant by an angle of incidence.

Why do we think of reflection occurring at surfaces rather than because of them whereas we 
usually do not think of scattering by particles in this way? One reason is that we can see the surfaces 
of mirrors and ponds. Another is the dead hand of traditional approaches to the laws of specular 
reflection and refraction.

The empirical approach arrives at these laws as purely geometrical summaries of what is observed—
and a discreet silence is maintained about underlying causes. The second approach is by way of con-
tinuum electromagnetic theory: reflected and refracted fields satisfy the Maxwell equations. Perhaps 
because this approach, which also yields the Fresnel formulas, entails the solution of a boundary-
value problem, reflected and refracted fields are mistakenly thought to originate from boundaries 
rather than from all the illuminated matter they enclose. This second approach comes to grips with 
the nature of light but not of matter, which is treated as continuous. The third approach is to explicitly 
recognize that reflection and refraction are consequences of scattering by discrete matter. Although 
this scattering interpretation was developed by Paul Ewald and Carl Wilhelm Oseen early in this 
century, it has diffused with glacial slowness. According to this interpretation, when the optically 
smooth interface between optically homogeneous dissimilar media is illuminated, the reflected and 
refracted waves are superpositions of vast numbers of secondary waves excited by the incident wave. 
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Thus reflected and refracted light is, at heart, an interference pattern of scattered light. Doyle15

showed that although the Fresnel equations are obtained from macroscopic electromagnetic theory, 
they can be dissected to reveal their microscopic underpinnings.

No optics textbook would be complete without sections on interference and diffraction, a dis-
tinction without a difference: there is no diffraction without interference. Moreover, diffraction is 
encumbered with many meanings. Van de Hulst1 lists several: small deviations from rectilinear 
propagation; wave motion in the presence of an obstacle; scattering by a flat particle such as a disk; 
an integral relation for a function satisfying the wave equation. To these may be added scattering near 
the forward direction and by a periodic array.

Van de Hulst stops short of pointing out that a term with so many meanings has no meaning. 
Even the etymology of diffraction is of little help: it comes from a Latin root meaning to break.

There is no fundamental distinction between diffraction and scattering. Born and Wolf 16 refer to 
scattering by a sphere as diffraction by a sphere. I leave it as a penance for the reader to devise an 
experiment to determine whether a sphere scatters light or diffracts it.

The only meaningful distinction is that between approximate theories. Diffraction theories 
obtain answers at the expense of obscuring the physics of the interaction of light with matter. For 
example, an illuminated slit in an opaque screen may be the mathematical source but it is not the 
physical source of a diffraction pattern. Only the screen can give rise to secondary waves that yield 
the observed pattern. Yet generations of students have been taught that empty space is the source of 
the radiation diffracted by a slit. To befuddle them even more, they also have been taught that two 
slits give an interference pattern whereas one slit gives a diffraction pattern.

If we can construct a mathematical theory (diffraction theory) that enables us to avoid having to 
explicitly consider the nature of matter, all to the good. But this mathematical theory and its quantita-
tive successes should not blind us to the fact that we are pretending. Sometimes this pretense cannot 
be maintained, and when this happens a finger is mistakenly pointed at “anomalies,” whereas what 
is truly anomalous is that a theory so devoid of physical content could ever give adequate results.

A distinction must be made between a physical process and the superficially different theories used 
to describe it. There is no fundamental difference between specular reflection and refraction by 
films, diffraction by slits, and scattering by particles. All are consequences of light interacting 
with matter. They differ only in their geometries and the approximate theories that are sufficient for 
their quantitative description. The different terms used to describe them are encrustations deposited 
during the slow evolution of our understanding of light and matter.

7.4  SCATTERING BY PARTICLES: BASIC CONCEPTS 
AND TERMINOLOGY

A single particle can be considered a collection of tiny dipolar antennas driven to radiate (scatter) 
by an incident oscillating electric field. Scattering by such a coherent array of antennas depends on 
its size and shape, the observation angle (scattering angle), the response of the individual antennas 
(composition), and the polarization state and frequency of the incident wave. Geometry, composi-
tion, and the properties of the illumination are the determinants of scattering by particles.

Perhaps the only real difference between optics and electrical engineering is that electrical engi-
neers can measure amplitudes and phases of fields whereas the primary observable quantity in 
optics is the time-averaged Poynting vector (irradiance), an amplitude squared. Several secondary 
observables are inferred from measurements of this primary observable. Consider, for example, a 
single particle illuminated by a beam with irradiance Ii. The total power scattered by this particle is 
Wsca. Within the realm of linear optics, the scattered power is proportional to the incident irradi-
ance. This proportionality can be transformed into an equality by means of a factor Csca:

W C Iisca sca
(1)

For Eq. (1) to be dimensionally homogeneous Csca must have the dimensions of area, hence Csca has 
acquired the name scattering cross section.
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Particles absorb as well as scatter electromagnetic radiation. The rate of absorption Wabs by an 
illuminated particle, like scattered power, is proportional to the incident irradiance:

W C Iiabs abs
(2)

where Cabs is the absorption cross section. The sum of these cross sections is the extinction cross 
section:

C C Cext sca abs
(3)

Implicit in these definitions of cross sections is the assumption that the irradiance of the incident 
light is constant over lateral dimensions large compared with the size of the illuminated particle. 
This condition is necessarily satisfied by a plane wave infinite in lateral extent, which, much more 
often than not, is the source of illumination in light-scattering theories.

The extinction cross section can be determined (in principle) by measuring transmission by a 
slab populated by N identical particles per unit volume. Provided that multiple scattering is negli-
gible, the incident and transmitted irradiances Ii and It are related by

I I et i
NC hext (4)

where h is the thickness of the slab. Only the sum of scattering and absorption can be obtained 
from transmission measurements. To separate extinction into its components requires additional 
measurements.

Equation (4) requires that all particles in the slab be identical. They are different if they differ 
in size, shape, composition, or orientation (incident beams are different if they differ in wave-
length or polarization state). Equation (4) is generalized to a distribution of particles by replacing 
NCext with

N Cj j
j

ext,
(5)

where j denotes all parameters distinguishing one particle from another.
Instead of cross sections, normalized cross sections called efficiencies or efficiency factors, Qsca,

Qabs, and Qext, often are presented. The normalizing factor is the particle’s area G projected onto a 
plane perpendicular to the incident beam. No significance should be attached to efficiency used as 
shorthand for normalized cross section. The normalization factor is arbitrary. It could just as well 
be the total area of the particle or, to honor Lord Rayleigh, the area of his thumbnail.

Proper efficiencies ought to be less than unity, whereas efficiencies for scattering, absorption, 
and extinction are not so constrained. Moreover, some particles—soot aggregates, for example—do 
not have well-defined cross-sectional areas. Such particles have cross sections for scattering and 
absorption but the corresponding efficiencies are nebulous.

If any quantity deserves the designation efficiency it is the cross section per particle volume .
Equation (4) can be rewritten to display this:

I I et i
f h C( )ext / (6)

where f N  is the total volume of particles per unit slab volume. For a given particle loading, 
specified by f h (volume of particles per unit slab area), transmission is a minimum when Cext/  is a 
maximum.

Each way of displaying extinction (or scattering) versus particle size or wavelength of the 
incident beam tells a different story. This is illustrated in Fig. 1, which shows the scattering cross 
section, scattering efficiency, and scattering cross section per unit volume of a silicate sphere in 
air illuminated by visible light. These curves were obtained with van de Hulst’s simple anomalous 
diffraction approximation1 (all that is anomalous about it is that it gives such good results). Each 
curve yields a different answer to the question, what size particle is most efficient at scattering 
light? And comparison of Figs. 1c and 2 shows that scattering by a particle and specular reflection 
are similar.
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FIGURE 1 Scattering of visible light by a silicate sphere calculated using the 
anomalous diffraction approximation: (a) scattering cross section; (b) scattering 
efficiency (cross section normalized by projected area); and (c) volumetric scatter-
ing cross section (cross section per unit particle volume).
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FIGURE 1 (Continued)

FIGURE 2 Reflected power per unit incident irradiance and unit volume 
of a silicate slab normally illuminated by visible light (reflectance divided by slab 
thickness).
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At sufficiently large distances r from a scatterer of bounded extent, the scattered field Es decreases 
inversely with distance and is transverse:

E Xs

ik r ze
ikr

E kr~ ( )
( )

1 (7)

where k 2 /  is the wave number of the incident plane harmonic wave E ei xE , E E0 exp(ikz)
propagating along the z axis. The vector-scattering amplitude is written as X as a reminder that the 
incident wave is linearly polarized along the x axis. Here and elsewhere the time-dependent factor 
exp( i t) is omitted.

The extinction cross section is related in a simple way to the scattering amplitude;

C
k xext

4
2 0Re{( ) }X e (8)

This remarkable result, often called the optical theorem, implies that plane-wave extinction depends 
only on scattering in the forward direction 0, which seems to contradict the interpretation of 
extinction as the sum of scattering in all directions and absorption. Yet extinction has two interpre-
tations, the second manifest in the optical theorem: extinction is interference between incident and 
forward-scattered waves.

The scattering cross section is also obtained from the vector-scattering amplitude by an integra-
tion over all directions:

C
k

dsca

| |X 2

24
(9)

At wavelengths far from strong absorption bands, the scattering cross section of a particle 
small compared with the wavelength satisfies (approximately)

C kasca

2

4
0( ) (10)

where a is a characteristic linear dimension of the particle. This result was first obtained by Lord 
Rayleigh in 1871 by dimensional analysis (his paper is included in Ref. 8).

The extinction cross section of a particle large compared with the wavelength approaches the 
limit

C G kaext 2 ( ) (11)

The fact that Cext approaches twice G instead of G is sometimes called the extinction paradox. This 
alleged paradox arises from the expectation that geometrical optics should become a better approxi-
mation as a particle becomes larger. But all particles have edges because of which extinction by 
them always has a component unaccounted for by geometrical optics. This additional component, 
however, may not be observed because it is associated with light scattered very near the forward 
direction and because all detectors have finite acceptance angles. Measured extinction is theoretical 
extinction reduced by the scattered light collected by the detector.

No particle scatters light equally in all directions; isotropic scatterers exist only in the dreams of 
inept theorists. The angular dependence of scattering can be specified by the differential scattering 
cross section, written symbolically as dC dsca /  as a reminder that the total scattering cross section is 
obtained from it by integrating over all directions:

C
dC

d
dsca

sca

4
(12)

The normalized differential scattering cross section p

p
C

dC

d
1

sca

sca (13)
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is sometimes called the phase function. This coinage of astronomers (after the phases of astronomi-
cal bodies) confuses those who are perplexed by phase attached to a quantity from which phase in 
the usual optical sense is absent. To add to the confusion, the phase function is sometimes normal-
ized to 4  instead of to unity.

A salient characteristic of scattering by particles is strong forward-backward asymmetry. Small 
metallic particles at far infrared wavelengths provide one of the few examples in which backscat-
tering is larger than forward scattering. Except for very small particles, scattering is peaked in the 
forward direction; the larger the particle, the sharper the peak. Examples are given in Fig. 3, which 
shows differential scattering cross sections for unpolarized visible light illuminating spheres of vari-
ous radii. These curves were obtained using the Rayleigh-Gans approximation,1,3,5 valid for particles 
optically similar to the surrounding medium. Forward scattering is much greater than backscatter-
ing even for a sphere as small as 0.2 m.

A simple explanation of forward-backward asymmetry follows from the model of a scatterer as 
an array of N antennas. If we ignore mutual excitation (the antennas are excited solely by the exter-
nal source), the total scattered field is the sum of N fields, the phases of which, in general, are differ-
ent except in the forward direction. Scattering by noninteracting scatterers in this direction—and 
only in this direction—is in-phase regardless of their separation and the wavelength of the source. 
Thus as N increases, the scattered irradiance increases more rapidly in the forward direction than in 
any other direction.

Particles are miniature polarizers and retarders: they scatter differently the orthogonal compo-
nents into which incident fields can be resolved. Similarly, an optically smooth surface can be both 
a polarizer and retarder. Just as polarization changes upon reflection are described by decomposing 
electric fields into components parallel and perpendicular to the plane of incidence, it is convenient 
to introduce a scattering plane, defined by the directions of the incident and scattered waves, for 
describing scattering by particles.

The incident plane wave is transverse, as is the scattered field at large distances. Thus these fields 
can be decomposed into two orthogonal components, one parallel, the other perpendicular to the 
scattering plane. The orthonormal basis vectors are denoted by e|| and e  and form a right-handed 

FIGURE 3 Scattering of unpolarized visible light by spheres of radii 0.01, 
0.1, and 0.2 m calculated according to the Rayleigh-Gans approximation.
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triad with the direction of propagation ep (of either the incident or scattered waves): e xe|| ep.
Incident and scattered fields are specified relative to different basis vectors. With this decomposition 
the relation between fields can be written1,5

E

E ikr

S S

S S

Es

s

ik r z
||

( )
||e 2 3

4 1

ii

iE
(14)

where i and s denote incident and scattered, respectively. The elements of this amplitude scattering 
matrix (or Jones matrix) are complex-valued functions of the scattering direction.

If a single particle is illuminated by completely polarized light, the scattered light is also com-
pletely polarized but possibly differently from the incident light, and differently in different direc-
tions. An example is given in Fig. 4, which shows vibration ellipses of light scattered by a small 
sphere. The polarization state of the scattered light varies from right-circular (the polarization state 
of the incident light) in the forward direction, to linear (perpendicular to the scattering plane) at 
90 , to left-circular in the backward direction.

Just as unpolarized light can become partially polarized upon specular reflection, scattering 
of unpolarized light by particles can yield partially polarized light varying in degree and state of 
polarization in different directions. Unlike specular reflection, however, an ensemble of particles 
can transform completely polarized incident light into partially polarized scattered light if all the 
particles are not identical.

Transformations of polarized light upon scattering by particles are described most conveniently 
by the scattering matrix (or Mueller matrix) relating scattered to incident Stokes parameters:1,5

I

Q
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V
k r
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S S
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i

i

(15)

The scattering matrix elements Sij for a single particle are functions of the amplitude-scattering 
matrix elements. Only seven of these elements are independent, corresponding to the four ampli-
tudes and three phase differences of the Sj.

The scattering matrix for an ensemble of particles is the sum of matrices for each of them 
provided they are separated by sufficiently large random distances. Although all 16 matrix elements 
for an ensemble can be nonzero and different, symmetry reduces the number of matrix ele-
ments. For example, the scattering matrix for a rotationally and mirror symmetric ensemble has 
the form

S S
S S

S S

S S

11 12

12 22

33 34

34 44

0 0
0 0

0 0

0 0

(16)

FIGURE 4 Vibration ellipses at various scattering angles for light scattered by a sphere much smaller 
than the wavelength of the incident right-circularly polarized light.
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7.5 SCATTERING BY AN ISOTROPIC, HOMOGENEOUS 
SPHERE: THE ARCHETYPE

An isotropic, homogeneous sphere is the simplest finite particle, the theory of scattering to which is 
attached the name of Gustav Mie.17 So firm is this attachment that in defiance of logic and history 
every particle under the sun has been dubbed a “Mie scatterer,” and Mie scattering has been promoted 
from a particular theory of limited applicability to the unearned rank of general scattering process.

Mie was not the first to solve the problem of scattering by an arbitrary sphere.18 It would be more 
correct to say that he was the last. He gave his solution in recognizably modern notation and also 
addressed a real problem: the colors of colloidal gold. For these reasons, his name is attached to the 
sphere-scattering problem even though he had illustrious predecessors, most notably Lorenz.19 This 
is an example in which eponymous recognition has gone to the last discoverer rather than to the first.

Mie scattering is not a physical process; Mie theory is one theory among many. It isn’t even exact 
because it is based on continuum electromagnetic theory and on illumination by a plane wave infi-
nite in lateral extent.

Scattering by a sphere can be determined using various approximations and methods bearing 
little resemblance to Mie theory: Fraunhofer theory, geometrical optics, anomalous diffraction, 
coupled-dipole method, T-matrix method, etc. Thus, is a sphere a Mie scatterer or an anomalous dif-
fraction scatterer or a coupled-dipole scatterer? The possibilities are endless. When a physical process 
can be described by several different theories, it is inadvisable to attach the name of one of them to it.

There is no distinct boundary between so-called Mie and Rayleigh scatterers. Mie theory 
includes Rayleigh theory, which is a limiting theory strictly applicable only as the size of the par-
ticle shrinks to zero. Even for spheres uncritically labeled “Rayleigh spheres,” there are always 
deviations between the Rayleigh and Mie theories. By hobbling one’s thinking with a supposed 
sharp boundary between Rayleigh and Mie scattering, one risks throwing some interesting physics 
out the window. Whether a particle is a Mie or Rayleigh scatterer is not absolute. A particle may 
be graduated from Rayleigh to Mie status merely by a change of wavelength of the illumination.

One often encounters statements about Mie scattering by cylinders, spheroids, and other non-
spherical particles. Judged historically, these statements are nonsense: Mie never considered any 
particles other than homogeneous spheres.

Logic would seem to demand that if a particle is a Mie scatterer, then Mie theory can be applied to 
scattering by it. This fallacious notion has caused and will continue to cause mischief, and is probably 
the best reason for ceasing to refer to Mie particles or Mie scatterers. Using Mie theory for particles 
other than spheres is risky, especially for computing scattering toward the backward direction.

More often than not, a better term than Mie or Rayleigh scattering is available. If the scatterers are 
molecules, molecular scattering is better than Rayleigh scattering (itself an imprecise term):20 the former 
term refers to an agent, the latter to a theory. Mie scatterer is just a needlessly aristocratic name for a 
humble sphere. Wherever Mie scatterer is replaced with sphere, the result is clearer. If qualifications are 
needed, one can add small or large compared with the wavelength or comparable to the wavelength.

Briefly, the solution to the problem of scattering by an arbitrary homogeneous sphere illumi-
nated by a plane wave can be obtained by expanding the incident, scattered, and internal fields in 
a series of vector-spherical harmonics. The coefficients of these expansion functions are chosen so 
that the tangential components of the electric and magnetic fields are continuous across the surface 
of the sphere. Thus this scattering problem is formally identical to reflection and refraction because 
of interfaces, although the sphere problem is more complicated because the scattered and internal 
fields are not plane waves.

Observable quantities are expressed in terms of the coefficients an and bn in the expansions of the 
scattered fields. For example, the cross sections are infinite series:
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If the permeability of the sphere and its surroundings are the same, the scattering coefficients can be 
written
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n and n are Riccati-Bessel functions and the logarithmic derivative

D
d

dn n( ) ( )ln (21)

The size parameter x is ka, where a is the radius of the sphere and k is the wavenumber of the inci-
dent light in the surrounding medium, and m is the complex refractive index of the sphere relative 
to that of this (nonabsorbing) medium. Equations (19) and (20) are one of the many ways of writ-
ing the scattering coefficients, some of which are more suited to computations than others.

During the Great Depression mathematicians were put to work computing tables of trigonomet-
ric and other functions. The results of their labors now gather dust in libraries. Today, these tables 
could be generated more accurately in minutes on a pocket calculator. A similar fate has befallen 
Mie calculations. Before fast computers were inexpensive, tables of scattering functions for limited 
ranges of size parameter and refractive index were published. Today, these tables could be gener-
ated in minutes on a personal computer. The moral is to give algorithms rather than only tables of 
results, which are mostly useless except as checks for someone developing and testing algorithms.

These days it is not necessary to reinvent the sphere: documented Mie programs are readily 
available. The first widely circulated program was published as an IBM report by Dave in 1968, 
although it no longer seems to be available. A Mie program is given in Ref. 5. Reference 6 includes 
a diskette containing scattering programs for spheres (and other particles). Wiscombe21,22 suggested 
techniques for increasing the speed of computations, as did Lentz,23 whose method makes use of 
continued fractions. Wang and van de Hulst24 recently compared various scattering programs.

The primary tasks in Mie calculations are computing the functions in Eqs. (19) and (20) and 
summing series like Eqs. (17) and (18). Bessel functions are computed by recurrence. The logarith-
mic derivative, the argument of which can be complex, is usually computed by downward recur-
rence. n(x) and n(x) can be computed by upward recurrence if one does not generate more orders 
than are needed for convergence, approximately the size parameter x. When a program with no 
logical errors falls ill, it often can be cured by promoting variables from single to double precision.

Cross sections versus radius or wavelength convey physical information; efficiencies versus size 
parameter convey mathematical information. The size parameter is a variable with less physical 
content than its components, the whole being less than the sum of its parts. Moreover, cross section 
versus size parameter (or its inverse) is not equivalent to cross section versus wavelength. Except 
in the fantasy world of naive modelers, refractive indices vary with wavelength, and the Mie coef-
ficients depend on x and m, wavelength being explicit in the first and implicit in the second.

The complex refractive index is written dozens of different ways, one of which is n + ik (despite 
the risk of confusing the imaginary part with the wavenumber). The quantities n and k are called 
optical constants. But just as the Lord Privy Seal is neither a lord nor a privy nor a seal, optical con-
stants are neither optical nor constant.

Few quantities in optics are more shrouded in myth and misconception than the complex refrac-
tive index. The real part for any medium is often defined as the ratio of the velocity of light c in free 
space to the phase velocity in the medium. This definition, together with notions that nothing can 
go faster than c, has engendered the widespread misconception that n must be greater than unity. 
But n can take on any value, even zero. The phase velocity is not the velocity of any palpable object 
or of any signal, hence is not subject to speed limits enforced by the special relativity police. The least 
physically relevant property of a refractive index is that it is a ratio of phase velocities. A refractive 
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index is a response function (or better, is simply related to response functions such as permittivity 
and permeability): it is a macroscopic manifestation of the microscopic response of matter to a peri-
odic driving force.

When we turn to the imaginary part of the refractive index, we enter a ballroom in which com-
mon sense is checked at the door. It has been asserted countless times that an imaginary index of, 
say, 0.01 corresponds to a weakly absorbing medium (at visible and near-visible wavelengths). Such 
assertions are best exploded by expressing k in a more physically transparent way. The absorption 
coefficient  is

4 k (22)

The inverse of  is the e-folding distance (or skin depth), the distance over which the irradiance of 
light propagating in an unbounded medium decreases by a factor of e. At visible wavelengths, the 
e-folding distance corresponding to k 0.01 is about 5 m. A thin sliver of such an allegedly weakly 
absorbing material would be opaque.

When can a particle (or any object) be said to be strongly absorbing? A necessary condition is 
that d 1, where d is a characteristic linear dimension of the object. But this condition is not suf-
ficient. As k increases, absorption increases—up to a point. As k approaches infinity, the absorption 
cross section of a particle or the absorptance of a film approaches zero.

One of the most vexing problems in scattering calculations is finding optical constants dispersed 
throughout dozens of journals. Palik25 edited a compilation of optical constants for several solids. 
The optical constants of liquid water over a broad range were compiled by Hale and Querry;26

Warren27 published a similar compilation for ice. For other materials, you are on your own. Good 
hunting!

For small x and m x, the extinction and scattering efficiencies of a sphere are approximately
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These equations are the source of a nameless paradox, which is disinterred from time to time, a 
corpse never allowed eternal peace. If the sphere is nonabsorbing (m real), Eq. (23) yields a van-
ishing extinction cross section, whereas Eq. (24) yields a nonvanishing scattering cross section. 
Yet extinction never can be less than scattering. But note that Eq. (23) is only the first term in the 
expansion of Qext in powers of x. The first nonvanishing term in the expansion of Qsca is of order 
x4. To be consistent, Qext and Qsca must be expanded to the same order in x. When this is done, the 
paradox vanishes.

The amplitude-scattering matrix elements for a sphere are
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where the angle-dependent functions are

n
n

n
nP dP

d

1 1

sin (27)

and Pn
1  are the associated Legendre functions of the first kind. The off-diagonal elements of the 

amplitude-scattering matrix vanish, because of which the scattering matrix is block-diagonal 
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and S12 S21, S43 −S34, S44 S33. Thus, when the incident light is polarized parallel (perpendicular) 
to the scattering plane, so is the scattered light, a consequence of the sphere’s symmetry.

7.6 SCATTERING BY REGULAR PARTICLES

The field scattered by any spherically symmetric particle has the same form as that scattered by a 
homogeneous, isotropic sphere; only the scattering coefficients are different. One such particle is 
a uniformly coated sphere. Scattering by a sphere with a single layer was first treated by Aden and 
Kerker.28 Extending their analysis to multilayered spheres is straightforward.29

New computational problems arise in going from uncoated to coated spheres. The scattering 
coefficients for both contain spherical Bessel functions, which are bounded only if their arguments 
are real (no absorption). Thus, for strongly absorbing particles, the arguments of Bessel functions 
can be so large that their values exceed computational bounds. This does not occur for uncoated 
spheres because the only quantity in the scattering coefficients with complex argument is the 
logarithmic derivative, a ratio of Bessel functions computed as an entity instead of by combining 
numerator and denominator, each of which separately can exceed computational bounds. It is not 
obvious how to write the scattering coefficients for a coated sphere so that only ratios of possibly 
large quantities are computed explicitly. For this reason the applicability of the coated-sphere pro-
gram in Ref. 5 is limited. Toon and Ackerman,30 however, cast the coated-sphere coefficients in such 
a way that this limitation seems to have been surmounted.

Bessel functions of large complex argument are not the only trap for the unwary. A coated sphere 
is two spheres. The size parameter for the outer sphere determines the number of terms required for 
convergence of series. If the inner sphere is much smaller than the outer, the various Bessel func-
tions appropriate to the inner sphere are computed for indices much greater than needed. More 
indices are not always better. Beyond a certain number, round-off error can accumulate to yield 
terms that should make ever smaller contributions to sums but may not.

Scattering by spheres and by infinitely long circular cylinders illuminated normally to their axes 
are in some ways similar. Spherical Bessel functions in the sphere-scattering coefficients correspond 
to cylindrical Bessel functions in the cylinder-scattering coefficients. Unlike a sphere, however, an 
infinitely long cylinder cannot be enclosed in a finite volume. As a consequence, the field scattered 
by such a cylinder decreases inversely as the square root of distance r instead of inversely as r (for 
sufficiently large r).

Infinite particles may be mathematically tractable but they are physically unrealizable. In 
particular, cross sections for infinite cylinders are infinite. But cross sections per unit length of 
infinite cylinders are finite. Such cross sections may be applied to a finite cylindrical particle by 
multiplying its length by the cross section per unit length of the corresponding infinite particle. If 
the aspect ratio (length/diameter) of the finite particle is sufficiently large, what are vaguely called 
“end effects” may be negligible. Because no exact theory for a finite cylinder exists, the aspect ratio 
at which differences between finite and infinite cylinders become negligible is not known with 
certainty, although the value 10 is bruited about. Nevertheless, there always will be differences 
between scattering by finite and infinite particles, which may or may not be of concern depending 
on the application.

A physical difference between scattering by spheres and by cylinders is that cross sections for 
cylinders depend on the polarization state of the incident plane wave. But normally incident light 
illuminating an infinite cylinder and polarized perpendicular (parallel) to the plane defined by the 
incident wave and the cylinder axis excites only scattered light polarized perpendicular (parallel) to 
the plane defined by the scattered wave and the cylinder axis. Obliquely incident linearly polarized 
light can, however, excite scattered light having both copolarized and cross-polarized components.

Obliquely illuminated uncoated cylinders pose no special computational problems. Coated cyl-
inders, however, pose the same kinds of problems as coated spheres and are even more difficult to 
solve. Toon and Ackerman’s30 algorithm for coated spheres is based on the fact that spherical Bessel 
functions can be expressed in a finite number of terms. Because cylindrical Bessel functions cannot 
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be so expressed, this algorithm cannot be extended to coated cylinders, for which Bessel functions 
must be computed separately rather than as ratios and can have values beyond computational 
bounds. Even if such bounds are not exceeded, problems still can arise.

Although Barabás31 discussed in detail scattering by coated cylinders, Salzman and Bohren32

found that his computational scheme is unsuitable when absorption is large. They attempted, 
with only partial success, to write programs for arbitrary-coated cylinders. Care must be taken in 
computing Bessel functions. The often-used Miller algorithm can be inadequate for large, complex 
arguments.

The simplest nonspherical, finite particle is the spheroid, prolate, or oblate. Because the scalar 
wave equation is separable in spheroidal coordinates, scattering by spheroids can be solved in the 
same way as for spheres and cylinders. The expansion functions are based on spheroidal rather 
than spherical or cylindrical wave functions. Asano and Yamamoto33 were the first to solve in this 
way the problem of scattering by an arbitrary spheroid. Although Asano34 subsequently published 
an extensive set of computations based on this solution, it has not seen widespread use, possibly 
because of the intractability and exoticness of spheroidal functions.

Computational experience with spheroids and even simpler particles such as spheres and cylin-
ders leads to the inescapable conclusion that hidden barriers lie between a mathematical solution to 
a scattering problem and an algorithm for reliably and quickly extracting numbers from it.

7.7  COMPUTATIONAL METHODS 
FOR NONSPHERICAL PARTICLES

The widespread notion that randomly oriented nonspherical particles are somehow equivalent to 
spheres is symptomatic of a failure to distinguish between the symmetry of an ensemble and that of 
its members. Considerable effort has been expended in seeking prescriptions for equivalent spheres. 
This search resembles that for the Holy Grail—and has been as fruitless.

From extensive studies of scattering by nonspherical particles, Mugnai and Wiscombe35 con-
cluded that “after examining hundreds of nonspherical results and observing that they all cluster 
relatively close together, relatively far from the equivolume spheres (except at forward angles), we 
have come to regard nonspherical particles as normal, and spheres as the most unrepresentative 
shape possible—almost a singularity.” This serves as a warning against using Mie theory for par-
ticles of all shapes and as a spur to finding methods more faithful to reality. We now turn to some of 
these methods. Keep in mind that no matter how different they may appear on the surface, they are 
all linked by the underlying Maxwell equations.

The T-matrix method is based on an integral formulation of scattering by an arbitrary particle. 
It was developed by Waterman, first for a perfect conductor,36 then for a particle with less restricted 
properties.37 It subsequently was applied to scattering problems under the name extended boundary 
condition method (EBCM).38 Criticism of the T-matrix method was rebutted by Varadan et al.,39

who cite dozens of papers on this method applied to electromagnetic scattering. Another source of 
papers and references is the collection edited by Varadan and Varadan.40 Reference 6 is accompa-
nied by a diskette containing T-matrix programs.

Linearity of the field equations and boundary conditions implies that the coefficients in the spherical 
harmonic expansion of the field scattered by any particle are linearly related to those of the incident field. 
The linear transformation connecting these two sets of coefficients is called the T (for transition) matrix.

The T-matrix elements are obtained by numerical integration. Computational difficulties arise 
for particles with high absorption or large aspect ratios. These limitations of the original T-matrix 
method have been surmounted somewhat by Iskander et al.,41 whose extension is dubbed the itera-
tive extended boundary condition method.

Although the T-matrix method is not restricted to axisymmetric particles, it almost exclusively 
has been applied to spheroids and particles defined by Chebyshev polynomials.35,42,43

Despite its virtues, the T-matrix method is not readily grasped in one sitting. Another method, 
variously called the Purcell-Pennypacker,44 coupled-dipole,45 digitized Green’s function46 method and 
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discrete dipole approximation,47 is mathematically much simpler—the most complicated function 
entering into it is the exponential—and physically transparent. Although originally derived by heuris-
tic arguments, the coupled-dipole method was put on firmer analytical foundations by Lakhtakia.48

In this method, a particle is approximated by a lattice of N dipoles small compared with the 
wavelength but still large enough to contain many molecules. The dipoles often are, but need not 
be, identical and isotropic. Each dipole is excited by the incident field and by the fields of all the 
other dipoles. Thus the field components at each site satisfy a set of 3N linear equations. These 
components can be calculated by iteration44,49 or by inverting the 3N 3N coefficient matrix.45 The 
coefficient matrix for only one particle orientation need be inverted. This inverse matrix then can 
be used to calculate scattering for other orientations.50 A disadvantage of matrix inversion is that the 
number of dipoles is limited by computer storage.

Arrays of coupled dipoles were considered long before Purcell and Pennypacker entered the 
scene. More than half a century ago Kirkwood51 treated a dielectric as an array of molecules, the 
dipole moment of each of which is determined by the external field and by the fields of all the other 
molecules. What Purcell and Pennypacker did was to apply the coupled-dipole method to absorp-
tion and scattering by optically homogeneous particles. They bridged the gap between discrete 
arrays and continuous media with the Clausius-Mosotti theory. Because this theory, like every 
effective-medium theory, is not exact, critics of their method have pronounced it guilty by asso-
ciation. But the Clausius-Mosotti theory is merely the effective-medium theory that Purcell and 
Pennypacker happened to use. Whatever flaws their method may have, one of them is not that it is 
forever chained to the ghosts of Clausius and Mosotti. Alleged violations of the optical theorem are 
easily remedied by using the exact expression for the polarizability of a finite sphere,52 which in no 
way changes the structure of the method.

Draine47 applied this method (under the label discrete dipole approximation) to extinction by inter-
stellar grains, obtaining the field components with the conjugate gradient method. An outgrowth of 
his paper is that by Flatau et al.,53 who considered scattering by rectangular particles. Goedecke and 
O’Brien46 baptized their version of the digitized Green’s function method and applied it to scattering 
of microwave radiation by snowflakes.54 Varadan et al.55 applied the method to scattering by particles 
with anisotropic optical constants. It also has been applied to scattering by helices,56 by a cylinder on 
a reflecting surface,57 and extended to intrinsically optically active particles.58

Although Yung’s analysis59 of a large (15,600) array of dipoles representing a sphere suggests 
that there are no intrinsic limitations to the coupled-dipole method, it is plagued with practical 
limitations, most notably its inability to treat particles (especially compact ones or ones with large 
complex refractive indices) much larger than the wavelength of the illumination. Chiapetta,60 then 
Singham and Bohren,61 reformulated the coupled-dipole method, expressing the total field at each 
dipole as the sum of the incident field and the fields scattered once, twice, and so on by all the other 
dipoles. Although this formulation is appealing because each term in the scattering-order series has 
a simple physical interpretation, the series can diverge. The greater the refractive index, the smaller 
the particle for which the series diverges. For a particle of given volume, fewer terms are needed 
for convergence the more the particle departs from sphericity. The greater the average separation 
between dipoles, the weaker the average interaction.

Except for improvements and refinements52,62,63 that increase accuracy and speed but do not 
remove barriers imposed by particle size and composition, the coupled-dipole method has not 
changed much since it first was used by Purcell and Pennypacker. It is not, of course, limited to 
optically homogeneous particles. It can be applied readily to aggregates of small particles. Indeed, 
it is best suited to aggregates with low fractal dimension. Berry and Percival64 considered scatter-
ing by fractal aggregates using what they call the mean-field approximation, which is essentially the 
Rayleigh-Gans approximation, in turn a form of the scattering-order formulation of the coupled-
dipole method in which the dipoles are excited only by the incident field.

The arbitrary border separating electrical engineering from optics is never more obvious than 
when it comes to methods for computing scattering. The engineers have theirs, the optical scientists 
have theirs, and rarely do the twain meet. In the hope of promoting smuggling, even illegal immi-
gration, I must at least mention two methods that fall almost exclusively in the domain of electrical 
engineering: the method of moments and the finite-difference time-domain technique (FDTD).
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Anyone interested in the method of moments must begin with Harrington’s book,65 a focal point 
from which paths fan out in all directions.

As its name implies, the FDTD technique is applied to what electrical engineers call the time domain 
(as opposed to the frequency domain, which most optical scientists inhabit even though they may not 
know it) and is explicitly labeled a finite-difference method (all methods for particles other than those 
of simple shape entail discretization in one form or another). Papers by Yee,66 Holland et al.,67 Mur,68

Luebbers et al.,69 and references cited in them will get you started on the FDTD technique.
When pondering the welter of species and subspecies of methods keep in mind that the differ-

ences among them and their ranges of validity are probably smaller than their adherents think or 
are willing to admit. There is no method that will happily compute scattering of arbitrary waves 
by particles of arbitrary size and composition in a finite amount of time. Moreover, each method, 
whatever its merits and demerits, often requires a tedious climb up a learning curve.
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8.1 GLOSSARY OF PRINCIPAL SYMBOLS

Ao illuminated area

A, B, C model parameters

BRDF bidirectional reflectance distribution function

C( ) autocovariance function or ACF

D( ) structure function

fxy, fx spatial frequencies

g, g Strehl parameter or Rayleigh index

Jn ordinary Bessel function

Kn modified Bessel function

Lo illuminated length

Lx, Ly lengths of illuminated area

N fractal index

P incident or scattered power

R , r Fresnel reflection coefficients

RCS radar cross-section

S two-sided power spectral density (PSD)

S one-sided profile PSD

T topothesy

Z(x, y) topographic surface roughness

Z(x) surface profile

1D, 2D dimensionalities

ensemble average

, linear-polarization parameters

correlation length

root-mean-square roughness

lag variable

8.1
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8.2 INTRODUCTION

Imperfect surface finish degrades optical performance. The connection between the two is electro-
magnetic scattering theory, which is the subject of this chapter. Because of space limitations we limit 
our attention to the elemental case of simple highly reflective surfaces such as those used in x-ray 
imaging and other high-performance applications.

This chapter is divided into two parts. The first part discusses elementary physical optics and 
first-order perturbation theory of the scattering of electromagnetic waves by a randomly rough sur-
face, ending with Eq. (35). 

The second part discusses the interpretation of scattering measurements in terms of surface 
finish models, and the related question of surface-finish specification. Because many manufac-
tured surfaces show an inverse-power-law behavior, we have concentrated on models that show 
this behavior. Two types of surfaces are considered throughout—1D or grating-like surfaces, and 
isotropic 2D surfaces.

The field of topographic surface scattering has been highly developed in radio physics, optics, 
and instrumentation over the past 50 years. There is a staggering volume of literature in each area, 
expressed in a bewildering variety of notations, which are summarized in Sec. 8.3. Important in-
depth texts in these fields are the early reviews of Beckmann and Spizzichino1 and the Radar Cross-
Section Handbook2, the more recent work of Ishimaru3, Fung4, the textbooks of Nieto-Vesperinas5

and Voronovich6, and most recently, the publications of Maradudin et al.7.
Scattering measurements are discussed in the works of Stover8 and Germer9, and profile mea-

surements using various optical techniques, including the Long Trace Profiler (LTP) are considered 
by Takacs et al.10

A number of important subjects have been omitted in the present review. These include instru-
mentation, statistical estimation, the effects of detrending, figure error, standards, and multilayer 
surfaces. Discussions of some of these and related subjects can be found in Chap. 11, “Analog Optical 
and Image Processing,” in this volume and Chap. 4, “Imaging through Atmospheric Turbulence,” 
Chap. 44, “Reflective Optics,” and Chap. 46, “X-Ray Mirror Metrology,” in Vol. V.

8.3 NOTATION

The scattering geometry is sketched in Fig. 1. Note that the angles of incidence, i and f , are always 
positive, and that the azimuthal angle f is understood to be f i with i 0. Specular reflection 
occurs at f i and f 0, and backscatter at f i and f .

The initial and final wavenumbers are
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These can be viewed as a generalization of the grating equation for first-order diffraction from a 
grating with the spatial wavelength d 1/f.
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The Jacobian relating configuration, wavenumber, and frequency space is

cos sin( ) ( )f f x y x y f f fd
k

dk dk df df d d
1

2
2 dd f

(3)

The two orthogonal states of linear polarization have a variety of notations in the literature:

s h E( ) ( ) (senkrecht horizontal TE perpendicuular

Dirichlet (soft) boundary condition

)

p(( ) ( ) ||( )parallel vertical TM parallel

N

v H

eeumann (hard) boundary condition

(4)

Designation of initial ( ) to final ( ) states of polarization:

A A

We use the optical or “p, s” notation hereafter. Circular and elliptically polarized results are obtained 
by taking appropriate linear combinations of these linear forms. Unpolarized results are obtained by 
summing over the final states of polarization and averaging over the initial states.

The polarization vector is a unit vector in the direction of the electric vector. A natural sign con-
vention is

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆs z k p k s k s p (5)

but this is not universal.
One can make a distinction between scattering from a surface that is rough in both the x and 

y directions, and a grating like surface that is rough only along the x axis. The first generates a 2D 
or bistatic scattering pattern in the upper hemisphere, while the second scatters only into an infini-
tesimal region about the plane of incidence. Randomly-rough 1D surfaces are of special interest for 
research purposes since they are easier to fabricate with prescribed statistical properties than are 2D 
surfaces.11–13 In the following discussions include 1D and 2D results side by side, wherever practical. 

FIGURE 1 Coordinate system for 1D and 2D scattering. The 
x-y plane is the surface plane, with air/vacuum above and reflective 
material below. The planes of incidence and scattering are defined by 
the z axis and the initial and final directions of propagation.
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The distribution of the reflected and scattered power has a wide variety of notations in the optics 
and radar literature. For a 2D scatterer
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and for a 1D scatterer
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In Eqs. (6) and (7), Pi is the power incident on the surface; that is, Ao cos ( ) |Ei|
2/(2 o), where Ao

is the total illuminated area of the surface for a 2D scatterer, and Ao 1 Lo for a 1D or grating-like 
scatterer. The f ’s here are the scattering amplitudes for spherical waves in 2D and cylindrical waves 
in 1D.  is the bistatic cross-section, RCS is the bistatic radar cross-section,  is the bistatic scattering 
coefficient, DSC is the differential scattering cross-section, and BRDF is the all-important radiomet-
ric quantity, the bidirectional reflectance distribution function. This is the quantity we will focus on 
in the detailed calculations described later in the chapter.

The cross-sections  and RCS have the dimensions of area and length or “width.” In practice, 
these are frequently converted to dimensionless forms by normalizing them to the appropriate 
power of the radiation wavelength or some characteristic physical dimension of the scattering 
object. On the other hand,  and BRDF are dimensionless. The former is more appropriate for iso-
lated objects, and the latter for distributed surface roughness. The ’s used here are the radar cross-
section normalized to the illuminated surface area or length, although alternative definitions appear 
in the literature.

In Eq. (7), D{ } and I(Q) are quantities used in the books of Beckmann and Spizzichino1 and 
Nieto-Vesperinas.5

At this point we do not distinguish deterministic and ensemble-average quantities, or coherent 
and incoherent scattering. These distinctions are discussed with respect to specific model calcula-
tions later in the chapter.

These full bistatic-scattering expressions may contain more information than is needed in prac-
tice. For example, scatterometry measurements8,9 are usually performed in the plane of incidence 
( f 0 or ), and surface isotropy is checked by rotating the sample to intermediate values of 
between measurements. Similarly, the radar literature is frequently concerned only with measure-
ments in the backscatter (retroscatter) direction, ( f i, f ).
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In principle, relating the BRDF to topographic surface features is a straightforward application 
of Maxwell’s equations, but approximations are frequently necessary to get practically useful results. 
The best known of these approximations are the physical-optics (Fresnel-Kirchhoff) and the small-
perturbation (Rayleigh-Rice) methods. These are discussed in Secs. 8.4 and 8.5.

8.4 THE FRESNEL-KIRCHHOFF APPROXIMATION

Introduction

The Fresnel-Kirchhoff or physical-optics approximation is also known as the tangent-plane or 
Huygens wave approximation. It is valid when the surface roughness has a large radius of curvature, 
that is, it is locally flat, but places no direct restrictions on the surface height or slope. It is an inher-
ently paraxial approximation, and in its simplest form discussed below [Eq. (8)] omits multiple scat-
tering and shadowing effects. As a result, it does not generally satisfy the conservation of energy.

In this approximation the ensemble-average value of the BRDF is in 2D:

BRDF
cos cos

D FK FK( )

( ) ( )
2

2

1 1

i f

Q ( )

( )

( )

( )

f

f f

xy

xy xyd i

2

2 2

D

D exp[ xxy xy z xyf D] exp
1
2

2 2( ) ( )

(8a)

and in 1D:
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In these expressions the Q carries the information on the polarization of the radiation and 
the properties of the surface material, and the real quantity < > carries the information about 
the statistical properties of the surface roughness. This occurs through the dependence on the 
ensemble- average surface structure function, <D( )>

D D Z Zxy xy xy xy xy( ) (| |) [ ( ) ( )]r r 2 (9)

where rxy is the position vector in the surface plane. The existence of <D( )> requires that the sur-
face roughness have statistically stationary first differences. In the limit of a perfectly smooth surface, 
D( ) vanishes and the ’s become a delta function in the specular direction.

The exponential dependence on the roughness structure function in Eq. (8) is a consequence 
of the usual assumption that the height fluctuations, Z(x, y), have a gaussian bivariate distribu-
tion. Nongaussian effects, which become manifest only for rough surfaces, are discussed in the 
literature.11,13

The polarization-materials factor can be written approximately as
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Although these results are correct for a perfect reflector, R 1, the dependence on the surface reflec-
tivity for an imperfect reflector is quite complicated.2,4 Here we follow custom by arbitrarily factoring 
out a reflection coefficient R in the first line, where the R values are the Fresnel intensity reflectivities,

R r R r r( ) | ( )| ( ) ( ( ) ( ))2

2
1
2

(11)

and the r’s are the amplitude reflection coefficients

r rs( )
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2
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cos sin

cos sin

2

2
(12)

For simplicity in presentation we cavalierly evaluate these reflectivity factors at the local angle of 
incidence. That is, R( ) R( loc), where loc f cos( f) i /2 in the plane of incidence.2

The material parameters  and  are the electric permeability and magnetic permittivity of the sur-
face relative to vacuum. In the case of a perfect electrical conductor (PEC),  and the R’s are unity.

In the forward-scattering direction, f
2 << 1, the Q’s simplify to

Q Qs s p p
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FK FK (13)

and a related but different expression for Q  in the retro-scattering direction, f .

Statistically Stationary Surfaces

A random variable is statistically stationary if it has a finite mean-square value or variance, 
2 <Z2>.14 In that case the structure function can be written as
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where <C( )> is the autocovariance function. The scattering integrals in Eq. (8) can then be written as
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The quantity g, the Strehl or Rayleigh index, is an important dimensionless measure of the 
degree of surface roughness 1,15 which will appear throughout the following discussions.

We now examine forms of the <BRDF> that follow from Eqs. (8) and (15) in four roughness regimes.

Perfectly Smooth Surfaces In perfectly smooth surfaces, where g 0, Eq. (8) reduces to

BRDF

BRDF

D FK( )
,( ) ( )2

2

1
R i xyf

( )
,( ) ( )1 1D FK R fi x

(16)

that is, a sharp spike in the specular direction.
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This spike is a delta function in spatial-frequency space and follows from the assumption of an 
infinite illumination area in Eq. (8). Later, in Sec. 8.6, we extend this idealized result to include the 
important effects of a finite-sized illumination area.

Slightly Rough Surfaces In slightly rough surfaces, 0 < g << 1. In this case, expand the second 
exponent in Eq. (15) in a power series and keep the first two terms. These two terms separate the 
<BRDF> into “coherent” and “incoherent” parts:
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The statistical properties of the surface appear here in the all-important quantities <S(1D)> and 
<S(2D)>—the ensemble-averages of the 1D and 2D power spectral densities of the surface roughness. 
These are the Fourier transforms of the corresponding covariance functions:
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These are discussed in detail in Sec. 8.7.
As a final note, the incoherent terms reduce to somewhat simpler forms when observations are 

made in the forward direction, f
2 << 1: 
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Moderately Rough Surfaces In moderately rough surfaces, where g 1, the power-series expansion 
of the second exponential in Eq. (15) cannot be cut off after the first two terms, and higher terms 
must be included. Beckmann and Spizzichino1 illustrate this procedure for a gaussian <C( )> and a 
gaussian bivariate distribution (see also Refs. 11 and 13).

A gaussian autocovariance function is rarely, if ever, observed in polished optical surfaces, 
although it is very convenient for analytic and experimental investigations. For example, O’Donnell 
and Mendez have made artificially rough grating-like surfaces of this type by superimposing speckle 
patterns, and have used them to make ingenious scattering studies of rough surfaces.11

Very Rough Surfaces In very rough surfaces, where g >> 1, the coherent term vanishes for a gaussian 
bivariate distribution, and we revert to Eq. (8) which then involves the limit of the scattering integral:

lim
exp[ ] expD d i
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22
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which is determined by the indicial behavior of <D( xy)>. In the special case where the structure 
function is isotropic and quadratic

lim
o

D xy M xy( ) 2 2 (21)

where M is the dimensionless root mean square (rms) value of the surface gradient of a 2D surface 
or the rms value of surface slope of a 1D surface. It is easy to see that this quadratic dependence 
leads to values of < > that are proportional to 2 in 2D and 1 in 1D, in which case the <BRDF> 
is independent of the radiation wavelength. In other words, a quadratic structure function leads to 
geometric-optics results.

In fact, the resulting scattering pattern is a mapping of the slope distribution of the surface 
roughness, including the doubling of the deflection angle on reflection.1,2 The form of the scattering 
pattern depends on the form of the bivariate distribution involved. For example, a gaussian bivari-
ate distribution leads to a gaussian pattern, while a gamma distribution leads to scattering patterns 
involving modified Bessel functions.13

If the indicial behavior of <D> is not quadratic, the form of the <BRDF>’s depend on  and the 
elegant geometrical-optics limits are not achieved. Mathematically, this occurs because such surfaces 
are not differentiable at 0 and so have no well-defined “slope.”

Fractal Surfaces

Introduction Fractal surfaces have structure functions of the form

D T
T

Nxy

xy

N

( ) fractal
2 0 2 (22)

where T is a length parameter called the topothesy.16,17 Physically, T is the separation of surface 
points whose connecting chord has an rms slope of unity. Because Eq. (22) is proportional to T2-N

where N < 2, a perfectly smooth surface occurs when T 0. On the other hand, because N 2 is 
excluded, very rough fractal surfaces do not lead to a geometrical-optics result. 

The number N is the fractal index, which is related to the Hausdorff or Hausdorff-Besicovitch 
dimension D ,16,17
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D  can also be expressed in terms of the Hurst dimension or coefficient, but the connection depends 
on the dimensionality of the problem.18

Fractal Forms of the Scattering Integrals In the case of statistically isotropic surfaces, structure functions 
of the form of Eq. (22) lead to expressions for the incoherent scattering integrals which may be written as
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are “pseudo” roughness and correlation length parameters. These do not play true physical roles 
in the case of fractals, but are artificial quantities introduced here to enable us to write Eq. (24) in 
form of a Fourier transform of a covariance function that will appear later as the power exponen-
tial (PEX) model.

The integrals in Eq. (24) are symmetric bell-shaped functions of fxy and fx that are flat at low 
spatial frequencies and fall off with inverse-power-law tails at high spatial frequencies. The 2D 
expression cannot be expressed in terms of known functions, while the 1D form can be written in 
terms of centered symmetric Lévy stable distributions of order , that is, L (X), where:17

( ) ( )( )f L Y Y fx N x
1 22 2D (26)

Nolan19 gives the computer program “STABLE” for this in terms of general stable distribution 
functions fNolan:
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On the other hand, the low- and high-frequency limits of the 1D and 2D forms can be expressed 
in simple closed form. In the 1D case:
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and in the isotropic 2D case:
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It follows from the Fourier transform nature of Eq. (8) that the areas under each of these curves 
in frequency space is simply 2. This plus the asymptotic properties of the < >’s given above cap-
ture most of the physical properties of the <BRDF> of interest.

The case N 1, D 3/2 is called the Brownian fractal, which falls between the Cantor set 
(D 0.63093 . . .) and the Sierpinski gasket (D 1.5850 . . .). The Brownian fractal has the vir-
tue of leading to the simple analytic expressions for the diffraction integrals valid for all spatial 
frequencies:
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where, for fractal surfaces,  and  are given by Eq. (25). 

8.5  THE RAYLEIGH-RICE (RR) OR 
SMALL-PERTURBATION APPROXIMATION

Results

The small-perturbation method is an alternative to the Fresnel-Kirchhoff method discussed 
above. Its first-order form was originally derived by Rice20 using the Rayleigh hypothesis, and 
hence the name Rayleigh-Rice. Peake2,21 was the first to derive the expression for an arbitrary 



8.10  PHYSICAL OPTICS

surface material and the results have been rederived many times in the literature. These Rayleigh-
Rice results have been extended to higher orders22–24, and in its more general form is called the 
small-perturbation method.

The lowest-order perturbation theory results are2
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The RR form of the coherent term is complicated and can be found in the literature.5,25

The Q’s are the material-polarization factors similar to those appearing in the FK calculations. 
In contrast with the approximation made in the FK case, however, they do not separate into distinct 
angular and reflectivity factors. In particular,2
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where B( ) ( )sin 2  and index of refraction . The full –  dependencies are useful for 
checking the duality of the results.

The QRR’s are closely related to the Fresnel reflection coefficients in Eqs. (11) and (12). For non-
magnetic materials, 1 and
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On the other hand, for a perfectly reflecting (PEC) surface,
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In the special case of a perfectly reflecting surface measured in the plane of incidence we get the 
elegant results:
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which may be compared with the FK result in Eq. (19) with R( ) 1.
Again, the reader is alerted to the fundamental distinction between <S(fx, 0)(2D)> and <S(fx)

(1D)>, 
appearing here. They may be mathematically related for an isotropically rough surface, but they are 
never equal.

Comparison of RR and FK Results

The Rayleigh-Rice results are inherently a smooth-surface approximation for a statistically station-
ary random surface, so that the proper comparison is with the Fresnel-Kirchhoff results for slightly 
rough surfaces in Eq. (17) and the RR results in Eq. (30).

In the limit of paraxial scattering, f I and f , the two sets of results become identical and 
can be written in the common form:
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where R ( i) is given by Eq. (11).
In the case of fractal surfaces the paraxial results are
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where the < >’s are given in Eqs. (24) et seq. Later, in “The J-K model” section we discuss the high-
frequency forms of the <BRDF> that follow from these results.

A nice feature of the paraxial results in Eq. (35) is that they satisfy the conservation of energy. In 
the case of statistically stationary surfaces this occurs via
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where the terms (1–g) and g come from the coherent and incoherent components. 
The differences between the FK and RR results that appear at larger deflection angles are attrib-

uted to the inherently paraxial approximation of the FK calculations. In particular, the FK results for 
rougher surfaces do not satisfy the conservation of energy due to their neglect of multiple scattering 
and shadowing effects.26

On the other hand, the RR or lowest-order perturbation theory results are known to have intrin-
sic limitations at grazing angles, especially for p-polarized radiation.27 The RR results also may not 
satisfy the conservation of energy because of the phenomenon of roughness-induced absorption.28

8.6 EFFECTS OF FINITE ILLUMINATION AREA

The discussion above has assumed that the illuminated surface area is infinite, which is the meaning 
of the limits  in the integrals, < >, appearing in Eqs. (8) et seq.

In general, the effects of the finite rectangular illumination area, Lx Ly, can be taken into 
account by convolving the infinite-illumination forms of the <BRDF> with the system-response 
(SR) or point-spread function

System response
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x y x x
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y y

2 2
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which becomes (fx) (fy) in the limit Lx, Ly >> .29

When the L’s are much larger than the correlation length of the surface roughness, the incoher-
ent scattering pattern is a broad and “smooth” function of spatial frequency and is unaffected by the 
convolution with the relatively sharp system response function.

This argument breaks down when there are sharp features in the <BRDF>. An example of this 
occurs in the smooth-surface limit of statistically stationary surfaces, which exhibit a delta-function 
coherent-scattering peak as in Eq. (17). That delta function is then smeared into the expected sinc2

pattern by convolution with the system response.
Fractal scattering does not display a separable coherent component but does become increasingly 

bunched in the specular direction when the topothesy is sufficiently small. In that limit the observed 
scattering is again affected significantly by convolution with the system response.

The non-vanishing width of the system response function plays an important role in the discus-
sion of surface-finish specification in Sec. 8.8.

8.7 SURFACE STATISTICS

Second-Order Statistical Functions

The ensemble-average scattered power can be written in terms of three second-order statistical func-
tions: the structure function, <D( )>, the surface autocovariance function (ACF), <C( )>, and the 
power spectral density (PSD) <S(f )>. Equation (18) gives the PSD in terms of the ACF, but it can 
also be written directly in terms of the surface profile according to
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where <fx, fxy< . This is the basis for the periodogram estimate of the one-sided profile 
spectrum30:
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where the “hat” on S means that it is an estimate, and the asterisk and the factor of two on the 
right mean that the negative spatial frequencies have been folded over and added into the positive 
frequencies. W(n) is a real bell-shaped window function that eliminates the ringing that would 
otherwise appear in the estimate due to the sharp edges of the data window, and K(m) is a book-
keeping factor that equals unity everywhere except at the end points, where it equals 1/2.

In the above, D is the sample spacing of the measured data, and the range of spatial frequencies 
included in the measurement is (1/ND) fn  1/2D, where 1/2D is the Nyquist frequency of the 
measurement. As written, N is even, although a similar expression holds for odd N.

Properties of Power Spectra

The power spectra show how the variance of the surface roughness is distributed over surface spatial 
frequencies. In particular, 
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In other words, the roughness of a statistically stationary surface measured over a surface area is the 
same as that measured over any linear profile across it.

The 2D spectrum is what appears in surface-scattering measurements, while 1D spectrum 
appears in surface profile measurements. Both depend only on the magnitude of their spatial-
frequency arguments. However, 1D and 2D spectra are distinctly different—they even have different 
dimensions: <S(2D)> is [L4], while <S(1D)> is [L3]. What is not true is that the 1D form is a simple slice 
of the 2D form; that is, <S(fx)

(1D)> does not equal <S(fx, 0)(2D)>. Instead, the 1D form can be derived 
from the 2D form by integration,

S f df S f fx y x y( ) ( , )( ) ( )1 2D D (41)

but the 2D form cannot be derived from the 1D form without providing further information about 
the 2D form. This is usually given in terms of its symmetry properties.

Incidentally, it follows from Eqs. (35) and (41) that the 1D scattering pattern equals the 2D pattern 
integrated over an long, narrow slit parallel to the y axis in Fig. 1.

If the surface is statistically isotropic, <S(1D)> and <S(2D)> are related by the integral transforms 
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The first is the inverse-Abel or “half derivative” transform and the second is the Abel transform or 
“half integral” transform.31
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The transforms in Eq. (42) are useful since they allow profile measurements, which are inherently 
1D, to be translated into the 2D spectra which appear in scatterometry and practical applications.32

They also permit the transformation of the high-frequency behavior of the spectra of one dimen-
sionality to be transformed into the high-frequency behavior of the other without knowledge of 
their low-frequency behavior.32

An important example of this is the case of inverse-power-law high-frequency tails, 
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which is the essence of the so-called J-K model discussed in the “The J-K Model” section.

Finish Models

General Remarks The magnitudes of the spatial frequencies | f | appearing in the PSDs discussed 
above cover the range from 0 to . Real world measurements, however, include only a lesser 
range of spatial frequencies, fmin<| f |<fmax, where fmin and fmax are determined by the details of the 
measurement process.

In scatterometry the bandwidth limits are determined by the radiation wavelength and the 
maximum and minimum collection angles according to Eq. (2). In profilometry the minimum 
spatial frequency is the reciprocal of the trace length of the measurement, and the maximum 
is the reciprocal of twice the uniform sampling interval—that is, the Nyquist frequency of the 
measurement.

Surface finish models are parametric models that are fitted to experimental data. This condenses 
the measured data into a set of discrete finish parameters, smooths the measured data within the 
measurement bandpass, and—depending on one’s degree of trust in the model—can be used to 
extrapolate the data outside the measurement range.

In this chapter we consider four elementary models: The fractal model discussed above, and the 
ABC, PEX and J-K models considered below. These models have been chosen since each shows an 
inverse-power-law high-frequency tail displayed by many real surfaces.

The Fractal Model The fractal model is defined by the structure function D( ) T2 /T|N appearing 
in Eqs. (8) and (9), et seq. This two-parameter “model” follows from the geometrical scaling of fractal 
or self-affine surface roughness. Since there is no intrinsic limitation on its degree of roughness in 
this case, it is more properly described by the FK rather than the RR calculations, leading to the 
results given in the “Fractal Surfaces” section.

The ABC Model A very useful pair of spectra that satisfy the integral transforms in Eq. (42) is the 
“ABC” model:

S f
A

Bf
S f

A
x

x
C xy( )

[ ( ) ]
( )

[
( )

/
( )1

2 2
2

1 1
D D

( ) ]

[( ) ]
[ ] [ ]

( )/Bf

A
C

C

xy
C2 1 2

1 2
1 2 2

/
/ /

AAB
C

C
A
B

C2 1 2 1 2
2

1
[ ] [( ) ]

[ ]
/ /

/

(44)

Here  is the rms roughness parameter that describes its vertical character, B/(2 ) is the roughness 
“correlation length” that characterizes its transverse character, and C is the spectral index that deter-
mines its high-frequency behavior.
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The corresponding ACF, obtained by taking the Fourier transform of <S(fx)
(1D)>, is 
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where Kn is a modified Bessel function.33 For this reason the “ABC” model is also called the 
K-correlation model.30 When C 2, 4, 6, . . . , it reduces to simple algebraic expressions. For C 2, 
and 4, for example,
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where the C 2 form is the well-known two-sided exponential. When C  the covariance func-
tion in Eq. (45) becomes gaussian.

The PEX Model Another three-parameter model with an inverse power-law power spectrum is the 
power exponential model:

C N
N

( ) PEX exp2 0 2 (47)

This model is identical with the ABC model for N 1 and C 2, but otherwise they are different. 
Some of the mathematical properties of the 1D and 2D spectra of the PEX model have been given 
earlier in connection with fractal surfaces. In particular, Eqs. (28a) and (28b) give the low- and 
high-frequency forms, and Eq. (29) gives explicit results for N 1.

Note that the ABC model only requires that C > 1 to be statistically stationary. This admits 
faster high-frequency falloffs than are permitted for the fractal and PEX models, which translate to 
1 < C < 3. This means that surfaces with C 3 only fit the ABC model.

The J-K Model In the limit of long correlation lengths, the ABC, PEX, and fractal model each 
reduces to what we call the J-K model, defined in Eq. (43). This can be viewed as a new two-parameter 
finish model, where the magnitudes of J and m, or equivalently, K and n, are determined directly 
from experimental data without reference to any underlying model. On the other hand, the values 
of J and K can be written in terms of the parameters of the ABC, PEX, or fractal models leading to 
these high-frequency forms. For the fractal surfaces, for example,
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where 2 < m < 4. This allows the topothesy T of a fractal scatterer to be determined from its high-
frequency tail.

The observation of an inverse-power-law spectrum over a limited bandwidth does not guar-
antee that the surface is fractal. To do that one would have to observe low-frequency behavior 
conforming to Eqs. (24) and (25) as well, and confirm the unique wavelength and angular depen-
dencies they imply.34 Until then, power-law scattering over a finite bandwidth can at best be called 
“fractal-like” rather than fractal.
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8.8 SURFACE FINISH SPECIFICATION

Performance Measures

It is desirable to express performance requirements on reflecting surfaces in terms of surface-finish 
parameters that can be measured by scatterometry or profilometry. One can concoct a wide variety 
of image-based performance measures.35 For example, earlier we invoked an ambitious measure of 
image degradation based on the reduction of the on-axis image intensity, rather than the simpler 
measure based on the integrated image intensity suggested below.36,37

The simplest practical measure appears to place an upper limit on the average total scattering 
outside the specular core,
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For small correlation lengths the BRDF is flat at low frequencies, the omitted parts of the integra-
tions in Eq. (49) can be neglected, and so

FK, RR D FK, RR D cos( ) ( ) ( )2 1 4 i

2

g (50)

where is the intrinsic rms roughness of the surface given by Eq. (40). In the earlier literature this 
result is called the total integrated scatter (TIS). This simple and beautiful expression for the image 
error permeates the wave-optics and microwave literature.15

In the limit of large correlation lengths, which is required to display inverse-power-law behavior, 
the BRDFs appearing in Eq. (49) diverge at low spatial frequencies. This leads to very different forms 
for the < >’s, which now depend on the bandwidth limits included in the error calculation. 

In the J-K language of Eq. (43),
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where Lxy and Lx are the radii of the excluded regions in Eq. (49).
Note that for statistically stationary surfaces the surface becomes perfectly smooth when 0, 

while for fractal surfaces this occurs when T 0.

Numerical Illustration

In an earlier paper we discussed the measurements of a silicon cylinder made with the LTP profiling 
instrument at Brookhaven National Laboratory.37 These were fitted to the two-sided profile spectrum
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If fractal, this corresponds to T 8.36 10 3 nm. If the surface is isotropic, the corresponding 
(2D) spectrum is
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These allow us to evaluate the errors associated with the use of this mirror in 1D and 2D geom-
etries.

If 10( 4) m (0.1 nm), ( /2) 10 3 (i.e., 1 mrad glancing incidence), and Lx Lo 0.1 m,

( ) ( ). % . %2 126 5 19 3D D (54)

The corresponding errors at 0.6328 m and at normal incidence are smaller than these by a fac-
tor of 0.025.

These results indicate that for the parameters used, this mirror would perform marginally well as 
a glancing-incidence x-ray mirror, but very well as a normal-incidence mirror at visible wavelengths, 
both in 1D and 2D applications.

Statistical Fluctuations

The discussion to this point has been concerned with ensemble average quantities <U>. Individual, 
deterministic measurements of U will fluctuate about this average by an amount measured by the 
dimensionless quantity
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The limit U 0 indicates a perfect measurement while U 1 is particularly bad.
An important example of this is the inverse-power-law sum that appears in the periodogram and 

effective mean-square roughness in Eqs. (49) through (51) for the J-K model:
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where (n) is the Riemann zeta function. For the brownian fractal, n 2, for example, 

U (2/5) 0.632 . . . . The Tchebycheff inequality then indicates that the sum U may be rather 
broadly distributed about <U> except for n near unity.

U vanishes when n 1 because the number of degrees of freedom included in the sum becomes 
infinite, and it approaches unity in the opposite limit of n , since the sum then includes only a 
single term with two degrees of freedom, or a “single speckle.”

If the fluctuations in < > are unacceptably large, the lowest-order statistical description must be 
replaced by a deterministic version. Steps in this direction have been taken by Mori et al., Mimura 
et al., and Yamauchi et al.38–40, for very high-performance x-ray mirrors. They have reported very 
accurate profile measurements of highly polished mirrors which they have correlated with image 
quality measurements made using the 1-km beam line at SPring-8. Unfortunately, the discussion of 
this interesting and important work lies outside the scope of the present chapter.

8.9 RETROSPECT AND PROSPECT

This chapter outlines methods for understanding the performance of mirror surfaces in terms of 
statistical models of their surface topography. We illustrate this making use of simple models that 
exhibit an inverse-power-law fall off at high spatial frequencies. Obvious follow-on steps are to 
expand the database, to relate residual roughness to finishing methods, to explore different and 
composite models, and examine measurement errors and instrumental effects in metrology.41–44

It is pointed out that the utility of certain statistical parameters may be limited by broad confi-
dence limits. This suggests that a deterministic approach may be desirable for demanding applica-
tions, especially involving one-of-a-kind surfaces. Even so, the statistical approach provides deep 
insight into the physics involved, offers a pre-screening methodology, and will remain the lingua 
franca of this wide and diverse field in the future.
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9.1 GLOSSARY

A transversal area

C correlation function

c speed of light

D diffusion constant

D degree of polarization

E field amplitude

e polarization direction

F scattering form amplitude

f forward-scattering amplitude

G pair correlation function

g asymmetry parameter

I field intensity

I Stokes vector

J diffuse flux

k wave vector

KB Boltzman constant

KK–M effective absorption coefficient

la absorption length

ls scattering length

l transport mean free path

N number of particles

n refractive index

P scattering phase function

q scattering wavevector

9.1
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r, R vector position

S static structure factor

S scattering potential

s specific direction

SK–M effective scattering coefficient

T absolute temperature

t time

Tab transmission coefficient

U diffuse energy density

V volume

v volume fraction

dielectric constant

shear viscosity

scattering angle

wavelength of light

a absorption coefficient

s scattering coefficient

number density

scattering cross-section

frequency

solid angle

9.2 INTRODUCTION

Electromagnetic radiation impinging on matter induces oscillating charges that can be further 
regarded as secondary sources of radiation. The morphological details and the microscopical struc-
ture of the probed medium determine the frequency, intensity, and polarization properties of this 
re-emitted (scattered) radiation. This constitutes the basis of a long history of applications of light 
scattering as a characterization tool in biology, colloid chemistry, solid state physics, and so on.

A substantial body of applications deals with light scattering by particles. These smaller or larger 
ensembles of molecules have practical implications in many industries where they are being formed, 
transformed, or manipulated. Since the early works of Tyndall and Lord Rayleigh,1 the study of light 
scattering by molecules and small particles has been consistently in the attention of many inves-
tigators. Classical reviews of the field are the books by van de Hulst,2 Kerker,3 Bayvel and Jones,4

Bohren and Huffman;5 we also note the recent survey of techniques and theoretical treatments by 
Jones.6 Why and how the light is scattered by small particles has already been described in Chap. 7, 
“Scattering by Particles,” by Craig F. Bohren in this volume. Discussions on subjects related to light 
scattering can also be found in chapters like Chap. 5, “Coherence Theory,” by William H. Carter and 
Chap. 12, “Polarization,” by Jean M. Bennett.

For the topic of this chapter, light scattering by individual particles constitutes the building block 
of more complicated physical situations. When the three-dimensional extent of the medium that 
scatters the light is much larger than the typical size of a local inhomogeneity (scattering center), 
the physical process of wave interaction with matter can be classified as volume scattering. In this 
regime, the measured radiation originates from many different locations dispersed throughout the 
volume. Depending upon the structural characteristics of the medium, various scattering centers 
can act as secondary, independent sources of radiation (incoherent scattering) or they can partially 
add their contributions in a collective manner (coherent scattering). Another situation of inter-
est happens when, for highly disordered systems, light is scattered successively at many locations 
throughout the volume (multiple scattering). All these three aspects of volume scattering will be 
discussed in this chapter.
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In practice, particles very rarely exist singly and, depending on the illuminated volume or the 
volume seen by the detection system, scattering by a large number of particles needs to be consid-
ered. The simplest situation is that of incoherent scattering. When the fields scattered by different 
centers are completely independent, the measured intensity results from an intensity-based summa-
tion of all individual contributions. The ensemble of particles is described by temporal and spatial 
statistics which does not show up in scattering experiments; one can say that the volume scattering 
does not resolve the spatial arrangement of scattering centers.

When the scattering centers are sufficiently close, the phases of wavelets originating from indi-
vidual scattering centers are not independent. This is the case of collective or coherent scattering.
One faces the problem of expanding the scattering theories to ensembles of particles that can have 
certain degree of spatial or temporal correlations. A transition sets in from independent to coherent 
scattering regime. The situation is common for gels or composites which scatter light due to local 
inhomogeneities of the refractive index with length scales of the order of wavelength and where spa-
tial correlations between the scattering centers are encountered. This is the basis of one of the most 
successful application of volume scattering: the observation of structural characteristics of inhomo-
geneous systems.

In the case of highly disordered systems, the light propagation can be subject of scattering at 
many different locations within the probed volume and a multiple-scattering regime sets in. For a 
long time, the intensity and phase fluctuations determined by multiple light scattering were regarded 
as optical “noise” that degrades the radiation by altering its coherence, broadening the beam, and 
decreasing its intensity. Experimentalists were trying to avoid it as much as possible and the devel-
opment of comprehensive theories was not sufficiently motivated. Over the last two decades, how-
ever, remarkable advances in fundamental understanding and experimental methodologies proved 
that multiple scattering of waves is a source for unexplored physics leading to essentially new appli-
cations. New phenomena have been discovered and a series of experimental techniques have been 
implemented using particular coherent, polarization, temporal, and spectral properties of multiple 
scattered light. This revival of interest has been stimulated by the use of highly coherent sources in 
remote sensing and, especially, by considerable advances in solid-state physics. Many features of 
multiple scattered light are common to other classical waves like sound, heat, or microwaves but 
several analogies with electron transport phenomena have been at the core of this renewed interest 
in the propagation of optical waves in random systems.7

There is also another situation, which is often encountered in optics, when waves propagate 
through media with abrupt changes in their optical properties. Waves passing through inhomoge-
neous media with defined boundaries usually suffer surface scattering. In principle, scattering at 
rough surfaces can be considered as a limiting case of wave propagation and it is significant in vari-
ous practical situations; this topic has been separately discussed in Chap. 8, “Surface Scattering,’’ by 
Eugene L. Church and Peter Z. Takacs in this volume.

9.3  GENERAL THEORY OF SCATTERING

The schematic of a typical scattering experiment is depicted in Fig. 1, where a plane wave E0 with 
the wavevector k c= /  is incident on a spatially random medium occupying a finite volume V . Light 
is scattered by local inhomogeneities of the dielectric constant ( )r  and a basic theory of scattering 
aims at providing the link between the experimentally accessible intensity Is s( ) | ( )|R E R= 2 and the 
microscopic structure of the random medium.

The starting point of the theory is to describe the total electric field E(r) as a summation of the 
incoming and scattered fields and to consider that it satisfies the equation ( ) ( ) ( ) ( )2 2 = 4k E r r E rS ,
where S(r) represents a generic scattering potential. This equation can be converted into an integral 
one and, for R sufficiently far from the scattering volume where the associated Green function sim-
plifies, one eventually obtains the general result3,8
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This expression represents the scattered field as an outgoing spherical wave that depends on the 
direction and magnitude of the total field inside the scattering volume V.

Approximate solutions can be obtained for the case of weak fluctuations of the dielectric con-
stant. One can expand the field E r E r E r E r( ) ( ) ( ) ( )= ...0

1 2  in terms of increasing orders of the 
scattering potential and use successive approximations of E(r) in Eq. (1) to obtain the so-called 
Born series. In the spirit of a first iteration, one replaces E(r) with E0(r) and obtains the first Born 
approximation that describes the regime of single scattering.

Alternatively, one can write E r r( ) [ ( ]=exp )  and develop the series solution for ( )r  in terms 
of increasing orders of the scattering potential. This is the Rytov’s series of exponential approxima-
tions, an alternative to the algebraic series representation of the Born method. The two approaches 
are almost equivalent, however, preference is sometimes given to Rytov’s method because an expo-
nential representation is believed to be more appropriate to describe waves in line-of-sight propaga-
tion problems.9–11

It is worth pointing out here that Eq. (1) can be regarded as an integral equation for the total field 
and, because the total field is a superposition of the incident field and contributions originating from 
scattering from all volume V, this generic equation includes all possible multiple scattering effects.8,12

9.4 SINGLE SCATTERING

Incoherent Scattering

When a sparse distribution of scattering centers is contained in the volume V, all the scattering 
centers are practically exposed only to the incident field, E r E r e k r( ) ( )= =0 0 0E ei  where E0 is the field 
magnitude, e0 is the polarization direction, and k is the wave vector. A considerable simplification is 
introduced when the magnitude of the scattered field is much smaller than that of the incident field, 
such that the total field inside the medium can be everywhere approximated with the incident field. 
This is the condition of the first Born approximation for tenuous media that practically neglects 
multiple scattering effects inside the scattering volume V. From Eq. (1), it follows that
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FIGURE 1 Schematic representation of the incident k and scattered 
ks beams in a generic scattering experiment.
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For instance, in the case of a system of N identical particles, Eq. (2) is evaluated to give 

E R r e
k r

s

ikR

j

N
i s j

Vj

sE
e
R

k
e d( ) [ (

( )
=

4
0

2

=1

( ) ) ]r e k r
1 0 e

i s (3)

where Vj is the volume of the jth particle located at rj . In terms of the scattering wavevector 
q k k= s , the integral in Eq. (3) has the meaning of single-scattering amplitude of the jth particle, 
F f B( ) | | (q q= ), and depends on the forward scattering amplitude f and a scattering amplitude nor-
malized such that B( )0 =1. As explained in Chap. 7 in this volume, the ratio between the refractive 
index of the particles np and of the suspending medium ns determine the scattering strength f of an 
individual scatterer while its shape and size are accounted for in B(q).

For a collection of discrete scattering centers the total scattered intensity of Eq. (3) factorizes like:13
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where we separated the single-scattering form factor P(q) from the interference function or the 
static structure factor S ei j

N i i j(q
q r r

)
( )

= , =1 . The structure factor quantifies the phase-dependent 
contributions due to different locations of scattering centers. When an ensemble average is taken 
over the volume V and after separating out the diagonal terms, the static structure factor can be 
written as13,14

S e G e d
i i ij( ) ( )

( )
q r r

q r q rr
=1 =1 (5)

in terms of the pair-correlation function G(r) (where r is the vectorial distance between two par-
ticles), describing the statistical properties of the spatial arrangement of scattering centers. It is 
through S(q) that the link is made between the statistical mechanics description of the inhomogene-
ities and the measurable quantities in a scattering experiment.

As can be seen from Eq. (5), for the case of particles separated by distances much larger than the 
wavelength, S(q) becomes unity; the situation corresponds to G(r) 1, i.e., constant probability to 
find scattering centers anywhere in the scattering volume. This regime characterized by S( )q =1 is 
also called the incoherent case of volume scattering where I(q) is a simple, intensity-based summa-
tion of individual contributions originating from different scattering centers.

Coherent Scattering

For higher volume fractions of particles, the pair-correlation function depends on both the particle 
size and their concentration. The estimation of the pair-correlation functions—and, therefore, the 
evaluation of an explicit form for the structure factor—is a subject of highest interest and is usually 
approached through various approximations.15

Typical structure factors are shown in Fig. 2 for increasing volume fractions of spherical particles 
with radius r0. These results are based on the Percus-Yevick approximation,16,17 which has the advan-
tage of being available in a closed mathematical form but the trend shown in Fig. 2 is rather general. 
Note that the strength of the interparticle interactions is practically measured by the magnitude of 
the first peak in S(q).13,14

In general, wave-scattering experiments can be used to infer the pair-correlation function of the 
scattering centers in a random medium and, meanwhile, the characteristic of an individual scat-
tering event. In an ideal experiment where one has access to all the values of I(q) and the single-
scattering phase function P(q) is known, Eq. (3) can be inverted by standard methods.17,18

Capitalizing on conventional types of single-scattering form factors, various inversion schemes have 
been implemented to extract the structure factor from the values of angular-resolved intensity.19
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Convergence and stability in the presence of noise are the major requirements for a successful inver-
sion procedure and a subsequent Fourier analysis to provide a description of the pair-correlation 
function. Of course, for systems of nonspherical particles or when the system exhibits structural 
anisotropies, a fully vectorial inverse problem needs to be approached.

The factorization approximation of Eq. (4) has found numerous applications in optical-
scattering experiments for characterization of colloidal, polymeric, and complex micellar systems. 
Numerous static and dynamic techniques were designed to probe the systems at different length and 
time scales. For example, reaction kinetics or different phase transitions have been followed on the 
basis of angular and/or temporal dependence of the scattered intensity.19 Another significant body 
of applications deals with light-scattering studies of aggregation phenomena.20–22

We should not conclude this section without mentioning here the similarities between volume 
light scattering and other scattering-based procedures such as x-ray and neutron scattering. Of 
course, the “scattering potentials’’ and the corresponding length scales are different in these cases 
but the collective scattering effects can be treated in a similar manner. From a practical viewpoint, 
however, light scattering has the appealing features of being noninvasive and, most of the time, 
easier to implement.

The average power scattered by a single particle is usually evaluated using the physical concept 
of total scattering cross-section = ( )4

0
2k P q qdqk .2,3,18 For a system with a number density = N V/

of scattering centers, the regime of scattering is characterized by a scattering length ls =1/ .
When the extent over which the wave encounters scattering centers is less than this characteris-
tic scattering length ls, we deal with the classical single-scattering regime. Note that the system of 
particles can be in the single-scattering regime and exhibit both independent or collective scat-
tering. From the general theory of scattering it follows that the details of the scattering-form fac-
tor depend on the size of scattering particle compared to the wavelength. The deviation of the 
scattering-form factor from an isotropic character is characterized by the asymmetry parameter 
g q k= ( ) =1 2 22 2cos /( ) , where q k p q q dqk2 2 3= ( )0

2 .2,18

As we have seen in the preceding section, when the particles are closely packed the scattering 
centers are not independent, i.e., they are sufficiently close that the fields scattered by different cen-
ters are partially in phase, collective scattering is considered through the static structure factor S(q). 
The effect of wave coupling to an individual particle can therefore be isolated from the statistical 
mechanics description of the particle locations in the volume. In this regime, one can consider the 
dispersion of correlated particles as a collection of pseudo-scattering centers, equivalent particles,
that are characterized by a modified single-scattering form factor P(q)S(q). There is no interaction 

FIGURE 2 Typical structure factors corresponding to sys-
tems of identical spherical particles with increasing volume frac-
tions as indicated. The horizontal line at S(q) 1 corresponds to 
the independent scattering approximation.
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between these fictitious particles and a corresponding single-scattering phase function can also be 
defined to be: 
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The asymmetry parameter of these pseudo-particles can be written as 
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The equivalent-particle concept is illustrated in Fig. 3, where both the phase function and asym-
metry parameters are presented for the specific case of silica particles suspended in water. This sim-
plifying representation of coherent scattering effects is useful to further interpret complex, multiple 
scattering phenomena.

Dynamic Scattering

So far, we limited the discussion to the case where the scattering potential varies across the volume V
but, at a certain location, it remains constant in time. However, many physical systems are such that 
the volume distribution of scattering centers fluctuates in time and, therefore, gives rise to temporal 
fluctuations of the scattered radiation, i.e., to dynamic scattering. A complete analysis of light scat-
tering involves the autocorrelation function of the dielectric constant fluctuations ( ) ( )r r, ,0 , t
that manifests itself in the statistics of the temporal fluctuations of the measured light intensity. 
Evaluation of such correlation functions requires knowledge of the transport properties of the 
volume medium and is based on statistical mechanics and many-body theory. In spite of the rather 
complex phenomenology, different photon correlation techniques have been successfully imple-
mented in studies of reacting systems, molecular dynamics, or atmospheric scintillations.
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FIGURE 3 (a) Single scattering form factor P(q) corresponding to silica particles of 0.476 m placed in 
water and illuminated with 0.633 m and the form factor P(q) of an equivalent particle corresponding to 
a collection of such particles at the volume fraction  0.5. (b) Values of the asymmetry parameter for one 
silica particle and for a colection of of particles with an increasing volume fraction as indicated.
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The benchmarks of the dynamic light scattering have been set in the seventies.23,24 An interest-
ing and useful particularity stems from the fact that, based on dynamic scattering, one can actu-
ally measure mechanical properties in the scattering volume without knowledge of the refractive 
index. Random motion of scattering centers induces small Doppler frequency shifts which, in turn, 
produce an overall broadening of the incident spectrum of light. The detection methods for such 
spectral changes depend primarily on the time scales of interest and range from high-resolution 
spectroscopy for very fast phenomena to various mixing or beating techniques for processes slower 
than about 1 ms.

Based on comparing the scattering signal with itself at increasing time intervals, photon correla-
tion spectroscopy (PCS) has emerged as a successful technique for the study of volume distributions 
of small particles suspended in fluids.25 Practically, one deals with the time-dependent fluctuations of 
the speckle pattern and the goal is to determine the temporal autocorrelation function E E t(0) ( ) ,
which probes the microscopic dynamics. For instance, in the simple case of a monodisperse and 
noninteracting system of brownian particles, E E t(0) ( )  is a single exponential that depends on 
the diffusion constant D k T rB= 6 0/ . Knowing the absolute temperature T and the shear viscosity 

 of the solvent, one can infer the particle radius r0. Similar to the case of static scattering discussed 
previously, refinements can be added to the analysis to account for possible dynamic structuring, 
polydispersivity as well as asphericity effects.19,23,26

9.5 MULTIPLE SCATTERING

When optical waves propagate through media with random distributions of the dielectric constant 
or when they encounter extended regions containing discrete scatterers or random continuum, one 
needs to solve a wave equation in the presence of large number of scattering centers; this is a diffi-
cult task and, as we will discuss, a series of simplifying approaches have been proposed. A survey of 
multiple scattering applications is presented by van de Hulst.27

Effective-Medium Representation

Some physical insight is given by a simple model, which describes the wave attenuation due to 
scattering and absorption in terms of an effective dielectric constant. Without explicitly involving 
multiple scattering, one considers the wave propagation through an homogeneous effective-medium
which is defined in terms of averaged quantities. The effective permittivity eff  is calculated by 
simply considering the medium as a distribution of spheres with permittivity  embedded in a 
continuum background of permittivity 0. If a wave with the wavelength much larger than the char-
acteristic length scales (size of inhomogeneity and mean separation distance) propagates through a 
volume random medium, the attenuation due to scattering can be neglected; therefore, a frequency-
independent dielectric constant will appropriately describe the medium. Based on an induced 
dipoles model, the Maxwell-Garnett mixing formula relates the effective permittivity to the volume 
fraction v of spheres eff /= 1 2 1( ) ( )va va , where a = 20 0( ) ( )/ .28

In recent developments, the wave propagation through highly scattering media has been 
described by including multiple scattering interactions in a mean-field approach. This is sim-
ply done by considering that the energy density is uniform when averaged over the correlation 
length of the microstructure.29 Through this effective medium, a “coherent’’ beam propagates 
with a propagation constant that includes the attenuation due to both absorption and scattering. 
In general, the propagation of the coherent beam is characterized by a complex index of refrac-
tion associated with the effective medium and a nontrivial dispersion law can be determined by 
resonant scattering.30 It is worth mentioning that, in the long-wavelength limit, the attenuation 
due to scattering is negligible and the classical mixture formula for the effective permittivity 
applies.
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Analytical Theory of Multiple Scattering

A rigorous description of multiple light-scattering phenomena can be made if statistical consider-
ations are introduced for quantities such as variances and correlation functions for ( )r  and general 
wave equations are subsequently produced. The advantage of an analytical theory is that the general 
formulation does not require a priori assumptions about the strength of individual scattering events 
nor about the packing fraction of scattering centers. The drawback, however, is that, in order to deal 
with the complexity of the problem, one needs to use quite involved approximations and, some-
times, rather formal representations.

Multiple Scattering Equations As shown in Fig. 4, when the field E0 is incident on a random distri-
bution of N scattering centers located at r r r1 2, , . . . , N  throughout the scattering volume V, the total 
field at one particular location inside V is the sum of the incident wave and the contributions from 
all the other particles 

E =E E0

=1j

N

j (8)

the field scattered from the jth particle depends on the effective field incident on this particle and its 
characteristics (scattering potential) Sj

E E Ej j j
i i j

N

i
s= 0

=1,

S (9)

It follows from Eqs. (8) and (9) that the total field can be formally written as 
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FIGURE 4 The field at r is a summation of the incident filed E0

and contributions Ej from all other scattering centers; in turn, the effec-
tive field on each particle consists of an incident contribution E0

j and 
contributions  Es

i from all other scattering centers.
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which is a series of contributions from the incident field, single scattering, and increasing orders 
of multiple scattering.18 In principle, knowing the scattering characteristics Sj of individual cen-
ters (this includes strength and location), one can develop the analytical approach by involving 
chains of successive scattering paths. From the summations in Eq. (10), by neglecting the scatter-
ing contributions that contain a scatterer more than once, Twersky has developed an expanded 
representation of multiple scattering which is practical only for cases of low-order scattering.31

Approximations of Multiple Scattering Rigorous derivation of multiple scattering equations using 
the Green’s function associated with the multiple-scattering process and a system-transfer-operator 
approach (the T-matrix formalism) can be found in.32–34 However, in many cases of practical inter-
est, a very large number of scattering centers needs to be involved and it is impossible to obtain 
accurate descriptions for either the T-matrix or the Green’s function.

When large ensembles of scatterers are involved, a statistical description of the multiple scatter-
ing equations is appropriate. Probability density functions for finding scattering centers at different 
locations are determined by radial distribution function in a similar way as discussed in the context 
of correlated scattering. This expresses both the constraint on the particle locations and the fact that 
they are impenetrable. By using configuration-averaging procedures, self-consistent integral equa-
tions can be obtained for the average and fluctuating parts of the field produced through multiple 
scattering. When such a procedure is applied to Eq. (10), 

E =E E r r E r r r0 0 0S S Sj j j j i j i i jG d G G d( ) ( ) ( ) ii jdr . . . (11)

a hierarchy of integral equations is generated and successive approximations are obtained by trun-
cating the series at different stages. In fact, this expanded form has a more physically understandable 
representation in terms of the average field E j  at the location of a generic particle j:

E E E r r= 0 S j j j jG d( ) (12)

Foldy was the first to introduce the concept of configurational averaging and used the joint 
probability distribution for the existence of a given configuration of scattering centers to average the 
resulting wave over all possible configurations.35 However, Foldy’s approximation is appropriate for 
wave propagation in sparse media with a small fractional volume of scatterers.

A comprehensive discussion on multiple scattering equations and various approaximations can 
be found in Tsang’s book34 including the quasi-crystalline approximation36 and coherent potential37

approximations.

Radiative Transfer

The drawback of an analytical theory of multiple scattering is that it is too complicated; for systems 
with volume disorder often encountered in realistic situations, the scattering phenomena depends 
essentially on the ratio between the characteristic length scales of the system and the radiation wave-
length. A statistical description in terms of such characteristic scattering lengths is usually sufficient. 
In general, the particular location, orientation, and size of a scattering center is irrelevant and the 
underlying wave character seems to be washed out. Because energy is transported through mul-
tiple scattering processes, what matters is only the energy balance. Of course, this approach cannot 
account for subtle interference and correlation effects but refinements can be developed on the basis 
of a microscopic interpretation of radiative transfer.38

A comprehensive mathematical description of the nonstationary radiative transport is given by 
both Chandrasekhar39 and Ishimaru.18 The net effect of monochromatic radiation flow through a 
medium with a density  of scattering centers is expressed in terms of a modified Stokes vector 

I( ) [r s, , = ,1 1 2 2 1 1 2 2t E E E E E E E E , ,1 2 1 2Re E E Im E E T{ } { }]
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This quantity is a vectorial equivalent to the radiance where each element can be defined as the 
amount of energy in a given state that, at the position r, flows per second and per unit area in the 
direction s. When radiation propagates over the distance ds, there is a loss of specific intensity due 
to both scattering and absorption d dsI I= sc abs . In the mean time, there is a gain of specific 
intensity due to scattering from a generic direction s' into the direction s quantified by the tensoral 
scattering phase function (Mueller matrix) P(s', s). Also, there could be an increase, (r, s, t), of spe-
cific intensity due to emission within the volume of interest and the net loss-gain balance which is 
illustrated in Fig. 5, and represents the nonstationary radiative transfer equation:18

1
, =

c sl t
ts r s( ) ( )sc abs sI , cc P t d t( )( ) ( )s s r s r s, , , , , (13)

No analytical solution exists for the transfer equation and, in order to solve specific problems, 
one needs to assume functional forms for both the phase function and the specific intensity. Various 
methods have been used to approach the transient scalar RTE.40–43 Cheung and Ishimaru44 and Kim 
et al.45 approached the steady state vector RTE using a Fourier analysis. Vaillon et al.46 used a vector 
Monte Carlo method to analyze the radiative transfer in a particle-laden semitransparent medium. 
Jiang et al. presented a model for the atmospheric radiative transfer with polarization for remote-
sensing applications.47 Ma and Ishimaru used an eigenvalue-eigenfunction technique to solve 
numerically the vector radiative transfer equation.48 To solve the problem of polarized pulse propa-
gation in random media, Ishimaru et al.49 used the discrete-ordinates method by expanding the 
Stokes vector in a Fourier series. Successive orders of approximation are obtained by spherical har-
monic expansion of the specific intensity; for instance, the so-called P1 approximation is obtained 
when the diffuse radiance is expressed as a linear combination of an isotropic radiance and a second 
term modulated by a cosine.18

Diffusion Approximation Perhaps one of the most widely used treatment for multiple light scat-
tering is the diffusion approach. When (i) absorption is small compared to scattering, (ii) scat-
tering is almost isotropic, and (iii) the radiance is not needed close to the source or boundaries 

FIGURE 5 Loss-gain balance in a differential volume element; the incident radiance is 
attenuated by both absorption inside and scattering out of the volume element but it can be 
increased by ambient scattering and emission within the volume.
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then the diffusion theory can be used as an approximation following from the general radiative 
transfer theory. To get insight into the physical meaning of this approximation it is convenient to 
define quantities that are directly measurable such as the diffuse energy density (average radiance) 
U t t d( ) ( )r r s, = , ,4 0I  and the diffuse flux J r r s s( ) ( ), = , ,4t t dI . In the diffusion approxima-
tion, the diffuse radiance is approximated by the first two terms of a Taylor’s expansion:8,50

I0 , , ,
3

4
,( ) ( ) ( )r s r J r st U t t (14)

and the following differential equation can be written for the average radiance 

D U t U t
U t
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S ta
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( )r r
r

r (15)

The isotropic source density is denoted by S(r, t) and D is the diffusion coefficient which is defined 
in units of length as 

D
ga s

=
1

3 1[ ( )]
(16)

in terms of the absorption a and s scattering coefficients. The diffusion equation is solved subject 
to boundary conditions and source specifics; most appealing is the fact that analytical solutions can 
be obtained for reflectance and transmittance calculations.

Because the phase function is characterized by a single anisotropy factor, the diffusion approxi-
mation provides mathematical convenience. Through renormalization, an asymmetry-corrected 
scattering cross-section that depends only on the average cosine of scattering angle defines the diffu-
sion coefficient in Eq. (16) and, therefore, an essentially anisotropic propagation problem is mapped 
into an almost isotropic (diffusive) model.

The photon migration approach based on the diffusion approximation has been very success-
ful in describing the interaction between light and complex fluids51 or biological tissues.52,53 It is 
instructive to note that three length scales characterize the light propagation in this regime: the 
absorption length la a= 1 which is the distance traveled by a photon before it is absorbed, the scat-
tering length ls s= 1 which is the average distance between successive scattering events, and the 
transport mean free path l l gs= 1/( ) that defines the distance traveled before the direction of prop-
agation is randomized. In experiments that are interpreted in the frame of the diffusion approxima-
tion, l  is the only observable quantity and, therefore, the spatial and temporal resolution are limited 
by l  and l c, respectively.

Under appropriate boundary conditions, such as a mixed boundary condition in which the dif-
fuse energy density vanishes linearly on a plane, the steady state diffusion equation can be solved 
and the photon flux is obtained from Fick’s law.54 Assuming an average energy transport velocity, 
the path length dependence of the energy flux can be evaulated yielding a path length probability 
distribution, p(s), which can be regarded as the probability distribution of optical path lengths that 
correspond to waves that have traveled through the medium along closed loops and have also accu-
mulated a total momentum transfer equal to 4 / .

Low-Order Flux Models for Radiative Transfer In an effort to describe the optical properties of 
highly scattering materials while reducing the computational difficulties, simplifying flux models
have been designed for the radiative energy transport. A volume scattering medium consisting of a 
collection of scattering centers is described as homogeneous material characterized by effective scat-
tering and absorption properties that are determined by its internal structure.

In this approach, the fundamental equation of radiative transfer is based on the balance between the 
net flux change, the flux input, and flux continuing out in an infinitesimal volume. Assuming two dif-
fusing components, a one-dimensional model based on plane symmetry for unit cross-section has been 
initially proposed by Schuster.55 One of the most successful extensions of this model is the so-called 
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Kubelka-Munk theory56 which relates the phenomenological, effective scattering SK M and absorption 
K K M coefficients to measurable optical properties such as diffuse reflectance or transmittance.

The two-flux model, Kubelka-Munk theory, is schematically illustrated in Fig. 6. Diffuse radia-
tion is assumed to be incident on the slab; the diffuse radiant flux in the positive x direction is J
while the one returning as a result of scattering is J . The net flux balance at a distance x across an 
infinitesimal layer of thickness dx is 

d K S dx s dx

d K S

K M K M

K M K M

J J J

J J

=

=

( )

( ) dx s dxJ
(17)

where the coefficient K K M determines the flux attenuation due to absorption while SK M accounts 
for the net flux scattered between forward and backward directions. The solution of the simultane-
ous differential equations of the first order in one dimension is obtained by applying the boundary 
conditions for the layer shown in Fig. 6. The diffuse reflectance of the substrate at x d can also be 
accounted for and expressions for the total diffuse reflection and transmission are found for a specific 
application. In practical applications of the Kubelka-Munk theory, the effective scattering and absorp-
tion parameters are inferred by iteration from measurements of diffuse reflectance or transmission.

A considerable body of work was dedicated to relate the Kubelka-Munk parameters to microstruc-
ture and to incorporate both the single- and multiple-scattering effects. Refinements and higher-order 
flux models have also been developed. A more accurate model that accounts for the usual condition 
of collimated incident radiation was elaborated by J. Reichman.57 A four-flux model has been devel-
oped that includes certain anisotropy of the scattered radiation.58 A six-flux model was implemented 
to incorporate the effect of particle shape and interparticles correlation.59 In spite of the fact that it is 
based on empirical determination of coefficients and that its range of applicability is rather unclear, 
the simple-to-implement Kubelka-Munk theory makes reasonably good description of experiments 
and has found applications in areas such as coatings, paper, paints, pigments, medical physics, and 
atmospheric physics.

Specific Effects in Multiple Light Scattering

The effects associated with light propagation through multiple scattering media depend on the scale 
of observation. An interesting analogy exists between optical and electron waves propagation in 
mesoscopic systems and, based on recent developments in solid state physics, useful insights have 

FIGURE 6 The two-flux approximation applied to radiative transfer 
through a diffusive layer.
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been provided for a range of multiple scattering phenomena.7,60 It is clear now that multiple light 
scattering in volume disorder does not merely scramble a coherent incident wave. In fact, the appar-
ent randomness of the scattered field conceals intriguing and sometimes counter intuitive effects 
such as the enhancement of the backscattered intensity and a range of correlations and statistics of 
vector waves.

Weak Localization Until recently, the coherent light propagating through random media has been 
considered to be somehow degraded, losing its coherence properties. However, recent experiments 
have brought evidence of the enhanced backscattering of light due to interference between the 
waves taking time-reversed paths,61 an effect which is associated with the more general phenomenon 
for the weak localization of waves in random media.62,63 First found in solid state physics more than 
30 years ago, this phenomenon is applicable to all classical waves. Surveys of the state of the art in 
the optical counterpart of weak localization can be found in Refs. 64 and 65.

When coherent light is scattered by a medium with volume randomness, interference effects 
between the scattered waves which traveled through the medium along different paths occur. The 
result is a random pattern of interference called laser speckle. Because the correlations in this granu-
lar pattern extend over angular scales of typically 10 3 rad or less, when the individual scatterers are 
allowed to move over distances of the order of the wavelength or more, the distribution of intensities 
in the speckle pattern is rapidly averaged out and becomes essentially flat. So far, however, it is well 
understood and widely recognized that one kind of interference still survives in this average. This is 
the interference of the waves emerging from the medium in directions close to exact backscattering 
and which have traveled along the same path but in opposite directions.

The pairs of time-reversed light paths have some particularities which can be easily understood 
in the general context of the waves scattered by random media. In Fig. 7, the main contributions to 
scattering from a dense distribution of scatterers are presented together with their angular depen-
dence. In the narrow angle of interest, the single scattering I(s) and the ladder term of multiple scat-
tering I (ml) are practically constant. The third, cyclical term I(mc), however, corresponds to the paired 
(or coherent) scattering channels and, being an interference term, has a definite angular structure. 

FIGURE 7 A schematic illustration of the origin of coherent backscattering. 
The classical contributions to backscattering are I(s) and I(ml); in addition, constructive 
interference occurs between reversed multiple scattering paths that have the same inci-
dent wave vector ki and exit wave vector ki.
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The existence of such a cyclical term (an idea originated from Watson66) is based on the fact that 
each scattering channel, involving a multitude of scattering centers, has its own coherent channel 
corresponding to the same sequence of scattering centers but time reversed. In the backward direc-
tion, the contribution of I(mc) equals that of I(ml) but its magnitude vanishes quickly away from this 
direction.

The angular profile of I(mc) can be qualitatively described by taking into account the interference 
between two light paths as shown in Fig. 7. The two time reversed paths have the same initial and 
final wave vectors, ki and kf , and develop inside the medium through the same scattering centers. 
Under stationary conditions, the two outgoing waves corresponding to these paths are coher-
ent and can interfere constructively for a special choice of ki and kf . If the positions of the first 
and the last scatterer in the sequence are ri and rf , respectively, the total phase shift between the 
two waves is q(ri rf), where q is the momentum transfer ki kf . Close to the backward direction 
(kf ki), the two waves add coherently and the interference may be described by a weighting factor 
cos[( )( )]k k r ri f i f , which is controlled by the interparticle distance | |r ri f . One can say that the 
coherence between the time-reversed sequences is lost for angles > /| |r ri f  and this actually sets 
the angular width of the cyclical term I (mc). The detailed angular profile of I (mc) is determined by the 
probability distribution function for | |r ri f  and, based on a diffusive model for light propagation in 
a semi-infinite medium, an approximate formula was given in Ref. 67:

I e qlql( ) 3.4= 1 3.4mc /[ ] (18)

It should be noted that the intensities which contribute to classical backscattering, i.e., I(s) and 
I(ml), correspond to incoherent channels of scattering, they add up on an intensity basis and, upon 
ensemble average, all angular dependences are washed out as seen in Fig. 7. As can be seen from 
Eq. (18), the angular shape of the coherent backscattering peak can be used to measure l  for a spe-
cific multiple scattering medium.

Correlations in Speckle Patterns One of the significant discoveries in mesoscopic physics is the 
phenomenon of conductance fluctuations which arises from correlations between the transmission 
probabilities for different output and input modes. In multiple light scattering, the same phenom-
enon shows up in the form of correlations between the intensities of light transmitted in different 
directions such as the case schematically depicted in Fig. 8. A nice feature of the optical scatter-
ing is that in contrast with electronic conductance experiments, one has access to both angular 

FIGURE 8 Scattering geometry containing two different wave trajectories.
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dependence and angular integration of transmittance. A rich assortment of correlation functions 
of the different transmission quantities can be studied and their magnitudes, decay rates, etc., 
open up novel possibilities for multiple light scattering-based characterization and tomographic 
techniques.68,69 These measurements exploit the spatial, spectral, and temporal resolution accessible 
in optical experiments.70

In a medium with volume disorder, optical waves can be thought to propagate through channels
(propagating eigenmodes) defined angularly by one coherence area having the size of a speckle spot. 
The energy is coupled in and out of the medium through a number of 2 A/ 2 such channels where 
A is the transversal size of the medium. The transmission coefficient Tab of one channel is defined 
as the ratio between the transmitted intensity in mode b and the incident intensity in mode a at a 
fixed optical frequency . An average transmission through the medium Tab

 can be evaluated by 
ensemble averaging over different realizations of disorder and, for purely elastic scattering, it can be 
shown that Tab l L/ . The motion of scatterers, the frequency shift of the incident wave, and the 
variation of angle of incidence and/or detection, introduce phase shifts (momentum differences) in 
different propagating channels. Surprising and novel features are found when one studies carefully 
how various Tab  channels are correlated with one another. A general function C T Taba b ab a b=  can 
be designed to evaluate the correlation between changes in the transmission coefficients T Tab ab=
Tab  and, to the lowest order in the disorder parameter 1/kl, it can be shown to be a summation of 

three different terms.71 The first term C1, short-range correlations, represents the large local intensity 
fluctuations specific to speckle patterns and exhibits an angular memory effect: when the incident 
beam is tilted by a small angle, the transmitted speckle pattern will, in average, follow provided 
that the tilt angle is not too large.72,73 The second term C2, long-range correlations, arises from paths 
that cross at a certain scattering site; it is smaller than C1  by a factor 1/ Tab and decays very slowly 
with the momentum difference.74 Finally, a uniform positive correlation which is independent of 
momentum differences is included in C3, conductance correlations, and it is determined by the less 
probable case of two crossings in propagation channels. This small correlation term (of the order 
of 1 2/ ( )Tab ) causes just a shift in background, i.e., the spatially averaged intensity in each speckle 
pattern is always a little darker or brighter than the total intensity averaged over many disorder real-
izations in the sample. These fluctuations do not decrease when averaging is done over larger and 
larger spatial regions and they are the optical analogue of the universal conductance fluctuations in 
electronic systems.71,75

Depolarization A common interpretation of multiple scattering effects assumes depolarization of 
the incident field. However, when coherent radiation interacts with scattering media, there is always 
a fixed phase and amplitude relationship between orthogonal electric field components at a given 
frequency at any point in time and space. Of course, these relationships may vary as a function of 
time, spatial coordinate, frequency, and material morphology. If, upon ensemble average, there is no 
correlation between any pair of orthogonal field components, the field is said to be unpolarized. A 
degree of polarization is defined as

D
I I I

I
= 1

2
2
2

3
2

1/2

0

(19)

where Ii are the ensemble averaged Stokes vector elements. This ensemble average can take the 
form of spatial, temporal, or frequency average or can also be the result of averaging over dif-
ferent material realizations.76 For a static medium illuminated by polarized light, depolarization 
occurs when path length differences contributing to a particular point exceed the coherence 
length of the illuminating light. It is interesting to note that the measured degree of polarization 
will be a function of the detection geometry, decreasing with increasing the detector’s size and 
integration time.

Based on symmetry considerations, van de Hulst2 finds the Mueller matrix for single scattering 
on a collection of randomly oriented identical particles each of which has a plane of symmetry to be 
diagonal with P P P22 33 44= . For spheres in exact forward scattering P P22 44= =1. In multiple scattering 
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however, this relation is not true anymore. It is expected that when light of arbitrary incident polar-
ization impinges on an optically thick, multiple scattering medium it emerges diffusely and totally 
depolarized. When increasing the optical density, the transfer matrix evolves toward that of a total 
depolarizer which has all elements equal to zero except for P11. This depolarization process will 
depend on the size parameter of the scattering particles. Owing to a smaller scattering anisotropy 
for the particles with the size parameter close to 1, the total depolarization stage is reached at higher 
optical densities than for larger particles. Two different regimes can be identified in terms of opti-
cal density d/l : (i) a steep decay for low optical densities, which corresponds to the attenuation of 
ballistic photons, and (ii) a slower decay for large optical densities, corresponding to the diffusive 
regime. The effective coefficient of attenuation depends only on the volume fraction of the scatter-
ing medium.

For an arbitrary input state of polarization, the output state of polarization can be obtained from 
I Iout in= P . In the case of a diagonal transfer matrix, the renormalized output Stokes vector is 

I I I Iout = 1 1 22 2 33 3 44P P P
T

(20)

The degree of polarization of the scattered light can be obtained from Eq. (20) using Eq. (19) 
for any input state. The characteristics of the depolarization will depend both on the input state 
of polarization and the dominant scattering regime, exhibiting different behavior in the Mie and 
Rayleigh (ka <<1) regimes. The depolarizing behavior of multiple scattering, as a function of sample 
thickness is exemplified in Fig. 9a and b for linear and circular inputs, respectively. As can be seen, 
for samples 2 and 3 in Fig. 9a and b the slope for linear input is always steeper than for circular 
input, indicating that circularly polarized light is less depolarized than linearly polarized light for 
the same sample thickness.

It is expected that, as soon as the diffusive regime is reached, multiple scattering will completely 
depolarize the incident optical wave. Knowing the complete Mueller matrix, the state of polariza-
tion of scattered light can be estimated for any input state of polarization. A detailed analysis can 
also predict which type of illumination is better preserved while propagating through the scatter-
ing medium. This is particularly important in applications such as long-range target identification 
where one must take into account depolarization effects due to propagation.

0
0.01

0.1P
L

1

50 100

d/I

(a)

150 200 0
0.01

0.1P
C

1

50 100

d/I

(b)

150 200

FIGURE 9 Degree of polarization of output light for (a) linear and (b) circular inputs. Symbols: 
x-Rayleigh scatterer,  and O-Mie particles.
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10.1 GLOSSARY

Aba Einstein coefficient for spontaneous emission

a0 Bohr radius

Bif Einstein coefficient between initial state, |i , and final state, | f
EDC Dirac Coulomb term

Ehf hyperfine energy

En eigenvalue of quantum state n

E(t) electric field at time t

E( ) electric field at frequency 

e charge on the electron

ED electric dipole term

EQ electric quadrupole term

f i| |V matrix element of perturbation V

ga degeneracy of ground level

gb degeneracy of excited level

gN gyromagnetic ratio of nucleus

Hso spin-orbit interaction Hamiltonian

Planck’s constant

I nuclear spin

I(t) emission intensity at time t

j total angular momentum vector given by j l 1
2

li orbital state

MN mass of nucleus N

MD magnetic dipole term

m mass of the electron
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n (T)  equilibrium number of photons in a blackbody cavity radiator at angular frequency 
 and temperature T

QED quantum electrodynamics

R Rydberg constant for an infinitely heavy nucleus

R r
nl
( ) radial wavefunction

s spin quantum number with the value 1
2

si electron spin

T absolute temperature

Wab transition rate in absorption transition between states |a and |b

Wba transition rate in emission transition from state |b to state |a

Z charge on the nucleus

e c2
04/ fine structure constant

0 permittivity of free space

B Bohr magneton

( ) energy density at frequency 

(r) spin-orbit parameter

R radiative lifetime

angular frequency 

natural linewidth of the transition

D Doppler width of transition

k mode k with angular frequency 

Spectroscopic measurements have played a key role in the development of quantum theory. 
This chapter presents a simple description of the quantum basis of spectroscopic phenomena, 
as a prelude to a discussion of the application of spectroscopic principles in atomic, molecular, 
and solid-state physics. A brief survey is presented of the multielectron energy-level structure in 
the three phases of matter and of the selection rules which determine the observation of optical 
spectra. Examples are given of the fine-structure, hyperfine-structure, and spin-orbit splittings in 
the spectra of atoms, molecules, and solids. Solid-state phenomena considered will include color 
center, transition metal, and rare earth ion spectra.

The intrinsic or homogeneous lineshapes of spectra are determined by lifetime effects. Other 
dephasing processes, including rotational and vibrational effects, lead to splitting and broadening 
of spectra. There are also sources of inhomogeneous broadening associated with Doppler effects 
in atomic and molecular spectra and crystal field disorder in solids. Methods of recovering the 
homogeneous lineshape include sub-Doppler laser spectroscopy of atoms, optical hole burning, 
and fluorescence line narrowing.

Finally, the relationship between linewidth and lifetime are discussed and the effects of time-
decay processes outlined. The consequences of measurements in the picosecond and subpicosecond 
regime are described. Examples of vibrational relaxation in molecular and solid-state spectroscopy 
are reviewed.

10.2 INTRODUCTORY COMMENTS

Color has been used to enhance the human environment since the earliest civilizations. Cave artists 
produced spectacular colorations by mixing natural pigments. These same pigments, burned into 
the surfaces of clays to produce color variations in pottery, were also used to tint glass. The explana-
tion of the coloration process in solids followed from Newton’s observation that white light contains 
all the colors of the rainbow,1 the observed color of a solid being complementary to that absorbed 



OPTICAL SPECTROSCOPY AND SPECTROSCOPIC LINESHAPES  10.3

from white light by the solid. Newton measured the wavelength variation of the refractive index of 
solids, which is responsible for dispersion, and his corpuscular theory of light explained the laws 
of reflection and refraction.1 The detailed interpretation of polarization, diffraction, and interfer-
ence followed from the recognition that light was composed of transverse waves, the directions of 
which were related to the direction of the electric field in Maxwell’s electromagnetic theory:2,3 the 
electronic constituents of matter are set into transverse oscillation relative to the propagating light 
beam. Subsequently, Einstein introduced the photon in explaining the photoelectric effect.4 Thus the 
operating principles of optical components in spectrometers, such as light sources, mirrors, lenses, 
prisms, polarizers, gratings, and detectors, have been with us for a long time.

Many significant early developments in quantum physics led from optical spectroscopic studies 
of complex atoms. After Bohr’s theory of hydrogen,5 the quantum basis of atomic processes developed 
apace. One of Schrödinger’s first applications of wave mechanics was in the calculations of atomic 
energy levels and the strengths of spectroscopic transitions.6 Schrödinger also demonstrated the formal 
equivalence of wave mechanics and Heisenberg’s matrix mechanics. Extensions of spectroscopy 
from atomic physics to molecular physics and solid-state physics more or less coincided with the 
early applications of quantum mechanics in these areas.

A survey of the whole of spectroscopy, encompassing atoms, molecules, and solids, is not the 
present intent. Rather it is hoped that by choice of a few critical examples the more general principles 
linking optical spectroscopy and the structure of matter can be demonstrated. The field is now vast: 
Originally the exclusive domain of physicists and chemists, optical spectroscopy is now practiced 
by a variety of biophysicists and biochemists, geophysicists, molecular biologists, and medical and 
pharmaceutical chemists with applications to proteins and membranes, gemstones, immunoassay, 
DNA sequencing, and environmental monitoring.

10.3 THEORETICAL PRELIMINARIES

The outstanding success of the Bohr theory was the derivation of the energy-level spectrum for 
hydrogenic atoms:
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Z hc

n
Rn

2 4

0
2 2 2

2

22 4( )
(1)

Here the principal quantum number n is integral; h 2 is Planck’s constant; Z is the charge on 
the nucleus, m and e are, respectively, the mass and charge on the electron; and 0 is the permittivity 
of free space. The Rydberg constant for an infinitely heavy nucleus, R , is regarded as a fundamental 
atomic constant with approximate value 10,973,731 m–1. Equation (1) is exactly the relationship 
that follows from the boundary conditions required to obtain physically realistic solutions for 
Schrödinger’s time-independent equation for one-electron atoms. However, the Schrödinger equa-
tion did not account for the fine structure in the spectra of atoms nor for the splittings of spectral 
lines in magnetic or electric fields.

In 1927 Dirac developed a relativistic wave equation,7 which introduced an additional angular 
momentum for the spinning electron of magnitude s , where s s s( )1 and the spin quantum 
number s has the value s 1

2 . The orbital and spin angular momenta are coupled together to form 
a total angular momentum vector j, given by j l 1

2
. In the hydrogenic ground state | | ,nl 10

this spin-orbit coupling yields a value of j 1
2

 only, giving the 1S1/2 level. In the first excited 
state, for which n 2 the l 0, j 1

2
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2 1 22( )/P  levels, these two levels being separated by the fine structure interval.8 The Dirac form 
of the Coulomb energy, expressed as an expansion in powers of Z × the fine structure constant, 
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The second term in the bracket in Eq. (2) is the spin-orbit correction to the energies, which scales 
as (Z4 2)/n3. In the case of hydrogenic atoms this relativistic coupling removes the nP1/2 − nP3/2 and 
nD3/2 − nD5/2 degeneracy, but does not split the nS1/2 level away from the nP1/2 level. A further rela-
tivistic correction to Eq. (1) involves replacing the electronic mass in R  by the reduced mass of the 
electron mM/(M m), which introduces a further shift of order ( ) ( ( ) )m M Z n EN/ / DC1 2 2 . Here 
MN is the mass of the nucleus.

There are two further energy-level shifts.9 The so-called quantum electrodynamic (QED) shifts 
include contributions due to finite nuclear size, relativistic recoil, and radiative corrections, collectively 
described as the Lamb shift, as well as terms due to electron self-energy and vacuum polarization. 
The Lamb shift raises the degeneracy of the nS1/2 − nP1/2 levels. Overall, the QED shift scales as 

(Z )4/n3.10 The interaction of the electronic and nuclear magnetic moments gives rise to hyperfine 
structure in spectra. The hyperfine contribution to the electronic energies for a nucleus of mass MN,
nuclear spin I, and gyromagnetic ratio gN, is given by

E
Z

n

g m

M
hcR

F F I I
hf

N

N

2
3

3

1 1( ) ( )) ( )
( )( )

j j
j j l

1
2 2 1

(3)

where j l s is the total electronic angular momentum and F I j is the total atomic angular 
momentum. Ehf scales as Z3 2/n3 and is larger for S-states than for higher-orbit angular momentum 
states. More generally, all the correction terms scale as some power of Z/n, demonstrating that the 
shifts are greatest for n 1 and larger nuclear charge. Experiments on atomic hydrogen are particu-
larly important, since they give direct tests of relativistic quantum mechanics and QED.

10.4 RATES OF SPECTROSCOPIC TRANSITION

The rates of transitions may be determined using time-dependent perturbation theory. Accordingly, 
it is necessary to consider perturbations which mix stationary states of the atom. The perturbations 
are real and oscillatory in time with angular frequency and have the form

H V i t V t1 exp exp( ) ( ) (4)

where V is a function only of the spatial coordinates of the atom. In the presence of such a time-
dependent perturbation, the Schrödinger equation

( )H H i
t0 1

(5)

has eigenstates

c t nlm iE tn n
n

( )| ( )exp / (6)

which are linear combinations of the n stationary solutions of the time-independent Schrödinger 
equation, which have the eigenvalues En. The time-dependent coefficients, cm(t), indicate the extent 
of mixing between the stationary state wavefunctions |nlm . The value of | ( )|c tj

2, the probability that 
the electronic system, initially in state i, will be in a final state f after time t is given by

| ( )|
sin ( )

( )
c t

V t
f

fi fi

fi

2

2 2 1
2

2
4 (7)

for an absorption process in which the final state f is higher in energy than the initial state i. This 
expression defines the Bohr frequency condition,

E Ef i (8)
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and fi f iE E( )/ . Obviously, | ( )|c tf
2 has a maximum value when fi , showing that the prob-

ability of an absorption transition is maximum when E Ef i . The emission process comes 
from the V exp ( t) term in Eq. (4): the signs in the numerator and denominator of Eq. (7) are 
then positive rather than negative. For the probability to be significant then requires that fi 0, 
so that the final state f is lower in energy than the initial state. If the radiation field has a density of 
oscillatory modes u( ) per unit frequency range, then Eq. (7) must be integrated over the frequency 
distribution. The transition rate is then

W V ufi fi fi

2
2

2| | ( ) (9)

in which the Vfi indicates that only a narrow band of modes close to fi has been taken into 
account in the integration. This equation, which gives the probability of a transition from | |i f
per unit time, is known as Fermi’s golden rule.

In Eq. (9) V f V ifi | | and V f V ifi | | determine the transition probabilities for absorption 
and emission between the initial i and final states f. In fact | |Vfi  and | |Vif are identical and the tran-
sition probabilities for absorption and emission are equal. For the kth mode with angular frequency 

k the perturbation takes the form
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The first term in Eq. (10) is the electric dipole (ED) term. The second and third terms are the 
magnetic dipole (MD) and electric quadrupole terms (EQ), respectively. The relative strengths of 
these three terms are in the ratio ( ) :( ) :ea c eaB0

2 2
0
2 2/ / where a0 and B are the Bohr radius and 

Bohr magneton, respectively. These ratios are then approximately 1 : 10−5 : 10−7. Since the electro-
magnetic energy per unit volume contained in each mode, including both senses of polarization, 
is given by 2 0

0 2| |Ek , the energy density, ( ), per unit volume per unit angular frequency is just 
4 0

0 2| | ( ).E uk k  Hence, from Eq. (9) and using only the first term of Eq. (10) the electric dipole 
transition rate is determined as

W f er iif i k
ik2 0

2

2

| ˆ | ( ) (11)

where the summations are over the numbers of electrons, i, and polarization vectors, k. For ran-
domly polarized radiation Eq. (11) becomes

W f er iif i
i

2

6 0
2

2

| | ( ) (12)

If the radiation has all the Ek vectors pointing along the z-direction then only this mode is taken into 
account and

W f ez iif i
i2 0

2

2

| | (13)

These relationships, Eqs. (12) and (13), are used subsequently in discussing experimental techniques 
for measuring optical absorption and luminescence spectra. They result in the selection rules that 
govern both polarized and unpolarized optical transitions.

For the most part the succeeding discussion is concerned with radiative transitions between the 
ground level a and an excited level b. These levels have degeneracies ga and gb with individual ground 
and excited states labeled by |an and |bm , respectively. The probability of exciting a transition from 
state |an to state |bm is the same as that for a stimulated transition from |bm to |an . The transition 
rates in absorption, Wab, and in emission, Wba, are related through

g W g Wa ab b ba (14)
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assuming the same energy density for the radiation field in absorption and emission. Since the 
stimulated transition rate is defined by

W Bab ab ( ) (15)

the Einstein coefficient Bab for stimulated absorption is directly related to the squared matrix ele-
ment | | | | |b er am i i n

2. Furthermore, the full emission rate is given by

W A n Tba ba[ ( )]1 (16)

where n (T) is the equilibrium number of photons in a blackbody cavity radiator at angular fre-
quency  and temperature T. The first term in Eq. (16) (i.e., Aba) is the purely spontaneous emission 
rate, related to the stimulated emission rate by

A B uba ba k k2 ( ) (17)

Equation (17) shows that the spontaneous transition probability is numerically equal to the prob-
ability of a transition stimulated by one photon in each electromagnetic mode, k. Similarly the 
stimulated absorption rate is given by

W B
g

g
A n Tab ab

b

a
ba( ) ( ) (18)

These quantum mechanical relationships show how the experimental transition rates, for both 
polarized and unpolarized radiation, are determined by the mixing of the states by the perturbing 
oscillatory electric field. Since the radiative lifetime R is the reciprocal of the Einstein A coefficient 
for spontaneous emission [i.e., R (Aba)

−1] we see the relationship between luminescence decaytime 
and the selection rules via the matrix element | | | |b er am i i n .

10.5 LINESHAPES OF SPECTRAL TRANSITIONS

Consider the excitation of optical transitions between two nondegenerate levels |a and |b . The 
instantaneous population of the upper level at some time t after the atomic system has been excited 
with a very short pulse of radiation of energy ab is given by

N t N A tb b ba( ) ( ) ( )0 exp (19)

where Aba is the spontaneous emission rate of photons from level |b to level |a . Since the energy 
radiated per second I t A N tba b ab( ) ( ) , the emission intensity at time t, and frequency ba is 
given by I(t) I(0) exp (− t/ R), where the radiative decaytime R is defined as the reciprocal of the 
spontaneous decay rate, i.e., R baA( )1/ . The expectation value of the time that the electron spends 
in the excited state, t , is calculated from

t
N

N t dt A
b

b ba R

1
0 8

1

( )
( ) ( ) (20)

This is just the average time, or lifetime, of the electron in the excited state. In consequence, this 
simple argument identifies the radiative decaytime with the lifetime of the electron in the excited 
state. Typically, for an allowed electric dipole transition R ~ 10−8 s.

The radiation from a collection of atoms emitting radiation at frequency ba at time t > 0 has an 
associated electric field at some nearby point given by

E t E i t tba R( ) ( ) ( )0 2exp exp / (21)
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(i.e., the electric field oscillates at the central frequency of the transition on the atom). The distribution 
of frequencies in E(t) is obtained by Fourier analyzing E(t) into its frequency spectrum, from which

E
E

i
ab R

( )
( ) ( )

[ ( )]0

2 22
exp (22)

where ( ) is a constant phase factor. Since I(t) E(t)2 we obtain the intensity distribution of 
frequencies given by

I
I

ab R

( )
( ) ( )

0
2 22

(23)

This classical argument shows that the distribution of frequencies in the transition has a lorentzian 
shape with full width at half maximum (FWHM), , given by

1

R
baA (24)

An identical lineshape is derived from wave mechanics using time-dependent perturbation theory. 
This relationship between the natural linewidth of the transition, , and the radiative decaytime, 

R, is related to the uncertainty principle. The time available to measure the energy of the excited 
state is just t ; the width in energy of the transition is E . Hence E R  follows 
from Eq. (24). For R 10−8 s the energy width E c/ m5 10 2 1. Hence the natural linewidth of a 
transition in the visible spectrum is 2 10 3 nm.

The broadening associated with the excited state lifetime is referred to as natural or homogeneous 
broadening. There are other processes which modulate the energy levels of the atom thereby con-
tributing to the overall decay rate, −1. It is this overall decay rate, 1 1

R , which determines the 
width of the transition. Examples of such additional processes include lattice vibrations in crystals 
and the vibrations/rotations of molecules. In gas-phase spectroscopy, random motion of atoms or 
molecules leads to inhomogeneous broadening via the Doppler effect. This leads to a Gaussian spectral 
profile of FWHM given by

D bac
kT
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4 2
2

1 2
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/

(25)

showing that the Doppler width varies as the square root of temperature and is smaller in heavier 
atoms. In solids, distortions of the crystal field by defects or growth faults lead to strain which is 
manifested as inhomogeneous broadening of spectra. The resulting lineshape is also gaussian. The 
great power of laser spectroscopy is that spectroscopists recover the true homogeneous width of a 
transition against the background of quite massive inhomogeneous broadening.

10.6 SPECTROSCOPY OF ONE-ELECTRON ATOMS

Figure 1a shows the energy level structure of atomic hydrogen for transitions between n 3 and 
n 2 states, i.e., the Balmer -transition. Electric dipole transitions are indicated by vertical lines. 
The relative strengths of the various lines are indicated by the lengths of the vertical lines in Fig. 1b.
Also shown in Fig. 1b is a conventional spectrum obtained using a discharge tube containing deu-
terium atoms cooled to T 50 K. This experimental arrangement reduces the Doppler width of 
the Balmer -transition at 656 nm to 1.7 GHz. Nevertheless, only three transitions 2P3/2 3D5/2,
2S1/2 3P1/2, and 2P1/2 3D3/2 are resolved.11 However, sub-Doppler resolution is possible using 
laser saturation spectroscopy.12 Figure 1c shows the Doppler-free Balmer -spectrum to comprise 



10.8  PHYSICAL OPTICS

comparatively strong lines due to 2P3/2 3D5/2, 2S1/2 3P1/2, 2S1/2 3P3/2, and 2P1/2 3D3/2 transi-
tions, as well as a very weak 2P3/2 3D3/2 transition. Also evident is a cross-over resonance between 
the two transitions involving a common lower level 2S1/2, which is midway between the 2S1/2 3P1/2,
3P3/2 transitions. The splitting between 2P3/2, 2P1/2 3D3/2 transitions measures the spin-orbit split-
ting in the n 2 state, which from Eq. (2) is about 36.52 m−1. The Lamb shift is measured from the 
splitting between 2S1/2 3P3/2 and 2P1/2 3D3/2 lines to be 3.53 m−1, which compares well with the 
original microwave measurement (3.537 m−1).13 Subsequently, Hänsch et al.14 made an interferometric 
comparison of a Balmer -line with the 632.8-nm line from He-Ne locked to a component of 129I2,
thereby deriving a value of R of 10973731.43(10) m−1, at that time an order of magnitude improve-
ment in accuracy on previous values. Neither the 2S1/2 nor 2P1/2 hfs was resolved in this experiment, 
both splittings being less than the system resolution of ca 0.05 m−1. This probably followed from the 
use of pulsed dye lasers where the laser linewidth exceeds by factors of 10 the linewidth available from 
single-frequency continuous wave (CW) dye lasers. Subsequent measurements using CW dye lasers 
standardized against I2-stabilized He-Ne lasers gave further improvements in the value of R . ,15 16

Also using the Balmer -transition Stacey et al17 have studied the isotope shifts between spectra from 

FIGURE 1 (a) The structure of the n 3 and n 2
levels of hydrogen showing the Balmer -transitions. 
(b) A low resolution discharge spectrum of deuterium 
cooled to 50 K. (c) A Doppler-free spectrum of the Balmer 

-spectrum of hydrogen. (After Hänsch et al.12)
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hydrogen, deuterium, and tritium. The spectrum shown in Fig. 2 reveals the 2S1/2 hyperfine split-
ting on the 2S1/2 P3/2 and 2S1/2 3D3/2 transitions. These measurements yield isotope shifts of 
124259.1(1.6) MHz and 41342.7(1.6) MHz for H-D and D-T, respectively, which accord well with 
theoretical values. 

The literature on H-atom spectroscopy is vast, no doubt fueled by the unique relationship 
between experimental innovation and fundamental tests of relativistic quantum mechanics and 
QED. This chapter is not a comprehensive survey. However, it would be seriously remiss of the 
author to omit mention of three other categories of experimentation. The first experimental 
arrangement uses crossed atomic and laser beams: a well-collimated beam of atoms propagates 
perpendicular to a laser beam which, after traversing the atomic beam, is reflected to propagate 
through the atomic beam again in the opposite direction. The interaction between the counter-
propagating beams and the atoms in the atomic beam is signaled by a change in the beam flux. 
The atomic beam replaces the discharge unit used in conventional atomic spectroscopy, thereby 
reducing errors due to the electric fields in discharges. This experiment is the optical analogue of 
the Lamb-Retherford radio-frequency experiment13 and has been much used by workers at Yale 
University.18 They reported a value of R 10973731 573 3 1. ( ) m  in experiments on the Balmer 

-transition (n 2 to n 4).
There have been several other studies of the Balmer -transition, which has a narrower 

natural linewidth than the Balmer -transition. However, because it is weaker than the Balmer 
-transition, Wieman and Hänsch used a polarization scheme to enhance the sensitivity of the 

saturation absorption scheme.19 Finally, the metastable 2S1/2 level may decay spontaneously to 
the 1S1/2 ground state with the emission of two photons with energies that sum to the energy 
separation between 1S1/2 and 2S1/2. Such a process has a radiative decaytime of 0.14 s, giving a 
natural linewidth for the 2S1/2 1S1/2 transition of order 1 Hz! The probability of a two-photon 
absorption transition is quite low. However, as with laser absorption saturation spectroscopy, 
two-photon absorption experiments are made feasible by Doppler-free resolution. Wieman and 
Hänsch20 used an amplified CW laser beam at 243 nm to excite a two-photon absorption transition, 
which they detected by observing the Lyman -emission at 121 nm. In addition, part of the laser 
beam was split off and used to measure simultaneously the Balmer -spectrum. The coupled 
experiment permitted a direct measurement of the ground-state Lamb shift of 8161(29) MHz. 
Ferguson and his colleagues developed standard cells using 130Te2 lines for studies of the Balmer 

-and 1S1/2 2S1/2 transitions.10,21

FIGURE 2 Showing hyperfine structure splittings of the 2S1/2 3P3/2, 3D3/2
transition in hydrogen. (After Stacey.17)
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10.7 MULTIELECTRON ATOMS

In order to calculate the energy level spectrum of a multielectron atom we require a suitable hamilto-
nian describing the interaction of all the electrons with the nucleus and with each other. A convenient 
starting point is the simplified Dirac equation for a one-electron atom, viz.,

H H H0 so
(26)

where H0 is the simplified hamiltonian for the electron in the field of a nucleus of charge Ze at 
rest, i.e., 

H
p
m

Ze
r0

2 2

02 4
(27)

and Hso − (r)l · s is the spin-orbit hamiltonian. Wavefunctions which satisfy Eq. (27) are

nlm nl
r

l
m

l
r R Y( ) ( )( ) (28)

where the labels n, l, and m are quantum numbers which characterize the eigenstates. The eigenvalues, 
given in Eq. (1), depend only on the principal quantum number n, which takes positive integral values. 
The quantum number l characterizing the orbital angular momentum also takes integral values, 
l 0, 1, 2, 3, . . . , (n − 1), whereas m1 measures the z-component of the orbital angular momentum. 
There are 2l 1 integral values of l given by m 1, (l − 1), (l − 2), . . . , − (l − 1), − l, and for a given 
value of n there are several different orbital states with identical energy. Hso, among other interac-
tions, raises this degeneracy.

It is convenient to represent the orbital wavefunction nlm by the ket |nlm . Including spin angu-
lar momentum we represent a spin orbital by |nlsmms or more simply by |nlmms . Recalling the 
brief discussion of the coupled representation, whereby j l s, an equally valid representation is 
|nljmj . Indeed the new basis states |nljmj  are just linear combinations of the |nlmms basis states.8

Each wavefunction has a definite parity. The parity of wavefunctions is important in determining 
the selection rules of spectra. The inversion operator Pi, defined by Pi f(r) f( r) for any function of r,
gives the following result

P nlm nlmi
l| ( ) |1 (29)

Hence, for even values of l the wavefunctions are said to have even parity since they do not change 
sign under inversion of coordinates. For l odd the wavefunctions have odd parity. The strength of an 
optical transition is determined by a matrix element b a| | , where the integration is taken over 
the volume of the atom. In the electric dipole approximation, −er so that the matrix element is 
zero except that the wavefunction a and b have opposite parity. This defines the Laporte selection 
rule which states that the parity of a state must change from odd to even (or vice versa) in an electric 
dipole transition.

The hamiltonian for multielectron atoms is a sum over all N electrons of one-electron operators 
[see Eq. (1)] plus an electron-electron Coulomb repulsion between electrons i and j separated by a 
distance rij. Hence we may write this as
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(30)

The computational complexity militates in favor of an approximate solution because the spin-orbit 
and electron-electron interactions are not spherically symmetric. In consequence, the first stage of 
the approximation to Eq. (30) is in the form

H
p

m
V r r l si

i i i i i
i

2

2
( ) ( ) (31)



OPTICAL SPECTROSCOPY AND SPECTROSCOPIC LINESHAPES  10.11

where V ri i( ) is a spherically symmetric one-electron operator which represents the potential energy 
of the ith electron in the field of the nucleus and all the electrons. The first two terms in this sum 
constitute the orbital hamiltonian, H0, a sum of one-electron hydrogen-like hamiltonians [Eq. (27)], 
but with a more complicated radial potential energy function, V (r). The radial and angular parts of 
each one-electron hamiltonian are separable and we write orbital functions

R r Y nlmnl i l
m( ) ( , ) | (32)

However, R rnl i( ) is the solution of the radial equation involving the central potential, V ri( ), which 
is characterized by the quantum numbers n and l. In consequence, the energy of the one-electron 
state also depends on both n and l. The complete spin orbital is characterized by four quantum 
numbers including spin (i.e., u nlmms| ) and the many electron eigenstate of H0 is a product of 
one-electron states

U nlmm
i

s i| (33)

The energy Eu of this product state is

E Eu
i

n li i (34)

which depends on the set of nili values. However, since Eu does not depend on ml and ms these eigen-
states have a large degeneracy.

Experimentally, the complete wavefunctions of electrons are antisymmetric under the exchange 
of orbital and spin coordinates of any two electrons. The product wavefunction, Eq. (33), does not 
conform to the requirement of interchange symmetry. Slater solved this problem by organizing the 
spin orbitals into an antisymmetric N-electron wavefunction in determinantal form.22 The applica-
tion of the Hartree-Fock variational approach to determine the central field potential consistent 
with the best Slater wavefunctions is described in detail by Tinkham.23 There are many different sets 
of energy eigenfunctions that can be chosen; the net result is that the eigenstates of H0 can be classi-
fied by a set of quantum numbers LSMLMS for each (nili) electron configuration, where L ili and 
S isi. That the eigenfunctions must be antisymmetric restricts the number of possible L and S values 
for any given configuration. Since J L S is also a solution of H0, we can represent the eigenstates 
of the configuration by the ket |LSM ML S or alternatively by |LSJM j  where the eigenstates of the 
latter are linear combinations of the former.

There is a particular significance to the requirement of antisymmetric wavefunctions in the 
Slater determinantal representation. A determinant in which any two rows or columns are identi-
cal has the value of zero. In the present context, if two one-electron states are identical, then two 
columns of the Slater determinant are identical, and the wavefunction is identically zero. This is a 
statement of the Pauli exclusion principle: no two electrons in an atom can occupy identical states 
(i.e., can have the same four quantum numbers). The Slater wavefunctions indicate those one-electron 
states which are occupied by electrons. To see how this works consider two equivalent electrons in 
p-states on an atom. For n n for both electrons, the l-values may be combined vectorially to give 
L 2, 1, and 0. Similarly, the two electron spins, s 1

2
, may be combined to give S 1 or 0. The 

antisymmetric requirement on the total wavefunction means that the symmetric orbitals D(L 2) 
and S(L 0) states can only be combined with the antisymmetric spin singlet, S 0. The resulting 
spin orbitals are represented by 1D and 1S. In contrast the antisymmetric P state must be combined 
with the spin triplet, which is a symmetric function, yielding the antisymmetric spin orbital, 3P. 
However, for two inequivalent p-electrons in an excited state of the atom both spin singlet and spin 
triplet states are possible for the S, P, and D orbital states.
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10.8  OPTICAL SPECTRA AND THE OUTER 
ELECTRONIC STRUCTURE

Optical spectroscopy probes those electronic transitions associated with a small number of electrons 
outside the closed shells of electrons. This gives further simplification to the computational problem 
since the multielectron hamiltonian

H
p

m
V r r l s

e
ri

i
i i i i

ii

2 2

02 4
( ) ( )

j

(35)

is summed only over the outer electrons where each of these electrons moves in the central field 
of the nucleus and the inner closed-shell electrons, V (ri). Neglecting the smallest term due to the 
spin-orbit interaction, the hamiltonian in Eq. (35) takes the form H0 H , where H0 is a sum of one-
electron hamiltonian with the radial potential functions V (ri) and H  is the energy of the Coulomb 
interaction between the small number of outer electrons. The corrections to the one-electron ener-
gies are then the diagonal matrix elements n l m m H n l m mi i i si i i i si| | , expressed either in terms of 
Racah parameters, A, B, C, or Slater parameters, F0, F2, F4 . . . .24 Transition metal ion energy levels are 
normally described in terms of the Racah parameters and rare earth ion energy levels in terms of the 
Slater functions. The effect of H is to split each configuration (nili) into a number of LS terms for 
each of which there are (2L 1)(2S 1) distinct energy eigenstates. We represent the energy eigen-
states by the kets |( , )n l LSJM j , which are defined as linear combinations of the |( )n l LSM Mi i L S states.

Returning briefly to the (np)2 configuration (characteristic of the Group-4 elements, C, Si, Ge, etc.
of the Periodic Table) it is noted that the diagonal matrix elements evaluated in terms of the Slater 
parameters are given by E(1D) F0 F2, E(1S) F0 10F2, and E(3P) F0 − 5F2. For different atoms it 
is the relative values of F0 and F2 which change through the series (2p)2, (3p)2, (4p)2, etc. Note that it 
is the term with maximum multiplicity, 3P, which is lowest in energy in conformity with Hund’s rule. 
A similar situation arises for the (np)4 configuration of, for example, atomic O, S, and Se which might 
equally and validly be considered as deriving from two holes in the (np)2 configuration. The general 
conclusion from this type of analysis is that the energy level structures of atoms in the same period of 
the Periodic Table are identical, with the principal differences being the precise energies of the eigen-
states. This is evident in Fig. 3, the term scheme for atomic Li, which has the outer electron configu-
ration (2S)1; this may be looked on as a pseudo-one-electron atom. There is a general spectroscopic
similarity with atomic hydrogen, although the (ns)1 – (np)1 splittings are much larger than in hydrogen.
The 3S1/2 2S1/2 transition is forbidden in Li just as the 2S1/2 1S1/2 transition is in hydrogen. 
However, it is unlikely to be observed as a two-photon process in emission because the 3S1/2 2P3/2, 1/2
and 2P3/2, 1/2 2S1/2 transitions provide a much more effective pathway to the ground state.

The comparison between Li and Na is much more complete as Figs. 3 and 4 show: assuming 
as a common zero energy the ground state, the binding energies are E(2S1/2, Li) 43,300 cm 1 and 
E(3S1/2, Na) 41,900 cm 1. The energies of the corresponding higher lying nS, nP, and nD levels on 
Li are quite similar to those of the (n 1)S, (n 1)P, and (n 1)D levels on Na. This similarity in 
the energy level structure is reflected in the general pattern of spectral lines, although the observed 
wavelengths are a little different. For example, the familiar D lines in the emission spectrum of Na 
occur at 589.9 nm whereas the corresponding transition in Li occur at 670.8 nm.

Examination of the term schemes for a large number of elements reveal striking similarities 
between elements in the same group of the Periodic Table, due to this structure being determined 
by the number of electrons outside the closed shell structure. These term diagrams also reveal a 
very large number of energy levels giving rise to line spectra in the ultraviolet, visible, and infrared 
regions of the spectrum. The term diagrams are not very accurate. Tables of accurate energy levels 
determined from line spectra have been compiled by Moore25 for most neutral atoms and for a 
number of ionization states of the elements. This comprehensive tabulation reports energy levels to 
a very large principal quantum number ( , )n 10 11 .

The term diagram of the neutral Tl atom, (6p)1 configuration (see Fig. 5) shows two interesting 
features in comparison with those for alkali metals (see Figs. 3 and 4). In the (6p)1 state the spin-
orbit splitting into 6P1/2 and 6P3/2 levels amounts to almost 8000 cm 1 whereas the spin-orbit splitting 
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FIGURE 3 The term diagram of atomic Li, in which the slanted lines indicate the observed electric 
dipole transitions and the numbers on the lines are the wavelengths in Ångstrom units. (After  Grotian.26)
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FIGURE 4 The term diagram of atomic Na. (After Grotian.26)

5.14

l = 0 1 1 2 3

2S1/2 2P3/2 2P1/2 2D5/2, 3/2 2F7/2, 5/2

5.0

4.0

3.0

2.0

1.0

eV

0

9S
8P
7P

6P

5P

8P
7P

6P

5P

7D
6D

5D

4D

5F
5000

10000

15000

20000

25000

30000

35000

40000

45000

4F

4P 4P

8S
7S

6S

5S

4S

3P

3D

3S

cm–1

V
~

D
1
 5

89
5.

93
0

D
2 

58
89

.9
63

28
52

.8
3

33
02

.3
4

81
83

.3
0

18
45

9.
5

12
67

7.
6

49
82

.8
7

56
82

.6
7

49
78

.6
1

81
94

.8
256

88
.2

2

33
02

.9
4

28
53

.0
2

51
49

.0
9

51
53

.6
5

61
60

.7
3

22084
22057

61
54

.2
7

11
38

2.
4

11
40

4.
2

3P



OPTICAL SPECTROSCOPY AND SPECTROSCOPIC LINESHAPES  10.15

FIGURE 5 The term diagram of neutral Tl. (After Grotian.26)
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between the 3P1/2 and 3P3/2 levels of Na is only 17 cm−1. This reflects the (Z4/n3) dependence of the 
spin-orbit coupling constant. Furthermore, when Tl is in the 7S1/2 state it can decay radiatively via 
transitions to either 6P3/2 or 6Pl/2, each with a distinct transition probability. The relative probability of 
these transitions is known as the branching ratio for this mode of decay. Other examples of branching 
are apparent in Fig. 5: the branching ratios are intrinsic properties of the excited state.

10.9 SPECTRA OF TRI-POSITIVE RARE EARTH IONS

The rare earth elements follow lanthanum (Z 57) in the Periodic Table from cerium (Z 58), which 
has the outer electron configuration 4f 15d16s2 to ytterbium (Z 70) with electron configurations 
4f 135d16s2. In the triply charged state in ionic crystals all 5d and 6s electrons are used in ionic bonding 
and the many energy levels of these rare earth (RE)3  ions are due to the partially filled 4f shell. The 
number of electrons in the 4f shell for each trivalent ion and the ground-state configuration is indi-
cated in Table 1. The energy levels of the unfilled 4f  shells spread out over some 40,000 cm−1, giving 
rise to numerous radiative transitions with energies in the visible region. A remarkable feature of the 
4f n electrons is that they are shielded by the outer 5s and 5d shells of electrons, with the result that 4f
electrons are not strongly affected by interactions with neighboring ions in crystals. In consequence, 
the energy levels of the 4f electrons in crystals are essentially the free ion levels characterized by quan-
tum numbers L, S, and J. As with the free ions the R.E.3  ions in crystals have very sharp energy levels 
which give rise to very sharp line spectra. The crystal field interaction does split the RE3  ion levels, 
but this splitting is very much smaller than the splittings between the free-ion levels. Hence for rare 
earth ions in different crystals the gross features of the optical spectra are unchanged.

As discussed in Sec. 10.6 the eigenstates of the 4f electrons are calculated using the central field 
approximation from which each 4f electron state is characterized by the ket | ,n l m ml s4 3 . The 
effect of the Coulomb repulsion between electrons, H e ri ij

2
04/ , is to split the energy levels of 

the 4f n configuration into different LS terms, with wavefunctions characterized by kets | .LSM ML S
The magnitudes of the electrostatic interaction for each LS level are expressed as sums of Slater 
electron-electron integrals Fk, with k 0, 2, 4, and 6 for 4f electrons. Since F0 contributes equally to 
all LS states of the same 4f n configuration, this term can be neglected. Generally, these Slater integrals 
are regarded as adjustable parameters with magnitudes determined by fitting to the measured line 
spectra. The values of the Fk integrals for 4f n ions in many crystals vary by only about 2 percent from 
those obtained for free ions; they also vary slightly depending on the nature of the surrounding ions. 
The next largest term in the hamiltonian, after H , is spin-orbit coupling. If the spin-orbit coupling 

TABLE 1 The Number of Electrons (n) and 
Ground State of Tri-positive Rare Earth Ions

Ion n (in edn) Ground state

Ce3 1 2F5/2
Pr3 2 3H4
Nd3 3 4I9/2
Pm3 4 5I4
Sm3 5 6H5/2
Eu3 6 7F0
Gd3 7 8S
Tb3 8 7F6
Dy3 9 6H15/2
Ho3 10 5I8
Er3 11 4I15/2
Tm3 12 3H6
Yb3 13 2F7/2
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energy is much smaller than the energy separation in the LS term then the spin-orbit interaction can 
be written as LS and the wavefunctions are characterized by |LSJM J . The additional energy of the 
J-multiples are given by the Landé interval formula

E J J L L S SJ 2
1 1 1[ ( ) ( ) ( )] (36)

from which it is evident that the separation between adjacent levels is given by J  where J refers to 
the upper J value. However, deviations from this Landé interval rule do occur because of mixing of 
different LS-terms when spin-orbit coupling and electron-electron interaction are of similar magni-
tudes. Clear examples of this are obtained from the spectra of Pr3 (4f 2) and Tm3 (4f 12).

As representative of the type of spectra observed from R.E.3  ions in ionic crystals we consider 
just one example: Nd3 (4f 3) in Y3Al3O12(YAG). The Nd3 -YAG material is important as the gain 
medium. Nd3  has a multitude of levels many of which give rise to sharp line emission spectra. A 
partial energy level structure is shown in Fig. 6. The low-temperature emission is from the 4F3/2 level 

FIGURE 6 The low-temperature photoluminescence spectrum from the 4F3/2 level of Nd3+ in 
Y3Al5O12 and the corresponding energy level structure. (After Henderson and Imbusch.8)
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to all the 4IJ levels of the Nd3  ion. The spectra in Fig. 6 also show the splittings of the 4IJ levels by 
the crystal field, corresponding to the energy-level splitting patterns given in the upper portion of 
Fig. 6. Depending upon crystal quality these lines can be quite narrow with half-widths of order a 
few gigahertz. Nevertheless the low-temperature width in the crystal is determined by the distribu-
tion of internal strains and hence the lines are in homogeneously broadened. The natural linewidth 
of rare earth ion spectra is of the order of a few megahertz. By using optical hole burning (OHB), 
which is similar to the saturated absorption spectroscopy discussed earlier for atomic hydrogen, it 
is possible to eliminate the inhomogeneous broadening and recover the homogeneous lineshape of 
the spectrum. In principle, the natural width is determined by lifetime processes of which there are 
more numerous sources in crystals than in atomic vapors. Indeed the width may be determined by 
random modulation of the optical lineshape by photons and by both nuclear and electronic spins of 
neighboring ions. The two most general techniques for determining the homogeneous widths of 
optical transitions in solids are optical holeburning and fluorescence line narrow (FLN). Examples 
of these techniques are discussed in Chap. 2 of Vol. V.

10.10  VIBRATIONAL AND ROTATIONAL SPECTRA 
OF MOLECULES

A consultation of any one of the tables of data in Moore’s compilation25 shows that the energy level 
schemes of most atoms are complex. This is confirmed by the associated atomic spectra. Considerable 
interpretive simplication is afforded by the construction of term diagrams (e.g., Figs. 3 to 5), on 
which a very large number of lines may be associated with a much smaller number of terms, each 
term corresponding to an energy level of the atom. The observed spectral lines are due to transitions 
between pairs of terms (not all pairs) which occur subject to an appropriate selection rule. The spectra 
of even simple molecules measured with low-dispersion show characteristic band spectra which are 
even more complicated than the most complex atomic spectra. These band spectra, when studied at 
higher spectral resolution, are observed to consist of an enormous number of closely spaced lines. At 
first acquaintance, such band spectra appear to be so complex as to defy interpretation. Order can be 
brought to the riot of spectral components by constructing term schemes for molecules involving 
electronic, vibrational, and rotational energy terms, which enable the molecular spectroscopist to 
account for each and every line.

Molecular physics was a research topic to which quantum mechanics was applied from the 
very earliest times. Heitler and London developed the valence band theory of covalency in the 
H2-molecule in 1927.27 The theory shows that with both electrons in 1s states there are two solutions 
to the hamiltonian

E E
K

2 1
1

( )H (37)

where E(1H) is the energy of an electron in the ground state of atomic hydrogen, K is the Coulomb 
interaction due to the mutual actions of charges distributed over each atom,  is the exchange 
energy, and is the overlap integral. The exchange energy is a purely quantum mechanical term, 
representing the frequency with which the deformation of the wavefunctions by their mutual inter-
action oscillates from one atom to another. The positive sign refers to the symmetric combination 
of orbital wavefunctions for the two hydrogen atoms. Since the overall wavefunction must be anti-
symmetric, the combined spin states must be antisymmetric (i.e., the spin singlet S 0; this state 
is labeled 1

g). The evaluation of the integrals in Eq. (37) as a function of internuclear separation 
leads to Fig. 7 for the spin singlet state. This 1

g ground state has a potential energy minimum of 
about 4.8 eV (experimentally) with the nuclei separated by 0.75 nm, relative to the total energy of 
the two hydrogen atoms at infinity. The theoretical value of the binding energy on the valence band 
model is only 3.5 eV.27 The negative sign in Eq. (37) guarantees that in the state characterized by the 
antisymmetric combination of orbital states and S 1, i.e., 3 u, the energy is monotonically ascending, 
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corresponding to repulsion between the two hydrogen atoms for all values of R. In such a state the 
molecule dissociates.

The energy versus internuclear separation curve in Fig. 7 represents the effective potential well, 
in which the protons oscillate about their mean positions. This is the potential used in the Born-
Oppenheimer treatment of the molecular vibrations in the spectra of diatomic molecules.28 The 
potential function may be written as a Taylor expansion

V R R V R R
dV

d R R

R R d
( ) ( )

( )

( )
0 0 0

0 0

0
2

2

22

0
2

0

0
3 3

0
36

V

d R R

R R d V

d R R

( )

( )

( )
0

where the subscript 0 refers to values of the differentials at R R0 and higher terms have been 
ignored. For a molecule in stable equilibrium the potential energy is a minimum and the force at 
R R0 must be zero. In consequence, the potential energy function may be written as

V R R R R
d V

d R R
R R( ) ( )
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(0 0
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0
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0
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(38)

after setting V0 0.
The excited states of H2 are constructed on the assumption that only one electron is excited in the 

transition: the appropriate configurations may be written as (1s, 2s), (1s, 2p), (1s, 3s), etc. The electronic 
states of the molecule are then suitable combinations of the atomic states and categorized according to 
the total orbital angular momentum determined by vector addition of individual electronic orbital 
momenta. These orbital angular momentum states are designated as , , , etc. when the total angu-
lar momentum quantum number is 0, 1, 2, etc. Thus the electronic state in Fig. 7 is described as the 
1

g (ground state) and the lowest lying excited state as 3
u, where the subscripts g and u indicate even 

(gerade) and odd (ungerade) parity of the orbital states, respectively. The first excitation states associ-
ated with the (1s, 2s) molecular configuration, designated as 1 g  and 3

u, have energies

E E E
K

( ) ( )1 2
1

H H (39)

FIGURE 7 The internuclear potential, V(R – Ro), in the 
ground state 1 g of the hydrogen molecule.
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Because the charge distributions are different in the atomic 1s and 2s states, the values of K and
are also different in the (1s, 2s) configuration relative to the ground configuration. Obviously, as 
the orbital degeneracy of the molecular configuration increases so does the number of molecular 
levels resulting from the configuration. For example, there are six molecular levels associated with 
(1s, np) configuration, ten associated with (1s, nd), and so on. Roughly speaking, half of these levels 
will have a potential minimum in a graph of electronic potential energy versus internuclear separa-
tion (e.g., Fig. 7), and are associated with “bonding” orbitals of the molecule. In the other levels the 
force between the constituent atoms is repulsive for all values of the internuclear separation. In such 
orbitals the molecules will tend to dissociate.

The potential energy curve for a molecular bonding orbital (e.g., Fig. 7) is of the form given by 
Eq. (38). In the lowest order approximation this relation defines a potential well which is harmonic 
in the displacements from the equilibrium value. Of course, not all values of the potential energy, 
V(R − R0), are permitted: the vibrational energy of the molecule is quantized, the quantum number n
having integral values from n 0 to infinity. The energy levels are equally spaced with separations hv .
The second term is an anharmonic term which distorts the parabolic shape relative to the harmonic 
oscillator. There are two important differences between the quantized harmonic and anharmonic 
oscillators. First, where there is an infinite number of levels in the former, there is only a finite 
number of vibrational states for an anharmonic molecule. Second, the levels are not equally spaced 
in the anharmonic oscillator, except close to the potential minimum. For this reason the anharmonic 
oscillator will behave like a harmonic oscillator for relatively small values of the vibrational quantum 
number. It is normal to assume harmonic vibrations in the Born-Oppenheimer approximation.28

Molecular spectra fall into three categories, according as they occur in the far infrared (20 to 100 μm), 
near infrared (800 to 2000 nm), or visible/near ultraviolet (750 to 150 nm) region. Spectra excited by 
radiation in the infrared region are associated with changes in the rotational energy of the molecule. 
Spectra in the near-infrared region correspond to simultaneous changes in the rotational and vibrational 
energy of the molecule. Finally, the visible and ultraviolet spectra signal simultaneous changes in the rota-
tional, vibrational, and electronic energies of the molecule. The latter category has the greatest potential 
complexity since in interpreting such visible/ultraviolet spectra we must, in principle, solve the molecular 
hamiltonian containing terms which represent electronic, vibrational, and rotational energies.

If we simplify the molecular problem somewhat we may represent the stationary states of a 
molecule by a linear sum of three energy terms: an electronic term determined by a quantum 
number n, a vibrational term determined by a quantum number v, and a rotational term deter-
mined by a quantum number r. The band spectra emitted by molecules are then characterized by 
three different kinds of excitations: electronic, vibrational, and rotational with frequencies in the 
ratio v v v m M m Mel r: : : :1 / / , where m is the electronic mass and M is the reduced molecular
mass. In an optical transition the electronic configuration (nl) changes, and generally we expect the 
vibrational/rotational state to change also. In consequence, for a particular electronic transition, we 
expect splittings into a number of vibrational components, each of which is split into a number of 
rotational components. Using the rough ratio rule given previously, and assuming the Rydberg to be 
a characteristic electronic transition, we find spectral splittings of 500 cm 1 and 60 cm 1 to charac-
terize the vibrational and rotational components, respectively. Since the quantized energy levels of 
the harmonic oscillator and rigid rotor are given by

E n hvv

1
2

(40)

E r r hvr r( )1 (41)

where v k M( )1 2/ / and v Ir /4 , in which k is the “spring” constant and I Ml2 is the 
moment of inertia for a dumbbell-shaped molecule of length l, and applying to the usual selection 
rules for electronic ( l 1, with j 0, ±1), vibrational ( , . . .)1 2 , and rotational ( r 0,
±1) transitions, we expect transitions at the following frequencies

v v n n v r r r r vr0 1 1( ) [ ( ) ( )]/ (42)
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where the superscript primes and double primes refer to final and initial states. For simplic-
ity we have assumed that the vibrational spring constants and rotational moments of inertia are 
unchanged in the transitions. The number of potential transition frequencies is obviously very large 
and the spectrum consists of very many closely spaced lines. Of course, the vibrational/rotational 
structure may be studied directly in microwave spectroscopy.29 An early account of the interpreta-
tion of such spectra was given by Ruark and Urey.30 For many years such complex spectra were 
recorded photographically; as we discuss in later sections, Fourier transform spectroscopy records 
these spectra electronically and in their finest detail. Subsequent detailed accounts of the energy 
levels of molecular species and their understanding via spectroscopic measurements have been given 
by Slater, Hertzberg, and others.31–33

An example of the complexities of band spectra, for a simple diatomic molecule, is given in Fig. 8, 
in this case for the photographically recorded -bands (2 3 ) of the nitric oxide molecule. 
Under low dispersion band spectra are observed (see Fig. 8a) which break down into line spectra 
under very high resolution (see Fig. 8b). This band system is emitted in transitions having com-
mon initial and final electronic states, with all the electronic states corresponding to a multiplet 
in atomic spectra. The electronic energy difference determines the general spectral range in which 
the bands are observed. However, the positions of the individual bands are determined by the 
changes in the vibrational quantum numbers. The spectra in Fig. 8 are emission spectra: the bands 
identified in Fig. 8a by (n , n ) are so-called progressions in which the transition starts on particular 
vibrational levels (n 0) of the upper electronic state and ends on a series of different vibrational 
levels (n ) of the lower electronic level. Such n progressions measure the vibrational energy level 
differences in the lower electronic levels. Specifically identified in Fig. 8a are band progressions 
n n0 4 5 6 7, , , . . . and n n1 10 11 12, , . . . . Also evident, but not identified in Fig. 8a,
are sequences of lines in which the difference in vibrational quantum number n − n is a constant. 
For example, either side of the (0, 4) band can be seen n −4 and −3 sequences, respectively.

The (0, 7) band is shown under much higher spectral resolution in Fig. 8b, revealing a plethora 
of closely spaced lines associated with the rotational structure. For transitions in which the vibra-
tional quantum number changes by some multiple of unity, i.e., n 1, 2, 3, . . . , the rotational 
quantum number changes by r 0 and ±1. The three branches of the rotational spectrum have the 
following positions (measured in cm−1):

R A B r r r2 1( ) for 1 and 0, 1, 2 . . . (43a)

Q A Cr r rfor and . . .0 0 1 2, , (43b)

P A Br r r2 1 1 2 3for and , , . . . (43c)

( , )

= =1/2

= =1/2
= =3/2

= =3/2

0.4

2

2
31
45678 9 1011 12 13 14 15

2
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(b)

FIGURE 8 Characteristic band spectra of the diatomic NO molecule under conditions of (a) low resolution 
and (b) high resolution. (After Ruark and Urey.30)
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where in each case r refers to the rotational quantum number in the final electronic-vibrational 
state, A e , and B cl/4 . In consequence, if C 0, the Q-branch consists of a single line at 
Q r v ve( ) , and the P- and R-branches shift linearly to lower and higher wavenumbers, respec-
tively, relative to the Q-branch for increasing values of r. The spectra in Fig. 8 show that for the 
NO molecule C 0 so that the lines in the P- and R-branches are shifted by ±2B relative to the
Q-branch lines. The particular Q-branches are defined by l l r 1

2
with r being either 0 or 1, 

i.e., l l 1
2

or 3
2
. The C 0 implies that the Eqs. (41) and (43) are inaccurate and additional 

rotational energy terms must be included even for vibrational states close to the bottom of the 
potential well (i.e., small n-values). Roughly the rotational term in Eq. (43) must be multiplied by 
1 2 1 42 2 2 2( ( ) )r I/ , which has the further consequence that the separations of lines in the P- and
R-branches corresponding to particular values of r increase with increasing r. A detailed analysis of 
Fig. 8b shows this to be the case.

10.11 LINESHAPES IN SOLID STATE SPECTROSCOPY

There are many modes of vibration of a crystal to which the optical center is sensitive. We will con-
centrate on one only, the breathing mode in which the ionic environment pulsates about the center. 
The variable for the lattice state, the so-called configurational coordinate, is labeled as Q. For the 
single mode of vibration the system oscillates about its equilibrium value Qa

0 in the ground state and 
Qb

0 in the excited state. The ground and excited state configurational coordinate curves are assumed 
to have identical harmonic shapes, and hence vibrational frequencies for the two states. This is illus-
trated in Fig. 9. In the Born-Oppenheimer approximation the optical center-plus-lattice system is 
represented in the electronic ground state by the product function28

a i a i
a

ar Q r Q Q( , ) ( , ) ( )0
(44)

and in the electronic excited state by

b i b i
b

br Q r Q Q( , ) ( , ) ( )0
(45)

The first term in the product is the electronic wavefunction, which varies with the electronic posi-
tional coordinate ri, and hence is an eigenstate of H p m V ri i i0

2 2( ) ( )/ , and is determined at the 
equilibrium separation Qa

0 . The second term in the product wavefunction is a Q( ), which is a func-
tion of the configurational coordinate Q. The entire ionic potential energy in state a is then given by

E Q E V Qa a
a( ) ( )0

(46)

The E Qa( ) in Fig. 9 is a harmonic potential function. This is an approximation to the potential used 
in Eq. (38) and illustrated in Fig. 7. A similar expression obtains for E Qb( ). This representation of 
the Born-Oppenheimer approximation is often referred to as the configurational coordinate model.39

Treating the electronic energy of the ground state Ea
0 as the zero of energy, we write the ionic 

potential energy in the ground state as

E Q M Q Qa a( ) ( )
1
2

2
0

2 (47)

and in the excited state as

E Q E M Q Q S
Mb

ab
a

0
2

0
2 1 21

2
2( ) ( ) ( ) /

11 2

0

/

( )Q Qa (48)

where Eab is essentially the peak energy in an absorption transition between states |a and |b with 
the lattice at the coordinate, Qa

0, where the Huang-Rhys parameter S is defined as

S
E M

Q Qb adis 1
2

2

0 0
2( ) (49)
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If the vertical line from Q Qa
0
 in Fig. 9 intersects the upper configurational coordinate curve at the 

vibrational level n then

E S ndis

1
2

(50)

The shapes of absorption and emission spectra are found to depend strongly on the difference in 
electron-lattice coupling between the states, essentially characterized by ( )Q Qb a

0 0  and by Edis.
The radiative transition rate between the states | , | ,a n b n , where n and n are vibrational 

quantum numbers, is given by8

W a n b n r Q n rb i
a

b a( , , ) | ( , ) ( )| | (0 ii
a

aQ n, ) ( ) |0
2 (51)

It can be written as

W a n b n W n nab b a( , , ) | ( )| ( ) |2 (52)

where Wab is the purely electronic transition rate. The shape function of the transition is deter-
mined by the square of the vibrational overlap integrals, which are generally not zero. The 

FIGURE 9 A configurational coordinate diagram showing the interionic 
potential in the harmonic approximation for electronic states |a and |b .
(After Henderson and Imbusch.8)
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absorption bandshape at T 0 K, where only the n 0 vibrational level is occupied, is then 
given by

I E I
S S

n
E n Eab n

n

( )
( )
!

( )0 0

exp
(53)

where E0 Eb0 – Ea0 is the energy of the transition between the zero vibrational levels of electronic 
states a and b. This is usually referred to as the zero-phonon transition, since 

n
nS S nexp( )/ ! .1

I0 is the total intensity of the transition, which is independent of S. The intensity of the zero-phonon 
transition I00 is given by

I I S00 0 exp ( ) (54)

so that if S 0 all the intensity is contained in the zero-phonon transition. On the other hand, when 
S is large, the value of I 00 tends to be zero and the intensity is concentrated in the vibrational sidebands. 
The single configurational coordinate model is relevant to the case of electron-vibrational structure 
in the spectra of molecules and the intensities so calculated fit observations rather well.

The net effect of this analysis is given in Fig. 10, which represents the absorption case when S 2. 
At T 0 we see a strong zero-phonon line, even stronger phonon-assisted transitions at n 1 and 2, 
and then decreasing intensity in the phonon sidebands at n 3, 4, 5, . . . . These individual transitions 
are represented by the vertical lines in this predicted spectrum. The envelope of these sidebands, 
given by the solid line, represents the effects of adding a finite width, n , to each sideband feature. 

0 1 2 3 4 5

S = 2 
T = 0

p

0–1–2–3 1 2 3 4 5 6

S = 2 
kT = 

p

FIGURE 10 Showing the zero-phonon line and the Stokes shifted 
sideband on one side of the zero-phonon line at T 0. When the tem-
perature is raised the anti-Stokes sidebands appear on the other side of 
the zero-phonon line. (After Henderson and Imbusch.8)
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The effect is to smear out the structure, especially at larger phonon numbers. Also in Fig. 10 we 
show the effect of temperature on the sideband shape in absorption, which is to reveal structure at 
lower energies than that of the zero-phonon line. Although the lineshape changes, the total intensity 
is independent of temperature, whereas the zero-phonon line intensity is given by

I I S
kT00 0 2

exp coth (55)

which decreases with increasing temperature. For values of S << 1, the phonon sideband intensity 
increases according to I S kT0 2/coth( ). These effects are also shown in Fig. 10.

Three examples of the optical bandshapes in solid state spectra are considered. Figure 11 shows 
the luminescence spectrum of the molecular ion O2  in KBr measured at 77 K.34 The O2  ion emits in the 
visible range from 400 to 750 nm, and the spectrum shown corresponds to the vibrational sidebands 
corresponding to n 5 up to 13. The optical center is strongly coupled, S 10, to the internal 
vibrational mode of the O2  ion with energy 1000 1cm . However, as the detail of the n 8
electronic vibrational transition is shown at T 4.2 K, there is also weak coupling S 1 to the phonon 
spectrum of the KBr, where the maximum vibrational frequency is only about 200 cm 1.

FIGURE 11 Photoluminescence spectrum of O2  in KBr at 
77 K. (After Rebane and Rebane.34)
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The Cr3  ion occupies a central position in the folklore of solid state spectroscopy. In yttrium gal-
lium garnet, Y3Ga5O12, the Cr3  ion occupies a Ga3  ion site at the center of six octahedrally-disposed 
O2  ions. The crystal field at this site is intermediate in strength8 so that the 2E and 4T2 states are 
mixed by the combined effects of spin-orbit coupling and zero-point vibrations. The emission then 
is a composite spectrum of 2E 4A2 transition and 4T2

4A2 transition, with a common radia-
tive lifetime.35 The composite spectrum, in Fig. 12, shows a mélange of the R-line and its vibronic 
sideband, 2E 4A2 transition with S ~ 0.3, and the broadband 4T2

4A2 transition for which S ~ 6.36 

Understanding this particular bandshape is complex.35–37

The final example, in Fig. 13, shows the absorption and emission spectra of F-centers in KBr.38

This is a strongly coupled system with S 30. Extension of the configurational coordinate model to 
the luminescence spectrum shows that the absorption and emission sidebands are mirror images of 
each other in the zero-phonon line. With S small (less than 6) there is structure in absorption and 
emission. However for S large, there is no structure, at least when a spectrum of vibrational modes 
interacts with the electronic states. The F-center represents strong coupling to a band of vibrational 
frequencies rather than to a single breathing mode of vibration. The effect of this is to broaden the 
spectrum to look like the envelope encompassing the spectrum of sharp sidebands shown in Fig. 10. 
In this case the zero-phonon line position is midway between the peaks in the absorption and emis-
sion bands of the F-center in KBr. Note also that as the temperature is raised the bands broaden and 
the peak shifts to longer wavelengths.
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FIGURE 12 The photoluminescence spectrum of 
Cr3 ions in Y3Ga5O12.
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11.1 GLOSSARY

C( ) cross-correlation function

d, z distances

f focal length

fX, fY spatial frequencies

H(fX, fY) transfer function

I(x, y) intensity distribution

i square root of negative one

M matrix

tA(x, y) amplitude transmittance of a transparency

U(x, y) phasor representation of a monochromatic field

u, v vectors

V velocity of propagation

x, y spatial coordinates

B Bragg angle

wavelength

period of grating

optical frequency

time delay

11.2 INTRODUCTION

The function of signal and image processing systems is the modification of signals and images to 
allow information extraction by a human observer or, alternatively, to allow fully automatic infor-
mation extraction without human intervention. The origins of optical information processing are 
several, but certainly the invention of various techniques for visualizing the phase distribution of 
optical wavefronts qualifies (e.g., Ref. 1), as do the famous Abbe-Porter experiments.2,3 Starting in 
the 1950s, more general information processing tasks were undertaken with the help of optics.4,5

This chapter presents an overview of such methods.

11.1
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Optical systems are of interest both for digital processing of information and for analog process-
ing of information. Our attention here will be restricted only to analog processing operations, which 
are far more mature and well developed than digital optical methods.

Certain basic assumptions will be used throughout and are detailed here. First, monochromatic 
optical signals will be represented by complex phasor field distributions, with the direction of phasor 
rotation being assumed to be clockwise. Similarly, time-varying optical fields will be represented by 
complex analytic signals, again with the direction of rotation in the complex plane being clockwise. 
In both cases the underlying real signals are recoverable as the real part of the complex representa-
tions. In all cases, a small-angle assumption will be employed, allowing paraxial approximations to 
be used. Polarization effects will generally be ignored, it being assumed that a scalar theory of light 
propagation is sufficiently accurate for our purposes.6 The intensity of the optical waves, which is 
proportional to power density and is the observable quantity in an optical experiment, is defined as 
the squared magnitude of the complex fields.

It is very important to distinguish at the start between coherent and incoherent optical systems. 
For a review of optical coherence concepts, see Chap. 5 of this volume. For our purposes, we will 
regard an optical signal as coherent if the various optical contributions that produce an output add 
on an amplitude basis, with fixed and well-defined relative phases. Signals will be regarded as inco-
herent if the various contributions that add to produce an output at any point have time-varying 
phase relations, and therefore must add on an intensity or average-power basis.

11.3 FUNDAMENTAL ANALOG OPERATIONS

The fundamental components of any linear processing operation are addition and multiplication. 
We consider each of these operations separately.

Addition

Analog addition takes place in optical systems when light waves or wave components are superim-
posed. The exact nature of the addition depends on whether the optical components are mutually 
coherent or incoherent. In the coherent case, addition of complex phasor field components takes 
place. Thus if the Un(x, y) represent various optical field components that are superimposed at a 
given point (x, y) at the output, the resultant optical field U(x, y) is given by

U x y U x yn
n

( , ) ( , ) (1)

Note that the result of such a superposition depends on the phases of the individual components.
On the other hand, if the various optical contributions at (x, y) are mutually incoherent, the 

addition takes place on an intensity basis. The resultant intensity I(x, y) is given by

I x y I x yn
n

( , ) ( , ) (2)

where the In(x, y) are the component intensity contributions. In this case the component intensity 
contributions are always positive and real, as is the resultant intensity.

In view of the above two equations, an important point can now be made. Coherent optical 
systems are linear in complex amplitude, while incoherent optical systems are linear in intensity. The 
design of an analog processing system thus depends fundamentally on whether the illumination 
used in the system is coherent or incoherent.
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Multiplication

Analog multiplication takes place in optical systems as light passes through an absorbing or phase-
shifting structure. If we define the complex amplitude transmittance tA(x, y) of a transmitting structure 
as the ratio of the transmitted complex field to the incident complex field, then analog multiplication 
in a coherent system is represented by

U x y t x y U x yt A i( , ) ( , ) ( , ) (3)

where Ui(x, y) is the incident optical field and Ut(x, y) is the transmitted optical field.
When the optical system is incoherent, then we define an intensity transmittance tI(x, y) as the 

ratio of the transmitted optical intensity to the incident optical intensity. Analog multiplication in 
such systems is represented by

I x y t x y I x yt I i( , ) ( , ) ( , ) (4)

Thus we have seen that the fundamental analog operations of addition and multiplication are 
quite naturally available in optical systems. It should be kept in mind that the operation of integra-
tion is just a generalization of addition, involving addition of an infinite number of infinitesimal 
components.

11.4 ANALOG OPTICAL FOURIER TRANSFORMS

Perhaps the most fundamental optical analog signal- and image-processing operation offered by 
optical systems is the Fourier transform. Such transforms occur quite simply and naturally with 
coherent optical systems. While Fourier sine and cosine transforms can be performed with incoher-
ent light, the methods used are more cumbersome than in the coherent case and the numbers of 
resolvable spots involved in the images and transforms are more restricted. Therefore we focus here 
on Fourier transforms performed by coherent optical systems. The Fourier transform is normally 
two-dimensional in nature (image processing), although it can be restricted to a single dimension if 
desired (signal processing).

Focal-Plane-to-Focal-Plane Geometry

The optical system required to perform a two-dimensional Fourier transform is remarkably simple 
as shown in Fig. 1. We begin with a spatially coherent source of quasi-monochromatic light (a source 
that is both spatially and temporally coherent). The light from that point source is collimated by a 
positive lens and a transparency of the image to be Fourier transformed is introduced in the front 

FIGURE 1 Simple optical system for per-
forming a two-dimensional Fourier transform.
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focal plane of a second positive lens (L2). Under such conditions, the complex field appearing across 
the rear focal plane of that lens can be shown to be the two-dimensional Fourier transform of the 
complex field transmitted by the input transparency, as given by

U x y
i f

U i
f

x yf i( , ) ( , )exp ( )
1 2

d d (5)

Here  is the optical wavelength, f is the focal length of the second lens, Uf is the field distribution across 
the back focal plane of lens L2, and Ui is the field transmitted by the transparency in the front focal plane.

An intuitive explanation for the occurrence of this elegant relationship between the fields in the 
two focal planes can be presented as follows. If we were to mathematically Fourier transform the 
fields transmitted by the input transparency, each such Fourier component could be recognized as a 
different plane wave component of the transmitted field. Each such Fourier component represents 
a plane wave traveling in a unique direction with respect to the optical axis. Such representations 
are the basis for the so-called angular spectrum of plane waves often used in the analysis of optical 
wavefields (see, for example, Ref. 6, p. 48). Now consider the effect of the positive lens on a single 
Fourier component, i.e., a plane wave traveling at a particular angle with respect to the optical axis. 
As that plane wave passes through the lens L2, it is changed into a spherical wave converging toward 
a focus in the rear focal plane, in a particular location determined by that plane wave’s propagation 
direction. Thus the intensity of light at a given coordinate in the rear focal plane is proportional 
to the energy contained by the input wavefield at a particular Fourier spatial frequency. Hence the 
distribution of energy across the rear focal plane is a representation of the distribution of energy 
across the various spatial frequencies contained in input transparency.

Other Fourier Transform Geometries

A slightly more general configuration is one in which the input transparency is placed at an arbi-
trary distance d in front of the lens L2, while the field is again considered in the rear focal plane of 
that lens. The relation between the input and output fields remains of the general form of a two-
dimensional Fourier transform, but with the complication that a multiplicative quadratic phase fac-
tor is introduced, yielding a relation between input and focal-plane fields given by

U x y

i
k
f

d
f

x y

i f
Uf ( , )

exp ( )
2

1 2 2

ii

i
f

x y d d( , )exp ( )
2 (6)

Three additional Fourier transform geometries should be mentioned for completeness. One is 
the case of an object transparency placed directly against the lens in Fig. 1, either in front or in back 
of the lens. This is a special case of Eq. (6), with d set equal to 0, yielding

U x y

i
k
f

x y

i f
Uf i( , )

exp ( )

( , )exp
2

2 2

i
f

x y d d
2

( )
(7)

Another situation of interest occurs when the object transparency is located behind the lens L2,
a distance d from the focal plane, as shown in Fig. 2. In this case the relationship between the fields 
transmitted by the object and incident on the focal plane becomes

U x y

i
k
d

x y

i d
f
d

Uf i( , )

exp ( )

( , )e
2

2 2

xxp ( )
i

d
x y d d

2 (8)
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Note that now the scaling distance in the Fourier kernel is d, rather than the focal length f. Therefore, 
by moving the object toward or away from the focal plane, the transform can be made smaller or 
larger, respectively.

While the Fourier transform plane in all the above examples has been the rear focal plane of the 
lens L2, this is not always the case. The more general result states that the Fourier transform always 
appears in the plane where the original point-source of illumination is imaged by the optical system. 
In the previous examples, which all involved a collimating lens L1 before the object transparency, 
the source was indeed imaged in the rear focal plane of L2, where we asserted the Fourier transform 
lies. However, in the more general case depicted in Fig. 3, the point source of light lies in plane P1
and its image lies in plane P2, which for this geometry is the Fourier transform plane. A single lens 
L1 performs both imaging of the source and Fourier transformation of the fields transmitted by the 
input transparency. If the input is placed to the right of the lens, at distance d from the image of the 
source, then the Fourier transform relation is identical to that presented in Eq. (8), for it does not 
matter what optical system illuminated the transparency with a converging spherical wave, only 
what distance exists between the input and the plane where the source is imaged.

If the input transparency is placed to the left of the single lens, as shown in Fig. 3, the resulting 
relationship between the fields transmitted by the object Ui and the fields across the plane where the 
source is imaged, Uf , becomes

U x y
d

i d d z
i

k
d

zd

d d zf ( , )
( )

exp
( )

1

2 1 2

1

2
2

1
2

1

U i
d

d d zi ( , )exp
(

2 1

2 1 ))
[ ]x y d d

(9)

where the meanings of z, d1, and d2 are shown in Fig. 3, and k = 2 / . In this relation, d1 and d2 are 
connected through the lens law, 1 1 11 2/ / /d d f. It can be shown quite generally that the effective 
distance d associated with the Fourier transform kernel is d d d d z2 1 1/ ( ), while the quadratic phase 
factor is that associated with a diverging spherical wave in the transform plane that appears to have 
originated on the optical axis in the plane of the input transparency.

11.5 SPATIAL FILTERING

Given that Fourier transforms of optical fields occur so directly in coherent optical systems, it seems 
natural to consider the intentional manipulation of such spectra for the purposes of signal or image 
processing. Given that a signal or image has been introduced into the coherent optical system, either 
by means of photographic film or by means of an electronically or optically controlled spatial light 
modulator (see Chap. 6, “Acousto-Optic Devices,” in Vol. V), the idea is to insert in the plane where 
the Fourier transform occurs a transparency (again either film or a spatial light modulator) which 
intentionally alters the fields transmitted through that plane. A second Fourier transforming lens 

FIGURE 2 Fourier transform geom-
etry with the object behind the lens.

FIGURE 3 Fourier transform geom-
etry using a single lens.
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then returns the observer to an image plane, where the filtered version of the input can be measured 
or extracted. The simplest geometry from the conceptual point of view is that shown in Fig. 4.

The lens L1 is again a collimating lens, the lens L2 is a Fourier transforming lens, and the lens L3 is 
a second Fourier transforming lens. The fact that a sequence of two Fourier transforms takes place, 
rather than a Fourier transform followed by an inverse Fourier transform, results simply in an inver-
sion of the image at the output of the system.

Systems of this type form the basis for coherent optical spatial filtering, although the detailed 
geometry of the layout may vary. We will discuss several such spatial filtering problems in later 
sections. For the moment it suffices to say that if a filtering system is desired to have a transfer 
function H f fX Y( , ) then the amplitude transmittance of the transparency inserted in the Fourier 
plane should be

t H
f fA( , ) , (10)

where  has been defined, f is the focal length of the Fourier transforming lenses (assumed identical), 
and ( , ) represent the spatial coordinates in the filter plane.

11.6  COHERENT OPTICAL PROCESSING OF 
SYNTHETIC APERTURE RADAR DATA

The earliest serious application of coherent optics to signal processing was to the problem of pro-
cessing data gathered by synthetic aperture radars. We explain the synthetic aperture principle, and 
then discuss optical signal-processing architectures that have been applied to this problem.

The Synthetic Aperture Radar Principle

The synthetic-aperture radar problem is illustrated in Fig. 5. An aircraft carrying a stable local oscil-
lator and a side-looking antenna flies a straight-line path, illuminating the terrain with microwave 
energy and detecting the returned energy reflected and scattered from that terrain. In the simplest 
case, resolution in range (i.e., perpendicular to the aircraft flight path) is obtained by pulse echo 
timing, the usual radar range–measurement technique. Resolution in azimuth (the direction parallel 
to the flight path) is obtained by processing the Doppler-shifted returns, as will be explained. For the 
purpose of explaining the azimuth imaging, we neglect the pulsed nature of the radiation emitted by 
the aircraft, an approximation allowable because of the pulse-to-pulse coherence of the signals. The 
goal of the system is to obtain a two-dimensional image of the microwave reflectivity of the ground 
illuminated by the aircraft. The resolution of the system is not limited by the size of the antenna that 
is carried by the aircraft—in fact resolution increases as the size of the antenna is decreased. The sys-
tem coherently combines the signals received along a portion of the flight path, thereby synthesizing 
the equivalent of a much longer antenna array.

FIGURE 4 Spatial filtering system based 
on double Fourier transform.
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If we consider the signal received at the aircraft as a function of time, originating from a single 
point scatterer on the ground, that signal will suffer an upward frequency shift as the aircraft 
approaches the scattered and a downward frequency shift as the aircraft flies away from the scat-
terer. This chirping signal is beat against the stable local oscillator in the aircraft, a bias is added, 
and the new signal is then recorded on a strip of film. Figure 6 shows the recording format. In the 
vertical direction, different scatterers are separated by the pulse echo timing, each being imaged on 
a separate horizontal line of the film. In the horizontal direction, the time histories of the chirping 
azimuth signals from different scatterers are recorded.

The signal recorded from a single scatterer is in fact an off-axis one-dimensional Fresnel zone 
plate, and as such is capable of imaging light in the horizontal direction to a focus. Such a focus 
constitutes the azimuthal image of the point scatterer that gave rise to this zone plate. However, 
the chirp rates, and therefore the focal lengths, of the zone plates produced by scatterers at differ-
ent ranges are unfortunately not the same. The focal length is in fact proportional to the distance 
of the scatterer from the aircraft. Thus the focal points of scatterers at different ranges from the 
aircraft lie on a tilted plane with respect to the film plane, whereas the range images lie in the plane 
of the film. Thus the optical processing system must be designed to bring the two different images 
into coincidence.

Optical Processing Systems

The earliest system used for optical processing of synthetic aperture radar data is illustrated in Fig. 7.7

This processor uses a conical optical element, called an axicon, to change the focal lengths of all hori-
zontal zone plates to infinity, thus moving the azimuth image to infinity. A cylindrical lens is placed 
one focal length from the film to likewise move the range image to infinity, and a spherical lens is 
placed one focal length from the final image plane to bring the infinitely distant azimuth and range 
planes back to a common focus.

FIGURE 5 Aircraft flight path. FIGURE 6 Recording format for signals received.

FIGURE 7 Processor using an axicon.
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The magnification achieved by such a system is a function of range, so the output is recorded 
through a vertical slit. As the input film is drawn through the system, an output film strip is like-
wise drawn past the slit in synchronism, with the result that an image with proper magnification is 
recorded at the output.

Following the use of such an optical system to produce images, a far more sophisticated pro-
cessing system known as the “tilted-plane processor” was developed.8 The architecture of this 
system is illustrated in Fig. 8. In this case an anamorphic telescope is used to bring the range and 
azimuth planes into coincidence with a constant magnification, allowing a full two-dimensional 
image to be recorded at the output at one time. Again motion of the input film and the output 
film takes place in synchronism, but the throughput of the system is much higher due to the 
absence of the output slit.

From the very fundamental work on processing synthetic aperture radar signals at the University 
of Michigan during the late 1950s and early 1960s came a multitude of extraordinary inventions, 
including holograms with an off-axis reference wave and the holographic matched filter, or Vander 
Lugt filter, discussed in Sec. 11.8.

11.7  COHERENT OPTICAL PROCESSING 
OF TEMPORAL SIGNALS

An important subclass of information-processing operations is those that are applied to one-
dimensional signals that are functions of time. Such signals can be processed by coherent optical-
filtering systems once a suitable transducer is found to convert time-varying voltages representing the 
signals into space-varying wavefields. The best developed and most common of such transducers is 
the acousto-optic cell.9,10

Acousto-Optic Cells for Inputting Signals

A time-varying electrical signal can be changed to an equivalent one-dimensional space-varying dis-
tribution of field strength by means of acousto-optic devices. In bulk form, such devices consist of a 
transducer, to which a time-varying voltage representing an RF signal is applied, and a transparent 
medium into which compressional waves are launched by the transducer. The RF signal is assumed 
to contain a carrier frequency, which generates a dynamic grating and, when illuminated by coher-
ent light, produces a number of different diffraction orders, of which the 1 and 1 orders are of 
primary interest. Any modulation, in amplitude or phase, that may be carried by the RF signal is 
transferred to the spatial distributions of these diffraction orders.

Anamorphic
telescope

Range
plane

Azimuth
plane

Tilted input
plane

Tilted output
plane

Output
image

FIGURE 8 The tilted-plane processor.
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Acousto-optic diffraction is characterized as either Raman-Nath diffraction or Bragg diffrac-
tion, depending on the relations that exist between the cell thickness and the period of the acoustic 
wave generated by the RF carrier. For cells that are sufficiently thin, Raman-Nath diffraction takes 
place. The acousto-optic cell then acts like a thin phase grating, generating a multitude of diffraction 
orders. For cells that are sufficiently thick, Bragg diffraction takes place. In this case, high diffrac-
tion efficiency into a single grating order can be achieved if the acoustic grating is illuminated at the 
Bragg angle B which satisfies

sin B

2 2
(11)

In this case most of the optical power is transferred to the 1 diffraction order, and other orders, 
including the 1 and 0 orders can be neglected.

Figure 9 illustrates Raman-Nath and Bragg diffraction from an acousto-optic cell. (t) represents 
the voltage driving the cell transducer. For modern-day signal-processing applications, which involve 
very high microwave frequencies, the Bragg cell is invariably used, and the situation on the right-
hand side of the figure is the one of interest.

The signal (t) is of the form (in complex notation)

( ) ( )exp[ ( ( ))]t A t i v t t2 0
(12)

where A(t) is the amplitude modulation of the carrier, (t) is the phase modulation of the carrier, 
and v0 is the center frequency. If the speed of propagation of acoustic waves in the medium of the 
Bragg cell is V, then emerging from the right of that cell will be a spatial complex field distribution 
of the form

U x t A x Vt i x Vt( , ) ( )exp[ ( )] (13)

where the dependence on y is suppressed due to uniformity of U in that dimension. Thus the tem-
poral structure of the signal (t) has been changed to a spatial structure of the optical field U(x, t).

The Bragg Cell Spectrum Analyzer

The most common use of coherent optics for signal processing is a method for finding and displaying 
the frequency (Fourier) spectrum of the electrical signal (t) applied to the cell. To construct such a 
spectrum analyzer, we follow the Bragg cell of Fig. 9 with a positive lens, which then Fourier trans-
forms the wavefield emerging from the cell, as shown in Fig. 10. A detector array placed in the Fourier 

(a)

v(t)

(b)

v(t)

2 B

FIGURE 9 Acousto-optic diffraction in the (a) Raman-Nath and (b)
Bragg regimes.
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plane then measures the amount of signal power present in each frequency bin subtended by a 
detector element. Note the spectrum analysis is performed over a finite sliding window, namely, the 
window of time stored in the Bragg cell itself. Figure 10 shows a diagram illustrating the Bragg cell 
spectrum analyzer.

Assuming perfect optics, the resolution of such a spectrum analyzer is determined by the dif-
fraction limit associated with the space window that is being transformed. The spatial dimension of 
a resolution element is given by x f L( )/  where L is the length of the cell and f is again the focal 
length of the lens. Given the mapping from time to space that takes place in the cell, it follows that 
the temporal resolution of the spectrum analyzer (in hertz) is v V L( )/ .

Bragg cell spectrum analyzers have been built with center frequencies of more than 1 GHz, 
with bandwidths approaching 1 GHz, and time bandwidth products (equivalent to the number of 
resolvable spectral elements) of the order of 1000. While the vast majority of work on this type of 
spectrum analyzer has used bulk devices (e.g., bulk Bragg cells, discrete lenses, etc.), work has also 
been carried out on integrated versions. Such devices use planar waveguides rather than free-space 
propagation, surface acoustic waves rather than bulk acoustic waves, integrated optic lenses, etc. 
Such systems are more compact than those based on bulk approaches, but their performance is so 
far somewhat inferior to that of the more conventional bulk systems.

The chief difficulty encountered in realizing high-performance Bragg cell spectrum analyzers is 
the dynamic range that can be achieved. The dynamic range refers to the ratio of the largest spectral 
component that can be obtained within the limit of tolerable nonlinear distortion, to the smallest 
spectral component that can be detected above the noise floor.

Acousto-Optic Correlators

Many signal detection problems require the realization of correlators that produce cross-correlations 
between a local reference signal and an incoming unknown signal. A high cross-correlation between 
the reference and the unknown signal indicates a high degree of similarity between the two signals, 
while a low correlation indicates that the two signals are not very similar. Thus correlators play an 
important role in signal detection and recognition.

Given two complex-valued signals 1(t) and 2(t), the cross-correlation between those signals is 
defined as

C t t dt( ) ( ) ( )1 2 (14)

When 1 and 2 are identical, C( ) achieves a peak value at the relative delay  that causes the two 
signals to be identically aligned in time.

FIGURE 10 Bragg cell spectrum 
analyzer.
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Two distinctly different architectures have been developed for using acousto-optic systems for 
cross-correlating wideband signals. We discuss each of these techniques separately.

The Space-Integrating Correlator The older of the two architectures is known as the space-integrating 
correlator. As the name indicates, the integration inherent in the correlation operation is carried out 
over space. The variable delay  is achieved by allowing one signal to slip past the other in time.

Figure 11 shows the structure of a time-integrating correlator. One of the signals, 1(t), is intro-
duced by means of an input Bragg cell. Spatial filtering is used to eliminate any residual of the zeroth 
and unwanted first diffraction orders, retaining only a single first order. The second signal, the refer-
ence 2(t), is stored on a transparency, complete with a spatial carrier frequency representing the 
center frequency and acting as a high-frequency amplitude- and phase-modulated grating. The inte-
gration over space is provided by the final output lens. The particular diffraction order used in the 
final transparency is chosen to yield the conjugate of 2(t). A point detector is used at the output, 
and different relative delays between the two signals are achieved simply by allowing 1(t) to slide 
through the Bragg cell.

The Time-Integrating Correlator A different approach to realizing the temporal cross-correlation 
operation is the so-called time-integrating correlator.11,12 The architecture of a time-integrating 
correlator is illustrated in Fig. 12. Spatial filtering selects one component that has undergone zeroth-
order diffraction by the first cell and first-order diffraction by the second, and another component 
that has undergone first-order diffraction by the first cell and zeroth-order by the second. These two 
components interfere on a time-integrating detector array.

As the name implies, the correlation integration is in this case carried out by temporal integra-
tion on an array of time-integrating detectors. Note that the two electrical signals are introduced at 
opposite ends of the Bragg cells, with the result that at each spatial position on the Bragg cell pair the 
two signals have been delayed relative to one another by different amounts, thus introducing the 

FIGURE 11 The time integrating correlator.

FIGURE 12 Time-integrating correlator.
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relative delay required in the correlation integral. The lens on the right images the pair of Bragg cells 
onto the detector array. Thus different detector elements measure the interference of the two signals 
with different relative delays, one portion of which yields

Re{ ( )} ReC x t
x L

V
t

x L
T 1 2

2/ //2
V

dt (15)

which is the real part of the correlation integral of interest. Here L represents the length of the Bragg 
cells, V the velocity of propagation of acoustic waves,  the total integration time of the detector, and 
x is the position of a particular detector on the detector array at the output. Note that for the position 
x on the detector array the two signals have been delayed relative to each other by the amount

2x
V

(16)

Other variants of both space-integrating and time-integrating correlators are known but will not 
be presented here. Likewise, many architectures for other types of acousto-optic signal processing 
are known. The reader may wish to consult Ref. 13 for more details.

11.8  OPTICAL PROCESSING OF TWO-DIMENSIONAL 
IMAGES

Because optical systems are fundamentally two-dimensional in nature, they are well suited to pro-
cessing two-dimensional data. The most important type of two-dimensional data is imagery. Thus 
we consider now the application of optical information processing systems to image processing. The 
applications of optical processing in this area can be divided into two categories: (1) pattern detec-
tion and recognition, and (2) image enhancement.

Optical Matched Filtering for Pattern Recognition

By far the most well-known approach to pattern recognition is by means of the matched filter.14

While this approach has many known defects in the pattern recognition application, it nonetheless 
forms the basis for many other more sophisticated approaches.

The Matched Filter A linear invariant filter is said to be “matched” to a certain spatial image s(x, y)
if the impulse response (point-spread function) h(x, y) of that filter is of the form

h x y s x y( , ) ( , ) (17)

When a general signal (x, y) is applied to the input of such a filter, the output (the convolution of 
the input and the impulse response) is given by

w x y h x y d d( , ) ( , ) ( , )

( , )ss x y d d( , )

(18)

which is the cross-correlation between the signals (x, y) and s(x, y). Thus the output of a matched 
filter is the cross-correlation between the input signal and the signal for which the filter is matched.
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In the frequency domain, the convolution relation becomes a simple product relation. The 
frequency domain equivalent of Eq. (18) is

W f f H f f V f f S f f V fX Y X Y X Y X Y X( , ) ( , ) ( , ) ( , ) ( ,, )fY
(19)

Thus the transfer function of the matched filter is the complex conjugate of the spectrum of the sig-
nal to which the filter is matched.

The coherent optical realization of the matched filter utilizes a system identical with that shown 
previously in Fig. 4, where the Fourier domain transparency is one with amplitude transmittance 
proportional to S (fX, fY). The output of the filter, appearing at the plane on the far right in Fig. 4, 
consists of a bright spot at each location where the signal s(x, y) is located within the input field.

Prior to 1964, a key difficulty in the realization of matched filtering systems was the construction 
of the Fourier domain filter with the proper amplitude transmittance. To control the amplitude and 
phase transmittance through the Fourier plane in a relatively complicated manner was often beyond 
the realm of possibility. However, in 1964 Vander Lugt published his classic paper on holographi-
cally recorded matched filters, and many new applications became possible.

The Vander Lugt Filter The method introduced by Vander Lugt15 for recording matched filters 
is shown in Fig. 13. It is assumed that a mask can be constructed with amplitude transmittance 
proportional to the desired impulse response s ( x, y), which in pattern recognition problems 
is often real and positive. That mask is illuminated by coherent light and Fourier transformed by a 
positive lens. In the Fourier domain, the spectrum S (fX, fY) is allowed to interfere with an angularly 
inclined reference wave, often a plane wave. The result is an intensity pattern with a high spatial 
frequency carrier, which is amplitude modulated by the amplitude distribution associated with the 
incident spectrum, and phase modulated by the phase distribution of that spectrum. This recording 
is in fact a Fourier hologram of the desired point-spread function16 (see also Chap. 33, “Holography 
and Holographic Instruments,” in this volume). The film used for recording in the Fourier domain 
responds to the incident optical intensity. With proper processing of the film, one of the grating 
orders of the resulting transparency yields a field component proportional to the desired field,

t S
f f

iA ( , ) , exp ( )2 (20)

where ( , ) are the spatial coordinates in the filter plane, and  is the spatial frequency of the carrier. 
Thus the transmittance required for realizing the matched filter has been achieved, with the exception 
of the linear exponential term, which serves simply to shift the desired output off the optical axis.

The filter constructed as above is placed in the Fourier domain of the system in Fig. 4 and pro-
vided the correct region of the output plane in that figure is examined, the matched filter response is 
found. In a second region of the output plane, mirror symmetric with the matched filter region, the 
convolution of the signal s(x, y) and the input (x, y) can be found.

Prior to Vander Lugt’s invention the only matched filters that could be realized in practice were 
filters with very simple transfer functions S (fX, fY). The significance of the Vander Lugt filter is that 
it extends the domain for which filters can be realized to those with reasonably simple impulse 
responses s( x, y), a case more typically encountered in pattern recognition.

FIGURE 13 Recording a Vander Lugt filter.
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Deficiencies of the Matched Filter Concept While the Vander Lugt filter provides an elegant solu-
tion to the problem of realizing coherent optical matched filters, nonetheless the use of coherent 
optics for pattern recognition has been very restricted in its applications. A major reason for this 
limited applicability can be traced to deficiencies of the matched filter concept itself, and is not due 
to the methods used for optical realization. The matched filter, in its original form, is found to be 
much too sensitive to parameters for which lack of sensitivity would be desired. This includes pri-
marily rotation of the image and scale change of the image. Thus a matched filter that responds per-
fectly to the desired signal in its original rotation and scale size may not respond at all to that signal 
when it is rotated and magnified or demagnified.

Many attempts have been made to remove these undesired sensitivities of the matched filter 
(see for example, Refs. 17 and 18). These include the use of Mellin transforms and polar coordinate 
transformations to remove scale-size sensitivity and rotation sensitivity, and the use of circular har-
monic decompositions to remove rotation sensitivity. These attempts have had varying degrees of 
success, but unfortunately they generally destroy one insensitivity that is present for a conventional 
matched filter, namely, insensitivity to translation of the signal. For a conventional matched filter, 
when an input s(x, y) is translated, the resulting bright spot at the output translates in response. 
Realization of rotation invariance generally removes translation insensitivity, a serious loss.

Unfortunately, to date there have been no commercially successful applications of coherent opti-
cal matched filtering to pattern recognition, although several attempts to commercialize the technol-
ogy have been made.

Coherent Optical Image Enhancement

Coherent optical spatial filtering systems can also be applied to the problem of image enhancement.4

Image enhancement problems come in a wide variety of types, ranging from simple operations, 
such as the suppression of periodic noise in a nonperiodic image, to more complex operations, such 
as restoring an image that has been degraded by a known blur. We focus here on image restoration, 
since it is the most challenging of these problems.

The Inverse Filter A common type of image restoration problem arises when an image produced 
by an incoherent imaging system has been blurred by a known, space-invariant, linear point-spread 
function. Let i(x, y) represent the intensity of the blurred image, o(x, y) represent the intensity of the 
object, and b(x, y) represent the intensity point-spread function of the blur. These three quantities 
are related through a convolution equation,

i x y b x y o d d( , ) ( , ) ( , ) (21)

The frequency domain equivalent is the relation

I f f B f f O f fX Y X Y X Y( ) ( ) ( ), , , (22)

where I, O, and B are the Fourier transforms of the lowercase quantities. The quantity B is the trans-
fer function of the blur, and is assumed to be perfectly known.

Examination of Eq. (22) suggests an obvious approach to image restoration. Convolve the 
blurred image i(x, y) with a kernel that provides a deblurring transfer function that is the recipro-
cal of the blur transfer function, i.e., having a transfer function given by H f f B f fX Y X Y( , ) ( , )1 . For 
obvious reasons, such a filter is referred to as an inverse filter. The restored image then is given, in the 
frequency domain, by

R f f B f f O f f H f f

B

X Y X Y X Y X Y( , ) [ ( , ) ( , )] ( , )

[ ( ff f O f f B f f

O f f

X Y X Y X Y

X Y

, ) ( , )] ( , )

( , )

1 (23)
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Returning to the space domain we see that result of the image restoration operation is perfect recov-
ery of the original object o(x, y).

The inverse filter is an elegant mathematical solution to the restoration problem, but it lacks 
practicality. Many problems exist, both with the concept and with its implementation. The concep-
tual flaw, which is the most serious drawback, arises because the problem formulation completely 
neglected the inevitable presence of noise in the image i(x, y). The inverse filter boosts those spatial 
frequency components the most that were suppressed the most by the blur. In such regions of the 
frequency domain there is little or no image information to be boosted, but there is always noise, 
which then is amplified to the point that it dominates the restored image.

Other problems arise due to the very large dynamic range required of the deblurring filter 
transfer function in many cases. For the above reasons, the inverse filter is never used in practice, 
although it is an important concept to be aware of.

The Wiener Filter The Wiener filter overcomes many of the difficulties of the inverse filter by 
explicitly including noise in the basic imaging model. In this case the detected image intensity is 
represented by

i x y b x y o d d n x y( , ) ( , ) ( , ) ( , ) (24)

where o(x, y) and n(x, y) are regarded as statistically stationary random processes. The goal of the 
restoration process is now to choose a restoration filter that will minimize the mean-squared error 
between the restored image r(x, y) and the original object o(x, y). The solution to this problem can 
be shown to be a restoration filter having a transfer function of the form

H f f
B f f

B f f
P f f

P

X Y
X Y

X Y
N X Y

O

( , )
( , )

( , )
( , )2

(( , )f fX Y

(25)

where PN and PO represent the power spectral densities of the respective noise and object random 
processes.

The Wiener filter provides a balance between uncompensated blur and residual noise in just such 
a way as to minimize mean-squared error. Note that at spectral locations where the object power is 
much greater than the noise power, the Wiener filter approaches an inverse filter, while at spectral 
locations where the noise power dominates, the Wiener filter behaves as a matched filter with con-
siderable attenuation.

Coherent Optical Realization of Inverse and Wiener Filters While the inverse filter is primarily of 
theoretical interest, nonetheless there is much to be learned from consideration of how one might 
realize an approximation to such a filter. In general, the transfer function B(fX, fY) is complex-valued, 
or at least has sign reversals implying 180° phase shifts at some frequencies. This implies that the 
inverse filter must control both the magnitude and the phase of the transmitted fields. In most cases 
this implies a holographic filter and possibly a second absorbing filter.

The exact blur impulse response is assumed to be known. From a blurred image of a known 
point source, a photographic record of the blur impulse response can be obtained. If a filter is 
recorded in the geometry of Fig. 13, with the blur impulse response placed in the plane labeled 
“input,” then an interferometrically generated transparency results, one component of amplitude 
transmittance being proportional to the conjugate of the blur transfer function

t B f f iA X Y( , ) ( , )exp( )2 (26)

where  is again a carrier frequency introduced by the offset reference wave. Passage of the blurred 
image through a coherent optical filtering system with this transfer function will correct any 
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frequency-domain phase shifts associated with the blur, but will not restore the magnitude of the 
object spectrum correctly.

To correct the spectral magnitudes we require an additional transparency to be sandwiched 
with the above holographic filter. This filter can be generated in a number of ways, but the easiest 
to understand is a method that rests on properties of the photographic process. If a photographic 
emulsion is exposed to an optical intensity I( , ), then over a certain dynamic range the amplitude 
transmittance of the resulting negative transparency will be of the form

t K IA ( , ) [ ( , )] /2 (27)

where  is the so-called gamma of the photographic process. If the intensity to which the emulsion 
is exposed is simply the intensity in the Fourier transform of the blur transfer function, as obtained 
by optically Fourier transforming the blur spread function (for example, as in the system of Fig. 13 
but with the reference wave blocked), then if a gamma equal to 2 is achieved with the photographic 
processing, the second transparency will have amplitude transmittance

t K B
f fA ( , ) ,

2

(28)

If the two transparencies discussed above are now placed in contact, the overall amplitude trans-
mittance will be the product of the two individual transmittances, and the effective filter transfer 
function realized by the coherent optical processor will be

H f f
B f f

B f f B f fX Y
X Y

X Y
X Y

( , )
( , )

( , ) ( , )2

1
(29)

which is precisely the transfer function of the desired inverse filter. However, in practice there will be 
errors in this filter due to the limited dynamic range of the photographic media.

To realize an approximation to the Wiener filter, a different recording method can be used. In 
this case the full holographic recording system illustrated in Fig. 13 is used, including the reference 
beam. However, the intensity of the reference beam is made weak compared with the peak intensity 
of the |B|2 component. Furthermore, the recording is arranged so that the exposure falls predomi-
nantly in a range where the amplitude transmittance of the developed transparency is proportional 
to the logarithm of the intensity incident during exposure. Now if amplitude transmittance is pro-
portional to the logarithm of incident exposure, the changes of amplitude transmittance, which lead 
to diffraction of light by the transparency, will obey

t E
E

E
A ( )log (30)

where E  represents changes in exposure, E represents the average exposure about which the fluc-
tuations occur, and is a proportionality constant. Restricting attention to the proper portion of the 
output plane, the following identifications can be made:

E B i

E B K

ˆ exp ( )

| ˆ |

2

2
(31)

where | ˆ |B 2 is the squared magnitude of the blur transfer function, normalized to unity at the origin, 
while K is the ratio between the reference beam intensity and the maximum value of |B|2. Neglecting 
the exponential term which leads to offset from the origin in the output plane, the amplitude trans-
mittance of the deblurring filter becomes

t
B

B KA

ˆ

| ˆ |2
(32)
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which is precisely the form of the Wiener filter for a constant ratio K of noise power spectral density 
to signal power spectral density.

Thus the Wiener filter has been achieved with a single holographic filter. If the signal-to-noise 
ratio in the blurred image is high, then the reference beam intensity should be much less than the 
object beam intensity (K 1). Bleached filters of this kind can also be made.

11.9  INCOHERENT PROCESSING 
OF DISCRETE SIGNALS

The previous problems examined have all involved signals and images that are continuous functions 
of time or space. We turn attention now to signals that are sampled or discrete functions of time 
or space.

Background

A continuous signal u(t) is sampled at times separated by t yielding a set of P samples u(k t), 
which we represent by the column vector

u

u
u

uP

1

2 (33)

For discrete signals, the continuous operations associated with convolution and correlation become 
matrix-vector operations. Thus any linear transformation of an input signal u is represented by

v Mu (34)

where v is a length Q output vector containing samples of the output signal, and M is a P Q matrix

M

m m m
m m m

m m m

P

P

Q Q QP

11 12 1

21 22 2

1 2

(35)

In the sections that follow we examine some of the optical approaches that have been proposed 
and demonstrated for this kind of operation.

The Serial Incoherent Matrix-Vector Multiplier

An important starting point is provided by the serial incoherent matrix-vector multiplier invented 
by Bocker19 (see also Ref. 20), and illustrated in Fig. 14. The elements of the vector u are applied as 
current pulses, with heights proportional to the ui, to an LED. Light from the LED floods the matrix 
mask, which contains Q P cells, each with an intensity transmittance proportional to a different 
mij. The light transmitted by the matrix mask then falls on a two-dimensional CCD detector array, 
used in an unusual mode of operation. Charges are transferred horizontally along the rows of the 
detector array. In the first clock cycle, when the first element of the input vector is generated by the 
LED, the charge deposited in the first column of the detector array can be represented by a vector 
with elements c1j = m1ju1. This set of charge packets is now transferred one column to the right, and 
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the second pulse of light, proportional to u2 is emitted. In the second column of the detector array a 
new charge is added to each of the existing charges, yielding a new set of charges c2j = m1ju1 m2ju2.
After P clock cycles the column on the far right-hand side of the detector array contains a charge 
vector c = Mu, which within a proportionality constant is the desired output vector v.

Thus the elements of the output vector are obtained in parallel from the right-hand column of 
the detector array. To compute the output vector, P cycles of the system are necessary, one for each 
element of the input vector. Multiplications are performed optically by passage of light through the 
matrix mask, while additions are performed electrically by charge addition.

The Parallel Matrix-Vector Multiplier

A fundamentally faster system for performing the matrix-vector product was discovered in 1978.21

The architecture of this system is shown in Fig. 15.
The elements of the vector u are now entered in parallel as brightness values on an array of LEDs 

or laser diodes. The optics, not shown here, spread the light from each source in the vertical direction 

FIGURE 15 Parallel matrix-vector multiplier.

FIGURE 14 Serial matrix-vector multiplier.
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to cover the height of the matrix mask, while imaging each source onto an individual column in the 
horizontal direction. Passage of the light through the matrix mask multiplies the input vector, ele-
ment by element, by the elements of the row vectors of the mask. The second set of optics, again not 
shown, adds the light transmitted by each row of the mask, placing an intensity on each element of 
the detector array that is proportional to the sum of the products produced by one row of the mask 
or, equivalently, the inner product of the input vector and a unique row vector of the matrix. In this 
case the detectors are of the nonintegrating type, and nearly instantaneously produce an output cur-
rent proportional to an element of the output vector v. In this way a series of input vectors can be 
flowed through the system at high speed.

In this case both the multiplications and the additions are performed optically. A different out-
put vector can be obtained with each cycle of the system. The result is a fundamentally faster system.

Systems of this type have had a broad impact on optical signal processing, with applications 
ranging from photonic switching22 to neural networks.23

The Outer Product Processor

Another fundamentally different architecture is represented by the outer product processor,24 shown 
in Fig. 16.

The goal in this case is to calculate the outer product C of two matrices A and B. Illustrating with 
a simple 3 3 example, the outer product is defined by the equation

C
a
a
a

b b b
a
a
a

11

21

31

11 12 13

12

22

322

21 22 23

13

23

33

b b b

a

a

a

b b b31 32 33
(36)

The system of Fig. 16 accomplishes this operation by use of two Bragg cell arrays oriented in 
orthogonal directions, and a time-integrating two-dimensional detector array. A column of A is 
entered in parallel on the first Bragg cell array, and a row of B on the second. The first box labeled 
“optics” images one array onto the other (with appropriate spatial filtering as needed to convert 
phase to intensity). The second box labeled “optics” images that product onto the detector array. 
In one cycle of the system, one of the outer products in the summation of Eq. (36) is accumulated 
on the elements of the detector array. In this example, three cycles are necessary, with addition of 
charge at the detector, to accumulate the full outer product of the matrices. More generally, if A is
P Q (i.e., P rows and Q columns) and B is Q P, then the detector array should be P P in size, 
and Q cycles are required to obtain the full outer product.

FIGURE 16 Outer product processor.
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Other Discrete Processing Systems

A multitude of other discrete processing systems have been proposed throughout the 1980s and 
1990s. Worth special mention here are the optical systolic matrix-vector processor of Caulfield et al.25

and the SAOBIC processor of Guilfoyle.26 We refer the reader to the original references for details.

11.10 CONCLUDING REMARKS

Analog optical signal and image processing were strong areas of research during three decades, the 
1960s through the 1980s. Many ingenious systems were devised, each motivated by one or more 
applications. With some exceptions, these systems seldom survived for the particular application 
they were conceived for, but often they led to new applications not envisioned by their inventors. The 
majority of applications of this technology have been to defense-related problems. Research emphasis 
has shifted away from analog signal processing, as described above, towards the application of optics 
to providing interconnects between and within digital computers. However, the intellectual base 
formed by previous analog processing experience continues to strongly influence work in other, more 
modern disciplines, including integrated optics, modern microscopy, coherence tomography, ultrafast 
optical pulses, and digital image processing.
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12.1 GLOSSARY

c velocity of light

d thickness

E electric field

k wave vector (k 2 / )

k extinction coefficient

m number of reflections

N retardation per wavelength

n real refractive index
n complex refractive index

n̂ unit normal vector

P degree of polarization

p parallel polarization

R intensity reflection coefficient

r amplitude reflection coefficient

r position vector

s senkrecht or perpendicular polarization

t amplitude transmission coefficient

t time

z cartesian coordinate

, , a, b, c, d intermediate parameters

absorption coefficient

12.3
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2 nd cos /

phase angle

dielectric constant

effective refractive index

B Brewster angle

angle

absorption index

wavelength

extinction ratio

conductivity

radian or angular frequency

laplacian operator

0 first medium

1 second medium

The material on polarization is abridged from the much more complete treatment by Bennett 
and Bennett.1 Information on polarizers is found in Chap. 13, “Polarizers,” in this volume.

12.2 BASIC CONCEPTS AND CONVENTIONS

Optical polarization was discovered by E. L. Malus in 1808. A major triumph of nineteenth- and 
early twentieth-century theoretical physics was the development of electromagnetic theory and the 
demonstration that optical polarization is completely described by it. This theory is phenomeno-
logical in that instead of trying to explain why materials have certain fundamental characteristics, it 
concentrates on the resulting properties which any material with those characteristics will display. In 
the optical case, the polarization and all other optical properties of a material are determined by two 
or more phenomenological parameters called optical constants. Electromagnetic theory has little or 
nothing to say about why a material should have these particular optical constants or how they are 
related to its atomic character. This problem has been extensively investigated in twentieth-century 
solid-state physics and is still only partially understood. It is clear, however, that the optical constants 
are a function not only of the atomic nature of the material, i.e., its position in the periodic table, 
but are also quite sensitive to how it is prepared. Perhaps optical parameters would be a better term 
than optical constants. Nevertheless, the concept of optical constants is an extremely useful one and 
makes it possible to predict quantitatively the optical behavior of a material and, under certain con-
ditions, to relate this behavior to nonoptical parameters.

Since the optical constants are so fundamental, differences in their definition are particularly 
unfortunate. The most damaging of these differences arise from an ambiguity in the initial deri-
vation. Maxwell’s equations, which form the basis of electromagnetic theory, result in the wave 
equation, which in mks units is

2
2

2

2 2

4
E

E E

c t c t
(1)

where 2  laplacian operator
E  electric field vector of traveling wave
t  time
c  velocity of light

 conductivity of material at frequency of wave motion
 dielectric constant of material at frequency of wave motion
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A solution to this equation is

E E k r0 2
exp[ ]exp expi t i

z
( ) ( ) (2)

where E0  amplitude of wave
 angular frequency of wave
phase vector

k wave vector
r position vector
z direction wave is traveling

absorption coefficient

The wave vector k is assumed to be real and equal to ( ) ˆ2 / m n, where m is the wavelength in the 
medium in which the wave is traveling and n is a unit vector in the k direction.  Equation (2) can 
also be written in terms of n, the complex index of refraction, defined as

n n ik (3)

where n is the index of refraction and k the extinction coefficient. In this form, Eq. (2) is

E E i t
nz
c0 exp (4)

when 0. By setting the imaginary part of the exponent equal to zero one obtains

z
c
n

t (5)

To show that Eq. (4) represents a wave traveling in the positive z direction with phase velocity c/n, 
we note that the phase of the wave in Eq. (4) is t nz c( )/ . For a wave propagating with a 
constant phase, d , so that dt n c dz d( )/ 0, and hence the phase velocity p  dz/dt  c/n.2

The amplitude of the wave at z is, from Eq.(4),

| |E E e kz
0

2 (6)

where  is the wavelength in vacuum. The wave is thus exponentially damped, and the amplitude 
penetration depth, or distance below an interface at which the amplitude of the wave falls to 1/e
times its initial value, is z /2 k. The absorption coefficient , or the reciprocal of the distance in 
which the intensity of the wave falls to 1/e times its initial value, is

4 k (7)

This development follows that commonly given by those working at optical or radio frequencies. The 
confusion in the definition of the optical constants arises because an equally valid solution to Eq. (1) is

E E i t
n z
c0 exp (8)

Frequently the wave vector is taken to be complex, that is, k n( )2 2/ /
m

i , and Eq. (2) is written 
E E k r

0
exp[ ( )]exp ( )i t i .
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which also represents an exponentially damped wave traveling in the z direction provided that the 
complex index of refraction is defined to be

n n ik (9)

where the primes indicate the alternative solution. When the wave equation arises in quantum 
mechanics, the solution chosen is generally the negative exponential, i.e., Eq. (8) rather than Eq. (4). 
Solid-state physicists working in optics thus often define the complex index of refraction as the 
form given in Eq. (9) rather than that in Eq. (3). Equally valid, self-consistent theories can be built 
up using either definition, and as long as only intensities are considered, the resulting expressions 
are identical. However, when phase differences are calculated, the two conventions usually lead to con-
tradictory results. Even worse, an author who is not extremely careful may not consistently follow 
either convention, and the result may be pure nonsense. Some well-known books might be cited in 
which the authors are not even consistent from chapter to chapter.

There are several other cases in optics in which alternative conventions are possible and both are 
found in the literature. Among these, the most distressing are the use of a left-handed rather than a 
right-handed coordinate system, which makes the p and s components of polarized light have the 
same phase change at normal incidence (see Sec. 12.3), and defining the optical constants so that 
they depend on the angle of incidence, which makes the angle of refraction given by Snell’s law real 
for an absorbing medium. There are many advantages to be gained by using a single set of conven-
tions in electromagnetic theory. In any event, an author should clearly state the conventions being 
used and then stay with them.

Finally, the complex index of refraction is sometimes written

n n i( )1 (10)

In this formulation the symbol  is almost universally used instead of k, which is reserved for the 
imaginary part of the refractive index. Although k is more directly related to the absorption coef-
ficient  than  [see Eq. (7)] and usually makes the resulting expressions slightly simpler, in areas 
such as attenuated total reflection, the use of  results in a simplification. To avoid confusion 
between k and , if Eq. (10) is used,  could be called the absorption index to distinguish it from the 
extinction coefficient k, and the absorption coefficient .

12.3 FRESNEL EQUATIONS

The Fresnel equations are expressions for the reflection and transmission coefficients of light at 
nonnormal incidence. In deriving these equations, the coordinate system assumed determines the 
signs in the equations and therefore the phase changes on reflection of the p and s components. In 
accordance with the Muller convention,3 we shall assume that the coordinate system is as shown in 
Fig. 1. In this system, the angle of incidence is 0, and the angle of refraction is 1. The s component 
of polarization is the plane of vibration of the E wave which is perpendicular to the plane of the 
paper, and the p component is the plane of vibration which is in the plane of the paper.  (The plane 
of incidence is in the plane of the paper.) The positive directions for the vibrations are indicated
in Fig. 1 by the dots for Es, Es , and Es  and by the arrows for the corresponding p components. 
Note that the positive direction for Ep  is as shown in the figure because of the mirror-image effect.

Unfortunately, when Malus discovered that light reflected at a certain angle from glass is, as he said, “polarized,” he defined 
the plane of polarization” of the reflected light as the plane of incidence. Since the reflected light in this case has its E vector 
perpendicular to the plane of incidence, the “plane of polarization” is perpendicular to the plane in which the E vector vibrates. 
This nomenclature causes considerable confusion and has been partially resolved in modern terminology by discussing the plane 
of vibration of the E vector and avoiding, insofar as possible, the term plane of polarization. In this chapter, when specifying the 
direction in which light is polarized, we shall give the direction of vibration, not the direction of polarization.
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By convention, one always looks against the direction of propagation of the wave so that the positive 
direction of Ep is to the right and the positive direction of Ep  is also to the right. The positive direc-
tions of the reflected E vectors are not the same as the actual directions of the reflected E vectors. 
These latter directions will depend on the refractive index of the material and may be either positive 
or negative. For example, if n1 > n0, at normal incidence Es  will be in the negative direction and Ep
will be in the positive direction. Thus we say that there is a phase change on reflection of 180° for 
the s wave and a phase change of 0° for the p wave.

With this coordinate system, the Fresnel amplitude reflection coefficients for a single interface, 
obtained from Eq. (4) by setting up and solving the boundary-value problem, can be written

E

E
r

n n

n n
s

s
s

0 0 1 1

0 0 1 1

cos cos

cos cos
(11)

FIGURE 1 Coordinate system for measuring the E vectors of a plane wave reflected 
and refracted at a boundary between a medium of refractive index n0 and a medium of 
refractive index n1 (may be absorbing). The positive direction for the coordinates of the 
Es, Es , and Es  components is out of the paper, and that for the coordinates of the Ep
components is in the plane of the paper, as indicated by the arrows. The wave vector k, the 
direction the wave is traveling z, and angles of incidence and refraction 0 and 1 are also 
shown. (Modified from Mutter.3)
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and

E

E
r

n n

n n
p

p
p

1 0 0 1

1 0 0 1

cos cos

cos cos
(12)

The amplitude transmission coefficients are

E

E
t

n

n n
s

s
s

2 0 0

0 0 1 1

cos

cos cos
(13)

and

E

E
t

n

n n
p

p
p

2 0 0

1 0 0 1

cos

cos cos
(14)

Other forms of the Fresnel amplitude reflection and transmission coefficients containing only the 
angles of incidence and refraction are somewhat more convenient. These relations can be derived 
using Snell’s law

sin

sin
0

1

1

0

n

n
(15)

to eliminate n0 and n1 from Eqs. (1) to (14):

rs

sin( )

sin( )
0 1

0 1

(16)

rp

tan( )

tan( )
0 1

0 1

(17)

ts

2 1 0

0 1

sin cos

sin( )
(18)

t p

2 1 1

0 1 0 1

sin cos

sin( )cos ( )
(19)

For nonabsorbing materials the intensity reflection coefficients Rs and Rp are simply the squares 
of Eqs. (16) and (17):

R rs s
2

2
0 1

2
0 1

sin ( )

sin ( )
(20)

R rp p
2

2
0 1

2
0 1

tan ( )

tan ( )
(21)

and, at normal incidence,

R R
n n

n ns p

( )

( )
0 1

2

0 1
2

(22)

from Eqs. (11) and (12). In the lower part of Fig. 2, Rs and Rp are given as a function of angle of 
incidence for various values of the refractive-index ratio n1/n0 with k1 for the material equal to zero. 
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The curves for n1/n0 1.3, 1.8, and 2.3 show that the normal-incidence reflectance increases as n1
increases. The curves for n1/n0 0.3 and 0.8 and k1 0 have no physical significance as long as the 
incident medium is air. However, they are representative of intenal reflections in materials of refrac-
tive index n0 3.33 and 1.25, respectively when the other medium is air (n1 1).

The intensity transmission coefficients Ts and Tp are obtained from the Poynting vector and for 
nonabsorbing materials are

T R
n

n
t

n n

ns s s1
41 1

0 0

2 0 1 0 1cos

cos

cos cos

( 00 0 1 0
2

0 1
2

0 1

2 2

cos cos )

sin sin

sin ( )n
(23)

T R
n

n
t

n n

np p p1
41 1

0 0

2 0 1 0 1cos

cos

cos cos

( 11 0 0 1
2

0 1
2

0 1

2 2

cos cos )

sin sin

sin ( )co

n

ss ( )2
0 1

(24)

FIGURE 2 Rs (upper curves), Rp (lower curves), and Ra (Rs Rp)/2 as a function of angle of incidence 
for various values of the refractive-index ratio n1/n0 and k1. The incident medium, having refractive index n0,
is assumed to be nonabsorbing. (Modified from Hunter.4)
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These coefficients are for light passing through a single boundary and hence are of limited usefulness. 
In actual cases, the light is transmitted through a slab of material where there are two boundaries
generally multiple reflections within the material, and sometimes interference effects when the 
boundaries are smooth and plane-parallel.

The intensity transmission coefficient Tsample for a slab of transparent material in air is given by 
the well-known Airy equation5 when the sample has smooth, plane-parallel sides and coherent mul-
tiple reflections occur within it:

T
R Rs p s p

sample /

1

1 4 1 2 2[ ( ) ]sin, ,

(25)

where

2 1 1n d cos
(26)

The values of Rs and Rp can be determined from Eqs. (20) to (22); d is the sample thickness,  the 
wavelength, n1 the refractive index of the material, and 1 the angle of refraction. Equation (25) 
holds for all angles of incidence including the Brewster angle, where Rp 0 [see Eq. (48)]. The Airy 
equation predicts that at a given angle of incidence the transmission of the sample will vary from a 
maximum value of 1 to a minimum value of ( ) ( ), ,1 12 2R Rs p s p/  as the wavelength or the thickness 
is changed. If the sample is very thick, the oscillations in the transmittance will occur at wavelengths 
very close together and hence will be unresolved. A complete oscillation occurs every time  changes 
by , so that the wavelength interval  between oscillations is

2

1 12n d cos
(27)

An an example, a sample 1 mm thick with an index of 1.5 at 5000 Å will have transmission maxima 
separated by 0.83 Å when measured at normal incidence (cos 1 1). These maxima would not be 
resolved by most commercial spectrophotometers. In such a case, one would be measuring the aver-
age transmission Tsample,av:

T
R

R
s p

s p
sample,av

1

1
,

,

(28)

For nonabsorbing materials, this is the same value as that which would be obtained if the multiply 
reflected beams did not coherently interfere within the sample. If the sample is wedge-shaped, so 
that no multiply reflected beams contribute to the measured transmittance, Tsample is simply Ts

2 or 
Tp

2 and can be calculated from Eq. (23) or (24).
When the material is absorbing, i.e., has a complex refractive index, it is not so easy to calculate the 

reflectance and transmittance since the angle of refraction is complex. However, Snell’s law [Eq. (15)] 
and Fresnel’s equations (11) and (12) are sometimes used with complex values of n1 and 1. The 
resulting amplitude reflection coefficients are written

r r es s
i s| | (29)

and

r r ep p
i p| | (30)

where |rs| and |rp| are the magnitudes of the reflectances and s and p are the phase changes on 
reflection. The intensity reflection coefficients are

R r rs p s p s p, , , (31)
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An alternative approach is to use the method of effective indexes to calculate Rs and Rp. In the 
medium of incidence, which is assumed to be nonabsorbing, the effective indexes 0s and 0p for the 
s and p components are

0 0 0s n cos (32)

0
0

0
p

n

cos
(33)

where n0 generally equals 1 for air. In the absorbing material both ’s are complex and can be writ-
ten, according to the Bernings,6,7

1 1 1s n cos (34)

1
1

1
p

n

cos
(35)

where n n ik1 1 1 is the complex refractive index of the material, and

cos
( ) ( )/

/

1
1
2

1
2 1 2

1

1 2

1
2

1
2 1

2
i

//
/

2
1

1 2

2
(36)

1
0 0

1
2

1
2

2

1
2

1
21

n

n k
k n

sin
( ) (37)

and

1 1 1
0 0

1
2

1
2

2

2n k
n

n k

sin
(38)

Abelès’ method8 also uses effective indexes for the absorbing material, but they are calculated 
differently:

1s a ib (39)

1p c id (40)

where

a b n k n2 2
1
2

1
2

0
2 2

0sin (41)

ab n k1 1 (42)

c a
n

a b
1 0

2 2
0

2 2

sin
(43)

d b
n

a b
1 0

2 2
0

2 2

sin
(44)
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In both methods employing effective indexes, the amplitude reflection coefficients are

rs
s s

s s

0 1

0 1

(45)

rp

p p

p p

1 0

1 0

(46)

which are equivalent to Eqs. (29) and (30) and reduce to Eqs. (11) and (12) when k1 0. The inten-
sity reflection coefficients are given by Eq. (31), as before. At normal incidence,

R R
n n k

n n ks p

( )

( )
0 1

2
1
2

0 1
2

1
2

(47)

Values of Rs and Rp are plotted as a function of angle of incidence in Fig. 2 for various values of n1
and k1. (The incident medium is assumed to be air with n0 1 unless otherwise noted.) As n1 increases 
with k1 > 0 held constant, the magnitudes of Rs and Rp at normal incidence both decrease. As k1
increases with n1 held constant, the magnitudes of Rs and Rp at normal incidence both increase. Tables 
of Rs and Rp for various values of n1 and k1 are given for angles of incidence from 0 to 85° by Holl.9

The absolute phase changes on reflection s and p are also of interest in problems involv-
ing polarization. When the material is nonabsorbing, the phase changes can be determined from 
the amplitude reflection coefficients, Eqs. (11) and (12); when 0 0 and n1 > n0, s 180° and 

p 360°.  This is an apparent contradiction since at normal incidence the s and p components 
should be indistinguishable. However, the problem is resolved by recalling that by convention we are 
always looking against the direction of propagation of the light (see Fig. 1). To avoid complications, 
the phase change on reflection at normal incidence (often defined as ) is identified with s.

For a dielectric, if n0 < n1, s remains 180° for all angles of incidence from 0 to 90°, as can be seen 
from the numerator of Eq. (11). However, there is an abrupt discontinuity in p, as can be seen from 
Eq. (12). If n0 < n1, p 360°  at normal incidence and at larger angles for which the numerator 
of Eq. (12) is positive. Since cos 0 becomes increasingly less than cos 1 as 0 increases, and since 
n1 > n0, there will be an angle for which n1 cos 0 n0 cos 1. At this angle p undergoes an abrupt 
change from 360° to 180°, and it remains 180° for larger angles of incidence. At the transition value 
of 0, which is called the Brewster angle B since Rp 0,

tan B

n

n
1

2

(48)

(This angle is also called the polarizing angle since 0 1 90°.)
The phase changes s and p are not simply 360° or 180° for an absorbing material. At normal 

incidence it follows from Eq. (45) that

tan s

n k

n n k

2 0 1

0
2

1
2

1
2 (49)

so that s 180° only if k1 0. As before, p s 180°, as seen by comparing Eqs. (45) and (46). At 
nonnormal incidence

tan s
s

s

b

a b

2 0

0
2 2 2 (50)

Since 360° and 0° are indistinguishable, many optics books state that p 0° for dielectrics at normal incidence, but 
this makes the ellipsometric parameter p − s < 0, which is incompatible with ellipsometric conventions—see Chap. 16, 
“Ellipsometry.”
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and

tan p

p

p

d

c d

2 0

2 2
0
2

(51)

where the relations for a, b, c, and d have been given in Eqs. (41) to (44). The following relations 
between these quantities may also prove helpful:

a b n k n n k2 2
1
2

1
2

0
2 2

0
2

1
2

1
2 1 24[( sin ) ] / (52)

c d
n k

a b
2 2 1

2
1
2

2 2

2( )
(53)

b
n k n a b2 1

2
1
2

0
2 2

0
2 2

2 2

sin
(54)

Figure 3 shows how s and p change as a function of angle of incidence for an absorbing material. 
At normal incidence they are 180° apart because of the mirror-image effect, mentioned previously. 
As the angle of incidence increases, p approaches s, and at the principal angle 

–
 the two quantities 

differ by only 90°. At grazing incidence they coincide.
The reflectance Rp does not reach zero for an absorbing material as it does for a dielectric, but 

the angle for which it is a minimum is called the pseudo-Brewster angle B. Two other angles closely 
associated with the pseudo-Brewster are also of interest. The angle for which the ratio Rp/Rs is a 
minimum is sometimes called the second Brewster angle. It is generally only slightly larger than 

B
.

The principal angle , at which p − s 90°, is always larger than the second Brewster angle and 
B
.

For most metals B and  are only a fraction of a degree apart but it is possible for them to differ by 
as much as 45°.9 There is no polarizing angle as such for an absorbing material because the angle of 
refraction is complex.

q

d

d

FIGURE 3 Phase changes on reflection s and p and phase difference p − s as 
a function of angle of incidence for an absorbing material. The principal angle, for which 

90°, is also shown. (Bennett and Bennett.10)
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12.4 BASIC RELATIONS FOR POLARIZERS

A linear  polarizer is anything which when placed in an incident unpolarized beam produces a 
beam of light whose electric vector is vibrating primarily in one plane, with only a small component 
vibrating in the plane perpendicular to it. If a polarizer is placed in a plane-polarized beam and is 
rotated about an axis parallel to the beam direction, the transmittance T will vary between a maxi-
mum value T1 and a minimum value T2 according to the law

T T T T( )cos1 2
2

2 (55)

Although the quantities T1 and T2 are called the principal transmittances, in general T T1 2;  is the angle 
between the plane of the principal transmittance T1 and the plane of vibration (of the electric vector) 
of the incident beam. If the polarizer is placed in a beam of unpolarized light, its transmittance is

T T T
1
2 1 2( ) (56)

so that a perfect polarizer would transmit only 50 percent of an incident unpolarized beam.†

When two identical polarizers are placed in an unpolarized beam, the resulting transmittance will be

T T T|| ( )
1
2 1

2
2
2 (57)

when their principal transmittance directions are parallel and will be

T T T1 2 (58)

when they are perpendicular. In general, if the directions of principal transmittance are inclined at 
an angle  to each other, the transmittance of the pair will be

T T T T T
1
2 1

2
2
2 2

1 2
2( )cos sin (59)

The polarizing properties of a polarizer are generally defined in terms of its degree of polarization P‡,§

P
T T

T T
1 2

1 2

(60)

or its extinction ratio p

p

T

T
2

1

(61)

When one deals with nonnormal-incidence reflection polarizers, one generally writes P and p in 
terms of Rp and Rs, the reflectances of light polarized parallel and perpendicular to the plane of 
incidence, respectively. As will be shown in Sec. 12.5, Rs can be equated to T1 and Rp to T2, so that 

Circular polarizers are discussed in Sec. 12.7.
†Jones11 has pointed out that a perfect polarizer can transmit more than 50 percent of an incident unpolarized beam under 

certain conditions.
‡Bird and Shurcliff12 distinguish between degree of polarization, which is a constant of the light beam, and polarizance, which 

is a constant of the polarizer. The polarizance is defined as being equal to the degree of polarization the polarizer produces in an 
incident monochromatic beam that is unpolarized. In practice, incident beams are often slightly polarized, so that the polarizance 
values differ slightly from the ideal degree of polarization. Other authors have not followed this distinction.

§Authors dealing with topics such as scattering from aerosols sometimes define degree of polarization (of the scattered light) 
in terms of the Stokes vectors (Sec. 12.8) as P S S S S( ) /

1
2

2
2

3
2 1 2

0
/ .
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Eqs. (60) and (61) become P (Rs − Rp)/(Rs Rp) and p Rp/Rs. If either p or P is known, the 
other can be deduced since

P
p

p

1

1
(62)

and

p

P
P

1
1

(63)

If one is determining the degree of polarization or the extinction ratio of a polarizer, the ratio of 
T  to T|| can be measured for two identical polarizers in unpolarized light. From Eqs. (57) and (58),

T

T

T T

T T

T

T p
|| ( )/

1 2

1
2

2
2

2

12

2
2 (64)

if T T2
2

1
2. If a perfect polarizer or a source of perfectly plane-polarized light is available, T2/T1 can 

be determined directly by measuring the ratio of the minimum to the maximum transmittance of 
the polarizer. Other relations for two identical partial polarizers are given by West and Jones,13 as 
well as the transmittance T ab of two dissimilar partial polarizers a and b whose principal axes are 
inclined at an angle  with respect to each other. This latter expression is

T T T T T T T T Tab a b a b a b b

1
2

1
21 1 2 2

2
1 2 1 2( )cos ( aa) sin2 (65)

where the subscripts 1 and 2 refer to the principal transmittances, as before.
Spectrophotometric measurements can involve polarizers and dichroic samples. Dichroic (optically 

anisotropic) materials are those which absorb light polarized in one direction more strongly than 
light polarized at right angles to that direction. (Dichroic materials are to be distinguished from bire-
fringent materials, which may have different refractive indices for the two electric vectors vibrating at 
right angles to each other but similar, usually negligible, absorption coefficients.) When making spec-
trophotometric measurements, one should know the degree of polarization of the polarizer and how 
to correct for instrumental polarization. This latter quantity may arise from nonnormal-incidence 
reflections from a grating, dispersing prism, or mirrors. Light sources are also sometimes polarized. 
Simon,14 Charney,15 Gonatas et al.,16 and Wizinowich17 suggest methods for dealing with imperfect 
polarizers, dichroic samples, and instrumental polarization. In addition, when a dichroic sample is 
placed between a polarizer and a spectrophotometer which itself acts like an imperfect polarizer, one 
has effectively three polarizers in series. This situation has been treated by Jones,18 who showed that 
anomalies can arise when the phase retardation of the polarizers takes on certain values. Mielenz and 
Eckerle19 have discussed the accuracy of various types of polarization attenuators.

12.5  POLARIZATION BY NONNORMAL-INCIDENCE
REFLECTION (PILE OF PLATES)

Pile-of-plates polarizers make use of reflection or transmission of light at nonnormal incidence, 
frequently near the Brewster or polarizing angle [Eq. (48) in Sec. 12.3]. The extinction ratio and 
“transmittance” of these polarizers can be calculated directly from the Fresnel equations. Some 
simplifications occur for nonabsorbing or slightly absorbing plates. Equations (20) and (21) give 
the values of the intensity reflection coefficients Rs and Rp for light vibrating perpendicular to 
the plane of incidence (s component) and parallel to the plane of incidence (p component). The 
angle of refraction 1 in those equations is related to the refractive index n of the material by 
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Snell’s law [Eq. (15) ]. At the Brewster angle Rp 0, so that the reflected light is, in principle, com-
pletely plane-polarized. This is the basis for all Brewster angle reflection polarizers.

Let us now see how the characteristics of a reflection polarizer depend on its refractive index. In 
Fig. 4 the reflectances Rs and Rp have been plotted for different values of the refractive index, roughly 
representing alkali halides in the ultraviolet and sheet-plastic materials, silver chloride, selenium, 
and germanium in the infrared. The Brewster angle, given by Eq. (48), is also indicated, as well as the 
magnitude of Rs at the Brewster angle. We note from these graphs that if light is polarized by a single 
reflection from a nonabsorbing material, the polarizer with the highest refractive index will have the 
largest throughput. In reflection polarizers, the quantity Rs is essentially the principal “transmittance” 
of the polarizer [T1 in Eqs. (55) to (65)] except that it must be multiplied by the reflectance of any 
other mirrors used to return the beam to its axial position.
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FIGURE 4 Reflectance of light polarized parallel Rp and perpendicular Rs to the plane 
of incidence from materials of different refractive index n as a function of angle of incidence: 
(a) n 1.5 (alkali halides in ultraviolet and sheet plastics in infrared); (b) n 2.0 (AgCl in 
infrared); (c) n 2.46 (Se in infrared); and (d) n 4.0 (Ge in infrared). The Brewster angle 

B (at which Rp goes to 0) and the magnitude of Rs at B are also indicated.

Since we are assuming that the medium of incidence is air, n0 1 and n1 n, the refractive index of the material.
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The reflectance Rp can be equated to T2, the minimum “transmittance” of the polarizer, so that 
the extinction ratio p of a reflection polarizer [Eq. (61)] is p Rp/Rs. If Rp is really zero at the 
Brewster angle, the extinction ratio will be zero for all materials independent of the value of n. If a 
given extinction ratio is desired, for example, 10−3 [corresponding to 99.8 percent polarization; see 
Eq. (62)], then the convergence angle of the light beam must be small so that all the angles of inci-
dence lie within about ±1° of the Brewster angle. The convergence angle depends only weakly on the 
refractive index for this case, varying from ±1.2° for n 1.5 to ± 0.8° for n 4.0.

If a good extinction ratio is required for a beam of larger convergence angle, two polarizing 
reflections may be used. Then all the exponents in Fig. 5a are doubled, and the convergence angles 
for a given extinction ratio are greatly increased. To obtain a value of 10−3 with two reflections, the 
angle of incidence must be within about ± 6° of the Brewster angle for values of n less than 3.5; for 
n 4 it is reduced slightly and becomes more asymmetric ( 4.0 and −5.2°). A disadvantage of hav-
ing two reflections from the polarizing materials is that the throughput is reduced. All the values of 
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materials of different refractive index at angles near the Brewster 
angle B. A single surface of the material is assumed.
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Rs in Fig. 5b are squared, so that for n 4, Rs 0.78 but Rs
2 0 61. ; for smaller refractive indexes the 

reduction in throughput is much greater.
The information shown graphically in Figs. 4 and 5 is given analytically in a paper by Azzam20

who is concerned about the angular sensitivity of Brewster-angle reflection polarizers, particularly 
those made with silicon or germanium plates. Also, Murty and Shukla21 show analytically that the 
shadowy extinction patterns sometimes seen with a crossed Brewster angle reflection polarizer and 
analyzer are caused by light incident on the surfaces at angles different from the Brewster angle.

Although in many cases multiple reflections within a plate degrade its polarizing properties, this 
is not true for Brewster angle reflection polarizers. For multiple reflections within a plane-parallel 
plate of material

( ),

,

,

R
R

Rs p

s p

s p
plate

2

1
(66)

assuming no interference or absorption; Rs and Rp are given by Eqs. (20) and (21). Multiple reflections 
have a minor effect on the extinction ratio but the increase in Rs is appreciable. To fulfill the conditions 
of Eq. (66), the plate must have plane-parallel sides and be unbacked. We are also assuming that the 
plate is thick or nonuniform enough for interference effects within it to be neglected.

All the preceding discussion applies only to nonabsorbing materials. If a small amount of 
absorption is present, Rp will have a minimum that is very close to zero and the material will still 
make a good reflection polarizer. However, if the extinction coefficient k becomes appreciable, the 
minimum in Rp will increase and the polarizing efficiency will be degraded. By referring to Fig. 2 
one can see roughly what the ratio of Rp to Rs will be for a given set of optical constants. Exact values 
of Rp and Rs can be calculated from n and k using Eqs. (45), (46), (31), and the other pertinent rela-
tions in Sec. 12.3. When choosing materials for possible use as metallic reflection polarizers, one 
wants the largest difference between Rs and Rp and the smallest magnitude of Rp at the minimum. 
Thus, ideally n should be much larger than k.

The Abelès condition22 applies to the amplitude reflectances rs and rp for either dielectrics or 
metals at 45° angle of incidence. At this angle

r rs p
2 (67)

and

2 s p (68)

where the ’s are the absolute phase changes on reflection for the p and s components (see Sec. 12.3). 
Relation in Eq. (67) is frequently applied to the intensity reflectances Rs and Rp, which are directly 
related to the amplitude reflectances [Eqs. (20), (21), and (31)].

12.6 POLARIZATION BY NONNORMAL-INCIDENCE
TRANSMISSION (PILE OF PLATES)

The theory of Brewster angle transmission polarizers follows directly from that given for reflection 
polarizers. Table 1 lists the relations giving the s and p transmittances of the polarizers with various 
assumptions about multiple reflections, interference, absorption, etc.  All these relations contain Rs
and Rp, the reflectances at a single interface, which are given at the bottom of the table.

At the Brewster angle, Rp at a single interface equals zero, and the transmittances of the plates 
can be expressed in terms of the refractive index of the material and the number of plates. The rela-
tions for the s and p transmittances at this angle are given in Table 2. Most references that contain 

Transmission polarizers in which the multiply internally reflected beams are coherent and produce interference effects are 
discussed in Chap. 13, “Polarizers.”
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an expression for the degree of polarization of a pile of plates give the formula of Provostaye and 
Desains,23 which assumes an infinite series of multiple reflections between all surfaces, i.e., multiple 
reflections within and between plates. This assumption is not valid for most real transmission polar-
izers (see Chap. 13, “Polarizers,” specifically Brewster Angle Transmission Polarizers).

For most parallel-plate polarizers it is reasonable to assume incoherent multiple reflections 
within each plate and no reflections between plates. Figure 6 shows the principal transmittance 
(p component) and extinction ratio for several four-plate polarizers having the refractive indexes 
indicated.  The extinction ratio improves considerably with increasing refractive index. It is also 
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FIGURE 6 (a) Transmittance and (b) extinction ratio of four plane-
parallel plates of refractive index n as a function of angle of incidence, for 
angles near the Brewster angle. Assumptions are multiple reflections but 
no interference within each plate and no reflections between plates.

The extinction ratio of a pile of m plates (no multiple reflections between plates) is simply the product of the extinction 
ratios of the individual plates.
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improved by using the plates at an angle of incidence slightly above the Brewster angle. This pro-
cedure, which is most helpful for high refractive index plates, reduces the transmission per plate so 
that a trade-off is required between losses resulting from absorption or scattering when many plates 
are used and the reflectance loss per plate when only a few plates are used above the Brewster angle. 
In some cases significant improvements have been achieved by following the latter course.24

When the number of plates of a given refractive index is increased, the transmittance is unaf-
fected (in the absence of absorption) and the extinction ratio is greatly increased, as shown in the 
earlier polarization chapter.1 In the absence of absorption, comparable transmittances and extinction 
ratios are obtained with a large number of low-refractive-index plates or a small number of high 
refractive index plates. Small amounts of absorption decrease the transmittance, but have little effect 
on the extinction ratio.1 Tuckerman25 has derived exact expressions for light reflected from or trans-
mitted through a pile of absorbing plates. He has also noted mistakes that have been perpetuated in 
some of the formulas for light reflected from or transmitted through a pile of nonabsorbing plates.

A figure of merit giving the variation of the extinction ratio with angle of incidence can be 
defined as in Fig. 7, where the ordinate is the extinction ratio at a given angle of incidence divided by 
the extinction ratio at the Brewster angle. The angles of incidence are referred to the Brewster angle, 
and curves for different values of the refractive index are shown. These curves are calculated from 
the ratio
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and are for a single transparent film or plate having multiple incoherent internal reflections within 
the material. As an example of how to use the graphs, consider an optical system having a two-plate 
germanium polarizer with a refractive index of 4.0. If the angles of incidence vary from −1.4 to 

1.5° around the Brewster angle, the ratio of the extinction ratios will vary between 1.102 1.21 and 

FIGURE 7 Variation of extinction ratio (per film) as a function of angle near the Brewster 
angle − B. The ordinate is the extinction ratio at divided by the extinction ratio at B.
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0.902 0.81, respectively. (For m plates it would be 1.10m and 0.90m.) Thus, in order to restrict the 
percent variation of the extinction ratio to a given value, one must use a smaller acceptance angle 
when using more plates.

We have assumed that there are multiple incoherent reflections within each plate and no multi-
ple reflections between plates. The difference in extinction ratios for a series of four plates with and 
without internal reflections is shown in Fig. 8. The principal transmittance is essentially the same as 
in Fig. 6 for values of Tp above 0.70 (and only about 0.025 lower when Tp drops to 0.30). However, 
the extinction ratio of high-refractive-index materials is much better without multiple internal 
reflections; for low-refractive-index materials the difference in extinction ratios is small.
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FIGURE 8 Extinction ratio of four plane-parallel plates of refractive index n as a function of 
angle of incidence for angles near the Brewster angle. Assumptions are A, multiple reflections but no 
interference within each plate and no reflections between plates; B, no multiple reflections within each 
plate or between plates. The transmittances for conditions A and B are essentially identical (see Fig. 6a).
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The effect of multiple reflections on the extinction ratio can readily be seen from the three rela-
tions for the transmittances of the p and s components:

No multiple reflections:

( ) ( ), , , ,T R mR m R ms p s p
m

s p s psample 1 1 2 22 2 2 RRs p,
2 (70)

Multiple reflections within plates:

( ),

,

,
,T

R

R
mRs p

s p

s p

m

s psample

1

1
1 2 2mm Rs p

2 2
,

(71)

Multiple reflections within and between plates:

( )
( ),

,

,
,T

R

m R
mR ms p

s p

s p
s psample

1

1 2 1
1 2 4 22 22R mRs p s p, , (72)

At the Brewster angle, Rp 0, Tp 1, and the extinction ratio will be smallest, i.e., highest degree of 
polarization, for the smallest values of the s transmittance. The first three terms in Eqs. (70) and (71) 
are identical, but Eq. (70) has an additional negative term in Rs

2 and so it will give a slightly smaller 
value of the s transmittance. Equation (72), from which the formula of Provostaye and Desains was 
derived, has twice as large a third term as the other two equations, and the negative fourth term is 
only l/2m of the third term, so that it does not reduce the overall value of the expression appreciably. 
Thus, Eq. (72) gives an appreciably larger value of the s transmittance, but fortunately it is a limiting 
case and is rarely encountered experimentally.

12.7 QUARTER-WAVE PLATES AND OTHER PHASE
RETARDATION PLATES

A retardation plate is a piece of birefringent, uniaxial (or uniaxial-appearing) material in which the 
ordinary and extraordinary rays travel at different velocities. Thus, one ray is retarded relative to the 
other, and the path N  between the two rays is given by

N d n ne o( ) (73)

where no refractive index of ordinary ray
ne refractive index of extraordinary ray
d physical thickness of plate

wavelength

The positive sign is used when ne > no, that is, a positive uniaxial crystal, and the negative sign is used 
for a negative uniaxial crystal, for which ne < no. Since N is the path difference between the two rays, 
N can be considered the retardation expressed in fractions of a wavelength. For example, N = 1/4 for 
a quarter-wave (or /4) plate, 1/2 for a half-wave (or /2) plate, 3/4 for a three-quarter-wave (or 3 /4) 
plate, etc.

The phase difference between two rays traveling through a birefringent material is 2 /  times the 
path difference, so that the phase retardation is

2
2

N
d n ne o( )

(74)

Thus, phase differences of /2, , and 3 /2 are introduced between the two beams in quarter-wave, 
half-wave, and three-quarter-wave plates, respectively.
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A retardation plate can be made from a crystal which is cut so that the optic axis lies in a plane 
parallel to the face of the plate, as shown in Fig. 9. Consider a beam of unpolarized or plane-
polarized light normally incident on the crystal. It can be resolved into two components traveling 
along the same path through the crystal but vibrating at right angles to each other. The ordinary 
ray vibrates in a direction perpendicular to the optic axis, while the extraordinary ray vibrates in a 
direction parallel to the optic axis. In a positive uniaxial crystal ne > no, so that the extraordinary ray 
travels more slowly than the ordinary ray. The fast axis is defined as the direction in which the faster-
moving ray vibrates; thus in a positive uniaxial crystal, the fast axis (ordinary ray) is perpendicular 
to the optic axis while the slow axis, (extraordinary ray) coincides with the optic axis. For a negative 
uniaxial crystal the fast axis coincides with the optic axis.

Figure 10 shows how the state of polarization of a light wave changes after passing through retar-
dation plates of various thicknesses when the incident light is plane-polarized at an azimuth of 45° 
to the fast axis of the plate. If the plate has a retardation of /8, which means that the ordinary and 
extraordinary waves are out of phase by /4 with each other, the transmitted light will be elliptically 
polarized with the major axis of the ellipse coinciding with the axis of the original plane-polarized 
beam. As the retardation gradually increases (plate gets thicker for a given wavelength or wavelength 
gets shorter for a given plate thickness), the ellipse gradually turns into a circle, but its major axis 
remains at 45° to the fast axis of the retardation plate. For a retardation of /4, the emerging light 
is right-circularly polarized. As the retardation continues to increase, the transmitted light becomes 
elliptically polarized with the major axis of the ellipse lying perpendicular to the plane of the incident 
polarized beam, and then the minor axis of the ellipse shrinks to zero and plane-polarized light is 
produced when the retardation becomes /2. As the retardation increases further, the patterns change 
in opposite order and the polarized light is left-circularly polarized when the retardation equals 3 /4. 
Finally, when the retardation is a full wave, the incident plane-polarized light is transmitted unchanged 
although the slow wave has now been retarded by a full wavelength relative to the fast wave.

FIGURE 9 Light incident normally on the front surface of a retardation 
plate showing the vibration directions of the ordinary and extraordinary rays. 
In a positive uniaxial crystal, the fast and slow axes are as indicated in paren-
theses; in a negative uniaxial crystal, the two axes are interchanged.
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The most common type of retardation plate is the quarter-wave plate. Figure 11 shows how this 
plate affects the state of polarization of light passing through it when the fast axis is positioned in 
the horizontal plane and the azimuth of the incident plane-polarized light is changed from 0° to 

90°. When 0°, only the ordinary ray (for a positive birefringent material) passes through the 
plate, so that the state of polarization of the beam is unchanged. When  starts increasing, the trans-
mitted beam is elliptically polarized with the major axis of the ellipse lying along the fast axis of the /4 
plate; tan b/a, the ratio of the minor to the major axis of the ellipse. In the next case, 15° and
tan 0.268, and so the ellipse is long and narrow. When the plane of vibration has rotated to an 
azimuth of 45°, the emerging beam is right-circularly polarized (the same situation as that shown in 
the second part of Fig. 10). For values of between 45° and 90°, the light is again elliptically polarized, 
this time with the major axis of the ellipse lying along the direction of the slow axis of the /4 plate. The 
angle shown in the figure is 60°, and tan 60° 1.732, so that b/a (referred to the fast axis) is greater than 
unity. When  increases to 90°, the plane of vibration coincides with the slow axis and the transmitted 
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axis is indicated by the double arrow) for different azimuths of the incident plane-polarized beam.
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light is again plane-polarized. As  continues to increase, the transmitted patterns repeat those already 
described and are symmetric about the slow axis, but the direction of rotation in the ellipse changes 
from right-handed, to left-handed, so that left-circularly polarized light is produced when 135°.

The definition of right- and left-circularly polarized light should be clear from Figs. 10 and 11. 
When the rotation is clockwise with the observer looking opposite to the direction of propagation, the
light is called right-circularly polarized; if the rotation is counterclockwise, the light is called left-circularly 
polarized.26 When circularly polarized light is reflected from a mirror, the direction of propagation 
is reversed, so that the sense of the circular polarization changes; i.e., left-circularly polarized light 
changes on reflection into right-circularly polarized light and vice versa. Therefore, in experiments 
involving magnetic fields in which the sense of the circularly polarized light is important,27,28 it is 
important to know which kind one started with and how many mirror reflections occurred in the 
rest of the light path. Cyclotron resonance experiments can sometimes be used to determine the 
sense of the circular polarization.28 Another method utilizing a polarizer and /4 plate has been 
described by Wood.29

The behavior of a half-wave plate in a beam of plane-polarized light is completely different from 
that of a quarter-wave plate; the transmitted light is always plane-polarized. If the incident plane of 
vibration is at an azimuth  with respect to the fast axis of the /2 plate, the transmitted beam will be 
rotated through an angle 2  relative to the azimuth of the incident beam. The case showing 45° 
where the phase of vibration is rotated through 90° is illustrated in the fourth part of Fig. 10. In 
this situation the extraordinary beam is retarded by half a wavelength relative to the ordinary beam 
(for a positive birefringent material), hence the name, half-wave plate. If the polarizer is fixed and 
the /2 plate is rotated (or vice versa), the plane of vibration of the transmitted beam will rotate at 
twice the frequency of rotation of the /2 plate.

Quarter-wave plates are useful for analyzing all kinds of polarized light. In addition, they are 
widely employed in experiments using polarized light, e.g., measurements of the thickness and 
refractive index of thin films by ellipsometry or measurements of optical rotary dispersion, circular 
dichroism, or strain birefringence. Polarizing microscopes, interference microscopes, and petrographic 
microscopes are usually equipped with /4 plates. In some applications the /4 plate is needed only to 
produce circularly polarized light, e.g., for optical pumping in some laser experiments, or to convert 
a partially polarized light source into one which appears unpolarized, i.e., has equal amplitudes of 
vibration in all azimuths. For these and similar applications, one can sometimes use a circular polarizer 
which does not have all the other properties of a /4 plate (see Pars. 73 to 76 in Ref. 1).

The customary application for a /2 plate is to rotate the plane of polarization through an angle 
of 90°. In other applications the angle of rotation can be variable. Automatic-setting ellipsometers or 
polarimeters sometimes employ rotating /2 plates in which the azimuth of the transmitted beam 
rotates at twice the frequency of the /2 plate.

12.8 MATRIX METHODS FOR COMPUTING
POLARIZATION

In dealing with problems involving polarized light, it is often necessary to determine the effect of 
various types of polarizers (linear, circular, elliptical, etc.), rotators, retardation plates, and other 
polarization-sensitive devices on the state of polarization of a light beam. The Poincaré sphere 
construction is helpful for giving a qualitative understanding of the problem; for quantitative calcu-
lations, one of several forms of matrix calculus can be used. The matrix methods are based on the 
fact that the effect of a polarizer or retarder is to perform a linear transformation (represented by a 
matrix) on the vector representation of a polarized light beam. The advantage of these methods over 
conventional techniques is that problems are reduced to simple matrix operations; thus since one 
does not have to think through the physics of every problem, the probability of making an error is 
greatly reduced. The most common forms of matrix calculus are the Mueller calculus and the Jones 
calculus, but the coherency-matrix formulation is also gaining popularity for dealing with problems 
involving partially polarized light. We give here a brief description of the Poincaré sphere and the 



12.28  POLARIZED LIGHT

different matrix methods, indicating how they are used, the different types of problems for which 
they are helpful, and where complete descriptions of each may be found.

The Poincaré sphere is a useful device for visualizing the effects of polarizers and retarders on a 
beam of polarized light. The various states of polarization are represented on the sphere as follows. 
The equator represents various forms of linear polarization, the poles represent right- and left-circular 
polarization,  and other points on the sphere represent elliptically polarized light. Every point on 
the sphere corresponds to a different polarization form. The radius of the sphere indicates the inten-
sity of the light beam (which is usually assumed to be unity). The effects of polarizers and retarders 
are determined by appropriate displacements on the sphere. Partially polarized light or absorption 
may be dealt with approximately by ignoring the intensity factor, since one is generally interested 
only in the state of polarization; however, the construction is most useful when dealing with non-
absorbing materials. Good introductory descriptions of the Poincaré sphere, including references, 
can be found in Polarized Light by Shurcliff,30† Ellipsometry and Polarized Light by Azzam and 
Bashara,31 and Polarized Light in Optics and Spectroscopy by Kliger Lewis and Randall;32‡ illustrative 
examples and problems are given in Sutton and Panati.33 More comprehensive treatments are given 
by Ramachandran and Ramaseshan34‡ and Jerrard35‡ and include numerous examples of applica-
tions to various types of problems. The new book Polarized Light, Fundamentals and Applications 
by Collett36 has a comprehensive 35-page chapter on the mathematical aspects of the Poincaré 
sphere; this material can be best understood after reading some of the introductory descriptions of 
the Poincaré sphere. The main advantage of the Poincaré sphere, like other graphical methods, is to 
reveal by essentially a physical argument which terms in exceedingly complex equations are negligible 
or can be made negligible by modifying the experiment. It is characteristic of problems in polar-
ized light that the trigonometric equations are opaque to inspection and yield useful results only 
after exact calculation with the aid of a computer or after complex manipulation and rather clever 
trigonometric identities. The Poincaré sphere thus serves as a guide to the physical intrepretation of 
otherwise obscure polarization phenomena. It can be used for solving problems involving retarders 
or combinations of retarders,30 32 36 39, ,  compensators, half-shade devices, and depolarizers,34 and it has 
also been applied to ellipsometric problems40 and stress-optical measurements.41

The Poincaré sphere is based on the Stokes vectors, which are sometimes designated S0, S1, S2, and 
S3. The physical interpretation of the vectors is as follows. S0 is the intensity of the light beam, corre-
sponding to the radius of the Poincaré sphere. S1 is the difference in intensities between the horizontal 
and vertical polarization components of the beam; when S1 is positive, the preference is for horizontal 
polarization, and when it is negative, the preference is for vertical polarization.§ S2 indicates preference 
for 45° or −45° polarization, depending upon whether it is positive or negative, and S3 gives the 
preference for right- or left-circular polarization. The Stokes vectors S1, S2, and S3 are simply the three 
cartesian coordinates of a point on the Poincaré sphere: S1 and S2 are perpendicular to each other in 
the equatorial plane, and S3 points toward the north pole of the sphere.¶ Thus, any state of polariza-
tion of a light beam can be specified by these three Stokes vectors. The intensity vector S0 is related to 
the other three by the relation S S S S0

2
1
2

2
2

3
2 when the beam is completely polarized. If the beam 

is partially polarized, S S S S0
2

1
2

2
2

3
2. Good introductory material on Stokes vectors is given by 

Shurcliff,30 Azzam and Bashara,31 Kliger et al.,32 Sutton and Panati,33 and Walker.42 A comprehensive 
discussion of the Stokes vectors has been given by Collett.36 Rigorous definitions of the simple vectors 
and those for partially coherent light can be found in Born and Wolf;43 other authors are cited by 
Shurcliff30 and Collett.36 Stokes vectors are generally used in conjunction with the Mueller calculus,
and some examples of applications will be given there. We note here that Budde44 has demonstrated 
a method for experimentally determining the Stokes vectors and other polarization parameters 
from a Fourier analysis of measured quantities. Ioshpa and Obridko45 have proposed a photoelectric 

Right-circularly polarized light is defined as a clockwise rotation of the electric vector when the observer is looking against 
the direction the wave is traveling.

†Schurcliff and Kliger, Lewis, and Randall have the S3 axis pointing down, so that the upper pole represents left-circular 
polarization. The more logical convention, followed by most others, is for the upper pole to represent right-circular polarization.

‡The notation is similar to that used by Schurcliff,30 with the upper pole representing left-circular polarization.
§Some authors dealing with light scattering from aerosols define S1 as positive when the preference is for vertical polarization.
¶See Shurcliff and Kliger, Lewis and Randall footnote, p. 5.26.



POLARIZATION 12.29

method for simultaneously and independently measuring the four Stokes parameters. Collett46 has 
developed a method for measuring the four Stokes vectors using a single circular polarizer. Azzam 
and coworkers47–51 have built, tested, analyzed, and calibrated a four-detector photopolarimeter for 
measuring normalized Stokes vectors of a large number of polarization states, and have given a physi-
cal meaning to the rows and columns in the instrument matrix. Other methods for measuring Stokes 
parameters are discussed by Collett.36 Hauge52 has surveyed different types of methods for completely 
determining the state of polarization of a light beam using combinations of Stokes vectors.

The matrix methods for solving problems involving polarized light have certain properties in 
common. All use some type of representation for the original light beam (assumed to be a plane 
wave traveling in a given direction) that uniquely describes its state of polarization. Generally the 
beam is completely polarized, but for some of the matrix methods it can also be unpolarized or 
partially polarized or its phase may be specified. The beam encounters one or more devices which 
change its state of polarization. These are called instruments and are represented by appropriate 
matrices. After the instruments operate on the light beam, it emerges as an outgoing plane wave in 
an altered state of polarization. The basic problem for all the methods is to find a suitable repre-
sentation for the incident plane wave (usually a two- or four-component column vector), and the 
correct matrices (2 2 or 4 4) to represent the instruments. Once the problem is set up, one can 
perform the appropriate matrix operations to obtain a representation for the outgoing plane wave. 
Its properties are interpreted in the same way as the properties of the incident plane wave.

An introduction to the Jones and Mueller calculus is given by Shurcliff,30 Azzam and Bashara,31

and Kliger et al.,32 and an excellent systematic and rigorous discussion of all the matrix methods has 
been given by O’Neill53 and Collett.36 All references contain tables of vectors for the various types 
of polarized beams and tables of instrument matrices. More complete tables are given by Sutton 
and Panati.33 In the Mueller calculus the beam is represented by the four-component Stokes vector, 
written as a column vector. This vector has all real elements and gives information about intensity 
properties of the beam. Thus it is not able to handle problems involving phase changes or combina-
tions of two beams that are coherent. The instrument matrix is a 4 4 matrix with all real elements. 
In the Jones calculus, the Jones vector is a two-component column vector that generally has complex 
elements. It contains information about the amplitude properties of the beam and hence is well 
suited for handling coherency problems. However, it cannot handle problems involving depolariza-
tion, as the Mueller calculus can. The Jones instrument matrix is a 2 2 matrix whose elements are 
generally complex.

Shurcliff30 has noted some additional differences between Jones calculus and Mueller calculus. 
The Jones calculus is well suited to problems involving a large number of similar devices arranged 
in series in a regular manner and permits an investigator to arrive at an answer expressed explicitly 
in terms of the number of such devices. The Mueller calculus is not suited for this type of problem. 
The Jones instrument matrix of a train of transparent or absorbing nondepolarizing polarizers and 
retarders contains no redundant information. The matrix contains four elements each of which has 
two parts, so that there are a total of eight constants, none of which is a function of any other. The 
Mueller instrument matrix of such a train contains much redundancy; there are 16 constants but 
only 7 of them are independent.

In order to handle problems involving partially coherent polarized light, coherency-matrix for-
malism has been developed. In this system the beam is represented by a 4 4 matrix called a coherency
or density matrix, which is the time average of the product of the Jones vector with its hermitian 
conjugate. The instrument matrices are the same as those used in the Jones calculus. O’Neill53 and 
Born and Wolf43 have good basic descriptions of coherency-matrix formalism; later extensions of 
the theory are given by Marathay.54,55

There have been some modifications of the various matrix methods. Priebe56 has introduced 
an operational notation for the Mueller matrices that facilitates the analysis by simplifying the 
functional description of a train of optical components. Collins and Steel57 have suggested a 
modification of the Jones calculus in which the light vector is expressed as the sum of two circularly 
polarized (rather than linearly polarized) components. Schmieder58 has given a unified treatment 
of Jones calculus and Mueller calculus including the coherency matrix and has shown that if the 
Stokes parameters are ordered in a different way from that customarily used, familiar relationships 
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are preserved and the rotation matrix looks like a rotation matrix rather than like a rearranged one. 
Tewarson59 presents a generalized reciprocity equation expressing an algebraic relationship between 
the parameters of an optical system and its reciprocal system and has verified the equation for both 
plane-polarized and circularly polarized light beams. Since his equation follows from the reciprocity 
law in the Mueller calculus, that law is verified also. Cernosek60 presents a simple geometric method 
based on the properties of quaternions to give a quick, quantitative analysis of the effect of any com-
bination of linear retarders and rotators on the state of polarization of a system.

Among the applications of Mueller calculus and Jones calculus to problems involving polarized 
light, McCrackin61 has used both matrix methods to analyze instrumental errors in ellipsometry, 
and Hellerstein62 has used Mueller calculus to study the passage of linearly, circularly, and elliptically 
polarized light through a Sénarmont polariscope. Azzam and Bashara63 have used Jones calculus to 
give a unified analysis of errors in ellipsometry, including effects of birefringence in cell windows, 
imperfect components, and incorrect azimuth angles. Azzam64 also describes a simple photopola-
rimeter with rotating polarizer and analyzer for measuring Jones and Mueller matrices.
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13.1 GLOSSARY

D optical density
d grid spacing
e extraordinary
i angle of incidence
i semicone angle

M positive integer
m number of plates
N 1/4, 1/2
n refractive index
o ordinary
S cut angle
T intensity transmittance

faces angle or angle between normal and optical axis

i absorption coefficient for ith component
angle between normal and optical axis
maximum variation plane of vibration
deviation angle

n change in retardation
n ne no

wavelength
v frequency (wave number)

angle 
angle to wave normal

13
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13.2 PRISM POLARIZERS

The material on prism polarizers is abridged from the much more complete treatment by Bennett 
and Bennett.1 Basic relations for polarizers are given in Sec. 12.4 of Chap. 12, “Polarization.”

Double Refraction in Calcite

Although many minerals, specifically those which do not have a cubic crystal structure, are doubly 
refracting, nearly all polarizing prisms used in the visible, near-ultraviolet, and near-infrared regions 
of the spectrum are made from optical calcite, which exhibits strong birefringence over a wide 
wavelength range. Polarizing prisms made from other birefringent crystals are used primarily in the 
ultraviolet and infrared at wavelengths for which calcite is opaque (see Sec. 13.7).

Next to quartz, calcite is the most widely distributed of all minerals and usually occurs in an 
impure polycrystalline form as marble, limestone, or chalk. Optical calcite, or Iceland spar, which 
is quite rare, originally came from a large deposit on the east coast of Iceland. This source is now 
exhausted, and optical calcite now comes principally from Mexico, Africa, and Siberia. It has been 
grown artificially by a hybrid gel-solution method,2 but maximum edge lengths are only 3 to 4 mm.

Although calcite is much softer than glass, with care it can be worked to an excellent polish. 
Surfaces flat to one-fifth fringe, or even, with care, one-tenth fringe, which are free from surface 
defects or perceptible turned edges can be produced using more or less conventional pitch-polishing 
techniques.3 Such techniques fail only for surfaces normal to the optic axis, in which case pitch pol-
ishing tends to cleave out small tetrahedra. Such surfaces can be polished to a lower surface quality 
using cloth polishers.

Crystals of calcite are negative uniaxial and display a prominent double refraction. The material 
can easily be cleaved along three distinct planes, making it possible to produce rhombs of the form 
shown in Fig. 1. At points B and H, a given face makes an angle of 101°55  with each of the other two. 
At all the other points, two of the angles are 78°5  and one is 101°55 . The optic axis HI, the direction 
in the crystal along which the two sets of refracted waves travel at the same velocity, makes equal 

FIGURE 1 Schematic representation of a rhombohedral cal-
cite crystal showing the angles between faces. The optic axis passes 
through corner H and point I on side BF.
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angles with all three faces at point H. Any plane, such as DBFH, which contains the optic axis and is 
perpendicular to the two opposite faces of the rhomb ABCD and EFGH is called a principal section.
A side view of the principal section DBFH is shown in Fig. 2. If light is incident on the rhomb so 
that the plane of incidence coincides with a principal section, the light is broken up into two compo-
nents polarized at right angles to each other. One of these, the ordinary ray o, obeys Snell’s law and 
has its plane of vibration (of the electric vector) perpendicular to the principal section. The second, the 
extraordinary ray e, has its plane of vibration parallel to the principal section. The refraction of the 
extraordinary ray in some cases violates Snell’s law, at least in its simple form. The anomalous deflec-
tion of the ray is caused by the wavefront becoming ellipsoidal, so that the direction of propagation 
of the light is not along the wave normal. This ellipticity causes the velocity of the light in the crys-
tal, and hence its refractive index, to be a function of angle. If light is incident on rhomb face EFGH
parallel to edge BF of the rhomb, the o and e rays, both of which lie in a principal section, are as 
shown in Fig. 2. As the angle of incidence is changed in Fig. 2 so that the direction taken by the o ray 
approaches that of the optic axis HI, the separation between the e and o rays decreases. If the rhomb 
is rotated about an axis parallel to HD, the e ray will precess about the o ray. However, unlike the o
ray, it will not remain in the plane of incidence unless this plane coincides with the principal section.

The plane containing the o ray and the optic axis is defined as the principal plane of the o ray, and 
that containing the e ray and the optic axis as the principal plane of the e ray. In the case discussed 
earlier, the two principal planes and the principal section coincide. In the general case, they may all 
be different. However, in all cases, the o ray is polarized with its plane of vibration perpendicular to 
its principal plane and the e ray with its plane of vibration in its principal plane (see Fig. 2). In all 
cases, the vibration direction of the e ray remains perpendicular to that of the o ray.

The value of the index of refraction of the e ray which differs most from that of the o ray, i.e., 
the index when the e ray vibrations are parallel to the optic axis, is called the principal index for the 
extraordinary ray ne. Snell’s law can be used to calculate the path of the e ray through a prism for this 
case. Snell’s law can always be used to calculate the direction of propagation of the ordinary ray.

Table 1 lists values of no and ne for calcite, along with the two absorption coefficients ao and ae, all 
as a function of wavelength. Since ne no in the ultraviolet, visible and infrared regions, calcite is a 
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FIGURE 2 Side view of a principal section for the calcite rhomb in Fig. 1. The 
direction of the optic axis and the angles of the principal section are indicated. The angle 
of incidence is i, angle of refraction is r, angle between the e ray and the optic axis is , and 
angle between the normal to the surface and the optic axis is . The directions of vibra-
tion of the e and o rays are in the plane of the paper and perpendicular to it, respectively.

The direction of the optic axis in a uniaxial crystal such as calcite or crystalline quartz can be determined by observing the 
crystal between crossed polarizers. If the alignment is correct, so that the optic axis is parallel to the line of sight, there will be 
concentric colored circles with a black cross superimposed.4
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TABLE 1 Refractive Indicesa and Absorption Coefficientsa for Calcite

, m no o
ne e , m no o

ne e

0.1318 1.56b 534,000b 1.80b 477,000b 0.3195 — 0.059
0.1355 1.48 473,000 1.84 380,000 0.327 — 0.028
0.1411 1.40 561,000 1.82 196,000 0.330 1.70515 — 1.50746
0.1447 1.48 669,000 1.80 87,000 0.3355 — 0.028
0.1467 1.51 711,000 1.75 20,500 0.340 1.70078 — 1.50562
0.14785 1.54 722,000 1.75 17,000 0.3450 — 0.0170
0.1487 1.58 735,000 1.75 14,400 0.346 1.69833 — 1.50450
0.14955 1.62 714,000 1.75 12,600 0.3565 — 0.0112
0.1513 1.68 756,000 1.75   8,300 0.361 1.69316 — 1.50224
0.15185 1.72 753,000 1.74 10,700 0.3685 — 0.0056
0.1536 1.80 761,000 1.74   9,000 0.3820 — 0.0056
0.15445 1.87 748,000 1.74   6,500 0.394 1.68374 — 1.49810
0.15585 1.92 766,000 1.74   8,100 0.397 — 0.000 1.49640c

0.15815 2.02 715,000 1.73 11,100 0.410 1.68014c — 1.49430
0.1596 2.14 669,000 1.72 12,600 0.434 1.67552 — 1.49373
0.1608 2.20 594,000 1.70 13,300 0.441 1.67423 — 1.48956
0.1620 2.10 566,000 1.65 14,000 0.508 1.66527 — 1.48841
0.1633 2.00 608,000 1.65 10,800 0.533 1.66277 — 1.48736
0.1662 2.00 559,000 1.64   7,500 0.560 1.66046 — 1.48640
0.1700 1.94 414,000 1.63 4,400 0.589 1.65835 — 1.48490
0.1800 1.70 391,000 1.61 l,400 0.643 1.65504 — 1.48459
0.1900 1.72 278,000 1.59 321d 0.656 1.65437 — 1.48426
0.198 — — 1.57796c 0.670 1.65367 — 1.48353
0.200 1.90284c 257,000 1.57649    133 0.706 1.65207 — 1.48259
0.204 1.88242 — 1.57081 0.768 1.64974 — 1.48215
0.208 1.86733 149,000 1.56640 0.795 1.64886 — 1.48216
0.211 1.85692 — 1.56327 0.801 1.64869 — 1.48176
0.214 1.84558 — 1.55976 ~0.1 0.833 1.64772 — 1.48137
0.219 1.83075 — 1.55496 0.867 1.64676 — 1.48098
0.226 1.81309 — 1.54921 0.905 1.64578 — 1.48060
0.231 1.80233 — 1.54541 0.946 1.64480 — 1.48022
0.242 1.78111 — 1.53782 0.991 1.64380 — 1.47985
0.2475 — 0.159e 1.042 1.64276 — 1.47948
0.2520 — 0.125 1.097 1.64167 — 1.47910
0.256 — 0.109 1.159 1.64051 — 1.47870
0.257 1.76038 — 1.53005 1.229 1.63926 —
0.2605 — 0.102 1.273 1.63849 1.47831
0.263 1.75343 — 1.52736 1.307 1.63789 —
0.265 — 0.096 1.320 1.63767
0.267 1.74864 — 1.52547 1.369 1.63681
0.270 — 0.096 1.396 1.63637 — 1.47789
0.274 1.74139 — 1.52261 1.422 1.63590
0.275 — 0.102 1.479 1.63490
0.2805 — 0.096 1.497 1.63457 — 1.47744
0.286 — 0.102 1.541 1.63381
0.291 1.72774 — 1.51705 1.6 — 0.05 f

0.2918 — 0.109 1.609 1.63261
0.2980 — 0.118 1.615 — — 1.47695
0.303 1.71959 — 1.51365 1.682 1.63127
0.305 — 0.118 1.7 — 0.09
0.312 1.71425 0.096 1.51140 1.749 — — 1.47638
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negative uniaxial crystal. However, at wavelengths shorter than 1520 Å in the vacuum ultraviolet, the 
birefringence ne no becomes positive, in agreement with theoretical predictions.5,10 For additional 
data in the 0.17- to 0.19-μm region, see Uzan et al.11 The range of transparency of calcite is approxi-
mately from 0.214 to 3.3 μm for the extraordinary ray but only from about 0.23 to 2.2 μm for the 
ordinary ray.

If the principal plane of the e ray and the principal section coincide (Fig. 2), the wave normal 
(but not the e ray) obeys Snell’s law, except that the index of refraction n  of this wave is given by12,13

1
2

2

2

2

2n n ne o

sin cos
(1)

where  is the angle between the direction of the wave normal and the optic axis (  90°). When  0°, 
n no, and when  90°, n ne. The angle of refraction for the wave normal is , where  is the 
angle the normal to the surface makes with the optic axis. Snell’s law for the extraordinary-ray wave normal
then becomes

n i
n n

n n
e o

o e

sin
sin( )

( sin cos ) /2 2 2 2 1 2
(2)

where i is the angle of incidence of light in a medium of refractive index n. Since all other quantities 
in this equation are known,  is uniquely determined but often must be solved for by iteration. Once 

 is known, the angle of refraction r for the extraordinary ray can be determined as follows. If  is 
the angle the ray makes with the optic axis (  90°), then r =  −  and13

tan tan
n

n
o

e

2

2 (3)

Although the angle of refraction of the extraordinary ray determines the path of the light beam through 
the prism, one must use the angle of refraction of the wave normal,  − , in Fresnel’s equation [Eq. (21) 
in Chap. 12, “Polarization”] when calculating the reflection loss of the e ray at the surface of the prism.

TABLE 1 Refractive Indicesa and Absorption Coefficientsa for Calcite (Continued)

, m no o
ne e , m no o

ne e

1.761 1.62974 2.4 — 2.3 — 0.09
1.8 — 0.16 2.5 — 2.7 — 0.14
1.849 1.62800 2.6 — 2.5 — 0.07
1.9 — 0.23 2.7 — 2.3 — 0.07
1.909 — — 1.47573 2.8 — 2.3 — 0.09
1.946 1.62602 2.9 — 2.8 — 0.18
2.0 — 0.37 3.0 — 4.0 — 0.28
2.053 1.62372 3.1 — 6.7 — 0.46
2.100 — 0.62 1.47492 0.02 f 3.2 — 10.6 — 0.69
2.172 1.62099 3.3 — 15.0 — 0.92
2.2 — 1.1 — 0.05 3.324 — — 1.47392
2.3 — 1.7 — 0.07 3.4 — 19.0 — 1.2

aRefractive indexes no and ne are the ordinary and extraordinary rays, respectively, and the corresponding absorption coefficients are o ok4 1/ cm  and 

e ek4 1/ cm , where the wavelength  is in centimeters. In the table, the wavelength is in micrometers.
bUzan et al., Ref. 5; o and e were calculated from the reported values of ko and ke.
cBallard et al., Ref. 6.
dSchellman et al., Ref. 7; e was calculated from the optical density for the extraordinary ray.
eBouriau and Lenoble, Ref. 8; reported absorption coefficient in this paper was for both o and e rays. o was calculated by assuming e 0.
f Ballard et al., Ref. 9.
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For the special case in which the optic axis is parallel to the surface as well as in the plane of inci-
dence,  and  are the complements of the angles of refraction of the ray and wave normal, respec-
tively. If the light is normally incident on the surface,  and  are both 90° and the extraordinary ray 
is undeviated and has its minimum refractive index ne. In other cases for which the optic axis is not 
parallel to the surface, the extraordinary ray is refracted even for normal incidence.

If the plane of incidence is neither in a principal section nor perpendicular to the optic axis, it is 
more difficult to determine the angle of refraction of the extraordinary ray. In such cases, Huygens’ 
construction is helpful.13–15

Types of Polarizing Prisms and Definitions

In order to make a polarizing prism out of calcite, some way must be found to separate the two polarized 
beams. In wavelength regions where calcite is absorbing (and hence only a minimum thickness of calcite 
can be used), this separation has been made simply by using a very thin calcite wedge cut so that the 
optic axis is parallel to the faces of the wedge to enable the e and o rays to be separated by a maximum 
amount. The incident light beam is restricted to a narrow pencil. Calcite polarizers of this type can be 
used at wavelengths as short as 1900 Å.16 In more favorable wavelength regions, where the amount of 
calcite through which the light passes is not so critical, more sophisticated designs are usually employed. 
Such prisms can be divided into two main categories, conventional polarizing prisms (Secs. 13.3 and 
13.4) and polarizing beam-splitter prisms (Sec. 13.5), and a third category, Feussner prisms (Sec. 13.6).

In conventional polarizing prisms, only light polarized in one direction is transmitted. This is 
accomplished by cutting and cementing the two halves of the prism together in such a way that the 
other beam suffers total internal reflection at the cut. It is usually deflected to the side, where it is 
absorbed by a coating containing a material such as lampblack. Since the ordinary ray, which has the 
higher index, is the one usually deflected, the lampblack is often mixed in a matching high-index 
binder such as resin of aloes (nD  1.634) or balsam of Tolu (nD  1.628) to minimize reflections.17

When high-powered lasers are used, the coating is omitted to avoid overheating the prism, and the 
light is absorbed externally.

Conventional polarizing prisms fall into two general categories: Glan types (Sec. 13.3) and 
Nicol types (Sec. 13.4), which are illustrated in Fig. 3. Glan types have the optic axis in the plane 
of the entrance face. If the principal section is parallel to the plane of the cut, the prism is a Glan-
Thompson design (sometimes called a Glazebrook design); if perpendicular, a Lippich design; and 
if 45°, a Frank-Ritter design. In Nicol-type prisms, which include the various Nicol designs and the 
Hartnack-Prazmowsky, the principal section is perpendicular to the entrance face, but the optic axis 
is neither parallel nor perpendicular to the face.

(a)

(d)

(b)

(e)

(c)

(f)

FIGURE 3 Types of conventional polarizing prisms. Glan types: (a) Glan-
Thompson, (b) Lippich, and (c) Frank-Ritter; Nicol types: (d) conventional Nicol, 
(e) Nicol, Halle form, and ( f ) Hartnack-Prazmowsky. The optic axes are indicated by 
the double-pointed arrows.
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Air-spaced prisms can be used at shorter wavelengths than cemented prisms, and special 
names have been given to some of them. An air-spaced Glan-Thompson prism is called a Glan-
Foucault, and an air-spaced Lippich prism, a Glan-Taylor. In common practice, either of these 
may be called a Glan prism. An air-spaced Nicol prism is called a Foucault prism. Double prisms 
can also be made, thus increasing the prism aperture without a corresponding increase in length. 
Most double prisms are referred to as double Frank-Ritter, etc., but a double Glan-Thompson is 
called an Ahrens prism.

In polarizing beam-splitter prisms, two beams, which are polarized at right angles to each other, 
emerge but are separated spatially. The prisms have usually been used in applications for which both 
beams are needed, e.g., in interference experiments, but they can also be used when only one beam is 
desired. These prisms are also of two general types, illustrated in Fig. 10; those having the optic axis 
in the two sections of the prism perpendicular and those having them parallel. Prisms of the first 
type include the Rochon, Sénarmont, Wollaston, double Rochon, and double Sénarmont. Prisms of 
the second type are similar to the conventional polarizing prisms but usually have their shape modi-
fied so that the two beams emerge in special directions. Examples are the Foster, the beam-splitting 
Glan-Thompson, and the beam-splitting Ahrens.

The Feussner-type prisms, shown in Fig. 12, are made of isotropic material, and the film separat-
ing them is birefringent. For negative uniaxial materials the ordinary ray rather than the extraor-
dinary ray is transmitted. These prisms have the advantage that much less birefringent material is 
required than for the other types of polarizing prisms, but they have a more limited wavelength 
range when calcite or sodium nitrate is used because, for these materials, the extraordinary ray is 
transmitted over a wider wavelength range than the ordinary ray.

The amount of flux which can be transmitted through a prism or other optical element 
depends on both its angular aperture and its cross-sectional area. The greater the amount of flux 
which can be transmitted, the better the throughput or light-gathering power (sometimes called 
étendue or luminosity) of the system.18,19 If a pupil or object is magnified, the convergence angle 
of the light beam is reduced in direct ratio to the increase in size of the image. The maximum 
throughput of a prism is thus proportional to the product of the prism’s solid angle of accep-
tance and its cross-sectional area perpendicular to the prism axis. Hence, a large Glan-Taylor 
prism having an 8° field angle may, if suitable magnification is used, have a throughput com-
parable to a small Glan-Thompson prism with a 26° field angle. In general, to maximize prism 
throughput in an optical system, both the angular aperture and clear aperture (diameter of the 
largest circle perpendicular to the prism axis which can be included by the prism) should be as 
large as possible.

The quantities normally specified for a prism are its clear aperture, field angle, and length-to-
aperture (L/A) ratio. The semifield angle is defined as the maximum angle to the prism axis  at which 
a ray can strike the prism and still be completely polarized when the prism is rotated about its axis.
The field angle is properly twice the semifield angle.† (Some manufacturers quote a “field angle” for 
their polarizing prisms which is not symmetric about the prism axis and is thus in most cases unus-
able.) The length-to-aperture (L/A) ratio is the ratio of the length of the prism base (parallel to the 
prism axis) to the minimum dimension of the prism measured perpendicular to the prism base. For 
a square-ended prism, the L/A ratio is thus the ratio of prism length to width.

In determining the maximum angular spread a light beam can have and still be passed by the 
prism, both the field angle and the L/A ratio must be considered, as illustrated in Fig. 4. If the image 
of a point source were focused at the center of the prism, as in Fig. 4a, the limiting angular diver-
gence of the beam would be determined by the field angle 2i of the prism.‡ However, if an extended 

The prism axis, which is parallel to its base, is not to be confused with the optic axis of the calcite.
†In many prism designs, there is asymmetry about the prism axis, so that although light transmitted at a given angle to the 

prism axis may be completely polarized for one prism orientation, it will not be completely polarized when the prism is rotated 
about its axis. Thus, the semifield angle is not necessarily the largest angle at which completely polarized light can be transmitted 
by the prism in any orientation.

‡We are assuming that the prism is wide enough to ensure that the sides of the prism do not limit the angular width of 
the beam.
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source were focused there (Fig. 4b), the limiting angular divergence would be determined by the L/A
ratio, not the field angle.

The field angle of a polarizing prism is strongly wavelength-dependent. For example, a Glan 
prism having an 8° field angle at 0.4 μm has only a 2° field angle at 2 μm. In designing optical sys-
tems in which polarizing prisms are to be used, the designer must allow for this variation in field 
angle. If he does not, serious systematic errors may occur in measurements made with the system.

13.3 GLAN-TYPE PRISMS

Most prisms used at the present time are of the Glan type. Although they require considerably more 
calcite than Nicol types of comparable size, they are optically superior in several ways: (1) Since the 
optic axis is perpendicular to the prism axis, the index of the extraordinary ray differs by a maximum 
amount from that of the ordinary ray. Thus, a wider field angle or a smaller L/A ratio is possible than 
with Nicol types. (2) The light is nearly uniformly polarized over the field; it is not for Nicol types. 
(3) There is effectively no lateral displacement in the apparent position of an axial object viewed 
through a (perfectly constructed) Glan-type prism. Nicol types give a lateral displacement. (4) Since 
off-axis wander results in images which have astigmatism when the prism is placed in a converging 
beam, Glan types have slightly better imaging qualities than Nicol types.

Two other often-stated advantages of Glan-type prisms over Nicol types appear to be falla-
cious. One is that the slanting end faces of Nicol-type prisms have higher reflection losses than 
the square-ended faces of Glan types. Since the extraordinary ray vibrates in the plane of inci-
dence and hence is in the p direction, increasing the angle of incidence toward the polarizing 
angle should decrease the reflection loss. However, the index of refraction for the extraordinary 
ray is higher in Nicol-type prisms (Glan types have the minimum value of the extraordinary 
index), so the reflection losses are actually almost identical in the two types of prisms. The second 
“advantage” of Glan-type prisms is that the slanting end faces of the Nicol type supposedly induce 
elliptical polarization. This widely stated belief probably arises because in converging light the 
field in Nicol-type polarizers is not uniformly polarized, an effect which could be misinterpreted 
as ellipticity (see “Landolt Fringe” in Sec. 13.4). It is possible that strain birefringence could be 
introduced in the surface layer of a calcite prism by some optical polishing techniques resulting in 

i
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FIGURE 4 The effect of field angle and length-to-aperture ratio of a prism polarizer 
on the maximum angular beam spread for (a) a point source and (b) an extended source. 
The field angle is 2i, and L/A  3. The field angle is exaggerated for clarity.
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ellipticity in the transmitted light, but there is no reason why Nicol-type prisms should be more 
affected than Glan types.

Glan-Thompson-Type Prisms

Glan-Thompson-type prisms may be either cemented or air-spaced. Since, as was mentioned previ-
ously, an air-spaced Glan-Thompson-type prism is called a Glan-Foucault or simply a Glan prism,
the name Glan-Thompson prism implies that the prism is cemented. Both cemented and air-spaced 
prisms, however, have the same basic design. The cemented prisms are optically the better design 
for most applications and are the most common type of prisms in use today. The Glan-Thompson 
prism is named for P. Glan,20 who described an air-spaced Glan-Thompson-type prism in 1880, and 
for S. P. Thompson,21 who constructed a cemented version in 1881 and modified it to its present 
square-ended design in 1882.22 These prisms are also sometimes called Glazebrook prisms because 
R. T. Glazebrook23 demonstrated analytically in 1883 that when rotated about its axis, this prism 
gives the most uniform rotation of the plane of polarization for a conical beam of incident light. 
The cut in a Glan-Thompson-type prism is made parallel to the optic axis, which may either be par-
allel to two sides, as in Fig. 3a, or along a diagonal. The end faces are always perpendicular to the axis 
of the prism and contain the optic axis.

The extinction ratio† obtainable with a good Glan-Thompson-type prism equals or exceeds that 
of any other polarizer. Ratios of 5 parts in 100,000 to 1 part in 1 million can be expected although 
values as high as 1 part in 3  107 have been reported for small selected apertures of the prism.24

The small residuals result mainly from imperfections in the calcite or from depolarizaton by scat-
tering from the prism faces,24 although if the optic axis is not strictly in the plane of the end face, or 
if the optic axes in the two halves of the prism are not accurately parallel, the extinction ratio will 
be reduced. Also, the extinction ratio may depend strongly upon which end of the prism the light is 
incident. When prisms are turned end for end, changes in the extinction ratio of as much as a factor 
of 6 have been reported.24

When measuring the extinction ratio, it is essential that none of the unwanted ordinary ray, 
which is internally reflected at the interface and absorbed or scattered at the blackened side of the 
prism, reach the detector. King and Talim25 found that they had to use two 4-mm-diameter aper-
tures and a distance of 80 mm between the photomultiplier detector and prism to eliminate the 
o-ray scattered light. With no limiting apertures and a 20-mm distance, their measured extinction 
ratio was in error by a factor of 80.

The field angle of the prism depends both on the cement used between the two halves and on the 
angle of the cut, which is determined by the L/A ratio. Calculation of the field angle is discussed in 
“Field Angle” section on p. 13.12 and by Bennett and Bennett.1 Very large field angles can be obtained 
with Glan-Thompson prisms. For example, if the L/A ratio is 4, the field angle can be nearly 42°. 
Normally, however, smaller L/A ratios are used. The most common types of cemented prisms are the 
long form, having an L/A ratio of 3 and a field angle of 26°, and the short form, having an L/A ratio 
of 2.5 and a field angle of 15°.

Transmission In Fig. 5 the transmission of a typical Glan-Thompson prism is compared with curves 
for a Glan-Taylor prism and a Nicol prism. The Glan-Thompson is superior over most of the range, 
but its transmission decreases in the near ultraviolet, primarily because the cement begins to absorb. 
Its usable transmission range can be extended to about 2500 Å by using an ultraviolet-transmitting 
cement. Highly purified glycerin, mineral oil, castor oil, and Dow Corning DC-200 silicone oil, which 
because of its high viscosity is not as subject to seepage as lighter oils, have been used as cements in 
the ultraviolet, as have dextrose, glucose, and gédamine (a urea formaldehyde resin in butyl alcohol). 

An air-spaced Lippich prism, the Glan-Taylor (see “Glan-Taylor Prism” section on p. 13.12), has similar optical properties to 
the Glan-Foucault prism but better transmission. It is also called a Glan prism.

†The extinction ratio is the ratio of the maximum to the minimum transmittance when a polarizer is placed in a plane 
polarized beam and is rotated about an axis parallel to the beam direction.
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Transmission curves for 1-mm thicknesses of several of these materials are shown in Fig. 6, along 
with the curve for Canada balsam, a cement formerly widely used for polarizing prisms in the vis-
ible region.8 Gédamine, one of the best of the ultraviolet-transmitting cements, has an index of 
refraction nD  1.4657 and can be fitted to the dispersion relation8

n 1 464
0 0048

2
.

.
(4)

where the wavelength  is in micrometers.
Figure 7 shows ultraviolet transmission curves for Glan-Thompson prisms with L/A ratios of 

2.5 and 3 which are probably cemented with n-butyl methacrylate, a low-index polymer that has 
largely replaced Canada balsam. Better ultraviolet transmission is obtained with a Glan-Thompson 
prism cemented with DC-200 silicone oil. Air-spaced prisms can be used to nearly 2140 Å in the 
ultraviolet, where calcite begins to absorb strongly. Transmission curves for two such prisms are 
shown in Fig. 7. The Glan-Taylor, which is an air-spaced prism of the Lippich design, has a higher 
ultraviolet transmission than the Glan-Foucault, an air-spaced Glan-Thompson prism. The reason 
for this difference is that multiple reflections occur between the two halves of the Glan-Foucault 
prism, resulting in a lowered transmission, but are largely absent in the Glan-Taylor design (see 
“Glan-Taylor Prism” section on p. 13.12).

The infrared transmission limit of typical Glan-Thompson prisms is about 2.7 μm although they 
have been used to 3 μm.26 The same authors report using a 2.5-cm-long Glan-Thompson prism in 
the 4.4- to 4.9-μm region.

FIGURE 5 Transmittance curves for typical polarizing prisms: A, Glan-
Thompson, B, Glan-Taylor, and C, Nicol prism. (Measured by D. L. Decker, Michelson 
Laboratory.) In the visible and near-infrared regions the Glan-Thompson has the 
best energy throughput. In the near ultraviolet the Glan-Thompson may still be 
superior because the Glan-Taylor has such an extremely small field angle that it may 
cut out most of the incident beam.
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FIGURE 6 Transmittance curves for 1-mm thicknesses of various cements: A, crys-
talline glucose, B, glycerine, C, gédamine (urea formaldehyde resin in butyl alcohol), D,
Rhodopas N60A (polymerized vinyl acetate in alcohol), E, urea formaldehyde, and F,
Canada balsam. (Modified from Bouriau and Lenoble.8) The transmittance of these mate-
rials is adequate at longer wavelengths.

FIGURE 7 Ultraviolet transmittance curves for various Glan-Thompson and 
air-spaced prisms: A, Glan-Taylor (air-spaced Lippich-type prism), B, Glan-Foucault (air-
spaced Glan-Thompson prism), C, Glan-Thompson prism with L/A ratio of 2 cemented 
with DC-200 silicone oil. D, Glan-Thompson prism with L/A ratio of 2.5 probably 
cemented with n-butyl methacrylate, and E, Glan-Thompson prism similar to D except 
with L/A  3. (Modified from curves supplied by Karl Lambrecht Corporation, Chicago.)
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Field Angle Since many prism polarizers are used with lasers that have parallel beams of small 
diameter, field-angle effects are not as important as previously when extended area sources were 
used. Extensive calculations of the field angles for a Glan-Thompson prism are included in the earlier 
polarization chapter.1

Other Glan-Thompson-Type Prisms Other types of Glan-Thompson-type prisms include the 
Ahrens prism (two Glan-Thompson prisms placed side-by-side), Glan-Foucault prism (an air-
spaced Glan-Thompson prism), Grosse prism (an air-spaced Ahrens prism), and those constructed 
of glass and calcite. Information about these prisms can be found in the earlier polarization chapter.1

Lippich-Type Prisms

Lippich27 (1885) suggested a polarizing-prism design similar to the Glan-Thompson but with the 
optical axis in the entrance face and at right angles to the intersection of the cut with the entrance 
face (Fig. 3b).  For this case, the index of refraction of the extraordinary ray is a function of angle of 
incidence and can be calculated from Eq. (1) after , the complement of the angle of refraction of the 
wave normal is determined from Eq. (2). In the latter equation, , the angle normal to the surface 
makes with the optic axis, is 90° since the optic axis is parallel to the entrance face. Since the directions 
of the ray and the wave normal no longer coincide, the ray direction must be calculated from Eq. (3). 
Lippich prisms are now little-used because they have small field angles, except for two; the air-spaced 
Lippich, often called a Glan-Taylor prism, and the Marple-Hess prism (two Glan-Taylor prisms back-
to-back) that is described in “Marple-Hess Prism” section on p. 13.13. Further information about all 
Lippich-type prisms is given in the earlier polarization chapter.1

Glan-Taylor Prism The Glan-Taylor prism, first described in 1948 by Archard and Taylor,29 has 
substantial advantages over its Glan-Thompson design counterpart, the Glan-Foucault prism 
(see “Other Glan-Thompson-Type Prisms” section earlier). Since air-spaced prisms have a very 
small field angle, the light must be nearly normally incident on the prism face, so that the difference 
in field angles between the Glan-Taylor and Glan-Foucault prisms (caused by the difference in the 
refractive index of the extraordinary ray) is negligible.

The major advantages of the Glan-Taylor prism are that its calculated transmission is between 
60 and 100 percent higher than that of the Glan-Foucault prism and the intensity of multiple 
reflections between the two sides of the cut always a principal drawback with air-spaced prisms, is 
reduced to less than 10 percent of the value for the Glan-Foucault prism.

The calculated and measured transmittances of a Glan-Taylor prism are in reasonable agreement, 
but the measured transmittance of a Glan-Foucault prism (Fig. 7) may be considerably higher than 
its theoretical value.29 Even so, the transmission of the Glan-Taylor prism is definitely superior to 
that of the Glan-Foucault prism, as can be seen in Fig. 7. Extinction ratios of better than 1 part in 103

are obtainable for the Glan-Taylor prism.30

A final advantage of the Glan-Taylor prism is that it can be cut in such a way as to conserve calcite. 
Archard and Taylor29 used the Ahrens method of spar cutting described by Thompson22 and found 
that 35 percent of the original calcite rhomb could be used in the finished prism.

In a modified version of the Glan-Taylor prism becoming popular for laser applications, the cut 
angle† is increased, the front and back faces are coated with antireflection coatings, and portions of 
the sides are either covered with absorbing black glass plates or highly polished to let the unwanted 
beams escape.30 The effect of increasing the cut angle is twofold: a beam normally incident on the 
prism face will have a smaller angle of incidence on the cut and hence a smaller reflection loss at 

The Lippich prism should not be confused with the Lippich half-shade prism, which is a device to determine a photometric 
match point. The half-shade prism consists of a Glan-Thompson or Nicol prism placed between the polarizer and analyzer such 
that it intercepts half the beam and is tipped slightly in the beam. The prism edge at the center of the field is highly polished to 
give a sharp dividing line. The eye is focused on this edge; the disappearance of the edge gives the photometric match point.28

†The cut angle is the acute angle the cut makes with the prism base.
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the cut than a standard Glan-Taylor prism, but, at the same time, the semifield angle will be reduced 
throughout most of the visible and near-infrared regions.

A new type of air-spaced prism31 has a very high transmittance for the extraordinary ray. It 
resembles the Glan-Taylor prism in that the optic axis is parallel to the entrance face and at right 
angles to the intersection of the cut with the entrance face. However, instead of striking the prism 
face at normal incidence, the light is incident at the Brewster angle for the extraordinary ray (54.02° 
for the 6328-Å helium-neon laser wavelength), so that there is no reflection loss for the e ray at this 
surface. Since the ordinary ray is deviated about 3° more than the extraordinary ray and its critical 
angle is over 4° less, it can be totally reflected at the cut with tolerance to spare while the extraordi-
nary ray can be incident on the cut at only a few degrees beyond its Brewster angle. Thus this prism 
design has the possibility of an extremely low light loss caused by reflections at various surfaces. A 
prototype had a measured transmission of 0.985 for the extraordinary ray at 6328 Å.31 If the prism 
is to be used with light sources other than lasers, its semifield angle can be calculated.1

A major drawback to the Brewster angle prism is that since the light beam passes through a 
plane-parallel slab of calcite at nonnormal incidence, it is displaced by an amount that is propor-
tional to the total thickness of the calcite. Some of the prisms are made with glass in place of calcite 
for the second element. In this case, the beam will usually be deviated in addition to being displaced. 
Measurements on a calcite-glass prototype at 6328 Å showed that the output beam was laterally dis-
placed by several millimeters with an angular deviation estimated to be less than 0.5°.31

Marple-Hess Prism If a larger field angle is required than can be obtained with a Glan-Taylor prism, 
a Marple-Hess prism may be used. This prism, which was first proposed in 1960 as a double Glan-
Foucault by D. T. F. Marple of the General Electric Research Laboratories and modified to the Taylor 
design by Howard Hess of the Karl Lambrecht Corporation,32 is effectively two Glan-Taylor prisms 
back-to-back. The analysis for this prism is made in the same way as for the Glan-Taylor prism 
(see “Glan-Taylor Prism” section earlier) and Lippich-type prisms in general, keeping in mind that 
the refractive index of the “cement” is 1 since the components are air-spaced.

Since the ordinary ray is totally reflected for all angles of incidence by one or the other of the two 
cuts, the field angle is symmetric about the longitudinal axis of the prism and is determined entirely 
by the angle at which the extraordinary ray is totally reflected at one of the two cuts. This angle can 
be readily calculated.1 The field angle is considerably larger than for the Glan-Foucault or Glan-
Taylor prism and does not decrease as the wavelength increases.

Unlike the Glan-Foucault or Glan-Taylor prisms, which stop being efficient polarizers when the 
angle of incidence on the prism face becomes too large, the Marple-Hess prism continues to be an 
efficient polarizer as long as the axial ordinary ray is not transmitted. If the prism is used at a longer 
wavelength than the longest one for which it was designed (smallest value of no used to determine 
the cut angle), the value of no will be still smaller and the critical angle for the axial ordinary ray will 
not be exceeded. Thus the axial o ray will start to be transmitted before off-axis rays get through. 
When this situation occurs, it only makes matters worse to decrease the convergence angle. Thus, there 
is a limiting long wavelength, depending on the cut angle, beyond which the Marple-Hess prism is 
not a good polarizer. At wavelengths shorter than the limiting wavelength, the Marple-Hess prism 
has significant advantages over other air-spaced prism designs.

It is not easy to make a Marple-Hess prism, and the extinction ratio in the commercial model is 
given as between 1  10 4 and 5  10 5, somewhat lower than for a Glan-Taylor prism.30 On the other 
hand, even though the Marple-Hess prism has an increased L/A ratio, 1.8 as compared to 0.85 for a 
Glan-Taylor prism, its ultraviolet transmission is still superior to commercially available ultraviolet-
transmitting Glan-Thompson prisms of comparable aperture.

Frank-Ritter-Type Prisms

The third general category of Glan-type polarizing prisms is the Frank-Ritter design. Prisms of this 
type are characterized by having the optic axis in the plane of the entrance face, as in other Glan-type 
prisms, but having the cut made at 45° to the optic axis (Fig. 3c) rather than at 0°, as in Glan-Thompson 
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prisms, or at 90°, as in Lippich prisms. Frank-Ritter prisms are particularly popular in the Soviet Union, 
and over 80 percent of the polarizing prisms made there have been of this design.33 Usually double 
prisms comparable to the Ahrens modification of the Glan-Thompson are used,1 primarily because 
from a rhombohedron of Iceland spar two Frank-Ritter double prisms can be obtained but only one 
Ahrens of the same cross-section or one Glan-Thompson of smaller cross-section.33 However, this 
apparent advantage can be illusory since Iceland spar crystals often are not obtained as rhombs. For 
example, if the natural crystal is in the form of a plate, it may be less wasteful of material to make a 
Glan-Thompson or Ahrens prism than a Frank-Ritter prism.33

Optically Frank-Ritter prisms should be similar to Glan-Thompson and Ahrens types, although 
the acceptance angle for a given L/A ratio is somewhat smaller since the refractive index of the 
extraordinary ray is larger than ne in the prism section containing the longitudinal axis and perpen-
dicular to the cut. In practice, the degree of polarization for a Frank-Ritter prism seems to be quite 
inferior to that of a good Glan-Thompson or even an Ahrens prism.33

Use of Glan-Type Prisms in Optical Systems

Several precautions should be taken when using Glan-type prisms in optical systems: (1) the field 
angle of the prism should not be exceeded, (2) there should be an adequate entrance aperture so that 
the prism does not become the limiting aperture of the optical system, and (3) baffles should be placed 
preceding and following the prism to avoid incorrect collection of polarized light or extraneous stray 
light. The reason why these precautions are important are discussed in the earlier polarization chapter.1

Common Defects and Testing of Glan-Type Prisms

Several common defects are found in the construction of Glan-type prisms and limit their performance:

1. The axial beam is displaced as the prism is rotated. This defect called squirm, results when 
the optic axes in the two halves of the prism are not strictly parallel. A line object viewed through the 
completed prism will oscillate as the prism is turned around the line of sight.34

2. The axial ray is deviated as the prism is rotated. This defect is caused by the two prism faces 
not being parallel. A residual deviation of 3 minutes of arc is a normal tolerance for a good Glan-
Thompson prism; deviations of 1 minute or less can be obtained on special order.

3. The optic axis does not lie in the end face. This error is often the most serious, since if the 
optic axis is not in the end face and the prism is illuminated with convergent light, the planes of 
vibration of the transmitted light are no longer parallel across the face of the prism. This effect, 
which in Nicol-type prisms gives rise to the Landolt fringe, is illustrated in the following practical 
case.35 For a convergent beam of light of semicone angle i, the maximum variation of the plane of 
vibration of the emergent beam is , where, approximately,

tan sin tann ie (5)

and  is the angle of inclination of the optic axis to the end face, caused by a polishing error. For 
i  3° and p  5°, the plane of vibration of the emergent beam varies across the prism face by 23 
minutes of arc. Thus, good extinction cannot be achieved over the entire aperture of this prism 
even if nearly parallel light is incident on it. The field angle is also affected if the optic axis is not 
in the end face or is not properly oriented in the end face, but these effects are small.

4. The cut angle is incorrect or is different in the two halves of the prism. If the cut angle is 
slightly incorrect, the field angle may be decreased. This error is particularly important in Glan-
Foucault or Glan-Taylor prisms, for which the angular tolerances are quite severe, and a small 
change in cut angle for these prisms may greatly alter the field angle, as discussed in “Glan-Taylor 
Prism” section on p. 13.12 and Ref. 1. If the cut angles are different in the two halves of the prism, the 
field angle will change when the prism is turned end-for-end. The field angle is determined by the 
cut angle in the half of the prism toward the incident beam. Differences in the two cut angles may also 
cause a beam deviation. If the angles in the two halves differ by a small angle that makes the end 
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faces nonparallel, the beam will be deviated by an angle (ne 1).35 If instead, the end faces are 
parallel and the difference in cut angle is taken up by the cement layer which has a refractive index 
of approximately ne, there will be no deviation. However, if the prism is air-spaced, the deviation 
caused by a nonparallel air film is approximately ne, illustrating one reason why air-spaced 
prisms are harder to make than conventional Glan-Thompson prisms.35

5. The transmittance is different when the prism is rotated through 180°. A potentially more serious 
problem when one is making photometric measurements is that the transmission of the prism may not 
be the same in two orientations exactly 180° apart.36 This effect may be caused by the presence of addi-
tional light outside the entrance or exit field angle, possibly because of strain birefringence in the calcite.

Two factors which limit other aspects of polarizer performance in addition to the extinction ratio 
are axis wander, i.e., variation of the azimuth of the transmitted beam over the polarizer aperture, 
and the ellipticity of the emergent polarized beams25 caused by material defects in the second half of 
the prism. Further details are discussed in the earlier polarization chapter.1

In order to determine the cut angle, field angle, parallelism of the prism surfaces, thickness and 
parallelism of the air film or cement layer, and other prism parameters, one can use the testing pro-
cedures outlined by Decker et al.,37 which require a spectrometer with a Gauss eyepiece, laser source, 
and moderately good polarizer. (Other testing procedures have been suggested by Archard.35)
Rowell et al.38 have given a procedure for determining the absolute alignment of a prism polarizer. 
However, they failed to consider some polarizer defects, as pointed out by Aspnes39 who gives a more 
general alignment procedure that compensates for the prism defects. (There is also a response from 
Rowell.40) Further information about testing Glan-type prisms and reasons why prism errors are 
important can be found in the earlier polarization chapter.1

13.4 NICOL-TYPE PRISMS

Nicol-type prisms are not generally used at the present time, as Glan types are optically preferable. 
However, they were the first kind made and were once so common that Nicol became a synonym for 
polarizer. There is much more calcite wastage in making Glan-type prisms than in making the sim-
pler Nicol types so that, even though Glan polarizers were developed in the nineteenth century, it was 
only following the recent discoveries of new calcite deposits that they became popular. Many of the 
older instruments are still equipped with Nicol prisms so they will be briefly described here.

Conventional Nicol Prism

The first polarizing prism was made in 1828 by William Nicol41 a teacher of physics in Edinburgh. 
By cutting a calcite rhomb diagonally and symmetrically through its blunt corners and then cement-
ing the pieces together with Canada balsam, he could produce a better polarizer than any known up 
to that time. A three-dimensional view of Nicol’s prism is shown in Fig. 3d. The cut is made perpen-
dicular to the principal section (defined in “Double Refraction in Calcite” in Sec. 13.2), and the angle 
is such that the ordinary ray is totally reflected and only the extraordinary ray emerges. When the 
rhomb is intact, the direction of polarization can be determined by inspection. However, the corners 
are sometimes cut off, making the rhomb difficult to recognize.

The principal section of Nicol’s original prism is similar to that shown in Fig. 2 except that the 
ordinary ray is internally reflected at the cut along diagonal BH. The cut makes an angle of 19°8
with edge BF in Fig. 2 and an angle of about 90° with the end face of the rhomb. Since the obtuse 
angle is 109°7  (Fig. 3d), the angle between the cut and the optic axis is 44°36 . The field of the prism 
is limited on one side by the angle at which the ordinary ray is no longer totally reflected from the 
balsam film, about 18.8° from the axis of rotation of the prism, and on the other by the angle at 
which the extraordinary ray is totally reflected by the film, about 9.7° from the axis. Thus the total 
angle is about 28.5° but is not by any means symmetric about the axis of rotation; the field angle 
(see “Types of Polarizing Prisms and Definitions” in Sec. 13.2) is only 2  9.7°  19.4°.
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In order to produce a somewhat more symmetric field and increase the field angle, the end faces 
of Nicol prisms are usually trimmed to an angle of 68°. This practice was apparently started by Nicol 
himself.22 If the cut is made at 90° to the new face, as shown in Fig. 8, the new field angle is twice the 
smaller of 1 and 1. The field angles are computed as described in the earlier polarization chapter.1

Trimmed Nicol-Type Prisms

The angle at which the cut is made in a Nicol-type prism is not critical. The field angle is affected, 
but a useful prism will probably result even if the cut is made at an angle considerably different from 
90°. The conventional trimmed Nicol, discussed in “Conventional Nicol Prism” section earlier, is shown 
again in Fig. 9a. In this and the other five parts of the figure, principal sections of various prisms are 
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FIGURE 8 Principal section of a conventional Nicol prism with slightly trimmed 
end faces. Ray A gives the limiting angle 1 beyond which the ordinary ray is no lon-
ger totally internally reflected at the cut; ray B gives the limiting angle 1 for which the 
extraordinary ray starts to be totally internally reflected at the cut.
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FIGURE 9 Principal sections of various types of trimmed cemented Nicol prisms shown 
superimposed on the principal section of a cleaved calcite rhomb (see Fig. 2): (a) conventional 
trimmed Nicol; (b) Steeg and Reuter shortened Nicol (Thompson22); (c) Ahrens Nicol (Thompson22); 
(d) Thompson reversed Nicol (Thompson42); (e) square-ended Nicol; and ( f ) Hartnack-Prazmowski 
reversed Nicol. In all cases, the angle between the prism face and the optic axis (heavy dashed line), 
the angle of the cut, and the acute angle of the rhomb are indicated.
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shown superimposed on the principal section of the basic calcite rhomb (Fig. 2). Thus, it is clear 
how much of the original rhomb is lost in making the different types of trimmed Nicols.

In the Steeg and Reuter Nicol shown in Fig. 9b, the rhomb faces are not trimmed, and the cut is 
made at 84° to the faces instead of 90°, giving a smaller L/A ratio. The asymmetry of the field which 
results is reduced by using a cement having a slightly higher index than Canada balsam.

Alternately, in the Ahrens Nicol shown in Fig. 9c, the ends are trimmed in the opposite direc-
tion, increasing their angles with the long edges of the rhomb from 70°53  to 74°30  or more. By 
also trimming the long edges by 3°30 , the limiting angles are made more symmetric about the 
prism axis.

Thompson Reversed Nicol In the Thompson reversed Nicol shown in Fig. 9d, the ends are heavily 
trimmed so that the optic axis lies nearly in the end face. As a result, the blue fringe is thrown farther 
back than in a conventional Nicol, and although the resulting prism is shorter, its field angle is actu-
ally increased.

Nicol Curtate, or Halle, Prism The sides of the calcite rhomb may also be trimmed so that they are 
parallel or perpendicular to the principal section. Thus, the prism is square (or sometimes octago-
nal). This prism is of the Halle type43,44 and was shown in Fig. 3e. Halle, in addition, used thickened 
linseed oil instead of Canada balsam and altered the angle of the cut. In this way he reduced the 
length-to-aperture ratio from about 2.7 to 1.8 and the total acceptance angle from 25° to about 17°. 
Such shortened prisms cemented with low-index cements are often called Nicol curtate prisms (cur-
tate means shortened).

Square-Ended Nicol The slanting end faces on conventional Nicol prisms introduce some dif-
ficulties, primarily because the image is slightly displaced as the prism is rotated. To help correct 
this defect, the slanting ends of the calcite rhomb can be squared off, as in Fig. 9e, producing the 
so-called square-ended Nicol prism. The angle at which the cut is made must then be altered since 
the limiting angle 1 for an ordinary ray depends on the angle of refraction at the end face in a con-
ventional prism, in which the limiting ray travels nearly parallel to the prism axis inside the prism 
(ray A in Fig. 8). If the cut remained the same, the limiting value of 1 would thus be zero. However, 
if the cut is modified to be 15° to the sides of the prism, the total acceptance angle is in the 24° to 27° 
range, depending on the type of cement used.22

Some image displacement will occur even in square-ended Nicol prisms since the optic axis 
is not in the plane of the entrance face. Therefore, the extraordinary ray will be bent even if light 
strikes the entrance face of the prism at normal incidence. There is considerable confusion on this 
point in the literature.22,45

Hartnack-Prazmowski Prism A reversed Nicol which has the cut at 90° to the optic axis46 is shown 
in Figs. 3f and 9f. If it is cemented with linseed oil, the optimum cut angle calculated by Hartnack is 
17° to the long axis of the prism, giving a total acceptance angle of 35° and an L/A ratio of 3.4.22 If 
Canada balsam is used, the cut should be 11°, in which case the total acceptance angle is 33° and the 
L/A ratio is 5.2.

Foucault Prism A modified Nicol prism in which an air space is used between the two prism halves 
instead of a cement layer47 consists of a natural-cleavage rhombohedron of calcite which has been 
cut at an angle of 51° to the face. The cut nearly parallels the optic axis. Square-ended Foucault-type 
prisms, such as the Hofmann prism, have also been reported.22 The angle at which the cut is made 
can be varied slightly in both the normal Foucault prism and the Hofmann variation of it. In all 
designs the L/A ratio is 1.5 or less, and the total acceptance angle about 8° or less. The prisms suffer 
somewhat from multiple reflections, but the principal trouble, as with all Nicol prisms, is that the 
optic axis is not in the plane of the entrance face. This defect causes various difficulties, including 
nonuniform polarization across the field and the occurrence of a Landolt fringe (discussed next and 
Ref. 1) when two Nicol-type prisms are crossed.
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Landolt Fringe If an intense extended light source is viewed through crossed polarizing prisms, 
careful observation will reveal that the field is not uniformly dark. In Nicol-type prisms the dark-
ened field is crossed by a darker line whose position is an extremely sensitive function of the angle 
between the polarizer and analyzer. Other types of polarizing prisms also exhibit this anomaly but 
to a lesser extent. The origin of the Landolt fringe is given in the earlier polarization chapter1 and 
the references cited therein.

13.5 POLARIZING BEAM-SPLITTER PRISMS

The three classic polarizing beam-splitter prisms are the Rochon, Sénarmont, and Wollaston, shown 
in perspective in Fig. 10a to 10c and in side view in Fig. 11a to 11c. In addition, any polarizing 
prism can be used as a polarizing beam splitter by changing the shape of one side and removing 
the absorbing coating from its surface. Two examples of such prisms are the Foster prism, in which 
the ordinary and extraordinary rays emerge at right angles to each other, and the beam-splitting 
Glan-Thompson prism, in which the ordinary ray emerges normal to one side (Figs. 10d and e and 
11d and e). Another prism of this type, the beam-splitting Ahrens prism, is a double beam-splitting 
Glan-Thompson prism (see “Other Glan-Thompson-Type Prisms” in Sec. 13.3).

In polarizing prisms, the optic axes are always parallel to each other in the two halves of the 
prism. By contrast, the optic axes in the two halves of the Rochon, Sénarmont, and Wollaston 
polarizing beam-splitter prisms are at right angles to each other. Crystal quartz is often used to 
make these beam splitters, and such prisms can be used down to the vacuum ultraviolet. In appli-
cations not requiring such short wavelengths, calcite is preferable because it gives a greater angular 
separation of the beams (typically 10° as compared to 0.5° for quartz) and does not produce opti-
cal rotation.

(a)

(d)

(b) (c)

(e)

FIGURE 10 Three-dimensional views of various types of polarizing beam-
splitter prisms: (a) Rochon; (b) Sénarmont; (c) Wollaston; (d) Foster (shaded face is 
silvered); and (e) beam-splitting Glan-Thompson.
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Rochon Prism

The Rochon prism, invented in 1783,48 is the most common type of polarizing beam splitter. It is 
often used in photometric applications in which both beams are utilized. It is also used as a polariz-
ing prism in the ultraviolet, in which case one of the beams must be eliminated, e.g., by imaging the 
source beyond the prism and blocking off the deviated image.

The paths of the two beams through the prism are shown in Fig. 11a. A ray normally incident 
on the entrance face travels along the optic axis in the first half of the prism, so that both ordinary 
and extraordinary rays are undeviated and have the same refractive index no. The second half of 
the prism has its optic axis at right angles to that in the first half, but the ordinary ray is undeviated 
since its refractive index is the same in both halves. The extraordinary ray, however, has its mini-
mum index in the second half, so that it is refracted at the cut according to Snell’s law (see “Double 
Refraction in Calcite” in Sec. 13.2). Since the deviation angle depends on the ratio ne/no, it is a func-
tion of wavelength. If the angle of the cut is S, to a good approximation the beam deviation  of the 
extraordinary ray depends on the cut angle in the following manner, according to Steinmetz et al.,49
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This relation holds for light normally incident on the prism face. The semifield angle imax is given by49
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1
2
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If the prism is to be used as a polarizer, the light should be incident as shown. Rochon prisms 
also act as polarizing beam splitters when used backward, but the deviation of the two beams is then 
slightly less.

When a Rochon prism is used backward, both the dispersion and the optical activity (for quartz) 
will adversely affect the polarization. Thus, one generally uses a Rochon in the normal manner. 
However, an exception occurs when a quartz Rochon is to be used as an analyzer. In this case it is 

(a)

(d)
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Eyepiece

Specimen

(b) (c)

(e)

FIGURE 11 Side views of the polarizing beam-splitter prisms in Fig. 10. The directions of 
the optic axes are indicated by the dots and the heavy double-pointed arrows. The angle of the cut 
for the Rochon prism is S. When the Foster prism is used as a microscope illuminator, the source, 
specimen, and eyepiece are in the positions indicated.
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best to reverse the prism and use a detector that is insensitive to polarization to monitor the relative 
intensities of the two transmitted beams.

A Rochon prism is achromatic for the ordinary ray but chromatic for the extraordinary ray. 
Since total internal reflection does not occur for either beam, the type of cement used between the 
two halves of the prism is less critical than that used for conventional polarizing prisms. Canada 
balsam is generally used, although the two halves are sometimes optically contacted for high-power 
laser applications or for use in the ultraviolet at wavelengths shorter than 3500 Å. Optically con-
tacted crystalline-quartz Rochon prisms can be used to wavelengths as short as 1700 Å, and a double 
Rochon of MgF2 has been used to 1300 Å in the vacuum ultraviolet.49 Optically contacted single 
Rochon prisms of MgF2 have also been constructed, and the transmission of one has been measured 
from 1400 Å to 7 μm.50 Ultraviolet-transmitting cements such as gédamine can be used to extend the 
short-wavelength limit of calcite prisms to about 2500 Å (see “Transmission” in Sec. 13.3).

Defects Quartz and calcite Rochon prisms suffer from several defects. Quartz exhibits optical 
activity when light is transmitted through it parallel to the optic axis, and although two mutually 
perpendicular, polarized beams will emerge from a quartz Rochon prism used in the conventional 
direction, their spectral composition will not faithfully reproduce the spectral compositions of the 
horizontal and vertical components of the input. If such a prism is used backward, different wave-
lengths emerge from the prism vibrating in different planes. Hence the output consists of many dif-
ferent polarizations instead of the desired two.51

Calcite Rochon prisms do not exhibit optical activity but are difficult to make, since when calcite 
surfaces are cut normal to the optic axis, small tetrahedra tend to cleave out from the surface dur-
ing pitch polishing. These tetrahedra may also cleave out during attempts to clean the prisms, and 
occasionally glass plates are cemented to such surfaces to prevent damage. Some image distortion 
will occur in calcite prisms; if nonnormally incident rays pass through the prism, both beams will 
be distorted along their directions of vibration; i.e., the undeviated beam (o ray), which vibrates in a 
vertical plane, will be distorted vertically, and the deviated beam (e ray), which vibrates in a horizon-
tal plane, will be distorted horizontally.51

Glass-Calcite Rochons Some of the difficulties mentioned in the preceding section can be mini-
mized or eliminated by making the entrance half of the Rochon prism out of glass of matching 
index instead of quartz or calcite. Both o and e rays travel along the same path and have the same 
reflective index in this half of the prism, so that the birefringent qualities of the quartz or calcite 
are not being used and an isotropic medium would serve just as well. By properly choosing the 
index of the glass, either the ordinary or the extraordinary ray can be deviated, and glasses are 
available for matching either index of calcite reasonably well over much of the visible region.51

The extraordinary ray always suffers some distortion in its direction of vibration, but the distor-
tion of the ordinary ray can be eliminated in the glass-calcite construction. By properly choosing 
the refractive index of the glass we can determine whether the e ray will be the deviated or the 
undeviated beam. (Some distortion also arises for deviated beams in the direction of the devia-
tion because of Snell’s law and cannot be corrected in this way.) Another method of obtaining an 
undeviated beam was used by Hardy;52 unable to find a glass with refractive index and dispersion 
matching those of calcite, he selected a glass with the correct dispersive power and then compen-
sated for the difference in refractive index by putting a slight wedge angle on the calcite surface. 
Now a wider selection of glasses is available, but glass-calcite prisms cannot be made strictly 
achromatic over an extended wavelength range, and thermally induced strains caused by the dif-
ference in expansion coefficients in the two parts of the prism may be expected unless the cement 
yields readily.

Total Internal Reflection in Rochons When normal Rochon prisms are used as polarizers, one of 
the beams must be screened off and eliminated. This restriction might be removed by making the 
cut between halves of the prism at a sufficiently small angle for the extraordinary ray to be totally 
reflected. Calculations indicate that this approach should be feasible,53 but it has apparently not 
been followed.
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Sénarmont Prism

The Sénarmont polarizing beam splitter, shown in Figs.10b and 11b, is similar to the Rochon prism 
except that the optic axis in the exit half of the prism is coplanar with the optic axis in the entrance 
half, i.e., at right angles to the Rochon configuration. As a result, light whose plane of vibration is 
initially vertical is deviated in the Sénarmont prism, while in the Rochon prism the deviated beam 
has its plane of vibration horizontal (assuming no optical activity in either case) (compare Fig.11a
and b). The amount of the deviation in the Sénarmont prism is slightly less than in the Rochon 
because the extraordinary ray does not have its minimum refractive index [Eq. (1)].

An alternate form of Sénarmont prism, the right-angle Sénarmont or Cotton polarizer,54 consists 
of only the first half of the Sénarmont prism. Unpolarized light normally incident on the prism face 
is totally internally reflected at the hypotenuse and is then resolved into two planes of vibration, one 
parallel to the optic axis and the other perpendicular to it. Double refraction will then occur just as 
in a normal Sénarmont prism. Such a prism has a transmission equivalent to that of an optically 
contacted Sénarmont or Rochon but is much less expensive.

Wollaston Prism

The Wollaston prism (Figs. 10c and 11c) is a polarizing beam splitter, also used as a polarizing 
prism in the vacuum ultraviolet,55 that deviates both transmitted beams. The deviations, indi-
cated in Fig. 11c, are nearly symmetrical about the incident direction, so that the Wollaston has 
about twice the angular separation of a Rochon or Sénarmont prism. A normally incident beam 
is undeviated upon entering the prism, but the o ray, vibrating perpendicular to the optic axis, has 
a refractive index no while the e ray, vibration parallel to the optic axis has its minimum (or prin-
cipal) index ne. At the interface the e ray becomes the o ray and vice versa because the direction of 
the optic axis in the second half is perpendicular to its direction in the first half. Thus the original 
o ray enters a medium of lower refractive index and is refracted away from the normal at the cut, 
while the original e ray passes into a medium of higher refractive index and is refracted toward the 
normal. On leaving the second half of the prism, both rays are refracted away from the normal, so 
that their divergence increases.

The deviation of each beam is chromatic in Wollaston prisms, which are most commonly used 
to determine the relative intensities of two plane-polarized components. Since the light never travels 
along the optic axis, optical activity does not occur and the relative intensities of the two beams are 
always proportional to the intensities of the horizontal and vertical polarization components in 
the incident beam. For an L/A ratio of 1.0, the angular separation between beams is about 1° for a 
crystalline-quartz Wollaston prism; it can be as high as 3°30  for an L/A ratio of 4.0. With a calcite 
prism, the beams would have an angular separation of about 19° for an L/A ratio of 1.0, but severe 
image distortion and lateral chromatism results when such large angular separations are used. 
These effects can be minimized or the angular separation can be increased for a given L/A ratio by 
using a three-element Wollaston prism, a modification, apparently suggested by Karl Lambrecht.30

Divergences as large as 30° can be obtained.1

The ellipticity in the emergent polarized beams has been measured by King and Talim.25 For 
calcite Wollaston prisms, the ellipticities were in the 0.004° to 0.025° range, comparable to those of 
Glan-Thompson prisms (“Common Defects and Testing of Glan-Type Prism” in Sec. 13.3). Larger 
values, between 0.12° and 0.16°, were measured for crystalline-quartz Wollaston prisms. The major 
contribution, which was from the combined optical activity and birefringence in the quartz rather 
than from defects within the crystal, cannot be avoided in quartz polarizers.

Foster Prism

This prism, shown in a three-dimensional view in Fig. 10d and in cross-section in Fig. 11d, can be 
used to form two plane-polarized beams separated by 90° from each other.56 Its construction is simi-
lar to that of a Glan-Thompson prism except that one side is cut at an angle and silvered to reflect 
the ordinary ray out the other side.
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The Foster prism is often used backward as a polarizing microscope illuminator for observing 
reflecting specimens. For this application, the light source is at e in Fig. 11d, and unpolarized light 
enters the right-hand face of the prism. The ordinary ray (not shown) is reflected at the cut and 
absorbed in the blackened side of the prism, while the extraordinary ray is transmitted undeviated 
out the left face of the prism. It then passes through the microscope objective and is reflected by 
the specimen, returning on its same path to the prism. Light that is unchanged in polarization will 
be transmitted undeviated by the prism along the path to the light source. If, however, the plane of 
vibration has been rotated so that it is at right angles to the optic axis (in the plane of the figure), 
the light will be reflected into the eyepiece. The prism thus acts like a crossed polarizer-analyzer 
combination.

If a correctly oriented quarter-wave plate is inserted in the beam between the prism and the 
microscope objective, the light striking the sample will be circularly polarized, and, after being 
reflected back through the quarter-wave plate, it will be linearly polarized again but with the 
plane of vibration rotated by 90°. This light is vibrating perpendicular to the optic axis and will be 
reflected into the eyepiece, giving bright-field illumination. Foster prisms used in this manner intro-
duce no astigmatism since the light forming the image enters and leaves the prism normal to the 
prism faces and is reflected only by plane surfaces.

Beam-Splitting Glan-Thompson Prism

If a prism design similar to the Foster is used but the side of the prism is cut at an angle so that the 
ordinary ray, which is deflected, passes out normal to the surface of the prism rather than being 
reflected, the prism is called a beam-splitting Glan-Thompson prism (Figs. 10e and 11e). Since no 
refraction occurs for either beam, the prism is achromatic and nearly free from distortion. The angle 
between the two emerging beams is determined by the angle of the cut between the two halves of the 
prism and hence depends on the L/A ratio of the prism. For an L/A ratio of 2.414, the angle is 45°. 
The field angle around each beam is calculated for different L/A ratios just as for a conventional Glan-
Thompson prism. By making the prism double, i.e., a beam-splitting Ahrens prism, the incident beam 
can be divided into three parts, one deflected to the left, one to the right, and one undeviated.

13.6 FEUSSNER PRISMS

The polarizing prisms discussed so far require large pieces of birefringent material, and the extraor-
dinary ray is the one usually transmitted. Feussner57 suggested an alternate prism design in which 
only thin plates of birefringent material are required and the ordinary ray rather than the extraor-
dinary ray is transmitted for negative uniaxial materials. A similar suggestion was apparently made 
by Sang in 1837, although he did not publish it until 1891.58 In essence, Feussner’s idea was to make 
the prisms isotropic and the film separating them birefringent, as shown in Fig. 12. The isotropic 

Glass

Glass

Calcite(a)

Glass

Glass

Calcite(b)

FIGURE 12 Types of Feussner prisms: (a) original Feussner prism and (b) Bertrand type. 
The arrows indicate the orientation of the optic axis in the calcite (or other birefringent material).
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prisms should have the same refractive index as the higher index of the birefringent material so that 
for negative uniaxial materials e.g., calcite or sodium nitrate, the ordinary ray is transmitted and the 
extraordinary ray totally internally reflected. Advantages of this design are (1) since the ordinary 
ray is transmitted, the refractive index does not vary with angle of incidence and hence the image 
is anastigmatic, (2) large field angles or prisms of compact size can be obtained, and (3) the bire-
fringent material is used economically. Furthermore, because the path length of the ray through the 
birefringent material is short, a lower-quality material can be used.

Disadvantages are (1) for both calcite and sodium nitrate, the extraordinary ray is transmitted 
over a larger wavelength range than the ordinary ray so that Feussner prisms do not transmit over 
as large a wavelength range as conventional prisms, and (2) the thermal-expansion coefficients 
of the isotropic and birefringent materials are different, making thermally induced strains likely. 
Solutions to the second problem are to use a thixotropic cement, which flows more readily with 
increasing stress, or to enclose the system in a metal sleeve and use oil instead of cement. If the 
ordinary index is matched by the oil, the birefringent material does not even need to be polished 
very well. Even a cleavage section of calcite can be used, with only a tolerable loss in angular 
field.59

Feussner suggested orienting the optic axis of the birefringent slab perpendicular to the cut, 
as indicated in Fig. 12a. Since the thermal expansion of the slab is the same in all directions per-
pendicular to the optic axis, thermally induced strains are minimized in this way. Field angles 
for Feussner prisms employing calcite and sodium nitrate slabs are given in the earlier polariza-
tion chapter.1

Shortly after Feussner’s article was published, Bertrand60 pointed out that the optic axis of the 
birefringent slab should be parallel to the entrance face of the prism to give the maximum differ-
ence between the refractive indices of the ordinary and extraordinary rays. A prism made in this way, 
sometimes called a Bertrand-type Feussner prism, is shown in Fig. 12b.

Since sodium nitrate is easily obtainable and has a birefringence even larger than that of calcite, 
attempts have been made to produce polarizing prisms of this material by Wulff,61 Stöber,62–64

Tzekhovitzer,65 West,66 Huot de Longchamp,67 and Yamaguti.68,69 However, it is not only deliques-
cent but also very soft, so that although large single crystals can be obtained, they are difficult to 
work. They can be crystallized in the desired orientation from a melt using a technique discovered 
by West.66 When sodium nitrate crystallizes from a melt on a mica cleavage surface, one of its basal 
planes is oriented parallel to the mica cleavage and hence its optic axis is perpendicular to the 
mica surface. West reports growing single crystals as large as 38  19  2 cm using this technique. 
Yamaguti68,69 has produced polarizing prisms of sodium nitrate by placing thin, closely spaced 
glass plates on edge on a mica sheet and then immersing the assembly in a melt of sodium nitrate. 
The thin single crystal thus formed was annealed and cemented between glass prisms to form a 
Bertrand-type Feussner prism. Conceivably, the sodium nitrate could have been grown directly 
between the glass prisms themselves, but when such thick pieces of glass are used, it is difficult to 
avoid setting up strains in the crystal and consequently reducing the polarization ratio. Yamaguti 
used SK5 glass prisms (nD  1.5889) cut at an angle of 23° to form his polarizing prism and reports 
a field of view of 31°, symmetric about the normal to the entrance face.

Another possible birefringent material suitable for a Feussner prism is muscovite mica, and such 
prisms have actually been constructed and tested.70,71 A 6° field angle can be obtained,59 which is 
adequate for many optical systems illuminated by lasers.

13.7 NONCALCITE POLARIZING PRISMS

Polarizing prisms made of materials other than calcite have been used primarily in the ultraviolet 
region at wavelengths for which calcite is opaque. Prism materials used successfully in this region 
include crystalline quartz, magnesium fluoride, sodium nitrate, and ammonium dihydrogen phos-
phate. Rutile polarizing prisms have been used beyond the calcite cutoff in the infrared. A new 
prism material, yttrium orthovanadate, has been used to make high-transmission polarizers for the 



13.24  POLARIZED LIGHT

visible and near-infrared spectral regions.72 Properties of this material were described in the earlier 
polarization chapter.1

Rochon or Wollaston prisms (see “Rochon Prism” and “Wollaston Prism” in Sec. 13.5) are some-
times made of crystalline quartz for use in the far ultraviolet. The short-wavelength cutoff of the 
quartz is variable, depending on the impurities present, but can be as low as 1600 Å.

By utilizing magnesium fluoride instead of quartz for the polarizing prisms, the short-wavelength 
limit can be extended to 1300 Å. Magnesium fluoride transmits to about 1125 Å, but below 1300 Å 
its birefringence decreases rapidly and changes sign at 1194 Å.55,73 Although it is the most birefrin-
gent material available in this region, MgF2 has a much smaller birefringence than that of calcite; 
hence, a small cut angle and large L/A ratio for the prism are unavoidable. Since absorption does 
occur, it is desirable to minimize the length of the prism. Johnson55 solved this problem by con-
structing a MgF2 Wollaston prism which requires only half the path length necessary for a Rochon 
prism. However, both beams are deviated, creating instrumental difficulties.

Steinmetz et al.49 constructed a double Rochon prism of MgF2 which has the same L/A ratio 
as the Wollaston prism but does not deviate the desired beam. Problems with the prism included 
fluorescence, scattered light, and nonparallelism of the optic axes.1 In principle, however, a MgF2
double Rochon polarizing prism should be an efficient, high-extinction-ratio, on-axis polar-
izer for the 1300- to 3000-Å wavelength range and should also be useful at longer wavelengths. 
Morris and Abramson50 reported on the characteristics of optically contacted MgF2 single Rochon 
prisms.

A different type of polarizer suggested by Chandrasekharan and Damany74 to take the place of 
a Rochon or Wollaston prism in the vacuum ultraviolet consisted of a combination of two MgF2
lenses, one planoconcave and the other planoconvex of the same radius of curvature, combined so 
that their optic axes were crossed. The combination acted as a convergent lens for one polarization 
and as a divergent lens for the other. It had the advantage that the polarized beam remained on axis 
and was focused. A measured degree of polarization of 98.5 percent was obtained at 1608 Å, in good 
agreement with the calculated value.

Prism polarizers can also be constructed for use in the infrared at wavelengths longer than those 
transmitted by calcite. Rutile, TiO2, a positive uniaxial mineral with a large birefringence and good 
transmittance to 5 μm in the infrared, has been used by Landais75 to make a Glan-Foucault-type 
crystal polarizer. Since rutile has a positive birefringence (in contrast to the negative birefringence of 
calcite), the ordinary ray is transmitted undeviated and the extraordinary ray is reflected out one 
side. Other characteristics are given in the earlier Polarization chapter.1

13.8  DICHROIC AND DIFFRACTION-TYPE
POLARIZERS

Some of the most useful polarizers available employ either dichroism or diffraction effects. These 
polarizers come in sheet form, sometimes in large sizes, are easily rotated, and produce negligible 
beam deviation. Also, they are thin, lightweight, and rugged, and most can be made in any desired 
shape. The cost is generally much less than that of a prism-type polarizer. Furthermore, both types 
are insensitive to the degree of collimation of the beam, so that dichroic or diffraction-type polar-
izers can be used in strongly convergent or divergent light.

A dichroic  material is one which absorbs light polarized in one direction more strongly than 
light polarized at right angles to that direction. Dichroic materials are to be distinguished from 
birefringent materials, which may have different refractive indexes for the two electric vectors 
vibrating at right angles to each other but similar (usually negligible) absorption coefficients. 

The term dichroic is also used in three other ways: (1) to denote the change in color of a dye solution with change in con-
centration, (2) to denote a color filter that has two transmission bands in very different portions of the visible region and hence 
changes color when the spectral distribution of the illuminating source is changed, and (3) to denote an interference filter that 
appears to be of a different color when viewed in reflected or transmitted light.
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Various materials are dichroic, either in their natural state or in a stretched condition. The most 
common materials used as dichroic polarizers are stretched polyvinyl alcohol sheets treated with 
absorbing dyes or polymeric iodine, commonly marketed under the trade name Polaroid. These 
and similar materials are discussed in the following section. Another type of dichroic polarizer 
is prepared by rubbing a glass or plastic surface in a single direction and then treating it with 
an appropriate dye. Polarizers of this type are sold under the trade name Polacoat and will be 
described in “Dichoric Polarizing Coating” section on p. 13.28. In certain portions of the infrared 
spectral region, calcite is strongly dichroic and makes an excellent high-extinction polarizer.76

Pyrolytic graphite is electrically and optically anisotropic and has been successfully used as an 
infrared polarizer; it is described in “Pyrolytic-Graphite Polarizers” section on p. 13.28. Other 
materials which exhibit dichroism in the infrared include single-crystal tellurium,77 ammonium 
nitrate,78 mica, rubber under tension, polyvinyl alcohol, and polyethylene.79 In the visible region, 
gold, silver, and mercury in the form of microcrystals,80 needles of tellurium,81 graphite particles,82

and glasses containing small elongated silver particles83 are all dichroic.
A sodium nitrate polarizer described by Yamaguti84 is not dichroic in the strict sense of the 

word but acts like a dichroic polarizer. Roughened plates of SK5 glass are bonded together by a single 
crystal of sodium nitrate, which has a refractive index for the ordinary ray nearly equal to that of 
the glass. The extraordinary ray has a much lower index, so that it is scattered out of the beam by the 
rough surfaces, leaving the ordinary ray to be transmitted nearly undiminished. (Yamaguti has also 
made Feussner prisms out of single-crystal sodium nitrate described in Sec. 13.6.)

Diffraction-type polarizers include diffraction gratings, echelettes, and wire grids. These are all 
planar structures that have properties similar to those of dichroic polarizers except that they trans-
mit one component of polarization and reflect the other when the wavelength of the radiation is 
much longer than the grating or grid spacing. Wire grid and grating polarizers are covered in “Wire-
Grid and Grating Polarizers” section on p. 13.30.

None of these polarizers has as high a degree of polarization as the prism polarizers of Secs. 13.1 
to 13.5. Thus it is frequently necessary to measure the polarizing properties of the particular polar-
izer used. A source of plane-polarized light is desirable for such a measurement. Lacking that, one 
of the procedures described in “Measuring Polarization of Imperfect Polarizers” section on p. 13.33 
can be followed if there are two identical imperfect polarizers. Alternate methods are also described 
which are applicable to two nonidentical imperfect polarizers.

Sheet Polarizers

Various types of sheet polarizers have been developed by Edwin H. Land and coworkers at the 
Polaroid Corporation, Cambridge, Mass. Sheet polarizers are also available from several European 
companies. The J sheet polarizer, the first type available in America (around 1930), consisted of 
submicroscopic needles of herapathite oriented parallel to one another in a sheet of cellulose 
acetate. Since this type of polarizer, being microcrystalline, had some tendency to scatter light, it was 
superseded by H and K sheet molecular polarizers, which exhibit virtually no scattering. The most 
widely used sheet polarizer is the H type, which consists of a sheet of polyvinyl alcohol that has been 
unidirectionally stretched and stained with iodine in a polymeric form. The K type is made by heat-
ing a sheet of polyvinyl alcohol in the presence of a catalyst to remove some of the water molecules 
and produce the dichromophore polyvinylene. It was developed primarily for applications where 
resistance to high temperature and high humidity are necessary. Another type of polarizing sheet, 
made from a combination of the H and K types, has an absorption maximum at about 1.5 μm in 
the infrared and is designated as HR Polaroid.

The history of the development of the various kinds of sheet polarizers has been given by Land,81

their chemical composition by Land and West,80 and their optical performance by Shurcliff,82

Baumeister and Evans,85 Land and West,80 and Land.81 In addition, Blake et al.86 mention the HR 
infrared polarizer, and Makas87 describes the modified H-film polarizer for use in the near ultraviolet. 
Baxter et al.88 describe a technique for measuring the optical density of high-extinction polarizers in 
the presence of instrumental polarization.
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Figure 13 shows the principal transmittance T1 and extinction ratio T2/T1 of various types of 
H and K sheet polarizers used in the visible and near ultraviolet.82,85,89 In addition, curves for two 
sheet polarizers manufactured by Zeiss and two types of polarizing filters from Polacoat (see 
“Dichroic Polarizing Coatings” section on p. 13.28) are shown. The letter N in the designation of the 
Polaroid sheets stands for neutral (to distinguish them from sheet polarizers prepared from colored 
dyes), and the number 22, 32, etc., indicates the approximate transmittance of unpolarized visible 
light. Figure 14 gives the principal transmittance and extinction ratio of a typical plastic laminated 
HR infrared polarizer.82,89 Sometimes the optical density D of a polarizer is plotted instead of its 
transmittance. The relation between these two quantities is

D
T

log
1

(8)

FIGURE 13 (a) Principal transmittance and (b) extinction ratio for various types of dichroic polar-
izers: Polaroid sheet polarizers HN-22, HN-32, HN-38, and KN-36; Zeiss (Oberkochen) Bernotar and Micro 
Polarization filters; and Polacoat PL-40 and 105 UVR polarizing filters. The last is stated to have a transmittance 
(for unpolarized light) of 32 percent at 5460 Å. (Modified from curves of Shurcliff,82 Baumeister and Evans,85

Jones,89 Haase,90 and McDermott and Novick.91)
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The extinction ratio of the HN-22 Polaroid compares favorably with that of Glan-Thompson 
prisms throughout the visible region, but the transmission of the Glan-Thompson is superior. 
In the ultraviolet, the new HNP B material has a reasonably good extinction ratio (about 10−3 or 
better) for wavelengths longer than 3200 Å. It is a specially purified form of HN-32, and its prop-
erties match those of the standard HNT-32 Polaroid at wavelengths longer than 4500 Å. Optical 
properties of various types of Polaroid dichroic polarizers have been described by Trapani.93

According to West and Jones,48 the extinction ratio for a dichroic polarizer of the Polaroid type has a 
practical limit of about 10−5 because, as the concentration of dichromophore is increased beyond 
a certain value, the optical density no longer increases proportionately. Gunning and Foschaar94 have 
described a method for the controlled bleaching of the iodine dichromophore in iodine-polyvinyl 
alcohol polarizers to achieve an increased internal transmission of up to 95 percent for the principal 
transmittance of linearly polarized light in the 5000- to 6000-Å wavelength region. This is achieved 
at the expense of degrading the extinction ratio and drastically affecting the short wavelength per-
formance of the polarizer. Baum95 describes the application of sheet polarizers to liquid crystal dis-
plays and problems encountered in this application.

FIGURE 14 (a) Principal transmittance and (b) extinction ratio for 
plastic laminated HR infrared polarizer (modified from curves of Shurcliff,82

and Jones,89) and two wire grid polarizers with 0.463-μm grating spacings 
(Bird and Parrish,92).
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If Polaroids are used in applications where beam deviation is important, they should be checked 
for possible deviation. Most Polaroids, which are laminated in plastic sheets, do produce a slight beam 
deviation that can be observed through a telescope as a shift in the image position when the Polaroid 
is rotated. The amount of the deviation varies from point to point on the Polaroid and can be much 
worse if the material is mounted between glass plates. It is possible to order specially selected sheet 
Polaroid laminated between polished glass plates that deviates the beam by only about 5 seconds of arc.

Sheet polarizers made of stretched polyvinyl alcohol that has been stained with iodine or various 
dyes are also made in countries outside the United States, as described in the earlier polarization chapter.1

King and Talim25 have measured the axis wander and ellipticity of beams transmitted by various 
types of sheet polarizers in the same way as for Glan-Thompson prisms (“Common Defects and Testing 
of Glan-Type Prisms” in Sec. 13.3). They found considerable variations from one type of sheet polarizer 
to another and also over a single sheet. Details are given in the earlier chapter on polarization.1

Dichroic Polarizing Coatings

Beilby-layer polarizers82 are dichroic coatings that can be applied to the surface of glass or plastic. 
The process was developed by Dreyer,96 who founded the company which manufactures Polacoat 
polarizing filters. There are three main steps in the production of these polarizers. First, the sub-
strate (quartz, glass, plastic, etc.) is rubbed along parallel lines with filter paper, cotton, or rouge to 
produce a preferred surface orientation. (The affected region of minute scratches extends to a depth 
of less than 1 μm.) Then the sheet is rinsed and treated with a solution of dichroic molecules e.g., a 
0.5 percent solution of methylene blue in ethanol or one or more azo dyes, and then dried in a con-
trolled fashion. Presumably the molecules line up preferentially along the rubbing direction, result-
ing in a greater absorption for light, polarized in that direction. As a final step, the surface is treated 
with an acidic solution, often that of a metallic salt such as stannous chloride, which can increase 
the dichroism and produce a more neutral color. A protective coating over the polarized surface 
provides mechanical protection for the fragile layer with no loss in transmission. McDermott and 
Novick91 give a somewhat more complete description of the Polacoat process, and Anderson97 has 
investigated the absorption of methylene blue molecules on a unidirectionally polished surface. 
References to patents and related work are given by Shurcliff.82

The principal transmittance and extinction ratio of two standard Polacoat coatings, PL-40 and 
105 UVR (32 percent transmission of unpolarized light at 5460 Å), are shown in Fig. 13. These 
curves are taken from the data of McDermott and Novick.91 Polacoat 105 UVR coating comes in 
various densities; the data shown are for the highest-density material with the best extinction ratio.
A major advantage of Polacoat over sheet Polaroid is that it does not bleach upon exposure to 
intense ultraviolet radiation.

Kyser99 tested a stock PL40 polarizing filter on fused quartz and found that it produced a large 
quantity of scattered light of the unwanted component. This light was dispersed spectrally and was 
scattered at angles up to about 20° as though the scratches on the rubbed surface were acting like 
rulings on a diffraction grating. There was relatively little of the unwanted component on axis; most 
of it was scattered at larger angles. Despite these difficulties, Polacoat PL40 polarizers appear to be 
the best large-aperture transmission-type polarizers available for work in the 2000- to 3000-Å wave-
length range in the ultraviolet.

Pyrolytic-Graphite Polarizers

Pyrolytic graphite has a large anisotropy in both the electric conductivity and in the optical prop-
erties. If the E vector of an electromagnetic wave is pointing in the direction of the c-axis of the 
graphite, the absorption coefficient is a minimum, the reflectance is also a minimum, and hence 

The company literature98 is somewhat misleading in that the transmittance of this material is stated to be 35 percent, but 
the transmission curve (for unpolarized light) given in the bulletin does not rise above 30 percent until the wavelength becomes 
longer than 6500 Å
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the transmittance is a maximum. If the E vector lies in the plane perpendicular to the c direction, the 
absorption is a maximum, reflectance is a maximum, and transmittance is a minimum. Thus, pyro-
lytic graphite should be a good material from which to make a dichroic polarizer if a thin foil is cut 
and polished to contain the c-axis. Several such polarizers have been made by Rupprecht et al.100;
two had thicknesses of 9.2 μm, and a third was 4.2 μm thick. The transmittances T1 of the thinner 
one and T1 and T2 of the two thicker ones were determined using one of the methods described 
in Par. 49 of the earlier Polarization chapter.1 The principal transmittance and extinction ratio for 
one of the 9.2-μm-thick ones are shown in Fig. 15 for infrared wavelengths from 2 to 16 μm, along 
with curves for various wire-grid polarizers (see “Wire Grid and Grating Polarizers” section next). 
In the far infrared out to 600 μm, T1 gradually increases to 0.50 and T2/T1 drops down to the 10−3

range.100 The transmittance of the thinner pyrographite polarizer was larger than the curve shown, 
but its extinction ratio, although not given, was probably poorer. Pyrolytic-graphite polarizers 
have the advantages of being planar and thus easily rotatable, having large acceptance angles, and 
having reasonably high transmittances and good extinction ratios in the far infrared. However, in 
the shorter-wavelength region shown in Fig. 15, they are inferior to all the wire-grid polarizers. In 
addition, they are fragile, and the largest clear aperture obtained by Rupprecht et al.100 was about 
12 mm diameter.
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FIGURE 15 (a) Principal transmittance and (b) extinction ratio for 
a pyrolytic-graphite polarizer (Rupprecht et al.100) and various wire-grid 
polarizers. (Bird and Parrish,92 Perkin-Elmer,101 and Young et al.102) The 
substrate materials and metals used for the grids are indicated. Theoretical 
curves (solid lines) calculated from relations given in Ref. 1 with n  1.5 and 
d  0.463 are also shown for comparison.
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Wire-Grid and Grating Polarizers

Wire grids  have a long history of use as optical elements to disperse radiation and detect polariza-
tion in far-infrared radiation and radio waves.92 They transmit radiation whose E vector is vibrat-
ing perpendicular to the grid wires and reflect radiation with the E vector vibrating parallel to the 
wires when the wavelength  is much longer than the grid spacing d. When  is comparable to d,
both components are transmitted. For grids made of good conductors, absorption is negligible. 
Various aspects of the theory of reflection and transmission of radiation by wire grids are sum-
marized in the earlier polarization chapter.1 In addition to that theoretical treatment, Casey and 
Lewis104,105 considered the effect of the finite conductivity of the wires on the transmission and 
reflection of wire-grid polarizers when the light was polarized parallel to the wires. Mohebi, Liang, 
and Soileau106 extended the treatment to the case for which light was polarized both parallel and 
perpendicular to the wires; they also calculated the absorption of the wire grids as a function of 
d/ . In addition, they measured the absorption and surface damage of wire-grid polarizers consist-
ing of aluminum strips (0.84-μm period) deposited on ZnSe substrates at 10.6 μm, 1.06 μm, and 
0.533 μm. Stobie and Dignam107 calculated the amplitude transmission coefficients for parallel and 
perpendicular components and relative phase retardation between them, both as a function of /d.
Burton108 proposed using wire-grid polarizers in the form of cylinders and paraboloids instead of 
planar structures in infrared interferometers, but did not show any experimental measurements.

Figure 16 shows values of the calculated principal transmittance and extinction ratio for vari-
ous values of the refractive index n as a function of /d. These curves were calculated from relations 
given in the earlier polarization chapter.1 It is clear that the shortest wavelength for which a given 
grid will act as a useful polarizer is  2d. Also, the best performance is obtained with the lowest 
refractive index substrate. Since absorption in the substrate material has been neglected, principal 
transmittances measured for real materials will be lower than the calculated values, but the extinc-
tion ratios should be unaffected. If one must use a high refractive index substrate such as silicon or 
germanium, the performance of the grid can be considerably improved by applying an antireflec-
tion coating to the substrate before depositing the conducting strips, since a perfectly antireflected 
substrate acts like an unsupported grid.109 However, if the antireflecting layer is laid down over the 
grid strips, the performance of the wire-grid polarizer is degraded.1

Many people have built and tested wire-grid polarizers including Bird and Parrish,92 Young 
et al.,102 Hass and O’Hara,110 Hilton and Jones,111 Auton,109 Vickers et al.,112 Cheo and Bass,113 Auton 
and Hutley,114 Costley et al.,115 Beunen et al.,116 Leonard,117 Sonek et al.,118 Eichhorn and Magner,119

and Novak et al.120 In addition, two types of wire grids are manufactured commercially by Buckbee 
Mears(see Ref. 110) and Perkin-Elmer,101 and a third type composed of 152 μm-diameter tungsten wires 
spaced 800 to the inch has been mentioned, but no performance characteristics have been given.121

Hwang and Park122measured the polarization characteristics of two-dimensional wire mesh (64 μm and 
51 μm spacings) at a laser wavelength of 118.8 μm. The different wire-grid polarizers are listed in 
Table 2, and the principal transmittances and extinction ratios of several are shown in Figs. 14 and 15.

The polarizers with grid spacings of 1.69 μm and less were all made by evaporating the grid 
material at a very oblique angle onto a grating surface which had been prepared either by replicat-
ing a diffraction grating with the appropriate substrate material (silver bromide, Kel-F, polymethyl 
methacrylate, etc.) or by ruling a series of lines directly onto the substrate (Irtran 2 and Irtran 4). 
The oblique evaporation (8° to 12° from the surface) produced metallic lines on the groove tips 
which acted like the conducting strips of the theory, while the rest of the surface was uncoated and 
became the transparent region between strips. Larger grid spaces (4 to 25.4 μm) were produced by a 
photoetching process, and one 25.4-μm grid was made by an electroforming process. Still larger grid 
spacings were achieved by wrapping wires around suitable mandrels.

If a wire-grid polarizer is to be used in the near infrared, it is desirable to have the grid spacing as 
small as possible. Bird and Parrish92 succeeded in obtaining a very good extinction ratio in the 2- to 
6-μm wavelength region with an aluminum-coated Kel-F substrate (Figs. 14 and 15). Unfortunately, 

Wire grid is being used here, as is customary, to denote a planar structure composed of a series of parallel wires or strips. 
Renk and Genzel103 and a few others use the term to designate a two-dimensional array with two series of elements arranged at 
right angles to each other. They call a one-dimensional array a wire or strip grating.
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Kel-F (CF2CFCl)n, has absorption bands at 7.7 to 9.2 μm and 10.0 to 11.0 μm, making the polarizer 
useless in these regions, but it can be used at longer wavelengths out to 25 μm.92 Polyethylene would 
be an excellent substrate material since it has fewer absorption bands than Kel-F, but its insolubility 
in common solvents makes it much more difficult to use for replicating gratings.110 It does, however, 
make an excellent substrate material for photoetched grids.109

For infrared wavelengths longer than about 24 μm, a photoetched grid with 1-μm-wide lines (close 
to the present limit for the photoetching process) and a 2-μm spacing should have an extinction ratio 
of 5  10 3 or better if the refractive index of the substrate is about 1.5—for example, polyethylene. 
The extinction ratio would continue to decrease; i.e., the polarization properties would improve as the 
wavelength is increased. At very long wavelengths, grids with a larger spacing would have a high degree 
of polarization. The important factor is the ratio of wavelength to grid spacing, which should be kept 
as large as possible (Fig. 16b).

One definite advantage of the wire-grid polarizer is that it can be used in sharply converging beams, 
i.e., systems with high numerical apertures. Young et al.102 found no decrease in percent of polarization 
for an Irtran 2 polarizer at 12 μm used at angles of incidence from 0° to 45°. They did find, however, 
that the transmittance decreased from 0.55 at normal incidence to less than 0.40 at 45° incidence.

If a grid were to be used at a single wavelength, one might possibly make use of interference effects in 
the substrate to increase the transmission.109 If the substrate has perfectly plane-parallel surfaces, it will 
act like a Fabry-Perot interferometer and transmit a maximum amount of light when twice the product 
of the thickness and refractive index is equal to an integral number of wavelengths. The 0.25-mm-thick 
pressed polyethylene substrates used by Auton109 were not uniform enough to show interference effects, 
but the Mylar film backing on the Buckbee Mears electroformed grid did show interference effects.110
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Lamellar eutectics of two phases consist of thin needles of a conducting material embedded in 
a transparent matrix. The material is made by a controlled cooling process in which there is a unidi-
rectional temperature gradient. This method of cooling orients conducting needles parallel to the tem-
perature gradient, and hence the material can act like a wire-grid polarizer. Weiss and coworkers123–125

have grown eutectic alloys of InSb and NiSb in which the conducting needles of NiSb are approximately 
1 μm in diameter and approximately 50 μm long. A degree of polarization of more than 99 percent has 
been reported. Other eutectic alloys of InAs, GaSb, and InSb containing conducting needlelike crystals 
of Ni, Fe, Mn, Cr, and Co (or their compounds) have also been investigated. An advantage of this type of 
polarizer is that its performance can be optimized at a specific wavelength, e.g., that of a CO2 laser line, 
by choosing the thickness of the crystalline film so that there will be an interference maximum at the 
desired wavelength.126 Recently, Saito and Miyagi127 have proposed using a thin film of anodized alumi-
num with implanted metallic columns to make a high-performance polarizer. Their theoretical calcula-
tions suggest that this type of polarizer should have a large extinction ratio and low loss in the infrared.

In summary, wire grids are very useful infrared polarizers, particularly for wavelengths much 
greater than the grid spacing. They are compact and easily rotatable and can be used with sharply 
converging beams. A major advantage is the extreme breadth of the wavelength band over which 
they have good polarizing properties. The long-wavelength limit is set by the transmission of the 
substrate material rather than by the loss of polarization of the grid. The short-wavelength limit is 

TABLE 2 Types of Wire-Grid Polarizers

Grid 
spacing, m Grid material Substrate

Wavelength 
range, m Reference

0.115 Evaporated Al Quartz 0.2–0.8 Sonek et al.118

0.347 Evaporated Au Silverchloride 2.5–30 Perkin-Elmer101

0.22–0.71 Evaporated Al KRS-5 3–15, 3.39, 10.6 Auton and Hutley114

0.22–0.45 Evaporated Al CaF2 3–10, 3.39 Auton and Hutley114

0.42 Evaporated Al Glass 3–5 Auton and Hutley114

0.463 Evaporated Au Kel-F 1.5–10 Bird and Parrish92

0.463 Evaporated Al Kel-F 0.7–15 Bird and Parrish92

0.463 Evaporated Al Polymethyl 
methacrylate

l–4000† Hass and O’Hara110

1.67 Evaporated Al Irtran 2 6–14 Young et al.102

1.67 Evaporated Al Irtran 4 8–19 Young et al.102

1.69 Evaporated Al Polyethylene 2.9–200‡ Hass and O’Hara110

2 Evaporated Cr Silicon 10.6 Cheo and Bass113

? ? BaF2 2–12 Leonard117

? ? ZnSe 3–17 Leonard117

4 Photoetched Al Polyethylene 16 Auton109

5.1 Photoetched Al Silicon 54.6 Hilton and Jones111

10 Photoetched Al Polyethylene 16 Auton109

25.4 Photoetched Al Silicon 54.6 Hilton and Jones111

25.4 Evaporated Au Mylar 60 Hass and O’Hara110

25 Stainless steel wire 
8 m diam.

Air 80–135 Novak et al.120

32.4 Gold-coated W wire 
21 m diam.

Air 100–10,000 Eichhorn and 
Magner119

64, 51 Wire mesh (2D) Air 118.8 Hwang and Park122

? Stainless steel wire 
50 m diam.

Air 200–1000 Vickers et al.112

317 W wire 152 m diam. Air 40–300 Roberts and Coon121

25–1800 W wire 10 m diam. Air 50 Costley et al.115

30–65 W wire 10 m diam. Air 22–500, 337 Beunen et al.116

Strong absorption bands near 8.3 and 10.5 m.
†Strong absorption bands between 5.7 and 12.5 m.
‡Absorption bands between 6 and 15.5 m.
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determined by the grid spacing; if gratings with smaller spacings could be successfully replicated and 
coated, the short-wavelength limit could be pushed closer to the visible region.

Another possible method of producing plane-polarized light is by using diffraction gratings or 
echelette gratings. Light reflected from diffraction gratings has long been known to be polarized, but the 
effect is generally small and extremely wavelength-dependent.128,129 However, Roumiguieres130 predicted 
that under certain conditions (rectangular groove grating with equal groove and land spacings and small 
groove depth), a high polarizing efficiency could be obtained. For wavelengths in the range 1.1 /d  1.7, 
over 80 percent of the light polarized parallel to the grooves should be reflected in the zero order at a 
50° angle of incidence and less than 5 percent of the other polarization. His predictions were verified by 
Knop131 who fabricated gold-coated photoresist gratings as well as an electroplated nickel master grat-
ing. Knop’s measured reflectances of the two polarized components were within 3 percent of the pre-
dicted values. In general, one tries to avoid polarization in the diffracted light to obtain high efficiencies 
in a blazed grating since polarization effects are frequently associated with grating anomalies.132,133

In contrast to diffraction gratings, echelette gratings, have been found to produce an appreciable 
amount of plane-polarized light. Experimental studies have been made by Peters et al.,134 Hadni 
et al.,135,136 and Mitsuishi et al.,137 as discussed in the earlier Polarization chapter.1 The theory of the 
polarization of light reflected by echelette gratings in the far-infrared and microwave regions has 
been given by Janot and Hadni138 and Rohrbaugh et al.139 A general numerical technique published 
by Kalhor and Neureuther140 should be useful for calculating the polarization effects of echelette 
gratings of arbitrary groove shape used in the visible region.

Measuring Polarization of Imperfect Polarizers

In determining the principal transmittance, extinction ratio, and other properties of an imperfect 
polarizer, the effects of source polarization, instrumental polarization, and sensitivity of the detector 
to the plane of polarization must either be measured or eliminated from the calculations. This is easy 
if an auxiliary polarizer is available that has a much higher degree of polarization than the one to be 
measured. In such a case, the “perfect” polarizer can be placed in the beam, and the transmittances 
T1 and T2 for the unknown polarizer can be measured directly.  Source polarization, instrumental 
polarization, and variation of detector response with plane of polarization can all be lumped together 
as a product. If this product is different in the horizontal and vertical planes, the ratio of the signals 
obtained when the “perfect” polarizer is oriented horizontally and vertically will not equal unity. One 
should always take more than the minimum number of measurements, i.e., introduce redundancy, to 
make sure that no systematic errors are present.

If a high-quality polarizer is not available, two polarizers having unknown properties may be used 
instead. Several procedures have been described in detail in the earlier polarization chapter.1 The method 
of Hamm et al.141 which yields the extinction ratio of each polarizer and the instrumental polarization 
was described in detail and a brief summary of the method of Kudo et al.142 was given. The methods of 
Hamm et al.,141 Horton et al.,143 and Schledermann and Skibowski144 were specifically developed for non-
normal incidence reflection polarizers (see “Brewster Angle Reflection Polarizers” section in Sec. 13.9).

13.9  NON-NORMAL-INCIDENCE REFLECTION
AND TRANSMISSION POLARIZERS

By far the largest class of polarizers used in the infrared and ultraviolet spectral regions (where dichroic 
sheet polarizers and calcite polarizing prisms cannot be used) is the so-called pile-of-plates polarizers
from which light is reflected (or transmitted) at non-normal incidence. Since most of these polarizers 
operate at angles near the Brewster or polarizing angle [see Eq. (48) in Chap. 12, “Polarization”], they 
are frequently called Brewster angle polarizers. The plane-parallel plates which are used for Brewster 
angle transmission polarizers (see “Brewster Angle Transmission Polarizers” section on p. 13.38) are 
generally thick enough to ensure that although multiple reflections occur within each plate, the 

When using an air-spaced polarizing prism, extreme care should be taken not to exceed the acceptance angle of the prism.
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coherence of the light beam is lost and there are no interference effects. However, another class of non-
normal-incidence transmission polarizers makes use of interference effects to enhance their polarizing 
properties. These include interference polarizers (see “Interference Polarizers” section on p. 13.39) and 
polarizing beam splitters (see “Polarizing Beam Splitters” section on p. 13.41). These thin-film devices 
are discussed in much more detail in Chap. 7, “Optical Properties of Films and Coatings,” in Vol. IV by 
Jerzy A. Dobrowolski. A relation which is frequently used in connection with non-normal-incidence 
reflectance measurements is the Abelès condition, discussed in the following section.

Brewster Angle Reflection Polarizers

Most reflection-type polarizers are made of plates which are either nonabsorbing or only slightly 
absorbing. The angle of incidence most often used is the Brewster angle at which the reflection of 
the p component, light polarized parallel to the plane of incidence, goes to 0. Thus the reflected 
light is completely plane polarized with the electric vector vibrating perpendicular to the plane of 
incidence (s component). Curves showing the reflectance and extinction ratio for various materi-
als and angles near the Brewster angle are given in Fig. 5 of Chap. 12, “Polarization.” The polarizing 
efficiency of reflection-type polarizers can be experimentally determined using any of the methods 
given in Par. 49 of the earlier polarization chapter;1 the methods of Hamm et al.,141 Horton et al.,143

and Schledermann and Skibowski144 were specifically developed for polarizers of this type.
Brewster angle reflection polarizers for the infrared are made from the semiconductors silicon, 

germanium, and selenium which are transparent beyond their absorption edges and have high refrac-
tive indexes. Table 3 lists various infrared polarizers which have been described in the literature. 
All involve external reflections except the Ge-Hg polarizer described by Harrick,145 in which light 
undergoes two or four reflections within a bar of germanium. While Harrick’s polarizer has attractive 
features, it depends on maintaining polarization in the germanium, so that great care must be taken to 
obtain material with a minimum of strain birefringence.

In the ultraviolet, materials such as LiF, MgF2, CaF2, and A12O3, can be used as polarizers. Biotite, a 
form of mica, has also been found to perform very well in the 1000- to 6000-Å region. In the extreme 
ultraviolet, metallic films, particularly Au, Ag, and Al, have been used as polarizers. Table 4 lists vari-
ous non-normal-incidence ultraviolet reflection polarizers as well as authors who have made calcula-
tions and measurements on various materials for ultraviolet polarizers.

TABLE 3 Infrared Brewster Angle Reflection Polarizers

Material Description Reference

Ge-Hg Multiple internal reflections in Ge immersed in Hg Harrick145

Ge Single external reflection from 1-cm-thick polished Ge single crystal Edwards and Bruemmer146

Ge Proposed parallel and antiparallel arrangements of two Ge plates Krízek147

Ge Double-beam system: beam 1, single reflection; beam 2, one transmission, one 
reflection

Craig et al.148

Ge Axial arrangement with reflections from two Ge wedges and two Al mirrors Bor and Brooks149

Se Reflections from two cast-Se films on roughened glass plates Pfund150

Se Axial arrangement with reflections from two Se films evaporated on NaCl and 
one Ag mirror

Barchewitz and Henry151

Se Large-aperture, axial, venetian-blind arrangement with one or two reflections from
evaporated Se films on roughened glass plates (additional reflections from Al mirrors)

Takahashi152

Si Single reflection from polished single crystal Si Walton and Moss153

Si Axial arrangement with reflection from two Al mirrors and polished Si plate with 
roughened back

Baumel and Schnatterly154

PbS Axial arrangement with reflections from two chemically deposited PbS films and 
one Al film

Grechushnikov and 
Petrov155

CdTe Single plate Leonard117

Al  A12O3 Multiple reflections from A12O3 coated with metal at 10.6 m (calculations only) Cox and Hass156

Ti  SiO2 Multiple reflections from dielectric coated Ti at 2.8 m (calculations only) Thonn and Azzam157
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The most versatile non-normal-incidence reflection polarizer would be one which does not 
deviate or displace the beam from its axial position. One convenient arrangement would be a symmet-
ric three-reflection system in which the light is incident on one side of a triangle, reflected to a plane 
mirror opposite the apex, and back to the other side of the triangle, as was done by Horton et al.,143

and Barchewitz and Henry.151 If the polarizer must have a good extinction ratio and the light beam is 
highly convergent, two of the reflections could be from the polarizing material and the third from a sil-
vered or aluminized mirror. If the beam is highly collimated or more throughput is required, only one 
reflection may be from the polarizing material. The throughput can also be increased by using a plane-
parallel plate for the polarizing reflection. The major drawback to a reflection polarizer is the extreme 
length of the device required to accommodate a beam of large cross-sectional area. For example, if a 
germanium polarizer were used at the Brewster angle (76°) and the beam width were about 25 mm, 
each Ge plate would have to be about 25 mm  100 mm and the overall length of the polarizer would 
be greater than 200 mm if a three-reflection axial arrangement such as that described above were used.

The Abelès condition,179 which applies to the amplitude reflectance at 45° angle of incidence (see 
Sec. 12.5 in Chap. 12, “Polarization”) is useful for testing the quality of reflection polarizers. Schulz 
and Tangherlini180 apparently rediscovered the Abelès condition and used the ratio R Rs p

2 1/  as a 
test to evaluate their reflecting surfaces. They found that surface roughness made the ratio too small 
but annealing the metal films at temperatures higher than 150°C made the ratio larger than unity. 
Rabinovitch et al.165 made use of the Abelès condition to determine the polarization of their Seya-
Namioka vacuum-ultraviolet monochromator. They measured the reflectance at 45° of a sample 
whose plane of incidence was perpendicular or parallel to the exit slit. From these measurements 
they deduced the instrumental polarization by assuming the Abelès condition. Values of instrumen-
tal polarization obtained using carefully prepared gold and fused-silica samples were in excellent 
agreement, showing that neither of these materials had surface films which invalidated the Abelès 
condition. Surface films usually have relatively little effect on the Abelès condition in the visible 
region181 but become important in the vacuum ultraviolet. Hamm et al.141 eliminated the effect of 
instrumental polarization from their measurements of the reflectance of a sample in unpolarized 
light at 45° angle of incidence by making use of the Abelès condition. Although Mcllrath162 did not 
refer to the Abelès condition as such, he used it to determine the instrumental polarization of his 
vacuum-ultraviolet apparatus so he could measure the absolute reflectance of a sample at 45° angle 
of incidence. Thonn and Azzam157 have calculated the polarizing properties of dielectric-coated 
metal mirrors at 2.8 μm in the infrared. Reflections from 2, 3, or 4 such mirrors at the Brewster 
angle should give excellent performance, although the polarizer would be quite long.

Brewster Angle Transmission Polarizers

To help overcome the beam-deviation problem and the extreme length of reflection-type polarizers, 
Brewster angle polarizers are often used in transmission, particularly in the infrared, where transpar-
ent materials are available. At the Brewster angle, all of the p component and an appreciable fraction 
of the s component are transmitted. Thus, several plates must be used to achieve a reasonable degree 
of polarization. The higher the refractive index of the plates, the fewer are required.

Tables 1 and 2 in Chap. 12, “Polarization” give equations for the transmittances and degree of 
polarization for a single plate and multiple plates at any angle of incidence in terms of Rs and Rp for a 
single surface, as well as these same quantities at the Brewster angle. Conn and Eaton182 have shown 
that the formulas which assume incoherent multiple reflections within each plate and none between 
plates give the correct degree of polarization for a series of Zapon lacquer films (n  1.54) and also 
for a series of eight selenium films, whereas the formula of Provostaye and Desains183 predicted val-
ues which were much too low. These authors also point out that the number of multiply reflected 
beams between plates that enter the optical system depends on the spacing between plates and the 
diaphragm used to limit the number of beams. One can use a fanned arrangement, as suggested by 
Bird and Shurcliff,184 to eliminate these multiply reflected beams. Internal reflections within each 
plate can be removed by wedging the plates.184

Most of the infrared Brewster angle transmission polarizers described in the literature have been 
made of selenium, silver chloride, or polyethylene sheet; they are listed in Table 5. For wavelengths 
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longer than 3 μm, where calcite polarizing prisms become highly absorbing, to about 10 μm, beyond 
which wire-grid polarizers have good extinction ratios, Brewster angle transmission polarizers are 
the most useful, since the better-extinction, on-axis reflection-type polarizers (see “Brewster Angle 
Reflection Polarizers” section on p. 13.34) are impossibly long. Some of the interference polarizers 
described in the following sections “Interference Polarizers” and “Polarizing Beam Splitters” are 
superior if the beam-convergence angle is small. Ultraviolet Brewster angle transmission polarizers 
are not nearly as common; LiF and CaF2 have mainly been used from about 1500 to 2500 Å (see 
Table 6). In the wavelength region where calcite polarizing prisms are usable ( 2140 Å), Brewster 
angle polarizers have the advantage of a larger linear aperture and less absorption.

Low-absorption glass pile-of-plates polarizers have been used in the visible spectral region by 
Weiser,210 in preference to more absorbing Glan-Thompson prism polarizers, to increase the power 
output of giant-pulse ruby lasers. Weinberg211 calculated the degree of polarization of glass and sil-
ver chloride plates, but he did not calculate the transmittance of his polarizers.

Interference Polarizers

When the sheets or films constituting a non-normal-incidence transmission polarizer are thin and 
have very smooth surfaces, the internally reflected beams can interfere constructively or destructively. 
In this case, the transmittance of the p component remains unity at the Brewster angle (where Rp  0) 
and only oscillates slightly (with respect to wavelength) for angles close to the Brewster angle. However, 
the s transmittance varies from a maximum of unity to a minimum of ( ) /( )1 12 2R Rs s  whenever 

 changes by an amount that will make the quantity (nd cos 1)/  in Eq. (26) in Chap. 12, “Polariza-
tion” change by 1/2.  These transmittance oscillations are only 0.225 for a single film of refractive 
index 1.5 but can become as large as 0.492 when n  4.0. Since the p transmittance remains essentially 
constant, the extinction ratio will vary cyclically with the s transmittance, as can be seen in the upper 
curve of Fig. 17 for a 2.016-μm-thick selenium film.

If a transmission polarizer with a good extinction ratio is needed for use over a limited wave-
length range, it can be made of several uniform films of a thickness that yields a minimum extinc-
tion ratio in the given wavelength region. The extinction ratio for a series of m films is ( / )T Ts p

m

when there are no multiple reflections between them. In this way only half as many films would 
be needed to achieve a given extinction ratio as would be necessary if interference effects were 
not present. This rather surprising result can be seen from the expressions for (Ts)sample for m plates 
with and without interference effects in Table 2 in Chap. 12, “Polarization.” Assuming no multiple 

TABLE 6 Ultraviolet Brewster Angle Transmission Polarizers

Material Description
Wavelength 

range, Å Reference

LiF 4–8 plates (0.3–0.8 mm thick) at 60  angle of incidence (Brewster 
angle 55.7–58.7 ) stacked in alternate directions

1200–2000 Walker206

LiF 8 plates 1100–3000 Hinson207

LiF 8 plates (0.25–0.38 mm thick) at 60  angle of incidence stacked 
in groups of 4 in alternate directions

1200–2000 Heath208

CaF2 4 to 8 wedged plates stacked in alternate directions in fanned 
arrangement at 65  angle of incidence (Brewster angle 56.7)

1500–2500 Schellman et al.209

Al Calculations of polarizing efficiency for 1000-Å-thick unbacked Al 
  film, 1000- and 500-Å Al films each covered with 30-Å Al2O3

and 100-Å Au films

300–800 Hunter158

The approximate expression for this wavelength interval  (assuming that the oscillations are sufficiently close together 
for 1 2 2) is given in Eq. (27) in Chap. 12, “Polarization.”
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reflections between plates, the expressions are [ /( )]2 12 4 2n n m and [ /( )]2 12 4n n m, respectively. Hertz189

achieved a degree of polarization of 99.5 percent in the 6- to17-μm region using three unbacked 
selenium films 0.95 μm thick. Conn and Eaton182 obtained only a slightly better performance with 
eight thicker nonuniform selenium films.

As can be seen in Fig. 17, the calculated extinction ratio for the 2.016-μm-thick film goes to unity 
at 3.0, 4.6, and 9.2 μm, indicating that the s as well as the p transmittance at these wavelengths is 
unity. This ratio will remain unity at the above wavelengths if there are several nonabsorbing films 
of the same thickness. Even if the films have slightly different thicknesses, or if their surfaces are 
somewhat rough, interference effects may still persist, adversely affecting polarizer performance. 
Such effects have been observed by Elliott et al.,186 Barchewitz and Henry,151 Duverney,188 Mitsuishi 
et al.,137 and Walton et al.205

By choosing films of appropriate thicknesses, interference effects can be used to advantage. The 
lower curve in Fig. 17 shows the extinction ratio obtained if four selenium films of thicknesses 1.08, 
1.44, 1.80, and 2.02 μm are used at the Brewster angle as a transmission polarizer. (The wavelengths 
at which maxima occur for the three thinner films are indicated by arrows in the upper portion of 
the figure.) In this example the extinction ratio for the four films in series is better than 2  10 2

from 2.5 to 30 μm and at most wavelengths is better than 10−2 (corresponding to a degree of polar-
ization in excess of 98 percent). In the 11- to 27-μm wavelength region the extinction ratio is better 
than 10 3. Four thick or nonuniform selenium films without interference effects have a calculated 
extinction ratio of about 10 2, and six films are required to change this ratio to 10 3. Thus, in the 11- 
to 27-μm wavelength region, four selenium films of appropriate thicknesses with interference have 
a superior extinction ratio to six selenium films without interference. If one wishes to optimize the 
extinction ratio over a more limited wavelength range, the film thicknesses can be adjusted accord-
ingly and the extinction ratio improved. Unfortunately, the gain in extinction ratio is offset by a 
more sensitive angular function than that shown in Fig. 7 in Chap. 12., “Polarization,” so that the 
incident beam must be very well collimated.

Interference effects can also be used to advantage in other types of non-normal-incidence 
polarizers. Bennett et al.212 made a transmission polarizer from a series of four germanium films 

FIGURE 17 Calculated extinction ratios for a series of selenium films (n  2.46) 
as a function of wavelength from 2.5 to 30 μm. Light is incident at the Brewster angle, 
67.9°, and multiply reflected beams interfere within the film. The upper curve is for a 
single film 2.016 μm thick; arrows indicate positions of maxima for three thinner films: 
t1 1.080 μm, t2 1.440 μm, and t3  1.800 μm. The lower curve is the extinction ratio 
for the four films in series assuming no reflections between films. The calculated p
transmittance for each film (and for four films in series) is unity at the Brewster angle.
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(ranging in thickness from 0.164 to 0.593 μm), evaporated onto strain-free plates of sodium chlo-
ride. The plates were inclined at the Brewster angle for germanium and arranged in the form of 
an X so that the polarizer would have a large square aperture and would not deviate the beam. An 
extinction ratio better than 3  10−3 was measured at 2.5 μm, and the plates transmitted from 2 to 
13 μm. (Calculated extinction ratios in this wavelength range vary from 1  10−3 to 2  10−4 for 
radiation incident at the Brewster angle.)

Polarizers consisting of a high refractive index transparent film on a lower refractive index 
transparent substrate have been suggested for use in the visible wavelength region by Schröder213

and Abelès.214 These still have a Brewster angle where Rp  0, and furthermore Rs at this angle 
is greatly increased over its value for an uncoated low refractive index substrate. Thus, a large-
aperture, high-efficiency polarizer with no absorption losses is possible, which should find 
numerous applications in laser systems. One polarizer of this type, suggested independently by 
Schröder and by Abelès, would consist of high refractive index titanium dioxide films (n  2.5) 
evaporated onto both sides of a glass substrate (n 1.51). At the Brewster angle, 74.4°, Rs  0.8, 
making this polarizer equivalent to one made from a material of refractive index 4 ( B 76.0° 
as shown in Fig. 4 in Chap. 12, “Polarization”).  Two glass plates coated on both sides with TiO2
films should have an extinction ratio of about 1.6  10−3 at 5500 Å and about twice that value at 
the extreme ends of the visible region, according to Abelès.214 Schröder213 measured the degree of 
polarization as a function of angle of incidence for one such TiO2-coated glass plate and found 
values comparable to the calculated ones. Kubo215 calculated the degree of polarization, reflec-
tance, and transmittance (as a function of angle of incidence and wavelength) of a glass plate 
(n  1.50) covered with a thin transparent film of index, 2.20. His results are similar to those of 
Abelès and Schröder.

Schopper,216 Ruiz-Urbieta and Sparrow,217–219 and Abelès220 have also investigated making non-
normal-incidence reflection polarizers from a thin transparent or absorbing film deposited onto an 
absorbing substrate. Zaghloul and Azzam221 proposed using silicon films on fused silica substrates as 
reflection polarizers for different mercury spectral lines in the visible and ultraviolet regions. Abelès 
designed some specialized reflection polarizers for use in the vacuum ultraviolet. Unfortunately the 
wavelength range covered by such a polarizer is very narrow; for one polarizer it was 25 Å at a wave-
length of 1500 Å. However, the spectral range could possibly be increased by using several thin films 
instead of one.

Multilayer film stacks have also been used to produce non-normal-incidence reflection or trans-
mission polarizers by Buchman et al.222 Buchman223 later improved the design performance of his 
polarizers by adding antireflection layers between the repeating groups of layers. Although this type 
of polarizer has a relatively narrow operating bandwidth, a small angular acceptance, tight wave-
length centering, and layer thickness uniformity requirements, it can be used successfully in high 
power laser systems as shown by Refermat and Eastman.224 Songer225 described how to design and 
fabricate a Brewster angle multilayer interference polarizer out of a titanium dioxide, silicon dioxide 
multilayer on BK 7 glass for use in a 1.06-μm laser beam. Blanc, Lissberger, and Roy226 designed, 
built, and tested multilayer zinc sulfide-cryolite-coated glass and quartz polarizers for use with a 
pulsed 1.06-μm laser. Recently, Maehara et al.227 have reported excellent performance for a pair of 
polarizers coated with 21 ruthenium and silicon films on a silicon wafer over a wide wavelength 
range in the soft x-ray region. In several designs of multilayer film stacks, both the reflected and 
transmitted beams are used; they are discussed in the following section.

Polarizing Beam Splitters

Polarizing beam splitters are a special form of non-normal-incidence interference polarizers in 
which the beam is incident on a multilayer dielectric stack at 45°. The transmitted beam is almost 
entirely plane-polarized in the p direction, while the reflected beam is nearly all plane-polarized 

We are assuming no multiply reflected beams within the substrate in either case.
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in the s direction. Generally the alternating high and low refractive index dielectric layers are depos-
ited onto the hypotenuses of two right-angle prisms, which are then cemented together to form a 
cube. The beam enters a cube face normally and strikes the multilayers on the hypotenuse (the high 
refractive index layer is next to the glass), and the reflected and transmitted beams emerge normal 
to cube faces, being separated by 90°. Clapham et al.228 have a good discussion of polarizing beam 
splitters, which were invented by S. M. MacNeille229 and developed by Banning.230 Banning’s beam 
splitter was made with three zinc sulfide and two cryolite layers on each prism; the polarization for 
white light was greater than 98 percent over a 5°-angle on each side of the normal to the cube face 
for both the reflected and transmitted beams. Variations on this design have since been proposed by 
Dobrowolski and Waldorf,231 Monga et al.,232 and Mouchart et al.,233 primarily to improve the laser 
damage resistance of the device and increase the angular field of view. Dobrowolski and Waldorf231

designed and built a polarizing beam splitter consisting of a multilayer coating of HfO2 and SiO2
deposited onto fused silica and immersed in a water cell that acted like the MacNeille cube. Tests 
with a 0.308 μm excimer laser showed a high laser damage threshold. The multi-wavelength polar-
izing beam splitters designed by Monga et al.232 could be made in large sizes and could withstand 
high laser power levels. The modified MacNeille cube polarizers designed by Mouchart et al.233 had 
angular fields of view that could be increased to about 10° when the polarizers were used with 
monochromatic light sources.

Lees and Baumeister234 designed a frustrated total internal reflection beam splitter that had a 
multilayer dielectric stack deposited onto the hypotenuse of a prism. Their designs, for use in the 
infrared spectral region, consisted of multilayer stacks of PbF2 and Ge deposited onto a germanium 
prism and covered by a second germanium prism. Azzam235 designed polarization-independent 
beam splitters for 0.6328 μm and 10.6 μm using single-layer coated zinc sulfide and germanium 
prisms. The devices were found to be reasonably achromatic and their beam-splitting ratio could be 
varied over a wide range with little degradation in polarization properties. Azzam236 also proposed 
coating a low-refractive-index dielectric slab on both sides with high-refractive-index dielectric 
films to make an infrared polarizing beam splitter.

Various high- and low-refractive-index materials have been successfully used in the multilayer 
stacks. In addition to zinc sufilde and cryolite on glass by Banning230 and Schröder and Schläfer,237

layers of a controlled mixture of silicon dioxide and titanium dioxide have been alternated with 
pure titanium dioxide on fused-silica prisms by Pridatko and Krylova,238 thorium dioxide and sili-
con dioxide have been used on fused-silica prisms by Sokolova and Krylova,239 chiolite (a mixture 
of sodium and aluminum fluorides) and lead fluoride have been used on fused-silica prisms by 
Turner and Baumeister,240 bismuth oxide and magnesium fluoride have been used on EDF glass 
prisms by Clapham et al.,228 and zirconium oxide and magnesium fluoride have been used on 
dense flint-glass prisms by Clapham et al.228 The calculations involved in optimizing these beam 
splitters for good polarizing characteristics, achromaticity, and relative insensitivity to angle of 
incidence are quite involved. Clapham et al.228 and Turner and Baumeister240 discuss various calcu-
lational techniques frequently used. Clapham241 also gives the measured characteristics of a high-
performance achromatic polarizing beam splitter made with zirconium oxide and magnesium 
fluoride multilayers.

Although polarizing beam splitters are generally designed so that the s and p polarized beams 
emerge at right angles to each other, Schröder and Schläfer237 have an ingenious arrangement in 
which a half-wave plate and mirror are introduced into the path of the reflected beam to make it 
parallel to the transmitted beam and of the same polarization. Other optical schemes to accomplish 
the same purpose have been described in a later paper.242

For some purposes it is desirable to have a beam splitter that is insensitive to the polarization of 
the incident beam. Baumeister243 has discussed the design of such beam splitters made from mul-
tilayer dielectric stacks of alternating low- and high-refractive-index materials. One of his designs 
is composed of six dielectric layers for which the extinction ratio Ts/Tp varies from 0.93 to 0.99 in a 
bandwidth of about 800 Å, with a 1° variation in the angle of incidence. In principle, any multilayer 
filter which is nonreflecting at normal incidence will be nonpolarizing at all angles of incidence, 
according to Baumeister.244 Costich245 has described filter designs for use in the near infrared which 
are relatively independent of polarization at 45° angle of incidence.
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13.10 RETARDATION PLATES

Introduction

The theory of retardation plates and especially quarter-wave retarders is given in Chap. 12, 
“Polarization.” The basic relation for retardation plates, Eq. (73) in that section, is

N d n ne o( ) (9)

where no  refractive index of the ordinary ray, ne  refractive index of the extraordinary ray, 
d  physical thickness of the plate, and  wavelength.

Retardation plates are generally made of mica, stretched polyvinyl alcohol, and quartz, although 
other stretched plastics such as cellophane, Mylar, cellulose acetate, cellulose nitrate, sapphire, mag-
nesium fluoride, and other materials can also be used (see West and Makas246). Polyvinyl alcohol in 
sheet form transmits well into the ultraviolet beyond the cutoff for natural mica and is thus particu-
larly useful for ultraviolet retardation plates, according to McDermott and Novick.91 As suggested 
by Jacobs et al.,247 permanent birefringence can be thermomechanically induced in the borosili-
cate optical glass ARG-2, making it an attractive alternate to natural crystalline quartz and mica for 
large aperture wave plates for laser systems. Refractive indexes and birefringences of some materials 
are listed in Tables 7 and 8. The birefringences reported for mica and apophyllite should be consid-
ered as approximate, since they are measurements made on single samples. There is good reason to 
believe that the birefringence of apophyllite may be different for other samples, (see “Achromatic 
Retardation Plates” section on p. 13.48). Although calcite would seem at first to be a good material 
for retardation plates, its birefringence is so high that an extremely thin piece, less than 1 μm, would 
be required for a single /4 retardation plate. If a “first-order” or multiple-order plate were con-
structed (see sections “First-Order Plates” on p. 13.46 and “Multiple-Order Plates” on p. 13.47), or if 
calcite were used as one component of an achromatic retardation plate (see “Achromatic Retardation 
Plates” section), the tolerance on the thickness would be very stringent.

Retardation plates are generally made of a single piece of material, although when the thickness 
required for a plate is too small, two thicker pieces may be used with the fast axis of one aligned par-
allel to the slow axis of the other to cancel out all but the desired retardation. Plates which are a little 
too thin or a little too thick may be rotated about an axis parallel or perpendicular to the optic axis 

TABLE 7 Refractive Indices of Selected Materials at 5893 Å248

Material no ne

Positive Uniaxial Crystals

Ice, H2O 1.309 1.313
Sellaite, MgF2 1.378 1.390
Apophyllite, 2[KCa4Si8O20(F, OH)·8H2O] 1.535 1.537
Crystalline quartz, SiO2 1.544 1.553
Dioptase, CuSiO3·H2O 1.654 1.707
Zircon, ZrSiO4 1.923 1.968
Rutile, TiO2 2.616 2.903

Negative Uniaxial Crystals

Beryl (emerald), Be3Al2(SiO3)6 1.581 1.575
Sodium nitrate, NaNO3 1.584 1.336
Muscovite mica (complex silicate) 1.5977 1.5936
Apatite, Ca10(F, C1)2(PO4)6 1.634 1.631
Calcite, CaCO3 1.658 1.486
Tourmaline (complex silicate) 1.669 1.638
Sapphire, A12O3 1.768 1.760
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to change the retardation to the desired amount, as suggested by Gieszelmann et al.,267 and Daniels.268

There are also some novel circular polarizers and polarization rotators for use in the far ultraviolet 
(see the papers by Mcllrath,162 Saito et al.,269 and Westerveld et al.270), far infrared (Richards and 
Smith,271 Johnston,272 and Gonates et al.273), and visible region (Lostis,274 and Greninger275).

Achromatic retardation plates which have the same retardation over a range of wavelengths can 
be made from two or more different materials or from two or more plates of the same material 
whose axes are oriented at appropriate angles with respect to each other. These latter devices are 
known as composite plates (see “Composite Retardation Plates” section on p. 13.52 and the earlier 
polarization chapter1), and although they can change plane-polarized light into circularly polarized 
light, they do not have all the other properties of true retardation plates. By far the most achromatic 

/4 retarders are devices, such as the Fresnel rhomb, which obtain their retardation from internal 
reflections at angles greater than the critical angle.

Mica retardation plates are mentioned in “Mica Retardation Plates” section and are discussed 
in detail in the earlier polarization chapter,1 which includes the theory of multiple reflections; 
“Crystalline Quartz Retardation Plates” section on p. 13.46 is devoted to various types of crystalline-
quartz retardation plates, and “Achromatic Retardation Plates” section on p. 13.48 covers all ach-
romatic retardation plates, except those of the rhomb-type; the latter are mentioned in “Rhombs 
as Achromatic /4 Retarders” section on p. 13.52 and in detail by Bennett276 and also in the earlier 
polarization chapter.1 Various types of composite plates and unusual retardation plates are also 
described in detail in Ref. 1.

Methods for making and testing quarter-wave plates including ways of splitting mica, how to 
distinguish between fast and slow axes, methods for measuring retardations close to /4, and the 
tolerance on plate thickness have all been described in detail in the earlier polarization chapter.1 An 
additional paper by Nakadate277 shows how Young’s fringes can be used for a highly precise mea-
surement of phase retardation.

Waveplates are all sensitive to some degree to temperature changes, variations in the angle of 
incidence, coherence effects in the light beam, and wavelength variations. Multiple-order plates are 
much more sensitive than “first-order” or single-order plates. Hale and Day278 discuss these effects 
for various types of waveplates and suggest designs that are less sensitive to various parameters.

Most retardation plates are designed to be used in transmission, generally at normal incidence. 
However, there are also reflection devices that act as quarter-wave and half-wave retarders and 
polarization rotators. In the vacuum ultraviolet, Westerveld et al.270 produced circularly polarized 
light by using Au-coated reflection optics. Saito et al.269 used an evaporated Al mirror as a retarda-
tion plate at 1216 Å, Lyman radiation, following earlier work by Mcllrath.162 Greninger275 showed 
that a three-mirror device could be used in place of a half-wave plate to rotate the plane of polariza-
tion of a plane-polarized beam and preserve the collinearity of input and output beams. Johnston272

used a different three-mirror arrangement for the same application in the far-infrared. Thonn and 
Azzam157 designed three-reflection half-wave and quarter-wave retarders from single-layer dielectric 
coatings on metallic film substrates. They showed calculations for ZnS-Ag film-substrate retarders 
used at 10.6 μm. Previously Zaghloul, Azzam, and Bashara279,280 had proposed using a SiO2 film on 
Si as an angle-of-incidence tunable reflection retarder for the 2537-Å mercury line in the ultraviolet 
spectral region. Kawabata and Suzuki281 showed that a film of MgF2 on Ag was superior to Zaghloul 
et al.’s design at 6328 Å. They also performed calculations using A1, Cu, and Au as the metals and 
concluded that Ag worked best.

Mica Retardation Plates

Mica quarter-wave plates can be made by splitting thick sheets of mica down to the appropriate 
thickness, as described by Chu et al.,282 and in the earlier polarization chapter.1 Since the difference 
between the velocities of the ordinary and extraordinary rays is very small, the mica sheets need not 
be split too thin; typical thicknesses lie in the range 0.032–0.036 mm for yellow light. The fast and 
slow axes of a mica quarter-wave plate can be distinguished using Tutton’s test, as mentioned in 
Strong’s book,283 and the retardation can be measured using one of several rather simple tests.1
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If the mica sheets are used without glass cover plates, multiply reflected beams in the mica can 
cause the retardation to oscillate around the value calculated from the simple theory, as described 
in the earlier polarization chapter.1 Fortunately this effect can be eliminated in one of several ways.1

Mica does have one serious drawback. There are zones in the cleaved mica sheets which lie at angles 
to each other and which do not extinguish at the same angle, as noted by Smith.284 Thus, extinc-
tion cannot be obtained over the whole sheet simultaneously. In very critical applications such as 
ellipsometry, much better extinction can be obtained using quarter-wave plates made of crystal-
line quartz (“Crystalline Quartz Retardation Plates” section next), which do not exhibit this effect. 
Properties of mica quarter-wave plates and methods for making and testing all /4 plates are dis-
cussed in detail in the earlier polarization chapter.1

Crystalline-Quartz Retardation Plates

Crystalline quartz is also frequently used for retardation plates, particularly those of the highest 
quality. It escapes the problem of zones with different orientations like those found in mica. The 
thickness of quartz required for a single quarter-wave retardation at the 6328-Å helium-neon laser 
line is about 0.017 mm, much too thin for convenient polishing. If the plate is to be used in the 
infrared, single-order quarter-wave plates are feasible (see “Single-Order Plates in the Infrared” 
section). Two types of quartz retardation plates are generally employed in the visible and ultra-
violet regions: so-called “first-order” plates made of two pieces of material “First-Order Plates 
section” which are the best for critical applications, and multiple-order plates made of one thick 
piece of crystalline quartz (see “Multiple-Order Plates,” “Sensitivity to Temperature Changes,” and 
“Sensitivity to Angle of Incidence” sections). The multiple-order plates are generally not used for 
work of the highest accuracy since they are extremely sensitive to small temperature changes (see 
“Sensitivity to Temperature Changes” section) and to angle of incidence. Also, they have /4 retarda-
tion only at certain wavelengths; at other wavelengths the retardation may not even be close to /4.

When using any of the different types of retardation plates at a single wavelength, the methods 
for measuring the retardation and for distinguishing between fast and slow axes given in the earlier 
polarization chapter1 can be used.

“First-Order” Plates A so-called “first-order” plate is made by cementing together two nearly equal 
thicknesses of quartz such that the fast axis of one is aligned parallel to the slow axis of the other (both 
axes lie in planes parallel to the polished faces). The plate is then polished until the difference in thick-
ness between the two pieces equals the thickness of a single /4 plate. The retardation of this plate can 
be calculated from Eq. (9) by setting d equal to the difference in thickness between the two pieces. The 
“first-order” plate acts strictly like a single-order quarter-wave plate with respect to the variation of 
retardation with wavelength, temperature coefficient of retardation, and angle of incidence.

The change in phase retardation with temperature at 6328 Å, as calculated from equations given 
in the earlier polarization chapter,1 is 0.0091°/°C, less than one-hundredth that of the 1.973-mm 
multiple-order plate discussed in “Sensitivity to Temperature Changes” section on p. 13.48. The 
change in retardation with angle of incidence  at this wavelength is also small: ( N)10°  0.0016, as 
compared with 0.18 for the thick plate (see “Sensitivity to Angle of Incidence” section on p. 13.48).

A “first-order” quartz /4 plate has several advantages over a mica /4 plate: (1) Crystalline 
quartz has a uniform structure, so that extinction can be obtained over the entire area of the plate 
at a given angular setting. (2) Since the total plate thickness is generally large, of the order of 1 mm 
or so, the coherence of the multiple, internally reflected beams is lost and there are no oscillations in 
the transmitted light or in the phase retardation. (3) Crystalline quartz is not pleochroic, except in 
the infrared, so that the intensity transmitted along the two axes is the same. (4) Crystalline quartz 
transmits farther into the ultraviolet than mica, so that “first-order” plates can be used from about 
0.185–2.0 μm (see Table 8).

Grechushnikov285 has an incorrect relation for the change in phase retardation with angle of incidence [his Eq. (2)]. He 
assumed that the retardations in the two halves of the plate add rather than subtract, yielding a retardation comparable to that of 
a thick quartz plate.
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Single-Order Plates in the Infrared Although a crystalline-quartz retardation plate which is /4 in 
the visible is too thin to make from a single piece of material, the thickness required for such a plate 
is larger in the infrared. Jacobs and coworkers267 describe such a /4 plate for use at the 3.39-μm 
helium-neon laser line. They measured the birefringence of quartz at this wavelength and found it 
to be 0.0065  0.0001, so that the thickness required for the plate was 0.1304 mm. The actual plate 
was slightly thinner (0.1278 mm), so that it was tipped at an angle of 10° (rotating it about an axis 
parallel to the optic axis) to give it exactly /4 retardation (see “Sensitivity to Angle of Incidence” 
section on p. 13.48). Maillard262 has also measured the birefringence of quartz at 3.39 μm and 3.51 
μm and obtained values of 0.00659 and 0.00642, respectively (both 0.00002), in agreement with 
Jacobs’ value. These data lie on a smooth curve extrapolated from the values of Shields and Ellis.251

A problem encountered when using crystalline quartz in the infrared is that, in general, the ordi-
nary and extraordinary rays have different absorption coefficients; thus it may be impossible to con-
struct a perfect wave plate regardless of the relative retardation between the rays. For an absorbing 
wave plate to have a retardation of exactly /4, the requirement

n

n n n
o

e

e o

e o

1

1 8
1

2

exp
( )

( )
(10)

must be met;267
e and o are the absorption coefficients for the extraordinary and ordinary rays, 

respectively. At wavelengths shorter than 3.39 μm, the birefringence is small enough for it to be pos-
sible to approximate the condition in Eq. (10) closely whenever e o. Values of these quantities 
are given by Drummond.286 Gonatas et al.273 concluded that, in the far infrared and submillimeter 
wavelength region, the effect of different absorption coefficients in the crystalline quartz was small 
and could be corrected.

Another problem which occurs for crystalline quartz and also for sapphire273 in the infrared 
is that the Fresnel reflection coefficients are slightly different for the ordinary and extraordinary 
rays since the refractive indexes and absorption coefficients are in general different. One possible 
solution is to deposit isotropic thin films on the crystal surfaces.273 The refractive index of these 
films is chosen to balance the anisotropic absorption effect by making the Fresnel reflection coef-
ficients appropriately anisotropic. On the other hand, if anisotropic Fresnel reflection proves to 
be undesirable, it can be greatly diminished by using an antireflection coating, as suggested by 
Gieszelmann et al.267

If a single-order crystalline-quartz plate is to be used for a continuous range of wavelengths, 
both the phase retardation and the transmittance of the ordinary and extraordinary rays will oscil-
late as a function of wavelength because of multiple coherent reflections in the quartz. The sepa-
ration between adjacent maxima in the phase retardation can be calculated from Eq. (144) in the 
earlier polarization chapter.1 Using  3.3913 μm, n  1.4881, and d  127.8 μm,  0.03024 μm, 
an amount which should be well-resolved with most infrared instruments. Thus, if a wave plate is 
to be used over a range of wavelengths, it would be well to antireflect the surfaces to eliminate the 
phase oscillations.

Multiple-Order Plates Thick plates made from crystalline quartz are sometimes used to pro-
duce circularly polarized light at a single wavelength or a discrete series of wavelengths. The plate 
thickness is generally of the order of one or more millimeters so that the retardation is an integral 
number of wavelengths plus /4, hence the name multiple-order wave plate. This plate acts like 
a single /4 plate provided it is used only at certain specific wavelengths; at other wavelengths it 
may not even approximate the desired retardation. For example, a 1.973-mm-thick quartz plate 
was purchased which had an order of interference N  28.25 at 6328 Å. From Eq. (9) and Table 8, 
this plate would have N  30.52 at 5890 Å, and would thus be an almost perfect half-wave plate at 
this latter wavelength.

If a multiple-order plate is used to produce circularly polarized light at unspecified discrete 
wavelengths e.g., to measure circular or linear dichroism, it can be placed following a polarizer and 
oriented at 45° to the plane of vibration of the polarized beam. When the wavelengths are such that 
N calculated from Eq. (9) equals 1/4, 3/4, or in general (2M  l)/4 (where M is a positive integer), 
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the emerging beam will be alternately right and left circularly polarized. The frequency interval 
between wavelengths at which circular polarization occurs is

1
2d n ne o( )

(11)

where  1/ . If the birefringence is independent of wavelength, the retardation plate will thus pro-
duce circularly polarized light at equal intervals on a frequency scale and can conveniently be used 
to measure circular dichroism, as described by Holzwarth.287

In order to approximately calibrate a multiple-order retardation plate at a series of wavelengths, 
it can be inserted between crossed polarizers and oriented at 45° to the polarizer axis. Transmission 
maxima will occur when the plate retardation is /2 or an odd multiple thereof; minima will occur 
when the retardation is a full wave or multiple thereof. If the axes of the two polarizers are parallel, 
maxima in the transmitted beam will occur when the plate retardation is a multiple of a full wave-
length. The birefringence of the retardation plate can be determined by measuring the wavelengths 
at which maxima or minima occur if the plate thickness is known. Otherwise d can be measured 
with a micrometer, and an approximate value of ne no can be obtained.

Palik288 made and tested a 2.070-mm-thick CdS plate for the 2- to 15-μm infrared region and 
also made thick retardation plates of SnSe, sapphire, and crystalline quartz to be used in various 
parts of the infrared. Holzwarth287 used a cultured-quartz retardation plate 0.8 mm thick to measure 
circular dichroism in the 1850- to 2500-Å region of the ultraviolet; Jaffe et al.289 measured linear 
dichroism in the ultraviolet using a thick quartz plate and linear polarizer.

Sensitivity to Temperature Changes Small temperature changes can have a large effect on the 
retardation of a multiple-order plate. The method for calculating this effect was given earlier in the 
polarization chapter.1 For the 1.973-mm-thick quartz plate mentioned in Multiple-Order Plates” 
section (N  28.25 at 6328 Å), the phase retardation will decrease 1.03° for each Celsius degree 
increase in temperature. If the temperature of the wave plate is not controlled extremely accurately, 
the large temperature coefficient of retardation can introduce sizable errors in precise ellipsometric 
measurements in which polarizer and analyzer settings can be made to 0.01°.

Sensitivity to Angle of Incidence The effect of angle of incidence (and hence field angle) on the 
retardation was calculated in the earlier polarization chapter.1 It was shown there that the change 
in phase retardation with angle of incidence, 2 ( N) , is proportional to the total thickness of the 
plate (which is incorporated into N) and the square of the angle of incidence when the rotation is 
about an axis parallel to the optic axis. If the 1.973-mm-thick plate mentioned previously is rotated 
parallel to the optic axis through an angle of 10° at a wavelength of 6328 Å, the total retardation 
changes from 28.25 to 28.43, so that the /4 plate is now nearly a /2 plate.

If the plate had been rotated about an axis perpendicular to the direction of the optic axis, in the 
limit when the angle of incidence is 90°, the beam would have been traveling along the optic axis; in 
this case the ordinary and extraordinary rays would be traveling with the same velocities, and there 
would have been no retardation of one relative to the other. For any intermediate angle of incidence 
the retardation would have been less than the value at normal incidence. The relation for the retar-
dation as a function of angle of incidence is not simple, but the retardation will be approximately 
as angle-sensitive as it was in the other case. An advantage of rotation about either axis is that, with 
care, one can adjust the retardation of an inexact wave plate to a desired value. Rotation about an 
axis parallel to the optic axis will increase the retardation, while rotation about an axis perpendicular 
to the optic axis will decrease the retardation.

Achromatic Retardation Plates

Achromatic retardation plates are those for which the phase retardation is independent of wave-
length. The name arose because when a plate of this type is placed between polarizers, it does not 
appear colored and hence is achromatic, as shown by Gaudefroy.290 In many applications, a truly 
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achromatic retardation plate is not required. Since the wavelength of light changes by less than a fac-
tor of 2 across the visible region, a quarter- or half-wave mica plate often introduces only tolerable 
errors even in white light. The errors that do occur cancel out in many kinds of experiments.

Achromatic retardation plates can be made in various ways. The most achromatic are based on the 
principle of the Fresnel rhomb, in which the phase retardation occurs when light undergoes two or 
more total internal reflections (see next section “Rhombs as Achromatic /4 Retarders” and Ref. 1). A 
material with the appropriate variation of birefringence with wavelength can also be used. Such mate-
rials are uncommon, but plates of two or more different birefringent materials can be combined to 
produce a reasonably achromatic combination. Composite plates, consisting of two or more plates of 
the same material whose axes are oriented at the appropriate angles, can be used as achromatic circular 
polarizers or achromatic polarization rotators,1 although they do not have all the properties of true /4 
or /2 plates. One unusual achromatic half-wave plate is described in the earlier polarization chapter.1

The simplest type of achromatic retardation plate could be made from a single material if its 
birefringence satisfied the requirement that (ne no)/  be independent of wavelength, i.e., that 
ne no be directly proportional to . This result follows from Eq. (9) since d(ne no)/  must be inde-
pendent of  to make N independent of wavelength. (The plate thickness d is constant.) The bire-
fringences of various materials are listed in Table 8 and plotted in Figs. 18 and 19. Only one material, 
the mineral apophyllite, has a birefringence which increases in the correct manner with increasing 
wavelength.264  A curve of the phase retardation vs. wavelength for a quarter-wave apophyllite plate 
is shown as curve D in Fig. 20. Also included are curves for other so-called achromatic /4 plates 
as well as for simple /4 plates of quartz and mica. The phase retardation of apophyllite is not as 
constant with  as that of the rhomb-type retarders, but it is considerably more constant than that 
of the other “achromatic” /4 plates. Since the birefringence of apophyllite is small, a /4 plate needs 

FIGURE 18 Birefringence of various optical materials as a function of wave-
length. The scale at the left is for materials having a positive birefringence (solid 
curves), and the scale at the right is for materials with a negative birefringence 
(dashed curves).

For materials having a negative birefringence the requirement is that (ne no) be proportional to .
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a thickness of about 56.8 μm, which is enough for it to be made as a single piece rather than as a 
“first-order” plate. Unfortunately optical-grade apophyllite is rare, the sample for which data are 
reported here having come from Sweden. There is some indication that the optical properties of 
other apophyllite samples may be different. Isotropic, positive, and negative-birefringent specimens 
have been reported by Deer et al.291 According to them, the optical properties of apophyllite are often 
anomalous, some specimens being isotropic, uniaxial negative, or even biaxial with crossed dispersion 
of optic axial planes. Whether many samples have the favorable birefringence of the Swedish sample 
is uncertain.

Certain types of plastic film stretched during the manufacturing process have birefringences 
which are nearly proportional to wavelength and can serve as achromatic retardation plates if they 
have the proper thickness, as pointed out by West and Makas.246 Curve C in Fig. 20 is the retardation 
of a stretched cellulose nitrate film as measured by West and Makas.246 A combination of stretched 
cellulose acetate and cellulose nitrate sheets with their axes parallel will also make a reasonably 
achromatic /4 plate over the visible region. The advantages of using stretched plastic films for 
retardation plates are that they are cheap, readily available, have a retardation which is uniform over 
large areas, and can be used in strongly convergent light. However, each sheet must be individually 
selected since the birefringence is a strong function of the treatment during the manufacturing pro-
cess and the sheets come in various thicknesses, with the result that their retardations are not nec-
essarily /4 or /2. Also, Ennos292 found that while the magnitude of the retardation was uniform 
over large areas of the sheets, the direction of the effective crystal axis varied from point to point by 
as much as 1.5° on the samples he was testing. Thus, film retarders appear to be excellent for many 
applications but are probably not suitable for measurements of the highest precision.

A reasonably achromatic retardation plate can be constructed from pairs of readily available bire-
fringent materials such as crystalline quartz, sapphire, magnesium fluoride, calcite, or others whose 
birefringences are listed in Table 8. Assume that the plate is to be made of materials a and b having 
thicknesses da and db, respectively (to be calculated), and that it is to be achromatized at wavelengths 

1 and 2. From Eq. (9) we can obtain the relations

N d n d n

N d n d n

a b b

a a b b

1 1 1

2 2 2

(12)

where N  1/4 for a /4 plate, 1/2 for a /2 plate, etc., and the n’s are values of ne no for the 
particular materials at the wavelengths specified; n will be positive for a positive uniaxial crystal 
and negative for a negative uniaxial crystal. (A positive uniaxial material can be used with its fast 
axis crossed with that of another positive uniaxial material; in this case the first material will have a 
negative n.) Equations (12) can be solved for da and db:
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a b b a

1 1 2
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)
(13)

As an example of a compound plate, let us design a /4 plate of crystalline quartz and calcite and 
achromatize it at wavelengths 1 0.508 μm and 2  0.656 μm. Quartz has a positive birefringence 
and calcite a negative birefringence (Table 8) so that n1a and n2a (for quartz) are positive n1b and 

n2b (for calcite) are negative. Equations (13) are satisfied for dqtz  426.2 μm and dcalc  21.69 μm; 
thus the phase retardation is exactly 90° at these two wavelengths. An equation of the form of those 
in Eqs. (12) is now used to calculate N for all wavelengths in the visible region using birefringence 
values listed in Table 8, and the results are plotted as curve E in Fig. 20. Although the achromatiza-
tion for this quartz-calcite combination is not as good as can be obtained with a rhomb-type device 
or apophyllite, the phase retardation is within 5° of 90° in the wavelength region 4900–7000 Å and 
is thus much more constant than the retardation of a single mica or quartz /4 plate. Better two-plate 
combinations have been calculated by Beckers,249 the best being MgF2-ADP and MgF2-KDP, which 
have maximum deviations of 0.5 and 0.4 percent, respectively, compared with 7.2 percent 
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for a quartz-calcite combination over the same 4000- to 7000-Å wavelength region. The thicknesses of 
the materials which are required to produce /4 retardation  are dMgF m

2
113 79. , dADP m26 38. ,

and dMgF m
2

94 47. , dKDP  23.49 μm. Since the ADP and KDP must be so thin, these components 
could be made in two pieces as “first-order” plates.

Other two-component compound plates have been proposed by Chandrasekharan and 
Damany,261 Gaudefroy,290 Ioffe and Smirnova,293 and Mitchell.294 The paper by Ioffe and Smirnova 
describes a quartz-calcite combination similar to the one illustrated earlier, but it contains various 
numerical errors which partially invalidate the results.

If better achromatization is desired and one does not wish to use a rhomb-type /4 device, three 
materials can be used which satisfy the relations

N d n d n d n

N d n d n d
a a b b c c

a a b b

1 1 1 1

2 2 2 cc c

a a b b c c

n

N d n d n d n
2

3 3 3 3

(14)

where the n’s are birefringences of the various materials at wavelengths 1, 2, and 3.
Instead of using only three wavelengths, Beckers249 suggested that the thicknesses can be opti-

mized such that the maximum deviations from achromatization are minimized over the entire 
wavelength interval desired. In this way, he obtained a three-component combination of quartz, cal-
cite, and MgF2 which has a retardation of a full wavelength and a maximum deviation of only 0.2
percent over the 4000- to 7000-Å wavelength region. The maximum deviation of slightly different 
thicknesses of these same three materials rises to 2.6 percent if the wavelength interval is extended 
to 3000–11,000 Å. Chandrasekharan and Damany261 have designed a three-component /4 plate 
from quartz, MgF2, and sapphire for use in the vacuum ultraviolet. Title295 has designed achromatic 
combinations of three-element, four-element, nine-element, and ten-element waveplates using Jones 
matrix techniques. The nine-element combination is achromatic to within 1° from 3500 to 10,000 Å. 
He constructed and tested several waveplate combinations, and they performed as designed.

Rhombs as Achromatic /4 Retarders

The simplest stable, highly achromatic /4 retarder with a reasonable acceptance angle and conve-
nient size appears to be a rhomb-type retarder. Several types are available; the choice of which one 
to use for a specific application depends on (1) the geometry of the optical system (can a deviated or 
displaced beam be tolerated?), (2) wavelength range, (3) degree of collimation of the beam, (4) beam 
diameter (determining the aperture of the retarder), (5) space available, and (6) accuracy required. 
Table 9 summarizes the properties of the various achromatic rhombs. This subject has been covered 
in detail by Bennett276 and is condensed from that reference in the earlier polarization chapter.1

Anderson296 has compared the retardation of a CdS /4 plate and a Fresnel rhomb in the 10-μm 
CO2 laser emission region. Wizinowich297 used a Fresnel rhomb along with some additional optics 
to change an unpolarized light beam from a faint star object into linearly polarized light to improve 
the throughput of a grating spectrograph and make it independent of the input polarization.

Composite Retardation Plates

A composite retardation plate is made up of two or more elements of the same material combined so 
that their optic axes are at appropriate angles to each other. Some of the composite plates have nearly 
all the properties of a true retardation plate, whereas others do not. In the earlier polarization chapter,1

Beckers’ tables II to V give the thickness of materials required to produce one full-wave retardation. To obtain values of 
thicknesses for /4 retardation, for example, multiply all d values in the table by 0.25. The percent deviations should remain 
unchanged.
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composite plates were described which produced circularly polarized light at a given wavelength, those 
which acted as achromatic circular polarizers, and those which acted as achromatic polarization rota-
tors or pseudo /2 plates. The effect of combining several birefringent plates with their axes at arbi-
trary angles to each other can be easily understood using the Poincaré sphere. A general treatment of 
this subject has been given by Ramachandran and Ramaseshan.298

13.11  VARIABLE RETARDATION PLATES
AND COMPENSATORS

Variable retardation plates can be used to modulate or vary the phase of a beam of plane-polarized 
light, to measure birefringence in mineral specimens, flow birefringence, or stress in transparent 
materials, or to analyze a beam of elliptically polarized light such as might be produced by transmis-
sion through a birefringent material or by reflection from a metal or film-covered surface. The term 
compensator is frequently applied to a variable retardation plate since it can be used to compensate 
for the phase retardation produced by a specimen. Common types of variable compensators include 
the Babinet and Soleil compensators, in which the total thickness of birefringent material in the 
light path is changed, the Sénarmont compensator,1 which consists of a fixed quarter-wave plate and 
rotatable analyzer to compensate for varying amounts of ellipticity in a light beam, and tilting-plate 
compensators,1 with which the total thickness of birefringent material in the light beam is changed by 
changing the angle of incidence. Electro-optic and piezo-optic modulators can also be used as vari-
able retardation plates since their birefringence can be changed by varying the electric field or pres-
sure. However, they are generally used for modulating the amplitude, phase, frequency, or direction 
of a light beam, in particular a laser beam, at frequencies too high for mechanical shutters or moving 
mirrors to follow. Information on electro-optic materials and devices is contained in the chapter on 
electro-optic modulators by Georgeanne M. Purvinis and Theresa A. Maldonado (Chap. 7 in Vol. V) 
and in the earlier polarization chapter.1

Babinet Compensator

There are many devices which compensate for differences in phase retardation by having a variable 
thickness of a birefringent material (such as crystalline quartz) in the light beam, as discussed by 
Johansen,299 and Jerrard.300 One such device, described by Hunt,301 can compensate for a residual 

Internal       
Angle of  Wave-  Wave-  

Incidence,  Length, Var., Length, Var., Angle,
Name Light Path deg Material n Å deg Å deg deg

Fresnel rhomb Translated 54.7 Crown glass 1.511 5893 2.5 3650–7682 9.1 7 to 7
Coated Fr. rhomb Translated 51.5 Crown glass 1.5217 5461 0.4 3341–5461 2.5 4 to 6

Translated 54.0 Fused quartz 1.4880 3000 0.7 2148–3341 0.5 1.5 to 1.5
Mooney rhomb Deviated 60.0 Flint glass 1.650 5893 1.9 4047–6708 0.7 7 to 7
AD-1 Undeviated 74.3 Fused quartz 1.4702 4000 2.0 3000–8000 0.7 7 to 7
AD-2 Undeviated 73.2, 56.4 Fused quartz 1.4702 4000 2.9 3000–8000 13.2 3 to 3
Coated AD-2 Undeviated 72.2 Fused quartz 1.4601 5461 0.3 2140–5461 6.0 1.5 to 1.5
AD Undeviated 53.5 Crown glass 1.511 5893 1.6 3650–7682 9.4 7 to 7

TABLE 9 Properties of Achromatic Rhombs275

Variation of Phase Retardation

Refractive With With Angle
Index Wavelength of Incidence
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wedge angle between the entrance and exit faces of birefringent optical components such as optical 
modulators and waveplates.

The most common variable retardation plates are the Babinet compensator and the Soleil 
compensator. The Babinet compensator was proposed by Babinet in 1837 and later modified by 
Jamin; references to the voluminous early literature are given by Partinngton.302 Ellerbroek and 
Groosmuller303 have a good description of the theory of operation (in German), and Jerrard304–306

and Archard307 describe various optical and mechanical defects of Babinet compensators.
The Babinet compensator, shown schematically in Fig. 21, consists of two crystalline-quartz 

wedges, each with its optic axis in the plane of the face but with the two optic axes exactly 90° apart. 
One wedge is stationary, and the other is movable by means of a micrometer screw in the direction 
indicated by the arrow, so that the total amount of quartz through which the light passes can be var-
ied uniformly. In the first wedge, the extraordinary ray vibrates in a horizontal plane and is retarded 
relative to the ordinary ray (crystalline quartz has a positive birefringence; see Table 8). When the 
rays enter the second wedge, the ray vibrating in the horizontal plane becomes the ordinary ray and 
is advanced relative to the ray vibrating in the vertical plane. Thus, the total retardation is propor-
tional to the difference in thickness between the two wedges:

N d d n n( )( )1 2 e o (15)

where  N  retardation in integral and fractional parts of a wavelength
d1, d2  thickness of the first and second wedges where light passes through
no, ne ordinary and extraordinary refractive indexes for crystalline quartz
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FIGURE 21 Arrangement of a Babinet compensator, polarizer, and ana-
lyzer for measuring the retardation of a sample. The appearance of the field after 
the light has passed through the compensator is shown to the left of the sample 
position. Retardations are indicated for alternate regions. After the beam passes 
through the analyzer, the field is crossed by a series of dark bands, one of which is 
shown to the left of the analyzer.
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If light polarized at an angle of 45° to one of the axes of the compensator passes through it, the 
field will appear as shown in Fig. 21; the wedges have been set so there is zero retardation at the 
center of the field. (If the angle  of the incident plane-polarized beam were different from 45°, 
the beam retarded or advanced by 180° in phase angle would make an angle of 2  instead of 
90° with the original beam.) When an analyzer whose axis is crossed with that of the polarizer 
is used to observe the beam passing through the compensator, a series of light and dark bands is 
observed in monochromatic light. In white light only one band, that for which the retardation is 
zero, remains black. All the other bands are colored. These are the bands for which the retardation 
is multiples of 2 (or, expressed in terms of path differences, integral numbers of wavelengths). 
On one side of the central black band one ray is advanced in phase relative to the other ray; on 
the other side it is retarded. If one wedge is moved, the whole fringe system translates across the 
field of view. The reference line is scribed on the stationary wedge so that it remains in the center 
of the field. Information on calibrating and using a Babinet compensator is given in the earlier 
polarization chapter.1

Soleil Compensator

The Soleil compensator (see Wood308 and Ditchburn309), sometimes called a Babinet-Soleil com-
pensator, is shown in Fig. 22. It is similar to the Babinet compensator in the way it is used, but 
instead of having a field crossed with alternating light and dark bands in monochromatic light, the 
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FIGURE 22 Arrangement of a Soleil compensator, polarizer, and analyzer 
for measuring the retardation of a sample. The appearance of the field after the 
light has passed through the compensator is shown to the left of the sample posi-
tion. After the beam passes through the analyzer, the field appears as one of the 
shades of gray shown to the left of the analyzer.
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field has a uniform tint if the compensator is constructed correctly. This is because the ratio of the 
thicknesses of the two quartz blocks (one composed of a fixed and a movable wedge) is the same 
over the entire field. The Soleil compensator will produce light of varying ellipticity depending on 
the position of the movable wedge. Calibration of the Soleil compensator is similar to that of the 
Babinet compensator.1 The zero-retardation position is found in the same manner except that now 
the entire field is dark. The compensator is used in the same way as a Babinet compensator with 
the uniformly dark field (in white light) of the Soleil corresponding to the black zero-retardation 
band in the Babinet.

The major advantage of the Soleil compensator is that a photoelectric detector can be used 
to make the settings. The compensator is offset a small amount on each side of the null position 
so that equal-intensity readings are obtained. The average of the two drum positions gives the 
null position. Photoelectric setting can be much more precise than visual setting, but this will 
not necessarily imply increased accuracy unless the compensator is properly constructed. Since 
Soleil compensators are composed of three pieces of crystalline quartz, all of which must be very 
accurately made, they are subject to more optical and mechanical defects than Babinet compensa-
tors. Jerrard310–312 has described many of these defects in detail. Ives and Briggs313 found random 
departures of about 1.5° from their straight-line calibration curve of micrometer reading for 
extinction vs. wedge position. This variation was considerably larger than the setting error with 
a half-shade plate and was attributed to variations in thickness of the order of /4 along the 
quartz wedges.

Soleil compensators have been used for measurements of retardation in the infrared. They 
have been made of crystalline quartz, cadmium sulfide, and magnesium fluoride (see the work of 
Palik257,314 and Palik and Henvis252). A by-product of this work was the measurement of the birefrin-
gence of these materials in the infrared.

Two other uniform-field compensators have been proposed. Jerrard,311 following a suggestion by 
Soleil, has taken the Babinet wedges and reversed one of them so the light passes through the thicker 
portions of each wedge. This reversed Babinet compensator is less subject to mechanical imperfec-
tions than the Soleil compensator but does produce a small deviation of the main beam. Hariharan 
and Sen315 suggest double-passing a Babinet compensator (with a reflection between the two passes) 
to obtain a uniform field.

13.12 HALF-SHADE DEVICES

It is sometimes necessary to measure accurately the azimuth of a beam of plane-polarized light, i.e., 
the angle the plane of vibration makes with a reference coordinate system. This can be done most 
easily by using a polarizer as an analyzer and rotating it to the position where the field appears the 
darkest. The analyzer azimuth is then exactly 90° from the azimuth of the plane-polarized beam. 
A more sensitive method is to use a photoelectric detector and offset on either side of the extinction 
position at angles where the intensities are equal. The average of these two angles is generally more 
accurate than the value measured directly, but care must be taken to keep the angles small so that 
asymmetries will not become important.

Before the advent of sensitive photoelectric detectors, the most accurate method of setting on 
a minimum was to use a half-shade device as the analyzer or in conjunction with the analyzer. The 
device generally consisted of two polarizers having their axes inclined at an angle  to each other 
(angle fixed in some types and variable in others). As the device was rotated, one part of the field 
became darker while the other part became lighter. At the match position, both parts of the field 
appeared equally bright. The Jellett-Cornu prism, Lippich, and Laurent half shades, Nakamura 
biplate, and Savart plate are examples of half-shade devices.1

Ellipticity half-shade devices are useful for detecting very small amounts of ellipticity in a nomi-
nally plane-polarized beam and hence can indicate when a compensator has completely converted 
elliptically polarized light into plane-polarized light. Two of these devices are the Bravais biplate 
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and the Brace half-shade plate. Half-shade devices for both plane and elliptically polarized light are 
described in detail in the earlier polarization chapter.1

13.13 MINIATURE POLARIZATION DEVICES

Polarization Devices for Optical Fibers

Single-mode optical fiber-type polarizers are important devices for optical fiber communication 
and fiber sensor systems. These polarizers have been made by a variety of techniques. Polarizers 
have been made by bending316 or by tapering317 a birefringent fiber to induce differential attenu-
ation in the orthogonal modes. In most cases a fiber was polished laterally and some device 
was placed in contact with the exposed guiding region of the fiber to couple out the unwanted 
polarization. Bergh et al.318 used a birefringent crystal as the outcoupling device and obtained a 
high extinction ratio polarizer. Optical fiber polarizers made with a metal film coated onto the 
polished area to eliminate the unwanted polarization state seem to be preferred because they 
are stable and rugged. The original version by Eickhoff 319 used the thin cladding remaining 
after polishing as the buffer layer, but it had an insufficient extinction ratio. Other designs using 
metal coatings were suggested by Gruchmann et al.,320 and Hosaka et al.321 Feth and Chang322

used a fiber polished into its core to which a superstrate coated with a very thin metal layer was 
attached by an index-matching oil. Yu and Wu323 gave a theoretical analysis of metal-clad single-
mode fiber-type polarizers. Dyott et al.324 made a metal-fiber polarizer from an etched D-shaped 
fiber coated with indium.

In the above approaches, either expensive components are used or the structure of the polarizer 
is complicated and fragile. Lee and Chen325 suggested a new way of fabricating high-quality metal-
clad polarizers by polishing a fiber 0.4 μm into its core and then overcoating it with a 265-nm 
MgF2 film as the buffer layer followed by a 100-nm Al film. Polarizers fabricated in this way had 
an average extinction ratio of 28 dB with a 2-dB insertion loss at a 0.63-μm wavelength or a 34-dB 
extinction ratio with a 3-dB insertion loss at 0.82 μm325

Other devices for optical fibers have also been designed. Ulrich and Johnson326 made a single-
mode fiber-optical polarization rotator by mechanically twisting successive half-wave fiber sections 
in alternating directions; Hosaka et al.’s fiber circular polarizer327 was composed of a metal-coated 
fiber polarizer and a /4 platelet fabricated on a birefringent fiber; polished-type couplers acting as 
polarizing beam splitters were made by Snyder and Stevenson.328 The patent literature contains ref-
erences to other polarization devices for optical fibers.

Polarization Devices for Integrated Circuits

Small and highly efficient polarization devices are also needed for integrated circuits. Some such 
devices have been proposed and fabricated. Uehara et al.329 made an optical waveguiding polar-
izer for optical fiber transmission out of a plate of calcite attached to borosilicate glass into which 
a three-dimensional high-index region had been formed by ion migration to act as the waveguide. 
Mahlein330 deposited a multilayer dielectric film onto a glass superstrate which was then contacted 
to a planar waveguide to couple out the TM polarization. This paper contains a good description of 
the polarizer design as well as extensive references. Suchoski et al.331 fabricated low-loss, high-extinction 
polarizers in LiNbO3 by proton exchange. Noé et al.332 achieved automatic endless polarization 
control with integrated optical Ti:LiNbO3 polarization transformers. This was a better method of 
matching polarization states between two superposed waves than techniques that had been used 
previously. Finally Baba et al.333 proposed making a polarizer for integrated circuits out of periodic 
metal-dielectric laminated layers (Lamipol structures). Their experiments with Al-SiO2 structures 
were encouraging. Patents have been filed for other polarization devices for integrated circuits.
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14.1

MUELLER MATRICES

Russell A. Chipman
College of Optical Sciences
University of Arizona
Tucson, Arizona

14.1 GLOSSARY

A analyzer vector

d diattenuation parameters, set of three

di magnitude of polarization parameters via matrix roots

D diattenuation

D diagonal matrix

Di differential polarization parameters via matrix roots

DD diagonal depolarizer Mueller matrix 

Dep depolarization

DI depolarization index

DoCP degree of circular polarization

DoLP degree of linear polarization

DoP degree of polarization

e ellipticity

E extinction ratio

E Jones vector

Ex, Ey electric field components

ED elliptical diattenuator Mueller matrix

EP elliptical polarizer Mueller matrix

ER elliptical retarder Mueller matrix

G Mueller matrix generators for polarization properties

H hermitian coherency matrix
Ĥ horizontal polarized Stokes vector, 0°, normalized

Hp hermitian coherency matrix of a physical Mueller matrix

HLP horizontal linear polarizer Mueller matrix 

HQWLR quarter-wave linear retarder Mueller matrix, horizontal fast axis

14
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HWLR half-wave linear retarder Mueller matrix

i 1

I inhomogeneity of a Mueller matrix

I identity matrix

ID ideal depolarizer Mueller matrix

J Jones matrix

jxx, jxy, jyx, jyy Jones matrix elements

k propagation vector

LCP left circular polarizer Mueller matrix

LD linear diattenuator operator

LD linear diattenuator Mueller matrix 

LDR homogeneous linear diattenuator and retarder Mueller matrix

LP( ) linear polarizer Mueller matrix transmitting along axis 

M Mueller matrix

M̂ normalized Mueller matrix

MD diattenuator Mueller matrix

MN nondepolarizing Mueller matrix, Mueller-Jones matrix

MP physical Mueller matrix

MR retarder Mueller matrix

Mrefl, Mrefr Mueller matrices for reflection and refraction

m m m00 01 33, , . . . , Mueller matrix elements

n1, n2 refractive indices of modes

O orthogonal matrix

P polarizance

P high-order matrix root of Mueller matrix

PD partial depolarizer Mueller matrix

PDL polarization-dependent loss

q index for a sequence of polarization elements

q index for mode order

Q index limit

QWLR quarter-wave linear retarder Mueller matrix

QWRCR, QWLCR quarter-wave circular retarder Mueller matrix, right and left fast mode

RM rotational change of basis matrix for Stokes vectors

RCP right circular polarizer Mueller matrix

Re real part

s Stokes three-vector

S Stokes vector
Ŝ normalized polarized Stokes vector

S exiting Stokes vector

Smax, Smin incident Stokes vectors of maximum and minimum intensity transmittance

S0, S1, S2, S3 Stokes vector elements

t thickness

t time

T transpose, superscript

T intensity transmittance
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Tavg intensity transmission averaged over all incident polarization states

Tmax maximum intensity transmittance

Tmin minimum intensity transmittance

Tr trace of a matrix

U unitary matrix

U Jones / Mueller transformation matrix
Û unpolarized Stokes vector, normalized

v eigenvectors
V̂ vertical polarized Stokes vector, 90°, normalized

VD variable partial depolarizer Mueller matrix

VQWLR quarter-wave linear retarder Mueller matrix, vertical fast axis
{ˆ , ˆ}x y Stokes vector coordinate basis

z spatial coordinate

retardance, radians

H R, ,45 retardance components: horizontal, 45°, right

latitude on Poincaré sphere

  orientation angle: (1) polarizer axis, (2) retarder fast axis, (3) major axis of polarization 
ellipse 

wavelength

eigenvalue

amplitudes of a complex number

i identity matrix, i = 0, and normalized Pauli spin matrices, i = 1, 2, 3

phase of a complex number

angle between the eigenpolarizations on the Poincaré sphere

angular frequency

tensor product
† hermitian adjoint

dot product, matrix multiplication

norm of a vector

14.2 CONVENTIONS

All angles are in radians unless the degree sign (°) is used. Retardance is specified in radians 
throughout.  The last Stokes vector element, S3, is positive for a right circularly polarized component 
and negative for a left circularly polarized component. All vectors and matrices are represented by 
bold characters. 

14.3 OBJECTIVES

This chapter surveys the Mueller matrix and its properties. The Mueller matrix has become the 
principal quantity used in polarimetric measurements of optical and polarization elements. For 
optical design and theoretical analyses, particularly of interferometers, Jones matrices and coherence 
matrices are often preferred. Mueller matrices are straightforward to measure and dominate experi-
mental studies. 
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Despite the Mueller matrix’s straightforward definition, the relation between the polarization 
properties and the matrix elements is complex, particularly when depolarization is involved. 

Several issues are addressed:

1. Determining the Mueller matrix from the specification of a polarization element. 

2. Given the Jones matrix for a polarization element, determine the corresponding Mueller matrix.

3. Given a Mueller matrix, determine if there is a corresponding Jones matrix and calculate this 
Jones matrix.

4. Given a Mueller matrix, determine the corresponding polarization properties of diattenuation, 
retardance, and depolarization.

5. Given a 4  4 matrix which violates the constraints on Mueller matrices, find the closest Mueller 
matrices.

This chapter supports Chap. 15, “Polarimetry” which assumes much of the material here. 
Chapter 15 is principally concerned with measuring Stokes parameters and Mueller matrices; this 
chapter treats Mueller matrix calculations and data reduction.

14.4  STOKES PARAMETERS AND MUELLER MATRICES

Several calculi have been developed for analyzing polarization, including those based on the Jones 
matrix, coherency matrix, Mueller matrix, and other matrices.1–10 Of these methods, the Mueller 
calculus is most generally suited for describing irradiance-measuring instruments, including most 
polarimeters, radiometers, and spectrometers. 

The set of four linear equations relating incident and exiting Stokes parameters was first intro-
duced by Soleillet in 1929.11 Hans Müller of MIT formulated these equations as a 4  4 matrix times 
a Stokes vector in his class notes, an Optical Society of America meeting abstract, and in a technical 
report but he never published a journal article.12 His graduate student Parke developed the matrix 
properties in great detail.13,14 R. Clark Jones became aware of the work prior to publication and was 
the first to use the term and spelling Mueller matrix in a journal article.15 In keeping with current 
practice, we will refer to this matrix as the Mueller matrix, although it is sometimes referred to as 
the Stokes matrix.16

In the Mueller calculus, the Stokes vector S describes the polarization state of a light beam, and 
the Mueller matrix M describes the polarization-altering characteristics of a sample. This sample 
may be a surface, a polarization element, an optical system, or some other light/matter interaction 
which produces a reflected, refracted, diffracted, or scattered light beam. Chapter 15 “Polarimetry” 
contains a detailed description of Stokes vector properties.

14.5  THE STOKES PARAMETERS
AND THE POINCARÉ SPHERE

The Stokes parameters (Stokes vector) can be normalized by its flux S0, and used to define the Stokes 
three-vector s, 

ˆ {S
S

s
s

S

s

s

s

s
0

1

2

3

1

1
11 2 3, , }s s (1)
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For unpolarized light s = {0, 0, 0} and the magnitude of s,

| |s s s s1
2

2
2

3
2 0 (2)

For a completely polarized polarization state, |s| = 1. The vector s is the coordinates of Ŝ on the unit 
Poincaré sphere. The introduction of s allows the polarization state to be specified irrespective of the 
flux. Completely polarized states sa and sb are orthogonal when 

s sa b= (3)

Orthogonal states have opposite helicity (the electric fields rotate clockwise and counterclockwise) 
and the orientations of the polarization ellipse major axes are 90° apart.

The Poincaré sphere is a geometrical construction for the representation of Stokes vectors and 
polarization ellipses where the Stokes three-vector is plotted in a three-dimensional space with axes 
{S1, S2, S3} as shown in Fig 1.

Each point on the surface of the Poincaré sphere can be parameterized by angles { , } where is
the orientation of the major axis of the polarization ellipse and  is the latitude; sin  is the degree of 
circular polarization, 

S( , )
cos( )cos
sin( )cos

sin

1
2
2

(4)

Linearly polarized Stokes parameters are located around the Poincaré sphere equator, {cos(2 ), 
sin(2 ), 0}, where  is the orientation of linear polarization. The north pole {0, 0, 1} represents right 
circularly polarized light and the south pole {0, 0, 1} left circularly polarized light. The sphere’s center 
{0, 0, 0} represents unpolarized light. The set of spheres centered on the origin each contain partially 
polarized states with a degree of polarization equal to the radius r. The surface at radius one,

r s s s= 1 = 1
2

2
2

3
2 (5)

(a) (b)

FIGURE 1 View of the Poincaré sphere along the +S1 axis (a) and along the S1 axis (b) with the 
polarization ellipses associated with different locations indicated.
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represents all possible states of (completely) polarized light.  is one half the latitude on a traditional 
globe because, for incoherent light, a rotation of 180° returns the polarization state to its initial state; 
rotate a linear polarizer through 180° and the polarization states repeat. Notice that on the Poincaré 
sphere, the locations for 0° linearly polarized light (nominally horizontal {1, 0, 0}) and 45° linearly 
polarized light {0, 1, 0} are 90° apart while horizontal and vertical { 1, 0, 0} linearly polarized light 
are diametrically opposite, 180° apart. Orthogonal polarization states are at opposite points on the 
sphere surface.

The Stokes parameters have an unusual coordinate system because the S1, S2, and S3 axes do not 
represent polarization states 90° apart, the traditional definition of orthogonal vectors. The Stokes 
parameter coordinate system is a clever and effective representation of incoherent light because 
equal amounts of orthogonal polarized fluxes, when combined, yield unpolarized light. Due to the 
properties of this coordinate system, the four Stokes parameters do not transform as a vector, and 
cannot be considered as a true vector. The Stokes parameters do add as vectors and are operated on 
by Mueller matrices like vectors; thus the widespread use of the term Stokes vector.

In current practice, the Poincaré sphere is used three different ways:

1. To represent a polarization state

2. To represent diattenuation by indicating the Stokes parameters of maximum transmission, and 
the diattenuation magnitude as distance from the origin

3. To represent retardance by indicating the axis through the origin of the fast and slow axes 
(eigenpolarizations), or by representing retardance within a three dimensional retardance space
with components { x, 45, R}

14.6 MUELLER MATRICES

The Mueller matrix is a 4  4 matrix with real-valued elements.10,14 The Mueller matrix M for a 
polarization-altering device is defined as the matrix which transforms an incident Stokes vector S
into the exiting (reflected, transmitted, or scattered) Stokes vector S ,

S S

m m m m

m m m m

m

0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3

2 0

, , , ,

, , , ,

, mm m m

m m m m

S

2 1 2 2 2 3

3 0 3 1 3 2 3 3

, , ,

, , , ,

00

1

2

3

1

2

3

S
S
S

S

S
S
S

o

S m S m S m S m

S m S m

0 0 0 1 0 1 2 0 2 3 0 3

0 1 0 1 1

, , , ,

, ,11 2 1 2 3 1 3

0 2 0 1 2 1 2 2 2 3 2 3

S m S m

S m S m S m S m

, ,

, , , ,

SS m S m S m S m0 3 0 1 3 1 2 3 2 3 3 3, , , ,

(6)

Each element of the incident S is related to the four elements of S  by the elements of M. Since the 
elements of S and S  are irradiances, the elements of M are dimensionless ratios of irradiances. 
Since irradiances are real, the elements of M are real valued, not complex numbers. When the 
Mueller matrix is known, then the exiting polarization state is known for an arbitrary incident 
polarization state. Our convention numbers the subscripts from 0 to 3 to match the corresponding 
Stokes vector subscripts.

The Mueller matrix M(k, ) for a device is always a function of the direction of propagation k
and wavelength .
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14.7 SEQUENCES OF POLARIZATION ELEMENTS

The Mueller matrix M associated with a beam path through a sequence (cascade) of polarization 
elements q = 1, 2, . . ., Q is the right-to-left product of the individual matrices Mq ,

M M MQ Q q q
q Q

1 2 1
1

1

,

(7)

In evaluating cascades of Mueller matrices, the associative rule for matrix multiplication can be 
applied,

(M M M M )3 2 1 3 2 1 (8)

and adjacent matrices grouped in any order for multiplication.

14.8  POLARIZATION ELEMENTS’ PROPERTIES
IN THE MUELLER CALCULUS

For ideal polarization elements, the polarization properties are readily defined. For real polarization 
elements, the precise description of the polarization properties is more complex. Polarization ele-
ments such as polarizers, retarders, and depolarizers have three general polarization properties: diat-
tenuation, retardance, and depolarization, and a typical element displays some amount of all three. 
Diattenuation arises when the intensity transmittance of an element is a function of the incident 
polarization state.17 The diattenuation D of a device is defined in terms of the maximum Tmax and 
minimum Tmin intensity transmittances,

D
T T

T T
max min

max min

(9)

For an ideal polarizer, D = 1. When D = 0, all incident polarization states are transmitted with equal 
attenuation. For an ideal retarder the polarization states change upon transmission but Tmax and 
Tmin are equal and D = 0. The quality of a polarizer is often expressed in terms of the related quantity, 
the extinction ratio E,

E
T

T
D
D

max

min

1
1

(10)

where the ideal polarizer has E = .
Retardance is the phase change a device introduces between its eigenpolarizations (eigenstates). 

For a birefringent retarder with refractive indices n1 and n2, and thickness t, the retardance 
expressed in radians is

2 1 2( )n n t
(11)

Depolarization describes the coupling by a device of incident polarized light into depolarized 
light in the exiting beam. For example, depolarization occurs when light transmits through milk 
or scatters from clouds. Multimode optical fibers generally depolarize the light. Depolarization is 
intrinsically associated with scattering and a loss of coherence in the polarization state. A small 
amount of depolarization is associated with the scattered light from all optical components. 
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14.9  ROTATION OF AN ELEMENT ABOUT
THE OPTICAL AXIS

When a polarization element with Mueller matrix M is rotated about the incident beam of light by 
an angle  such that the angle of incidence is unchanged (for example, for a normal-incidence beam, 
rotating the element about the normal), the resulting Mueller matrix M( ) is 

M R( ) ( ) ( )
cos sin
sinM M

1 0 0 0
0 2 2 0
0 2 ccos2 0
0 0 0 1

00 01 02 03

10 11 12

m m m m

m m m mm

m m m m

m m m m

13

20 21 22 23

30 31 32 33

1 0 00 0
0 2 2 0
0 2 2 0
0 0 0 1

cos sin
sin cos

(12)

where RM is the rotational change of basis matrix for Stokes vectors and Mueller matrices.

14.10 NONPOLARIZING MUELLER MATRICES

A nonpolarizing matrix does not change the polarization state of any incident polarization vector; 
only the amplitude and/or phase change. The Mueller Matrix for a nonabsorbing, nonpolarizing 
sample is the identity matrix I,

I

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

(13)

I is the Mueller matrix for vacuum and the approximate Mueller matrix for air. For a neutral density 
filter or polarization-independent absorption or loss, the Mueller matrix has Tmax = Tmin = T, and
the resulting Mueller matrix is proportional to the identity matrix and can be expressed in terms of 
our notation for linear diattenuators, LD(Tmax, Tmin, ), as

LD ( , , )T T T0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

(14)

14.11 MUELLER MATRICES OF IDEAL POLARIZERS

First, the properties of an example ideal polarizer are examined. Tables of ideal polarizer Mueller 
matrices are presented followed by equations for linear and elliptical ideal polarizers.

An ideal polarizer has a transmittance of one for its principal state and a transmittance of zero 
for the orthogonal “blocked” state.
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Consider the Mueller matrix for a horizontal linear polarizer (HLP), which we also express as 
LD ( )1 0 0, ,  for linear diattenuator, Tmax= 1, Tmin= 0, orientation of transmission axis 0, 

HLP LD ( , , )1 0 0
1
2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

(15)

When operating on the Stokes vector for horizontal linearly polarized light,

HL ˆ 1
2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

1

1

0

0

1

1

0

0

(16)

horizontally polarized light exits without loss. Vertically polarized incident light is completely 
blocked,

HL ˆ 1
2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

1

1

0

0

0

0

0

0

(17)

In fact, H and V are the two eigenpolarizations of HLP. Eigenpolarizations are the eigenvectors 
which correspond to physically realizable Stokes vectors. For HLP the remaining two eigenvectors 
are nonphysical as Stokes vectors since S0 = 0,

0

0

1

0

0

0

0

1

(18)

For an arbitrary incident Stokes vector,

HL S S
1
2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

0

1

S

S

SS

S

S S

S S

2

3

0 1

0 11
2 0

0

S S0 1

2

1

1

0

0

(19)

Since the first two rows of M are equal, the first two elements of S  are equal, the S2  and S3
characteristics of the incident light are lost, and the exiting light is always horizontally linearly 
polarized. Table 1 lists the Mueller matrices for the six basis polarization states and the general 
linear polarizer.
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For an elliptical polarizer which transmits a polarization state with the major axis of the 
ellipse oriented at  located at latitude  on the Poincaré sphere, / /2 2, the Mueller 
matrix EP( , ) is

EP( , )
1
2

1 2 2

2

cos cos cos sin cos sin

cos ccos cos cos sin cos cos cos sin2 2 22
1
2

4
1
2

2

22
1
2

4 2 22 2 2cos sin cos sin cos sin cos cos siin cos sin

sin cos sin cos sin cos si
1
2

2 2 2 nn sin2

(20)

TABLE 1 Mueller Matrices for Ideal Polarizers for the Basis Polarization States 

Type of Polarizer Symbol Mueller Matrix

Horizontal linear polarizer HLP

1

2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

Vertical linear polarizer VLP

1

2

1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

45 linear polarizer LP(45 )

1

2

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

135 linear polarizer LP(135 )

1

2

1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

Right circular polarizer RCP

1

2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

Left circular polarizer LCP

1

2

1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1

Linear polarizer with transmission axis LP( )

1

2

1 2 2 0
2 2 2 2 0
2

2

cos sin
cos cos sin cos
sin sinn cos sin2 2 2 0

0 0 0 1

2

oriented at angle measured positive
when rotating counterclockwise from
the x-axis looking into the beam
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14.12 RETARDER MUELLER MATRICES

Retarders have two polarization states which are transmitted in the incident polarization state 
(eigenpolarizations) but with different optical path lengths (phases). Birefringent retarders divide 
incident light into two modes with orthogonal polarizations and delay one mode with respect to 
the other due to birefringence, the refractive index difference between the modes. Other retarding 
interactions include the following: reflections from metals, reflection and transmission through 
multilayer thin films, stress birefringence, and interactions with diffraction gratings. These interac-
tions also are often diattenuating.

Retarders are specified by the optical path difference between the eigenpolarizations (the retar-
dance ) and the eigenpolarization states, either the state with the smaller optical path length (the fast axis) 
or the larger optical path (the slow axis). Retardance is specified in this chapter in radians, so  = 2
indicates one wavelength of optical path difference. Note that axis implies a linear polarization state, 
but the fast eigenpolarization may be elliptical or circular and the term “axis” is still applied. The most 
common retarders in practice are quarter-wave linear retarders and half-wave linear retarders. Quarter- 
wave linear retarders are most commonly used to convert between linear and circularly polarized light. 
Half-wave linear retarders are most commonly used to rotate the plane of linear polarization.

In the Mueller calculus, retarders are represented by real unitary matrices of the form

Mretarder

rotation

matrix

1 0 0 0
0
0
0

3 3
(21)

where, except for the M0,0 element, the first row and column are zero. Real unitary matrices are 
called orthogonal matrices. The definition of a unitary matrix U is a matrix whose hermitian adjoint 
(complex conjugate of the matrix transpose) equals its matrix inverse,

U U U† ( )T 1 (22)

For a real matrix, the complex conjugate of a matrix equals the matrix, so the transpose of an 
orthogonal matrix O equals its inverse,

O OT 1 (23)

This equation tests if a Mueller matrix is a pure retarder. Orthogonal matrices such as retarder Mueller 
matrices are rotation matrices. The lower right 3  3 elements form a rotation matrix in {S1, S2, S3}
space showing how retarders operate on Stokes vectors as a rotation of the Poincaré sphere. The retar-
dance  of a pure retarder Mueller matrix in radians is 

arccos arccos
m m m m0 0 1 1 2 2 3 3

2
1, , , , TTr( )M

2
1 (24)

The Mueller matrices for quarter wave retarders with fast axes corresponding to the six basis polar-
ization states are given in Table 2. Table 3 lists the half wave retarder Mueller matrices corresponding 
to the basis polarization states. 

The Mueller matrix for a quarter-wave linear retarder with fast axis at angle , QWLR( ) is

QWLR( )

1 0 0 0
0 2 2 2 2
0 2

2cos cos sin sin
cos sinn sin cos

sin cos
2 2 2

0 2 2 0

2 (25)
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TABLE 2 Quarter Wave Retarder Mueller Matrices for the Basis Polarization States 

Type of Retarder Symbol Mueller Matrix

Horizontal quarter-wave 
Linear retarder

HQWLR 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Vertical quarter-wave 
Linear retarder

VQWLR 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

45 quarter-wave 
Linear retarder

QWLR(45°) 1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

135 quarter-wave 
Linear Retarder

QWLR(135 ) 1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

Quarter-wave right 
Circular retarder

QWRCR 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

Quarter-wave left circular retarder QWLCR 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

TABLE 3 Half-Wave Retarder Mueller Matrices for the Basis Polarization States

Type of Retarder Symbol Mueller Matrix

Horizontal or vertical half-wave linear 
retarder (same matrix)

HHWLR 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

45 or 135 half-wave linear retarder HWLR(45°) 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Right or left half-wave circular retarder RHWCR 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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Similarly a half wave linear retarder with fast axis at angle , HWLR( ), has the matrix

HWLR( )
cos sin
sin cos

1 0 0 0
0 4 4 0
0 4 4 0
0 00 0 1

2
HWLR (26)

The Mueller matrix is the same for a horizontal half-wave linear retarder and a vertical half-wave 
linear retarder or for other pairs 90° apart because both half-wave retarders perform the same trans-
formation on Stokes vectors. 

The Mueller matrix LR( , ) for a linear retarder with retardance  and fast axis oriented at an 
angle  is 

LR( , )
cos ( ) cos( ) sin ( ) ( cos

1 0 0 0
0 2 2 12 2 (( ))cos( ) sin( ) sin( ) sin( )

( cos( )
2 2 2

0 1 ))cos( ) sin( ) cos( )cos ( ) sin ( ) cos(2 2 2 22 2 22
0 2 2

)sin( )
sin( ) sin( ) cos( )sin( ) cos( ))

(27)

Elliptical retarders (ER) are commonly specified in two ways: (1) by specifying horizontal, 45°, and 
circular retardance components: H, 45, R, or (2) by retardance, , orientation, , and latitude, , of 
the fast eigenstates using Poincaré sphere coordinates. In terms of retardance components, the mag-
nitude of the retardance is

H R
H

R

2
45
2

1

2
fast

45

/

/

/

S (28)

The ideal retarder Mueller matrix expressed in terms of retardance components is

ER( , , )H R

H R H
C

45

2
45
2 2

2
45

1 0 0 0

0
TT S T S

T S

R H R

H R R

2 2
45

45
2

45
2

0
22 2

2
45
2

2
45 450

H R H

H R R

C T S

T S TT S C
H R H

2

2
45
2 2

2

C S Tcos , sin , cos1

(29)

In terms of the Poincaré sphere parameters: retardance, , orientation, , and latitude, , of the fast 
eigenstates, the elliptical retarder Mueller matrix has a long equation given by the following matrix 
product: 

ER LR LR LR( , , ) ( , ) ( , ) ( ,45 45 ) (30)
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Here is a list of the matrix elements,

m
m
m
m
m
m
m
m
m
m
m

0 0

0 1

0 2

0 3

1 0

1 1

1 2

1 3

2 0

2 1

2

,

,

,

,

,

,

,

,

,

,

,22

2 3

3 0

3 1

3 2

3 3

m
m
m
m
m

,

,

,

,

,

1
0
0
0
0

1

8
2 6coss cos( ) cos cos( ) cos ( )cos2 2 2 2 8 42 sin

sin sin cos sin sin

2

2 2

8

2
44

2 2
2

2

0

2cos( ) cos sin sin sin sin

ssin sin cos sin sin

cos cos(

2 2

2
4

1

8
2 6 2 ) cos cos ( ) cos ( )cos sin2 2 2 8 4

8
2 2

cos cos sin sin sin sin2 2
2

22

0

2 2
2

22cos cos sin sin sin sin

coss cos sin sin sin sin

cos

2 2
2

2

2

2

2 ccos sin2
2

2

(31)

The Mueller matrix for half-wave elliptical and linear retarders HWR simplifies to the following 
form:

HWR( , , )H R

d d d d d

d

1
1+2 2 2

245
1
2

2 1 1 3

2

0 0 0
0

0 dd d d d

d d d d d
1 2

2
2 3

3 1 2 3 3
20

1+2 2

2 2 1+2

d d d d d dH R
1
2

2
2

3
2

1 2 31 = = =45

(32)

14.13  RETARDER MUELLER MATRICES
AMBIGUITIES AND RETARDER SPACE

Retarders can be represented as points in a three-dimensional retarder space { H, 45, R} as in Fig. 2. 
In this space, all quarter-wave elliptical retarders lie on a sphere of radius /2, all half-wave retarders on 
a sphere of radius , and so on. All Mueller matrices on spheres of radius 2 n, where n is an integer, 
the retarder order, have the identity matrix as their Mueller matrix, as does the point at the origin. 
The retarder space is similar to the Poincaré sphere except the retardance components are plotted 
instead of the Stokes vector, so the size of the space is not limited to a radius of one. 
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Retarder Mueller matrices have an ambiguity with regard to retarder order n, the integer part 
or half integer part of the number of waves of retardance. The Mueller matrix relates incident 
Stokes vectors to transmitted Stokes vectors. There is a family of retarders which will perform 
the same transformation on all polarization states. For example, a retarder with retardance = 0 
leaves all polarization states unchanged. Similarly when all polarization states exit a retarder with 

= 2 , or n2 , all polarization states are returned to the incident polarization state. As another 
example, a quarter-wave retarder rotates the Poincaré sphere /2 radians clockwise about an axis. 
A three-quarter-wave retarder with the orthogonal axis rotates the Poincaré sphere 3 /2 radians 
counterclockwise, has the same Mueller matrix and transmits the same Stokes vectors. As a third 
example, half-wave retarders with orthogonal axes rotate the Poincaré sphere by half a rotation 
in opposite directions and have the same Mueller matrix. So in general all Mueller matrices with 
retardance 2 n + and a particular normalized fast axis { H, 45, R} and all Mueller matrices 
with retardance 2 m and the orthogonal normalized fast axis { H, 45, R} have the same 
Mueller matrix (m and n integers). This is shown in Fig. 2 by the set of half-wave retarder loca-
tions with A’s. Another set of elliptical retarders with the same Mueller matrix are indicated by 
the set of B’s. 

The surfaces of various sets of retarders in the 16-dimensional space of Mueller matrices have 
an interesting topology due to the retarder ambiguity. In a narrow Mobius strip, the edge is nearly 
a circle which goes around twice before returning to its starting point. Similarly going around the 
equatorial plane of the half-wave retarders, the Mueller matrices for the corresponding half-wave 
linear retarders repeat twice. When plotted in the 16-dimensions of the Mueller matrix space, the 
half-wave retarders circle twice in a perfect circle for one 180° rotation of the fast axis. The linear 
retarder Mueller matrices for a retardance slightly different from  circle twice slightly offset and 
outline the edges of a Mobius strip. This doubling is a consequence of the fact that when all the 
linear retarders are plotted as points in the Mueller matrix space, they form a two-dimensional 
surface which is topologically equivalent to a Klein bottle, a single-sided surface with Mobius 
strip cross-sections. Similarly when all elliptical retarders are plotted in the Mueller matrix space, 
they form a higher-dimensional Klein bottle with a three-dimensional surface. To summarize, any 
plane through the origin of the retarder space in Fig. 2 maps to a Klein bottle in the Mueller matrix 
space, and the entire space maps to the higher-dimensional Klein bottle.

I

I

A

A

A

A

A

A

B

B

B

B

B

B

FIGURE 2 Retarder space is a Poincaré sphere like 
space which represents retarder fast axes { H , 45, R } as 
points in a three-dimensional space. All half-wave retarders at 
the points indicated by A’s have the same Mueller matrix; 
all retarders at points B share the same Mueller matrix.
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14.14 TRANSMITTANCE AND DIATTENUATION

Polarizers and partial polarizers are characterized by the property diattenuation, which describes the 
magnitude of the variation of the transmitted irradiance as a function of the incident polarization 
state. The diattenuation magnitude D, usually referred to as the diattenuation, is a function of the 
maximum, Tmax, and minimum, Tmin, transmittances of a polarization element,

D
T T

T T

m m m

m
max min

max min

, , ,

,

1 0
2

2 0
2

3 0
2

0 0
0 D 1 (33)

The diattenuation has the useful property that D varies from 1 for a polarizer to 0 for an element 
which transmits all polarization states equally, such as a retarder or a nonpolarizing interaction. 

The transmitted irradiance of a Mueller matrix and its diattenuation depends only on the first 
row, m0 = {m0,0, m0,1, m0,2, m0,3}, because these are the only elements which affect S0 . The diattenua-
tion is not linear in Tmin /Tmax as shown in Fig. 3. 

To find Tmax and Tmin, first the incident Stokes vectors is normalized so S0 1. The transmittance 
T(S) of a device with Mueller matrix M depends on the incident polarization state and is the ratio of 
the exiting flux to the incident flux,

T M, S
S

( ˆ)
( ˆ) , , ,S

S S

m s m s m
0

0

0

0

0 0 0 0 1 1 0 2 ss m s

s
2 0 3 3

0

, (34)

which depends on the dot product of the first row of the Mueller matrix with the incident Stokes 
vector. The dependence of the transmission on incident polarization state is characterized by a set of 
three diattenuation parameters, d, defined as

d
{ }

{ , , }
, , ,

,

m m m

m
d d dH R

0 1 0 2 0 3

0 0
45

(35)

The diattenuation parameters have three components corresponding to the three components 
of the Stokes vector, x/y, 45°/135°, right/left, each of which characterizes how the transmission var-
ies with each of the Stokes vector component. The diattenuation parameter set d is often called the 
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FIGURE 3 Relationship between the diattenuation and the 
extinction ratio, Tmin/Tmax.
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diattenuation vector, but like the Stokes vector, d is not a true vector. Diattenuation parameters do 
not add. For a Stokes three-vector s, the transmission function T is 

T
s

s
m m s m s m s m( ) , , , , ,M, s 0

0
0 0 0 1 1 0 2 2 0 3 3 0 00 1( )d s (36)

The average transmission, formed by averaged over all polarized Stokes vectors, is m0,0. The average 
transmission is also the transmission for unpolarized incident light, sU = {0,0,0}. The polarization-
dependent variation of the transmission is contained in the dot product term between the incident 
Stokes three-vector and the diattenuation vector, s d. The maximum transmission, Tmax, occurs 
when the dot product is maximized, which occurs when s and d are parallel, and the magnitude of 
S0 is as large as possible. The incident normalized Stokes vectors with maximum transmittance, Smax,
and minimum transmittance, Smin, are

s
d
d

S smax max m| |
ˆ 1

45
D

D

d

d

d

x

R

iin min| |
ˆd

d
S

1

45
D

D

d

d

d

x

R

(37)

yielding 

T m D T m Dmax , min ,( ) ( )0 0 0 01 1 (38)

Therefore the diattenuation of any Mueller matrix is

D
T T

T T

m m m

m
(M) max min

max min

, , ,0 1
2

0 2
2

0 3
2

0,,0

(39)

For an ideal polarizer the minimum transmission is zero, D 1, T m Dmin , ( )0 0 1 0.
Linear polarization sensitivity or linear diattenuation LD(M) characterizes the variation of intensity 

transmittance with incident linear polarization states:

LD( )
, ,

,

M
m m

m
0 1
2

0 2
2

0 0

(40)

Linear polarization sensitivity is frequently specified as a performance parameter in remote 
sensing systems designed to measure incident power independently of any linearly polarized com-
ponent present in scattered earth-light.18 Note that LD(M) = 1 identifies M as a linear analyzer; M
is not necessarily a linear polarizer, but may represent a linear polarizer followed by some other 
polarization element. 

Diattenuation in fiber optic components and systems is often characterized by the polarization-
dependent loss (PDL) specified in decibels:

PDL( ) logM 10 10

T

T
max

min

(41)
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14.15 POLARIZANCE

The polarizance (P(M)) is the degree of polarization (DoP) of the transmitted light when unpolarized 
light Û is incident,3

P
m m m

m
( ) ( ˆ )

, , ,

,

M M UDoP
1 0
2

2 0
2

3 0
2

0 0

(42)

The exiting polarization state, Sp(M), is the first column of M,

S M M UP

m m m m

m m m m

m
( )

, , , ,

, , , ,

0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3

22 0 2 1 2 2 2 3

3 0 3 1 3 2 3 3

, , , ,

, , , ,

m m m

m m m m

1
0
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0 0

1 0

2 0

3 0

m

m

m
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,

,

,

,

(43)

The polarizance does not necessarily equal the diattenuation. Nor does Sp necessarily equal, Smax,
the incident state of maximum transmittance.

14.16 MUELLER MATRICES OF DIATTENUATORS

The Mueller matrix for a partial polarizer (homogeneous diattenuator) with intensity transmit-
tances T Tx yand  and eigenpolarizations along the x and y axes, LD (Tx, Ty, 0) is

LD( , , )T T

T T T T

T T T T

Tx y

x y x y

x y x y

x

0
1
2

0 0

0 0

0 0 2 TT

T T

y

x y

0

0 0 0 2

(44)

Ideal diattenuators have two different intensity transmittances Tmax and Tmin, for two orthogonal linear 
eigenpolarizations; thus the name “di” “attenuator”. A linear diattenuator oriented at angle  has the 
Mueller matrix

LD( , , )

cos sin
cos co

max minT T

A B B
B A1

2

2 2 0
2 ss sin ( )cos sin

sin ( )cos

2 22 2 2 2 0
2

C A C
B A C 22 2 2 2 0

0 0 0

2 2sin cos sinC A
C

(45)

where

A T T B T T C T Tmax min max min max min2 (46)

Ideal diattenuators have no retardance, although in practice most diattenuators have some 
retardance. An example of a pure linear diattenuator without retardance is transmission into a 
transparent dielectric; Tmax and Tmin are then given by intensity Fresnel coefficients. Reflection at 
metal surfaces acts as a diattenuator with retardance.
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Ideal diattenuator Mueller matrices are hermitian matrices; they have real eigenvalues. A hermitian 
matrix equals the complex conjugate of its transpose, its hermitian adjoint, H H H† ( ).T  But since 
Mueller matrices are real, H H, ideal diattenuator Mueller matrices equal their transpose,

H HT (47)

The general equation for a diattenuator, either linear, elliptical, or circular, expressed in terms of the 
first row of the Mueller matrix is 

Diattenuator avg
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(48)

14.17 NORMALIZING A MUELLER MATRIX

Mueller matrices are normalized by dividing M by m0,0, the transmission for unpolarized light, and 
also the transmission when the input state is averaged over the entire Poincaré sphere. The normal-
ized Mueller matrix M has an average transmission of one,

M
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Normalization limits all element values to the range 1 mi, j  1. Measured Mueller matrix data 
is frequently normalized to facilitate comparison of Mueller matrix polarization properties with 
the average transmission removed. It facilitates comparison to Mueller matrices tabulated in the 
literature. Normalizing Mueller matrix images or spectra simplifies eyeballing the data; with the flux 
variations removed, diattenuation, retardance, and depolarization variations are easier to see.

Normalizing by a different value, k/m0,0 sets the average transmission to k, such as k = 1/2 for an 
ideal polarizer. A Mueller matrix M̂ normalized, so the maximum transmission is one is

ˆ

, , , , max

M
M M

m m m m T
0 0 0 1

2
0 2
2

0 3
2 (50)

14.18  COORDINATE SYSTEM 
FOR THE MUELLER MATRIX

Consider a Mueller polarimeter consisting of a polarization generator which illuminates a sample, 
and a polarization analyzer which collects the light exiting the sample in a particular direction. 
We wish to characterize the polarization modification properties of the sample for a particular 
incident and exiting beam through the Mueller matrix. The incident polarization states are speci-
fied by Stokes vectors defined relative to an {x y}ˆ , ˆ  coordinate system orthogonal to the propagation 
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direction of the incident light. Similarly, the exiting light’s Stokes vector is defined relative to an 
{x y }ˆ , ˆ  coordinate system orthogonal to its propagation direction. For transmission measurements 
where the beam exits undeviated, the orientations of {x y}ˆ , ˆ  and {x y }ˆ , ˆ  will naturally be chosen to 
be aligned, (x x y y )ˆ ˆ , ˆ ˆ . The global orientation of {x y}ˆ , ˆ  is arbitrary, and the measured Mueller 
matrix varies systematically if {x y}ˆ , ˆ  and {x y }ˆ , ˆ  are rotated together.

When the exiting beam emerges in a different direction from the incident beam, orientations must 
be specified for both sets of coordinates. For measurements of reflection from a surface, a logical 
choice sets {x y}ˆ , ˆ  and {x y }ˆ , ˆ  to the {s p}ˆ, ˆ  orientations for the two beams. Other Mueller matrix mea-
surement configurations may have other obvious arrangements for the coordinates. All choices, how-
ever, are arbitrary, and lead to different Mueller matrices. Let a Mueller matrix M be defined relative to 
a particular {x y}ˆ , ˆ  and {x y }ˆ , ˆ . Let another Mueller matrix M( 1, 2) for the same measurement condi-
tions have its x̂ axis rotated by 1 and x  axis rotated by 2, where  > 0 indicates a counterclockwise 
rotation looking into the beam (x y)ˆ ˆinto . These Mueller matrices are related by the equation 

M 1 2
2 2

2 2
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0 2 2 0

,
cos sin
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cos sin
sin cos 00
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(51)

When 1 = 2, the coordinates rotate together, the eigenvalues are preserved, the circular polariza-
tion properties are preserved, and the linear properties are shifted in orientation. When 1 2, the 
matrix properties are qualitatively different; the eigenvalues of the matrix change. If the eigenpolar-
izations of M were orthogonal, they may not remain orthogonal. After we perform data reduction 
on the matrix, the basic polarization properties couple in a complex fashion. For example, linear 
diattenuation in M yields a circular retardance component in M( 1, 2). The selection of the coordi-
nate systems for the incident and exiting beams is not important for describing exiting polarization 
states, but is crucial for properly identifying polarization characteristics of the sample. 

14.19 MUELLER MATRICES FOR REFRACTION

Reflections and refractions at homogenous and isotropic interfaces, typical glass or metal interfaces, 
have s and p eigenpolarizations. The polarization is a combination of diattenuation and retardance, 
with the eigenpolarizations aligned with the s and p planes. Let s be aligned with x and p with y. Ts is 
the s-intensity reflectance or transmittance and Tp is the p-intensity reflectance or transmittance. The 
retardance between the s and p states is . Ts, Tp,  are determined from Fresnel equations or from 
a thin-film coating calculation. The Mueller matrix is the product of the diattenuator and retarder 
Mueller matrices,
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For transmission at an uncoated interface,  = 0, but for thin-film-coated interfaces, such as anti-
reflection coatings or beam-splitter coatings, the retardance is nonzero. If the plane of incidence is 
not vertical, the Mueller rotation operator is applied. Refraction Mueller matrices are homogeneous; 
the eigenpolarizations, the s and p polarizations, are orthogonal.

14.20 MUELLER MATRICES FOR REFLECTION

In most optics notation, including this chapter, a sign change occurs in the coordinate system after 
reflection to maintain a right-handed coordinate system after the propagation vector has changed 
direction. After reflection, the S2 component of Stokes vectors (linearly polarized light at 45°/135°) 
and the S3 component (circularly polarized light) change sign. The S2 component changes sign dur-
ing reflection (diffuse or specular) because the z-component of the light propagation vector (the 
component parallel to the sample surface normal) changes sign. To maintain a right-handed coor-
dinate system, one of the transverse coordinates must change sign as well. Choosing x, the spatial 
coordinates (x, y, z) switch to ( x, y, z) after reflection or scatter from a sample; z is the direction 
of propagation before reflection which changes to z after reflection. The change of coordinates 
dictates that a beam polarized at an angle of 45° which reflects polarized in the same global plane is 
described as having a 135° orientation in the coordinates following reflection. 

Picture a Stokes polarimeter measuring in transmission; now rotate that polarimeter around z
axis and move it to measure in reflection and you should see how the 45° component has changed 
sign. In addition, the helicity (i.e., handedness) of all circular and elliptical states changes sign upon 
reflection. Right circular polarization reflects as left circular polarization, and vice versa. 

First let s be aligned with x and p with y. Rs is the s-intensity reflectance and Rp is the p-intensity 
reflectance. The retardance between the s and p states is . Rs, Rp,  are determined from Fresnel 
equations or from a thin-film coating calculation. The reflection Mueller matrix is

1
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R R R R
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(53)

With this convention for reflection, the equation for rotating the Mueller matrix, M, of a sample 
measured by a polarimeter in a reflection configuration about its normal is

M R M RR( ) ( ) ( )
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(54)

compared to 

M R M RT ( ) ( ) ( ) (55)

for Mueller matrices in transmission. For example, the Mueller matrix of a transmission polarizer 
with its transmission axis oriented at 20° and the Mueller matrix of a reflection polarizer oriented at 
20° are different since polarized light exits the reflection polarizer oriented at 20° in the reflection 
coordinates (20° in the incident coordinates). In essence the reflection polarizer Mueller matrix is 
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analyzing at 20° but polarizing at 20°. For the special cases of linear polarizer matrices oriented at 
0° or 90° and linear retarders oriented at 0° or 90°, this transformation results in Mueller matrices 
which are the same for transmission and reflection. 

The normalized reflection Mueller matrices for weakly polarizing diffuse reflecting samples, 
those with diattenuation, retardance, and depolarization close to zero, are close to the Mueller 
matrix for an ideal reflector,

Mrefl

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

(56)

14.21  CONVERSION BETWEEN MUELLER
MATRICES AND JONES MATRICES

Jones matrices form an alternative and very useful representation of sample polarization, par-
ticularly because Jones matrices have simpler properties and are more easily manipulated and 
interpreted. The complication in mapping Mueller matrices onto Jones matrices and vice versa is 
that Mueller matrices cannot represent absolute phase and Jones matrices cannot represent depolar-
ization. Thus, only nondepolarizing Mueller matrices have corresponding Jones matrices. All Jones 
matrices have corresponding Mueller matrices, but because the absolute phase is not represented, 
the mapping is many Jones matrices to one Mueller matrix. 

Both Jones matrices and Mueller matrices can calculate the polarization properties of sequences 
of nondepolarizing interactions, the effect of cascading a series of diattenuators and retarders. When 
this same polarization element sequence is calculated by Jones matrices and alternatively by Mueller 
matrices, the answer is the same diattenuating and retarding properties. Either method is suitable.

Jones vectors and Jones matrices are commonly represented with two different sign conventions 
for the phase. Electromagnetic waves are commonly written with two different conventions, either 
the phase decreases with time ( )kz t , the convention adopted here, or the phase increases with 
time ( )wt kz . Depending on the choice, various plus and minus signs must be adjusted in the 
Jones vectors for circularly and elliptically polarized light and in the various Jones matrices. Both 
conventions are in widespread use so care is necessary when taking Jones matrices from different 
sources. In this chapter, the phase decreases with time, so a monochromatic plane wave propagating 
in the z direction has the form

E( , ) Re ( )z t
E

E
e

x

y

i kz t
E

E
kz t

x

y

cos( ) (57)

A wave is advanced by subtracting from the phase. A wave is delayed or retarded by adding to the 
phase. 

A Jones matrix J is transformed into a Mueller matrix by the relation 

M U J J U( ) 1 (58)

in which  represents the tensor product and U is the Jones/Mueller transformation matrix:9,10,19,20

U U
1

2

1 0 0 1
1 0 0 1
0 1 1 0
0 0

1

i i

( ))† (59)
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where the hermitian adjoint is represented by †. All Jones matrices of the form J ei J transform 
to the same Mueller matrix. Consider a Jones matrix with complex elements expressed in polar 
coordinate form
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The tensor product (J J ) gives a fourth rank second-order tensor {2 2 2 2}, 
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This tensor is contracted to a second rank fourth-order (4  4) tensor.
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which when multiplied with U gives the Mueller matrix elements as follows:
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An equivalent method to convert Jones matrices to Mueller matrices utilizes dot products with two 
Pauli spin matrices to determine each Mueller matrix element, mi,j,

mi j i j,
† )

1
2

Tr J J (64)

where Tr is the trace of the matrix and 
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are the identity matrix and normalized Pauli spin matrices.
Nondepolarizing Mueller matrices are transformed into the equivalent Jones matrices using the 

following relations:
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where the amplitudes are
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and the relative phases are
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The phase x,x is not determined but is the “reference phase.” These equations are not unique and 
other equivalent forms can be derived.

For example, a special case occurs if jx,x = 0; then both the numerator and denominator of the 
arctan are zero and the phase equations fail. The transformation equations can then be recast in 
closely related forms to use the phase of another Jones matrix element as the “reference phase.”

14.22  NONDEPOLARIZING MUELLER MATRICES
AND MUELLER-JONES MATRICES

Nondepolarizing Mueller matrices are the set of Mueller matrices for which completely polarized 
incident light [DoP(S)=1] is transmitted as completely polarized for all incident polarization 
states and have a depolarization index of one [Eq. (96)]. Nondepolarizing Mueller matrices are a 
subset of the Mueller matrices. Jones matrices can only represent nondepolarizing interactions. 
The nondepolarizing Mueller matrices are Mueller matrices with corresponding Jones matrices; 
thus nondepolarizing Mueller matrices are also called Mueller-Jones matrices. 
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An ideal polarizer is nondepolarizing when if the incident beam is polarized, the exiting beam is 
also polarized. Similarly an ideal retarder is nondepolarizing. The nondepolarizing Mueller matrices 
comprise the Mueller matrices for the matrix product of all arbitrary sequences of diattenuation and 
retardance. A Mueller-Jones matrix must satisfy the following condition for all  and ,
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One necessary, but not sufficient, condition for nondepolarizing Mueller matrices is21
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(70)

In a typical imaging optical system, depolarization is an undesirable characteristic for lens and 
mirror surfaces, filters, and polarization elements. Depolarization is associated with scattering, 
and optical surfaces are carefully fabricated and coated to minimize scattering. Depolarization is 
generally very small from high-quality optical surfaces. Thus the majority of optical surfaces are 
well described by nondepolarizing Mueller matrices.

14.23  HOMOGENEOUS AND INHOMOGENEOUS
POLARIZATION ELEMENTS

A nondepolarizing Mueller matrix is homogeneous if the two Stokes vector eigenpolarizations are 
orthogonal, and inhomogeneous otherwise. A nondepolarizing Mueller matrix MN can be factored 
into a cascade of a diattenuator Mueller matrix MD followed by a retarder Mueller matrix MR or into 
a cascade of the same retarder followed by a different diattenuator MD,22

M M M M MN R D D R (71)

The magnitude of the diattenuation of MD and MD are equal. We define the diattenuation of M
as the diattenuation of MD, and the retardance of M as the retardance of MR. For a homogeneous 
device, MD = MD and the eigenvectors of MR and MD are equal. Thus the retardance and diatten-
uation of a homogeneous Mueller matrix are “aligned,” giving it substantially simpler properties 
than the inhomogeneous Mueller matrices. A necessary condition for a homogeneous Mueller 
matrix is 

m m m m m m0 1 1 0 0 2 2 0 0 3 3 0, , , , , ,, , (72)

then, P D( ) ( ).M M
The inhomogeneity of a Mueller matrix is characterized by the inhomogeneity index I(M), 
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where Ŝq and Ŝr are normalized polarized Stokes vector eigenpolarizations of a Mueller matrix and
 is the angle between the eigenpolarizations on the Poincarè sphere measured from the center of 

the sphere as illustrated in Fig. 4. I(M) varies from zero for orthogonal eigenpolarizations to one 
for degenerate (equal) eigenpolarizations.

The product of an arbitrary sequence of nondepolarizing Mueller matrices is another nondepo-
larizing Mueller matrix.

14.24  MUELLER MATRICES NEAR THE IDENTITY
MATRIX, WEAK POLARIZATION ELEMENTS

The Mueller matrices of weak polarization elements are close to the 4  4 identity matrix. The 
properties of weak Mueller matrices are much simpler than general Mueller matrices because the 
retardance, diattenuation, and depolarization are close to zero. These simpler properties will be uti-
lized later in the analysis of Mueller matrix properties by their matrix roots. 

Some important examples of such weakly polarizing elements would be the lens surfaces and 
mirror surfaces in lenses, microscopes, and telescopes, where the polarization properties are not zero 
due to Fresnel equations, antireflection coatings, or mirrored surfaces, but the effects are often well 
below 5 percent.

The structure of the Mueller calculus and the properties of these weak elements can be explored 
by performing Taylor series on the Mueller matrix expressions with respect to diattenuation or 
retardance. Weak retarders have a retardance near zero. Performing a Taylor series expansion on 

FIGURE 4 The principal Stokes vectors associated with an 
inhomogeneous polarization element mapped on the Poincarè 
sphere. The incident Stokes vectors of maximum Smax and 
minimum Smin intensity transmittance are diametrically oppo-
site on the Poincarè sphere (indicating orthogonal polarization 
states) while the eigenpolarizations Sq and Sr are separated by 
the angle .
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the general equation for an elliptical retarder and keeping the first-order terms yields the following 
simple expression for weak retarders:
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Similarly, a first-order Taylor series expansion on the general diattenuator expression yields
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Combining these yields the weak diattenuators and retarder Mueller matrix form
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These three equations are only correct to first order. Higher-order terms, which are present when 
these parameters are not infinitesimal, are calculated from the exact equations presented earlier.

So weak diattenuators are symmetric in the top row and first column. Weak retarders are 
antisymmetric in the off-diagonal lower right 3  3 elements. The presence of antisymmetric com-
ponents in the top row and column and symmetric components in the lower right 3  3 elements of 
weak polarization element Mueller matrices indicates the presence of depolarization.

14.25  MATRIX ROOTS OF NONDEPOLARIZING
MUELLER MATRICES

In this section an order-independent representation of Mueller-Jones matrices is developed using 
matrix generators to provide additional insights into the polarization properties of Mueller matrices. 
This matrix-generator approach is extended in the Sec. 14.31.

The matrix decompositions in Eq. (71) are order-dependent; the retardance occurs before the 
diattenuation or vice versa. Because the retardance and diattenuation components in general do not 
commute, the result is order-dependent.

An order-independent representation was developed for the Jones calculus by Jones with his 
N matrices, which represented Jones matrices with differential amounts of the three diattenu-
ation and three retardance degrees of freedom. Jones approached the problem by considering 
propagation through a dichroic (diattenuating) and birefringent (retarding) anisotropic crystal 
and analyzed the Jones matrices as the path length t is cut into many (N) short lengths of t/N as
N approaches infinity. 

The same method is applicable to nondepolarizing Mueller-Jones matrices MN. Dividing the 
path length in half (N  2) corresponds to taking the square root of MN; this matrix square root has 
half the magnitude of the polarization properties of MN. For example, the square root of a quarter-
wave retarder is an eighth-wave retarder with the same eigenpolarizations. The square root of a diat-
tennuator with transmissions 1 and 0.64 has transmissions 1 and 0.8. For a square matrix, multiple 
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matrix square roots exist; a 4  4 matrix has 24 square roots. A real matrix square root always exists 
which is closer than MN to the identity matrix. Taking the series of these matrix roots

MN
n n 2 3 4, , , . . . (77)

yields a matrix sequence which approaches the identity matrix. The direction in which this sequence 
approaches the identity matrix depends on the ratio of polarization parameters and identifies the 
MN as linearly or elliptically diattenuating or retarding. The matrix properties in the vicinity of 
the identity matrix, as shown in Sec. 14.24 are particularly simple. 

The differential Mueller matrices for diattenuation and retardance corresponding to the N matrices 
are presented below. They are obtained by taking high-order roots of Mueller matrices or by using 
differential values for the diattenuation and retardance in the equations for the basis retarder and 
diattenuator Mueller matrices. Such differential matrices are also known as generators and differ 
from the identity matrix by infinitesimal amounts which point in the direction of a particular polar-
ization property. 

The Mueller matrix generators describe infinitesimal amounts of each polarization property. 
There are three generators for diattenuation, G1(d1), G2(d2), and G3(d3), and three generators for 
retardance G4(d4), G5(d5), and G6(d6). The three diattenuation generators along with their first-order 
expansions and second-order terms are the following:
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The equation for the general diattenuator is

M ( ) G GD N
d d d d d
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The di are the diattenuation parameters and are restricted to the range

1 11 2 3d d d, , (82)
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and d0 is an overall constant. For ideal polarizers, 
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The generators for retarders are as follows:
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The parameters d1, d2, and d3 are the retardance components in radians and are not limited in range. 
The general elliptical retarder has the form

M ( ) G GR N
d d d
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d

N4 5 6 4
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The retardance generators are periodic in the retardances di,

G Gi i i id d i( ) ( ) , ,4 5 6 (88)

Combining these, the general nondepolarizing Mueller matrix MN (Mueller-Jones matrix), an inho-
mogeneous diattenuator and retarder, has the form 

M GN N i
i

i

d d d
d

N
( , . . . , ) lim0 6 0

1

6
N

(89)

This representation is order-independent; the product of the six Gi(di) with differential di/N can be 
taken in any order of the six i, prior to raising to the Nth power. 

The di for a Mueller-Jones matrix MN are determined by calculating a high-order matrix root. 
For the majority of Mueller-Jones matrices, as the root order N  the matrix root approaches a 
constant times the identity matrix with small first-order deviations, Di, corresponding to the first-
order terms above, as 

MN
N d

D D D

D D D

D D D

D D D
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1

1

1

1

(90)
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Due to the inexact nature of computer arithmetic, in practice N is set large enough that the matrix 
root is very close to the identity matrix without losing accuracy due to round off errors in calculations, 
which occurs when N is very large. Setting 104 < q < 109 usually works well. The Di are scaled by the 
matrix root order N,

d N Di i (91)

yielding the magnitudes of the diattenuation and retardance parameters. 
For any Mueller-Jones matrix, MN(d0, . . . , d6,), varying one of the di generates a family of MN

where only a single polarization property varies. Varying each of the di one at a time generates a family 
of orthogonal trajectories through MN. Thus the set { , , , , , , }d d d d d d d0 1 2 3 4 5 6  comprises a coordinate 
system for the Mueller-Jones matrices. Within the 15-dimensional space of normalized Mueller 
matrices, the Mueller-Jones matrices, parameterized by { , , , , , }d d d d d d1 2 3 4 5 6  form an open six-
dimensional surface embedded on a 15-dimensional hypersphere of radius 3, the surface where 
the depolarization index equals one.

A homogeneous nondepolarizing Mueller matrix has the same eigenvectors for its diattenuation 
(hermitian) and retarding (unitary) parts, and the corresponding condition on the Mueller roots is 

{d1, d2, d3}  k{d4, d5, d6} (92)

where k is a real constant, the ratio of the diattenuation to the retardance.

14.26  DEPOLARIZATION AND
THE DEPOLARIZATION INDEX

Depolarization is the reduction of the degree of polarization of light. In the Mueller calculus depo-
larization can be pictured as a coupling of polarized into unpolarized light, where polarized light 
is incident and the exiting Stokes vector can be mathematically separated into a fully polarized and 
an unpolarized Stokes vector. Lenses, mirrors, filters, and other typical optical elements exhibit very 
small amounts of depolarization, typically less than a few tenths of a percent. In contrast, the depolar-
ization of most diffusely reflecting objects such as paints, metal and wood surfaces, natural materials, 
and the like is significant, varying from a few to 100 percent (i.e., complete depolarization).

Two single-valued depolarization matrices, the depolarization index and the average degree of 
polarization, have been introduced to describe the degree to which a Mueller matrix depolarizes 
incident states.23–25 However, such single-number matrices cannot describe the complexity of 
depolarization associated with a Mueller matrix.

Consider three Mueller matrices of the following forms:

ID PD

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 0 0 0
0 0 0
0 0

a
a 00

0 0 0

1 0 0 0
0 0 0
0 0 0
0 0 0a

a
b

c

DD (93)

Matrix ID is the ideal depolarizer; only unpolarized light exits the depolarizer. Matrix PD is the 
partial depolarizer; all fully polarized incident states exit with their incident polarization ellipse, 
but with a degree of polarization DoP( ) a. The diagonal depolarizer matrix DD represents 
a variable partial depolarizer; the degree of polarization of the exiting light is a function of the 
incident state. Physically, depolarization is closely related to scattering and usually has its origin in 
retardance or diattenuation which is rapidly varying in time, space, or wavelength. 
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Of the 16 degrees of freedom in the Mueller matrix, 1 corresponds to loss, 3 to diattenuation, 
and 3 to retardance. The remaining 9 degrees of freedom describe depolarization.

14.27  DEGREE OF POLARIZATION SURFACES
AND MAPS

The degree of polarization is a measure of the randomness of polarization in a light beam, a 
property characterized by how much of this beam may be blocked by a polarizer. Degree of 
polarization maps and surfaces represent this dependence of depolarization on incident polar-
ization state.26 For the typical depolarizer, different incident polarization states are depolarized 
by different amounts. 
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1
2
2

cos cos
sin cos
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(94)

Degree of polarization surfaces are formed from a nonuniform contraction of the Poincaré 
sphere corresponding to the depolarization properties of a Mueller matrix. The DoP surface for a 
Mueller matrix M is formed by moving normalized Stokes vectors S on the surface of the Poincaré 
sphere radially inward to a distance DoP(S M S) from the origin, plotted for all incident S on the 
surface of the Poincaré sphere. The DoP surface results from the product of a scalar, the DoP, and a 
vector, ( , , )s s s1 2 3 , formed from the Stokes three-vector,

DoPsurface( , )
( , ) ( , ) (

M S
M S M SS S S1

2
2

2
3 MM S

M S

, )

( , )
( , , )

2

0
1 2 3S

s s s (95)

for all ( ) ./s s s1
2

2
2

3
2 1 2 1

The DoP map for a Mueller matrix is a two-dimensional plot, such as a contour plot or density 
plot, of the DoP of exiting light as a function of the incident polarized state and represents a “flattened” 
DoP surface. In this paper, the DoP map is plotted with axes  (polarization ellipse major axis orientation) 
and DoCP, but there is some flexibility in the parameterization of the polarized Stokes vectors. In 
general the DoP map provides easier visualization of maxima, minima, saddles, and other features of 
the depolarization variation than the DoP surface. 

Fig. 5 shows depolarization maps for a liquid crystal cell’s Mueller matrices measured at 2, 3, 
and 4 V at 550 nm in laboratory.27 The cell is an untwisted nematic cell (Fredericksz cell) with fast 
and slow axes at 45°/135° used as a variable linear retarder for polarization control. The depolar-
ization characteristics change significantly with applied voltage and incident polarization state. 
At 2 V, the maximum DoP (white area) occurs for a slightly elliptical state located just above the 
135° linear state on the Poincaré sphere; a second DoP maximum occurs near 45°. At 0 V the 
liquid crystal (LC) directors will be parallel to one of these axes throughout the cell. So the least 
depolarization is occurring along the direction the LC molecules are aligned at the two surfaces. 
As the voltage increases, the molecules near the center of the cell gap rotate toward the cell normal 
while simultaneously the retardance decreases. Both maxima drift away from the fast/slow axes as 
the voltage increases while the depolarization, a measure of order, decreases the most around 90°. 
Unfortunately, polarization controllers are usually operated midway between the fast and slow axes 
and miss the DoP maxima. 
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14.28 THE DEPOLARIZATION INDEX

One figure of merit of the depolarization characteristics of a Mueller matrix is the depolarization 
index DI(M) introduced by Gil and Bernabeu.23,24 DI(M) is the euclidian distance of the normalized 
Mueller matrix M/m0,0 from the ideal depolarizer:

DI( )M
M

ID
m

m m

m

i j
i j

0 0

2
0 0
2

0 03,

,
,

,

,

(96)

DI(M) varies from zero for the ideal depolarizer to 1 for all nondepolarizing Mueller matrices, 
including all pure diattenuators, pure retarders, and any sequences composed from them. 

14.29 THE AVERAGE DEGREE OF POLARIZATION

The average degree of polarization, averageDoP, is the arithmetic mean of the degree of polarization 
of the exiting light when averaged over the Poincaré sphere,25

averageDoP
DoP )

( )
( ( , ) cos( )

/
M

M S d d
2

//2

0

4
(97)
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FIGURE 5 DoP maps for an untwisted nematic liquid crystal cell at (a) 2 V, (b) 3 V, and 
(c) 4 V. The DoP varies between 0.965 and 0.991 as the voltage and incident polarization state varies. 
At low voltages, the low depolarization states are close to the fast and slow axes. As the voltage 
increases, these DoP maxima (lighter gray) drift away.
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S( , ) the Stokes vector parameterized by orientation of polarization  and latitude , in radians on 
the Poincare sphere, is 

S( , )
cos( )cos( )
sin( )cos( )

sin( )

1
2
2

(98)

The averageDoP varies from zero to one and provides a summary of the depolarizing property 
in a single number. When averageDoP is equal to one the exiting light is always completely polar-
ized indicating a nondepolarizing Mueller matrix. Values near one indicates little depolarization. 
When averageDoP equals zero the exiting light is completely depolarized; only unpolarized light 
exits the interaction. 

The DI and the averageDoP are often equal and usually quite close. The averageDoP is the easier 
metric to understand; it provides the mean DoP of the exiting light averaged over the Poincaré 
sphere, the expected value. The DI has a clear geometric meaning in the Mueller matrix configura-
tion space, being the fractional distance of a Mueller matrix along a line segment from the ideal 
depolarizer to the hypersphere of nondepolarizing Mueller matrices, so it remains a useful and 
meaningful parameter, but more useful for theoretical studies of the Mueller calculus than for repre-
senting the depolarization of an optical element.

14.30  DETERMINING MUELLER MATRIX
PROPERTIES

Given a Mueller matrix, measured or calculated, a natural question is “what are the polarization 
properties of this matrix?” Algorithms for the properties of Jones matrices were developed decades 
ago.1,15,28–30 For Mueller matrices, the algorithm development was challenging and work continues 
in this area.13,14,16,24,31–37

A matrix decomposition expresses a matrix as a function of other matrices which indicate useful 
properties. For example, the polar decomposition of a Jones matrix expresses J as the matrix prod-
uct of a hermitian matrix and a unitary matrix, corresponding to a diattenuator (partial polarizer) 
and retarder.21,22 Jones’ N-matrix decomposition of the Jones matrix divided the Jones matrix into 
a large number of identical matrix components infinitesimally close to the identity matrix and pro-
vided a simple description of Jones matrix properties.15

The Mueller matrix has 16 degrees of freedom and thus can be described by 16 unique prop-
erties. The Mueller roots decomposition presented in the following section is a generalization of 
Jones’ method to the Mueller matrix and provides an order-independent decomposition. The 
decomposition of Lu and Chipman, presented in the following section, expresses the Mueller 
matrix as the product of pure diattenuator, pure retarder, and depolarizer Mueller matrices.30 The 
three components could occur in any specified order but the values of the components changed 
based on the order. 

14.31 GENERATORS FOR DEPOLARIZATION

The generator method for describing polarization properties of Mueller-Jones matrices 
extends to depolarizing Mueller matrices by adding nine additional generators to span the 
remaining nine degrees of freedom.38 These nine generators have been divided into three 
families of three generators corresponding to the three diattenuation and retardance degrees 



14.34  POLARIZED LIGHT

of freedom. The nine generators for depolarization in exact, first- and second-order represen-
tations are as follows: 
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The final three degrees of freedom describe the depolarization along the matrix diagonal elements: 
m m m1 1 2 2 3 3, , ,, , :
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Combining the 9 depolarizing generators with the 6 nondepolarizing generators yields an order-
independent equation for Mueller matrices in terms of 15 polarization parameters,
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As any single parameter is scanned in value, it generates a trajectory through the space of Mueller 
matrices where just one polarization property is changing. Thus Eq. (108) provides a coordinate 
system for depolarizing and nondepolarizing Mueller matrices in terms of the individual polariza-
tion parameters. The names of the polarization properties are given in Table 4. G7, G8, and G9 share 
the same first-order matrix elements as diattenuation and affect the flux of the light; thus the name 
amplitude diattenuation. G10, G11, and G12 share the same first-order matrix elements as retardance 
and do not affect the flux of the light; thus the name phase diattenuation. 

The final three depolarization degrees of freedom lie along the matrix diagonal. In most depolar-
izing samples these are the largest components of the depolarization. Several different bases can be 
considered for these degrees of freedom. The uniform depolarizer is a depolarizer which depolar-
ized all polarization states equally. Combining the uniform depolarizer with any nondepolarizing 
Mueller matrix should move that matrix straight toward the ideal depolarizer in a radial direction in 
the 15-dimensional normalized Mueller matrix space. This uniform depolarizer generator is chosen 
as the final generator, G15. G13, G14, and G15 are an orthogonal basis for the diagonal matrix elements. 

The degree of polarization maps associated with the individual depolarization generators are 
shown in Fig. 6. Nonphysical regions with the degree of polarization greater than one are hatched; 
physical regions are solid. All of the generators except G15 have DoP maps where half the area has 
a value below one and half is above one (hatched). Thus G7 through G14 are nonphysical Mueller 
matrices by themselves. Only when they are combined with an equal or greater amount of G15, do 
they form physical Mueller matrices with DoP values always equal to or less than one. G15 is an 
essential component of any depolarizing Mueller matrix.

The algorithm for the decomposition of Mueller matrix M into matrix root parameters di has 
four steps. First, M is normalized so its average transmission is one,
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TABLE 4 Polarizing and Depolarizing Degrees of Freedom

Horizontal and Vertical 45° and 135° Right and Left

Diattenuation d1 d2 d3
Retardance d4 d5 d6
Amplitude depolarization d7 d8 d9
Phase depolarization d10 d11 d12

Orthogonal 1 Orthogonal 2 Radial
Diagonal depolarization d13 d14 d15
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Normalizing M separates the property of the average transmission (nonpolarizing) from the 
remaining 15 polarizing properties. Second, a high-order matrix root of M̂ is calculated,

P M̂
q (110)

For the majority of Mueller matrices, P approaches a constant d0 times the identity matrix as q

lim ˆ
q

q
dM 0

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

(111)

FIGURE 6 Degree of polarization maps associated with the depolarization generators G7–G15 for a value of di  0.2. 
Hatched areas indicate incident polarization states where the exiting Stokes vector has a DoP > 1. G15, radial depolarization, has 
a constant map.
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Due to the inexact nature of computer arithmetic, in practice q is selected as a large enough number 
such that P is very close to the identity matrix without losing accuracy due to round off errors in 
calculations. Setting 104 < q < 109 usually works well.

Third, the difference between P and the identity matrix is decomposed into 15 terms, corre-
sponding to 15 polarization properties,
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where the Di are very small numbers which decrease linearly with large N. D13, D14, and D15 are more 
complex due to our selection of diagonal depolarization generators,
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Finally, the Di are scaled by the matrix root order q,

d qDi i (114)

yielding the magnitudes of the polarization parameters. 
One method to ensure the proper matrix root is calculated is to calculate the appropriate matrix 

square or cube root, then repeatedly apply the square or cube root function to generate high-order 
roots. Higham has addressed finding the real square roots of real matrices.39,40

Several classes of Mueller matrices and their matrix roots require special consideration. For ideal 
polarizers (Tmax 1, Tmin 0), the Mueller matrix squared equals the Mueller matrix, then the high-
order matrix roots do not approach the identity matrix. But when Tmin is infinitesimally increased 
above zero, the high-order matrix roots do approach the identity matrix.

Some highly depolarizing Mueller matrices have a negative determinant. The Mueller matrices 
generated by Eq. (108) span most of the space of physically realizable Mueller matrices. The deter-
minant of normalized Mueller matrices vary over the range

1
27

1det( )M (115)

Since P has a positive determinant, its high-order powers can never equal a matrix with negative 
determinant. Unfortunately, the Mueller matrices spanned by Eq. (108) do not cover the small num-
ber of negative determinant Mueller matrices, an issue beyond the scope of this chapter.

The high-order roots of the majority of Mueller matrices are well behaved in approaching the 
identity matrix. The boundary between these classes is an area of ongoing investigation. An alterna-
tive form for the depolarization generators for the matrix diagonal is the following:
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14.32  INTERPRETATION OF ARBITRARY MUELLER
MATRICES, THE POLAR DECOMPOSITION
OF MUELLER MATRICES

When simulating polarization elements, polarimeters, and optical systems, typically the Mueller 
matrices are nondepolarizing. Measured Mueller matrices have depolarization at some level; usually 
low for optical systems or much higher for light scattered from rough surfaces. To understand these 
matrices, it is desirable to interpret the Mueller matrices in terms of standard polarization elements. 
Given a Mueller matrix and access to a well-stocked inventory of polarization elements, diattenuator, 
retarder, and depolarizer could be combined to perform equivalent polarization transformations.

One common algorithm for Mueller matrix decomposition is the Lu-Chipman polar decomposi-
tion which represents an arbitrary depolarizing Muller matrix as the product of a pure diattenuator, 
a pure retarder, and a depolarizer Mueller matrices.22 The algorithm is complex; only a few steps will 
be outlined here; the reader is referred to other treatments of this algorithm and comments on its 
properties.10,37,41

In this generalized polar decomposition, depolarizing Mueller matrices are expressed as the 
product of the three matrix factors: diattenuation, retardance, and depolarization,

M M M MR D (119)

MD is the diattenuator Mueller matrix and MR is the retarder Mueller matrix. For the purpose of the 
Lu-Chipman decomposition algorithm, the depolarization Mueller matrix M  has the form

M

1 0 0 0

1 0 1 1 1 2 1 3

2 0 1 2 2 2 2 3

3 0

m m m m

m m m m

m

, , , ,

, , , ,

, mm m m

T

1 3 2 3 3 3

1 0

, , ,

P m
(120)

The submatrix m  is symmetric, so it does not contain any retardance. The first column contains a 
polarizance term. The first step is to form MD from the top row of M and then remove the diattenu-
ation via

M M M M MD R
1 (121)

Extensive manipulations are then required to form MR and M , and these are used to define the 
retardance and depolarization. 

The Lu-Chipman decomposition algorithm has several disadvantages: (1) It is an order-dependent 
representation, so the polarization properties depend on which of the six polarization element 
sequence permutations is chosen. (2) Some highly depolarizing Mueller matrices have negative 
determinants; these negative determinant Mueller matrices form a very small subset of Mueller 
matrices, but they cannot be decomposed with the generalized polar decomposition.41 (3) The form 
for the depolarizer M  is peculiar, combining depolarization and polarizance, and sometimes M
which are by themselves nonphysical Mueller matrices are generated.

The advantage of this algorithm is that as a well-defined procedure, the values of diattenuation 
and retardance returned are carefully specified and reproducible. The results can be readily commu-
nicated between different groups.
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Regarding the order-dependence of the algorithm, it makes sense to put the depolarizing part of 
the decomposition last (on the left). When fully polarized light is incident, the degree of polariza-
tion is not changed by MD or MR, so M  performs all the depolarizing. Two of the other five permu-
tations are obtained by straightforward manipulations: 

M M M M M M M M M2 2 2D R R D R
T

R( ) (122)

M M M M M M M M MR D R R
T

R D3 3 3 ( ) (123)

Straightforward relationships for the other three permutations are not easily obtained:

M M M MD R4 4 4 (124)

M M M MR D5 5 5
(125)

M M M MD R6 6 6 (126)

14.33  PHYSICALLY REALIZABLE MUELLER MATRICES

Mueller matrices form a subset of the 4  4 real matrices. A 4  4 real matrix is not a physically real-
izable Mueller matrix if it can operate on an incident Stokes vector to produce a vector with degree 
of polarization greater than one ( )S S S S0

2
1
2

2
2

3
2 , which represents a physically unrealizable polar-

ization state. Similarly, a Mueller matrix cannot output a state with negative flux. Conditions for 
physical realizability have been studied extensively in the literature, and many necessary conditions 
have been published.33,34,42–47 The following four necessary conditions for physical realizability are 
among the more general of those published:31,44

1. Tr( ) ,MM mT 4 0 0
2

2. m mi j0 0, ,| |

3. m b0 0
2 2
,

4. ( ), , ,( )m b m m aj
j

j k
k

k0 0
2

0
1

3

1

3

where b m m m a m bj j0 1
2

0 2
2

0 3
2

0, , , ,, / , and Tr indicates the trace of a matrix. 
Another condition for physical realizability is that the matrix can be expressed as a sum of non-

depolarizing Mueller matrices. The Mueller matrix for a passive device Tmax  1, a device without 
gain, must satisfy the relation Tmax m m m m0 0 0 1

2
0 2
2

0 3
2 1, , , , .

In the 16-dimensional space of Mueller matrices, the matrices for ideal polarizers, ideal 
retarders, and other nondepolarizing elements lie on the boundary between the physically realiz-
able Mueller matrices and the unrealizable nonphysical matrices. Thus, a small amount of noise 
in the measurement of a Mueller matrix for a polarizer or retarder may yield a marginally unre-
alizable matrix.

When calculating a Mueller matrix M from a set of flux measurements, there is error present 
due to nonidealities in the system. When error is present, it is often the case that the reconstructed 
M is nonphysical, i.e., it is not possible to generate this M using real components such as polarizers, 
retarders, and depolarizers. In this case degree of polarization is outside the range of 0 to 1, and/or 
the intensity is negative. The “nearest” physical matrix to M may be found, both to reduce the error 
when extracting polarization parameters, and to give a quantifiable metric for the error in the mea-
surement of M.

Depolarization in Mueller matrices results from the addition of nondepolarizing Mueller matrices. 
The set of all normalized physically realizable Mueller matrices is thus formed from the convex hull of 
all the nondepolarizing Mueller matrices.



MUELLER MATRICES  14.41

A requirement for a physically realizable Mueller matrix is that the complex hermitian matrix H
known as the coherency matrix derived from M has non-negative eigenvalues.39,48

H
1
2 0

3

0

3

mij i j
ij

( ) (127)

where the ’s are the normalized Pauli matrices:

0 1 2 3

1 0
0 1

1 0
0 1

0 1
1 0

00
0
i

i (128)

and  indicates the outer product function flattened into a matrix, i.e.,

i j

i j i j i j, , , , , , , , , , ,0 0 0 0 0 0 0 1 0 1 0,, , , , ,

, , , , , ,

0 0 1 0 1

1 0 1 0 1

i j

i j i 11 1 1j , ,

(129)

The Mueller matrix is reconstructed from H as

mi j i j, { ( ) }Tr H (130)

If any of the four eigenvalues of H are negative, then M is not physical. This is the fundamental 
test for physical M. Often when a Mueller matrix is measured in the presence of noise, the Mueller 
Matrix is close to physical. Usually three of the four eigenvalues are positive, and one is small and 
negative. 

Two methods are presented to construct a physical Mueller matrix Mp from a physical Mueller 
matrix M:(1) One method first calculates the hermitian matrix Hp corresponding to the closest Mp
via optimization in the coherency matrix domain.48 Various metrics can define the meaning of closest.
(2) A faster method finds Hp which has all nonnegative eigenvalues (i.e., is positive semidefinite).

Method 1

To calculate the closest Mp, the first step is to construct a positive semidefinite matrix Hopt from a 
Cholesky decomposition of the Mueller matrix M,

M C C† (131)

where † indicates conjugate transpose, and C is an upper triangular matrix. If the Cholesky decom-
position of M exists, then M must be positive semidefinite. To preserve the magnitude of Hopt, its 
Cholesky decomposition is normalized by a constant,

H
C C

C Copt Tr

2 †

( )†
(132)

where C is given by

C

h h ih h ih h ih

h h ih h
1 5 6 1 1 1 2 1 5 1 6

2 7 8 130
, , , ,

iih

h h ih

h

1 4

3 9 1 0

4

0 0

0 0 0

,

,

(133)
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To perform the optimization, Hopt (having 16 variable parameters h1 – h16) is formed via Eqs. (132) 
and (133), and the 16 h parameters are varied until the difference metric between Mp and M is mini-
mized. A starting point for the 16 parameters can be selected as Hinit,

Hinit Tr

2 H H

H H

( )

( ( ) )

†

†
(134)

The Cholesky decomposition of Hinit yields the upper triangular matrix Cinit, and the 16 starting values. 
By minimizing the Frobenius distance Fd between Mp and M,

Fd

p

p

M M

M M
(135)

where ||.|| is any appropriate matrix norm. The euclidean norm for Mueller matrix M is

M mi j
ji

,
2

0

3

0

3

(136)

Method 2

The Cholesky decomposition method is computationally intenstive. A more expedient method for 
generating a physical Mp is to find the eigenvalues { 1, 2, 3, 4} and eigenvectors {v1, v2, v3, v4} of H.
Any negative eigenvalues are set to zero. The set of positive definite eigenvalues are formed into a 
diagonal matrix D:

D

1

2

3

4

0 0 0
0 0 0
0 0 0

0 0 0

where i
i i

i

if

if

0

0 0

(137)

and the eigenvectors are formed into a square unitary matrix U,

U

v
v
v
v

1

2

3

4

(138)

A new physically realizable Hp is formed as the product

H U D Up
1 (139)

per the Eigen decomposition theorem.49,50 Finally Mp is derived from Hp via Eq. (130) yielding a 
dramatically faster algorithm. This Mp is not necessarily the closest one to the original nonphysical M.
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15.1 GLOSSARY

A analyzer vector

a analyzer vector element

a semimajor axis of ellipse

A, B, C principal axes for a dielectric tensor

BRDF bidirectional reflectance distribution function

b semiminor axis of ellipse

CM covariance matrix

d liquid crystal cell gap

D diagonal matrix

D diattenuation

DoCP degree of circular polarization

DoLP degree of linear polarization

DoP degree of polarization

E extinction ratio

e ellipticity

EM error metric

I inhomogeneity of a Mueller matrix

I first Stokes element, S0, flux

i, j, k summation indices

k propagation vector

L, L2 condition number of a matrix

LP linear polarizer

M Mueller matrix

M Mueller vector

MMBRDF Mueller matrix bidirectional reflectance distribution function

MR polarimeter’s estimate of the Mueller matrix

MR, MT beamsplitter Mueller matrix in reflection and transmission 

15.1
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MS sample Mueller matrix
m m m00 01 33, , . . . , Mueller matrix elements

n birefringence

n1, n2 refractive indices of a birefringent medium

P flux measurement vector

P polarizance

P flux measurement

PAF polarization aberration function

PSM point spread matrix

QWLR quarter-wave linear retarder

Q, R index limit

Q second Stokes vector element, S1

q index for a sequence of polarization elements

r index for polarimeter variables

S Stokes vector

S' exiting Stokes vector

Sm measured Stokes vector

S0, S1, S2, S3 Stokes vector elements

Sp, Su polarized and unpolarized part of Stokes vector 

SD standard deviation

T transpose, superscript

Tmax maximum intensity transmittance

Tmin minimum intensity transmittance

t time

t thickness

U Jones/Mueller transformation matrix

U third Stokes vector element, S2

U, V unitary matrices

V fourth Stokes vector element, S3

W polarimetric measurement matrix

W 1 polarimetric data-reduction matrix
WP

1 pseudoinverse of W
liquid crystal cell rubbing direction

bistatic angle

, angles of scatter

Mk error in Mueller matrix element

< M> mean

< W> corrections to polarimetric measurement matrix

retardance

eccentricity

dielectric tensor

azimuth of ellipse

Euler angle

orientation angle

i, I angles of incidence
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s, s angles of scatter

1, 2 pretilt at liquid crystal cell input and output

p condition number

wavelength 

k singular values

Euler angle

liquid crystal cell twist angle

phase of a complex number

Euler angle

solid angle, steradians

dot product, matrix multiplication

15.2 OBJECTIVES

The principles of polarization measurements are surveyed in this chapter. One of the primary dif-
ficulties in performing accurate polarization measurements is the systematic errors due to non-
ideal polarization elements. Therefore, the polarimetric measurement and data-reduction process 
is formulated to incorporate arbitrary polarization elements calibrated by measurement of their 
transmitted and analyzed Stokes vectors. Polarimeter optimization is addressed through the mini-
mization of the condition number. First derivatives of the polarimetric measurement matrix pro-
vide an error analysis method. Methods for polarization modulation are compared. The chapter 
concludes with a survey of polarimeter applications including the following sections: “Ellipsometry 
and Generalized Ellipsometry,” “Liquid Crystal Cell and System Testing,” “Polarization Aberrations,” 
“Remote Sensing,” “Polarization Light Scattering,” “Ophthalmic Polarimetry.”

Throughout this chapter, quantities are formulated in terms of the Stokes vector and Mueller 
matrix, as these usually comprise the most appropriate representation of polarization for radio-
metric measurements.

15.3 POLARIMETERS

Polarimeters are optical instruments for measuring the polarization properties of light beams and 
samples. Polarimetry, the science of polarization measurement, is most simply characterized as 
radiometry with polarization elements. Accurate polarimetry requires careful attention to all the 
issues necessary for accurate radiometry, together with many additional polarization issues which 
must be mastered to accurately determine polarization properties from polarimetric measurements. 

Typical applications of polarimeters include the following: remote sensing of the earth and astro-
nomical bodies, calibration of polarization elements, measurements of the thickness and refractive 
indices of thin films (ellipsometry), spectropolarimetric studies of materials, and alignment of 
polarization-critical optical systems such as liquid crystal displays and projectors. Polarimeters are 
divided into several categories.

15.4 LIGHT-MEASURING POLARIMETERS

Light-measuring polarimeters measure the polarization state of a beam of light and its polarization 
characteristics: the Stokes vector, the direction of oscillation of the electric field vector for a linearly 
polarized beam, the helicity of a circularly polarized beam, the elliptical parameters of an elliptically 
polarized beam, and the degree of polarization.
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A light-measuring polarimeter utilizes a set of polarization elements placed in a beam of light in 
front of a radiometer. The light beam is analyzed by this set of polarization state analyzers, and a set 
of flux measurements is acquired. The polarization characteristics of the light beam are determined 
from these measurements by data-reduction algorithms (see “Data Reduction for Light-measuring 
Polarimeters”).

15.5 SAMPLE-MEASURING POLARIMETERS

Sample-measuring polarimeters determine the relationship between the polarization states of 
incident and exiting beams for a sample. The term exiting beam is general and in different measure-
ments might describe beams which are transmitted, reflected, diffracted, scattered, or otherwise 
modified. The term sample is also an inclusive term used in a broad sense to describe a general light-
matter interaction or sequence of such interactions and applies to practically anything.

Measurements are acquired using a set of polarization elements located between a source and 
sample and the exiting beams are analyzed with a separate set of polarization elements between 
the sample and radiometer. Samples of great interest include surfaces, thin films on surfaces, 
polarization elements, optical elements, optical systems, natural scenes, biological samples, and 
industrial samples.

Accurate polarimetric measurements can be made only if the polarization generator and polar-
ization analyzer are well calibrated. To perform accurate polarimetry, the polarization elements 
need not be ideal or of the highest quality. If the Mueller matrices of the polarization components 
are known from careful calibration, the systematic errors due to nonideal polarization elements are 
removed during the data reduction (see “Polarimetric Measurement Equation and Polarimetric 
Data-Reduction Equation”).

15.6 COMPLETE AND INCOMPLETE POLARIMETERS

A light-measuring polarimeter is complete if a Stokes vector can be determined from its measure-
ments. An incomplete light-measuring polarimeter cannot be used to determine a Stokes vector. 
For example, a polarimeter which employs a rotating polarizer in front of a detector does not 
determine the circular polarization content of a beam, and is incomplete. Similarly, a sample-
measuring polarimeter is complete if it is capable of measuring the full Mueller matrix, and 
incomplete otherwise. Complete polarimeters are referred to as Stokes polarimeters or Mueller 
polarimeters.

15.7 POLARIZATION GENERATORS AND ANALYZERS

A polarization generator consists of a light source, optical elements, and polarization elements to 
produce a beam of known polarization state. A polarization generator is specified by the Stokes vec-
tor S of the exiting beam. A polarization analyzer is a configuration of polarization elements, optical 
elements, and a detector which performs a flux measurement of a particular polarization compo-
nent in an incident beam. A polarization analyzer is characterized by a Stokes-like analyzer vector 
A which specifies the incident polarization state which is analyzed, the state which produces the 
maximal response at the detector. Sample-measuring polarimeters require polarization generators 
and polarization analyzers, while light-measuring polarimeters only require polarization analyzers. 
Frequently the terms “polarization generator” and “polarization analyzer” refer just to the polariza-
tion elements in the generator and analyzer. It is important to distinguish between elliptical (and 
circular) generators and elliptical analyzers for a given state because they generally have different 
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polarization characteristics and different Mueller matrices (see “Elliptical and Circular Polarizers 
and Analyzers”).

15.8 CLASSES OF POLARIMETERS

Polarimeters operate by acquiring measurements with a set of polarization analyzers. The following 
sections classify polarimeters by the four broad methods by which these multiple measurements are 
most often acquired. A complete Stokes polarimeter requires a minimum of four flux measurements 
with a set of linearly independent polarization generators in order to set up four equations in four 
unknowns, the four Stokes parameters. Many Stokes polarimeters use more than four flux measure-
ments to improve signal to noise and/or reduce systematic errors.

15.9 TIME-SEQUENTIAL MEASUREMENTS

In a time-sequential polarimeter, the series of flux measurements are taken sequentially in time. 
Between measurements, the polarization generator and analyzer are changed. Time-sequential 
polarimeters frequently employ rotating polarization elements or filter wheels containing a set of 
analyzers. A time-sequential polarimeter generally employs a single source and single detector or 
focal plane.

15.10 POLARIZATION MODULATION

Polarization modulation polarimeters contain a polarization modulator, a rapidly changing polar-
ization element. The output of the analyzer is a rapidly fluctuating irradiance on which polariza-
tion information is encoded. Polarization parameters are determined by lock-in amplifiers or by 
frequency-domain digital signal processing techniques. For example, a rapidly spinning polarizer 
produces a modulated output which allows the flux and the degree of linear polarization to be read 
with a DC voltmeter and an AC voltmeter. The most common high-speed polarization modulator 
in general use is the photoelastic modulator.

15.11 DIVISION OF APERTURE

Division of aperture polarimeters use multiple polarization analyzers operating side by side. The aper-
ture of the polarimeter beam is subdivided. Each beam propagates through a separate polarization 
analyzer to a separate detector. The detectors are usually synchronized to acquire measurements simul-
taneously. This is similar in principle to the polarizing glasses used in three-dimensional movie systems, 
where different analyzers are placed over each eye, sometimes a 45° and a 135° polarizer, sometimes a 
right and left circular analyzer, presenting two different perspective views simultaneously to each eye.

15.12 DIVISION OF AMPLITUDE

Division-of-amplitude polarimeters utilize beam splitters to divide the measured beam and direct 
the component beams to multiple analyzers and detectors. A division-of-amplitude polarimeter 
can acquire its measurements simultaneously, providing advantages for rapidly changing scenes 
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or measurements from moving platforms. Many division-of-amplitude polarimeters use polarizing 
beam splitters to simultaneously divide and analyze the beam. 

15.13 SPECTROPOLARIMETERS

Polarimeters can be combined with monochromators or spectrometers to measure Stokes vec-
tor spectra or Mueller matrix spectra. Because grating monochromators have large diattenuation 
which varies rapidly with wavelength, the monochromator should be configured to use only a 
single polarization. 

15.14 IMAGING POLARIMETERS

When the polarimeter’s detector is a focal plane array, a series of images acquired with different 
analyzers (the raw images) can be reduced to measure a Stokes vector image or a Mueller matrix 
image. 

Imaging polarimeters are particularly susceptible to misalignment of the raw images since polar-
ization properties are determined from the difference between flux measurements. Such misalign-
ment causes polarization artifacts in the image on account of spurious polarization mixed with the 
actual polarization. 

Raw image misalignments occur due to source motion, polarimeter motion, vibration, and beam 
wander from slight wedge in rotating components. Polarization artifacts are largest in areas where 
the image intensity is changing the fastest, around object edges and near point sources. The edges of 
objects are usually where the angles of incidence and angles of scatter are larger. The largest polar-
ization is typically expected around these areas, but due to vibration, image motion, and image mis-
alignment, these are also the areas where the data is most suspect. Other errors result from imperfect 
polarization elements, and detector noise.

When the source flux fluctuates between raw images, a uniform polarization error occurs across 
the entire image. Source fluctuations are a serious problem in outdoor Stokes imagery because sun-
light fluctuates due to cloud motion. 

Many of the polarization images and spectra presented in conferences and publications are inac-
curate. In our polarization laboratory where rigorous polarimeter-operating procedures are in place, 
still about a quarter of our data is discarded as dubious and remeasured. It is recommended that all 
polarization measurements be approached with a degree of skepticism until the measurement system 
and measurement circumstances are clearly understood and appropriate tests and calibrations are 
provided. 

15.15 DEFINITIONS

Analyzer an element whose intensity transmission is proportional to the content of a specific 
polarization state in the incident beam. Analyzers are placed before the detector in polarimeters. 
The polarization state emerging from an analyzer is not necessarily the same as the incident state 
being analyzed.

Birefringence the material property of having two refractive indices associated with one propa-
gation direction. For each propagation direction within a birefringent medium, there are two 
modes of propagation with orthogonal polarization states and with different refractive indices n1
and n2. The birefringence n is |n1 n2|.
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Depolarization any process which couples polarized light into partially polarized light. 
Depolarization is intrinsically associated with scattering and with diattenuation and retardance 
which vary in space, time, and/or wavelength.

Diattenuation the property of an optical element or system whereby the flux of the exiting beam 
depends on the polarization state of the incident beam. The transmitted intensity is a maximum 
Pmax for one incident state, and a minimum Pmin for the orthogonal state. The diattenuation is 
defined as (Pmax Pmin)/(Pmax Pmin ). Polarizers have a diattenuation of one, while ideal retarders 
have a diattenuation of zero. Diattenuation is an essential property of analyzers.

Diattenuator any polarization element which displays diattenuation. Polarizers have a diattenu-
ation very close to one, but nearly all optical interfaces are weak diattenuators. Examples of diat-
tenuators include the following: polarizers and dichroic materials, as well as metal and dielectric 
interfaces with reflection and transmission differences described by Fresnel equations; thin films 
(homogeneous and isotropic); and diffraction gratings.

Eigenpolarization a polarization state transmitted unaltered by a polarization element except 
for a change of amplitude and phase. Every nondepolarizing polarization element has two eigen-
polarizations. Any incident light not in an eigenpolarization state is transmitted in a polarization 
state different from the incident state. Eigenpolarizations are eigenvectors of the corresponding 
Mueller or Jones matrix which correspond to physical polarization states.

Ellipsometry a polarimetric technique which uses the change in the polarization state upon 
reflection or transmission to characterize the complex refractive index of surfaces and interfaces, 
and refractive indices and thicknesses of thin films.1

Fast axis the eigenpolarization of a retarder which exits the device first. For a linear retarder, the 
axis is a line at a particular angle, such as 0  and 180 . For an elliptical or circular retarder, it is the 
corresponding elliptical polarization.

Homogeneous polarization element an element whose eigenpolarizations are orthogonal. Its 
eigenpolarizations are the states of maximum and minimum transmittance and also of maximum 
and minimum optical path length. A homogeneous element is classified as linear, circular, or 
elliptical depending on the form of the eigenpolarizations.

Inhomogeneous polarization element an element whose eigenpolarizations are not orthogonal. 
The diattenuation axis and retardance axis are not aligned. Such an element will also display dif-
ferent polarization characteristics for forward and backward propagating beams. The eigenpolar-
izations are generally not the states of maximum and minimum transmittance. Often inhomoge-
neous elements cannot be simply classified as linear, circular, or elliptical.

Ideal polarizer a polarizer with an intensity transmittance of one for its principal state and zero 
for its orthogonal state.

Linear polarizer a device which, when placed in an incident unpolarized beam, produces a beam 
of light whose electric field vector is oscillating primarily in one plane, with only a small compo-
nent in the perpendicular plane.2

Nonpolarizing element an element which does not change the polarization state of light beams. 
The polarization state of the output light is equal to the polarization state of the incident light. The 
Jones matrix or Mueller matrix of a nonpolarizing element is proportional to the identity matrix.

Partially polarized light light containing an unpolarized component; cannot be extinguished by 
an ideal polarizer.

Polarimeter an optical instrument for the determination of the polarization state of a light 
beam, or the polarization-altering properties of a sample.
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Polarimetry the science of measuring the polarization state of a light beam and the diattenuat-
ing, retarding, and depolarizing properties of materials.

Polarization (1) the polarization state of a light beam; (2) any process which alters the polariza-
tion state of a beam of light, including diattenuation, retardance, depolarization.

Polarization coupling any conversion of light from one polarization state into another state.

Polarized light light in a fixed, elliptically (including linearly or circularly) polarized state. 
Polarized light can be extinguished by an ideal polarizer. For polychromatic polarized light, the 
polarization ellipses associated with each spectral component have identical ellipticity, orienta-
tion, and helicity.

Polarizer a strongly diattenuating optical element designed to transmit light in a specified polar-
ization state independent of the incident polarization state. The transmission of the extinguished 
eigenpolarization is near zero.

Polarization element any optical element used to control the polarization state of light. This 
includes polarizers, retarders, and depolarizers.

Pure diattenuator a diattenuator with zero retardance and no depolarization.

Pure retarder a retarder with zero diattenuation and no depolarization.

Retardance a polarization-dependent phase change associated with a polarization element or 
system. The phase (optical path length) of the output beam depends on the polarization state 
of the input beam. The optical path length (phase) of the transmitted beam is a maximum 
for one eigenpolarization, and a minimum for the other eigenpolarization. Other states show 
polarization coupling. Strictly speaking, retardance is measured in radians, but it may also be 
expressed equivalently as an optical path difference (length) or in fractions of a wavelength 
(unitless).

Retardation plate a retarder constructed from a plane parallel plate or plates of linearly birefrin-
gent material.

Retarder a polarization element designed to produce a specified phase difference between 
the exiting beams for two orthogonal incident polarization states (the eigenpolarizations of 
the element). For example, a quarter-wave linear retarder has as its eigenpolarizations two 
orthogonal linearly polarized states which are transmitted in their incident polarization states 
but with a 90° (quarter wavelength) relative phase difference (optical path length difference) 
introduced.

Slow axis the eigenpolarization of a retarder orthogonal to the fast axis.

Spectropolarimetry the spectroscopic study of the polarization properties of materials. 
Conventional spectroscopy measures the reflectance or transmission of a sample as a function 
of wavelength. Spectropolarimetry also measures the diattenuating, retarding, and depolarizing 
properties as a function of wavelength. Complete characterization of these properties is obtained 
by measuring the Mueller matrix of the sample as a function of wavelength.

Waveplate a retardation plate.

15.16 STOKES VECTORS AND MUELLER MATRICES

Several systematic methods of calculation have been developed for analyzing polarization, including 
those based on the Jones matrix, coherency matrix, and Mueller matrix.3–8 Of these methods, the 
Mueller calculus is most suited for describing irradiance-measuring instruments, including most 
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polarimeters, radiometers, and spectrometers. The Mueller calculus is primarily used in this chapter. 
The properties of the Mueller matrix are described in Chap. 14 “Mueller Matrices.”

In the Mueller calculus, a Stokes vector S describes the polarization state of a light beam, and a 
Mueller matrix M describes the polarization-altering characteristics of a sample. This sample may 
be a surface, a polarization element, an optical system, or some other light/matter interaction which 
produces a reflected, refracted, diffracted, or scattered light beam. Vectors and matrices are repre-
sented with bold characters. 

15.17  PHENOMENOLOGICAL DEFINITION 
OF THE STOKES VECTOR

The Stokes vector S describes the polarization state of a light beam. S is defined relative to the fol-
lowing six flux measurements P performed with ideal polarizers in front of a radiometer.3

PH horizontal linear polarizer (0°)

PV vertical linear polarizer (90°)

P45 45° linear polarizer

P135 135° linear polarizer

PR right circular polarizer

PL left circular polarizer

The Stokes vector is defined as

S

S

S
S
S

P P

V

R

0

1

3

452 135

H V

HP P

P P

P P

I
Q
U
V

L

(1)

where S0, S1, S2, and S3 (or alternatively I, Q, U, and V) are the four Stokes vector elements or Stokes 
parameters. The Stokes vector does not need to be measured by these six ideal measurements; the 
method must reproduce the Stokes vector defined by these measurements. Ideal polarizers are not 
required. Further, the Stokes vector is a function of wavelength, position on the object, and the 
light’s direction of emission or scatter. Thus, a Stokes vector measurement is an average over area, 
solid angle, and wavelength, as is any radiometric measurement. The Stokes vector is defined relative 
to a local x-y coordinate system in the plane perpendicular to the light’s propagation vector, estab-
lished by the polarimeter. The coordinate system is right-handed; the cross-product ˆ ˆx y of the 
basis vectors points in the direction of propagation of the beam.

15.18 POLARIZATION PROPERTIES OF LIGHT BEAMS

From the Stokes vector, the following polarization parameters are defined.6,9 –11

Flux  P  S0 (2)

Degree of polarization DoP
S S S

S
1
2

2
2

3
2

0

(3)
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Degree of linear polarization DoLP
S S

S
1
2

2
2

0

(4)

Degree of circular polarization DoCP
||S

S
3

0

(5)

The Stokes vector for a partially polarized beam (DoP < 1) can be considered as a superposition 
of a completely polarized Stokes vector SP and an unpolarized Stokes vector SU.11

S S SP U

S

S
S
S

S
S S

0

1

2

3

0
1 0DoP

1
/( DoPP)

/( DoP)

/( DoP)

DoP
S S

S S
2 0

3 0

1( )SS0

1
0
0
0

(6)

There is no polarization element which performs this separation into polarized and unpolarized 
light components; a polarizer will always transmit half the unpolarized component. The polarized 
portion of the beam represents a net polarization ellipse traced by the electric field vector as a func-
tion of time as shown in Fig. 1. The polarization ellipse is uniquely described by four parameters. 
One is the phase at t 0, and the other three are selected from the following list: the magnitude of 
the semimajor axis a, semiminor axis b, orientation of the major axis  (azimuth of the ellipse) 
measured counterclockwise from the x axis, and eccentricity, and ellipticity.

Ellipticity e
b
a

S

S S S

3

0 1
2

2
2

(7)

Orientation of major axis, azimuth
1
2

2

1

arctan
S

S
 (8)

Eccentricity 1 2e (9)

The ellipticity is the ratio of the minor to the major axis of the corresponding electric field polar-
ization ellipse, and varies from 0 for linearly polarized light to 1 for circularly polarized light. The 
polarization ellipse is alternatively described by its eccentricity, which is zero for circularly polarized 
light, increases as the polarization ellipse becomes thinner, and is one for linearly polarized light. 
The polarization ellipse strictly refers to the light’s electric field.

1.0 0.5 0.5 1.0

0.4

0.2

0.2

0.4

(a) (b)

FIGURE 1 The tip of the electric field vector rotating as a function of time traces the polarization ellipse (a). The polarization 
ellipse parameters (b).
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15.19 MUELLER MATRICES

The Mueller matrix M for a polarization-altering device is defined as the matrix which transforms 
an incident Stokes vector S into the exiting Stokes vector S',

S M

S
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S
S

m m m
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3

0 0 0 1 0 2, , , mm

m m m m

m m m m

m m

0 3
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3 0 3

,
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2

3m m

S

S
S
S

(10)

The Mueller matrix is a 4 4 matrix with real-valued elements. The Mueller matrix M(k, )
for a device is always a function of the direction of propagation k and wavelength . The Mueller 
matrix is an appropriate formalism for characterizing polarization measurements because it con-
tains within its elements all of the polarization properties (diattenuation, retardance, depolariza-
tion) and their form (linear, circular, elliptical). When the Mueller matrix is known, then the exit-
ing polarization state is known for an arbitrary incident polarization state. Chapter 14, “Mueller 
Matrices” contains tables of Mueller matrices for common polarization elements. Other Mueller 
matrix tables are found in many references including the following: Shurcliff,3 Gerrard and Burch,4

Azzam and Bashara,9 Theocaris and Gdoutos,5 and Goldstein.12 The Mueller Matrix chapter con-
tains a detailed discussion of the polarization properties and methods for calculating these proper-
ties from the Mueller matrix.

The Mueller matrix M associated with a beam path through a sequence (cascade) of polarization 
elements q  1, 2, . . . ,Q is the right-to-left product of the individual matrices Mq,

M MQ Q q q
q Q

. . . . . . M M1 2 1
1

1

,

(11)

15.20  DATA REDUCTION FOR LIGHT-MEASURING 
POLARIMETERS

This section presents a general formulation of the measurement and data-reduction procedure for a 
light-measuring polarimeter. The objective of Stokes polarimetry is to determine the Stokes param-
eters from a series of radiometric measurements. The data reduction is a linear estimation process, 
and lends itself to efficient solution using linear algebra, usually with a least-squares estimator to 
find the best match to the data. Similar developments are found in Thie,13 Azzam,14 and Stenflo.15

Stokes vectors and related polarization parameters for a beam are determined by measuring the 
flux transmitted through a set of polarization analyzers. Each analyzer determines the flux of one 
polarization component in the incident beam. Since a polarization analyzer does not contain ideal 
polarization elements, the analyzer must be calibrated, and the calibration data used in the data 
reduction. The polarizer in an analyzer does not need Tmin to equal zero; it never does, and this leak-
age will be corrected in the data reduction. The measured values are related to the incident Stokes 
vector and the analyzers by the polarimetric measurement equation. A set of linear equations, the 
data-reduction equations, is then solved to determine the Stokes parameters for the beam.

The polarization analyzer consists of the polarization elements used for analyzing the polariza-
tion state, any other optical elements (lenses, mirrors, etc.) following the analyzer, and the pola-
rimeter’s detector. The polarization effects from all elements are included in the measurement and 
data-reduction procedures. A polarization analyzer is characterized by an analyzer vector containing 
four elements, defined analogously to a Stokes vector. Let PH be the flux measurement measured by 
the detector (the current or voltage generated) when one unit of horizontally polarized light is incident. 
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Similarly PV , P45, P135, PR, and PL are the detector’s flux measurements for the corresponding inci-
dent polarized beams with unit flux. Then the analyzer vector A is

A

a

a
a
a

P P

P P

P P

P

H V

H V

R

0

1

2

3

45 135

PL

(12)

Note that in the absence of noise, PH PV P45 P135 PR PL. The response P of the polarization 
analyzer to an arbitrary polarization state S is a dot product 

P a S a S a S a SA S 0 0 1 1 2 2 3 3
(13)

A Stokes vector measurement is a set of measurements acquired with a set of polarization analyz-
ers placed into the beam. Let the total number of analyzers be Q, with each analyzer Aq specified by 
index q  0, 1, . . . , Q  1. We assume the incident Stokes vector is the same for all polarization ana-
lyzers. The qth measurement generates an output Pq Aq S. A polarimetric measurement matrix W
is defined as a Q  4 matrix with the qth row containing the analyzer vector Aq,

W

a a a a

a a a a

aQ

0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3
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, , , ,

, , , ,

,00 1 1 1 2 1 3a a aQ Q Q, , ,

(14)

The Q measured fluxes are arranged in a measurement vector P { , , . . . , }P P PQ0 1 1
T . P is related to S

by the polarimetric measurement equation

P W S
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(15)

During calibration of the polarimeter, the objective is the accurate determination of W.
To calculate the Stokes vector from the data, the inverse of W is determined and applied to the 

measured data. The measured value for the incident Stokes vector Sm is related to the data by the 
polarimetric data-reduction matrix W 1,

W P1
m (16)

This is the polarimetric measurement equation. Three considerations in the solution of this equation 
are the existence, rank, and uniqueness of the matrix inverse W 1.

The simplest case is when four measurements are performed. If Q  4 and if four linearly inde-
pendent analyzer vectors are used, then W is of rank four, and W 1 exists, is unique and nonsingular. 
Data reduction is performed by Eq. (16); the polarimeter measures all four elements of the incident 
Stokes vector.

When Q > 4, W is not square and W 1 is not unique; multiple W 1 exist. Sm is overdetermined; 
there are more equations than unknowns. In the absence of noise, the different W 1 all yield the 
same Sm. Because noise is always present, the optimum W 1 is desired. The least squares estimate for 
Sm utilizes a particular matrix inverse, the pseudoinverse WP

1 of W,

WP
1 (WT W) 1 WT (17)
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The optimal estimate of S is

S WP
T T1 1P ( ) (18)

When W is of rank three or less, the polarimeter is incomplete. The optimal matrix inverse is the 
pseudoinverse, but only three or fewer properties of the Stokes vector elements are determined; the 
projection of the Stokes vector onto three or fewer directions is measured. If these directions align 
with the Stokes basis vectors, then these Stokes vector elements are measured, but in general, linear 
combinations of elements are measured.

15.21  SAMPLE-MEASURING POLARIMETERS 
FOR MEASURING MUELLER MATRIX ELEMENTS

This section contains a general formulation of Mueller matrix measurement which is an extension 
of the Stokes vector method of the preceding section. The Mueller matrix is always a function of 
wavelength, angle of incidence, and location on the sample. These are assumed fixed here for sim-
plicity; this method can be generalized to these more general cases. Figure 2 is a block diagram of a 
sample-measuring polarimeter. The polarization state generator (PSG) prepares polarization states 
incident on a sample. The light beam exiting the sample is analyzed by the polarization state ana-
lyzer (PSA), and the flux at the detector measured.

The objective is to determine several or all of the sample’s Mueller matrix M elements through 
a sequence q  0, 1 , . . . , Q 1 of polarimetric measurements. The polarization generator prepares a 
set of polarization states with a sequence of Stokes vectors Sq. The Stokes vectors exiting the sample 
are q. These exiting states are analyzed by the qth polarization state analyzer Aq, yielding the qth
measured flux Pq q

T
qS . Each measured flux is assumed to be a linear function of the sample’s 

Mueller matrix elements (nonlinear optical interactions such as frequency doubling are not treated 
by the present formulation). A set of linear equations is developed from the set of polarimetric mea-
surements to solve for the Mueller matrix elements.

For example, consider a measurement taken with horizontal linear polarizers as the generator 
and the analyzer. As Eq. (11) shows, the measured flux only depends on the Mueller matrix elements 
m0,0, m0,1, m1,0, and m1,1,

P
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(19)

FIGURE 2 A sample-measuring polarimeter consists of a source, polarization 
state generator (PSG), the sample, a polarization state analyzer (PSA), and the detector. 
(See also color insert.)
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As another example, the four Mueller matrix elements m0,0, m0,1, m1,0, and m1,1 can be measured 
using four measurements with ideal horizontal (H) and vertical (V) linear polarizers. Four measure-
ments P0, P1, P2, and P3 are taken with (generator/analyzer) settings of (H/H), (V/H), (H/V), and 
(V/V), determining the following combinations of Mueller matrix elements,

P m m m P m m m0 0 0 0 1 1 0 1 1 1 0 0 0 1 14( )/ (, , , , , , ,m 00 1 1

2 0 0 0 1 1 0 1 1 3 0

4

4

m

P m m m m P m

,

, , , , ,

)

( ) (

/

/ 00 0 1 1 0 1 1 4m m m, , , )/

(20)

These four equations are solved for the Mueller matrix elements as 
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Other Mueller matrix elements are determined using different combinations of generator 
and analyzer states. The four matrix elements at the corners of a rectangle in the Mueller matrix 
{m0,0, m0,i, mj,0, mj,i} can be determined from four measurements using a ± i-generator and ± j-analyzer. 
For example, a pair of right and left circularly polarizing generators and a pair of 45° and 135° ori-
ented analyzers determine elements m0,0, m0,3, m2,0, m2,3.

In practice, the data-reduction equations are far more complex than these examples because 
many more measurements are involved with nonideal polarization elements. The following section 
contains a systematic method for calculation of data-reduction equations based on calibration data 
for the generator and analyzer.

15.22  POLARIMETRIC MEASUREMENT EQUATION 
AND POLARIMETRIC DATA-REDUCTION 
EQUATION

This section develops data-reduction equations to calculate Mueller matrices from arbitrary 
sequences of measurements. The algorithm uses either ideal or calibrated values for the polarization 
generator and analyzer vectors. The data-reduction equations are straightforward matrix-vector 
multiplication on a data vector. This method is an extension of the data-reduction methods pre-
sented in “Data Reduction for Light-Measuring Polarimeters”.

A Mueller matrix polarimeter takes Q measurements identified by index q  0, 1 , . . . , Q 1. For 
the qth measurement, the generator produces a beam with Stokes vector Sq and the beam exiting 
the sample is analyzed by analyzer vector Aq. The measured flux Pq is related to the sample Mueller 
matrix by
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This equation is rewritten as a vector-vector dot product.16,17 First, the Mueller matrix is flattened into 
a 16 1 Mueller vector M (m0,0, m0,1, m0,2, m0,3, m1,0, . . . , m3,3,)

T. A 16  1 polarimetric measurement 
vector Wq for the qth measurement is defined as follows: 

Wq q q q q qw w w w w( , , , , . . . ., , , , , , , , , ,0 0 0 1 0 2 0 3 1 0, .. . )
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(23)

where wq,j,k aq,j sq,k. The qth measured flux is the dot product
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The full sequence of Q measurements is described by the Q 16 polarimetric measurement matrix 
W, where the qth row is Wq. The polarimetric measurement equation relates the measurement vector 
P to the sample Mueller vector as
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If W contains 16 linearly independent rows, all 16 elements of the Mueller matrix can be deter-
mined. When Q  16, the matrix inverse is unique and the Mueller matrix elements are determined 
from the polarimetric data-reduction equation

M W 1 (26)

Often, Q >16, and M is overdetermined. The optimal (least-squares) polarimetric data-reduction 
equation for M uses the pseudoinverse WP

1 of W,

M W P( )T T
P

1 1 (27)

The advantages of this procedure are as follows: First, this procedure does not assume that the 
set of states of polarization state generator and analyzer have any particular form. For example, the 
polarization elements in the generator and analyzer do not need to be rotated in uniform angular 
increments, but can comprise an arbitrary sequence. Second, the polarization elements are not 
assumed to be ideal polarization elements or have any particular imperfections. If the polarization 
generator and analyzer vectors are determined through a calibration procedure, the effects of non-
ideal polarization elements are corrected in the data reduction. Third, the procedure readily treats 
overdetermined measurement sequences (more than 16 measurements for the full Mueller matrix), 
providing a least-squares solution. Finally, a matrix-vector form of data reduction is readily imple-
mented and easily understood.
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15.23 DUAL ROTATING RETARDER POLARIMETER

The dual rotating retarder Mueller matrix polarimeter shown in Fig. 318 is one of the most common 
Mueller polarimeters. Light from the source passes first through a fixed linear polarizer, then through 
a rotating linear retarder, the sample, a rotating linear retarder, and finally through a fixed linear polar-
izer. In the most common configuration, the polarizers are parallel, and the retarders are rotated in 
angular increments of five-to-one. This five-to-one ratio encodes all 16 Mueller matrix elements onto 
the amplitudes and phases of 12 distinct frequencies in the detected signal. This configuration was first 
described by Azzam16 who provides an explanation of how the ratios one-to-one, two-to-one, three-
to-one, and four-to-one all yield incomplete polarimeters. Thus five-to-one is the first integer ratio 
yielding a complete Mueller matrix polarimeter. The data reduction can be performed using the pola-
rimetric data-reduction matrix method of the preceding section, or alternatively the detected signal 
can be Fourier analyzed, and the Mueller matrix elements calculated from the Fourier coefficients.19

This polarimeter configuration has several design advantages. Since the polarizers do not move, 
the polarizer in the generator accepts only one polarization state from the source optics, making the 
measurement immune to source polarization and polarization aberrations from optics prior to 
the polarizer. If the polarizer did rotate, and if the beam incident on it were elliptically polarized, a 
systematic modulation of intensity would be introduced which would require compensation in the 
data reduction. Similarly, the polarizer in the analyzer does not rotate; only one polarization state is 
transmitted through the analyzing optics and onto the detector. Any diattenuation in the analyzing 
optics and any polarization sensitivity in the detector will not affect the measurements.

Optimal values for the retardances are near 2 /3 rad ( /3 waveplates).19 If 1 2  rad (half-
wave linear retarders), only linear states are generated and analyzed, and the last row and column of 
the sample Mueller matrix are not measured. 

Hauge and Broch20,21 developed an algorithm to compensate for the linear diattenuation and linear 
retardance of the retarders. Goldstein and Chipman22 treat five errors, the retardances of the two retard-
ers, and orientation errors of the two retarders and one of the polarizers, in a small angle approximation 
good for small errors. Chenault, Pezzaniti, and Chipman23 extended this method to larger errors.

15.24  INCOMPLETE SAMPLE-MEASURING 
POLARIMETERS

Incomplete sample-measuring polarimeters do not measure the full Mueller matrix of a sample and 
thus provide incomplete information regarding the polarization properties of a sample. Often the 
full Mueller matrix is not needed. For example, many birefringent samples have considerable linear 
retardance and insignificant amounts of other polarization forms. The magnitude of the retardance 
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FIGURE 3 The dual rotating retarder polarimeter consists of a source, a fixed linear 
polarizer, a retarder which rotates in steps, the sample, a second retarder which rotates 
in steps, a fixed linear polarizer, and the detector. (See also color insert.) (After Ref. 18.)
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can be measured, assuming all the other polarization effects are small, using much simpler configu-
rations than a Mueller matrix polarimeter, such as the circular polariscope.5 Similarly, homogeneous 
and isotropic interfaces, such as dielectrics, metals, and thin films, should only display linear diat-
tenuation and linear retardance aligned with the s-p planes. These interfaces do not need character-
ization of their circular diattenuation and circular retardance. So most ellipsometers characterize the 
diattenuation and retardance associated with s and p without providing the full Mueller matrix.1,6,9

15.25 NONIDEAL POLARIZATION ELEMENTS

Polarization elements used in polarimetry require a level of characterization beyond what is nor-
mally provided by vendors at the time of this writing. For retarders, vendors usually only specify 
the linear retardance. For polarizers, usually only the two principal transmittances or the extinction 
ratio is given. For polarization critical applications, this is inadequate. In the following sections, 
common defects of polarization elements are described. The Mueller calculus is recommended as an 
appropriate means of describing complex behaviors and shortcomings.

For ideal polarization elements, the polarization properties are readily defined. For real polariza-
tion elements, the precise description is more complex. Polarization elements such as polarizers, 
retarders, and depolarizers have three general polarization properties: diattenuation, retardance, 
and depolarization; a typical element displays some amount of all three. Diattenuation occurs when 
the intensity transmittance is a function of the incident polarization state.24 The diattenuation D is
defined in terms of the maximum Tmax and minimum Tmin intensity transmittances, as

D
T T

T T
max min

max min

(28)

For an ideal polarizer, D  1. When D  0, all incident polarization states are transmitted with equal atten-
uation. The quality of a polarizer is often expressed in terms of the related quantity, the extinction ratio E,
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Retardance is the phase difference a device introduces between its eigenpolarizations (eigen-
states). For a birefringent retarder with refractive indices n1 and n2 and thickness t, the retardance 
expressed in radians is

2 1 2| |n n t
(30)

Depolarization describes the coupling by a device of incident polarized light into depolarized 
light in the exiting beam. Depolarization occurs when light transmits through milk or scatters from 
clouds. Multimode optical fibers generally depolarize the light. Depolarization is intrinsically associ-
ated with scattering and a loss of coherence of the polarization state. A small amount of depolariza-
tion is associated with the scattered light from all optical components. The depolarization varies as a 
function of the incident polarization state.25

15.26  ELLIPTICAL AND CIRCULAR POLARIZERS 
AND ANALYZERS

There are few good and convenient circularly or elliptically polarizing mechanisms, whereas lin-
ear polarizers are simple, inexpensive, and of high quality. Therefore, most circular and elliptical 
polarizers incorporate linear polarizers to perform the polarizing, and retarders to convert between 
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polarization states. For such compound devices, the distinction between a polarizer and an analyzer is 
significant. This is illustrated by three examples: (1) a left circular polarizer (and horizontal linear 
analyzer) constructed from a horizontal linear polarizer LP(0°) followed by a quarter-wave linear 
retarder with the fast axis oriented at 135°, QWLR(135°) Eq. (31), (2) a left circular analyzer (and 
horizontal linear polarizer) constructed from a QWLR(45°) followed by a horizontal linear polar-
izer LP(0°) Eq. (32), and (3) a homogeneous left circular polarizer (and left circular analyzer) con-
structed from a QWLR(135°), then an LP(0°), followed by a QWLR(45°) Eq. (33). The three Mueller 
matrix equations and the exiting polarization states for arbitrary incident states are as follows:
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The device in Eq. (31) transmits only left circularly polarized light, because the S0 and S3 have equal 
magnitude and opposite sign; thus it is a left circular polarizer. However, the transmitted flux (S0 S1)/2 
is the flux of horizontal linearly polarized light in the incident beam, making it a horizontal linear 
analyzer. 

Similarly, the transmitted flux in Eq. (32), (S0 S3)/2, is the flux of incident left circularly polar-
ized light, making this combination a left circular analyzer. The final polarizer makes the Eq. (32) 
device a horizontal linear polarizer, although this is not the standard Mueller matrix for horizontal 
linear polarizers found in tables. Thus an analyzer for a state does not necessarily transmit that state; 
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its transmitted flux is proportional to the amount of the analyzed state in the incident beam. The 
examples in Eqs. (31) and (32) are inhomogeneous polarization elements because the eigenpolariza-
tions are not orthogonal. Equation (31) has left circular and vertically polarized eigenpolarizations. 
Equation (32) has horizontal and right circularly polarized eigenpolarizations. The characteristics of 
both devices are different for propagation in opposite directions.

The Eq. (33) device is both a left circular polarizer and a left circular analyzer; it has the same 
characteristics for propagation in opposite directions. The eigenpolarizations are orthogonal, left 
and right circularly polarized, so this device is a homogeneous left circular polarizer. This is the left 
circular polarizer Mueller matrix commonly found in tables; however, it is not the most common 
implementation.

15.27  COMMON DEFECTS OF POLARIZATION 
ELEMENTS

Here we list some common defects found in real polarization elements.

1. Polarizers have nonideal diattenuation since Tmin > 0 and also nonideal transmission since 
Tmax <1.2,25,26

2. Retarders have the incorrect retardance. Thus, there will be some deviation from a quarter-wave 
or a half-wave of retardance, for example, because of fabrication errors or a change in wave-
length or temperature.

3. Retarders usually have some diattenuation. This may occur due to differences in the absorption 
coefficients (dichroism). Birefringent retarders have diattenuation due to the difference of the 
Fresnel coefficients at normal incidence for the two eigenpolarizations since n1 n2. This can be 
reduced by antireflection coatings.

4. Polarizers usually have some retardance; there is an optical path length difference between the 
transmitted (principal) eigenpolarization and the small amount leaked of the secondary eigen-
polarization. For example, sheet polarizers and wire-grid polarizers show substantial retardance 
when the secondary state is not completely extinguished.

5. The polarization properties vary with angle of incidence; for example, Glan-Thompson polar-
izers polarize over only a 4° field of view.2 Birefringent retarders commonly show a quadratic 
variation of retardance with angle of incidence; the retardance increases along one axis and 
decreases along the orthogonal axis.27,28 For polarizing beam-splitter cubes, the axis of the 
transmitted linear polarization rotates when the light is incident from outside of the normal 
plane (the plane of the face normals and the beam-splitting interface normal).

6. The polarization properties vary with wavelength; for simple retarders made from a single bire-
fringent plate, the retardance varies approximately as 1/wavelength. Other components have 
more complex dependence.

7. For polarizers, the analyzed state and the transmitted state can be different. Consider a polarizing 
device formed from a linear polarizer oriented at 0° followed by a linear polarizer oriented at 2°. 
Incident light linearly polarized at 0° has the highest transmittance for all possible polarization 
states and is the analyzed state. The exiting beam is linearly polarized at 2°, the only state exiting 
the device. The transmitted state is an eigenpolarization; the analyzed state isn’t. This rotation
between the analyzed and transmitted states of a polarizer frequently occurs, for example, when 
the crystal axes of a birefringent polarizing prism assembly, such as a Glan-Thompson polarizer, 
are misaligned.

8. A nominally “linear” element may be slightly elliptical (have elliptical eigenpolarizations). For 
example, a crystal quartz linear retarder waveplate with the optical crystal axis not quite paral-
lel with the surface becomes an elliptical retarder due to quartz’s optical activity. A compound 
waveplate with two or more birefringent crystals whose fast axes are not exactly 0  or 90
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apart is a retarder with slightly elliptical eigeonplarizations. Similarly a circular element may 
be slightly elliptical. For example, an inhomogeneous circular polarizer formed from a linear 
polarizer followed by a quarter-wave linear retarder at 45° [see Eq. (31)] becomes an elliptical 
polarizer as the retarder’s fast axis is rotated or as the retardance changes with wavelength.

9. The eigenpolarizations of a polarization element may not be orthogonal; that is, a polarizer 
may transmit linearly polarized light at 0° without change of polarization while extinguish-
ing linearly polarized light oriented at 88°. Such a polarization element is referred to as 
inhomogeneous.3,29 Sequences of polarization elements, such as optical isolator assemblies, often 
are inhomogeneous. The circular polarizer in Eq. (31) is inhomogeneous.

10. A polarization element may depolarize, coupling polarized light into an unpolarized compo-
nent. A polarizer or retarder with a small amount of depolarization, when illuminated by a com-
pletely polarized beam, will have a small amount of unpolarized light in the transmitted beam. 
Such a transmitted beam can no longer be extinguished by an ideal polarizer. Depolarization 
results from fabrication errors such as surface roughness, bulk scattering, random strains and 
dislocations, and thin-film microstructure. Pinholes in a polarizer allow unpolarized light into 
the transmitted beam.

11. Multiply reflected beams and other “secondary” beams may be present with undesired polariza-
tion properties. For example, the multiply reflected beams inside a birefringent waveplate have 
various retardances. Antireflection coatings will reduce this effect in one waveband, but may 
increase these problems with multiple reflections in other wavebands.

The preceding list is by no means comprehensive but should serve as a warning to those with 
demanding polarization element applications. In particular, the performance of polarizing beam-
splitting cubes and of liquid crystal cells have been found to be far from ideal.30

15.28  POLARIZATION MODULATORS, RETARDANCE 
MODULATORS

Time-sequential polarimeters require rapid variation of the polarization state in a controlled man-
ner. This section reviews the principal polarization modulation technologies. Several varieties of 
retardance modulators are in widespread use. The only common diattenuation modulator is the 
spinning polarizer.

Variable retarders generally have either a fixed retardance with variable axis (i.e., motor driven 
rotating waveplate), or a variable retardance with a fixed axis (i.e., liquid crystal retarder, electro-
optical modulator, or photoelastic modulator).

In a retardance modulator, at least one of the two (often degenerate or equal) modes’ refractive 
indices change. If polarized light is launched into the mode with varying refractive index, a phase mod-
ulator results. For polarization modulation, the incident state must be in a combination of the modes, 
usually equally distributed between the two modes. An amplitude (intensity) modulator is produced 
by placing an additional polarizer after a polarization modulator, oriented between the two modes.

15.29 ROTATING RETARDERS

Retarders with fast axes rotated by rotary stages are the gold standard for accurate polarimetry. 
Crystal and polymer retarders are fabricated to high accuracy and uniformity. Rotary stages can 
locate the fast axis angle to one arc second or better. Alternatively retarders can be continuously 
rotated, usually using DC brushless motors, with high uniformity and repeatability. Smith19 dis-
cusses the optimization of rotating retarder Mueller matrix polarimeters.

The disadvantages of rotating retarders are the size of the motors, their cost, and the relatively 
low rotation speeds (less than 1000 revolutions per second).
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15.30 PHOTO-ELASTIC MODULATORS

Photo-elastic modulators (PEMs) use oscillating stress birefringence in a resonant crystal driven by 
a sound wave. An isotropic optical material such as glass becomes birefringent when compressed 
along one axis.31,32 This is stress-induced birefringence, or the photoelastic effect. A variable retarder 
can be constructed by compressing glass, but a large amount of power is needed to slowly modulate 
stress-induced birefringence. PEMs use a mechanically resonant bar with a high mechanical quality 
factor Q of 103 to 104. A piezoelectric transducer (PZT) is coupled to the glass or fused silica bar, and 
a standing sound wave that oscillates at the bar’s fundamental frequency is induced, causing a rapid 
sinusoidal modulation of the birefringence. This reduces power requirement for a quarter wave or 
half wave of retardance to less than 0.5 W.33 The positive and negative parts of the sine correspond 
to retardance fast axes 90° apart. 

PEMs have been in use for over 25 years as a method of polarization modulation in a variety 
of research and industrial applications. The principal supplier of PEMs is Hinds Instruments 
(Hillsboro, Oregon). The benefits of PEMs include low operating voltages, large apertures, and wide 
angular acceptance.34,35 Because PEMs are constructed from glass, fused silica, and other transpar-
ent materials, transmittance over a wide spectral range is straightforward. Polarimetric sensitivities 
(i.e., precision) of about 3 parts in 106 have been obtained for solar astronomy applications.36,37,38

A single PEM oscillating between 0° and 90° fast axes in front of a polarizer can measure S0, S2,
and S3, but not S1. Complete Stokes vector measurement requires two PEMs, optimally 45  apart. 
Complete Mueller matrix measurement requires two PEMs in the generator with axes nominally 45
apart and two PEMs in the analyzer nominally 45  apart. Another common configuration measures 
S0, S1, and S2 but not S3 by placing a PEM between two quarter-wave linear retarders whose axes are 
at 45  to the PEM axis. When linearly polarized light is incident, linearly polarized light exits with 
a rapidly modulated orientation. This retarder/PEM/retarder assembly operates as a circular retar-
dance modulator.

Typical PEM frequencies are in the tens of kHz for glass elements several centimeters in size. 
Smaller elements have higher frequencies and larger elements lower frequencies. The instantaneous 
retardance is spatially nonuniform, varying as a half period cosine across the aperture, thus varying 
quadratically about the center of the aperture. 

PEMs which modulate at frequencies suitable for interfacing with cameras are impracticably 
large, so PEMs are used almost exclusively with single channel detectors acquiring hundreds of 
thousands of measurements per second.

Because of the PEM’s high Q and extremely stable frequency operation, they excel at the mea-
surement of low birefringence in glass, such as for glass for liquid crystal (LC) cells.39,40,41

15.31 LIQUID CRYSTAL RETARDERS

Two types of liquid crystal cells for polarization modulation are in widespread use: untwisted nem-
atic cells and ferroelectric cells.

Untwisted nematic liquid crystal cells, Fredericksz cells, are available as polarization modula-
tors. These liquid crystal variable retarders (LCVRs) are electrically tunable waveplates with retar-
dance in the range of zero to several waves. The Fredericksz cell configuration is different from the 
twisted nematic configuration typically used in liquid crystal displays. There are four components 
(Fig. 4): two glass plates which form a cavity, indium tin oxide transparent electrodes coating on 
the outside of the plates, a polyimide layer on the inside of each plate which acts to align the liquid 
crystal molecules parallel to the plates, and a high birefringence liquid crystal material sandwiched 
between the plates. When no voltage is applied, the liquid crystal molecules’ directions are aligned 
in one direction parallel to the plates and the retardance is at a maximum. When a voltage differ-
ential is applied between the plates, an electric field is induced which supplies a torque to the liquid 
crystal molecules, increasing the angle of the molecules with respect to the plates; the retardance is 
decreased, as shown in Fig. 5. When the majority of the molecules are nearly perpendicular to the 
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plates, retardance is at a minimum. The molecules near the plates are unable to fully rotate, and so 
the retardance doesn’t quite get to zero.

If a DC electric field is applied continuously, impurity ions in the liquid crystal material migrate 
toward the plates and may damage the liquid crystal structure. Once at the plates, the ions create a 
permanent electric field which reduces the dynamic range of the device. To avoid this problem an 
alternating square wave voltage at approximately 1 kHz is applied. 

Retardance is a nonlinear function of applied voltage, and the relationship is highly variable from 
device to device, so that individual calibration of each device is required. Although optical quality 
and surface figure are generally very good, spatial uniformity is often poor due to the difficulty of 
obtaining an even distribution of the liquid crystal material between the plates. Transmission of LC 
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FIGURE 4 Liquid crystal cell composition and liquid crystal orientation as a function of 
applied voltage, varying from maximum retardance (left) to minimum (right).

FIGURE 5 Typical retardance vs. voltage curve for a liquid crystal variable 
retarder.
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cells without polarizers is fairly high (typically 80 to 90 percent), but can vary with applied voltage. 
Temperature dependence is typically 0.5 percent per °C, a significant issue. The variation of retar-
dance with angle of incidence is large, typically 2° to 4° of retardance per degree angle of incidence! 
Also the liquid crystal material scatters, causing some depolarization.

Switching time in LCVRs is highly variable, depending on cell thickness, liquid crystal viscosity, 
temperature, and applied voltage. Switching time is asymmetric: when voltage and thus electric field 
is increased, the torque applied to the molecules determines the response time, but when voltage is 
decreased a slower mechanical restoring force bringing the molecules to equilibrium determines 
response time. LCVR switching time is measured by placing the LC cell between two polarizers with 
its axis at 45°, sending light through the assembly onto a photodiode, then modulating the cell from 
low to high voltage amplitude with a sinusoidal or square wave. The detected signal is observed with 
an oscilloscope while sweeping the signal frequency. The onset of hysteresis indicates the switching 
time. LCVR switching times are typically on the order of 5 to 100 ms. Vendor specifications are often 
misleading and should be independently tested. 

LCVRs exhibit significant nonuniformity in polarization parameters across the clear aperture, 
with 5 percent typical. Retardance variation has many causes: cell thickness variations, temperature 
nonuniformity, variation of surface charge on the electrodes, and nonuniform squeezing when 
charge is applied. The depolarization index is usually significant, typically between 1 and 10 percent. 
Depolarization has several causes: bulk scattering, the glass spacer balls, and a small high-frequency 
oscillation of the LC molecules in response to the kHz square wave drive voltage. The large variation 
in uniformity and depolarization index observed among individual lots of LCVRs results from the 
handmade quality of most cells (Refs. 42 and 43, Chap. 7).

Fredericksz cells are small and inexpensive relative to the other retardance modulators: rotating 
retarders, electro-optical modulators, PEMs, and magneto-optical modulators. Thus LCVRs appear to 
be the ideal modulators for most applications. But they have many difficult and nonideal characteristics. 
Thus they are relegated to mainly qualitative applications, such as intensity modulation or low-
accuracy polarization state control. It is likely that more polarimeter development projects based on 
LC cells have failed, than those using any other polarization modulation technology. Significant time 
and resources are necessary to develop accurate LC-based polarimetry.

15.32 ELECTRO-OPTICAL MODULATORS 

Electro-optic modulators use the electric field across the modulating material to induce retardance. 
The two principal mechanisms are the Pockels effect and the Kerr effect. The electric field is gener-
ally produced by placing the crystal within a capacitor. The electro-optic effects are relatively weak 
so the modulator crystal aperture is generally small, the path length long, and the associated volt-
ages large, hundreds or thousands of volts. Modulation speeds can be very high, in the hundreds of 
megahertz, or when operating in waveguides, modulation can be produced in the tens of gigahertz. 
Lithium niobate, potassium dihydrogen phosphate (KDP), and ammonium dihydrogen phosphate 
(ADP) are common electro-optic modulator materials.

15.33 MAGNETO-OPTICAL MODULATORS

Circular retardance modulators using the magneto-optical effect are produced by placing a high 
Verdet coefficient material, such as yttrium iron garnet, in a solenoid and varying the magnetic field. 
Large apertures are easily achieved. High currents are required and switching times are fairly slow. 

Magneto-optic materials are primarily used in Faraday isolators, which allow light to pass in one 
direction and block the counter-propagating light. The corresponding magneto-optical modulators 
have not been widely commercialized.
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15.34 FIBER SQUEEZERS

For fiber optic polarimetry, fiber squeezers are a fast, economical, widely deployed retardance 
modulator.44,45 When a fiber is squeezed mechanically, retardance is introduced both because the 
core becomes elliptical and due to the stress-optic effect. Retardance is linearly proportional to the 
force applied. Piezoelectric transducers can modulate fiber squeezer polarization at rates up to 30 KHz 
with low insertion loss. 

The polarization state through long fibers, such as fiber communication links between cities, 
tends to drift as a function of time, quickly if the fibers are moved. One important application of 
fiber squeezers is to maintain the exiting polarization in a fixed state.

General Photonics (Chino, California) is a leading supplier of fiber squeezers and associated 
polarimeters, polarization mode dispersion controllers, depolarizers, and other fiber squeezer-based 
devices.

15.35 POLARIMETER DESIGN METRICS

Several methods have been developed for evaluating the suitability of a polarimeter configuration 
for Stokes or Mueller matrix measurement. Such methods are needed to select the sets of genera-
tors and analyzer states, determine optimum values for retarders and rotation angles, and obtain a 
deeper understanding of how the polarization parameters will be measured by a particular polarim-
eter. The following development closely follows Twietmeyer43 and Twietmeyer and Chipman.46

The rank and null space of the polarimetric measurement matrix W identifies a polarimeter as 
complete or incomplete. The rank of W should be four for a complete Stokes polarimeter and 16 
for a complete Mueller matrix polarimeter. Any polarization state which lies partially or wholly in 
the null space of W cannot be measured. A complete polarimeter has no null space. When M has 
components in the null space, the data reduction returns a nearby reconstruction in the range 
of W.

Each row of W forms one basis vector in the reconstruction of M, that is, the measured intensity 
at each polarimeter state is the projection of M onto the corresponding basis vector. For an effective 
reconstruction, there should be minimum correlation between basis vectors; they should be linearly 
independent, widely distributed, and well balanced in magnitude. For an overspecified system with 
Q  16, the basis vectors provide redundant coverage of the polarization space, improving perfor-
mance in the presence of noise. Basis states may be chosen to lie more densely in directions where 
most information about M is desired. For example, polarimeters to measure stress birefringence are 
most interested in linear retardance, so the basis states can be selected to improve the signal to noise 
on those parameters at the expense of diattenuation and depolarization accuracy.

For a general purpose polarimeter which measures a wide variety of arbitrary M, the polarimet-
ric measurement matrix should be as far from singular as possible; it should be well conditioned.
Various linear algebra metrics quantify this distance from singular. The most widely used is p, the 
condition number based on the Lp norm of the matrix W, defined as47
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and where x is a vector, D(W) is the domain of W, and sup is the supremum (limiting maximum value). 
Minimization of the condition number of W is a standard optimization method for polarimeters. 
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Four different condition number definitions are in general use: the L1 condition number (p  1) 
based on the maximum absolute column sum; the L  condition number (p ) based on the maxi-
mum absolute row sum; the L2 condition number (p  2) based on the euclidean length of the rows 
of W; and the frobenius norm (applicable where W is square and invertible) based on the deter-
minant of W. Though the various condition numbers differ for a given matrix, they are similarly 
bounded,47 and so provide equivalent utility. In polarimetry the L2 condition number is preferred. 
The range of the L2 condition number varies from 1 (perfect conditioning, the identity matrix) to 
infinity (singular matrices).

Further insight into the conditioning of W is obtained from its singular value decomposition 
(SVD) which was introduced to polarimeter design by Tyo48 and Sabatke et al.49 The SVD factors 
any N K matrix W as 
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where U and V are N N and K K unitary matrices, and D is an N K diagonal matrix. The 
diagonal elements k are the singular values. The rank of W is the number of nonzero singular 
values. Those columns of U associated with nonzero singular values form an orthonormal basis 
for the range of W; those columns of V associated with zero-valued singular values form an 
orthonormal basis for the null space of W. The columns of V associated with nonzero singular 
values form an orthonormal basis which spans the full vector space of W and thus reconstructs 
M. Each singular value gives the relative strength of the corresponding vector in this basis set, 
and the columns of U form a mapping from the V basis set back to the original basis set of W.
Further, since 
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the rows of U corresponding to zero-valued singular values describe sets of flux measurements 
which are not generated by any Mueller matrix, so their presence in a polarimetric measurement 
can only be due to noise. Based on this interpretation, any basis vector in V which is associated 
with a relatively small singular value is near the null space and likely has little information con-
tent; such small singular values predominantly amplify noise into the reconstruction of M. Error 
sources which produce projections (flux vectors) which are similar to the flux vectors generated 
by the basis vectors in V (particularly those which correspond to large singular values) will couple 
strongly into the reconstruction of M. The L2 condition number is equal to the ratio of the largest 
to smallest singular values,50 and thus minimizing the condition number is equivalent to equaliz-
ing, to the extent possible, the range of singular values so that the basis vectors have wide distribu-
tion and similar weight. 

For a four measurement Stokes polarimeter, the Stokes vectors representing each of the four ana-
lyzer states, when plotted on the Poincaré sphere, define a tetrahedron which is generally irregular. 
The volume of the tetrahedron is proportional to the determinant of W, and is maximized when the 
vertices form a regular tetrahedron. In this case the maximum distance from a vertex to any point 
on the sphere is minimized, and the condition number is also at a minimum. 
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15.36  SINGULAR VALUE DECOMPOSITION 
EXAMPLES

Two examples of the application of the condition number to Mueller matrix polarimeters follow: 
the first is an example of an optimum polarimeter, the second is nearly singular. Consider a Mueller 
matrix polarimeter which uses four generator states V1, V2, V3, V4, located at the vertices of a regular 
tetrahedron on the Poincaré sphere, with associated Stokes vectors
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The analyzer states are also chosen as V1, V2, V3, V4. Sixteen measurements are acquired at each of 
the combinations of generator and analyzer. This polarimeter is one member of the set of 16-mea-
surement Mueller matrix polarimeters with minimum condition number, so it can be considered an 
optimum configuration. The corresponding 16 singular values are 
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and the condition number, equal to the quotient of the first and last singular values, is 3. Each of 
the 16 columns of U represents a different orthogonal component used to reconstruct a measured 
Mueller matrix. In the presence of white noise, the Mueller matrix component corresponding to the 
first column will be measured with the highest signal to noise, about 3 times better than the next 
six components (columns) from U, and about three times better than the last nine Mueller matrix 
components. 

As an example of a polarimeter with a nearly singular polarimetric measurement matrix, the sec-
ond row of W, (generate V1, analyze V2),

{ . , . , . , , . , . , . ,1 333 943 1 333 9430 0 0 0 0 00 0 0 0 0 0 0 0 0 0, , , , , , , , } (40)

will be replaced with a vector

{ , . , . , , . , . , . , , ,1 1 5 1 1 50 0 000 0 0 0 0 000 0 0 0 0 0 0 0 0 0, , , , , , } (41)

nearly equal to the first row of W,

{ , , , , , , , , , , , , , ,1 1 1 10 0 0 0 0 0 0 0 0 0 00 0, } (42)

so that these two rows are nearly linearly dependent. Examining the resulting singular values,

{4.0557, 2.7273, 2.3094, 2.3094, 2.3094, 2.3094, 2.0221, 1.4988, 1.3333, (43)
1.3333, 1.3333, 1.3333, 1.3333, 1.3333, 1.3333, 0.0004}

the last singular value is close to zero and the condition number is about 10,000. Whenever the mea-
sured flux contains the pattern corresponding to the last row of VT, this component will be ampli-
fied by about 10,000 during the data reduction relative to the other 15 components of the Mueller 
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matrix and will usually dominate the measurement. In the presence of random noise, the measured 
Mueller matrix will be close to the 16th column of U (partitioned into a 4  4 “Mueller matrix”), 
and so the measurement will be inaccurate.

In summary, components corresponding to very small singular values are greatly amplified in 
the matrix inverse and can overwhelm the remainder of the Mueller matrix in the polarimetric data 
reduction.

15.37 POLARIMETER ERROR ANALYSIS

When operating a polarimeter, W is not known exactly and may have changed since calibration. 
For example, a rotating retarder may have inconsistent orientation, rays may take different paths 
through the polarimeter for different samples, or the spectral distribution of the measured light may 
vary. Measurement error is present due to detector noise and source fluctuation. Eqs. (18) and (27) 
may be modified to include these effects as follows:

( )W W M P PM (44)

where W is an N  16 matrix representing the difference between the actual and calibrated W, P
is an N  1 vector representing intensity measurement error, and PM is the N  1 vector of fluxes 
measured in the presence of error. MR, the polarimeter’s estimate of M, is then calculated using the 
calibration data as
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where M is the difference between the measured MR and the actual M. There are two error terms in 
M, one dependent on W and M, and the other on P.

Small errors may be described by a first-order Taylor expansion. The error for the jth component 
of the ith polarimeter state, having R variables xr which may be subject to error (such as a retardance 
magnitude), each with nominal value r, and error magnitude r, is
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The error in the fluxes P is assumed independent of the polarimeter elements, and is given by

Pi i
(47)

where i is the error in the ith intensity measurement. The error in reconstructing each of the 
k  1, . . . ,16 elements of M in terms of the errors in the instrument and detection process is then
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The mean (expectation) and standard deviation (SD) of the error [< M> and SD( M)] may be estimated 
when the polarimeter state variables and the statistics of the error sources are approximately known. 

The error due to a known systematic (nonzero mean error) source may be compensated by 
estimating W (e.g., using ideal Mueller matrices to model the polarimeter) and then forming a 
new polarimetric measurement matrix Wq W  < W>. For example, when using a liquid crystal 
retarder with a known profile of retardance magnitude as a function of temperature, a new Wq may 
be recalculated at every use given the ambient temperature. 

A covariance matrix can optimize a polarimeter in the presence of known error. This method 
has been applied to random measurement noise in Stokes polarimetry by Sabatke et al.49 and 
Twietmeyer,46 and to random instrument noise in Stokes polarimetry by Tyo.48 The covariance 
matrix is a symmetric matrix which describes the correlation between random variables which have 
been centered about their means.  For Mueller matrix polarimetry, the elements of the 16  16 cova-
riance matrix, CM, are 

CM, , , , ,j k j k j kM M M M j k 1 16 (49)

One useful error metric (EM) is the sum of the diagonal elements,

EM CM,ii
i

(50)

EM is a function of the polarimeter configuration, the number of states, the Mueller matrix of the 
sample, and the statistical properties of the error sources. Minimization of EM with respect to a pola-
rimeter variable may be used to compute the variable’s optimal value in the presence of known error. 

15.38  THE MUELLER MATRIX FOR POLARIZATION 
COMPONENT CHARACTERIZATION

The Mueller matrix provides detailed characterization of a polarization element.3,9 Using Mueller 
matrix functions, all of the previous performance defects and more can be specified. Thus, when 
using polarization elements in critical applications such as polarimetry, knowledge of its Mueller 
matrix is desirable. This is analogous to having the interferogram of a lens to ensure that it is of suit-
able quality for incorporation into a critical imaging system.

15.39  RETRO-REFLECTION TESTING AND 
CORRECTION FOR SUPPLEMENTAL OPTICS

Some reflective optical components are tested near normal incidence, such as corner cube retro 
reflectors, liquid crystal on silicon panels (LCOS), and other reflective spatial light modulators. 
Retro-reflection testing requires the insertion of a low polarization, ideally nonpolarizing, beam 
splitter in front of the sample, as shown in Fig. 6. The polarimeter measures the Mueller matrix of 
everything between the generator and the analyzer. This is the polarization critical region, where any 
significant polarization from beam splitters, mirrors, lenses, and the like, needs to be characterized 
and accounted for in data reduction.

In Fig. 6, a portion of the beam from the polarization state generator reflects from a nonpolar-
izing beam splitter and is normally incident on the sample; the remainder is removed in a beam 
dump. The light reflected from the sample divides at the beam splitter and the transmitted portion 
continues through the polarization analyzer to the focal plane. The focal plane acquires a series of 
raw images of the sample, and from the set of raw images the Mueller matrix image of all the optics 
in the polarization critical region is calculated pixel by pixel. 
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To obtain the Mueller matrix image of the sample, contributions from the reflection off the 
nonpolarizing beam splitter and transmission through the nonpolarizing beam splitter must be cali-
brated and removed. The ideal nonpolarizing beam splitter should have no polarization, its retar-
dance and diattenuation should be zero; the Mueller matrix would be the identity matrix for both 
reflection and transmission. In practice, commercially available nonpolarizing beam splitters always 
have some diattenuation and retardance. 

The sample Mueller matrix MS is determined from the measured Mueller matrix, Mmeasured, where 
MT is the beam splitter in transmission and MR is the beam splitter in reflection, 

M Mmeasured T S R (51)

MT and MR are measured during sample compartment calibration at each wavelength. MS is determined as

M M M MS T R( ) ( )1 1
measured

(52)

The compensation must be cautiously applied, with all instrumental variables such as collimation, 
vignetting, stray light, and angle of incidence carefully considered.

The same method is applicable to lenses, mirrors, and other supplemental optics used to manip-
ulate the beams through the sample compartment. Once the Mueller matrices for the optics before 
M1 and after M2 are calibrated, their matrix inverses can be applied during data reduction,

M M M MS ( ) ( )2
1

1
1

measured (53)

15.40 APPLICATIONS OF POLARIMETRY

Polarimetry and ellipsometry have found application in nearly all areas of science and technology 
with several tens of thousands of papers detailing various applications. The following summarizes 
a few of the principal applications and introduces some of the books, reference works, and review 
papers which provide gateways into the subject.

FIGURE 6 Imaging polarimeter configured for retro reflection testing 
using a nonpolarizing beam splitter and beam dump. (See also color insert.)
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15.41  ELLIPSOMETRY AND GENERALIZED 
ELLIPSOMETRY

Ellipsometry is the application of polarimetry to the determination of the optical properties of 
surfaces and interfaces. Example applications are refractive index and thin-film thickness measure-
ment, and investigations of processes at surfaces such as contamination and corrosion. Chapter 16, 
“Ellipsometry,” by Rasheed M. A. Azzam treats ellipsometry fundamentals. A more extensive treat-
ment is found in the textbook by Azzam and Bashara.6,9 SPIE Milestone Series by Azzam51 is a col-
lection of historical papers. Calculation of the polarization properties of thin films is presented in 
the chapter by Dobrowolski,52 and also in the text by Macleod.53

Ellipsometry is a well-established technique for determining optical properties such as refractive 
indices, absorption coefficients, and film thicknesses of material samples by measuring polarization 
changes that occur on reflection and refraction.6 In ellipsometer systems, the measurement configu-
ration is varied, and the polarization change measured. Configuration changes include illumination 
angle, wavelength, and sample orientation. A forward calculation based on a model, such as the 
thin-film reflectance or transmission equations, has its free parameters optimized to provide the 
best fit to the data.

The recent development of generalized ellipsometry or biaxial ellipsometry uses measure-
ments of the complete Jones matrix or Mueller matrix to determine the optical properties of more 
general anisotropic structures such as birefringent crystals and polarizing films.54–68 Generalized 
ellipsometry measures the optical constants of materials such as anisotropic films, and multilayer 
stacks of anisotropic films, birefringent crystals, and polarizing materials. With the widespread 
adoption of biaxial multilayer films in liquid crystal projectors for control of retardance as a 
function of field of view and wavelength, accurate characterization of anisotropic materials has 
become more important. The need for such types of ellipsometric instruments has increased with 
the rapid evolution of liquid crystal displays, new materials and fabrication techniques, and nano-
structured materials.

The optical constants of anisotropic materials are conveniently expressed in the form of the 
dielectric tensor . For nonoptically active, non-magneto-optic materials with aligned retardance 
and diattenuation, the dielectric tensor is symmetric and can be expressed as a rotated diagonal 
matrix of the form
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where nx i x, ny i y, and nz i z are the complex refractive indices along the principal axes, and 
R is a rotation matrix through Euler angles , , and  with respect to the laboratory coordinates as 
represented in Fig. 7.69

Characterizing such an anisotropic multilayer thin film requires measuring up to 10 param-
eters for each layer, 9 that specify the dielectric tensor and 1 for thickness. Multiple measurements 
must be acquired which span a suitably large range of incident and azimuthal (about the surface 
normal) angles so that each optical constant to be determined has a distinct effect on the measure-
ments. Changes to the optical constants need to cause distinct changes to the ellipsometric dataset. 
Each dielectric tensor and thickness parameter must significantly change the polarization within 
the range of illumination angles, so that ellipsometric data points are not a linear combination of 
previous measurements. By simultaneously measuring a large range of both incident and azimuthal 
angles, the components of the dielectric tensor can be determined from a single Mueller matrix 
image.68 Figures 8 and 9 show Mueller matrix imaging polarimeters with converging beams oper-
ating in reflection and transmission for generalized ellipsometry. Figure 10 is an example Mueller 
matrix image of an LC projector biaxial field correcting film.
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FIGURE 7 Example of a biaxial index ellipsoid with prin-
cipal axes oriented at an arbitrary orientation along orthogonal 
vectors A, B, and C.
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FIGURE 8 Mueller matrix imaging polarimeter configured for reflection generalized ellipsometry with 
the inclusion of two microscope objectives in the sample compartment. The microscope objective’s exit pupil is 
imaged onto the CCD so that each pixel receives light which reflected at a different angle of incidence and azimuth.
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FIGURE 9 This Mueller matrix imaging polarimeter configured for transmission-generalized ellipsom-
etry uses two microscope objectives to obtain polarization change as a function of angle of incidence.
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Biaxial materials have tensor components that vary with direction and can only be fully character-
ized if measurements are performed while both the incident and the azimuthal (about the normal) 
angle of the illuminating light varies with respect to the sample. Dielectric tensor information can 
also be obtained by measuring at multiple wavelengths and fitting a parameterized dispersion rela-
tionship based on a physical model of the dielectric tensor.66,70

Several methods for calculating the reflection and transmission properties for arbitrary anisotro-
pic multilayer structures have been developed, including the Berremann calculus and related meth-
ods derived by Yeh, Mansuripur, and Schubert.71–74

15.42 LIQUID CRYSTAL CELL AND SYSTEM TESTING

Liquid crystal (LC) displays of all types are polarization critical optical systems, where the 
systems are readily put out of specifications by misalignment of polarization elements, poor 
polarization element quality, stress birefringence, depolarization and scattering, LC cell defects, 
and a myriad of other issues. Such displays include laptop displays, computer monitors, confer-
ence room projectors, direct view and projection televisions, and the myriad of small displays 
in watches, calculators, cell phones, and the like. Mueller matrix polarimetry and imaging pola-
rimetry are important methods to provide detailed diagnostics of LCs and the associated optical 
systems. 

Polarization measurements made on liquid crystal (LC) cells are particularly useful for deter-
mining the key physical parameters of the cell, namely the cell gap, rubbing direction, twist 
angle, and pretilt angles of the LC as shown in Fig. 11. The cell gap is the thickness of the LC 
layer between the two glass plates. The rubbing direction describes the azimuth angle (orienta-
tion angle) of the LC director at the top glass surface, and the twist angle describes the change 
in orientation angle of the LC director through the thickness of the cell, such that the orienta-
tion angle at the bottom glass is the top-glass rubbing direction plus the twist angle. The pretilt 

FIGURE 10 Angle of incidence Mueller matrix image of a 
field widening film for liquid crystal projector systems. The retar-
dance is engineered to vary opposite to the LC, greatly increasing 
the field of view before artifacts, such as color shifts, occur in the 
display. The film’s optical properties, such as thickness and refrac-
tive indices, can be reverse engineered from such measurements by 
generalized ellipsometry.
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angles describe the polar angle (tilt angle) of the LC directors at the glass plate interfaces. By 
adjusting these parameters, LC panel manufactures can tune their design for the desired response 
time, color properties, and useable field-of-view. By making polarization measurements of the 
cell at a variety of incident angles and/or wavelength, and applying curve-fitting techniques, 
these key parameters can be measured, such as by the AxoScan Mueller matrix polarimeter from 
Axometrics, Inc. (Huntsville, Alabama).

LCs operate as electrically addressable variable retarders. With the inclusion of polarizers and 
color filters, pixilated LC arrays (LC panels) serve as color image generators. Several performance 
specifications of an LC system are critical. The contrast ratio is the ratio of the on-screen illumi-
nance in the white state to the intensity in the dark state. A high contrast ratio depends on the dark 
state intensity being nearly zero, which requires that all polarization properties are nearly ideal so 
the beam is well extinguished at the final polarizer. The efficiency of the system is the ratio of the 
output intensity to the source intensity in the white state. Spatial uniformity characterizes the varia-
tions in brightness of the dark and bright states across the aperture.

The contrast ratio and efficiency of the LC projector are a function of the polarization proper-
ties of the components in the light valve: the polarizer, beam splitter, LC, and analyzer, as well as the 
étendue, color balancing, and many other factors. Determination of the polarization properties of 
each component allows for modeling of system performance, and, in the case of poor system perfor-
mance, diagnosing which elements are the source of the problem.

The Mueller matrix is especially useful for characterization of LC display system components 
because sequences of elements behave as the product of their Mueller matrices. Thus the Mueller 
matrix of an LC panel can be combined with the matrices for beam splitters, dichroic filters, and 
other components to understand their polarization interactions and tolerance of combinations of 
optical elements. 

Polarization testing of LCs provides important information augmenting radiometric testing. 
Polarization testing of LC panels requires illuminating the panels with a variety of incident polariza-
tion states and measuring the corresponding output polarization states. These additional states are 
not normally used during LC system operation so their usage for testing appears extraneous until 
the diagnostic value of retardance and depolarization maps is realized; these parameters directly 
determine performance properties of the LCs. Radiometric testing measures the LC performance, 
treating the LC as a black box. Imaging polarimetry quantifies desired and undesired polariza-
tion properties enabling better diagnosis of LC problems, problems more difficult to isolate using 

FIGURE 11 Parameters describing a twisted nematic liquid crystal cell 
can be measured by multiangle Mueller matrix polarimetry.
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radiometric testing alone. Table 1 and Table 2 summarize the relationship of these polarization 
properties with several LC performance defects. In Table 1, LC system defects are paired with the 
related polarization properties which can cause the defect. Many display problems are the direct 
result of nonideal polarization properties. Table 2 lists some nonideal LC polarization properties 
and the associated effects.

Depolarization adversely affects LC system performance in different ways than incorrect retardance 
or retardance nonuniformity. With depolarization, a fraction of the exiting light can be treated as unpo-
larized light [Eq. (6)]; this is the depolarized component. Fifty percent of the depolarized light will pass 
through the analyzer and 50 percent will be blocked, so the fraction of leaked light is, at minimum,

Leakage
1

2
DoP

(55)

In the dark state, the leaked depolarized light increases the dark state intensity, and if significant, 
has a severe effect on the contrast ratio. In the white state half of the depolarized light is blocked by 
the analyzer decreasing the white state brightness, a less critical problem than dark state leakage. For 
high contrast, the LC panel must have very low levels of depolarization. 

Scattering is a common cause of depolarization in liquid crystals. Liquid crystal depolarization also 
arises from spatial averaging; micron-scale retardance variations cause adjacent parts of the beam to 
emerge with different polarization states which average at the polarimeter resulting in a depolarized 
component in the measurement. An imaging polarimeter measures the average retardance within each 
of its pixels and any subpixel retardance variations are measured as depolarization. Temperature varia-
tions, electric field variations, edge effects in pixels, and disclinations in the LC all cause depolarization.

In any polarimeter measurement, small values of depolarization need to be critically evaluated to 
ensure the depolarization is due to the device under test and is not due to noise or calibration error 
within the polarimeter. All polarimeter measurements have some depolarization noise or bias. 

TABLE 2 Polarization Defects and Resulting Onscreen Effects

Polarization Property On-Screen Effect

Retardance spatial nonuniformity  Spatial variation of brightness, color, 
or contrast

Nonzero dark state retardance  Reduced contrast and color saturation

Incorrect retardance orientation Reduced brightness and contrast
or magnitude

Spectral variation of retardance   Wavelength-dependant contrast and 
brightness

Depolarization Reduced contrast and brightness

TABLE 1 Performance Specification Issues Related to Polarization Causes 
and LC Defects

Defect Possible Polarization Causes

Low contrast Depolarization
Incorrect trim retarder
Misalignment of liquid crystal, trim retarder, or PBS

Low brightness Incorrect retardance
Oxidized reflector
High levels of depolarization

Poor uniformity Spatial variation in retardance magnitude
Spatial variation of retardance orientation
Temperature-induced retardance variations
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Typical twisted nematic LC cells cannot be driven to zero retardance, suffering some residual 
retardance due to thin boundary layers of liquid crystal along the alignment layers as shown in Fig. 3. 
This residual retardance is usually compensated by placing an additional “trim retarder” over the LC 
panel.75 The trim retarder introduces retardance equal in magnitude to the LC’s single pass retar-
dance with the retardance axis rotated 90°.75 Such a retarder combines with the LC retardance yield-
ing a retardance of zero. 

While a trim retarder can be used to reduce the effect of dark state retardance, depolarization cannot 
be compensated; it must be reduced to acceptable levels during LC device development and fabrication. 

15.43 POLARIZATION ABERRATIONS

Polarimetry is useful in optical metrology for measuring the polarization aberrations of optical 
systems and for characterizing optical and polarization components. Optical systems modify the 
polarization state of light due to reflections, refractions, and other interactions. Lenses and mirrors 
have polarization properties described by the Fresnel equations and associated multilayer thin-film 
equations. For many optical systems, such as camera lenses and Cassegrain telescopes, these polar-
ization aberrations are small, but not necessarily negligible. Other optical systems, with large angles 
of incidence, diffraction gratings, beam splitters, or other significantly polarizing components, have 
significant and often troublesome polarization aberrations.

Each ray path through the optical system can be characterized by its polarization matrix. 
Polarization ray–tracing is the technique of calculating the polarization matrices for ray paths 
through optical systems.24,76–79 Diffraction image formation of polarization-aberrated beams is then 
handled by vector extensions to diffraction theory.80–85 Polarimeters, particularly imaging polarim-
eters, can measure the Mueller matrices of ray paths through optical systems determining the polar-
ization aberrations. These polarization aberrations frequently have similar functional forms to the 
geometrical aberrations, since they arise from similar geometrical considerations of surface shape 
and angle of incidence variation.85–92

Optical system polarization aberrations can be measured by placing the system in the sample 
compartment of a Mueller matrix imaging polarimeter. Usually the exit pupil is imaged, giving the 
polarization aberration function (PAF) a Mueller matrix as a function of pupil coordinates. Then 
maps are generated of linear diattenuation, linear retardance, and other metrics. Figure 12 shows 
the diattenuation and retardance polarization aberrations measured through a pair of 0.55 numeri-
cal aperture microscope objectives; collimated light enters the pupil of the first objective, focuses 
at the focal point of the second objective, and is recollimated, like Fig. 9 without the sample. The 
lengths of the lines in the images correspond to the magnitude of the diattenuation and retardance. 

FIGURE 12 The polarization aberrations transmitting through a pair of microscope objec-
tives is represented by these linear diattenuation and linear retardance pupil maps.



15.36  POLARIZED LIGHT

The microscope objective pair has up to 5.4° of spatially varying retardance and 0.1 of spatially 
varying diattenuation. When placed between crossed linear polarizers, this pair of objectives will 
leak about 0.15 percent of the incident flux, averaged over the pupil. 

When significant polarization aberrations are present, an optical system illuminated with a uni-
form polarization state will have polarization variations within the point spread function. To charac-
terize these variations and the dependence of the point spread function on the incident polarization 
state, a Mueller matrix imaging polarimeter focusses on the image of a point object and measures the 
point spread matrix (PSM) as a Mueller matrix image. Measured PSM with large polarization aberra-
tion is shown in Fig. 13. A vortex retarder was placed in the pupil of an imaging system with a large f/# 
image on a camera focal plane, and a Mueller matrix image acquired. This vortex retarder is half-wave 
linear retarder whose fast axis varies as a function of pupil angle.93 The pupil image on the left side 
shows the retardance orientation varying by 360° around the pupil. The right side contains the PSM.
When the Stokes vector of the incident light is multiplied by the PSM, the resulting Stokes vector func-
tion describes the flux (point spread function) and polarization state variations within the image as a 
Stokes vector image. Figure 14 shows the point spread function for a fixed incident polarization state 
and several analyzers, demonstrating the polarization variations within the point spread function. 

FIGURE 13 The orientation of the fast axis of the half wave vortex retarder rotates by 360° around the 
pupil (a). The Point spread matrix describes the polarization dependence of the point spread function as a 
Mueller matrix image (b).

FIGURE 14 The measured point spread function of the vortex retarder completely changes with 
the analyzed polarization state: (a) no analyzer; (b) horizontal linear analyzer; and (c) vertical linear 
analyzer. Horizontal linearly polarized light is input.
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Figure 15 shows another polarization aberration measurement example.94 The lens coatings 
became damaged by heat and began flaking off. The resulting Mueller matrix pupil image shows a 
few tenths of a percent depolarization in the damaged area. The undamaged area has a depolariza-
tion of only a few hundredths of a percent, more typical of coated lenses.

15.44 REMOTE SENSING

Polarimetry is an important remote sensing technique which complements spectroscopic or hyper-
spectral imaging. The sunlight which illuminates the earth is essentially unpolarized, but the scat-
tered light has a surprisingly large degree of polarization, which is mostly linear polarization.7,94–97

Visible light scattered from forest canopy, cropland, meadows, and similar features frequently 
has a degree of polarization of 20 percent or greater in the visible range.98,99 Light reflecting from 
mudflats and water can have a degree of polarization greater than 50 percent, particularly for light 
incident near Brewster’s angle. The magnitude of the degree of linear polarization depends on many 
variables, including the angle of incidence, the angle of scatter, the wavelength, and the weather. The 
polarization from a site varies from day to day even if the angles of incidence and scatter remain the 
same; these variations are caused by changes in the earth’s vegetation, cloud cover, humidity, rain, 
and standing water. Polarization is complex to interpret but it conveys useful information.

Light scattered from dense white clouds is nearly unpolarized due to multiple scattering.7,96 Scattering 
from thin aerosols is partially polarized. Hyperspectral imaging combined with Mie scattering theory 
can determine the mean particle size and the imaginary part of the refractive index of an aerosol. 
Adding multiangle polarimetric data at visible and shortwave infrared wavelengths provides additional 
information on the real part of the aerosol refractive index, nr, and particle size variances, with greater 
sensitivity than intensity measurements alone. This has been demonstrated with the airborne research 
scanning polarimeter (RSP),100,101 through theoretical sensitivity studies,102 and with the space-borne 
Polarization and Directionality of Earth’s Reflectances (POLDER) instrument.103 POLDER spatial 
resolution is 6 to 7 km, with degree of linear polarization (DoLP) uncertainty of ~2 percent.104  

FIGURE 15 Depolarization index of lens with coating 
damage on the right center causing about 0.005 depolarization.
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The Aerosol Polarimeter Sensor (APS) instrument for NASA’s Glory mission, using similar design con-
cepts as the airborne RSP, will provide very accurate multi-anglepolarimetric measurements (linear polar-
ization uncertainty ~0.2 percent), but in a coarse resolution (6 to 20 km) due to nonimaging operation.105

Many factors affect the accuracy of imaging polarimeters.106 Polarization aberrations of the optics 
(instrumental polarization) is addressed through accurate calibration and removal of systematic 
errors. Many remote sensing polarimeters use different analyzers over different detectors whose sig-
nals are then subtracted to measure polarization, and are thus susceptible to gain variations and pixel 
sensitivity drift. Ongoing detector cross-calibration is desirable. Spatial displacements on the ground 
between the locations where different polarization orientations are measured gives rise to polarization 
artifacts, also known as false polarization. Spatial misregistration between the measurements compris-
ing a polarization measurement is particularly problematic in the presence of scene gradients. 

15.45 POLARIZATION LIGHT SCATTERING

Polarization light scattering is the application of polarimetry to scattered light.107,108 The scattering 
characteristics of a sample are generally described by its bidirectional reflectance distribution func-
tion, BRDF ( i, i, s, s, ), depicted in Fig. 16, which is the ratio of the scattered flux in a particular 
direction ( s, s) to the flux of an incident beam from direction ( i, i),109

BRDF( , , , ),
( , )

( ,i i s s
s s s

i i

dL

dE ii)
(56)

FIGURE 16 The BRDF angle nomenclature: The incident light has an angle of 
incidence i and azimuth angle i and subtends solid angle i. The scattered light has 
an angle of scatter s and azimuth angle s and subtends solid angle s.
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This standard BRDF definition makes no reference to the incident or scattered polarization 
state so the BRDF function contains no polarization information. The BRDF can be generalized to 
a Mueller matrix bidirectional reflectance distribution function, or MMBRDF( i, i, s, s, ), the
Mueller matrix relating incident and scattered beams in arbitrary directions,25

MMBRDF( , , , )

( , , , ),

i i s s

i i s sm0 0 m

m

i i s s

i i s

0 3

3 0

,

,

( , , , )

( , , , ss i i s sm) ( , , , ),3 3

(57)

Then the BRDF function is the m0,0 element of the MMBRDF( i, i, s, s, ). 
Scattered light is a sensitive indicator of surface conditions; a small amount of surface roughness 

may reduce the specular power by less than a percent while increasing the scattered power by orders 
of magnitude. The retardance, diattenuation, and depolarization of the scattered light similarly pro-
vide sensitive indicators of light scattering conditions, such as uniformity of refractive index, orien-
tation of surface defects, texture, strain and birefringence at an interface, subsurface damage, coating 
microstructure, and the degree of multiple scattering. Figure 17 depicts a polarimeter configured for 
polarization scattered light measurements.

Frequently the last 15 MMBRDF elements are normalized (divided) by the m0,0 element which 
simplifies the interpretation of polarization properties associated with scattering by adjusting these 
elements to a 1 to 1 scale.

Figure 18 shows two examples MMBRDF from DeBoo.25 Concrete is nearly lambertian and the 
m1,1 element (labeled m0,0 elsewhere in this chapter) varies little with angle. The gold-coated diffuser 
has a more distinct specular peak at  0, and becomes more diattenuating and depolarizing as 
varies away from zero.

15.46 OPHTHALMIC POLARIMETRY

The human visual system is polarization insensitive; an observer cannot discern between unpolar-
ized light and polarized light of various states. The structures of the eye are, however, diattenuating, 
retarding, and depolarizing.

FIGURE 17 Mueller matrix imaging polarimeter for in-plane MMBRDF
measurements, with bistatic angle  between the polarization generator arm and 
analyzer arm.
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FIGURE 18 (a) In-plane Mueller matrix BRDF for scattering from concrete measured at 
808 nm as a normalized Mueller matrix spectrum. In this figure, the Mueller matrix index runs 
from 1 to 4. The m2,4, m4,2, m3,4, and m4,3 elements are nearly zero indicating the absence of linear 
retardance. The positive m1,2 and m2,1 elements indicate diattenuation in the s-p orientations such 
that s has the larger diffuse reflectance. (b) The same for a gold-coated diffuser. The m3,4, and m4,3
elements are nonzero indicating linear retardance between the s-p components.
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The eye’s strongest polarization effects are found in the cornea, retinal nerve fiber layer, and 
Henle’s layer. These anisotropic structures contain long thin parallel-oriented cylinders (such as col-
lagen fibrils or microtubules), uniformly distributed within the surrounding medium, with dimen-
sions smaller than the wavelength of visible light. Wiener110 demonstrated in his theory of mixed 
dielectrics that due to the small difference in refractive index between cylinders and medium, this 
type of structure has different refractive indices for light polarized parallel and perpendicular to the 
cylinder axes, an effect termed form birefringence. The retardance increases linearly with propagation 
distance.111 Hemenger deduced that these structures also have greater absorption for light oscillating 
parallel to the cylinders (similar to a wire grid polarizer), so that diattenuation increases with propa-
gation distance, an effect termed form dichroism.112 Other models have described diattenuation and 
retardance with structured ocular tissues.113,114

The interaction of polarized light with retinal tissue has been actively explored to detect subtle 
changes in the tissue microstructure. A healthy retina has an ordered microstructure.115 The more 
ordered a structure, the larger the diattenuation and retardance should be. As these cellular struc-
tures become disordered in certain disease states, the diattenuation and retardance are expected to 
decrease and the depolarization to increase. 

Direct measurements of retinal polarization have been performed using a variety of techniques. 
Van Blokland116 was the first to obtain a complete Mueller matrix with a single pixel and demonstrated 
significant retinal depolarization. Imaging methods include camera-based retinal polarimeters,117–119

scanning laser polarimetery methods, and polarization-sensitive optical coherence tomography. 
Retinal images are assembled through appropriate reconstruction of the detector signal.120–122

A retinal polarimeter, the GDx Nerve Fiber Analyzer (Carl Zeiss Meditec, Dublin California) 
has been commercially available since the late 1990s and is FDA approved for the measurement of 
retinal nerve fiber layer thickness and its thinning for the purpose of diagnosing the progression 
of glaucoma. The GDx is a scanning laser ophthalmoscope measuring linear retardance only, an 
incomplete polarimeter. The linear retardance is used to estimate the thickness of the retinal nerve 
fiber layer, which aids in diagnosis and monitoring of glaucoma.123–125 As an incomplete polarimeter, 
the GDx is increasingly inaccurate as depolarization and diattenuation increase.118

Elsner, Burns, and their coworkers have demonstrated the utility of depolarization images to pro-
vide higher contrast for deep tissue scattering abnormalities that occur in age-related macular degener-
ation, central serous chorioretinopathy, and other maculopathies. These abnormalities include drusen, 
pools of fluid, pigmentation changes, and abnormal vasculature. Lara and Dainty126 have reported a 
complete retinal polarimeter incorporating multiple polarizing beam splitters and detectors.

Polarization-sensitive optical coherence tomography (OCT) generates three-dimensional retinal 
polarization images.127–129 The OCT repeatedly scans with different polarization states illuminating 
the sample. De Boer has measured the birefringence distribution through the retina and demonstrated 
that the birefringence of the nerve fiber layer is not uniform.  The polarization of the reference beam 
must be closely matched at the detector for useful fringe visibility. Thus polarization OCT is limited in 
the measurement of depolarization since multiply scattered incoherent light is rejected in OCT.
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16.1 GLOSSARY

A instrument matrix

D film thickness period

d film thickness

E electrical field

E0 constant complex vector

f() function

I interface scattering matrix

k extinction coefficient

L layer scattering matrix

N complex refractive index n jk

n real part of the complex refractive index

R reflection coefficient

r reflection coefficient

Sij scattering matrix elements

s, p subscripts for polarization components

X exp( )j d D2 /

ellipsometric angle

dielectric function

psuedo dielectric function

Rp/Rs tan  exp ( j ) i/ r

angle of incidence

i Eis/Eip

r Ers/Erp

ellipsometric angle
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16.2 INTRODUCTION

Ellipsometry is a nonperturbing optical technique that uses the change in the state of polarization 
of light upon reflection for the in-situ and real-time characterization of surfaces, interfaces, and 
thin films. In this chapter we provide a brief account of this subject with an emphasis on modeling 
and instrumentation. For extensive coverage, including applications, the reader is referred to several 
monographs,1–4 handbook,5 collected reprints,6 conference proceedings,7–15 and general and topical 
reviews.16–32

In ellipsometry, a collimated beam of monochromatic or quasi-monochromatic light, which 
is polarized in a known state, is incident on a sample surface under examination, and the state of 
polarization of the reflected light is analyzed. From the incident and reflected states of polarization, 
ratios of complex reflection coefficients of the surface for the incident orthogonal linear polarizations 
parallel and perpendicular to the plane of incidence are determined. These ratios are subsequently 
related to the structural and optical properties of the ambient-sample interface region by invoking an 
appropriate model and the electromagnetic theory of reflection. Finally, model parameters of interest 
are determined by solving the resulting inverse problem.

In ellipsometry, one of the two copropagating orthogonally polarized waves can be considered 
to act as a reference for the other. Inasmuch as the state of polarization of light is determined by 
the superposition of the orthogonal components of the electric field vector, an ellipsometer may be 
thought of as a common-path polarization interferometer. And because ellipsometry involves only 
relative amplitude and relative phase measurements, it is highly accurate. Furthermore, its sensitivity 
to minute changes in the interface region, such as the formation of a submonolayer of atoms or mol-
ecules, has qualified ellipsometry for many applications in surface science and thin-film technologies.

In a typical scheme, Fig. 1, the incident light is linearly polarized at a known but arbitrary azi-
muth and the reflected light is elliptically polarized. Measurement of the ellipse of polarization of 
the reflected light accounts for the name ellipsometry, which was first coined by Rothen.33 (For a 
discussion of light polarization, the reader is referred to Chap. 12 in this volume. For a historical 
background on ellipsometry, see Rothen34 and Hall.35)

For optically isotropic structures, ellipsometry is carried out only at oblique incidence. In this 
case, if the incident light is linearly polarized with the electric vector vibrating parallel p or perpen-
dicular s to the plane of incidence, the reflected light is likewise p- and s-polarized, respectively. In 
other words, the p and s linear polarizations are the eigenpolarizations of reflection.36 The associ-
ated eigenvalues are the complex amplitude reflection coefficients Rp and Rs. For an arbitrary input 
state with phasor electric-field components Eip and Eis, the corresponding field components of the 
reflected light are given by

E R E E R Ep srp ip rs is (1)

FIGURE 1 Incident linearly polarized light of arbitrary azimuth  is reflected from the surface S
as elliptically polarized. p and s identify the linear polarization directions parallel and perpendicular to 
the plane of incidence and form a right-handed system with the direction of propagation.  is the angle 
of incidence.
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By taking the ratio of the respective sides of these two equations, one gets

i r/ (2)

where

R Rp s/ (3)

i rE E E Eis ip rs rp/ / (4)

i and r of Eqs. (4) are complex numbers that succinctly describe the incident and reflected polar-
ization states of light;37 their ratio, according to Eqs. (2) and (3), determines the ratio of the complex 
reflection coefficients for the p and s polarizations. Therefore, ellipsometry involves pure polariza-
tion measurements (without account for absolute light intensity or absolute phase) to determine 

. It has become customary in ellipsometry to express  in polar form in terms of two ellipsometric 
angles and (0 90°, 0 360°) as follows

tan exp( )j (5)

tan | |/| |R Rp s  represents the relative amplitude attenuation and arg( ) arg( )R Rp s  is the dif-
ferential phase shift of the p and s linearly polarized components upon reflection.

Regardless of the nature of the sample,  is a function,

f ( , ) (6)

of the angle of incidence  and the wavelength of light . Multiple-angle-of-incidence 
ellipsometry38–43 (MAIE) involves measurement of  as a function of , and spectroscopic 
ellipsometry3,22,27–31 (SE) refers to the measurement of  as a function of . In variable-angle spec-
troscopic ellipsometry43 (VASE) the ellipsometric function  of the two real variables  and  is 
recorded.

16.3 CONVENTIONS

The widely accepted conventions in ellipsometry are those adopted at the 1968 Symposium on 
Recent Developments in Ellipsometry following discussions of a paper by Muller.44 Briefly, the elec-
tric field of a monochromatic plane wave traveling in the direction of the z axis is taken as

E E0 2exp( )exp( )j Nz j t/ (7)

where E0 is a constant complex vector that represents the transverse electric field in the z 0 plane, 
N is the complex refractive index of the optically isotropic medium of propagation,  is the angular 
frequency, and t is the time. N is written in terms of its real and imaginary parts as

N n jk (8)

where n > 0 is the refractive index and k 0 is the extinction coefficient. The positive directions 
of p and s before and after reflection form a right-handed coordinate system with the directions of 
propagation of the incident and reflected waves, Fig. 1. At normal incidence ( 0), the p directions 
in the incident and reflected waves are antiparallel, whereas the s directions are parallel. Some of the 
consequences of these conventions are as follows:

1. At normal incidence, Rp Rs, 1, and .

2. At grazing incidence, Rp Rs, 1, and 0.

3. For an abrupt interface between two homogeneous and isotropic semi-infinite media,  is in the 
range 0 , and 0 45°.
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As an example, Fig. 2 shows  and  vs.  for light reflection at the air/Au interface, assuming 
N 0.306 j2.880 for Au45 at 564 nm.

16.4 MODELING AND INVERSION

The following simplifying assumptions are usually made or implied in conventional ellipsometry: 
(1) the incident beam is approximated by a monochromatic plane wave; (2) the ambient or inci-
dence medium is transparent and optically isotropic; (3) the sample surface is a plane boundary; 
(4) the sample (and ambient) optical properties are uniform laterally but may change in the direc-
tion of the normal to the ambient-sample interface; (5) the coherence length of the incident light 
is much greater than its penetration depth into the sample; and (6) the light-sample interaction is 
linear (elastic), hence frequency-conserving.

Determination of the ratio of complex reflection coefficients is rarely an end in itself. Usually, 
one is interested in more fundamental information about the sample than is conveyed by . In 
particular, ellipsometry is used to characterize the optical and structural properties of the interfa-
cial region. This requires that a stratified-medium model (SMM) for the sample under measure-
ment be postulated that contains the sample physical parameters of interest. For example, for 
visible light, a polished Si surface in air may be modeled as an optically opaque (semi-infinite) 
Si substrate which is covered with a SiO2 film, with the Si and SiO2 phases assumed uniform, and 
the air/SiO2 and SiO2/Si interfaces considered as parallel planes. This is often referred to as the 
three-phase model. More complexity (and more layers) can be built into this basic SMM to rep-
resent such finer details as the interfacial roughness and phase mixing, a damage surface layer on 
Si caused by polishing, or the possible presence of an outermost contamination film. Effective 
medium theories46–54 (EMTs) are used to calculate the dielectric functions of mixed phases based 
on their microstructure and component volume fractions; and the established theory of light 
reflection by stratified structures55–60 is employed to calculate the ellipsometric function for an 
assumed set of model parameters. Finally, values of the model parameters are sought that best 
match the measured and computed values of . Extensive data (obtained, e.g., using VASE) is 
required to determine the parameters of more complicated samples. The latter task, called the 

FIGURE 2 Ellipsometric parameters and  of an 
air/Au interface as functions of the angle of incidence 

. The complex refractive index of Au is assumed to be 
0.306 – j2.880 at 564-nm wavelength. , , and  are in 
degrees.
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inverse problem, usually employs linear regression analysis,61–63 which yields information on 
parameter correlations and confidence limits. Therefore, the full practice of ellipsometry involves, 
in general, the execution and integration of three tasks: (1) polarization measurements that yield 
ratios of complex reflection coefficients, (2) sample modeling and the application of electromag-
netic theory to calculate the ellipsometric function, and (3) solving the inverse problem to deter-
mine model parameters that best match the experimental and theoretically calculated values of 
the ellipsometric function.

Confidence in the model is established by showing that complete spectra can be described in 
terms of a few wavelength-independent parameters, or by checking the predictive power of the 
model in determining the optical properties of the sample under new experimental conditions.27

The Two-Phase Model

For a single interface between two homogeneous and isotropic media, 0 and 1, the reflection coeffi-
cients are given by the Fresnel formulas1

r S S S Sp01 1 0 0 1 1 0 0 1( )/( ) (9)

r S S S Ss01 0 1 0 1( ) ( )/ (10)
in which

i iN i2 0 1, (11)

is the dielectric function (or dielectric constant at a given wavelength) of the ith medium,

Si i( sin ) /
0

2 1 2 (12)

and  is the angle of incidence in medium 0 (measured from the interface normal). The ratio of 
complex reflection coefficients which is measured by ellipsometry is

[sin tan ( sin ) ] [sin tan ( sin/2 2 2/ ) ]/1 2 (13)

where 1 0/ . Solving Eq. (13) for  gives

1 0
2 2 2 21 1{sin sin tan [( )/( )] } (14)

For light incident from a medium (e.g., vacuum, air, or an inert ambient) of known 0, Eq. (14)
determines, concisely and directly, the complex dielectric function 1 of the reflecting second 
medium in terms of the measured  and the angle of incidence . This accounts for an important 
application of ellipsometry as a means of determining the optical properties (or optical constants) of 
bulk absorbing materials and opaque films. This approach assumes the absence of a transition layer 
or a surface film at the two-media interface. If such a film exists, ultrathin as it may be, 1 as deter-
mined by Eq. (14) is called the pseudo dielectric function and is usually written as 1 . Figure 3
shows lines of constant and lines of constant  in the complex  plane at 75°.

The Three-Phase Model

This often-used model, Fig. 4, consists of a single layer, medium 1, of parallel-plane boundaries 
which is surrounded by two similar or dissimilar semi-infinite media 0 and 2. The complex ampli-
tude reflection coefficients are given by the Airy-Drude formula64,65

R r r X r r X p s( )/( ) ,01 12 01 121 (15)

X j d Dexp[ ( )]2 / (16)
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rij  is the Fresnel reflection coefficient of the ij interface (ij 01 and 12) for the  polarization, d is the 
layer thickness, and

D S( )( )/ /2 1 1 (17)

where  is the vacuum wavelength of light and S1 is given by Eq. (12). The ellipsometric function of 
this system is

( ) ( )A BX CX D EX FX2 2/ (18)

A r B r r r r C r r r

D r
p p p s s p s s01 12 01 01 12 12 01 12

011 12 01 01 12 12 01 12s s p s p s p pE r r r r F r r r
(19)
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FIGURE 3 Contours of constant tan and constant  in the complex 
plane of the relative dielectric function  of a transparent medium/absorbing 
medium interface.

FIGURE 4 Three-phase, ambient-film-substrate system.
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For a transparent film, and with light incident at an angle  such that 1 0
2sin  so that total 

reflection does not occur at the 01 interface, D  is real, and X, Rp, Rs, and  become periodic func-
tions of the film thickness d with period D . The locus of X is the unit circle in the complex plane and 
its multiple images through the conformal mapping of Eq. (18) at different values of  give the con-
stant-angle-of-incidence contours of . Figure 5 shows a family of such contours66 for light reflec-
tion in air by the SiO2–Si system at 633-nm wavelength at angles from 30° to 85° in steps of 5°. Each 
and every value of , corresponding to all points in the complex plane, can be realized by selecting 
the appropriate angle of incidence and the SiO2 film thickness (within a period).

If the dielectric functions of the surrounding media are known, the dielectric function 1 and 
thickness d of the film are obtained readily by solving Eq. (18) for X,

X B E B E C F A D C{ ( ) [( ) ( )( )] } (/2 1 24 2/ F) (20)

and requiring that66,67

| |X 1 (21)

Equation (21) is solved for 1 as its only unknown by numerical iteration. Subsequently, d is given by

d X D mD[ arg( ) ]/2 (22)

where m is an integer. The uncertainty of an integral multiple of the film thickness period is often 
resolved by performing measurements at more than one wavelength or angle of incidence and 
requiring that d be independent of  or .
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FIGURE 5 Family of constant-angle-of-incidence contours of the ellipsometric function  in 
the complex plane for light reflection in air by the SiO2/Si film-substrate system at 633-nm wave-
length. The contours are for angles of incidence from 30° to 85° in steps of 5°. The arrows indicate the 
direction of increasing film thickness.66
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When the film is absorbing (semitransparent), or the optical properties of one of the surround-
ing media are unknown, more general inversion methods68–72 are required which are directed toward 
minimizing an error function of the form

f im ic im ic
i

N

[( ) ( ) ]2 2

1

(23)

where im, ic and im, ic denote the ith measured and calculated values of the ellipsometric angles, 
and N is the total number of independent measurements.

Multilayer and Graded-Index Films

For an outline of the matrix theory of multilayer systems refer to Chap. 7, “Optical Properties of 
Films and Coatings,” in Vol. IV. For our purposes, we consider a multilayer structure, Fig. 6, that 
consists of m plane-parallel layers sandwiched between semi-infinite ambient and substrate media 
(0 and m 1, respectively). The relationships between the field amplitudes of the incident (i), 
reflected (r), and transmitted (t) plane waves for the p or s polarizations are determined by the scat-
tering matrix equation73

E

E
S S
S S

Ei

r

t11 12

21 22 0
(24)

The complex-amplitude reflection and transmission coefficients of the entire structure are given by

R E E S S

T E E S

r i

t i

/ /

/ /

21 11

111
(25)

The scattering matrix S ( )Sij  is obtained as an ordered product of all the interface I and layer L
matrices of the stratified structure,

S I L I L I L L I01 1 12 2 1 1( ) ( )j j j m m m (26)

FIGURE 6 Light reflection by a multi-
layer structure.1
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and the numbering starts from layer 1 (in contact with the ambient) to layer m (adjacent to the sub-
strate) as shown in Fig. 6. The interface scattering matrix is of the form

Iab ab
ab

ab

t
r

r
( )1

1

1
/ (27)

where rab is the local Fresnel reflection coefficient of the ab[j(j 1)] interface evaluated [using Eqs. (9) 
and (10) with the appropriate change of subscripts] at an incidence angle in medium a which is 
related to the external incidence angle  in medium 0 by Snell’s law. The associated interface trans-
mission coefficients for the p and s polarizations are

t S S S

t S S S

abp a b a b a a b

abs a a

2

2

1 2( ) ( )

(

/ /

/ bb)
(28)

where Sj is defined in Eq. (12). The scattering matrix of the jth layer is

L j
j

j

Y

Y

1 0

0
(29)

Y Xj j
1 2/ (30)

and Xj is given by Eqs. (16) and (17) with the substitution d dj for the thickness, and 1 = j for the 
dielectric function of the jth layer.

Except in Eqs. (28), a polarization subscript p or s has been dropped for simplicity. In 
reflection and transmission ellipsometry, the ratios r p sR R/  and t p sT T/  are measured. 
Inversion for the dielectric functions and thicknesses of some or all of the layers requires exten-
sive data, as may be obtained by VASE, and linear regression analysis to minimize the error func-
tion of Eq. (23).

Light reflection and transmission by a graded-index (GRIN) film is handled using the scatter-
ing matrix approach described here by dividing the inhomogeneous layer into an adequately large 
number of sublayers, each of which is approximately homogeneous. In fact, this is the most general 
approach for a problem of this kind because analytical closed-form solutions are only possible for a 
few simple refractive-index profiles.74–76

Dielectric Function of a Mixed Phase

For a microscopically inhomogeneous thin film that is a mixture of two materials, as may be pro-
duced by coevaporation or cosputtering, or a thin film of one material that may be porous with a 
significant void fraction (of air), the dielectric function is determined using EMTs.46–54 When the 
scale of the inhomogeneity is small relative to the wavelength of light, and the domains (or grains) 
of different dielectrics are of nearly spherical shape, the dielectric function of the mixed phase  is 
given by

h

h
a

a h

a h
b

b h

b h

v v
2 2 2

(31)

where a and b are the dielectric functions of the two component phases a and b with vol-
ume fractions a and b and h is the host dielectric function. Different EMTs assign different 
values to h. In the Maxwell Garnett EMT,47,48 one of the phases, say b, is dominant ( b a)
and h b. This reduces the second term on the right-hand side of Eq. (31) to zero. In the 
Bruggeman EMT,49

a and b are comparable, and h , which reduces  the left-hand side of 
Eq. (31) to zero.
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16.5 TRANSMISSION ELLIPSOMETRY

Although ellipsometry is typically carried out on the reflected wave, it is possible to also 
monitor the state of polarization of the transmitted wave, when such a wave is available for 
measurement.77–81 For example, by combining reflection and transmission ellipsometry, the thick-
ness and complex dielectric function of an absorbing film between transparent media of the same 
refractive index (e.g., a solid substrate on one side and an index-matching liquid on the other) 
can be obtained analytically.79,80 Polarized light transmission by a multilayer was discussed previ-
ously under “Multilayer and Graded-Index Films.” Transmission ellipsometry can be carried out 
at normal incidence on optically anisotropic samples to determine such properties as the natural 
or induced linear, circular, or elliptical birefringence and dichroism. However, this falls outside the 
scope of this chapter.

16.6 INSTRUMENTATION

Figure 7 is a schematic diagram of a generic ellipsometer. It consists of a source of collimated 
and monochromatic light L, polarizing optics PO on one side of the sample S, and polariza-
tion analyzing optics AO and a (linear) photodetector D on the other side. An apt terminology25

refers to the PO as a polarization state generator (PSG) and the AO plus D as a polarization state 
detector (PSD).

Figure 8 shows the commonly used polarizer-compensator-sample-analyzer (PCSA) ellipsom-
eter arrangement. The PSG consists of a linear polarizer with transmission-axis azimuth P and a 
linear retarder, or compensator, with fast-axis azimuth C. The PSD consists of a single linear polar-
izer, that functions as an analyzer, with transmission-axis azimuth A followed by a photodetector D. 

FIGURE 8 Polarizer-compensator-sample-analyzer (PCSA) ellip-
someter. The azimuth angles P of the polarizer, C of the compensator (or 
quarter-wave retarder), and A of the analyzer are measured from the plane 
of incidence, positive in a counterclockwise sense when looking toward the 
source.1

FIGURE 7 Generic ellipsometer with polarizing optics PO and 
analyzing optics AO. L and D are the light source and photodetector, 
respectively.
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All azimuths P, C, and A, are measured from the plane of incidence, positive in a counterclockwise 
sense when looking toward the source. The state of polarization of the light transmitted by the PSG 
and incident on S is given by

i c cC P C C P C[tan tan( )] tan tan( )]/[1 (32)

where c Tcs/Tcf is the ratio of complex amplitude transmittances of the compensator for incident 
linear polarizations along the slow s and fast f axes. Ideally, the compensator functions as a quarter-
wave retarder (QWR) and c j. In this case, Eq. (32) describes an elliptical polarization state with 
major-axis azimuth C and ellipticity angle (P C). (The tangent of the ellipticity angle equals the 
minor-axis-to-major-axis ratio and its sign gives the handedness of the polarization state, positive 
for right-handed states.) All possible states of total polarization i can be generated by controlling 
P and C. Figure 9 shows a family of constant C, variable P contours (continuous lines) and constant 
P C, variable C contours (dashed lines) as orthogonal families of circles in the complex plane of 
polarization. Figure 10 shows the corresponding contours of constant P and variable C. The points 
R and L on the imaginary axis at (0, 1) and (0, 1) represent the right- and left-handed circular 
polarization states, respectively.

Null Ellipsometry

The PCSA ellipsometer of Fig. 8 can be operated in two different modes. In the null mode, the out-
put signal of the photodetector D is reduced to zero (a minimum) by adjusting the azimuth angles 
P of the polarizer and A of the analyzer with the compensator set at a fixed azimuth C. The choice 
C ± 45° results in rapid convergence to the null. Two independent nulls are reached for each com-
pensator setting. The two nulls obtained with C 45° are usually referred to as the nulls in zones 
2 and 4; those for C 45° define zones 1 and 3. At null, the reflected polarization is linear and is 

L

r

i

R

FIGURE 9 Constant C, variable P contours (continuous lines), and constant 
P C, variable C contours (dashed lines) in the complex plane of polarization for 
light transmitted by a polarizer-compensator (PC) polarization state generator.1
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crossed with the transmission axis of the analyzer; therefore, the reflected state of polarization is 
given by

r Acot (33)

where A is the analyzer azimuth at null. With the incident and reflected polarizations determined 
by Eqs. (32) and (33), the ratio of complex reflection coefficients of the sample for the p and s linear 
polarizations  is obtained by Eq. (2). Whereas a single null is sufficient to determine  in an ideal 
ellipsometer, results from multiple nulls (in two or four zones) are usually averaged to eliminate the 
effect of small component imperfections and azimuth-angle errors. Two-zone measurements are 
also used to determine  of the sample and c of the compensator simultaneously.82–84 The effects of 
component imperfections have been considered extensively.85

The null ellipsometer can be automated by using stepping or servo motors86,87 to rotate the 
polarizer and analyzer under closed-loop feedback control; the procedure is akin to that of nulling 
an ac bridge circuit. Alternatively, Faraday cells can be inserted after the polarizer and before the ana-
lyzer to produce magneto-optical rotations in lieu of the mechanical rotation of the elements.88–90

This reduces the measurement time of a null ellipsometer from minutes to milliseconds. Large 
(±90°) Faraday rotations would be required for limitless compensation. Small ac modulation is 
often added for the precise localization of the null.

Photometric Ellipsometry

The polarization state of the reflected light can also be detected photometrically by rotating the 
analyzer91–95 of the PCSA ellipsometer and performing a Fourier analysis of the output signal I of 
the linear photodetector D. The detected signal waveform is simply given by

I I A A0 1 2 2( cos sin ) (34)

FIGURE 10 Constant P, variable C contours in the complex 
plane of polarization for light transmitted by a polarizer-compensator 
(PC) polarization state generator.1
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and the reflected state of polarization is determined from the normalized Fourier coefficients  and  by

r [ ( ) ] ( )/1 12 2 1 2 / (35)

The sign ambiguity in Eq. (35) indicates that the rotating-analyzer ellipsometer (RAE) cannot 
determine the handedness of the reflected polarization state. In the RAE, the compensator is not 
essential and can be removed from the input PO (i.e., the PSA instead of the PCSA optical train is 
used). Without the compensator, the incident linear polarization is described by

i Ptan (36)

Again, the ratio of complex reflection coefficients of the sample  is determined by substituting 
Eqs. (35) and (36) in Eq. (2). The absence of the wavelength-dependent compensator makes the 
RAE particularly qualified for SE. The dual of the RAE is the rotating-polarizer ellipsometer which 
is suited for real-time SE using a spectrograph and a photodiode array that are placed after the fixed 
analyzer.31

A photometric ellipsometer with no moving parts, for fast measurements on the microsecond 
time scale, employs a photoelastic modulator96–100 (PEM) in place of the compensator of Fig. 8. 
The PEM functions as an oscillating-phase linear retarder in which the relative phase retardation is 
modulated sinusoidally at a high frequency (typically 50 to 100 kHz) by establishing an elastic ultra-
sonic standing wave in a transparent solid. The output signal of the photodetector is represented 
by an infinite Fourier series with coefficients determined by Bessel functions of the first kind and 
argument equal to the retardation amplitude. However, only the dc, first, and second harmonics 
of the modulation frequency are usually detected (using lock-in amplifiers) and provide sufficient 
information to retrieve the ellipsometric parameters of the sample.

Numerous other ellipsometers have been introduced25 that employ more elaborate PSDs. For 
example Fig. 11 shows a family of rotating-element photopolarimeters25 (REP) that includes the 
RAE. The column on the right represents the Stokes vector and the fat dots identify the Stokes 

DetectorA

(a) RA

DetectorA A

(b) RAFA

DetectorC A

(c) RCFA

DetectorC A

(d) RCA

DetectorC A A

(e) RCAFA

FIGURE 11 Family of rotating-element 
photo-polarimeters (REP) and the Stokes 
parameters that they can determine.25
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parameters that are measured. (For a discussion of the Stokes parameters, see Chap. 12 in this volume
of the Handbook.) The simplest complete REP, that can determine all four Stokes parameters of 
light, is the rotating-compensator fixed-analyzer (RCFA) photopolarimeter originally invented to 
measure skylight polarization.101 The simplest handedness-blind REP for totally polarized light is 
the rotating-detector ellipsometer102,103 (RODE), Fig. 12, in which the tilted and partially reflective 
front surface of a solid-state (e.g., Si) detector performs as polarization analyzer.

Ellipsometry Using Four-Detector Photopolarimeters

A new class of fast PSDs that measure the general state of partial or total polarization of a quasi-
monochromatic light beam is based on the use of four photodetectors. Such PSDs employ the divi-
sion of wavefront, the division of amplitude, or a hybrid of the two, and do not require any moving 
parts or modulators. Figure 13 shows a division-of-wavefront photopolarimeter (DOWP)104 for 

FIGURE 12 Rotating-detector ellipsometer (RODE).102

p

p

p p

l

FIGURE 13 Division-of-wavefront photopolarimeter for the simultaneous measurement of 
all four Stokes parameters of light.104
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performing ellipsometry with nanosecond laser pulses. The DOWP has been adopted recently in 
commercial automatic polarimeters for the fiber-optics market.105,106

Figure 14 shows a division-of-amplitude photopolarimeter107,108 (DOAP) with a coated beam 
splitter BS and two Wollaston prisms WP1 and WP2, and Fig. 15 represents a recent implementa-
tion109 of that technique. The multiple-beam-splitting and polarization-altering properties of grat-
ing diffraction are also well-suited for the DOAP.110,111

The simplest DOAP consists of a spatial arrangement of four solid-state photodetectors Fig. 16, 
and no other optical elements. The first three detectors (D0, D1, and D2) are partially specularly 
reflecting and the fourth (D3) is antirefiection-coated. The incident light beam is steered in such a 
way that the plane of incidence is rotated between successive oblique-incidence reflections, hence 

FIGURE 14 Division-of-amplitude pho-
topolarimeter (DOAP) for the simultaneous meas-
urement of all four Stokes parameters of light.107

FIGURE 15 Recent implementation of DOAP.109
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the light path is nonplanar. In this four-detector photopolarimeter112–117 (FDP), and in other 
DOAPs, the four output signals of the four linear photodetectors define a current vector I [I0 I1 I2 I3]

t

which is linearly related,

I AS (37)

to the Stokes vector S [S0 S1 S2 S3]
t of the incident light, where t indicates the matrix transpose. The 

4 × 4 instrument matrix A is determined by calibration115 (using a PSG that consists of a linear polarizer 
and a quarter-wave retarder). Once A is determined, S is obtained from the output signal vector by

S A I1 (38)

where A 1 is the inverse of A. When the light under measurement is totally polarized 
(i.e., S S S S0

2
1
2

2
2

3
2), the associated complex polarization number is determined in terms of the 

Stokes parameters as118

( ) ( ) ( ) ( )S jS S S S S S jS2 3 0 1 0 1 2 3/ / (39)

For further information on polarimetry, see Chap. 15 in this volume.

Ellipsometry Based on Azimuth Measurements Alone

Measurements of the azimuths of the elliptic vibrations of the light reflected from an optically 
isotropic surface, for two known vibration directions of incident linearly polarized light, enable 
the ellipsometric parameters of the surface to be determined at any angle of incidence. If i and 

r represent the azimuths of the incident linear and reflected elliptical polarizations, respectively, 
then119–121

tan ( tan tan cos ) (tan tan )2 2 2 2
r i i/ (40)

A pair of measurements ( i1, r1) and ( i2, r2) determines  and  via Eq. (40). The azimuth of 
the reflected polarization is measured precisely by an ac-null method using an ac-excited Faraday 

FIGURE 16 Four-detector photopolarimeter for the 
simultaneous measurement of all four Stokes parameters 
of light.112



ELLIPSOMETRY 16.17

cell followed by a linear analyzer.119 The analyzer is rotationally adjusted to zero the fundamental-
frequency component of the detected signal; this aligns the analyzer transmission axis with the 
minor or major axis of the reflected polarization ellipse.

Return-Path Ellipsometry

In a return-path ellipsometer (RPE), Fig. 17, an optically isotropic mirror M is placed in, and per-
pendicular to, the reflected beam. This reverses the direction of the beam, so that it retraces its path 
toward the source with a second reflection at the test surface S and second passage through the 
polarizing/analyzing optics P/A. A beam splitter BS sends a sample of the returned beam to the pho-
todetector D. The RPE can be operated in the null or photometric mode.

In the simplest RPE,122,123 the P/A optics consists of a single linear polarizer whose azimuth and 
the angle of incidence are adjusted for a zero detected signal. At null, the angle of incidence is the 
principal angle, hence ±90°, and the polarizer azimuth equals the principal azimuth, so that 
the incident linearly polarized light is reflected circularly polarized. Null can also be obtained at 
a general and fixed angle of incidence by adding a compensator to the P/A optics. Adjustment of 
the polarizer azimuth and the compensator azimuth or retardance produces the null.124,125 In the 
photometric mode,126 an element of the P/A is modulated periodically and the detected signal is 
Fourier-analyzed to extract  and .

RPEs have the following advantages: (1) the same optical elements are used as polarizing and 
analyzing optics; (2) only one optical port or window is used for light entry into and exit from 
the chamber in which the sample may be mounted; and (3) the sensitivity to surface changes is 
increased because of the double reflection at the sample surface.

Perpendicular-Incidence Ellipsometry

Normal-incidence reflection from an optically isotropic surface is accompanied by a trivial change 
of polarization due to the reversal of the direction of propagation of the beam (e.g., right-handed 
circularly polarized light is reflected as left-handed circularly polarized). Because this change of 
polarization is not specific to the surface, it cannot be used to determine the properties of the 

FIGURE 17 Return-path ellipsometer. The dashed lines indicate the configuration 
for perpendicular-incidence ellipsometry on optically anisotropic samples.126
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reflecting structure. This is why ellipsometry of isotropic surfaces is performed at oblique incidence. 
However, if the surface is optically anisotropic, perpendicular-incidence ellipsometry (PIE) is possi-
ble and offers two significant advantages: (1) simpler single-axis instrumentation of the return-path 
type with common polarizing/analyzing optics, and (2) simpler inversion for the sample optical 
properties, because the equations that govern the reflection of light at normal incidence are much 
simpler than those at oblique incidence.127,128

Like RPE, PIE can be performed using null or photometric techniques.126–132 For example, Fig. 18 
shows a simple normal-incidence rotating-sample ellipsometer128 (NIRSE) that is used to measure 
the ratio of the complex principal reflection coefficients of an optically anisotropic surface S with 
principal axes x and y. (The incident linear polarizations along these axes are the eigenpolarizations 
of reflection.) If we define

( ) ( )R R R Rxx yy xx yy/ (41)

then

{ [ ( ) ] } ( )/a j a a a a2 4 4 2
2 1 2

48 1 2 1/ (42)

Rxx and Ryy are the complex-amplitude principal reflection coefficients of the surface, and a2 and a4
are the amplitudes of the second and fourth harmonic components of the detected signal normal-
ized with respect to the dc component. From Eq. (41), we obtain

R Ryy xx/ /( ) ( )1 1 (43)

PIE can be used to determine the optical properties of bare and coated uniaxial and biaxial crystal 
surfaces.127–130,133

Interferometric Ellipsometry

Ellipsometry using interferometer arrangements with polarizing optical elements has been suggested 
and demonstrated.134–136 Compensators are not required because the relative phase shift is obtained 
by the unbalance between the two interferometer arms; this offers a distinct advantage for SE. Direct 
display of the polarization ellipse is possible.134–136

FIGURE 18 Normal-incidence rotating-sample ellipsometer (NIRSE).128
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16.7 JONES-MATRIX GENERALIZED ELLIPSOMETRY

For light reflection at an anisotropic surface, the p and s linear polarizations are not, in general, the 
eigenpolarizations of reflection. Consequently, the reflection of light is no longer described by Eqs. (1). 
Instead, the Jones (electric) vectors of the reflected and incident waves are related by

E

E

R R

R R

E

E
rp

rs

pp ps

sp ss

ip

is

(44)

or, more compactly,

E REr i
(45)

where R is the nondiagonal reflection Jones matrix. The states of polarization of the incident and 
reflected waves, described by the complex variables i and r of Eqs. (4), are interrelated by the bilin-
ear transformation85,137

r i iR R R R( ) ( )ss sp ps pp/ (46)

In generalized ellipsometry (GE), the incident wave is polarized in at least three different states 
( i1, i2, i3) and the corresponding states of polarization of the reflected light ( r1, r2, r3) are 
measured. Equation (46) then yields three equations that are solved for the normalized Jones matrix 
elements, or reflection coefficients ratios,138

R R H H

R R H

i i r rpp ss

ps ss

/ /

/

( ) ( )
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1 //
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H
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1 2

2 1 1 2 1 r

r r i i i i r

H

H

2

3 1 3 2 3 1 3

)

( )( ) ( )(/ rr 2)

(47)

Therefore, the nondiagonal Jones matrix of any optically anisotropic surface is determined, up to 
a complex constant multiplier, from the mapping of three incident polarizations into the corre-
sponding three reflected polarizations. A PCSA null ellipsometer can be used. The incident polar-
ization i is given by Eq. (32) and the reflected polarization r is given by Eq. (33). Alternatively, 
the Stokes parameters of the reflected light can be measured using the RCFA photopolarimeter, the 
DOAP, or the FDP, and r is obtained from Eq. (39). More than three measurements can be taken to 
overdetermine the normalized Jones matrix elements and reduce the effect of component imper-
fections and measurement errors. GE can be performed based on azimuth measurements alone.139 

The main application of GE has been the determination of the optical properties of crystalline 
materials.138–143

16.8 MUELLER-MATRIX GENERALIZED ELLIPSOMETRY

The most general representation of the transformation of the state of polarization of light upon 
reflection or scattering by an object or sample is described by1

S MS (48)

where S and S  are the Stokes vectors of the incident and scattered radiation, respectively, and M is the 
real 4 × 4 Mueller matrix that succinctly characterizes the linear (or elastic) light-sample interaction. 
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For light reflection at an optically isotropic and specular (smooth) surface, the Mueller matrix assumes 
the simple form144

M r

a
a

b c
c b

1 0 0
1 0 0

0 0
0 0

(49)

In Eq. (49), r is the surface power reflectance for incident unpolarized or circularly polarized 
light, and a, b, c are determined by the ellipsometric parameters and  as:

a b ccos sin cos sin sin2 2 2and (50)

and satisfy the identity a2 b2 c2 1.
In general (i.e., for an optically anisotropic and rough surface), all 16 elements of M are nonzero 

and independent.
Several methods for Mueller matrix measurements have been developed.25,145–149 An efficient 

scheme145–147 uses the PCSC A ellipsometer with symmetrical polarizing (PC) and analyzing (C A)
optics, Fig. 19. All 16 elements of the Mueller matrix are encoded onto a single periodic detected sig-
nal by rotating the quarter-wave retarders (or compensators) C and C  at angular speeds in the ratio 
1:5. The output signal waveform is described by the Fourier series

I a a nC b nCn
n

n0
1

12

( )cos sin (51)

where C is the fast-axis azimuth of the slower of the two retarders, measured from the plane of 
incidence. Table 1 gives the relations between the signal Fourier amplitudes and the elements of the 

S

C

5
L

P

C

A

D

x x

y y

FIGURE 19 Dual-rotating-retarder Mueller-matrix photopolarimeter.145

TABLE 1 Relations Between Signal Fourier Amplitudes and Elements of the Scaled Mueller Matrix M

n 0 1 2 3 4 5 6

an

m m

m m
11

1
2 12

1
2 21

1
4 22

0 1
2 12

1
4 22m m 1

4 43m 1
2 44m 0

1
2 44m

bn m m14
1
2 24

1
2 13

1
4 23m m 1

4 42m 0 m m41
1
2 42 0

n 7 8 9 10 11 12

an
1
4 43m 1

8 22
1
8 33m m 1

4 34m 1
2 21

1
4 22m m 1

4 34m 1
8 22

1
8 33m m

bn
1
4 42m 1

8 23
1
8 32m m 1

4 24m 1
2 31

1
4 32m m 1

4 24m 1
8 23

1
8 32m m

The transmission axes of the polarizer and analyzer are assumed to be set at 0 azimuth, parallel to the scattering plane or the 
plane of incidence.
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Mueller matrix M  which differs from M only by a scale factor. Inasmuch as only the normalized 
Mueller matrix, with unity first element, is of interest, the unknown scale factor is immaterial. This 
dual-rotating-retarder Mueller-matrix photopolarimeter has been used to characterize rough sur-
faces150 and the retinal nerve-fiber layer.151

Another attractive scheme for Mueller-matrix measurement is shown in Fig. 20. The FDP (or 
equivalently, any other DOAP) is used as the PSD. Fourier analysis of the output current vector of 
the FDP, I(C), as a function of the fast-axis azimuth C of the QWR of the input PO readily deter-
mines the Mueller matrix M, column by column.152,153

16.9 APPLICATIONS

The applications of ellipsometry are too numerous to try to cover in this chapter. The reader is 
referred to the books and review articles listed in the bibliography. Suffice it to mention the general 
areas of application. These include: (1) measurement of the optical properties of materials in the 
visible, IR, and near-UV spectral ranges. The materials may be in bulk or thin-film form and may 
be optically isotropic or anisotropic.3,22,27–31 (2) Thin-film thickness measurements, especially in 
the semiconductor industry.2,5,24 (3) Controlling the growth of optical multilayer coatings154 and 
quantum wells.155,156 (4) Characterization of physical and chemical adsorption processes at the 
vacuum/solid, gas/solid, gas/liquid, liquid/liquid, and liquid/solid interfaces.26,157 (5) Study of the 
oxidation kinetics of semiconductor and metal surfaces in various gaseous or liquid ambients.158

(6) Electrochemical investigations of the electrode/electrolyte interface.18,19,32 (7) Diffusion and ion 
implantation in solids.159 (8) Biological and biomedical applications.16,20,151,160
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17.1 GLOSSARY

a, b first and second lenses

AChr axial chromatic aberration

AST astigmatism

b factor

bf l back focal length

Co scaling factor

c curvature

C1 scaling factor

C2 scaling factor

CC conic constant

CMAs sagittal coma

CMAt tangential coma

Dep diameter of entrance pupil

do distance from object to loupe

de distance from loupe to the eye

E irradiance

ef l effective focal length

ep eyepiece

FN F-number

f focal length

h height above axis

Hi height of ray intercept in image plane

K shape factor

i image

J1() Bessel function of the first kind

k 2 /

17.3
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L length

MP magnifying power [cf. linear lateral longitudinal magnification]

m linear, lateral magnification

moc nodal-point to optical-center magnification

m linear, longitudinal magnification

MTF modulation transfer function

M factor

n refractive index

NA numerical aperture

o object

obj objective

P partial dispersion

Pi principal points

p sd/fa

peak normalized spectral weighting function

s object to image distance

SA3 third-order spherical aberration

SAC secondary angular spectrum

si image distance

sot optical tube length

so object distance

TPAC transverse primary chromatic aberration

t thickness

u slope

V Abbe number or reciprocal dispersion

-normalized reciprocal object distance 1/so

x, y, z cartesian coordinates

angular blur diameter

depth of focus

sag

angular blur tolerance

field of view

wavelength

v spatial frequency

lens power

r radius

standard deviation of the irradiance distribution

transmission

normalized spatial frequency

17.2 INTRODUCTION

This chapter provides a basic understanding of using lenses for image formation and manipulation. The 
principles of image formation are reviewed first. The effects of lens shape, index of refraction, magni-
fication, and F-number on the image quality of a singlet lens are discussed in some detail. Achromatic 
doublets and more complex lens systems are covered next. A representative variety of lenses is analyzed 
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and discussed. Performance that may be expected of each class of lens is presented. The section concludes 
with several techniques for rapid estimation of the performance of lenses. Refer to Chap. 1 “Geometrical 
Optics,” in this volume for further discussion of geometrical optics and aberrations.

17.3 BASICS

Figure 1 illustrates an image being formed by a simple lens. The object height is ho and the image 
height is hi with uo and ui being the corresponding slope angles. It follows from the Lagrange invari-
ant that the lateral magnification is defined to be

m
h

h

nu

nu

i

o

i

( )

( )
0

(1)

where no and ni are the refractive indices of the medium in which the object and image lie, respec-
tively. By convention, a height is positive if above the optical axis and a ray angle is positive if its 
slope angle is positive. Distances are positive if the ray propagates left to right. Since the Lagrange 
invariant is applicable for paraxial rays, the angle nu should be understood to mean n tan u. This 
interpretation applies to all paraxial computations. For an aplanatic lens, which is free of spherical 
aberration and linear coma, the magnification can by the optical sine theorem be given by

m
h

h

n u

n u

i

o

o o

i i

sin

sin

(2)

If the object is moved a small distance so longitudinally, the corresponding displacement of the 
image si can be found by the differential form of the basic imaging equation and leads to an equa-
tion analogous to the Lagrange invariant. The longitudinal magnification is then defined as

m
s

s

nu

nu

m
n

n

i

o

i

i

o

( )

( )

2
0

2

2

(3)

The following example will illustrate one application of m and m . Consider that a spherical object 
of radius ro is to be imaged as shown in Fig. 2. The equation of the object is r y zo o

2 2 2, where z is 
measured along the optical axis and is zero at the object’s center of curvature. Letting the surface sag 

FIGURE 1 Imaging by a simple lens.
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as measured from the vertex plane of the object be denoted as o the equation of the object becomes 
r r yo o o o

2 2 2( )  since z ro o. In the region near the optical axis, o or
2 2 , which implies that 

r yo o o
2 2/ . The image of the object is expressed in the transverse or lateral direction by yi myo and 

in the longitudinal or axial direction by i o o i om m n n2( )/ . In a like manner, the image of the 
spherical object is expressed as ri  (yi)

2/2 i. By substitution, the sag of the image is expressed by

r
n y

n

r
n

n

i
o o

i o

o
o

i

2

2
(4)

Hence, in the paraxial region about the optical axis, the radius of the image of a spherical object 
is independent of the magnification and depends only on the ratio of the refractive indices of the 
object and image spaces.

When an optical system as shown in Fig. 3 images a tilted object, the image will also be tilted. 
By employing the concept of lateral and longitudinal magnification, it can be easily shown that the 

FIGURE 2 Imaging of a spherical object by a lens.

FIGURE 3 Imaging of a tilted object illustrating the Scheimpflug condition.



LENSES 17.7

intersection height of the object plane with the first principal plane P1 of the lens must be the same 
as the intersection height of the image plane with the second principal plane P2 of the lens. This 
principle is known as the Scheimpflug condition.

The object-image relationship of a lens system is often described with respect to its cardinal 
points, which are the principal and focal points (conceived by Carl Gauss in 1841) and nodal points
(conceived by Johann Listing in 1845). Gauss demonstrated that, so far as paraxial rays are con-
cerned, a lens of any degree of complexity can be replaced by its cardinal points, viz., two principal 
points and two focal points, where the distances from the principal points to their respective focal 
points being the focal lengths of the lens. This was the first formal definition of the focal length of a 
lens system. The properties of the cardinal points and related points are as follows:

Principal points: the axial intersection points of conjugate planes P1 and P2 where these principal
planes are related by unit lateral magnification. A ray incident at height h on P1 will exit P2 at the 
same height. When n ni o, a ray incident at the first principal point with angle u will exit the sec-
ond principal point with angle u n ni o( )/ .

Nodal points: conjugate points related by unit angular magnification (m ui /uo). Nodal points 
are the axial intersection points of conjugate planes N1 and N2 where these nodal planes are 
related, by application of the Lagrange invariant, lateral magnification (m n ni o/ ). A ray incident 
at height h on N1 will exit N2 at h n ni o( )/ .

Focal points: anterior or front (f1) and posterior or rear (f2) focal points are the axial intersections 
of the respective focal planes, which are not conjugate. Any ray parallel to the optical axis, and 
entering the lens from the left, will intersect the axis at f2. Any ray parallel to the optical axis, and 
entering the lens from the right, will intersect the axis at f1. When n ni o, the distance f1 N1 equals 
the posterior focal length P2 f2 and the distance N2 f2 equals the anterior focal length P1 f1.

Antiprincipal points: the axial intersection points of conjugate planes where these antiprincipal
planes are related by negative unit lateral magnification. An example is a lens used at m 1
where the object and image planes are located at twice the focal length from the principal points.

Antinodal points: conjugate points related by negative unit angular magnification (m ui/uo).

Although imaging can be done solely using n ni o/  and either the principal point and planes, or 
the nodal point and planes, it is customary and easier to use a mixed set, that is, principal planes 
and nodal points. In this manner, the lateral and angular magnifications are both unity. This is par-
ticularly useful when performing graphical ray tracing. In addition, the image location and magnifi-
cation can be determined in the following manner:

Trace a horizontal ray from the object tip to the first principal plane.

Transfer to the second principal plane.

Trace the ray through the second focal point.

Trace a second ray from the object tip through the first focal point and to the intersection with 
the first principal plane.

Transfer to the second principal plane.

Project this ray horizontally until it intersects the first ray.

The intersection is the image height and locates the image plane. Magnification is the ratio of 
image height to object height. There are several alternative graphical ray-tracing method that can 
determine image height and location. One alternative is to trace a ray from the object tip to the first 
nodal point, and then project the ray exiting the second nodal point to intersect with the second ray 
mentioned above.

The focal length of a lens is related to the power of the lens by

n

f

n

f
o

o

i

i
(5)
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This relationship is important in such optical systems as underwater cameras, cameras in space, and 
the like. For example, it is evident that the field of view is decreased for a camera in water.

The lens law can be expressed in several forms. If so and si are the distance from the object to the 
first principal point and the distance from the second principal point to the image, then the rela-
tionship between the object and the image is given by

n

s

n

s
i

i

o

o

(6)

Should the distance be measured with respect to the nodal points, the imaging equation becomes

n

s

n

s
o

i

i

o

(7)

When the distances are measured from the focal points, the image relationship, known as the Newtonian 
imaging equation, is given by

f f s so i1 2
(8)

The power of a spherical refracting surface, with curvature c and n being the refractive index fol-
lowing the surface, is given by

c n n( )0
(9)

It can be shown that the power of a single thick lens in air is

thick 1 2 1 2

t
n

(10)

where t is the thickness of the lens. The distance from the first principal plane to the first surface 
is (t/n) 2 f1 and the distance from the second principal point to the rear surface is (t/n) 1f2. The 
power of a thin lens (t  0) in air is given by

thin ( )( )n c c1 1 2
(11)

17.4 STOPS AND PUPILS

The aperture stop or stop of a lens is the limiting aperture associated with the lens that deter-
mines how large an axial beam may pass through the lens. The stop is also called an iris. The 
marginal ray is the extreme ray from the axial point of the object through the edge of the stop. 
The entrance pupil is the image of the stop formed by all lenses preceding it when viewed from 
object space. The exit pupil is the image of the stop formed by all lenses following it when viewed 
from image space. These pupils and the stop are all images of one another. The principal ray is 
defined as the ray emanating from an off-axis object point that passes through the center of the 
stop. In the absence of pupil aberrations, the principal ray also passes through the center of the 
entrance and exit pupils.

As the obliquity angle of the principal ray increases, the defining apertures of the components 
comprising the lens may limit the passage of some of the rays in the entering beam thereby causing 
the stop not to be filled with rays. The failure of an off-axis beam to fill the aperture stop is called 
vignetting. The ray centered between the upper and lower rays defining the oblique beam is called 
the chief ray. When the object moves to large off-axis locations, the entrance pupil often has a highly 
distorted shape, may be tilted, and/or displaced longitudinally and transversely. Due to the vignett-
ing and pupil aberrations, the chief and principal rays may become displaced from one another. In 
some cases, the principal ray is vignetted.
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The field stop is an aperture that limits the passage of principal rays beyond a certain field 
angle. The image of the field stop when viewed from object space is called the entrance window
and is called the exit window when viewed from image space. The field stop effectively controls 
the field of view of the lens system. Should the field stop be coincident with an image formed 
within or by the lens system, the entrance and exit windows will be located at the object and/or 
image(s).

A telecentric stop is an aperture located such that the entrance and/or exit pupils are located at 
infinity. This is accomplished by placing the aperture in the focal plane. Consider a stop placed at 
the front focal plane of a lens. The stop image or exit pupil is located at infinity and the principal ray 
exits the lens parallel to the optical axis. This feature is often used in metrology since the measure-
ment error is reduced when compared to conventional lens systems because the centroid of the blur 
remains at the same height from the optical axis even as the focus is varied.

17.5 F-NUMBER AND NUMERICAL APERTURE

The focal ratio or F-number (FN) of a lens is defined as the effective focal length divided by 
the entrance pupil diameter Dep. When the object is not located at infinity, the effective FN is 
given by

FN FNeff ( )1 m (12)

where m is the magnification. For example, for a simple positive lens being used at unity magnifica-
tion (m 1), the FNeff  2FN . The numerical aperture of a lens is defined as

NA sinn Ui i (13)

where ni is the refractive index in which the image lies and Ui is the slope angle of the marginal ray 
exiting the lens. If the lens is aplanatic, then

FN
NAeff

1
2

(14)

The T-number of a lens is the effective FN divided by the square root of the transmittance of the 
lens and is used for radiometric computations; however, the FN should be used when computing 
depth of focus and depth of field discussed in Sec. 17.21.

17.6 MAGNIFIER OR EYE LOUPE

The typical magnifying glass, or loupe, comprises a singlet lens and is used to produce an erect but 
virtual magnified image of an object. The magnifying power of the loupe is stated to be the ratio 
of the angular size of the image when viewed through the magnifier to the angular size without 
the magnifier. By using the thin-lens model of the human eye, the magnifying power (MP) can be 
shown to be given by

MP
cm25

d d d de o e o

(15)

where do is the distance from the object to the loupe, de is the separation of the loupe from the eye, 
and  1/f is the power of the magnifier. When do is set to the focal length of the lens, the virtual 
image is placed at infinity and the magnifying power reduces to

MP
cm25
f

(16)
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Should the virtual image be located at the near viewing distance of the eye (about 25 cm), then

MP
cm25

1
f

(17)

Typically simple magnifiers are difficult to make with magnifying powers greater than about 10 .

17.7 COMPOUND MICROSCOPES

For magnifying power greater than that of a simple magnifier, a compound microscope, which 
comprises an objective lens and an eyepiece, may be used. The objective forms an aerial image of the 
object at a distance sot from the rear focal point of the objective. The distance sot is called the optical 
tube length and is typically 160 mm. The objective magnification is

MPobj
ot

obj

s

f
(18)

The image formed is further magnified by the eyepiece which has a MPep  250 mm/fep. The total 
magnifying power of the compound microscope is given by

MP MP MPobj ep

obj ep

160 250
f f

(19)

Typically, fep  25 mm, so its MP 10. Should the objective have a focal length of 10 mm, the total 
magnifying power of the microscope is 16  times 10 , or 160 .

17.8 FIELD AND RELAY LENSES

Field lenses are placed at (or near) an image location for the purpose of optically relocating the pupil 
or to increase the field-of-view of the optical system. For example, a field lens may be used at the image 
plane of an astronomical telescope such that the field lens images the objective lens onto the eyepiece. 
In general, the field lens does not contribute to the aberrations of the system except for distortion and 
field curvature. Since the field lens must be positive, it adds inward curving Petzval. For systems having 
a small detector requiring an apparent increase in size, the field lens is a possible solution. The detec-
tor is located beyond the image plane such that it subtends the same angle as the objective lens when 
viewed from the image point. The field lens images the objective lens onto the detector.

Relay lenses are used to transfer an image from one location to another such as in a submarine 
periscope or borescope. It is also used as a means to erect an image in many types of telescopes and 
other such instruments. Often relay lenses are made using two lens groups spaced about a stop, or 
an image of the system stop, in order to take advantage of the principle of symmetry, thereby mini-
mizing the comatic aberrations and lateral color. The relayed image is frequently magnified.

17.9 APLANATIC SURFACES AND IMMERSION LENSES

Abbe called a lens an aplanat that has an equivalent refractive surface which is a portion of a sphere 
with a radius r centered about the focal point. Such a lens satisfies the Abbe sine condition and 
implies that the lens is free of spherical and coma near the optical axis. Consequently, the maximum 
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possible numerical aperture (NA) of an aplanat is unity, or an FN  0.5. In practice, an FN less than 
0.6 is difficult to achieve. For an aplanat,

FN
NA
1

2
(20)

It can be shown that three cases exist where the spherical aberration is zero for a spherical sur-
face. These are: (1) the trivial case where the object and image are located at the surface, (2) the 
object and image are located at the center of curvature of the surface, and (3) the object is located 
at the aplanatic point. The third case is of primary interest. If the refractive index preceding the 
surface is no and following the surface is ni then the object is located a distance so from the surface 
as expressed by

s
r n n

no
o i

o

( )
(21)

and the image is located at

s
r n n

ni
o i

i

( )
(22)

An immersion lens or contact lens can be formed from an aplanatic surface and a plano sur-
face. Figure 4 illustrates a hemispherical magnifier that employs the second aplanatic case. The 
resultant magnification is ni if in air or ni/no otherwise. A similar magnifier can be constructed 
by using a hyperhemispherical surface and a plano surface as depicted in Fig. 5. The lateral 
magnification is ni

2. This lens, called an Amici lens, is based upon the third aplanatic case. The 
image is free of all orders of spherical aberration, third-order coma, and third-order astigma-
tism. Axial color is also absent from the hemispherical magnifier. These magnifiers are often 
used as a means to make a detector appear larger and as the first component in microscope 
objectives.

FIGURE 4 Aplanatic hemispherical mag-
nifier with the object and image located at the 
center of curvature of the spherical surface. 
This type of magnifier has a magnification of 
ni/no which can be used as a contact magnifier 
or as an immersion lens.

r

n

r/n

n r

FIGURE 5 Aplanatic hyperhemi-
spherical magnifier or Amici lens has the 
object located at the aplanatic point. The 
lateral magnification is (ni/n0)

2.
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17.10 SINGLE ELEMENT LENS

It is well known that the spherical aberration of a lens is a function of its shape factor or bending. 
Although several definitions for the shape factor have been suggested, a useful formulation is

c

c c
1

1 2

(23)

where c1 and c2 are the curvatures of the lens with the first surface facing the object. By adjusting the 
lens bending, the spherical aberration can be seen to have a minimum value.

The power of a thin lens or the reciprocal of its focal length is given by

( )n c1 1 (24)

When the object is located at infinity, the shape factor for minimum spherical aberration can be 
represented by

n n
n

( )
( )
2 1

2 2
(25)

The resultant third-order spherical aberration of the marginal ray in angular units is
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or after some algebraic manipulations,
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3
4 1
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n n

n n

( )

( )( ) ( )
(27)

where, for a thin lens, the FN is the focal length f divided by the lens diameter, which in this case is 
the same as entrance pupil diameter Dep. Inspection of this equation illustrates that smaller values of 
spherical aberration are obtained as the refractive index increases.

When the object is located at a finite distance so, the equations for the shape factor and residual 
spherical aberration are more complex. Recalling that the magnification m is the ratio of the object 
distance to the image distance and that the object distance is negative if the object lies to the left of 
the lens, the relationship between the object distance and the magnification is

1
1s

m
mo

(28)

where m is negative if the object distance and the lens power have opposite signs. The term 1/so
represents the reduced or -normalized reciprocal object distance , that is, so is measured in units 
of focal length 1. The shape factor for minimum spherical aberration is given by

n n
n

n
n

m
m

( )
( )

( )2 1
2 2

2 1
2 1

2

(29)

and the resultant third-order spherical aberration of the marginal ray in angular units is
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where FN is the effective focal length of the lens f divided by its entrance pupil diameter. When the 
object is located at infinity, the magnification becomes zero and the above two equations reduce to 
those previously given.

Figure 6 illustrates the variation in shape factor as a function of  for refractive indices of 1.5 to 4 
for an FN  1. As can be seen from the figure, lenses have a shape factor of 0.5 regardless of the 
refractive index when the magnification is 1 or 0.5. For this shape factor, all lenses have 
biconvex surfaces with equal radii. When the object is at infinity and the refractive index is 4, 
lenses have a meniscus shape toward the image. For a lens with a refractive index of 1.5, the shape 
is somewhat biconvex, with the second surface having a radius about 6 times greater than the first 
surface radius.

Since the minimum-spherical lens shape is selected for a specific magnification, the spheri-
cal aberration will vary as the object-image conjugates are adjusted. For example, a lens having a 
refractive index of 1.5 and configured for m  0 exhibits a substantial increase in spherical aberra-
tion when the lens is used at a magnification of 1. Figure 7 illustrates the variation in the angular 
spherical aberration as both a function of refractive index and reciprocal object distance when the 
lens bending is for minimum spherical aberration with the object located at infinity. As can be 
observed from Fig. 7, the ratio of the spherical aberration, when m 0.5 and m  0, increases as n
increases. Figure 8 shows the variation in angular spherical aberration when the lens bending is for 
minimum spherical aberration at a magnification of 1. In a like manner, Fig. 9 presents the varia-
tion in angular spherical aberration for a convex-plano lens with the plano side facing the image. 
The figure can also be used when the lens is reversed by simply replacing the object distance with 
the image distance.

Figures 7 to 9 may provide useful guidance in setting up experiments when the three forms of 
lenses are available. The so-called “off-the-shelf ” lenses that are readily available from a number of 
vendors often have the convex-plano, equal-radii biconvex, and minimum spherical shapes.

Figure 10 shows the relationship between the third-order spherical aberration and coma, and the 
shape factor for a thin lens with a refractive index of 1.5, stop in contact, and the object at infinity. 
The coma is near zero at the minimum spherical aberration shape. The shape of the lens as a func-
tion of shape factor is shown at the top of the figure.
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FIGURE 6 The shape factor for a single lens is shown for several 
refractive indexes as a function of reciprocal object distance  where 
the distance is measured in units of focal length.
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FIGURE 7 Variation of angular spherical aberration as a func-
tion of reciprocal object distance  for various refractive indices when 
the lens is shaped for minimum spherical aberration with the object at 
infinity. Spherical aberration for a specific FN is determined by dividing 
the aberration value shown by (FN)3.
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aberration value shown by (FN)3.
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FIGURE 9 Variation of angular spherical aberration as a function 
of reciprocal object distance  for various refractive indices when the 
lens has a convex-plano shape with the plano side facing the object. 
Spherical aberration for a specific FN is determined by dividing the 
aberration value shown by (FN)3.
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FIGURE 10 Variation of spherical aberration (solid curve) 
and coma (dashed line) as a function of shape factor for a thin 
lens with a refractive index of 1.5, stop in contact with the lens, 
and the object at infinity. The shape of the lens as the shape fac-
tor changes is shown at the top of the figure.
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For certain cases, it is desirable to have a single lens with no spherical aberration. A useful form 
is the plano-convex, with the plano side facing the object, if the convex side is figured as a conic 
surface with a conic constant of n2. Caution should be exercised when using this lens form at other 
than infinite object distances; however, imaging at finite conjugates can be accomplished by using 
two lenses with their plano surfaces facing one another and the magnification being determined by 
the ratio of the focal lengths. It should be noted that for this lens form, the actual thickness of the 
lenses is not important and that the inclusion of the conic surface does not alter the focal length.

The off-axis performance of a lens shaped for minimum spherical aberration with the object at 
infinity can be estimated by using the following equations. Assuming that the stop is in contact with 
the lens, the third-order angular sagittal coma is given by

CMA
FNs n16 2 2( )( )

(31)

where the field angle  is expressed in radians. The tangential coma is three times the sagittal coma or 
CMAt  3 · CMAs. The diameter of the angular astigmatic blur formed at best focus is expressed by

AST
FN

2
(32)

The best focus location lies midway between the sagittal and tangential foci. An estimate of the axial 
angular chromatic aberration is given by

AChr
FN
1

2V( )
(33)

where V is the Abbe number of the glass and V  (n2 1)/(n3 n1) with n1 n2 n3.
If a singlet is made with a conic or fourth-order surface, the spherical aberration is corrected by 

the aspheric surface, and the bending can be used to remove the coma. With the stop in contact with 
the lens, the residual astigmatism and chromatic errors remain as expressed by the preceding equa-
tions. Figure 11 depicts the shapes of such singlets for refractive indices of 1.5, 2, 3, and 4. Each lens 
has a unity focal length and an FN of 10. Table 1 presents the prescription of each lens where CC2 is 
the conic constant of the second surface.

The optical center of a thick lens is located where a nodal ray crosses the optical axis of the lens. A 
nodal ray is aimed at the first nodal point, passes through the lens undeviated (although translated), 
and appears to emerge from the lens from the second nodal point. It can be shown that the distance 
from the first surface vertex to the optical center is t c c/ /[ ( )]1 1 2  where t is the thickness of the lens. 

FIGURE 11 Variation of shape of singlets when the 
spherical aberration is corrected by the conic constant and 
the coma by the bending .
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A remarkable property of the optical center is its wavelength independence (n does not appear in 
the preceding equation). This means that the spatial position of the optical center is fixed, where in 
contrast, the spatial positions of the six cardinal points are a function of wavelength because of their 
dependence upon n.

The optical center point (plane) is conjugate with the nodal points (planes); however, while the 
nodal points are related by unit angular magnification, the nodal-point to optical-center magnifica-
tion (mOC) is not necessarily unity. In general, mOC is the ratio of the nodal ray slope angles at the 
first nodal point and the optical center. For a single thick lens, the magnification mOC can be readily 
shown to be given by

m r r N r r t NOC /( ) [ ( ) ( )]1 2 1 2 1

All rotationally symmetric lenses have an optical center just as they possess the six cardinal points. 
Since the optical center is conjugate with N1 and N2, the optical center can justifiably be considered 
also as a cardinal point. Should the aperture stop be located at the optical center, then the entrance 
pupil will be located at the first nodal point and the exit pupil will be located at the second nodal 
point with a unity pupil magnification. This statement is true whether the lens is of symmetrical or 
unsymmetrical design. When n no i , the exit pupil magnification will be n no i/  rather than unity. 

17.11  LANDSCAPE LENSES AND THE INFLUENCE 
OF STOP POSITION

The first lens used for photography was designed in 1812 by the English scientist W. H. 
Wollaston about a quarter of a century before the invention of photography. He discovered 
that a meniscus lens with its concave surface toward the object could produce a much flatter 
image field than the simple biconvex lens commonly used at that time in the camera obscu-
ras. This lens became known as the landscape lens and is illustrated in Fig. 12. Wollaston 

TABLE 1 Prescription of Singlets Corrected for Both Spherical Aberration 
and Coma

Lens R1 Thickness R2 Index CC2

 a 0.55143 0.025 5.27966 1.5 673.543
 b 0.74715 0.025 2.90553 2.0 23.2435
 c 0.88729 0.025 1.56487 3.0 0.86904
 d 0.93648 0.025 1.33421 4.0 0.24340

FIGURE 12 Landscape lens with the 
aperture stop located to the left of the lens.
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realized that if the stop was placed an appropriate amount in front of the lens and the 
F-number was made to be modest, the image quality would be improved significantly over the 
biconvex lens.

The rationale for this can be readily seen by considering the influence on the residual aber-
rations of the lens by movement of the stop. Functionally, the stop allows certain rays in the 
oblique beam to pass through it while rejecting the rest. By simple inspection, it is clear that the 
movement of the stop (assuming a constant FN is maintained) will not affect the axial aberra-
tions, while the oblique aberrations will be changed. In order to understand the influence of 
stop movement on the image quality, a graphical method was devised by R. Kingslake in which 
he traced a number of rays in the meridional plane at a given obliquity angle as illustrated in 
Fig. 13. A plot is generated that relates the intercept height of each real ray at the image plane 
Hi to the distance sp from the intersection of the ray with optical axis P to the front surface of 
the lens. Each ray can be viewed as the principal ray when the stop is located at the intersection 
point P. This Hi sp plot provides significant insight into the effect upon image quality incurred 
by placement of the stop. The shape of the curve provides information about the spherical aber-
ration, coma, tangential field curvature, and distortion. Spherical aberration is indicated by an 
S-shaped curve, while the curvature at the principal ray point is a gauge of the coma. The coma 
is zero at inflection points. When the curve is a straight line, both coma and spherical aberra-
tion are essentially absent. The slope of the curve at the principal ray point is a measure of the 
tangential field curvature or the sag of the tangential field, that is, astigmatism. The difference 
in height of the real and gaussian principal rays in the image plane is distortion. For situations 
where the curve does not exhibit spherical aberration, it is impossible to correct the coma by 
shifting the stop.

Since a simple meniscus lens has stop position and lens bending as degrees of freedom, only 
two aberrations can be corrected. Typically, coma and tangential field curvature are chosen to be 
corrected, while axial aberrations are controlled by adjusting the FN of the lens. The Hi sp plot 
for the lens shown in Fig. 13 is presented in Fig. 14, where the field angle is 10° and the image 
height is expressed as a percent of the gaussian image height. The lens has a unity focal length, 

P

sp

FIGURE 13 Rays traced at a given obliquity where the intersection of a given ray 
with the optical axis is P, located a distance sp from the front surface of the lens.



LENSES 17.19

and the lens diameter is 0.275. Table 2 contains the prescription of the lens. Examination of this 
graph indicates that the best selection for stop location is when the stop is located at sp 0.1505 
(left of the lens). For this selection, the coma and tangential astigmatism will be zero since the 
slope of the curve is zero and an inflection point is located at this stop position. Figure 15 shows 
the astigmatic field curves which clearly demonstrate the flat tangential image field for all field 
angles. Other aberrations cannot be controlled and must consequently be tolerated. When this 
lens is used at F/11, the angular blur diameter is less than 300 rad. It should be noted that this 
condition is generally valid for only the evaluated field-angle obliquity and will likely be differ-
ent at other field angles. Nevertheless, the performance of this lens is often acceptable for many 
applications.

An alternate configuration can be used where the lens is in front of the stop. Such configuration 
is used to conserve space since the stop would be located between the lens and the image. The opti-
cal performance is typically poorer due to greater residual spherical aberration.

The principle demonstrated by the Hi sp plot can be applied to lenses of any complexity as a 
means to locate the proper stop position. It should be noted that movement of the stop will not 
affect the coma if spherical aberration is absent nor will astigmatism be affected if both spherical 
aberration and coma have been eliminated.

FIGURE 14 The image height Hi of each ray traced in 
Fig. 13 is plotted against the intersection length sp to form the 
Hi sp plot. Hi is expressed as a percent of the gaussian image 
height as a direct measure of distortion.

TABLE 2 Prescription of Landscape Lens Shown in Fig. 13

Surface no. Radius Thickness Index Comment

     1 Infinite 0.15050 1.0 Stop
     2 0.45759 0.03419 1.51680 BK7
     3 0.24887 0.99843 1.0
     4 Infinite   Image
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17.12  TWO-LENS SYSTEMS

Figure 16 illustrates the general imaging problem where an image is formed of an object by two 
lenses at a specified magnification and object-to-image distance. Most imaging problems can be 
solved by using two equivalent lens elements. An equivalent lens can comprise one lens or multiple 
lenses and may be represented by the principal planes and power of a single thick lens. All distances 
are measured from the principal points of each equivalent lens element. For simplicity, the lenses 
shown in Fig. 16 are thin lenses. If the magnification m, object-image distance s, and lens powers a
and b are known, then the equations for s1, s2, and s3 are given by

s
s s m
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s
s sm m
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a b

a b

1
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1 1

4

( )

( ) ( 1 2

2

3 1 2

)

s m

s s s s

a b

(34)

The equation for s2 indicates that zero, one, or two solutions may exist.

FIGURE 15 Astigmatic field curves for the landscape lens 
having the stop located at the zero slope location on the Hi sp
plot in Fig. 14, which is the flat tangential field position. S repre-
sents the sagittal astigmatic focus while T indicates the tangential 
astigmatic focus.
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If the magnification and the distances are known, then the lens powers can be determined by

a

s s s m

ms s

( )( )1 2

1 2

1

and

b

s s m

s s s s
1

2 1 2

1( )

( )
(35)

It can be shown that only certain pairs of lens powers can satisfy the magnification and separation 
requirements. Commonly, only the magnification and object-image distance are specified with the 
selection of the lens powers and locations to be determined. By utilizing the preceding equations, a 
plot of regions of all possible lens power pairs can be generated. Such a plot is shown as the shaded 
region in Fig. 17 where s  1 and m 0.2.

FIGURE 16 General imaging problem where the image is formed by two separated 
lenses.

FIGURE 17 Shaded regions indicate all possible power 
pairs for the two lenses used for imaging. The solution space 
may be limited by physical considerations such as maximum 
aperture.
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Examination of this plot can assist in the selection of lenses that may likely produce better per-
formance by, for example, selecting the minimum power lenses. The potential solution space may be 
limited by placing various physical constraints on the lens system. For example, the allowable lens 
diameters can dictate the maximum powers that are reasonable. Lines of maximum power can then 
be plotted to show the solution space.

When s1 becomes very large compared to the effective focal length ef l of the lens combination, 
the optical power of the combination of these lenses is expressed by

ab a b a bs2 (36)

The effective focal length is ab
1 or

f
f f

f f sab
a b

a b 2

(37)

and the back focal length is given by

bf l f
f s

fab
a

a

2 (38)

The separation between lenses is expressed by

s f f
f f

fa b
a b

ab
2 (39)

Figure 18 illustrates the two-lens configuration when thick lenses are used. The principal points for 
the lens combination are denoted by P1 and P2, Pa1 and Pa2 for lens a, and Pb1 and Pb2 for lens b. The 
distance between the principal points of a lens is called a hiatus. With the exception of the back focal 
length, all distances are measured from the principal points of each lens element or the combined lens 
system, as shown in the figure. For example, s2 is the distance from Pa2 to Pb1. The bf l is measured from 
the final surface vertex of the lens system to the focal point.

17.13 ACHROMATIC DOUBLETS

The singlet lens suffers from axial chromatic aberration, which is determined by the Abbe number 
V of the lens material and its FN. A widely used lens form that corrects this aberration is the ach-
romatic doublet as illustrated in Fig. 19. An achromatic lens has equal focal lengths in c and f light. 

First principal
plane of system

Second principal
plane of system

Focal
point

bf ls2

P1 P2 Pb1Pb2Pa1

a b

Pa2

fab or e f l

FIGURE 18 Combination of two thick lenses illustrating the principal 
points of each lens and the system, the fab or efl, and the bfl. Distances are mea-
sured from the principal points with the exception of the bfl.
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This lens comprises two lens elements where one element with a high V-number (crown glass) has 
the same power sign as the doublet and the other element has a low V-number (flint glass) with 
opposite power sign. Three basic configurations are used. These are the cemented doublet, broken 
contact doublet, and the widely airspaced doublet (dialyte). The degrees of freedom are two lens 
powers, glasses, and shape of each lens.

The resultant power of two thin lenses in close proximity, s2  0, is ab a b and the trans-
verse primary chromatic aberration TPAC is

TPAC yf
V Vab

a

a

b

b

(40)

where y is the marginal ray height. Setting TPAC  0 and solving for the powers of the lenses yields

a
a

ab a b

V

f V V( )
(41)

and

b
b a

a

V

V
(42)

The bending or shape of a lens is expressed by c c1 c2 and affects the aberrations of the lens. The bend-
ing of each lens is related to its power by ca a/(na  1) and cb b(nb  1). Since the two bendings can 
be used to correct the third-order spherical and coma, the equations for these aberrations can be com-
bined to form a quadratic equation in terms of the curvature of the first surface c1. Solving for c1 will yield 
zero, one, or two solutions for the first lens. A linear equation relates c1 to c2 of the second lens.

While maintaining the achromatic correction of a doublet, the spherical aberration as a function 
of its shape (c1) is described by a parabolic curve. Depending upon the choices of glasses, the peak of 
the curve may be above, below, or at the zero spherical aberration value. When the peak lies in the 
positive spherical aberration region, two solutions with zero spherical aberration exist in which the 
solution with the smaller value of c1 is called the left-hand solution (Fraunhofer or Steinheil forms) 
and the other is called the right-hand solution (Gaussian form). Two additional solutions are pos-
sible by reversal of the glasses. These two classes of designs are denoted as crown-in-front and 
flint-in-front designs. Depending upon the particular design requirements, one should examine all 
four configurations to select the most appropriate. The spherical aberration curve can be raised or 
lowered by the selection of the V difference or the n difference. Specifically, the curve will be lowered 
as the V difference is increased or if the n difference is reduced. As for the thin singlet lens, the coma 
will be zero for the configuration corresponding to the peak of the spherical aberration curve.

Although the primary chromatic aberration may be corrected, a residual chromatic error often 
remains and is called the secondary spectrum, which is the difference between the ray intercepts in 
d and c spectral lines. Figure 20a illustrates an F/5 airspaced doublet that exhibits well-corrected 
spherical light and primary chromatic aberrations and has notable secondary color. The angular 
secondary spectrum for an achromatic thin-lens doublet is given by

SAC
FN

( )

( )( )

P P

V V
a b

a b2
(43)

FIGURE 19 Typical achromatic doublet lens.
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where P  (n nc)(nf nc) is the partial dispersion of a lens material. In general, the ratio (Pa
Pb)/(Va Vb) is nearly a constant which means little can be done to correct the SAC. A few 

glasses exist that allow Pa Pb  0, but the Va Vb is often small, which results in lens element 
powers of rather excessive strength in order to achieve achromatism. Figure 20b shows an F/5 
airspaced doublet using a relatively new pair of glasses that have a small Pa Pb and a more 
typical Va Vb. Both the primary and secondary chromatic aberration are well corrected. 
Due to the relatively low refractive index of the crown glass, the higher power of the ele-
ments results in spherical aberration through the seventh order. Almost no spherochromatism 
(variation of spherical aberration with wavelength) is observed. The 80 percent blur diameter 
is almost the same for both lenses and is 0.007. Table 3 contains the prescriptions for these 
lenses.

FIGURE 20 An F/5 airspaced doublet using conventional glasses 
is shown in (a) and exhibits residual secondary chromatic aberration. A 
similar lens is shown in (b) that uses a new glass to effectively eliminate the 
secondary color.

TABLE 3 Prescriptions for Achromatic Doublets Shown 
in Fig. 20

Achromatic Doublet—1

Surface No. Radius Thickness Glass

    1 49.331 6.000 BK7 517:642
    2 52.351 4.044 Air
    3 43.888 2.000 SF1 717:295
    4 141.706  Air

Achromatic Doublet—2

Surface No. Radius Thickness Glass

    1 23.457 6.000 FK03 439:950
    2 24.822 1.059 Air
    3 22.516 3.000 BK7 517:642
    4 94.310  Air
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When the separation between the lens elements is made a finite value, the resultant lens is 
known as a dialyte and is illustrated in Fig. 21. As the lenses are separated by a distance sd , the 
power of the flint or negative lens increases rapidly. The distance sd may be expressed as a frac-
tion of the crown-lens focal length by p sd /fa. Requiring the chromatic aberration to be zero 
implies that

y

f V

y

f V
a

a a

b

b b

2 2

0 (44)

By inspection of the figure and the definition of p, it is evident that yb ya(1 p) from which it fol-
lows that

f V f V pb b a a( )1 2 (45)

The total power of the dialyte is

a b p( )1 (46)

Solving for the focal lengths of the lenses yields
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1 1
1

(48)

The power of both lenses increases as p increases.
The typical dialyte lens suffers from residual secondary spectrum; however, it is possible to 

design an airspaced achromatic doublet with only one glass type that has significantly reduced sec-
ondary spectrum. Letting Va Vb results in the former equations becoming

f
pf

p
f pf p s pf f pa

ab
b ab d a ab1

1 1( ) ( )bf l (49)

When fab  0, then p must be greater than unity, which means that the lens is quite long. The 
focal point lies between the two lenses, which reduces its general usefulness. This type of 
lens is known as the Schupmann lens, based upon his research in the late 1890s. Several sig-
nificant telescopes, as well as eyepieces, have employed this configuraton. For fab  0, the lens 
can be made rather compact and is sometimes used as the rear component of some telephoto 
lenses.

sd

a

b

yb

bf l

ya

FIGURE 21 Widely separated achromatic doublet known as the dialyte lens.
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17.14 TRIPLET LENSES

In 1893, a new type of triplet lens for photographic applications was invented by the English 
designer H. Dennis Taylor. He realized that the power of two lenses in contact of equal, but oppo-
site, power is zero, as is its Petzval sum. As the lenses are separated, the system power becomes posi-
tive since the negative lens contributes less power. The Petzval sum remains zero, since it does not 
depend upon the marginal ray height. In order to overcome the large aberrations of such a configu-
ration, Taylor split the positive lens into two positive lenses and placed one on each side of the nega-
tive lens. A stop is often located between the negative and rear-positive lenses. Figure 22 illustrates a 
typical triplet lens. The triplet can be used at reasonably large apertures ( F/4) and moderately large 
fields of view ( 25°).

The triplet has eight degrees of freedom which are the three powers, two airspaces, and three lens 
bendings. The lens powers and airspaces are used to control the axial and lateral chromatic aberra-
tions, the Petzval sum, the focal length, and the ratio of the airspaces. Spherical aberration, coma, 
and astigmatism are corrected by the lens bendings. Distortion is usually controlled by the airspace 
ratio or the choice of glasses. Consequently, the triplet has exactly the number of degrees of freedom 
to allow correction of the basic aberrations and maintain the focal length.

The design of a triplet is somewhat difficult since a change of any surface affects every aber-
ration. The choice of glass is important and impacts the relative aperture, field of view, and 
overall length. For example, a large V produces a long system. It should be noted that a triplet 
corrected for third-order aberrations by using the degrees of freedom almost always leads to 
a lens with poor performance. A designer normally leaves a certain amount of residual third-
order aberrations to balance the higher-order terms. The process for thin-lens predesign is 
beyond the scope of this Handbook; however, it may be found in various references comprising 
the bibliography.

A few years later, Paul Rudolph of Zeiss developed the Tessar, which resembles the triplet, 
with the rear lens replaced by an achromatic doublet. The Tessar shown in Fig. 23 was an evolu-
tion of Rudolph’s anastigmats which were achromatic lenses located about a central stop. The 
advantage of the achromatic rear component is that it allows reduction of the zonal spherical 
aberration and the oblique spherical aberration, and reduces the separation of the astigmatic foci 
at other than the design maximum field angle. Performance of the Tessar is quite good and has 
generally larger relative apertures at equivalent field angles than the triplet. A variety of lenses 
were derived from the triplet and the Tessar in which the component lenses were made into dou-
blets or cemented triplets.

17.15 SYMMETRICAL LENSES

In the early 1840s, it was recognized that lenses that exhibit symmetry afford various benefits to 
the lens designer. The first aberration acknowledged to be corrected by the symmetry principle 
was distortion. It can also be shown that coma and lateral color are necessarily corrected by 
a symmetrical lens construction. Although the principle of symmetry implies that the lens be 

FIGURE 22 Typical triplet lens.
FIGURE 23 Typical Tessar lens.
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operated at a magnification of 1, the degree to which the aberrations are upset by utilizing the 
lens at other conjugates is remarkably small. This principle forms the basis of most wide-field-
of-view lenses.

One of the earliest symmetrical lenses was the Periscopic (Periskop) lens invented by C. A. 
Steinheil in 1865. Figure 24 shows an F/11 Periscopic lens constructed from the landscape lens 
discussed previously. Symmetry corrects for coma and distortion, while the spacing of the lenses 
and their shapes are selected to produce a flat tangential astigmatic field. Since the stop position for 
the landscape lens was chosen to yield a flat tangential astigmatic field, essentially no change in the 
lens separation is necessary even though the Periscopic lens is being used at infinite conjugates. No 
correction for spherical aberration can be made. When used at other than unit magnification, some 
optical improvement can be achieved by making the stop slightly asymmetrical and/or having a dif-
ferent shape for the front or rear lens. This lens has continued to find application throughout this 
century.

By 1866, Dallmeyer in England and Steinheil and von Seidel in Germany both invented the 
Rapid Rectilinear lens that could be used at apertures of up to F/6. The lens has two cemented ach-
romats about a central stop. Use of the doublet allows correction of the axial chromatic and spheri-
cal aberrations. Glass selection is of importance in the design. Typically, the n between the glasses 
should be large while the V should be relatively small. The positive lens is located nearest the stop 
and has the lower refractive index. A notable characteristic of the lens is that the aberrations are rea-
sonably stable over a broad range of object distances.

It should be noted that vignetting is often used in these and other lens types to control the higher-
order aberrations that are often observed at large field angles. Although a loss in illumination occurs, 
the gain in resolution is often worthwhile.

The airspaced dialyte lens comprises four lenses symmetrically arranged about a central stop. 
The rear portion of the lens is an achromatic doublet that has five degrees of freedom (an air 
space, two powers, and two bendings) which may be used to control the focal length, spheri-
cal aberration, axial chromatic aberration, astigmatism, and the Petzval sum. With a like pair 
of lenses mounted in front of the stop, the symmetry corrects the coma, distortion, and lateral 
color. When used at infinite conjugates, the resultant residuals of the aberrations can be con-
trolled by deviating somewhat from perfect symmetry of the air spaces about the stop. Lenses of 
this type can provide useful performance with apertures approaching F/4 and fields of view of 
about 20  or so.

17.16 DOUBLE-GAUSS LENSES

In the early 1800s, Gauss described a telescope objective comprising a pair of meniscus lenses with one 
having positive power and the other negative power. An interesting aspect of his lens is that the sphero-
chromatism is essentially constant. Although this lens found little acceptance, in 1888, Alvan Clark of 
Massachusetts placed a pair of the Gauss lenses around a central stop to create a high-aperture, wide-
field-of-view lens. This lens form is known as the Double-Gauss lens and is the basis of almost every 

FIGURE 24 The periscopic lens illustrates the 
earliest form of symmetrical lenses. It is formed by plac-
ing two landscape lenses about a central stop. Symmetry 
removes the aberrations of coma, distortion, and lateral 
color.
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high-aperture lens developed to date. An example of this lens was patented by Richter in 1933 and 
can cover a field of view of 45  at F/6.

In 1896, Paul Rudolph of Zeiss developed the Planar which reduces the often serious oblique 
spherical aberration and the separation of the astigmatic foci at intermediate field angles. 
Rudolph placed a buried surface into the thick negative elements to control the chromatic aber-
ration. A buried surface is defined as the interface between two glasses that have the same refrac-
tive index nd at the central wavelength, but have significantly different Abbe numbers. Such a 
surface has no effect upon the monochromatic aberrations or the lens system power, but does 
allow the inclusion of a wide range of chromatic aberration to compensate for that caused by the 
rest of the lens.

Many Double-Gauss lenses are symmetrical; however, it was discovered that if the lens was made 
unsymmetrical, then an improvement in performance could be realized. This lens form is often 
called the Biotar. A large portion of 35-mm camera lenses are based upon this design form or some 
modification thereof. Figure 25 shows the configuration of the Leica Summitar introduced in 1939.

It is the general nature of meniscus lens systems of this type to exhibit little coma, distortion, or 
lateral color; however, oblique spherical aberration is often observed to increase to significant levels 
as the field angle increases. Oblique spherical aberration can be recognized in transverse ray plots as 
the S shape of spherical aberration, but with the S becoming increasingly stronger as the field angle 
increases. As the aperture is increased beyond about F/8, the outer negative elements must be thick-
ened dramatically and achromatic surfaces must necessarily be included.

17.17 PETZVAL LENSES

In 1839, Petzval designed a new type of lens that comprises a front objective with an achromatic, 
airspaced doublet as the rear elements. The Petzval lens has found great application in projectors 
and as a portrait lens. Both spherical aberration and coma can be well-corrected, but the lens con-
figuration causes the Petzval sum to be undercorrected, which results in the field of view being 
limited by the astigmatism. The Petzval-field curves inward and may be corrected by including 
a field flattener lens in close proximity to the image plane. A typical example of a Petzval lens is 
shown in Fig. 26.

FIGURE 25 Unsymmetrical Double-Gauss or 
Biotar lens introduced as the Leica Summitar in 1939.

FIGURE 26 Typical Petzval lens.
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17.18 TELEPHOTO LENSES

A telephoto lens provides an effective focal length efl that is longer than its overall length sol as mea-
sured from the front of the lens to the image plane. The telephoto ratio is defined as sol/efl, thus a 
lens with a ratio less than one is a telephoto lens. The basic concept of a telephoto lens is illustrated 
by the dialyte lens configuration in which a negative lens is inserted between the objective lens and 
the image plane. This concept goes back to Kepler, but Peter Barlow developed the idea in the early 
1800s by including a negative achromat in telescopes to increase their magnification. Barlow type 
lenses are widely used today. As the telephoto ratio is made smaller, the design of the lens becomes 
more difficult, primarily due to the Petzval sum increasing.

When most telephoto lenses are used to view objects that are relatively close, the image qual-
ity degrades rapidly due to the typical unsymmetrical lens configuration. Some modern telephoto 
lenses include one or more elements that move as the lens is focused for the purpose of aberration 
correction.

17.19 INVERTED OR REVERSE TELEPHOTO LENSES

A reverse telephoto lens has a telephoto ratio greater than unity and exhibits a shorter focal length 
than its overall length, a larger bf l than is provided by normal lenses of the same ef l, lenses with 
generally large apertures and wide fields of view, and lens elements of physically larger size that allow 
easier manufacture and handling. The basic configuration has a large negative lens located in front of 
a positive objective lens. Since the negative lens makes the object appear closer to the objective lens, 
the resultant image moves beyond the focal point, thereby making the bfl greater than the efl.

An extreme form of the reverse telephoto lens is the fish-eye or sky lens. Such lenses have a total 
field of view of 180° or more. The image formed by these lenses has very large barrel distortion. 
Recalling that the image height for a distortionless lens on a flat image surface is f tan , the reverse 
telephoto lens has mapping relationships such as f  and f sin . When the barrel distortion is given 
by f sin , the illumination across the image will be constant if such effects as vignetting and stop/
pupil distortion are absent. Barrel distortion has the effect of compressing the outer portions of the 
image toward the central portion, thereby increasing the flux density appropriately.

After World War II, the Russian designer M. M. Roosinov patented a double-ended reverse-
telephoto lens that was nearly symmetrical with large negative lenses surrounding a pair of positive 
lenses with a central stop. Although the back focal length is quite short, it provides relatively large 
aperture with a wide field of view and essentially no distortion. Lenses of this type have found sig-
nificant use in aerial photography and photogrammetry.

17.20 PERFORMANCE OF REPRESENTATIVE LENSES

Figures 27 to 38 present the performance of lenses, selected generally from the patent literature, 
representing a variety of lens types. The measures of performance provided in each figure have been 
selected for utilization purposes. Diffraction effects have not been included.

Each figure is divided into four sections a to d. Section a is a drawing of the lens showing the aper-
ture stop. Section b contains two set of plots. The solid line is for the distortion versus field of view 
( ) in degrees while the dashed lines show the transmission of the lens versus field of view for three 
F-numbers. Transmission in this case is one minus the fractional vignetting. No loss for coatings, 
surface reflection, absorption, and the like is included. The rms diameter of the geometric point 
source image versus field-of-view for three F-numbers is presented in section c. The spot sizes are 
in angular units and were calculated for the central wavelength only, that is, monochromatic values. 
Note that the ordinate is logarithmic. The final section, d, contains angular transverse ray plots in 
all three colors for both the on-axis and near-extreme field angles with yep being measured in the 
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FIGURE 27 Rapid Rectlinear: This lens is an aplanat which is symmetrical with the rear half corrected 
for spherical aberration and flat tangential field. A compact configuration is realized by having a large amount 
of coma in each half. Symmetry removes the lens system coma, distortion, and lateral color. This type of lens is 
one of the most popular camera lenses ever made.
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FIGURE 28 Celor : F/5.6 with 50  total field of view. Also known as an airspaced dialyte lens. (After 
R . Kingslake, Lens Design Fundamentals, Academic Press, New York, 1978, p. 243.)
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FIGURE 29 Symmetrical double anastigmat or gauss homocentric objective: basic form of Double-
Gauss lens using a pair of gauss telescope objectives. First patented by Alvan Clark in 1888, USP 399,499. 
(After R. Kingslake, Lens Design Fundamentals, Academic Press New York, 1978, pp. 224–250.)
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FIGURE 30 Triplet: F/2.8 with 50° total field of view. (Tronnier, USP 3,176,582.)
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FIGURE 31 Tessar: F/4 with 50° total field of view. (Tronnier, USP 2,084,714, 1937.)
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FIGURE 32 Unsymmetrical Double-Gauss: This lens was designed in 1933 for Leitz and was called 
the Summar. F/2 with 60° total field of view. This lens was replaced by the Leitz Summitar in 1939, due 
to rapidly degrading off-axis resolution and vignetting. Compare this lens with the lens shown in Fig. 33. 
(Tronnier, USP 2,673,491.)
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FIGURE 33 Unsymmetrical Double-Gauss: This lens type was designed in 1939 for Leitz and was 
called the F/2 Summitar. Kodak had a similar lens called the F/1.9 Ektar. A later example of this design 
form is shown and operates at F/1.4 with 30° total field of view. (Klemp, USP 3,005,379.)
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FIGURE 34 Unsymmetrical Double-Gauss: F/1.75 with 50° total field of view. Similar to the 1949 
Leitz F/1.5 Summarit. This lens has a split rear element which produces improved resolution of the 
field of view and less vignetting than the earlier Summar type lens. (Cook, USP 2,959,102.)
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FIGURE 35 Unsymmetrical Double-Gauss: F/5.6 with 70  field of view. This lens is a variant of 
the 1933 Zeiss F/6.3 Topogon (USP 2,031,792)  and is the Bausch & Lomb Metrogon. The principal dif-
ference is the splitting of the front element. (Rayton, USP 2,325,275.)
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FIGURE 36 Reverse Telephoto: This lens was developed by Zeiss in 1951 and is known as the 
Biogon. It operates at F/2.8 with 70  field of view. This lens comprises two reverse-telephoto objectives 
about a central stop. (Bertele, USP 2,721,499.)
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FIGURE 37 Petzval: Example of Kodak projector lens operating at F/1.4 with 24  total 
field of view. The front lens group has its power shared between a cemented doublet and a sin-
glet for aberration correction. Note that the aperture stop is located between the front and rear 
groups rather than the more common location at the front group. Resolution in the region near 
the optical axis is very good although it falls off roughly exponentially. The limiting aberrations 
are oblique spherical and cubic coma. (Schade, USP 2,541,484.)
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FIGURE 38 Fish-eye: The Hill Sky lens was manufactured by Beck of London in 1924. 
The lens has moderate resolution and enormous distortion characteristic of this type of lens. 
(Merte, USP 2,126,126.)
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entrance pupil. The lower right plot shows the axial aberrations while the upper left plot represents 
the tangential/meridional aberrations and the upper right plot presents the sagittal aberrations. 
The X included on some of the tangential plots represents the location of the paraxial principal ray 
which also provides a measure of the distortion. The legend indicating the relationship between line 
type and wavelength is included.

The linear spot size is computed by multiplying the ef l by the angular spot size. This value can 
be compared against the diffraction-limited spot size given by 2.44( /Dep). If the geometric spot 
is several times smaller than the diffraction-limited spot, then the lens may be considered to be 
diffraction-limited for most purposes. If the geometric spot is several times larger, then the lens per-
formance is controlled by the geometric spot size for most applications.

17.21 RAPID ESTIMATION OF LENS PERFORMANCE

Singlet

Figure 39 is a nomogram that allows quick estimation of the performance of a single refracting 
lens, with the stop at the lens, as a function of refractive index N, dispersion V, F-number, and field 
of view . Chart A estimates the angular blur diameter  resulting from a singlet with bending for 
minimum spherical aberration. The angular chromatic blur diameter is given by Chart B. The three 
rows of FN values below the chart represent the angular blur diameter that contains the indicated 
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FIGURE 39 Estimation of single lens spot size as a function of refractive 
index, dispersion, F-number, and field of view. (Smith, Modern Optical Engineering, 
McGraw-Hill, New York, 1990, p. 458.)
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percentage of the total energy. Chart C shows the blur diameter due to astigmatism. Coma for a sin-
glet bent for minimum spherical aberration with the stop at the lens is approximately

16 2( 2) (FN)N
(50)

Depth of Focus

The depth of focus of an optical system is expressed as the axial displacement that the image may 
experience before the resultant image blur becomes excessive. Figure 40 shows the geometric rela-
tionship of the angular blur tolerance  to the depth of focus . If the entrance pupil diameter is 
Dep and the image distance is si then the depth of focus is

s

D s
i

i

2

ep

(51)

or when si, the depth of focus becomes

s

D
i
2

ep

(52)

When si f, then

f FN (53)

The depth of field is distance that the object may be moved without causing excessive image blur 
with a fixed image location. The distance at which a lens may be focused such that the depth of field 
extends to infinity is so Dep/  and is called the hyperfocal distance.

If the lens system is diffraction-limited, then the depth of focus according to the Rayleigh crite-
rion is given by

2 2n ui isin
(54)

Diffraction-Limited Lenses

It is well known that the shape of the image irradiance of an incoherent, monochromatic point source 
formed by an aberration-free, circularly-symmetric lens system is described by the Airy pattern

E r C
J kD r

kD r
( )

( )
0

1

2
2 2ep

ep

/
(55)

FIGURE 40 Geometric relationships for determining the geometric 
depth of focus of a lens .
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where J1 is the first-order Bessel function of the first kind, Dep is the diameter of the entrance pupil, 
k is 2 / , r is the radial distance from the center of the image to the observation point, and C0 is a 
scaling factor. The angular radius DL of the first dark ring of the image is 1.22( /Dep). A common 
measure for the resolution is Lord Rayleigh’s criterion that asserts that two point sources are just 
resolvable when the maximum of one Airy pattern coincides with the first dark ring of the second 
Airy pattern, that is, an angular separation of DL. Figure 41 presents a nomogram that can be used 
to make a rapid estimate of the diameter of angular or linear blur for a diffraction-limited system.

The modulation transfer function (MTF) at a specific wavelength for a circular entrance pupil 
can be computed by

MTF arccos for
2

1 0 12 (56)

where  is the normalized spatial frequency (v/vco) with the maximum or cut-off frequency vco
being be by 1/ o FN.
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FIGURE 41 Estimation of the spot diameter for a diffraction-limited lens system. The diameter is that of 
the first dark ring of the Airy disk. (Smith, Modern Optical Engineering, McGraw-Hill, New York, 1990, p. 458.)
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Should the source be polychromatic and the lens system be aberration-free, then the perfect-
image irradiance distribution of a point source can be written as

E r C
J kD r

kD r
d( ) ( )

( )
1 0

1

2
2 2ep

ep

/
(57)

where ( ) is the peak normalized spectral weighting factor and C1 is a scaling factor.
A quick estimation of this ideal irradiance distribution can be made by invoking the central limit 

theorem to approximate this distribution by a Gaussian function, that is,

E r C e r( ) ( )
2

2 22/ (58)

where C2 is a scaling constant and 2 is the estimated variance of the irradiance distribution. 
When ( )  1 in the spectral interval S to L and zero otherwise with s < L, an estimate of can 
be written as

L

Dep

(59)

where  1.335  0.625b 0.025b2  0.0465b3 with b  ( L/ s)  1. Should ( ) / L in the 
spectral interval S to L and zero otherwise, which approximates the behavior of a quantum detec-
tor,  1. 335  0.65b  0.385b2  0.099b3. The Gaussian estimate residual error is less than a few 
percent for b  0.5 and remains useful even as b  0. Figure 42 contains plots of  for both cases 
of ( ), where the abscissa is L/ S. A useful estimation of the modulation transfer function for this 
polychromatic lens system is given by

MTF( )v e v2 2( ) (60)

where v is the spatial frequency. This approximation overestimates the MTF somewhat at lower spa-
tial frequencies, while being rather a close fit at medium and higher spatial frequencies. The reason 
for this is that the central portion of the irradiance distribution is closely matched by the gaussian 
approximation, while the irradiance estimation beyond several Airy radii begins to degrade, there-
fore impacting the lower spatial frequencies. Nevertheless, this approximation can provide useful 
insight into expected performance limits.

FIGURE 42 Variation of  with L/ S or b  1 
for ( )  1 as the solid curve and ( ) / S as the 
dashed curve.
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18.1 GLOSSARY

BFL back focal length

D pupil diameter

ERcp eye relief common pupil position

ERk eye relief keplerian

e exit pupil; eye space

F, F focal points

FFL front focal length

h, h object and image heights

l, l object and image distances

M angular magnification

m linear, lateral magnification

n refractive index

OR object relief

o entrance pupil; object space

P, P principal points

R radius

TTL total length

tan slope

x, y, z cartesian coordinates

z axial separation

18.1

Retired.
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18.2 INTRODUCTION

If collimated (parallel) light rays from an infinitely distant point source fall incident on the input end 
of a lens system, rays exiting from the output end will show one of three characteristics: (1) they will 
converge to a real point focus outside the lens system, (2) they will appear to diverge from a virtual 
point focus within the lens system, or (3) they will emerge as collimated rays that may differ in 
some characteristics from the incident collimated rays. In cases 1 and 2, the paraxial imaging prop-
erties of the lens system can be modeled accurately by a characteristic focal length and a set of fixed 
principal surfaces. Such lens systems might be called focusing or focal lenses, but are usually referred 
to simply as lenses. In case 3, a single finite focal length cannot model the paraxial characteristics 
of the lens system; in effect, the focal length is infinite, with the output focal point an infinite distance 
behind the lens, and the associated principal surface an infinite distance in front of the lens. Such lens 
systems are referred to as afocal, or without focal length. They will be called afocal lenses here, fol-
lowing the common practice of using “lens” to refer to both single element and multielement lens 
systems. They are the topic of this chapter.

The first afocal lens was the galilean telescope (to be described later), a visual telescope made 
famous by Galileo’s astronomical observations. It is now believed to have been invented by Hans 
Lipperhey in 1608.1 Afocal lenses are usually thought of in the context of viewing instruments or 
attachments to change the effective focal length of focusing lenses, whose outputs are always colli-
mated. In fact, afocal lenses can form real images of real objects. A more useful distinction between 
focusing and afocal lenses concerns which optical parameters are fixed, and which can vary in use. 
Focusing lenses have a fixed, finite focal length, can produce real images for a wide range of object 
distances, and have a linear magnification which varies with object distance. Afocal lenses have a 
fixed magnification which is independent of object distance, and the range of object distances yield-
ing real images is severely restricted.

This chapter is divided into six sections, including this introduction. Section 18.3 reviews the 
gaussian (paraxial) image-forming characteristics of afocal lenses and compares them to the 
properties of focusing lenses. The importance of the optical invariant in designing afocal lenses is 
discussed. Section 18.4 reviews the keplerian telescope and its descendants, including both infinite 
conjugate and finite conjugate variants. Section 18.5 discusses the galilean telescope and its descen-
dants. Thin-lens models are used in the Secs. 18.4 and 18.5 to define imaging characteristics and 
design principles for afocal lenses. Section 18.6 reviews relay trains and periscopes. The final section 
reviews reflecting and catadioptric afocal lenses.

This chapter is based on an earlier article by Wetherell.2 That article contains derivations of 
many of the equations appearing here, as well as a more extensive list of patents illustrating different 
types of afocal lens systems.

18.3 GAUSSIAN ANALYSIS OF AFOCAL LENSES

Afocal lenses differ from focusing lenses in ways that are not always obvious. It is useful to review the 
basic image-forming characteristics of focusing lenses before defining the characteristics unique to 
afocal lenses.

Focusing Lenses

In this chapter, all lens elements are assumed to be immersed in air, so that object space and image 
space have the same index of refraction. Points in object space and image space are represented by two 
rectangular coordinate systems (x, y, z) and (x , y , z ), with the prime indicating image space. The 
z- and z  axes form a common line in space, the optical axis of the system. It is assumed, unless noted 
otherwise, that all lens elements are rotationally symmetric with respect to the optical axis. Under 
these conditions, the imaging geometry of a focusing lens can be defined in terms of two principal 
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points P and P , two focal points F and F , and a single characteristic focal length f, as shown in Fig. 1. 
P, P , F, and F  all lie on the optical axis.

The focal points F and F , will be the origins for the coordinate systems (x, y, z) and (x , y , z ). 
If the origins are at P and P , the coordinates will be given as (x, y, s) and (x , y , s ), where s z f
and s z f. Normal right-hand sign conventions are used for each set of coordinates, and light 
travels along the z axis from negative z toward positive z , unless the optical system has internal mir-
rors. Figure la illustrates the terminology for finite conjugate objects.

Object points and image points are assumed to lie in planes normal to the optical axis, for paraxial 
computations. Object distance is specified by the axial distance to the object surface, z or s, and image 
distance by z  or s . The two most commonly used equations relating image distance to object dis-
tance are

1 1 1
s s f

(1)

and

zz f 2 (2)

For infinitely distant object points, z 0 and s f, and the corresponding image points will lie in 
the focal plane at F .

To determine the actual distance from object plane to image plane, it is necessary to know the 
distance sp between P and P . The value of sp is a constant specific to each real lens system, and may 
be either positive [moving object and image further apart than predicted by Eq. (1) or (2)] or nega-
tive (moving them closer together).

FIGURE 1 Imaging geometry of focusing lenses.
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For rotationally symmetric systems, off-axis object and image coordinates can be expressed 
by the object height h and image height h , where h2 x2 y2 and h 2 x 2 y 2. Object height and 
image height are related by the linear magnification m, where

m
h
h

s
s

z f
z f

(3)

Since the product zz  is a constant, Eq. (3) implies that magnification varies with object distance.
The principal surfaces of a focusing lens intersect the optical axis at the principal points P and P .

In paraxial analysis, the principal surfaces are planes normal to the optical axis; for real lenses, they 
may be curved. The principal surfaces are conjugate image surfaces for which m 1.0. This property 
makes the raytrace construction shown in Fig. la possible, since a ray traveling parallel to the optical 
axis in either object or image space must intersect the focal point in the conjugate space, and must 
also intersect both principal surfaces at the same height.

In real lenses, the object and image surfaces may be tilted or curved. Planes normal to the optical axis 
are still used to define object and image positions for off-axis object points, and to compute magnifi-
cation. For tilted object surfaces, the properties of the principal surfaces can be used to relate object 
surface and image surface tilt angles, as shown in Fig. 1b. Tilted object and image planes intersect the 
optical axis and the two principal planes. The tilt angles with respect to the optical axis, u and u , are 
defined by meridional rays lying in the two surfaces. The points at which conjugate tilted planes inter-
cept the optical axis are defined by sa and s a, given by Eq. (1). Both object and image planes must 
intersect their respective principal surfaces at the same height y, where y sa tan u s a tan u . It 
follows that

tan
tan

u
u

s

s m
a

a a

1
(4)

The geometry of Fig. 1b is known as the Scheimpflug condition, and Eq. (4) is the Scheimpflug rule,
relating image to object tilt. The magnification ma applies only to the axial image.

The height off axis of an infinitely distant object is defined by the principal ray angle up measured 
from F or P, as shown in Fig. lc. In this case, the image height is

h f uptan (5)

A focusing lens which obeys Eq. (5) for all values of up within a specified range is said to be distortion-
free: if the object is a set of equally spaced parallel lines lying in an object plane perpendicular to the 
optical axis, it will be imaged as a set of equally spaced parallel lines in an image plane perpendicular 
to the optical axis, with line spacing proportional to m.

Equations (1) through (5) are the basic gaussian imaging equations defining a perfect focusing 
lens. Equation (2) is sometimes called the newtonian form of Eq. (1), and is the more useful form 
for application to afocal lens systems.

Afocal Lenses

With afocal lenses, somewhat different coordinate system origins and nomenclature are used, as 
shown in Fig. 2. The object and image space reference points RO and RE are at conjugate image 
points. Since the earliest and most common use for afocal lenses is as an aid to the eye for viewing 
distant objects, image space is referred to as eye space. Object position is defined by a right-hand 
coordinate system (xo, yo, zo) centered on reference point RO. Image position in eye space is defined 
by coordinates (xe, ye, ze) centered on RE.

Because afocal lenses are most commonly used for viewing distant objects, their imaging char-
acteristics are usually specified in terms of angular magnification M, entrance pupil diameter Do, and 
total field of view. Figure 2a models an afocal lens used at infinite conjugates. Object height off axis is 
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defined by the principal ray angle upo, and the corresponding image height is defined by upe. Objects 
viewed through the afocal lens will appear to be magnified by a factor M, where

tan tanu M upe po (6)

If M is negative, as in Fig. 2a, the image will appear to be inverted. [Strictly speaking, since RO and 
RE are separated by a distance S, the apparent magnification seen by an eye at RE with and without 
the afocal lens will differ slightly from that indicated by Eq. (6) for nearby objects.]2

The imaging geometry of an afocal lens for finite conjugates is illustrated in Fig. 2b. Since a ray 
entering the afocal lens parallel to the optical axis will exit the afocal lens parallel to the optical axis, 
it follows that the linear magnification m relating object height ho and image height he must be invari-
ant with object distance. The linear magnification m is the inverse of the angular magnification M:

m
h

h M
e

o

1
(7)

The axial separation ze of any two images he1 and he2 is related to the separation zo of the corre-
sponding objects ho1 and ho2 by

z m z
z

Me o
o2
2

(8)

It follows that any convenient pair of conjugate image points can be chosen as reference points RO 
and RE. Given the location of RO, the reference point separation S, and the magnifications m 1/M,
the imaging geometry of a rotationally symmetric distortion-free afocal lens can be given as

x mx
x

M
y my

y

M
z m z

z

Me o
o

e o
o

e o
o2
2

(9)

Equation (9) is a statement that coordinate transformation between object space and eye space is 
rectilinear for afocal lenses, and is solely dependent on the afocal magnification M and the location 

Do

De

upeupo

RE
RO

(a) Infinite conjugate model of afocal lens

(b) Finite conjugate model of afocal lens

s

he1 he2

ze
zo

ho1 ho2

RE

RO

FIGURE 2 Imaging geometry of focusing lenses.
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of two conjugate reference points RO and RE. The equations apply (paraxially) to all object and 
image points independent of their distances from the afocal lens. Any straight line of equally spaced 
object points will be imaged as a straight line of equally spaced image points, even if the line does 
not lie in a plane normal to the optical axis. Either RO or RE may be chosen arbitrarily, and need 
not lie on the axis of symmetry of the lens system, so long as the zo- and ze axes are set parallel to the 
axis of symmetry.

A corollary of invariance in lateral and axial linear magnification is invariance in angular mag-
nification. Equation (6) thus applies to any ray traced through the afocal system, and to tilted 
object and image surfaces. In the latter context, Eq. (6) can be seen as an extension of Eq. (4) to 
afocal lenses.

The eye space pupil diameter De is of special importance to the design of visual instruments and 
afocal attachments: De must usually be large enough to fill the pupil of the associated instrument or 
eye. The object space pupil diameter Do is related to De by

D
D

M
mDe

o
o (10)

(The more common terminology exit pupil and entrance pupil will be used later in this chapter.)

Subjective Aspects of Afocal Imagery

The angular magnification M is usually thought of in terms of Eq. (6), which is often taken to indi-
cate that an afocal lens projects an image which is M-times as large as the object. (See, for example, 
Fig. 5.88 in Hecht and Zajac.)3 Equation (9) shows that the image height is actually 1/M-times the 
object height (i.e., smaller than the object when |M| 1). Equation (9) also shows, however, that 
the image distance is reduced to l/M 2-times the object distance, and it is this combination of linear 
height reduction and quadratic distance reduction which produces the subjective appearance of 
magnification. Equation (6) can be derived directly from Eq. (9).

tan
/

/
tanu

y

z

y M

z M
M ue

e

o

o
pe po2

Equation (9) is therefore a more complete model than Eq. (6) for rotationally symmetric, distortion-
free afocal lenses.

Figure 3 illustrates two subjective effects which arise when viewing objects through afocal 
lenses. In Fig. 3a for which M 3 , Eq. (9) predicts that image dimensions normal to the 
optical axis will be reduced by 1/3, while image dimensions along the optical axis will be reduced 
by 1/9. The image of the cube in Fig. 3a looks three times as tall and wide because it is nine 
times closer, but it appears compressed by a factor of 3 in the axial direction, making it look 
like a cardboard cutout. This subjective compression, most apparent when using binoculars, is 
intrinsic to the principle producing angular magnification, and is independent of pupil spacing 
in the binoculars.

Figure 3a assumes the optical axis is horizontal within the observer’s reference framework. If the 
axis of the afocal lens is not horizontal, the afocal lens may create the illusion that horizontal sur-
faces are tilted. Figure 3b represents an M 7  afocal lens whose axis is tilted 10° to a horizontal 
surface. Equation (6) can be used to show that the image of this surface is tilted approximately 51° 
to the axis of the afocal lens, creating the illusion that the surface is tilted 41° to the observer’s hori-
zon. This illusion is most noticeable when looking downward at a surface known to be horizontal, 
such as a body of water, through a pair of binoculars.
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Afocal Lenses and the Optical Invariant

Equations (6) and (7) can be combined to yield

h u h ue otan tanpe po (11)

which is a statement of the optical invariant as applied to distortion-free afocal lenses. Neither upo
nor upe is typically larger than 35°–40° in distortion-free afocal lenses, although there are examples with 
distortion where upo 90°. Given a limit on one angle, Eq. (11) implies a limit on the other angle 
related to the ratio ho/he Do/De. Put in words, the ratio Do/De cannot be made arbitrarily large with-
out a corresponding reduction in the maximum allowable field of view. All designers of afocal lens systems 
must take this fundamental principle into consideration.

18.4 KEPLERIAN AFOCAL LENSES

A simple afocal lens can be made up of two focusing lenses, an objective and an eyepiece, set up so 
that the rear focal point of the objective coincides with the front focal point of the eyepiece. There 
are two general classes of simple afocal lenses, one in which both focusing lenses are positive, and 
the other in which one of the two is negative. Afocal lenses containing two positive lenses were first 
described by Johannes Kepler in Dioptrice, in 1611,4 and are called keplerian. Lenses containing a 
negative eyepiece are called galilean, and will be discussed separately. Generally, afocal lenses contain 
at least two powered surfaces. The simplest model for an afocal lens consists of two thin lenses.

Thin-Lens Model of a Keplerian Afocal Lens

Figure 4 shows a thin-lens model of a keplerian telescope. The focal length of its objective is fo
and the focal length of its eyepiece is fe. Its properties can be understood by tracing two rays, ray 1 
entering the objective parallel to the optical axis, and ray 2 passing through Fo, the front focal 

×

× °

′

′

FIGURE 3 Subjective aspects of afocal imagery.
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point of the objective. Ray 1 leads directly to the linear magnification m, and ray 2 to the angular 
magnification M:

m
f

f
M

f

f

u

u
e o

e0

tan

tan
pe

po

(12)

Equation (12) makes the relationship of afocal magnification to the Scheimpflug rule of Eq. (4) 
more explicit, with focal lengths fo and fe substituting for sa and sa.

The second ray shows that placing the reference point RO at Fo will result in the reference point 
RE falling on Fe , the rear focal point of the eyepiece. The reference point separation for RO in this 
location is

SF 2 2 2 1 2 1f f M f m fe o e o( ) ( ) (13)

Equation (13) can be used as a starting point for calculating any other locations for RO and RE, in 
combination with Eq. (9).

One additional generalization can be drawn from Fig. 4: the ray passing through Fo will 
emerge from the objective parallel to the optical axis. It will therefore also pass through Fe  even 
if the spacing between objective and eyepiece is increased to focus on nearby objects. Thus the 
angular magnification remains invariant, if upo is measured from Fo and upe is measured from Fe ,
even when adjusting the eyepiece to focus on nearby objects makes the lens system depart from 
being strictly afocal.

The simple thin-lens model of the keplerian telescope can be extended to systems composed of 
two real focusing lenses if we know their focal lengths and the location of each lens’ front and rear 
focal points. Equation (12) can be used to derive M, and SF can be measured. Equation (9) can then 
be used to compute both finite and infinite conjugate image geometry.

Eye Relief Manipulation

The earliest application of keplerian afocal lenses was to obtain magnified views of distant objects. 
To view distant objects, the eye is placed at RE. An important design consideration in such instru-
ments is to move RE far enough away from the last surface of the eyepiece for comfortable viewing. 
The distance from the last optical surface to the exit pupil at RE is called the eye relief ER. One way 
to increase eye relief ER is to move the entrance pupil at RO toward the objective. Most telescopes 
and binoculars have the system stop at the first surface of the objective, coincident with the entrance 
pupil, as shown in Fig. 5a.

SF

po

pe

RE

Eyelens

Objective

RO
2

1

FIGURE 4 Thin-lens model of keplerian afocal lens.
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In the thin-lens model of Fig. 5a, RO is moved a distance zo fo to place it at the objective. Thus 
RE must move a distance ze fo/M

2 fe/M, keeping in mind that M is negative in this example. 
Thus for a thin-lens keplerian telescope with its stop at the objective, the eye relief ERk is

ERk e

M
M

f
( )1

(14)

It is possible to increase the eye relief further by placing the stop inside the telescope, moving 
the location of RO into virtual object space. Figure 5b shows an extreme example of this, where the 
virtual location of RO has been matched to the real location of RE. For this common-pupil-position 
case, the eye relief ERcp is

ERcp

( )
( )
M
M

fe

1
1

(15)

A price must be paid for locating the stop inside the afocal lens, in that the elements ahead of the 
stop must be increased in diameter if the same field of view is to be covered without vignetting.

The larger the magnitude of M, the smaller the gain in ER yielded by using an internal stop. 
To increase the eye relief further, it is necessary to make the objective and/or the eyepiece more 
complex, increasing the distance between Fo and the first surface of the objective, and between the 
last surface of the eyepiece and Fe . If this is done, placing RO at the first surface of the objective will 
further increase ER.

Figure 6 shows a thin-lens model of a telephoto focusing lens of focal length ft. For convenience, a 
zero Petzval sum design is used, for which f1 f and f2 f. Given the telephoto’s focal length ft and 
the lens separation d, the rest of the parameters shown in Fig. 6 can be defined in terms of the constant 
C d/ft. The component focal length f, back focal length bf l, and front focal length ff l, are given by

f f C f C f Ct t t
1 2 1 2 1 21 1/ / /( ) ( )bf l ff l (16)

and the total physical length ttl and focal point separation sf are given by

ttl sff C C f Ct t( ) ( )/1 21 2 (17)

FIGURE 5 Increasing eye relief ER by moving stop.
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The maximum gain in eye relief will be obtained by using telephoto designs for both objective 
and eyepiece, with the negative elements of each facing each other. Two cases are of special interest. 
First, ttl can be minimized by setting C 0.25 for both objective and eyepiece. In this case, the eye 
relief ERttl is

ER ERttl 1 5
1

1 5.
( )

.
M

M
fe k (18)

Second, sf can be maximized by setting C 1.0 for both objective and eyepiece. This places the neg-
ative element at the focal plane, merging the objective and eyepiece negative elements into a single 
negative field lens. The eye relief in this case, ERsf, is

ER ERsf 2 0
1

2 0.
( )

.
M

M k (19)

Placing a field lens at the focus between objective and eyepiece can be problematical, when view-
ing distant objects, since dust or scratches on the field lens will be visible. If a reticle is required, 
however, it can be incorporated into the field lens. Equations (14), (18), and (19) show that signifi-
cant gains in eye relief can be made by power redistribution. In the example of Eq. (18), the gain in 
ER is accompanied by a reduction in the physical length of the optics, which is frequently beneficial.

Terrestrial Telescopes

Keplerian telescopes form an inverted image, which is considered undesirable when viewing earth-
bound objects. One way to make the image erect, commonly used in binoculars, is to incorporate 
erecting prisms. A second is to insert a relay stage between objective and eyepiece, as shown in Fig. 7. 
The added relay is called an image erector, and telescopes of this form are called terrestrial telescopes.
(The keplerian telescope is often referred to as an astronomical telescope, to distinguish it from terres-
trial telescopes, since astronomers do not usually object to inverted images. Astronomical has become 
ambiguous in this context, since it now more commonly refers to the very large aperture reflecting 
objectives found in astronomical observatories. Keplerian is the preferred terminology.) The terrestrial 
telescope can be thought of as containing an objective, eyepiece, and image erector, or as containing 
two afocal relay stages.

There are many variants of terrestrial telescopes made today, in the form of binoculars, theodolites, 
range finders, spotting scopes, rifle scopes, and other military optical instrumentation. All are offshoots 
of the keplerian telescope, containing a positive objective and a positive eyepiece, with intermediate 

FIGURE 6 Zero Petzval sum telephoto lens.
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relay stages to perform special functions. Patrick5 and Jacobs6 are good starting points for obtaining 
more information.

Field-of-View Limitations in Keplerian 
and Terrestrial Telescopes

The maximum allowable eye space angle upe and magnification M set an upper limit on achievable 
fields of view, in accordance with Eq. (11). MIL-HDBK-1417 lists one eyepiece design for which the 
maximum upe 36°. If M 7 , using that eyepiece allows a 5.9° maximum value for upo. It is a common 
commercial practice to specify the total field of view FOV as the width in feet which subtends an angle 
2upo from 1000 yd away, even when the pupil diameter is given in millimeters. FOV is thus given by

FOV 6000
6000

tan tanu
M

upo pe (20)

For our 7  example, with upe 36°, FOV 620 ft at 1000 yd. For commercial 7 50 binoculars 
(M 7  and Do 50 mm), FOV 376 ft at 1000 yd is more typical.

Finite Conjugate Afocal Relays

If an object is placed in contact with the front surface of the keplerian telescope of Fig. 5, its image 
will appear a distance ERk behind the last surface of the eyepiece, in accordance with Eq. (14). There 
is a corresponding object relief distance ORk M2ERk defining the position of an object that will be 
imaged at the output surface of the eyepiece, as shown in Fig. 8. ORk and ERk define the portions 
of object space and eye space within which real images can be formed of real objects with a simple 
keplerian afocal lens.

ORk eM M f( )1 (21)

Object relief is enlarged by the power redistribution technique used to extend eye relief. Thus there 
is a minimum total length design corresponding to Eq. (18), for which the object relief ORttl is

OR ttl 1 5 1. ( )M M fe (22)

and a maximum eye relief design corresponding to Eq. (19), for which ORsf

ORsf 2 0 1. ( )M M fe (23)

is also maximized.

FIGURE 7 Terrestrial telescope.
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Figure 9 shows an example of a zero Petzval sum finite conjugate afocal relay designed to maxi-
mize OR and ER by placing a negative field lens at the central infinite conjugate image. Placing the 
stop at the field lens means that the lens is telecentric (principal rays parallel to the optical axis) in 
both object and eye space. As a result, magnification, principal ray angle of incidence on object and 
image surface, and cone angle are all invariant over the entire range of OR and ER for which there is 
no vignetting. Magnification and cone angle invariance means that object and image surfaces can be 
tilted with respect to the optical axis without introducing keystoning or variation in image irradiance 
over the field of view. Having the principal rays telecentric means that object and image position can 
be adjusted for focus without altering magnification. It also means that the lens can be defocused 
without altering magnification, a property very useful for unsharp masking techniques used in the 
movie industry.

One potential disadvantage of telecentric finite conjugate afocal relays is evident from Fig. 9: to 
avoid vignetting, the apertures of both objective and eyepiece must be larger than the size of the 
associated object and image. While it is possible to reduce the diameter of either the objective or the 
eyepiece by shifting the stop to make the design nontelecentric, the diameter of the other lens group 
becomes larger. Afocal relays are thus likely to be more expensive to manufacture than focusing lens 
relays, unless object and image are small.

Finite conjugate afocal lenses have been used for alignment telescopes,8 for laser velocimeters,9

and for automatic inspection systems for printed circuit boards.10 In the last case, invariance of mag-
nification, cone angle, and angle of incidence on a tilted object surface make it possible to measure 
the volume of solder beads automatically with a computerized video system. Finite conjugate afocal 
lenses are also used as Fourier transform lenses.11 Brief descriptions of these applications are given 
in Wetherell.2

FIGURE 8 Finite conjugate keplerian afocal lens showing 
limits on usable object space and image space.

FIGURE 9 Finite conjugate afocal relay configured to maxi-
mize eye relief ER and object relief OR. Stop at common focus 
collimates principal rays in both object space and eye space.
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Afocal Lenses for Scanners

Many optical systems require scanners, and if the apertures of the systems are large enough, it is 
preferable to place the scanner inside the system. Although scanners have been designed for use in 
convergent light, they are more commonly placed in collimated light (see Chap. 30, “Scanners,” in 
this volume, Marshall,12 and Chap. 7 in Lloyd,13 for descriptions of scanning techniques). A large 
aperture objective can be converted into a high magnification keplerian afocal lens with the aid of 
a short focal length eyepiece collimator, as shown in Fig. 10, providing a pupil in a collimated beam 
in which to insert a scanner. For the polygonal scanner shown, given the desired scan angle and 
telescope aperture diameter, Eq. (11) will define the combination of scanner facet size and number 
of facets needed to achieve the desired scanning efficiency. Scanning efficiency is the time it takes 
to complete one scan divided by the time between the start of two sequential scans. It is tied to the 
ratio of facet length to beam diameter, the amount of vignetting allowed within a scan, the number 
of facets, and the angle to be scanned.

Two limitations need to be kept in mind. First, the optical invariant will place an upper limit on M
for the given combination of Do and upo, since there will be a practical upper limit on the achievable 
value of upe. Second, it may be desirable in some cases for the keplerian afocal relay to have enough 
barrel distortion so that Eq. (6) becomes

u Mupe po (24)

An afocal lens obeying Eq. (24) will convert a constant rotation rate of the scan mirror into a con-
stant angular scan rate for the external beam. The same property in “f-theta” focusing lenses is used 
to convert a constant angular velocity scanner rotation rate into a constant linear velocity rate for 
the recording spot of light.

The above discussion applies to scanning with a point detector. When the detector is a linear 
diode array, or when a rectangular image is being projected onto moving film, the required distor-
tion characteristics for the optical system may be more complex.

Imaging in Binoculars

Most commercial binoculars consist of two keplerian afocal lenses with internal prismatic image 
erectors. Object and image space coordinates for binoculars of this type are shown schematically in 
Fig. 11. Equation (9) can be applied to Fig. 11 to analyze their imaging properties. In most binocu-
lars, the spacing So between objectives differs from the spacing Se between eyepieces, and So may be 
either larger or smaller than Se. Each telescope has its own set of reference points, ROL and REL for 
the left telescope, and ROR and RER for the right. Object space is a single domain with a single 
origin O. The object point at zo, midway between the objective axes, will be xoL units to the right 

FIGURE 10 Afocal lens scanner geometry.
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of the left objective axis, and xoR units to the left of the right objective axis. In an ideal binocular 
system, the images of the object formed by the two telescopes would merge at one point, ze units in 
front of eye space origin E. This will happen if So MSe, so that xeL xoL/M and xeR xoR/M. In most 
modern binoculars, however, S MSo e, and separate eye space reference points EL and ER will be 
formed for the left and right eye. As a result, each eye sees its own eye space, and while they overlap, 
they are not coincident. This property of binoculars can affect stereo acuity2 and eye accommoda-
tion for the user.

It is normal for the angle at which a person’s left-eye and right-eye lines of sight converge to 
be linked to the distance at which the eyes focus. (In my case, this linkage was quite strong before 
I began wearing glasses.) Eyes focused for a distance ze normally would converge with an angle , as 
shown in Fig. 11. When S MSo e, as is commonly the case, the actual convergence angle  is much 
smaller. A viewer for whom focus distance is strongly linked to convergence angle may find such 
binoculars uncomfortable to use for extended periods, and may be in need of frequent focus adjust-
ment for different object distances.

A related but more critical problem arises if the axes of the left and right telescopes are not accu-
rately parallel to each other. Misalignment of the axes requires the eyes to twist in unaccustomed 
directions to fuse the two images, and refocusing the eyepiece is seldom able to ease the burden. 
Jacobs6 is one of the few authors to discuss this problem. Jacobs divides the axes misalignment into 
three categories: (1) misalignments requiring a divergence D of the eye axes to fuse the images, 
(2) misalignments requiring a convergence C, and (3) misalignments requiring a vertical displace-
ment V. The tolerance on allowable misalignment in minutes of arc is given by Jacobs as

D M C M V M7 5 1 22 5 1 8 0 1. ( ) . /( ) . /( )/ (25)

Note that the tolerance on C, which corresponds to convergence to focus on nearby objects, is sub-
stantially larger than the tolerances on D and V.

FIGURE 11 Imaging geometry of binoculars.
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18.5  GALILEAN AND INVERSE GALILEAN 
AFOCAL LENSES

The combination of a positive objective and a negative eyepiece forms a galilean telescope. If the objec-
tive is negative and the eyepiece positive, it is referred to as an inverse galilean telescope. The galilean 
telescope has the advantage that it forms an erect image. It is the oldest form of visual telescope, but 
it has been largely replaced by terrestrial telescopes for magnified viewing of distant objects, because 
of field-of-view limitations. In terms of number of viewing devices manufactured, there are far more 
inverse galilean than galilean telescopes. Both are used frequently as power-changing attachments 
to change the effective focal length of focusing lenses.

Thin-Lens Model of a Galilean Afocal Lens

Figure 12 shows a thin-lens model of a galilean afocal lens. The properties of galilean lenses can be 
derived from Eqs. (9), (12), and (13). Given that fe is negative and fo is positive, M is positive, indi-
cating an erect image. If RO is placed at the front focal point of the objective, RE is a virtual pupil 
buried inside the lens system. In fact, galilean lenses cannot form real images of real objects under 
any conditions, and at least one pupil will always be virtual.

Field of View in Galilean Telescopes

The fact that only one pupil can be real places strong limitations on the use of galilean telescopes 
as visual instruments when M x1 . Given the relationship zo M 2 ze, moving RE far enough 
outside the negative eyepiece to provide adequate eye relief moves RO far enough into virtual object 
space to cause drastic vignetting at even small field angles. Placing RE a distance ER behind the 
negative lens moves RO to the position shown in Fig. 13, SF  units behind RE, where

SF ER( ) ( )M M fe
2 21 1 (26)

In effect, the objective is both field stop and limiting aperture, and vignetting defines the maximum 
usable field of view. The maximum acceptable object space angle upo is taken to be that for the princi-
pal ray which passes just inside Do, the entrance pupil at the objective. If the F-number of the objective 
is FNob fo/Do, then

tan
( )

u
f

f Mf
e

e e
po

ob MER2FN
(27)

FIGURE 12 Thin-lens model of galilean afocal lens. FIGURE 13 Galilean field-of-view limitations.
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For convenience, assume ER fe. In this case, Eq. (27) reduces to

tan
( )

u
Mpo

obFN
1

2 2 1
(28)

For normal achromatic doublets, FNob 4.0. For M 3x, in this case, Eq. (28) indicates that 
upo 1.43° (FOV 150 ft at 1000 yd). For M 7x, upo 0.55° (FOV 57.7 ft at 1000 yd). The effec-
tive field of view can be increased by making the objective faster and more complex, as can be seen 
in early patents by von Rohr14 and Erfle.15 In current practice, galilean telescopes for direct viewing 
are seldom made with M larger than 1.5x 3.0x. They are more typically used as power changers in 
viewing instruments, or to increase the effective focal length of camera lenses.16

Field of View in Inverse Galilean Telescopes

For inverse galilean telescopes, where M x1 , adequate eye relief can be achieved without moving 
RO far inside the first surface of the objective. Inverse galilean telescopes for which upo 90  are very 
common in the form of security viewers17 of the sort shown in Fig. 14, which are built into doors in 
hotel rooms, apartments, and many houses. These may be the most common of all optical systems 
more complex than eyeglasses. The negative objective lens is designed with enough distortion to 
allow viewing of all or most of the forward hemisphere, as shown by the principal ray in Fig. 14.

Inverse galilean telescopes are often used in camera view finders.18 These present reduced scale 
images of the scene to be photographed, and often have built in arrangements to project a frame of 
lines representing the field of view into the image. Inverse galilean power changers are also used 
to increase the field of view of submarine periscopes and other complex viewing instruments, and to 
reduce the effective focal length of camera lenses.19

Anamorphic Afocal Attachments

Afocal attachments can compress or expand the scale of an image in one axis. Such devices are called 
anamorphosers, or anamorphic afocal attachments. One class of anamorphoser is the cylindrical 
galilean telescope, shown schematically in Fig. 15a. Cox20 and Harris21 have patented representative 
examples. The keplerian form is seldom if ever used, since a cylindrical keplerian telescope would 
introduce image inversion in one direction. Anamorphic compression can also be obtained using two 
prisms, as shown in Fig. 15b. The adjustable magnification anamorphoser patented by Luboshez22 is 
a good example of prismatic anamorphosers. Many anamorphic attachments were developed in the 
1950s for the movie industry for use in wide-field cameras and projectors. An extensive list of both 
types will be found in Wetherell.2

FIGURE 14 Inverse galilean security viewer with 
hemispheric field of view.

FIGURE 15 Anamorphic afocal attachments.
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Equation (9) can be modified to describe anamorphic afocal lenses by specifying separate afocal 
magnifications Mx and My for the two axes. One important qualification is that separate equations 
are needed for object and image distances for the x and y planes. In general, anamorphic galilean attach-
ments work best when used for distant objects, where any difference in x-axis and y-axis focus falls 
within the depth of focus of the associated camera lens. If it is necessary to use a galilean anamorphoser 
over a wide range of object distances, it may be necessary to add focus adjustment capabilities 
within the anamorphoser.

18.6 RELAY TRAINS AND PERISCOPES

There are many applications where it is necessary to perform remote viewing because the object to be 
viewed is in an environment hostile to the viewer, or because the object is inaccessible to the viewer 
without unacceptable damage to its environment. Military applications5 fall into the former category, 
and medical applications23 fall into the latter. For these applications, instrumentation is needed to 
collect light from the object, transport the light to a location more favorable for viewing, and dispense
the light to the viewing instruments or personnel. Collecting and dispensing optical images is done 
with focusing lenses, typically. There are three image transportation techniques in common use 
today: (1) sense the image with a camera and transport the data electronically, (2) transport the light 
pattern with a coherent fiber optics bundle, and (3) transport the light pattern with a relay lens or 
train of relay lenses. The first two techniques are outside the scope of this chapter. Relay trains, how-
ever, are commonly made up of a series of unit power afocal lenses, and are one of the most impor-
tant applications of finite conjugate afocal lenses.

Unit Power Afocal Relay Trains

Several factors are important in designing relay trains. First, it is desirable to minimize the number 
of relay stages in the relay train, both to maximize transmittance and to minimize the field curvature 
caused by the large number of positive lenses. Second, the outside diameter of the relay train is typically 
restricted (or a single relay lens could be used), so the choice of image and pupil diameter within the 
relay is important. Third, economic considerations make it desirable to use as many common elements 
as possible, while minimizing the total number of elements. Fourth, it is desirable to keep internal 
images well clear of optical surfaces where dust and scratches can obscure portions of the image. Fifth, 
the number of relay stages must be either odd or even to ensure the desired output image orientation.

Figure 16 shows thin-lens models of the two basic afocal lens designs which can be applied to relay 
train designs. Central to both designs is the use of symmetry fore and aft of the central stop to con-
trol coma, distortion, and lateral color, and matching the image diameter Di and stop diameter Ds to 

Ds

D1

Dt

up

u

(a) Minimum number of lenses

FL FLOB OB

(b) Minimum tube diameter

2a 2b1

FIGURE 16 Basic unit power afocal relay designs.
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maximize the stage length to diameter ratio. In paraxial terms, if Di Ds, then the marginal ray angle 
u matches the principal ray angle up, in accordance with the optical invariant. If the relay lens is both 
aplanatic and distortion free, a better model of the optical invariant is

D u D ui s psin tan (29)

and either the field of view 2up or the numerical aperture NA n sin u must be adjusted to match 
pupil and image diameters. For some applications, maximizing the optical invariant which can pass 
through a given tube diameter Dt in a minimum number of stages is also critical.

If maximizing the ratio Di sin u/Dt is not critical, Fig. 16a shows how the number of elements can 
be minimized by using a keplerian afocal lens with the stop at the common focus, eliminating the 
need for field lenses between stages. The required tube diameter in this example is at least twice the 
image diameter. If maximizing Di sin u/Dt is critical, field lenses FL must be added to the objectives 
OB as shown in Fig. 16b, and the field lenses should be located as close to the image as possible within 
limits set by obstructions due to dirt and scratches on the field lens surfaces. Symmetry fore and aft 
of the central stop at 1 is still necessary for aberration balancing. If possible within performance con-
straints, symmetry of OB and FL with respect to the planes 2a and 2b is economically desirable, mak-
ing OB and FL identical.

For medical instruments, where minimizing tube diameter is critical, variants of the second 
approach are common. The rod lens design24 developed by H. H. Hopkins25 can be considered an 
extreme example of either approach, making a single lens so thick that it combines the functions of 
OB and FL. Figure 17a shows an example from the first of two patents by McKinley.26,27 The cen-
tral element in each symmetrical cemented triplet is a sphere. Using rod lenses does maximize the 
optical invariant which can be passed through a given tube diameter, but it does not eliminate field 
curvature. It also maximizes weight, since the relay train is almost solid glass, so it is most applicable 
to small medical instruments.

If larger diameter relays are permissible, it is possible to correct field curvature in each relay 
stage, making it possible to increase the number of stages without adding field curvature. Baker28

has patented the lens design shown in Fig. 17b for such an application. In this case, field lens and 
objective are identical, so that an entire relay train can be built using only three different element 
forms. Pupil and image diameters are the same, and pupil and image are interchangeable.

For purposes of comparison, the two designs shown in Fig. 17 have been scaled to have the same 
image diameter (2.8 mm) and numerical aperture (0.10), with component focal lengths chosen so 
that Ds Di. Minimum tube diameter is 4.0 mm for the rod lens and 5.6 mm for the Baker relay. 
The image radius of curvature is about 20 mm for the rod relay and about 368 mm for the Baker 
relay (i.e., field curvature is overcorrected). Image quality for the rod relay is 0.011 waves rms on 
axis and 0.116 waves rms at full field, both values for best focus, referenced to 587-nm wavelength. 
For the Baker relay, the corresponding values are 0.025 and 0.056 waves rms, respectively. The Baker 
design used for this comparison was adapted from the cited patent, with modern glasses substituted 
for types no longer available. No changes were made to the design other than refocusing it and scaling 
it to match the first-order parameters of the McKinley design. Neither design necessarily represents 
the best performance which can be obtained from its design type, and both should be evaluated 

FIGURE 17 Improved unit power afocal relays.
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in the context of a complete system design where, for example, the field curvature of the McKinley 
design may be compensated for by that of the collecting and dispensing objectives. Comparing the 
individual relay designs does, however, show the price which must be paid for either maximizing 
the optical invariant within a given tube diameter or minimizing field curvature.

Periscopes

Periscopes are relay trains designed to displace the object space reference point RO a substantial dis-
tance away from the eye space reference point RE. This allows the observer to look over an intervening 
obstacle, or to view objects in a dangerous environment while the observer is in a safer environment. 
The submarine periscope is the archetypical example. Many other examples can be found in the 
military5 and patent2 literature.

The simplest form of periscope is the pair of fold mirrors shown in Fig. 18a, used to allow the 
viewer to see over nearby obstacles. Figure 18b shows the next higher level of complexity, in the form of 
a rear-view vehicle periscope patented29 by Rudd.30 This consists of a pair of cylindrical mirrors in a 
roof arrangement. The cylinders image one axis of object space with the principal purpose of compen-
sating for the image inversion caused by the roof mirror arrangement. This could be considered to be 
a keplerian anamorphoser, except that it is usually a unit power magnifier, producing no anamorphic 
compression. Beyond these examples, the complexity of periscopes varies widely.

The optics of complex periscopes such as the submarine periscope can be broken down into a 
series of component relays. The core of a submarine periscope is a pair of fold prisms arranged like the 
mirrors in Fig. 18a. The upper prism can be rotated to scan in elevation, while the entire periscope is 
rotated to scan in azimuth, typically. The main optics is composed of keplerian afocal relays of differ-
ent magnification, designed to transfer an erect image to the observer inside the submarine, usually 
at unit net magnification. Galilean and inverse galilean power changers can be inserted between the 
upper prism and main relay optics to change the field of view. Variants of this arrangement will be 
found in other military periscopes, along with accessories such as reticles or image intensifiers located 
at internal foci. Optical design procedures follow those for other keplerian afocal lenses.

18.7  REFLECTING AND CATADIOPTRIC 
AFOCAL LENSES

Afocal lenses can be designed with powered mirrors or combinations of mirrors and refractors. 
Several such designs have been developed in recent years for use in the photolithography of micro-
circuits. All-reflecting afocal lenses are classified here according to the number of powered mirrors 
they contain. They will be reviewed in order of increasing complexity, followed by a discussion of 
catadioptric afocal systems.

FIGURE 18 Basic reflecting periscopes.
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Two-Powered-Mirror Afocal Lenses

The simplest reflecting afocal lenses are the variants of the galilean and keplerian telescopes shown 
in Fig. 19a and 19b. They may also be thought of as afocal cassegrainian and gregorian telescopes. 
The galilean/cassegrainian version is often called a Mersenne telescope. In fact, both galilean and 
keplerian versions were proposed by Mersenne in 1636,31 so his name should not be associated 
solely with the galilean variant.

Making both mirrors parabolic corrects all third-order aberrations except field curvature. This 
property of confocal parabolas has led to their periodic rediscovery,32,33 and to subsequent discus-
sions of their merits and shortcomings.34–36 The problem with both designs, in the forms shown in 
Fig. 19a and 19b, is that their eyepieces are buried so deeply inside the design that their usable field 
of view is negligible. The galilean form is used as a laser beam expander,37 where field of view and 
pupil location is not a factor, and where elimination of internal foci may be vital.

Eccentric pupil versions of the keplerian form of confocal parabolas, as shown in Fig. 19c, have 
proven useful as lens attachments.38 RO, RE, and the internal image are all accessible when RO is set 
one focal length ahead of the primary, as shown. It is then possible to place a field stop at the image 
and pupil stops at RO and RE, which very effectively blocks stray light from entering the following 
optics. Being all-reflecting, confocal parabolas can be used at any wavelength, and such attachments 
have seen use in infrared designs.

Three-Powered-Mirror Afocal Lenses

The principle which results in third-order aberration correction for confocal parabolas also applies 
when one of the parabolas is replaced by a classical cassegrainian telescope (parabolic primary and 
hyperbolic secondary), as shown in Fig. 20, with two important added advantages. First, with one 
negative and two positive mirrors, it is possible to reduce the Petzval sum to zero, or to leave a small 

FIGURE 19 Reflecting Galilean.

FIGURE 20 Three-powered-mirror afocal lenses.
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residual of field curvature to balance higher-order astigmatism. Second, because the cassegrainian 
is a telephoto lens with a remote front focal point, placing the stop at the cassegrainian primary puts 
the exit pupil in a more accessible location. This design configuration has been patented by Offner,39 and 
is more usefully set up as an eccentric pupil design, eliminating the central obstruction and increasing 
exit pupil accessibility.

Four-Powered-Mirror Afocal Lenses

The confocal parabola principle can be extrapolated one step further by replacing both parabolas with 
classical cassegrainian telescopes, as shown in Fig. 21a. Each cassegrainian is corrected for field curva-
ture independently, and the image quality of such confocal cassegrainians can be quite good. The most 
useful versions are eccentric pupil. Figure 21b shows an example from Wetherell.40 Since both objec-
tive and eyepiece are telephoto designs, the separation between entrance pupil RO and exit pupil 
RE can be quite large. An afocal relay train made up of eccentric pupil confocal cassegrainians 
will have very long collimated paths. If the vertex curvatures of the primary and secondary mirrors 
within each cassegrainian are matched, the relay will have zero field curvature, as well. In general, 
such designs work best at or near unit magnification.

Unit Power Finite Conjugate Afocal Lenses

The simplest catadioptric afocal lens is the cat’s-eye retroref lector shown in Fig. 22a, made up of a 
lens with a mirror in its focal plane. Any ray entering the lens will exit parallel to the incoming ray 
but traveling in the opposite direction. If made with glass of index of refraction n 2.00, a sphere 
with one hemisphere reflectorized (Fig. 22b) will act as a perfect retroref lector for collimated light 
entering the transparent hemisphere. Both designs are, in effect, unit power (M 1.00) afocal 
lenses. Variations on this technique are used for many retroref lective devices.

Unit power relays are of much interest in photolithography, particularly for microcircuit manu-
facturing, which requires very high resolution, low focal ratio unit power lenses. In the Dyson lens,41

shown in Fig. 23a, the powered surfaces of the refractor and the reflector are concentric, with radii 
R and r given by

R
r

n
n( )1

(30)

FIGURE 21 Four-powered-mirror afocal lenses.
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where n is the index of refraction of the glass. At the center point, spherical aberration and coma are 
completely corrected. In the nominal design, object and image are on the surface intersecting the 
center of curvature, displaced laterally to separate object from image sensor (this arrangement is 
termed eccentric field, and is common to many multimirror lens systems). In practice, performance 
of the system is limited by off-axis aberrations, and it is desirable to depart from the nominal design 
to balance aberrations across the field of view.42

The unit power all-reflecting concentric design shown in Fig. 23b is patented43 by Offner.44 It was 
developed for use in manufacturing microcircuits, and is one of the most successful finite conjugate 
afocal lens designs in recent years. The spheres are concentric and the plane containing object and 
image surfaces passes through the common center of curvature. It is an all-reflecting, unit power 
equivalent of the refracting design shown in Fig. 9. Object and image points are eccentric field, and 
this is an example of the ring field design concept, where axial symmetry ensures good correction 
throughout a narrow annular region centered on the optical axis. As with the Dyson lens, having an 
eccentric field means performance is limited by off-axis aberrations. Correction of the design can 
be improved at the off-axis point by departing from the ideal design to balance on-axis and off-axis 
aberrations.45

FIGURE 22 Afocal retroreflector designs.

FIGURE 23 Concentric spheres unit power afocal lenses.
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19.1 GLOSSARY

angular deviation

phase

radian frequency of rotation

A, B, C, D, d prism dimensions

t time

x, y rectangular components

angle

1, 2 prism number

19.2 INTRODUCTION

Prisms of various shapes and sizes are used for folding, inverting, reverting, displacing, and deviating 
a beam of light, whether it be collimated, converging, or diverging.

Prisms, rather than mirrors, are often used for the applications discussed here, since they make 
use of reflecting coatings at what amounts to an interior surface. The coatings can be protected on 
their backs by other means, and do not tarnish with age and exposure. Even better, some prisms do 
not need such coatings if the (internal) angle of incidence exceeds the critical angle.

In these applications, chromatism is to be avoided. Thus, the arrangements either make use of 
perpendicular incidence or compensating angles of incidence.

Almost all of these prisms are meant to be used with collimated beams. Most of the operations 
are somewhat equivalent to the use of plane parallel plates, which displace but do not deviate a 
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collimated beam. However, such plates have both chromatism and spherical aberration in a con-
vergent beam.

Dispersing prisms are discussed in Chap. 20 by George J. Zissis and polarizing prisms in Chap. 13 
by Jean M. Bennett, both in this volume of the Handbook.

19.3 INVERSION, REVERSION

A reverted image shifts the image left for right. An inverted image is upside down. A reinverted 
image or inverted-reverted image does both.

The best two references on this subject are the Frankford Arsenal book called Design of Fire 
Control Optics,1 and Jacobs’ book called Optical Engineering.2 Many of the diagrams shown here 
have been taken from the former since they provide direct design information as well as descrip-
tions of the performance of the prism.

19.4 DEVIATION, DISPLACEMENT

The beam, in addition to being inverted and/or reverted, can also be displaced and/or devi-
ated. Displacement means that the beam has been translated in x or y, but it has not changed 
the direction in which it was traveling. Deviation indicates that the beam has been caused to 
change its direction. Deviation is measured in angular measure; displacement in linear measure. 
If a beam has been deviated, displacement is not important. If a beam has been displaced, it usu-
ally has not been deviated. Although the two can occur simultaneously, it seldom happens in 
optical prisms.

19.5 SUMMARY OF PRISM PROPERTIES

Table 1 is a listing of the prisms that are described in this section. The first column provides the 
name of the prism. The second column indicates whether the image is reverted. The third column 
indicates whether the image has been inverted. The fourth column indicates how much the image 
has been displaced as a ratio of the critical prism dimension A. The next column gives the amount 
of deviation, and the last column provides comments.

19.6 PRISM DESCRIPTIONS

Each diagram shows at least one view of the prism and a set of dimensions. The A dimension 
is a reference dimension. It is always 1.00, and the rest of the dimensions are related to it. The 
refractive index is almost always taken as 1.5170, a representative value for glass in the vis-
ible. Prism dimensions can change somewhat if the refractive index is modestly different from 
the chosen value. However, if a material like germanium is used, the prism might be drastically 
different.
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TABLE 1 Summary of Prism Properties

Prism Reverts Inverts Displaces Deviates Comments

Right angle Yes No — 90 Simplest
No Yes  

Porro A Yes Yes 1.1A 0 Binocs
Porro B Yes Yes 1.1A 0 Binocs
Abbe A Yes Yes 0 0
Abbe B Yes Yes 0 0
Dove, Yes No 0 0 Parallel light

double dove
Pechan Yes No 0 0 Nonparallel
Amici Yes No — 90 Roof
Schmidt Yes Yes — 45
Leman Yes Yes 3A 0
Penta No No — 90 exactly
Reversion Yes Yes 0 0 Nonparallel
Wollaston No No — 90 tracing
Zeiss Yes Yes Design  
Goerz Yes Yes Design  
Frank 1 Yes Yes — 115
Frank 2 Yes Yes — 60
Frank 3 Yes Yes — 45v 90h
Frank 4 Yes No — 45v 90h
Frank 5 No Yes — 60v 90h
Frank 6 Yes Yes — 60v 90h
Frank 7 No No — 45v 90h
Hastings Yes Yes 0 0
Rhomboid No No A 0
Risleys No No No 0–180
Retro Yes Yes No 180
D40 No No — 40–50
D60 No No — 50–60
D90 No No — 80–100
D120 No No — 110–130

Right-Angle Prism

Perhaps the simplest of the deviating prisms is the right-angle prism. Light enters one of the two 
perpendicular faces, as shown in Fig. 1a, reflects off the diagonal face, and emerges at 90° from the 
other perpendicular face. The beam has been rotated by 90°, and the image has been inverted. If the 
prism is used in the other orientation, shown in Fig. 1b, then the image is reverted. The internal 
angle of incidence is 45°, which is sufficient for total internal reflection (as long as the refractive 
index is greater than 1.42).

Porro Prism

A Porro prism, shown in Fig. 2, has a double reflection and may be considered to be two right-
angle prisms together. They are often identical. Often, two Porro prisms are used together to invert 
and revert the image. The incidence angles are the same as with the right-angle prism, so that total 
internal reflection takes place with refractive indices larger than 1.42. It is a direct-vision prism.
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(a) (b)

AA

A
B

A = 1.00

n = 1.5170

B = 1.4142A = 1.4142

d = A = 1.00

d/n = 0.6592

 = 45

FIGURE 1 Right-angle prism.
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Daa

a

B

FIGURE 2 Porro prism.
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FIGURE 3 Abbe modification of Porro prisms for binoculars.

Abbe’s version of the Porro prism is shown in Fig. 3. The resultant beam is inverted and reverted 
and is directed parallel and in the same direction as incident beam.
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Abbe’s Prisms

Two versions of prisms invented by Abbe are shown. They both are direct-vision prisms that revert 
and invert the image. One version is symmetrical; the other uses three different prism segments. 
They are shown in Figs. 4 and 5.
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b

b

b

d

a
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A

A 3A

b a

A

A

A

A

A

2A

A = 1.00

n = 1.5170

B = 1.4142A = 1.4142
a = 0.7071A = 0.7071

C = 1.3094A = 1.3094

b = 0.5774A = 0.5774

L = 3.4644A = 3.4644

d = 5.1962A = 5.1962

d/n = 3.4253

a = 30
b = 60

g  = 90

d = 45

FIGURE 4 Abbe direct-vision prism—A.
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A = 1.00

n = 1.5170

B = 1.1547A = 1.1547

a = 0.7071A = 0.7071

b = 0.5773A = 0.5773

L = 3.4641A = 3.4641 d = 5.1962A = 5.1962

d/n = 3.4253

a = 135

b = 60

g  = 45

w = 30

2A

B
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FIGURE 5 Abbe direct-vision prism—B.
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Dove Prism

A Dove prism (also known as a Harting-Dove prism) does not deviate or displace an image but it 
can be used to either invert or revert an image. It must be placed in parallel light. Such a prism is 
shown in Fig. 6.

Da

aa

E

B

A = 1.00

C = B – 2a = 4.5498

D = B – 2(A + 2a) = 2.4498

d/n = 2.4499

= 1.4142 (A + a) = 1.4849
a + A

cos a
E =

a = 0.05

n = 1.5170

a = 45

b = 90

C

b

a

A

A

B = (A + 2a)

= 4.2271 (A + 2a) = 4.6498

+ 1
n2 – sin2a + sin a

n2 – sin2a – sin a
= 3.3787 (A + 2a) = 3.7165

n (A + 2a)
d =

n2 – sin2a – sin asin a

FIGURE 6 Harting-Dove prism.
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Double Dove

Two Dove prisms are glued together. The length is halved, but the height is doubled. It performs the 
same functions as a single Dove in almost the same way. It is shown in Fig. 7.

D D

D

a
aa

a
A/2

A/2

A = 1.00

C = B – A = 1.1136

d/n = 1.1135

n = 1.5170

a = 45

D

C A
B

= nAC = 1.6893

nAd =
n2 – sin2a – sin a2 sin a

B =

= 2.1136A = 2.1136

+ 1
n2 – sin2a + sin a

n2 – sin2a – sin a
A
2

= 0.7071A = 0.7071
A

2 cos aD =

FIGURE 7 Double Dove prism.
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Pechan Prism

The Pechan prism (shown in Fig. 8) performs the same function as the Dove, but it can do it in con-
verging or diverging beams. The surfaces marked B are silvered and protected. The surfaces border-
ing the air space are unsilvered.
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B

E

B

a

a

a b
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A

A a
b
g
d n

B A

C A

D A

d n

a A

d A

E A

FIGURE 8 Pechan prism.

Amici (Roof) Prism

This more complex arrangement of surfaces inverts the image, reverts it, and deviates it 90°. It is 
shown in Fig. 9. Since this prism makes use of the roof effect, it has the same angles as both the 
right-angle and Porro prisms, and exhibits total internal reflection for refractive indices larger 
than 1.42.
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A

A A

a

a

aa

B

A

A

B A

a A

d n

d A

n

FIGURE 9 Amici (roof) prism.
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D = 1.4142A + 2.3890a = 1.6531

FIGURE 10 Schmidt prism.

Schmidt Prism

The prism will invert and revert the image, and it will deviate it through 45°. It is shown in Fig. 10.
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Leman Prism

This rather strange looking device, shown in Fig. 11, reverts, inverts, and displaces by 3A, an image.

FIGURE 11 Leman prism.

Penta Prism

A penta prism has the remarkable property that it always deviates a beam by exactly 90° in the prin-
cipal plane. This is akin to the operation of a cube corner. The two reflecting surfaces of the penta 
prism, shown in Fig. 12, must be reflectorized, as the angles are 22.5° and therefore require a refrac-
tive index of 2.62 or greater for total internal reflection. Some penta-prisms are equipped with a 
roof to revert the image.
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Reversion Prism

This prism operates like an Abbe prism, type A, but does not require parallel light. It is shown 
in Fig. 13.

A

A A

B
C

C

A

B A

C A

d n

a A

n

FIGURE 12 Penta prism.

FIGURE 13 Reversion prism.



NONDISPERSIVE PRISMS  19.15

Wollaston Prism

This prism does not invert, revert, or displace. It does deviate a beam by 90°, allowing a tracing to be 
made. It is shown in Fig. 14.

R

A

A

R

B

A

n

B A

d R A

d n

C A

R A

B

C

P

FIGURE 14 Wollaston prism.
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Carl Zeiss Prism System

This arrangement of three prisms allows the image to be reverted, inverted, and displaced, but not 
deviated. The amount of displacement is adjustable. The system is shown in Fig. 15.

FIGURE 15 Carl Zeiss prism system.
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Goerz Prism System

This is an alternate to the Zeiss system. It does the same things. It is shown in Fig. 16.

FIGURE 16 C. P. Goerz prism system.
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Frankford Arsenal 1

This prism, shown in Fig. 17, reverts, inverts, and deviates through 115°.

b A A

a

AC
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B
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d n
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FIGURE 17 Frankford Arsenal prism 1.
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Frankford Arsenal 2

This prism reverts, inverts, and deviates through 60°. It is shown in Fig. 18.
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FIGURE 18 Frankford Arsenal prism 2.
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Frankford Arsenal 3

This prism reverts, inverts, and deviates through an angle of 45° upward and 90º horizontally. It is 
shown in Fig. 19.
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FIGURE 19 Frankford Arsenal prism 3.
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Frankford Arsenal 4

This prism reverts the image and deviates it 45° upward and 90° sidewards, like Frankford Arsenal 3. 
It is shown in Fig. 20.

L

B
A

A
E

AA

A

A
R

C

F

A

Silver

A = 1.00

n = 1.5170

B = 1.4142A = 1.4142

D = 1.0824A = 1.0824
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 = 22 30

= 112 30

D

FIGURE 20 Frankford Arsenal prism 4.
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Frankford Arsenal 5

This prism inverts the image while deviating it 90° sideways and 60° upward. It is shown in Fig. 21.
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FIGURE 21 Frankford Arsenal prism 5.
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Frankford Arsenal 6

This prism inverts, reverts, and deviates 90° horizontally and 60° vertically. It is shown in Fig. 22.
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FIGURE 22 Frankford Arsenal prism 6.
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Frankford Arsenal 7

This prism neither reverts nor inverts, but deviates 90° horizontally and 45° vertically. It is shown 
in Fig. 23.
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FIGURE 23 Frankford Arsenal prism 7.
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Brashear-Hastings Prism

This device, shown in Fig. 24, inverts an image without changing the direction of the beam. Since 
this is a relatively complicated optical element, it does not see much use.

FIGURE 24 Brashear-Hastings prism.

Rhomboidal Prism 

A rhomboidal prism, as shown in Fig. 25, displaces the beam without inverting, reverting, deviating, 
or otherwise changing things. The reflecting analog is a pair of mirrors at 45°.

FIGURE 25 Rhomboidal prism.

Risley Prisms

Risley prisms are used in two ways. If they are slightly absorbing, they can be used as variable attenuators 
by translating one with respect to the other perpendicular to their apexes.3 They can also be rotated to 
generate a variety of angular deviations.4 A single prism deviates the beam according to its wedge angle 
and refractive index. If rotated in a circle about an axis perpendicular to its face, it will rotate the beam in 
a similar circle. A second, identical prism in series with it, as shown in Fig. 26, can double the angle of the 
beam rotation and generate a circle of twice the radius. If they rotate in opposite directions, one motion 
is canceled and a line is generated. In fact, all sorts of Lissajous-type figures can be obtained; some are 
shown in Fig. 27. The equations that govern the patterns are
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FIGURE 26 Risley prisms.

FIGURE 27 Risley prism patterns.
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x t t1 1 2 2cos cos( ) (1)

y t t1 1 2 2sin sin( ) (2)

where x and y are the beam deviations, 1 and 2 are the individual prism deviations,  is the 
rotation rate, t is time, and  is the phase of the prism position. For relatively monochromatic 
applications, the prisms can be “fresnelled,” as shown in Fig. 28, and the mirror analogs, shown in 
Fig. 29, can also be used.

FIGURE 29 Risely mirrors.

FIGURE 28 Fresnel Risleys.
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Retroreflectors

The familiar reflective cube corner (not corner cube), that sends a ray back in the direction from 
which it came, has its refractive analog, as shown in Fig. 30. The angles are adjusted so that total 
internal reflection occurs. The angular acceptance range can be large.

General Deviation Prisms

Figure 31 shows a 40°-deviation prism. Other angles are obtainable with appropriate changes in the 
prism manufacture, as shown, for example, in Figs. 32 and 33.

FIGURE 30 Retroreflectors.

FIGURE 31 40°-deviation prism—D40.
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FIGURE 32 60°-deviation prism—D60.

FIGURE 33 120°-deviation prism—D120.
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20.1 GLOSSARY

Ap prism angle

B prism base

Dp angle of minimum deviation

d grating constant

E irradiance

N number of slits

n refractive index

p order number

RP resolving power

r angles

W prism width

angle

angle

20.2 INTRODUCTION

Spectroradiometers (Fig. 1) are radiometers designed specifically to allow determination of the wave-
length distribution of radiation. This category of measurement systems usually consists of those in 
which separation of the radiation into its spectral components, or dispersion, is accomplished by the 
use of an optical element possessing a known functional dependence on wavelength—specifically, 
prisms and diffraction gratings. (Interferometers can also provide spectral dispersion as is discussed 
in Chap. 32, “Interferometers,” by Parameswaran Hariharan.)

20.1
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20.3 PRISMS1,2,3

The wavelength dependence of the index of refraction is used in prism spectrometers. Such an 
optical element disperses parallel rays or collimated radiation into different angles from the prism 
according to wavelength. Distortion of the image of the entrance slit is minimized by the use of 
plane wave illumination. Even with plane wave illumination, the image of the slit is curved because 
not all of the rays from the entrance slit can traverse the prism in its principal plane. A prism is 
shown in the position of minimum angular deviation of the incoming rays in Fig. 2. At minimum 
angular deviation, maximum power can pass through the prism. For a prism adjusted to the posi-
tion of minimum deviation,

r r Ap1 2 2/ (1)

and

i i D Ap p1 2 2( )/ (2)

where    Dp = angle of minimum deviation for the prism
Ap = angle of the prism

r1 and r2 = internal angles of refraction
i1 and i2 = angles of entry and exit

The angle of minimum deviation Dp varies with wavelength. The angular dispersion is defined as 
dDp/d , while the linear dispersion is

dx d FdD dp/ / (3)

where F is the focal length of the camera or imaging lens and x is the distance across the image plane. 
It can be shown1 that

dD d B W dn dp / / /( )( ) (4)

FIGURE 1 Basic spectroradiometer.
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as the field stop



DISPERSIVE PRISMS AND GRATINGS  20.3

where B = base length of the prism
W = width of the illumination beam
n = index of refraction

dx/d = F(B/W)(dn/d )

The resolving power RP of an instrument may be defined as the smallest resolvable wavelength dif-
ference, according to the Rayleigh criterion, divided by the average wavelength in that spectral region. 
The limiting resolution is set by diffraction due to the finite beam width, or effective aperture of the 
prism, which is rectangular. Thus,

RP /p B dn d( ) (5)

If the entire prism face is not illuminated, then only the illuminated base length must be used for B.

20.4 GRATINGS

A grating is an n-slit system used in Fraunhofer diffraction with interference arising from division of 
the incident plane wave front. Thus it is a multiple beam interferometer described by

p d( )sin sin (6)

Top view

Side
view

Side view

Top
view

Image

Ap
Dp

i2

r2

Sp

r1

i1

B

W

Slit or
line source

FIGURE 2 Elementary prism spectrometer schematic. W is the width of the entrance beam; Sp is 
the length of the prism face; and B is the prism base length.
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where p = order number (= 0, 1, 2, . . .) of the principal maxima
d = the grating constant or spacing (the distance between adjacent slits)

= angle of incidence
= angle of diffraction

The most common case is that of normal incidence, that is, 0, so that

p d sin (7)

and the irradiance distribution is

E E w w

N

o{sin[( sin ) ] [( sin ) ]}

{sin[(

/ / / 2

d dsin ) ] sin[( sin ) ]}/ / / 2

(8)

where w is the slit width and N is the number of slits or grooves. This equation is often written as

E E N0
2 2[(sin ) ] [(sin ) sin/ / (9)

which can be considered to be

E constant single-slit diffraction function

N-slit interference function
(10)

These considerations are for unblazed gratings. For a diffraction grating, the angular dispersion is 
given (for constant angle ) by

dD d d d p dg/ or / /( cos ) (11)

The resolving power is given by

RPg pN (12)

20.5  PRISM AND GRATING CONFIGURATIONS 
AND INSTRUMENTS

Classical

There are several basic prism and grating configurations and spectrometer designs which continue 
to be useful. One of the oldest spectrometer configurations is shown in Fig. 3.1 Reflective interac-
tions and prism combinations are used in Figs. 4, 5, and 6. Dispersion without deviation is realized 
in Figs. 7 and 8, while half-prisms are used in Fig. 9 in an arrangement which uses smaller prisms 
but still attains the same beam width. A few classical prism instrumental configurations are shown 
in Figs. 10, 11, and 12. Multiple-pass prism configurations are illustrated in Figs. 13 and 14.4,5

A well-known example of a single beam double-pass prism infrared spectrometer was the 
Perkin-Elmer Model 112 instrument shown in Fig. 15. Infrared radiation from a source is focused 
by mirrors M1 and M2 on the entrance slit S1 of the monochromator. The radiation beam from 
S1, path 1, is collimated by the off-axis paraboloid M3 and a parallel beam traverses the prism for 
a first refraction. The beam is reflected by the Littrow mirror M4, through the prism for a second 
refraction, and focused by the paraboloid, path 2, at the corner mirror M6. The radiation returns 
along path 3, traverses the prism again, and is returned along path 4 for reflection by mirror 
M7 to the exit slit S2. By this double dispersion, the radiation is spread out along the plane of S2.
The radiation of the frequency interval which passes through S2 is focused by mirrors M8 and 
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M9 on the thermocouple TC. The beam is chopped by CH, near M6, to produce a voltage (at the 
thermocouple) which is proportional to the radiant power or intensity of the beam. This voltage 
is amplified and recorded by an electronic potentiometer. Motor-driven rotation of Littrow mirror 
M4 causes the infrared spectrum to pass across exit slit S2 permitting measurement of the radiant 
intensity of successive frequencies.

Gratings can be used either in transmission or reflection.6 Another interesting variation comes from 
their use in plane or concave reflection form. The last was treated most completely by Rowland, who 
achieved a useful combination of focusing and grating action. He showed that the radius of curvature 
of the grating surface is the diameter of a circle (called the Rowland circle). Any source placed on the 

Illuminated scale

Collimator
lens

Telescope

E

P

Slit

0 5 10 20

FIGURE 3 Bunsen-Kirchhoff spectrometer. An illuminated scale is reflected from the prism face into 
the telescope.

FIGURE 4 Wadsworth constant-deviation, prism-mirror arrangement. The beam enters the 
prism at minimum deviation and emerges displaced but not deviated from its original direction.
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FIGURE 5 Amici prism. The central ray D enters and leaves parallel to 
the base. The C and F rays are deviated and dispersed.

B

D

O

C

A

E

FIGURE 6 Pellin–Broca prism. The prism is equivalent 
to two 30° prisms, ABC and BED, and one 45° prism, DEC, but 
is made in one place. The beam shown, entering at minimum 
deviation, emerges at 90° deviation to its entrance direction.

C

F

D

FIGURE 7 Zenger prism. The central ray D is undeviated. 
The C and F rays are deviated and dispersed.

A AB

C

D

F

FIGURE 8 Wernicke prism. This arrangement is essentially 
two Zenger prisms, back-to-back.
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FIGURE 9 Young–Thollon half prisms. The passage of a beam at 
minimum deviation is shown.

Entrance
slit

Exit slit Vacuum
thermocouple

Littrow
mirror

Mirror

Prism

FIGURE 10 Infrared spectrograph of the Littrow-type mount with a rock salt prism.

circle will be imaged on the circle, with dispersion, if the rulings are made so that d is constant on 
the secant to the grating-blank (spherical) surface. The astigmatism acts so that a point source on a 
Rowland circle is imaged as a vertical line perpendicular to the plane of the circle. Rowland invented 
and constructed the first concave grating mounting, illustrated in Fig. 16.1

If dispersion is sufficiently large, one may find overlapping of the lines from one order with 
members of the spectra belonging to a neighboring order. Errors and imperfections in the ruling of 
gratings can produce spurious images which are called “ghosts.” Also, the grooves in a grating can 
be shaped so as to send more radiation along a preferred direction corresponding to an order other 
than the zero order. Such gratings are said to be blazed in that order. These issues and many more 
involved in the production of gratings by ruling engines were thoroughly discussed by Harrison in 
his 1973 paper “The Diffraction Grating—An Opinionated Appraisal.”7

Six more grating configurations1 which are considered to be “classics” are

1. Paschen-Runge, illustrated in Fig. 17. In this arrangement, one or more fixed slits are placed to 
give an angle of incidence suitable for the uses of the instrument. The spectra are focused along the 
Rowland circle P P , and photographic plates, or other detectors, are placed along a large portion of 
this circle.

2. Eagle, shown in Fig. 18. This is similar to the Littrow prism spectrograph. The slit and plate 
holder are mounted close together on one end of a rigid bar with the concave grating mounted on 
the other end.
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3. Wadsworth, shown in Fig. 19. The Rowland circle is not used in this mounting in which the 
grating receives parallel light.

4. Ebert-Fastie, shown in Fig. 20. The Ebert-Fastie features a single, spherical, collimating mirror 
and a grating placed symmetrically between the two slits. The major advantage of the Ebert system is 
the fact that it is self-correcting for spherical aberration. With the use of curved slits, astigmatism is 
almost completely overcome.

FIGURE 11 Mirror spectrometer with two choices of the loca-
tion of the image. Arrangement (b) leads to smaller aberrations than 
arrangement (a) and is used in the Czerny-Turner mount.

FIGURE 12 Pfund mirror. The use of a plane mirror 
to avoid astigmatism in the use of a paraboloidal mirror.



DISPERSIVE PRISMS AND GRATINGS  20.9

FIGURE 13 Double-pass monochromator.

FIGURE 14 Perkin-Elmer Model 99 double-pass monochromator.
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FIGURE 15 Perkin-Elmer Model 112 single-beam double-pass infrared spectrometer.
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5. Littrow, shown in Fig. 10. The Littrow system has slits on the same side of the grating to mini-
mize astigmatism. An advantage of the Littrow mount, therefore, is that straight slits can be used. In 
fact, such slits may be used even for a spherical collimating mirror if the aperture is not too large. 
Its greatest disadvantage is that it does not correct for spherical aberration—not too serious a 
defect for long focal-length/small-aperture instruments. If an off-axis parabola is used to collimate 
the light, aberrations are greatly reduced.

6. Pfund, shown in Figs. 12 and 21. This is an on-axis, Pfund-type grating instrument.5 Incident 
infrared radiation, focused by a collimating lens on the entrance slit and modulated by a chopper, 
passes through the central aperture of plane mirror M1. Reflected by the paraboloidal mirror Pl, it 
emerges as a parallel beam of radiation, which is reflected by mirror M1 to the grating. The grating is 
accurately located on a turntable, which may be rotated to scan the spectrum. From the grating, the 
diffracted beam, reflected by mirror M2, is focused by a second paraboloid P2 through the central 
aperture of mirror M2 to the exit slit. The emerging beam is then focused by the ellipsoidal mirror M3
on the detector.

An off-axis, double-pass grating instrument is illustrated in Fig. 22.6

Combinations of prisms and gratings are not uncommon. An illustrative and complex prism-
grating, double-monochromator spectrometer designed by Unicam Instruments, Ltd. is shown in 
Fig. 23.5 The prism monochromator has four interchangeable prisms, and the grating monochro-
mator has two interchangeable gratings. The two monochromators, ganged by cams which are 
linear in wave number, are driven by a common shaft. The instrument can be used either as a prism-
grating double monochromator, or as a prism spectrometer by blanking the grating monochro-
mator. Gratings, prisms, and cams can be automatically interchanged by means of push buttons. 

FIGURE 16 Rowland mounting of the concave grating. The 
grating plate-holder bar, which slides on the two perpendicular ways, 
is shown in two positions, GP and G'P'. The slit SI and source S
remain fixed.
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FIGURE 17 Paschen-Runge mounting of the concave 
grating. Sl is the slit, G is the grating, and S is the light source.

FIGURE 18 Eagle mounting on the concave grating. Sl is the 
slit, G is the grating, S is the light source, and P is the plate holder.
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FIGURE 19 Wadsworth mounting of the concave grating. Sl is 
the entrance slit, G is the concave grating, M is the concave mirror, P
is the plate holder, and AB is the rail for the plate holder. To minimize 
aberrations, one must locate the slit close to the grating.

FIGURE 20 Ebert mounting of the plane grating designed by 
Fastie. Sl is the entrance slit, G is the grating, M is the concave mirror, 
and P is the photographic plate. The horizontal section is at the top 
and the vertical section is at the bottom.
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Magnetically operated slits, programmed by a taped potentiometer, provide a constant energy back-
ground. A star-wheel, time-sharing, beam attenuator is used in the double-beam photometer.

Contemporary

In recent years there has been more attention paid to total system design and integration for spe-
cific purposes and applications, as for analytical atomic and molecular spectroscopy in analytical 
chemistry. Thus the conventional dispersive elements are often used in the classical configura-
tions with variations. Innovations have come especially in designs tailored for complete computer 
control; introduction of one- and two-dimensional detector arrays as well as new detector types 
(especially for signal matching); the use of holographic optical elements either alone or com-
bined with holographic gratings; and special data-processing software packages, displays, and 
data storage systems. This is the case also for interferometric systems as discussed in Chap. 32, 
“Interferometers,” by Parameswaran Hariharan.

FIGURE 21 On-axis Pfund grating spectrograph.

Grating

Exit slit

Detector

Entrance
slit

FIGURE 22 Off-axis, double-pass grating spec-
trograph.
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TABLE 1 Examples of Prism/Grating Spectroradiometers

Manufacturer Comments

ARC (Acton Research Corp.), Acton, Mass. Czerny-Turner or Rowland systems with triple 
indexable Vac UV/IR gratings

ARIES (Acton Research Instrument & Equipment 
Services Inc.), QEI (Quantum Electronics 
Instruments Inc.), Concord, Mass.

Czerny-Turner variation with double or triple selectable 
gratings for 165-nm to 40-μm regions

Beckman Instruments Inc., Fullerton, Calif. DU Series 60 and 70 modular construction, computer-
controlled spectrophotometers for analytical 
applications

CVI Laser Corp., Albuquerque, N. Mex. Digikrom Monochrometers, 1/8-, 1/4-, and 1/2-m 
Czerny-Turner grating systems, 186 nm–20 μm

Cary/Varian Instrument Group, San Fernando, Calif. Cary 1, 3, 4, and 5 spectrophotometers for UV-Vis-IR; 
double beam, dual chopper/grating Littrow systems; 
attachments (e.g., reflectance) and applications software

CI Systems Ltd., New York City, N.Y. and Israel CVF spectroradiometers for 0.4 to 20-μm scan
Infrared Systems, Inc., Orlando, Fla. CVF spectroradiometer
Instruments SA, Inc., J-Y Optical Systems, Edison, N.J. Monochrometers, spectrometers for UV-Vis-IR, 

holographic gratings in Czerny-Turner or concave 
aberration-corrected holographic gratings and 
Rowland mounts; single and double pass; imaging 
spectrographs

LECO Corp., St. Joseph, Mich. ICP (Inductively Coupled Plasma) spectrometer 
system with Pachen-Runge mount concave grating 
followed by an echelle and a linear detector array

Leeman Labs, Inc., Lowell, Mass. ICP system with a fixed echelle grating followed by a 
prism with crossed order dispersion and scanned 
photomultipliers or detector arrays

McPherson, Division of SI Corp., Acton, Mass. Double/triple monochrometers, spectroradiometers 
using gratings and/or prisms in Seya-Namioka, 
Czerny-Turner (C-T), crossed C-T, or Rowland 
configurations

Minirad Systems, Inc., Fairfield, Conn. CVF and discrete filters in spectroradiometers for field 
measurements, 0.2 to 30 μm

Optometrics Corp., Ayer, Mass. Monochrometers, prism or grating, Ebert-Fastie 
systems for UV-Vis-NIR

Optronic Laboratories, Inc., A Subsidiary of 
Kollmorgen Corp., Orlando, Fla.

Spectroradiometers, UV-Vis-IR for precision 
measurements; filter wheels, gratings, and prisms 
in single/double monochrometer configurations

Oriel Corporation, Stratford, Conn. Scanning monochrometers, rotation filter wheels, 
and detector array instruments

Perkin-Elmer Corporation, Norwalk, Conn. Complete sets of UV-Vis-IR spectroscopic systems using 
gratings and prisms, or FT-IR, with software and 
hardware for computer control, and accessories for 
microscopy, reflectance measurement, etc.

Shimadzu Scientific Instruments, Inc., Columbia, Md. UV-Vis-NIR spectroscopic systems using holographic 
gratings in Czerny-Turner mounts in single- and 
double-beam configurations, computer-controlled, 
with accessories for analyses

SPEX Industries, Inc., Edison, N.J. UV through IR grating spectrometers, 1/2 and 
1/4 m, with CCD or PDA multichannel detectors

Thermo Jarrell Ash Corp., A Subsidiary of Thermo 
Instrument Systems, Inc., Franklin, Mass.

Monochromators and spectroscopic systems for analyses, 
UV-Vis-IR with gratings (in 1942 in Wadsworth, 
then in 1953, Ebert, and now Paschen-Runge and 
crossed Czerny-Turner mounts); complete systems
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Some examples found by a brief look through manufacturers’ literature and journals such as 
Spectroscopy, Physics Today, Laser Focus, Photonics Spectra, and Lasers & Optronics,8 are presented in 
Table 1. Most of these systems are designed for analytical spectroscopy with techniques described in 
many texts such as Robinson’s Atomic Spectroscopy.9
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21.1 GLOSSARY

APE annealed proton exchange

CATV cable television

CVD chemical vapor deposition

CMOS complementary metal oxide semiconductor

DBR distributed Bragg reflector

DFB distributed feedback
E electric field of propagating light

FOG fiber optic gyroscope

Gb/s gigabits per second

H magnetic field of propagating light

IO integrated optics

IOC integrated optic circuit

Lc coupling length of directional coupler

LED light-emitting diode

Mb/s megabits per second

MMIC monolithic millimeter-wave integrated circuit

MZ Mach-Zehnder

n index of refraction

OEIC optoelectronic integrated circuit

rij electro-optic tensor element

PIC photonic integrated circuit

RF radio frequency

SOI silicon-on-insulator

21.1



21.2  COMPONENTS

tcutoff waveguide thickness for cutoff of first odd mode

TE transverse electric mode

TM transverse magnetic mode

V voltage for  radian phase shift in electro-optic modulator

VLSI very large scale integration

WDM wavelength division multiplexing

propagation constant of waveguide mode

m field amplitude of mode m

coupling efficiency between modes

crit critical angle for total internal reflection

spatial period of periodic feature along waveguide

vacuum wavelength of propagating light

PL photoluminescence peak wavelength of semiconductor

21.2 INTRODUCTION

The field of integrated optics is concerned with the theory, fabrication, and applications of guided 
wave optical devices and circuits. These structures guide light along the surface of a wafer typi-
cally using dielectric waveguides that confine light to lateral dimensions on the scale of the optical 
wavelength. Guided wave devices that perform passive operations analogous to classic optics, such as 
reflecting, beam splitting, attenuating and spectral filtering, can be formed using microelectronic-
based fabrication techniques. By fabricating devices in active materials such as ferroelectrics, 
modulators, and switches based on the classic electro-optic effect can be formed. Compound semi-
conductors such as GaAs or InP additionally allow for the detection of light, and generation and 
amplification of light with light-emitting diodes (LEDs), lasers, and optical amplifiers. Extremely 
compact passive and active optical devices have also recently been demonstrated in silicon, taking 
explicit advantage of the highly advanced very large scale integration (VLSI) process technology 
developed for electronics. The monolithic integrate of optically interconnected passive and active 
devices in a multicomponent circuit is referred to as an integrated optic circuit (IOC) or a photonic 
integrated circuit (PIC), with the latter term usually applied to active semiconductor-based circuits. 
In semiconductor materials, purely electronic devices such as transistors can be integrated as well to 
form what is often referred to as an optoelectronic integrated circuit (OEIC).

Progress in the field of integrated optics has been rapid since its inception1 in 1969. Much of this 
progress is due the availability of increasingly high-quality materials, microelectronic-processing 
equipment and techniques, and the overall rapid advancement and deployment of fiber optic sys-
tems. Interest in integrated optics stems from its numerous advantages over other optical technolo-
gies. Integrated optics devices interface efficiently with optical fibers, and can reduce cost in complex 
circuits by eliminating the need for separate, individual packaging of each circuit element. They also 
offer smaller size and weight, lower power consumption, improved reliability, and often larger elec-
trical modulation bandwidths compared to their bulk-optic counterparts.

The applications for integrated optics are widespread. Generally these applications involve 
interfacing with single-mode fiber optic systems such as digital and analog communications, but 
also include RF signal processing using optical techniques, laser beam control, and navigational and 
biomedical sensors. Integrated optics is viewed in the marketplace as a key enabling technology for 
high-speed digital optical fiber telecommunications, cable television (CATV) signal distribution, 
and fiber optic gyroscopes (FOG), and it will certainly continue to have a major impact on progress 
in broadband information distribution and connectivity.

This chapter reviews the integrated optics (IO) field, beginning with a brief review of IO device 
physics and fabrication techniques. A phenomenological description of IO circuit elements, both 
passive and active, is given, followed by a discussion of IO applications and system demonstrations. 
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The chapter concludes with a short look at future trends. Due to the brevity of this chapter relative to 
the work in the field, much of the coverage is necessarily limited. The reader is referred to Refs. 2–17 
for more detailed information at a variety of levels.

21.3 DEVICE PHYSICS

Optical Waveguides

Central to integrated optics is the concept of guiding light in dielectric waveguide structures with 
dimensions comparable to the wavelength of the guided light. In this section we present only a brief 
survey of the relevant physics and analysis techniques used to study their properties. The reader is 
referred to a number of excellent texts dealing with this topic for a more comprehensive treatment.2–6

A dielectric waveguide confines light to the core of the waveguide by somehow reflecting power 
back toward the waveguide core that would otherwise diffract or propagate away. While any means 
of reflection can accomplish this end (e.g., glancing-incidence partial reflections from interfaces 
between different media can serve as the basis for leaky waveguides), the most common technique 
employs a 100 percent total internal reflection from the boundary of a high-index core and a lower-
index cladding material. As light propagates down the axis of such a structure, the waveguide cross 
section can also be viewed as a lens-like phase plate that provides a larger retardation in the core 
region. Propagation down the guide then resembles a continuous refocusing of light that would oth-
erwise diffract away.

The pedagogical structure used to illustrate this phenomenon is the symmetric slab waveguide, 
composed of three layers of homogeneous dielectrics as shown in Fig. 1. It is well known that propa-
gation in slab structures can be analyzed using either a ray-optics approach, or through the use of 
interface boundary conditions applied to the simple solutions of Maxwell’s equations in each homo-
geneous layer of the structure.2–6 In the ray-optics description, the rays represent the phase fronts of 
two intersecting plane waves propagating in the waveguide core region. Since the steady-state field 
has a well-defined phase at each point, a finite set of discrete modes arises from the self-consistency 
condition that, after propagation and two reflections from the core-cladding boundaries, any phase 
front must rejoin itself with an integral multiple of a 2  phase shift. For a given core thickness, there 
will be a limited discrete number of propagation angles in the core that satisfy this criterion, with the 
lower bound on the angle given by the critical angle for total internal reflection, crit /sin ( )1

0 1n n .
In general, a thicker and higher-index waveguide core will admit a larger number of confined solu-
tions or bound modes. Figure 1 shows both the fundamental even mode and the first higher order, 

FIGURE 1 A symmetric three-layer slab waveguide. The fundamental even and first 
odd mode are shown.
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odd mode. If the dimensions are small enough, only one bound mode for each polarization state 
will exist and the guide is termed a single-mode waveguide. Care must be exercised to include the 
angle-dependent phase shift upon total internal reflection, referred to as the Goos-Hanchen shift, 
that can be viewed as a displaced effective reflection plane.2 The quantity ( ) sin2 1n / , referred 
to as the propagation constant, is the z projection of the wave vector and thus governs the phase 
evolution of the field along the length of the guide. In addition to the discrete set of bound modes, 
plane waves can also enter from one side and pass at an angle through such a structure, and form a 
continuous set of radiation modes. In an asymmetrical structure, some of the radiation modes may 
be propagating on one side of the guide, but evanescent on the other. From a mathematical point 
of view, the set of all bound and radiation modes in a nondissipative structure form a complete set 
for expansion of any electromagnetic field in the structure. Analysis techniques will be discussed in 
more detail below.

The slab waveguide in Fig. 1 employed total internal reflection from an abrupt index discon-
tinuity for confinement. Some fabrication techniques for waveguides, particularly in glasses or 
electro-optic materials such as LiNbO3, achieve the high-index core by impurity diffusion or 
implantation, leading to a graded index profile. Here a field solution will usually be required to 
properly describe the modes and the ray paths become curved, but total internal reflection is still 
responsible for confinement.

Most useful integrated optics devices require waveguide confinement not just in a two-dimen-
sional slab, but in a stripe or channel geometry. While recognizing that the vector nature of the 
electromagnetic field makes the rigorous analysis of a particular structure quite cumbersome, the 
reader can appreciate that the same phenomenon of confinement by reflection will be operative in 
two dimensions as well. Figure 2 shows the cross sections of the most common stripe or channel 
waveguide types used in integrated optics. Common to the cross section for all these structures is
a region on the waveguide axis containing higher index material than the surrounding cladding 
areas. The diffused waveguide may require a full two-dimensional analysis, but a common technique 
for the approximate analysis of high-aspect-ratio channel guides such as in Fig. 2a, b, c, and d, is 
the effective index method.2,3,18 In this technique a slab waveguide analysis is applied sequentially 
to the two dimensions. First three separate vertical problems are solved to obtain the modal phase 
index n emod /2  for a given polarization mode in each lateral region as if it were an infinite 
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FIGURE 2 Various types of channel or stripe waveguides .
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slab. These indices are then used as input to a final “effective” slab waveguide problem in the lateral 
dimension using the opposite polarization boundary conditions. Since the properties of multilayer 
slab waveguides play an important role in waveguide analysis, a more comprehensive general formu-
lation is outlined below. This task is more tractable using the field solutions of Maxwell’s equations 
than the ray-optics approach.

A general multilayer slab is shown in Fig. 3. Since the wave equation in this case is separable, 
we need only consider a two-dimensional problem in the y direction perpendicular to the layers, 
and a propagation direction z. Here we will consider the concept of a mode in such a structure to 
be quantified in physical terms as a solution to Maxwell’s equations whose sole dependence on the 
coordinate in the propagation direction z is given by ei z. This translates to a requirement that the 
shape of the field distribution in the y direction, perpendicular to layers, remain unchanged with 
propagation. In this manner we can easily generalize to leaky structures or materials exhibiting loss 
or gain, where  may be complex to allow for the scaling of the mode amplitude with propagation, 
but the relative mode profile in the perpendicular y direction still remains constant. These latter 
solutions are not normalizable or “proper” in the sense of mathematical completeness, but are very 
useful in understanding propagation behavior in such structures.

Since the field in each homogeneous layer m is well known to be e ik rm , with | |k nm m2 /  for 
the (generally complex) index of refraction nm, the general solution to the field amplitude in each 
layer m is

m
m ma e e em

iq y
m

iq y i zb (1)

where qm 2 nm/ )2 2 . Inspection of the vector Maxwell’s equations reveals that the gen-
eral vector solution in the multilayer slab can be broken down into the superposition of a TE 

FIGURE 3 A general multilayer slab waveguide structure.
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(transverse electric) and a TM (transverse magnetic) solution.2,3 The TE (TM) solution is character-
ized by having only one component of the electric (magnetic) field that points in the x direction, 
parallel to the layers and perpendicular to the propagation direction z. The mode field amplitude 

m in Eq. (1) refers to the Ex or the Hx field for the TE and TM case, respectively.
In a very simple exercise, for each of these cases one can successively match boundary conditions 

for continuous tangential E  and H  across the interfaces to provide the coefficients am 1 and bm 1 in 
each layer m 1 based upon the value of the coefficients in the preceding layer m,
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where ym are the coordinates of the interfaces between layers m and m 1, and m 1 for TE modes 
and m mn 2 for TM modes. The wave is assumed evanescently decaying or outward leaking on 
one initial side of the arbitrary stack of complex-index layers, that is b0  0 on the uppermost layer. 
When the lowermost “cladding” layer m  p is reached, one again demands that only the coefficient 
bp of the evanescently decaying, or possibly the outward leaking, component be nonzero, which 
recursively provides the eigenvalue equation ap( )  0 for the eigenvalues j . Arbitrarily letting 
a0 1, this can be written explicitly as

ap m
m p

m

( ) [ ] ( )1 0
1
0

1

0

M 00 (3)

where Mm( ) is the matrix appearing in Eq. (2). This method is essentially the one described for real 
propagation constants by Kogelnik,2 who further provides important variational and perturbative 
expressions for determining the changes in propagation constants due to local changes in materials 
properties as might be used for modulation. In practice Eq. (3) is solved numerically in the form 
of two equations (for the real and imaginary parts of ap) in two unknowns (the real and imaginary 
parts of ). Once the complex solutions j are obtained using standard root-finding routines, the 
spatial profiles are easily calculated for each mode j by actually evaluating the coefficients for the 
solutions using the relations above with a0  1, for example.

Application of Eq. (3) to the simple symmetric slab of Fig. 1 with thickness t, and real core index 
n1 and cladding index n0 can be reduced with some trigonometric half-angle identities to a simple 
set of equations with intuitive solutions by graphical construction.19 Defining new independent 
variables r t n/ / /2 2 1

2 2 1 2[( ) ]  and s t n/ / /2 22
0

2 1 2[ ( ) ] , one must simultaneously solve 
for positive r and s the equation

r s t n n2 2 2
1
2

0
2( ) ( )/ (4)

and either one of the following equations:

s r
r
r

1

0

tan( ) ( )
cot( ) ( )

even modes
odd modes

(5)

where again m 1 for TE modes and m mn 2 for TM modes.
By plotting the circles described by Eq. (4) and the functions in Eq. (5) in the (r,s) plane, 

intersections provide the solutions (rj, sj) for mode j, yielding j from the definition of either r or s.
This construction is shown in Fig. 4 for TE modes, where Eq. (4) has been parametrized with 
u t n n( ) ( )/ /

1
2

0
2 1 2. Due to the presence of m in Eq. (5), the TE and TM modes will have different 

propagation constants, leading to waveguide birefringence.
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It is easy to see from the zero-crossing of Eq. (5) at r /2 that the cutoff of the first odd mode 
occurs when the thickness reaches a value 

t n ncutoff /( ) ( ) /2 1
2

0
2 1 2 (6)

Another important feature of the symmetric slab is the fact that neither the TE nor TM fundamen-
tal (even) mode is ever cut off. This is not true for asymmetric guides. More complicated structures 
are easily handled using Eq. (2), and one can also approximate graded-index profiles using the multi 
layer slab. However, analytical solutions also exist1 for a number of interesting graded-index profiles, 
including parabolic, exponential, and “cosh 2” index profiles.

Once the modes of a waveguide are known, there are many physical phenomena of interest that 
can be easily calculated. Quite often the propagation constant is required to evaluate the phase evo-
lution of guided-wave components. In other cases the frequency dependence of the propagation 
constant is required to get the group velocity, vg [ ]/ 1, which determines quantities such as 
the flow of energy or the mode spacing in resonators. In other cases, the designer may need to know 
the electric field amplitude, or perhaps the fraction of the propagating energy, that lies within a cer-
tain layer of the waveguide system.

One critical application lies in evaluating how light couples between guided-wave components 
with different modal structure, or from free space into a guided-wave component. For example, it 
is easy to show from the mathematical completeness of the waveguide modes2–4 that the energy 

FIGURE 4 A graphical solution for the symmetric three-layer slab 
waveguide. For an arbitrary value of the parameter u, solutions are found 
at the intersections of the circular arcs and the transcendental functions 
as shown.
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efficiency  of the coupling from a field inj injected at the input facet of the waveguide into a par-
ticular TE mode m of a waveguide is given by

| ( ) ( ) |

| ( )| | ( )|

m

m

y y dy

y dy y

inj

inj

2

2 2 ddy
(7)

Another mathematical formalism, called coupled-mode theory,2,3,9 is one of the most important 
design tools for the guided-wave device designer and allows for the calculation of the coupling between 
parallel waveguides as in a directional coupler. It also allows for the evaluation of coupling between dis-
tinct modes of a waveguide when a longitudinal perturbation along the propagation direction destroys 
the exact mode orthogonality. An important example of the latter is when the perturbation is periodic 
as in a corrugated-waveguide grating where the grating allows for phase matching between modes with 
different propagation constants. Waveguide gratings are used to form wavelength selective coupling as 
in Bragg reflectors, distributed feedback lasers, and other grating-coupled devices. The comprehensive 
treatment of these phenomena is beyond the scope of this chapter, and the reader is referred to the 
references cited above. In some instances, evaluating the performance of devices where radiation plays 
a significant role may be tedious using a modal analysis, and numerical techniques such as the beam 
propagation method (BPM) are used to actually launch waves through the structure to evaluate radiation 
losses in waveguide bends, branches, or complicated splitters.20

Index of Refraction and Active Index-Changing Mechanisms

Index of Refraction Waveguide analysis and design requires precise knowledge of the material 
index of refraction. One of the most common electro-optic materials is LiNbO3, a uniaxial birefrin-
gent crystal whose index can be characterized by providing the wavelength-dependent ordinary and 
extraordinary indices no and ne. They are given by21

n A
B

D
Co e o e

o e

o e
o e, ,

,

,
,

2
2

2 (8)

where Ao  4.9048

Bo 0.11768

Co 0.027169

Do  0.04750

Ae  4.5820

Be 0.099169

Ce 0.021950

De  0.044432

Glasses are also common substrate materials, but compositions and indices are too varied to list 
here; indices usually lie in the range of 1.44 to 1.65, and are mildly dispersive. Commonly deposited 
dielectrics are SiO2 and Si3N4, with indices of ~1.44 and ~2.0 at 1.55 μm. The reader is referred to 
various tables in the literature for more detail.21

InP and GaAs are by far the most common substrates for IO devices in semiconductors. The 
usual epitaxial material on GaAs substrates is AlxGa1–xAs, which is nearly lattice-matched for all 
values of x, with GaAs at x  0 providing the narrowest bandgap. For photon energies below the 
absorption edge, the index of refraction of this material system is given by22

n E x E E E E Ef fAlGaAs( , ) ( ) ( )1 2 24 4 2 2 2 EE
E E

E E
f4

2 2

2 2

1 2

ln

/

(9)
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where E 1.2398/  is the incident photon energy,

E

E E E
d

4 0
3

0
2 2( )

and E E Ef ( ) /2 0
2 2 1 2 (10)

where E x x x0
23 65 0 871 0 179( ) . . .

E x xd( ) . .36 1 2 45

E x x x( ) . . .1 424 1 266 0 26 2

For devices fabricated on InP substrates, common in telecommunications applications for 
devices in the 1.3-μm and 1.55-μm bands, the most common epitaxial material is a quaternary 
alloy composition In Ga As Px x y y1 1 . In this case the material is only lattice matched for the specific 
combination y 2.917x, and this lattice-matched alloy can be characterized by its photolumines-
cence wavelength PL under low intensity optical excitation. The index of this quaternary allow is 
given by23

n E E
A

E
E E

A

E
E E

Q( , )PL

PL PL

1

1 1

1

1

2
2

2

2

1 2/

(11)

where E 1 2398. / and EPL PL/1 2398.  are, respectively, the incident photon energy and photolumi-
nescence peak photon energy for  in micrometer and A E A E E E1 2 1 2( ), ( ), ,PL PL

 are fitted parameters 
given by

A E E1
213 3510 5 4554 1 2332. . .PL PL

A E2 0 7140 0 3606. . PL

E1 2 5048. eV and E2 0 1638. eV

For application to the binary InP, the value of the photoluminescence peak should be taken as 

PL  0.939 μm.
Many integrated optics devices rely on active phenomena such as the electro-optic effect to alter 

the real or imaginary index of refraction. This index change is used to achieve a different device 
state, such as the tuning of a filter, the switching action of a waveguide switch, or the induced 
absorption of an electroabsorption modulator. Below, a brief survey is provided of the most com-
monly exploited index-changing phenomena.

Linear Electro-Optic Effect The linear electro-optic or Pockels effect refers to the change in the 
optical dielectric permittivity experienced in noncentrosymmetric ordered materials that is linear
with applied quasi-static electric field. This relation is commonly expressed using the dielectric 
impermeability ( )1 2

0/ /n E Dij i j  appearing in the index ellipsoid equation for propagation in 
anisotropic crystals.24 Convention employs symmetry arguments to contract all the ( / )1 2n ij to only 
six independent values which are then denoted by a single subscript ( )1 2/n i  for i 1, . . . ,6. In the 
principal axes coordinate system, the impermeability is diagonalized and ( )1 02/n i

 for i 4, 5, 6 
in the absence of an applied electric field, with the value of (1/n2)ij providing the inverse square of 
the index for optical fields polarized along each axis i  1, 2, 3. For an electric field expressed in the 



21.10  COMPONENTS

principal axes coordinate system, the changes in the coefficients are then evaluated using the 6 3
electro-optic tensor r

1
1 6

2
1

3

n
r E i

i
ij j

j

, , (12)

With an applied field, the equation for the index ellipsoid in general must be rediagonalized to again 
yield ( )1 02/n i  for i  4, 5, 6. This provides a new set of principal axes and the coefficients in the new 
index ellipsoid equation provide the altered value of the refractive index along each new principal axis.

For a particular crystal, symmetry also limits the number of nonzero rij that are possible. In the 
cubic zinc-blend III-V compounds there are only three equal nonzero components r r r63 52 41 and 
the analysis is relatively easy. As a specific example, consider a static field E applied along the (001) 
direction, surface normal to the wafers commonly used for epitaxial growth. The re-diagonalized 
principal axes in the presence of the field become the (001) direction (z axis), the (011) direction 
(x axis), and the (011) direction (y axis); the latter two directions are the cleavage planes and are thus 
common directions for propagation. The respective index values become

n n n r

n n n r

n n

x

y

z

0 0
3

41

0 0
3

41

0

1
2

1
2

E

E (13)

If we thus consider a slab guide on a (001) substrate and propagation in the (011) direction, the 
applied field would produce a phase retardation for TE-polarized light of / n r L0

3
41E  after 

a propagation length L. With values of r41
101 4 10~ .  cm/V, micron-scale waveguide structures in 

GaAs or InP lead to retardations in the range of 10°/V·mm. This TE retardation could be used as 
a phase modulator, or in a Mach-Zehnder (MZ) interferometer to provide intensity modulation. 
For fields applied in other directions such as the (011), the principal axes are rotated away from the 
(011) and (011) directions. Propagation along a cleavage direction can then alter the polarization 
state, a phenomenon that also has device implications as will be discussed in more detail later.

In the case of LiNbO3 and LiTaO3, two of the most common integrated optic materials for 
electro-optic devices, the dielectric tensor is more complex and the materials are also birefringent 
in the absence of an applied field. There are eight nonzero components to the electro-optic tensor, 
r22 r12 r61, r51 r42, r13 r23, and r33. For LiNbO3, the largest coefficient is r33

1030 8 10~ .  cm/V. 
Both retardation and polarization changes are readily achieved, and the reader is referred to Chap. 7, 
“Electro-Optic Modulators,” Vol. V of this Handbook or the literature for a comprehensive treatment 
of the properties of these and other materials.24,25

The electro-optic effect in these materials is associated with field-induced changes in the posi-
tions of the constituent atoms in the crystal, and the resulting change in the crystal polarizability. The 
absorption induced by the conventional electro-optic effect is thus negligible. Below, both free-carrier 
and field-induced absorption effects that are readily observed in semiconductors will be described.

Carrier Effects In semiconductors, other powerful index-changing mechanisms are available 
related to the interaction of the optical field with the free electrons or holes. The simplest of these 
is the plasma contribution resulting from the polarizability of the mobile carriers. This mechanism 
is important in active integrated optical devices in both compound semiconductors and in silicon, 
where in the latter case it provides one of the only viable technique for modulation. According to the 
simple Drude model,26 this is given for each carrier species by n N e nc m2 2 2

0
28/( ) in MKS 

units, where N and m  are the carrier concentration and effective mass, e is the electronic charge, 
and 0 is the free-space permittivity. This can produce index changes approaching n~ 0.01 at 
1018/cm3 electron-/hole-injected carrier density at 1.5-μm wavelengths. Static index shifts can also be 
achieved by impurity doping of the semiconductor, and can be exploited for waveguide design. Near 
the bandgap of the semiconductor, there are additional strong index changes with variations in the 
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carrier density that arise from the associated dramatic changes in the optical loss or gain. Since these 
correspond to changes in the imaginary index, the Kramers-Kronig relation dictates that changes 
also occur in the real index. In the spectral region for gain in the semiconductor, these changes are 
comparable in magnitude and of the same sign as the free-carrier index contribution. These changes 
are responsible for chirping in the output of modulated semiconductor lasers, and also strongly 
influence their sensitivity to feedback. They can dramatically impact the static and dynamic perfor-
mance of semiconductor devices and PICs that employ gain media.

In addition to the effects described above arising from changing carrier populations, the elec-
tronic transitions that generate the free carriers can be modified by an applied electric field. For 
optical frequencies close to these transitions, this can give rise both to electroabsorption and to an 
enhanced electro-optic effect, which shall be termed electrorefraction, due to the Stark effect on the 
carrier-generating transitions. In bulk material, the induced absorption is termed the Franz-Keldysh 
effect,27 and can be viewed as a tunneling effect. For an electron in the valence band with insufficient 
energy to complete a transition to the conduction band, the field can be viewed as adding a potential 
to the bands that effectively tilts them in space as shown in Fig. 5. If the excited carrier also traversed 
a short distance down-field from its initial location, it would have sufficient energy to complete the 
transitions. This distance depends on the tilt, and thus the strength of the applied field. Since carri-
ers can not be precisely localized according to the Heisenberg uncertainty principle, there is a finite 
amplitude for completing the transition that is an increasing function of electric field. For fields on 
the order of 105 V/cm, absorption values of ~100 cm 1 can be readily achieved in material that is 
quite transparent at zero field. According to the Kramers-Kronig relations, in addition to the absorp-
tion described above, this will also induce a change in the real index that will be positive below the 
band edge and can be used for phase modulation.

In the case of quantum wells, carrier-induced effects can be enhanced due to the forced carrier 
proximity arising from confinement in the wells. Excitonic effects, resulting from the coulombic 
attraction between electrons and holes, produce sharp features in the absorption spectrum near 
the band gap that can be dramatically altered by an applied electric field. This quantum-confined 
Stark effect (QCSE) can enhance both electroabsorptive and electrorefractive effects.28,29 This 
suggests that more compact, lower-drive voltage devices are possible when quantum wells are 
employed, a fact that has been confirmed experimentally. However, in both the bulk and especially 
the quantum well case, care must be taken to operate at an optical frequency where strong elec-
troabsorptive or electrorefractive effects are operative but the zero-field background absorption is 

–

+

FIGURE 5 Franz-Keldysh effect. Electron can 
complete transition to the tilted conduction band by 
tunneling.
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not prohibitively high. Another issue that impacts the design of devices based on electroabsorption 
is the requirement for removal of the photogenerated carriers to prevent screening of the applied 
field and band-filling which result in saturation. While the vast majority of QCSE devices have 
been demonstrated in compound semiconductors due to their direct bandgap, recent work has 
demonstrated that the effect is also operative in quantum wells at the direct bandgap of indirect 
gap materials such as Ge, providing impetus for further studies of QCSE device applications in the 
silicon-germanium materials system.30

Thermal Effects In virtually all materials, the optical path length of a given section of waveguide 
will increase with temperature. This is the combination of both the physical expansion of the mate-
rial and the change of the index of refraction with temperature. While both are significant, in most 
integrated-optic materials the latter effect is dominant. In SiO2 on Si, for example, this mechanism 
provides a useful means of index change, and numbers on the order of n ~ 10 5/°C are observed. 
This effect has been used to form a variety of thermo-optic switches and filters, but a significant dis-
advantage for many applications is the inherent slow speed and high power dissipation. In semicon-
ductors, this index change is more than an order of magnitude larger, and leads to frequency shifts 
in filter devices and single-longitudinal-mode laser of f ~ 10 GHz/°C.

Nonlinear Effects Another class of index changes results from the nonlinear optical effects caused 
by the incident optical fields themselves. This is treated in depth in other portions of this Handbook,31

but two phenomena will be mentioned here. The first is closely related to the electro-optic effect dis-
cussed earlier, where now the applied field giving rise to the index change is no longer “quasi-static” 
but is in fact the optical field itself. The response of the medium is in general not the same at optical 
frequencies, but the same symmetry arguments and contracted tensor approach is employed.

An exemplary phenomenon related to this kind of nonlinearity is second harmonic genera-
tion. The polarization resulting from the incident field at  multiplied by the index oscillating at 
generates second harmonic components at 2 . This frequency doubling can occur in waveguides, 
but great care must be taken to achieve phase matching where each locally generated frequency-
doubled field propagates in such a way as to add coherently to frequency-doubled fields generated 
farther along the guide. This requires either that the dispersive properties of the materials and guide 
geometry allow n( ) n(2 ), or that the frequency-doubled light radiates away from the guide at 
an angle to allow phase matching of the z component of the wavevector, or that a periodic domain 
reversal be introduced into the crystal to allow phase matching. This latter approach, often referred 
to as quasi-phase matching, has generated considerable interest recently. In this approach, the optic 
axis of the crystal is periodically reversed with a period equal to /2 the difference in the index of 
refraction of the fundamental and second harmonic. To date, the most promising results are in 
LiTaO3, LiNbO3, and KTP. In LiNbO3, periodic domain reversal has been obtained by the applica-
tion of 100 μs pulsed electric fields of 24 kV/mm using a 2.8 μm-period segmented electrode that is 
subsequently removed.32 The domain reversal in LiTaO3 can be obtained on a few-micron scale by 
proton exchange or electron bombardment. KTP has a higher nonlinear coefficient, but the material 
is not as well developed. Lower efficiencies have been obtained.

This nonlinear mechanism can be used not just for second harmonic generation, but also for 
sum and difference frequency generation using input signals of different frequencies.

A second application of nonlinear optics to integrated structures involves a higher order of 
nonlinearity referred to four-wave mixing, or in some situations as self-phase modulation. The 
change in index in these cases arises from the product of two optical fields. If all fields are the same 
frequency, this is termed degenerate, and if only one field is present, it becomes self-phase modulation 
with the index change driven by the intensity of the incident wave. This nonlinearity has been of 
interest in research aimed at creating all-optical logic devices. Here the intensity of either the input 
signal or a separate gating signal can determine the output port of a Mach-Zehnder or directional 
coupler switch, for example.33 Recent work has also shown that parametric amplification can be 
accomplished in guided-wave structures when the waveguide is properly constructed to allow 
phase matching of the resulting fields,34 suggesting the potential for compact, low-noise amplification 
in new regions of the spectrum.
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21.4  INTEGRATED OPTICS MATERIALS
AND FABRICATION TECHNOLOGY

Ion-Exchanged Glass Waveguides

Passive integrated optic devices can be fabricated in certain glass substrates using the ion-exchange 
technique.35,36 In this fabrication process, a sodium-rich glass substrate is placed in a mixture of 
molten nitrate salts containing alkali cations, such as Cs , Rb , Li , K , Ag , and Tl . During this 
process, sodium ions at the surface of the host glass are replaced with the alkali cations, resulting in 
a local increase in the refractive index. Channel waveguides are realized by selectively masking the 
glass surface. The index change and the diffusion depth are a function of host material composition, 
the specific alkali cation being used, the temperature, and the diffusion time. The exchange process 
can be substantially enhanced by applying an electric field across the wafer while the substrate is 
immersed in the salt bath .

Multimode devices are typically fabricated using thallium ion exchange in borosilicate glasses.37

The high polarizability of the thallium ions results in a large index change (> 0.1) while providing 
low propagation losses (0.1 dB/cm). However, thallium-sodium ion exchange has two significant 
drawbacks. Thallium is extremely toxic, and it also has a large ionic radius compared to sodium 
(1.49 Å compared to 0.95 Å), resulting in low diffusion coefficients and low mobility. It is therefore 
necessary to process the waveguides at high bath temperatures approaching the glass transition tem-
perature of the host material (500°C) for long diffusion times (10 hours) with high applied electric 
fields (>100 V/cm) to achieve deep multimode waveguides that efficiently couple to commercially 
available multimode fiber (50 to 100 m core size). Finding suitable masking materials is a challenge.

Single-mode devices are typically realized using either Ag Na , K Na , or Cs K  exchange.29,30

The first two processes have been extensively studied and are well understood; however, they each 
appear to have drawbacks. Ag Na  exchanged waveguides are somewhat lossy (0.5 dB/cm) due to a 
tendency for silver reduction in the host material. K Na  exchanged waveguides are typically highly 
stressed and prone to surface scattering that increases the propagation loss. Although not as extensively 
studied, Cs K  exchanged waveguides show great promise. These waveguides are nearly stress free, 
low loss (< 0.1 dB/cm), reproducible, and can be buried using a two-step exchange process. The 
two-step process further reduces the propagation loss and results in efficient fiber-waveguide coupling 
(< 0.1 dB loss per interface).

Thin Film Oxides

In recent years there has been substantial interest in IO devices fabricated in thin-film dielectrics on 
silicon substrates. This is due in part to the excellent surface quality, large-area wafers and mechani-
cal integrity of silicon itself. However, this interest also stems in some cases from the availability of 
mature silicon-processing technology developed by the electronic integrated circuit industry. IO 
technology on silicon substrates is usually carried out in SiO2, and there are two generic approaches 
to the Si/SiO2 fabrication that have proven capable of producing very high performance IO devices. 
IO devices using both approaches are characterized by waveguides that are extremely low loss and 
are easily matched in mode characteristics to optical fibers used for transmission, thereby providing 
very efficient coupling.

The first approach borrows more from the technology of optical fiber manufacture than it does 
from the Si electronics industry.38 Using a technique known as flame hydrolysis (FHD), a “soot” 
of SiO2 is deposited on a Si wafer to a depth of 50 to 60 μm, followed by a thinner layer of a SiO2/
GeO2 mix to form what will become the high-index waveguide core. This material is consolidated 
at ~1300°C for several hours down to roughly half its original thickness, and then the waveguide 
core layer is patterned using reactive ion etching to form square cross-section waveguide cores. 
Then FHD is again used, followed by more consolidation, to form the upper cladding layers. 
Typical index differences for the core material are in the range of 0.25 to 0.75 percent, with core 
dimensions of 6 to 8 μm square.
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A measure of the material quality that was available using this approach is given by some of the 
extraordinary early devices results obtained. IO power splitters were fabricated to sizes of 1  128 
using seven stages and a total of 127 Y-branch 1  2 splitters and a total device length of 5 cm. Total 
fiber-to-fiber excess loss for this device was 3.2 dB with a standard deviation of 0.63 dB.39 A large 
variety of devices has been made using this technique.

Another technique for Si/SiO2 fabrication employs film-deposition technology borrowed from 
silicon electronics processing.40 First a base SiO2 layer is deposited using high-pressure steam to a 
thickness of ~15 μm to prevent leakage to the high-index Si substrate. The waveguide and cladding 
layers are deposited using low-pressure chemical vapor deposition, either from silane and oxygen, or 
from tetraethylorthosilane and ammonia. Phosphine is added to increase the index, with guide cores 
typically containing 6.5 to 8 percent phosphine. The wafer is usually annealed at 1000°C to relieve 
strain and to densify the films. Waveguide losses below 0.05 dB/cm being reported41 using this tech-
nique, and a large variety of devices have been demonstrated using this approach, including splitters, 
couplers, and WDM devices. One of the interesting features of this approach to fabrication is that it 
readily lends itself to the inclusion of other thin films common in Si processing. One such film is 
Si3N4 and this has been used as a high index core for waveguides with much larger core-cladding 
index step. Such waveguides can generate tightly confined modes that are a much closer match to 
the modes commonly found in active semiconductor components such as lasers. This feature has 
been used in a novel mode converter device42 that adiabatically transforms from the smaller mode 
into the larger, fiber-matched mode commonly employed in Si/SiO2 IOCs. 

In some instances, slow response active devices have been fabricated in Si/SiO2 technology using 
thermal effects to achieve local index changes in one arm of a Mach-Zehnder interferometer. This 
can either be used as a thermo-optic switch or as a tuning element in WDM components. The heat-
ing elements in these devices comprises a simple metal-film-resistive heater deposited directly on 
the upper surface of the wafer.

Another characteristic feature of IOCs in Si/SiO2 is a degree of birefringence that results from 
the compressive stress induced in the film by the Si substrate after cooling down from the high-
temperature film deposition or consolidation. Typical amounts of birefringence are nTE  nTM  3  10 4.
This birefringence can cause wavelength shifts with input polarization in WDM components, and 
techniques to counteract it include stress removal by adding strain-relief grooves in the film, or 
stress compensation by adding a counteracting stress-inducing film on the surface of the guide, or 
the explicit introduction of birefringence-compensating waveguide elements.

The Si/SiO2 technology has matured to a point where it is commonly used in telecommunica-
tions for passive devices such as wavelength demultiplexing circuits that will be discussed later in 
this chapter, and active thermo-optic device circuits continue to be explored.

Silicon Photonics Fabrication and Materials

Recent years have seen a strong increase in research and development of silicon photonics where light 
is guided in silicon layers that are transparent in the important telecommunications window from 
1.2 to 1.6 μm.43–46 The most common approach to waveguide design directly uses silicon-on-insulator 
(SOI) technology, which provides for a layer of single-crystal silicon with thicknesses in the 0.1- to 
5-μm range, separated from the underlying silicon substrate by a buried oxide (BOX) layer of SiO2
with a thickness typically in the 1- to 2-μm range. Typical waveguide structures fabricated in the SOI 
system are shown in Fig. 6.

SOI has become a mainstream VLSI electronics technology offering reduced electrical parasitics 
for high-performance microprocessor applications, and the most common SOI wafer-fabrication 
method is the SMARTCUT technique, developed at CEA/LETI in France, and commercialized by 
Soitec.47 This technique works by implanting hydrogen in a first substrate and growing oxide on 
a second substrate. After the two substrates are wafer bonded, a rapid annealing step expands the 
hydrogen, creating an accurate cleave plane and leaving a uniform silicon film on top of the oxide. 
High-quality SOI wafers are now available to the silicon photonics community in sizes up to 12 
in (300 mm), and this materials system immediately brings to bear the unprecedented process 
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precision associated with VLSI complementary metal-oxide-semiconductor (CMOS) technology. 
This precision is not just in lithography, etching, and feature size, now at the 65-nm node and 
still shrinking, but also in the remarkable versatility in materials sequencing that allows for exotic 
dielectrics and multilayer metallizations.

One of the distinctive features of the SOI system is the extremely high index contrast available 
for waveguides, for example, with nSi  3.475 and nSiO2

 1.444 at 1.55 μm. As illustrated in Fig. 7, 
this allows for extremely small waveguides with cross-sectional areas below 0.1 μm2.46 This feature 
enables extremely compact passive devices, and also enables high-performance active devices by 
concentrating the mode on the index-changing region. However, the same high index contrast also 
leads to significant scattering losses from fabrication-induced waveguide sidewall roughness, which 
becomes increasingly challenging in very small cross-section waveguides. Larger mode devices in 
SOI have shown losses in the ~0.1 dB/cm range,48 while maximally vertically confined shallow ridge 
guides have losses of ~0.4 dB/cm,49 and several decibels per centimeter is more typical for most 
tightly confined “wire” waveguides.

The principle active index-changing mechanism used in silicon photonics is the plasma index 
contribution from free electronics and holes in the silicon. As will be illustrated later in discussions 
of devices, these free-carrier populations and locations can be controlled in a variety of diode and 
field-effect structures. The ability to harness the precision of VLSI CMOS technology to predictably 
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FIGURE 6 Typical silicon-on-insulator (SOI) waveguide structures.

FIGURE 7 Example of losses for high-index-contrast “wire” 
waveguides: For 6.5-μm radius bends, losses are 0.0043 dB per 180° 
turn as demonstrated by Vlasov et al., IBM.86
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engineer very high confinement waveguides together with precision dynamic control of free carriers 
in transistor-like device geometries has recently resulted in a number of high-performance modulator 
designs. While historically silicon has not been viewed as a high-performance active optical material, 
these and other advances have caused a serious reexamination of the potential of silicon as a powerful 
medium for PICs.

LiNbO3 and LiTaO3

The majority of the integrated optics R&D from 1975 to 1985 and the majority of the currently 
commercial integrated optics product offerings utilize LiNbO3 as the substrate material. A number 
of excellent review papers detailing R&D efforts in LiNbO3 are available.50–54 LiNbO3 is an excellent 
electro-optic material with high optical transmission in the visible and near infrared, a relatively 
large refractive index (n  2.15  2.2), and a large electro-optic coefficient (r33  30.8  10 10 cm/V). 
Probably most important, but frequently overlooked, is the widespread availability of high-quality 
LiNbO3 wafers. Hundreds of tons of LiNbO3 is produced annually for the fabrication of surface 
acoustic wave (SAW) devices. This large volume has resulted in well-developed crystal growth and 
wafer-processing techniques. In addition, LiNbO3 wafers are at least an order of magnitude less 
expensive than they would be if integrated optics was the only user of this material. High-quality 
3- and 4-in optical-grade LiNbO3 wafers are now available from multiple vendors.

LiNbO3 is a uniaxial crystal which is capable of supporting an extraordinary polarization mode 
for light polarized along the optic axis (z axis) and an ordinary polarization mode for light polarized 
in the x-y plane. LiNbO3 is slightly birefringent with ne  2.15 and no  2.20. LiNbO3 devices can 
be fabricated on x-, y-, and z-cut wafers. Phase modulators, fiber gyro circuits, and Mach-Zehnder 
interferometers are typically fabricated on x-cut, y-propagating wafers, and operate with the TE 
(extraordinary) mode. Push-pull devices, such as delta-beta directional coupler switches, are 
typically fabricated on z-cut, y-propagating wafers and operate with the TM (extraordinary) mode. 
Both configurations utilize the strong r33 electro-optic coefficient. Devices that require two phase-
matched modes for operation are typically fabricated on x-cut, z-propagating wafers.

The majority of LiNbO3 integrated optic devices demonstrated to date have been fabricated 
using the titanium in-diffusion process.55 Titanium strips of width 3 to 10 m and thickness 500 
to 1200 Å are diffused into the LiNbO3 at 950 to 1050 C for diffusion times of 5 to 10 hours.56,57

The titanium diffusion results in a local increase in both the ordinary and extraordinary refractive 
indices so that both TE and TM modes can be supported for any crystal orientation. Titanium 
thickness and strip width typically need to be controlled to  1 percent and  0.1 m, respectively, 
for reproducible device performance. Due to the high processing temperatures that approach 
the Curie temperature of LiNbO3, extreme care must be taken to prevent Li2O out-diffusion58,59

and ferroelectric domain inversion, both of which significantly degrade device performance. 
Photorefractive optical damage60 also needs to be considered when utilizing Ti-diffused devices for 
optical wavelengths shorter than 1 m. Optical damage typically prevents the use of Ti-diffused 
devices for optical power greater than a few hundred micro Watts at 800-nm wavelength, although 
the problem can be reduced by utilizing MgO-doped LiNbO3 wafers. Optical damage is typically 
not a problem at 1300 and 1550 nm for optical powers up to 100 mW.

An alternative process for fabricating high-quality waveguides in LiNbO3 is the annealed proton 
exchange (APE) process.61,62 In the APE process, a masked LiNbO3 wafer is immersed in a proton-rich 
source (benzoic acid is typically used) at temperatures between 150 and 245 C and times ranging 
from 10 to 120 minutes. The wafer is then annealed at temperatures between 350 and 400 C for 
1 to 5 hours. During the initial acid immersion, lithium ions from the wafer are exchanged with 
hydrogen ions from the bath in the unmasked region, resulting in a stress-induced waveguide that 
supports only the extraordinary polarization mode. Proton-exchanged waveguides that are not 
subjected to further processing are practically useless due to temporal instabilities in the modal 
propagation constants, high propagation loss, DC drift, and a much-reduced electro-optic coefficient. 
However, it has been demonstrated62 that proper postannealing results in extremely high quality 
waveguides that are stable, low-loss, and electro-optically efficient.
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The APE process has recently become the fabrication process of choice for the majority of applica-
tions currently in production. Since the APE waveguides only support the extraordinary polarization 
mode, they function as high-quality polarizers with polarization extinction in excess of 60 dB.63 As 
described later in this chapter, high-quality polarizers are essential for reducing the drift in fiber optic 
gyroscopes and minimizing nonlinear distortion products in analog links. APE waveguides exhibit 
low propagation losses of 0.15 dB/cm for wavelengths ranging from 800 to 1550 nm. APE LiNbO3
devices exhibit stable performance for optical powers of 10 mW at 800 nm and 200 mW at 1300 and 
1550 nm. The APE process can also be used to fabricate devices in LiTaO3 for applications requiring 
higher optical powers (up to 200 mW) at 800 nm.64 In addition to offering performance advantages, 
the APE process also appears to be the more manufacturable process. It is relatively easy to scale the 
APE process so that it can handle 25-wafer lots with no degradation in device uniformity. The fiber 
pigtailing requirements are also substantially reduced when packaging APE devices since these devices 
only support a single polarization mode. 

After the waveguides have been fabricated in the LiNbO3 wafer, electrodes need to be deposited 
on the surface. One- m-thick gold is typically used for lumped-electrode devices while 5- m-thick 
gold is typically used for traveling-wave devices to reduce RF resistive losses. The lift-off process and 
electron-beam deposition is typically used for lumped-electrode devices while up-plating is typically 
used for realizing the thicker gold electrodes. Better than 0.5- m layer-to-layer registration is required 
for optimum device performance. As shown in Fig. 10, electrodes on x-cut LiNbO3 are usually placed 
along side the waveguide so that the horizontal component of the electric field interacts with the 
propagating TE mode. Electrodes on z-cut LiNbO3 are placed on top of the waveguide so that the 
vertical component of the electric field interacts with the propagating TM mode. An SiO2 buffer layer 
(0.1–1 m thick) is required between the optical waveguide and the electrode on all z-cut devices 
to reduce metal-loading loss. A thick (1 m) SiO2 buffer layer is also utilized on some x- and z-cut 
devices to reduce the velocity mismatch between the microwave and optical waves in high-speed 
traveling-wave modulators. A thin layer of amorphous silicon is also utilized on some z-cut devices to 
improve device stability over temperature.

III-V Materials and Fabrication Technology

In this section we will briefly review some of the epitaxial growth and fabrication techniques that are 
used to make PICs in III-V materials, with a primary focus on InP-based devices.

III-V Epitaxial Crystal Growth The epitaxial growth of III-V optoelectronic materials has 
evolved during the last several decades from nearly exclusive use of manually controlled liquid-
phase epitaxial (LPE) growth to a variety of highly versatile computer-automated vapor and 
beam-growth techniques. These include atmospheric-pressure and low-pressure metal-organic 
vapor-phase epitaxy (MOVPE), hydride and chloride vapor-phase epitaxy (VPE), molecular 
beam epitaxy (MBE), chemical beam epitaxy (CBE), and metal-organic molecular beam 
epitaxy(MOMBE). Detailed descriptions of reactor design and growth chemistry are beyond the 
scope of this section, and the interested reader is referred to recent texts and conference proceedings 
for the most current information.65

One of the critical criteria for evaluating crystal growth is the uniformity, both in thickness and 
in epitaxial composition. Layer thickness changes of several percent can lead to nanometer-scale 
wavelength changes in grating-based lasers and filter devices. Similarly, compositional changes lead-
ing to a 10-nm shift in the photoluminescence peak wavelength of the guide layers, which is not at 
all uncommon, can also result in nanometer-scale wavelength shifts in distributed feedback (DFB) 
laser emission wavelengths, in addition to potential undesirable gain-peak mismatches that may 
result from the PL shift itself. 

Proper reactor geometry, sometimes with substrate rotation, have been shown capable of 
percent-level uniformity both in MOVPE and in the beam techniques. One difficulty associated 
with latter lies in the ballistic “line-of-sight” growth which prevents regrowth over reentrant mesa 
geometries or overhanging mask surfaces often encountered in PIC and laser fabrication, while 
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MOVPE and especially VPE offer outstanding coverage over a wide range of morphologies. Other 
criteria to be considered are the doping capabilities. The lower growth temperatures associated with 
MBE, CBE and MOMBE enable very abrupt changes in doping level, and highly concentrated dop-
ing sheets that are desirable for high-speed transistors in OEICs, for example. Both the vapor and 
beam techniques have successfully grown semi-insulating Fe-doped InP, a material that is playing an 
increasingly pivotal role in photonic devices. 

The typical PIC processing involves the growth of a base structure that is followed by processing 
and regrowths. During both the base wafer and regrowths, selective area growth is often employed 
where a patterned dielectric film is used to prevent crystal growth over protected areas. This film is 
typically SiO2 or Si3N4 deposited by CVD or plasma-assisted CVD. This technique is readily used 
with MOVPE, but care must be taken to keep a substantial portion of the field open for growth to 
avoid the formation of polycrystalline deposits on the dielectric mask. Caution must be exercised 
during regrowths over mesas or other nonplanar geometries, as well as in the vicinity of masked 
surfaces. Gross deviations from planarity can occur due to overshoots of crystal growth resulting 
from crystal-orientation-dependent growth rates on the various exposed surfaces. 

III-V Etching Technology A fundamental step in III-V PIC processing is mesa etching for defini-
tion of the optical waveguides. This is usually accomplished by patterning a stripe etch mask on a 
base wafer that has a number of epitaxial layers already grown, and removing some of the layers in 
the exposed regions to leave a mesa comprised of several of the epitaxial layers. The etching process 
can either be a “wet” chemical etchant, or a “dry” plasma-type etch.

Wet etching refers to the use of an acid bath to attack the unprotected regions of a surface. The 
acids that are commonly used to etch III-V materials66 also tend to significantly undercut a photo-
resist pattern, and hence photoresist is usually used only in broad-area features or in shallow etches 
where undercutting is not a concern. For precise geometries such as waveguide stripes, another 
masking material such as SiO2 or Si3N4 is first deposited and patterned with photoresist and plasma 
etching, or HF etching (for SiO2).

In some instances it is required that the etchants be nonselective, uniformly removing layers 
regardless of composition. This is usually the case when etching a mesa through a multilayer active 
region to form a buried heterostructure laser. Br-based etchants, such as bromine in percent-level 
concentration in methanol, tend to be very good in this regard. This etchant, along with many of 
the nonselective etchants, will form a reentrant 54.7  (111A) face mesa for stripes along the (011) 
direction (with a nonundercutting mask) and will form an outward-sloping 54.7  walled mesa for 
stripes along the (011) direction. Other etchants, with varying degrees of nonselectivity and crystal-
lographic behavior, include mixtures of HBr, CH3COOH, or HCl, CH3COOH, and H2O2.

67

In fabricating precise geometries in III-V integrated optic or PIC devices, it is often desirable to 
remove specific layers while leaving others, or control mesa heights to a very high degree of preci-
sion. The combination of material-selective etchants and the inclusion of special etch-stop layers 
offers a convenient and precise means of achieving this. Hundred-Å-thick layers of InGaAsP can 
easily halt InP etches even after many microns of etching. Extensive compilations have been made 
of etches for the InP-based compounds,52 and the most common selective InP etches are HCl-based. 
Typical mixtures are HCl and H3PO4 in ratios ranging from 3:1 to 1:3, with the lower HCl content 
leading to less undercutting and slower etch rates. The HCl-based etchants are highly crystal-
lographic in nature,68 and can produce mesas with nearly vertical walls or outward sloping walls, 
depending on the mesa stripe orientation.

A common selective etch for removing InGaAsP or InGaAs while only weakly attacking InP 
are mixtures of H2SO4, H2O2, and H2O in a ratio of X:1:1 with X typically ranging from 3 to 30. 
Selectivities in the range of 10:1 and typically much higher are readily achieved. Other selective 
etchants for InGaAsP are based on HNO3 or mixtures of KOH, K2Fe(CN)6, and H2O.

Dry etching techniques, such as reactive ion etching (RIE) or other variants such as chemically 
assisted reactive ion beam etching (CAIBE), also play a key role in III-V PIC processing. These have 
often been carried out using Cl2-based mixtures with O2 and Ar,69 while in other cases the reactive 
chlorine is derived from compounds such as CCl2F2. Excellent results have also been obtained with 
methane/hydrogen mixtures or ethane/hydrogen.70 In these latter cases Ar is also often used as a 
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sputtering gas to remove interfering redeposited compounds. Reactive ion etching has been used 
both to form mesa and facet structures as well as in transferring grating patterns into semiconductors 
through an etch mask. 

The appeal of reactive ion etching is the lack of mask undercutting that can usually be achieved, 
allowing very high lateral precision with the promise of reproducible submicron mesa features. In 
addition, the ability to create vertical wall-etched facets through a variety of different composition 
epitaxial layers suggests the possibility of integrated resonator or reflecting and coupling structures 
without the use of gratings. This approach has been used to form corner reflectors,71 square-geometry 
ring-resonators,72 and a variety of complex waveguide patterns using beam splitters.73 Another recent 
application has been the use of etched-facet technology to create gratings, not as an interfacial corru-
gation along the waveguide, but as a grating in the other dimension at the end surface of a waveguide 
for two-dimensional “free-space” grating spectrometers.74,75

Grating Fabrication Many of the PICs employ corrugated-waveguide grating-based resonators or 
filters, and the most common technique for fabricating these gratings involves a “holographic” or 
interferometric exposure using a short wavelength laser source. Here a thin (typically 500 to 1000Å 
thick) layer of photoresist is spun on a wafer surface and exposed with two collimated, expanded 
beams from a blue or UV laser at an appropriate angle to form high-contrast fringes at the desired 
pitch. Since the illuminating wavelength is precisely known, and angles are easily measured in the 
milliradian range, the typical corrugation in the 2000Å-period range can be fabricated to arm-
strong-level precision in period. The resist is developed and then functions as an etch mask for the 
underlying layers. This etching can be either a wet etch (commonly using HBr-based etchants), or a 
dry reactive ion etch. Commonly used lasers are HeCd at 325 nm or one of the UV lines of an Argon 
ion laser at 364 nm. Electron-beam lithography has also been successfully applied to the generation 
of gratings for III-V integrated optic devices.

Active-Passive Transitions Compound semiconductors are appealing for PICs in large part due 
to their ability to emit, amplify, and detect light. However, waveguide elements that perform these 
functions are not low loss without excitation, and are generally not suitable for providing passive 
interconnections between circuit elements. One of the most fundamental problems to overcome is 
the proper engineering and fabrication of the coupling between active waveguides, containing lower 
bandgap material, and passive waveguides composed of higher bandgap material.

Most PICs demonstrated to date have employed some form of butt-coupling, where an active 
waveguide of one vertical and/or lateral structure mates end-on with a passive waveguide of a 
different vertical and/or lateral structure. Butt-coupling offers design simplicity, flexibility, and 
favorable fabrication tolerances. The most straightforward approach for butt-coupling involves 
the selective removal of the entire active waveguide core stack using selective wet chemical etching, 
followed by a regrowth of a mated, aligned passive waveguide structure. The principal advantage of 
such an approach is the independent selection of compositional and dimensional design param-
eters for the two guides. 

Another approach to butt-coupling, often called “offset quantum wells” or “active layer 
removal,” employs a largely continuous passive waveguide structure with a thin active layer (usually 
of quantum wells) residing on top, which is selectively removed on the portions of the structure 
which are to be passive. Using material-selective wet chemical etches, the thin MQW stack can be 
removed with very high reproducibility and precision, and the dimensional control is thus placed 
in the original computer-automated MOVPE growth of the base wafer. The removal of the thin 
active layer constitutes only a small perturbation of the continuous guide core constituted by the 
lower, thicker layer, and efficient coupling can be achieved.76

Two powerful alternatives to the butt-coupling variants discussed above are selective area epitaxy
and quantum-well intermixing. These techniques provide for longitudinal modification in the effec-
tive bandgap of quantum-well-containing waveguides by altering the dimensions or profile of the 
quantum well along the length of a waveguide. Selective area epitaxy accomplishes this by the inclu-
sion of growth-inhibiting masks, such as SiO2, laterally adjacent to the waveguide during MOVPE 
growth. The resulting local increase in vapor-phase reactants, combined with surface diffusion along 
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the growth-inhibiting mask, leads to an increased growth rate in regions adjacent to the lateral masks. 
This leads to thicker quantum wells with correspondingly lower bandgaps from quantum confine-
ment, making these regions suitable for gain media or absorption along a waveguide which is trans-
parent in regions with no masks. By controlling the degree of enhancement, regions of transparency, 
regions suitable for electroabsorption or QCSE, and regions suitable for gain or absorption can all be 
formed along a guide with remarkably smooth continuity between regions. This technique has been 
highly successful in PICs comprising an integrated DFB laser and electroabsorption modulator.77

The quantum-well intermixing accomplishes a similar end by implanting regions and diffusing 
impurities or vacancies into the quantum-well region of a waveguide to intermix the boundaries 
of the wells and barriers. This intermixing smoothes the rectangular well into a rounded profile 
and also can change the average composition of the well, leading to a higher bandgap which can be 
used for longitudinally differentiating gain regions, modulation regions, and transparent regions.78

Although not in as wide commercial use, this method has the advantage that the various regions are 
large-area materials modifications allowing for standard materials characterization techniques, in 
contrast to the selective area epitaxy approaches which require difficult characterization of narrow 
stripe regions.

Yet another approach to coupling between two different waveguides employs directional coupling 
in the vertical plane between epitaxial layers serving as the cores of the two distinct waveguides. This 
type of vertical coupling can either be accomplished using the principle of intersecting dispersion 
curves, or through the use of a corrugated-waveguide grating to achieve phase matching. Vertical 
coupler structures may be useful for wide-tuning applications, since a small change of effective index 
for one mode can lead to a large change in coupling wavelength.79

Organic Polymers

Polymer films are a relatively newer class of materials for integrated optics.80 Polymers offer much 
versatility, in that molecular engineering permits many different materials to be fabricated; they can 
be applied by coating techniques to many types of substrates, and their optical and electro-optical 
properties can be modified in a variety of ways. Applications range from optical interconnects, in 
which passive guides are used in an optical PC board arrangement, to equivalents of IOCs and 
OEICs. Polymer devices are also being explored for third-order nonlinear applications.

Numerous methods for fabricating polymer waveguide electro-optic devices have been 
reported. One attractive technique consists of spin-coating a three-layer polymer sandwich over 
a metal film, often on a semiconductor (Si) substrate. The three polymer layers form a symmetric 
planar waveguide; the middle layer is electro-optic, due to the presence of a guest molecule that 
imparts the electro-optic property, or the use of a side-chain polymer. The sample is overcoated 
with metal and the entire structure is heated near the glass transition temperature and poled at an 
electric field of typically 150 V/μm. The poling aligns the nonlinear molecules in the middle poly-
mer layer, thereby inducing the Pockels effect and a birefringence. Typical values of index and bire-
fringence are 1.6 and 0.05, respectively. Electro-optic coefficients are in the 16 to 38 pm/V range. 
Channel waveguides are subsequently defined by a variety of methods. An attractive technique is 
photobleaching, in which the waveguide region is masked with a metal film and the surrounding 
area exposed to UV light. This exposure alters the molecules/linking in the active layer, thereby 
reducing the refractive index and providing lateral confinement. Losses in such guides are typically 
in the 1dB/cm range.

The basic IO modulators have been demonstrated in a variety of polymers. Of particular note 
are traveling wave modulators with a 3-dB bandwidth of 40 GHz and a low-frequency V pi of 6 V,81

and work illustrating the high-frequency potential of polymers up to modulation frequencies of 
110 GHz.82 Relative to LiNbO3, polymer modulators can have higher overlap factors because the 
lower metal layer provides vertical, well-confined signal fields. However, the relatively low index of 
polymers and their comparable electro-optic coefficient to LiNbO3 implies a lower electro-optic 
efficiency. Polymers do provide a better velocity match of optical and electromagnetic velocities 
which can result in very high frequency performance as described above.
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For polymers to fulfill their potential, a number of material and packaging issues must be 
addressed. First, it is highly desirable to develop polymers that overcome the long-term relaxation of 
the electro-optic effect typical of many of the early reports. Development of polymers with transition 
temperatures in the 300°C range (so they can withstand the temperatures typical of device processing 
and packaging) is also highly desirable. Work on polyimide is particularly promising in this area. 
Recent work has demonstrated encouraging results with devices processed at lower temperatures that 
exhibit long-term stability at elevated operating temperatures of 85°C.83

21.5 CIRCUIT ELEMENTS

Passive Devices

This section provides a phenomenological description of the most common passive and active IO 
devices. Detailed descriptions of the device theoretical properties as well as typical characteristics 
can be found in Refs. 2–6.

Passive devices form many of the fundamental building blocks for IOCs and PICs, and passive 
waveguides also comprise the interconnections between devices. Passive devices are defined as those 
dielectric waveguide structures which involve neither application of electrical signals, generation or 
detection of light, nor nonlinear optical effects. This section will focus on the most important struc-
tures: waveguide bends, polarizers, fiber-to-chip coupling, power splitters, and filters.

Waveguide bends, such as those illustrated in Figs. 7, 10, 11, 12, 14, 15, 19, 22, 25, and 26, are 
needed to laterally offset modulators and other devices, and also to increase device-packing density. 
Waveguide bends lead to radiation or leakage from the guide, and analytical treatments reveal that 
the induced losses decrease exponentially with radius of curvature in a manner that is very sensitive 
to the index difference between the core and cladding of the guide.84,85 The most widely used bend 
is based on an S-bend geometry described by a raised cosine function.2 This structure minimizes the 
tendency of light in a dielectric waveguide to “leak” as the guide’s direction is altered by starting with 
a small bend (large effective bend radius and then increasing the bend rate until the midpoint of the 
offset, then following the pattern in reverse through the bend completion.

Since the index difference between the guide and surrounding dielectric material is often small 
(10 3 to 10 4) bends must be gradual (effectively a few degrees) to keep losses acceptably (< 0.5 dB) 
small. In LiNbO3, offsets of 100 m require linear distances of typically 3 mm. In semiconductor 
research device work, designs with high index steps are sometimes used to form small-radius bends 
and ion beam etching has been utilized to form reflective micromirrors73 at 45  to the guide to cre-
ate a right-angle bend. While compact, to date these have generally been relatively lossy compared to 
their bending waveguide counterparts.

As noted earlier, silicon photonics carries a very high index contrast of n ~ 2, which also allows 
for extremely tight waveguide radii, as illustrated in Fig. 7, without introducing the bending losses 
that often limit the size of weaker index contrast materials systems.86 This can provide a dramatic 
increase in the density of possible PICs developed in the SOI system.

Polarizers are necessary for polarization-sensitive devices such as many electro-optic modulators 
and for polarization-sensitive applications such as fiber gyroscopes. Polarizers can be formed on 
dielectric waveguides that support both TE and TM propagation by forming overlays that selectively 
couple one polarization out of the guide. For example, a plasmon polarizer formed on LiNbO3 by 
overcoating the guide with a Si3N4/Au/Ag thin-film sandwich selectively attenuates the TM mode.87

In some materials it is possible to form waveguides that only support one polarization (the other 
polarization is not guided and radiates into the substrate). By inserting short (millimeter) lengths 
of such guides in circuits or alternatively forming entire circuits from these polarizing guides, high 
extinction can be obtained. For example, annealed proton exchange waveguides (APE ) in LiNbO3
exhibit polarization extinction ratios of at least 60 dB.88

Guided wave devices for splitting light beams are essential for most IOCs. Figure 8 illustrates the two 
common splitters: a directional coupler and a Y junction. The figure illustrates 3-dB coupling (1X2), 
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and by cascading such devices and using variations on the basic designs it is possible to fabricate N  N 
structures. IO splitters of complexity 8  8 are commercially available in glass.

The operation of the directional coupler is analogous to the microwave coupler and is described 
by the coupled mode equations. The coupling strength is exponentially dependent of the ratio of the 
guide spacing and the effective tail length of the guided mode. Thus when guides are far apart (typi-
cally greater than 10 m in weakly guided glass and ferroelectric devices) as in the left-most portion 
of the structure in Fig. 8, there is negligible coupling. When the guides are close together (typically a 
few microns), power will couple to the adjacent guide. The fraction of power coupled is sinusoidally 
dependent on the ratio of the interaction length to the coupling length Lc. Lc is typically 0.5–10 mm 
and is defined as the length for full power transfer from an incident guide to a coupled guide. The 
3-dB coupling illustrated requires an interaction length of half Lc.

2–6 Operation of this device is sym-
metric; light incident in any one of the four inputs will result in 3-dB splitting of the output light. 
However, if coherent light is incident on both input guides simultaneously, the relative power out of 
the two output guides will depend on the phase and power relationship of the incident signals.

The Y splitter illustrated in Fig. 8 operates on a modal evolution principle. Light incident on 
the junction from the left will divide symmetrically so that the fundamental mode of each output 
branch is excited. Branching circuit design follows closely from the design of waveguide bends. In 
low index contrast systems, the Y-junction angle is typically a few degrees and the interaction length 
is a few millimeter. Operation of this device is not symmetric with respect to loss. If coherent light 
is incident on both guides from the right, the amount of light exiting the single guide will depend 
on the power and phase relationship of the optical signals as they enter the junction area. If coher-
ent light is only incident in one arm of the junction from the right it will experience a fundamental 
3-dB loss in propagation to the left to the single guide. This is due to the asymmetric modal excita-
tion of the junction. (see the next section, “Active Devices”).

An extremely important issue in integrated optics is the matching of the waveguide mode to 
the mode of the fiber coupled to the guide. Significant mode mismatch causes high insertion loss, 
whereas a properly designed waveguide mode can have coupling loss well under 1 dB. As illustrated 
in Eq. (7), the proper design requires optimizing the overlap integral of the optical fields in the two 
media. Often some sort of index matching between the two materials is also employed to minimize 
additional reflective losses. Figure 9 illustrates the issue with mode profiles in the two transverse 
directions for a Ti indiffused guide. In general the IO mode is asymmetric relative to the fiber mode. 
It should be noted that the loss obtained on a pigtailed fiber-chip joint is also highly determined by 
the precision and stability of the mechanical method of attaching the fiber to the chip. Most techniques 
use some sort of carrier block for the fiber (e.g., a Si V-groove) and attach the block to the IO chip. 

FIGURE 8 Passive directional coupler and Y-branch 
IO splitter devices.
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Performance on commercially available devices is typically <1-dB coupling loss per interface with 
robust performance over at least the 30 to 60°C range.

Filters are another critical passive IO component used to selectively pass, block, or route prede-
termined wavelengths or bands of the input optical spectrum. Filters most often use interferometric 
concepts to achieve the desired effect. For example, a simple unequal-arm Mach-Zehnder filter can 
be constructed by combining two Y-splitters where the two arms in the interconnecting region have 
different path lengths as illustrated in Fig. 10. Combining the two paths reveals trivially that the 
resulting transmission of the device will have an amplitude response that is sinusoidal in frequency, 
or an intensity transmission given by

I I
n L L

c
( )

( )
0

2 2 1

2
cos (14)

By cascading such filters, a large variety of passband characteristics can be realized.
IO filters are important for wavelength division multiplexed (WDM) optical communications, 

where they are commonly used to combine different frequency channels together in multiplexers 
and to separate the different frequency channels in demultiplexers. Sophisticated multipath vari-
ants of the unequal arm interferometer are commonly used for this purpose, and are referred to as 
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arrayed-waveguide gratings (AWGs), waveguide grating routers (WGRs), or phasars.89–91 A multiport 
WGR is shown in Fig. 11 where each input to a primary star coupler expands in the laterally 
unguided portion of the star to uniformly illuminate each output waveguide of the primary star. 
The path lengths of each guide in the array between the primary and secondary star are incremented 
in length by an integral multiple of some base wavelength. At this wavelength, upon arrival at the input 
to the secondary star, each wave has the same phase relation to its neighbors that it had at the output 
to the first star coupler and reciprocity demands that this focus the beam, as a phased array, back to the 
corresponding single waveguide at the secondary star output. However, a slight change in wavelength 
will produce a phase tilt across this phased array, and the focus will go to a different output waveguide. 
In this manner, the device operates as a demultiplexer. The incremental length difference between 
adjacent guides in the region between the two stars functions just as a grating would in a bulk-optic 
equivalent of this device. The design illustrated here also has useful cyclical mapping between input 
and output ports that can be useful in wavelength-based switching schemes.

AWG designs have been successfully executed both in the Si/SiO2 and InP-based technologies with 
extraordinary performance. Commercially available devices provide out of band rejection in excess 
of 30 dB, polarization-independent operation, typical channel spacings of 50 GHz or 100 GHz, and 
fiber-to-fiber insertion losses below 2.5 dB. Research devices have demonstrated as many as 4200 
channels with spacings as narrow as 5 GHz.92 By properly designing the input ports in the coupler 
regions, nearly ideal flat bandpass characteristics can be obtained at the expense of a few additional 
dB of insertion loss. The precision waveguide spacing on the inputs and outputs also enables fiber 

FIGURE 10 Unequal arm Mach-Zehnder interference filter.

FIGURE 11 Multiport waveguide grating router filter architecture.
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ribbon array connections. IO devices that perform this function have become instrumental for cost-
effective deployment of high-channel-count WDM optical communications systems.

Another filter design that is becoming increasingly explored is based upon ring resonators, as 
illustrated in Fig. 12. Here weak directional couplers are used to couple the ring to the two straight 
waveguides, allowing coupling between the two straight waveguides only at the sharp resonant 
frequency of the rings, with other nonresonant frequencies bypassing the rings and remaining in 
their original input waveguide. As with the unequal-arm Mach-Zehnder filter, rings can be cascaded 
between two waveguides to provide flat bandpass characteristics with very sharp edges and high 
out-of-band rejection.93

Another key technology used extensively for filtering in IO is gratings. By periodically modulating 
the index profile of a waveguide, typically done by corrugating the boundaries of the guide through 
etching technology, Bragg reflection can be achieved. Such reflectors typically exhibit a relatively flat 
passband with a width dependent upon the strength and length of the periodic perturbation. Using 
such a filter inside a laser resonator provides a highly frequency-selective resonator and forms the basis 
for distributed feedback (DFB) and distributed bragg reflector (DBR) lasers. By cascading sections of 
grating, reflectors with a periodic sequence of peaks can be achieved. Such designs have been used as 
the basis for wavelength selective reflectors in widely tunable lasers. Gratings are critical to PICs con-
taining semiconductor lasers because they allow for on-chip resonators without the need for reflecting 
facets on the chip edge which would constrain the PIC chip size and component layout.

Active Devices

Active IO devices are those capable of having their state altered by an external applied voltage, cur-
rent, or other stimulus. This may include electro-optic devices, or devices that generate, amplify, 
or detect light. Active IO devices in non-semiconducting dielectrics generally depend on the linear 
electro-optic effect, or Pockels effect,24 which produces a change of the index of refraction of a 
material upon the application of an electric field as discussed earlier. Typical values for a variety of 
materials is about 10 4 for a field of 104 V/cm. This results in a phase change for light propagating in 
the field region and is the basis for a large family of modulators.

FIGURE 12 Experimental realization of 
a cascaded ring channel drop filter.
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The fundamental guided-wave modulator is a phase modulator, as illustrated in Fig. 13. In this 
device, electrodes are placed along side the waveguide and the lateral electric field determines the 
modulation. In other modulator designs, the vertical field component is used. For the geometry 
shown, the phase shift is KLV, where K is a constant, L is the electrode length, and V is the applied 
voltage. For LiNbO3, K n r g3

63 /  for the preferred orientation of field along the z (optic) axis 
and propagation along the y axis. Here, n is the index r63 is the electro-optic coefficient,  is the 
wavelength, g is the electrode gap, and  is the overlap of the electrical and optical fields. In general 
the value of K is anisotropic and is determined by the electro-optic tensor.24 It should be noted that 
modulators are often characterized by their V  value. This is the voltage required for a pi-radian 
phase shift; in this nomenclature phase shift is written as V V/  where V KL/ . Due to the 
requirement that the optical field be aligned with a particular crystal axis (e.g., in LiNbO3 and III-V 
semiconductors), the input fiber on modulators is generally polarization maintaining.

Modulators in LiNbO3 typically have efficiencies at 1.3 m of 50 °/V, cm, a V of 5 V for a 1-GHz 
3-dB bandwidth, and a fiber-to-fiber insertion loss of 2 to 3 dB. In semiconductors, modulation effi-
ciencies can be significantly higher if one designs a tightly guided mode (i.e., one well suited for 
on-chip laser coupling, but having a relatively high fiber-to-chip mismatch coupling loss).

The modulation bandwidth of phase and intensity modulators is determined by the dielectric 
properties of the electro-optic material and the electrode geometry. For structures in which the 
electrode length is comparable to or shorter than a quarter RF wavelength, it is reasonable to con-
sider the electrodes as lumped and to model the modulator as a capacitor with a parasitic resistance 
and inductance. In this case, the bandwidth is proportional to 1/L. For most IO materials, lumped-
element modulators have bandwidths less than 5 GHz to maintain reasonable drive voltages. For 
larger bandwidths, the electrodes are designed as transmission lines and the RF signal copropagates 
with the optical wave. This is referred to as a traveling wave modulator. The microwave performance 
of this type of structure is determined by the degree of velocity match of the optical and RF waves, 
the electrode microwave loss, the characteristic impedance of the electrodes and a variety of micro-
wave packaging considerations. In general, semiconductor and polymer modulators fundamentally 
have better velocity match than LiNbO3 and thus are attractive for highest frequency operation. 
Techniques and structures have been developed to substantially improve the velocity match in 
LiNbO3 , however, intensity modulators with 50 GHz have been reported.94

To achieve intensity modulation, it is generally necessary to incorporate a phase modulator into 
a somewhat more complex guided-wave structure. The two most common devices are the Mach-
Zehnder and the directional coupler modulator. Figure 14 illustrates the MZ modulator. This device is 
the guided-wave analog of the classical MZ interferometer. The input and output Y junctions serve as 
3-dB splitters and modulation is achieved in a push-pull manner by phase modulating both arms of 
the interferometer. The interferometer arms are spaced sufficiently that there is no coupling between 
them. When the applied voltage results in a pi-radian phase shift in light propagating in the two arms 
when they recombine at the output junction, the resultant odd field distribution corresponds to a 
second-order mode that cannot be guided and light radiates into the substrate. The output intensity I

V
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FIGURE 13 Top-down view of a typical 
LiNbO3 phase modulator. Field is applied laterally 
across the guide by surface electrodes on each side.
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of this device is given by I I KLV0 2 1/ [ cos( )]. The sinusoidal transfer characteristic is unique in IO 
modulators and provides the unique capability to “count fringes” by applying drive signals that are 
multiples of V . This feature has been exploited in a novel analog-to-digital converter.95 The device 
can be operated about its linear bias point /2 for analog applications and can also be used as a digital 
switch. A variation on this device is a balanced bridge modulator. In this structure the two Y junctions 
are replaced by 3-dB directional couplers. This structure retains a sinusoidal transfer characteristic, 
but can function as a 2  2 switch.

A directional coupler switch is shown in Fig. 15. In the embodiment illustrated, a set of elec-
trodes is positioned over the entire coupler region. The coupler is chosen to be Lc, a coupling 
length long, so that in the absence of an applied voltage, all light incident in one guide will 
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FIGURE 14 Geometry of lumped-element Mach-Zehnder 
modulator and transfer characteristic.
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FIGURE 15 Geometry of lumped-element directional coupler 
switch and transfer characteristic.
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cross over and exit the coupled guide. The performance of the directional coupler switch can be 
modeled by coupled mode theory. The application of an electric field spoils the synchronism of 
the guides, resulting in reduced coupling, and a shorter effective coupling length. For applica-
tion of a voltage such that KLV 3, all light will exit the input guide. In general, the transfer 
characteristic is given by 

I
I

KLV
KLV0

2
2

2 1
1 1

( ) )
cos( )

( /
( / (15)

Directional coupler switches can also be used for analog or digital modulation. They have also 
been fabricated in matrix arrays for applications in N N switch arrays (see Sec. 21.6). To increase 
the fabrication tolerance of directional coupler switches, designs based on reversing the sign of index 
change (delta beta) periodically along the coupler have been developed. The most common device 
consists of a device one to two coupling lengths long and a single reversal of the voltage formed by a 
two-section electrode. 

Both Mach-Zehnder and directional coupler devices have been developed in semiconduc-
tors, LiNbO3 and polymers. Devices are commercially available in LiNbO3. Drive voltages and 
bandwidths achieved are similar to the values quoted above for phase modulators. Additional 
effort has been focused in LiNbO3 to make devices that are polarization insensitive so that they 
are compatible with conventional single-mode fiber.96 Mach-Zehnder modulators have also been 
formed in glass waveguides. Here a resistive pad is heated to vary the index of the waveguide via 
the thermo-optic effect. 

Another important IO component is the TE-to-TM mode converter. This device, illustrated 
in Fig. 16, depends on an off-diagonal component r51 of the electro-optic tensor in LiNbO3 to 
convert incident TE (TM) light to TM (TE) polarization. In the converter a periodic electrode 
structure is used to create a periodic index change along the waveguide to provide phase match-
ing, and thus coupling, between the TE and TM wave. The period of this index change is given 
by / TE TM( )n n . The coupling efficiency at the phase-matched wavelength is given by sin ( )2 L
where n r E3

51 /  and E is the applied field. This type of device can be used for polarization con-
trol. In a polarization controller, a phase modulator is placed before and after the converter so that 
signals of arbitrary input polarization can be converted into any desired output polarization. The 
converter also serves as the basis for a tunable wavelength filter.97

There are numerous other types of IO intensity modulators that have been reported. These 
include a crossing channel switch, a digital optical switch, an acousto-optic tunable wavelength 
switch, and a cutoff modulator. The first two devices depend on modal interference and evolution 
effects. The acousto-optic switch utilizes a combination of acoustically induced TE-to-TM mode 

TE

TM

 = o sin2

 = 3
51 /

 = o/| TE – TM|

V– V+ V–

FIGURE 16 TE-TM mode converter using periodic 
electrodes to achieve phase matching.
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conversion and TE-TM splitting couplers to switch narrow-optical-band signals. The cutoff modu-
lator is simply a phase modulator designed near the cutoff of the fundamental mode such that an 
applied field effectively eliminates the guiding index change between the guide and the substrate. 
This results in light radiating into the substrate. 

In addition to the electro-optic devices described above, another common modulation technique 
employed in III-V materials employs the electroabsorption or electrorefraction effects discussed in 
Sec. 21.3. Here the bandgap energy of a bulk medium or an appropriately engineered quantum-well 
medium is chosen to be somewhat higher than the energy of the propagating photons. An applied 
field directly induces absorption, or a large index shift associated with the change in absorption at 
higher energy. The latter effect is used interferometrically in directional couplers, Mach- Zehnder 
modulators, or other designs as an enhanced substitute for the conventional electro-optic effect. The 
former is used as a single-pass absorptive waveguide modulator.

To achieve low operating voltages, such modulators are usually designed with small waveguide 
dimensions for tight confinement of the optical mode. This usually leads to a significant insertion 
loss of approximately 2 to 3 dB/cm when coupling to optical fibers. However, the tight waveguide 
mode is very similar to the waveguides employed in semiconductor lasers, and hence one of the pri-
mary appeals of waveguide electroabsorption modulators lies in their potential for integration with 
semiconductor lasers on a single PIC chip.98

A particular implementation used by Soda et al.,99 is shown schematically in Fig. 17. A 1.55-μm 
DFB laser structure is mated to an electroabsorption modulator with an InGaAsP core layer having 
a photoluminescence wavelength of PL approximately 1.40 μm. The entire structure uses a buried 
heterostructure waveguide with semi-insulating InP lateral cladding to provide good current block-
ing with low capacitance for high modulator bandwidth. Optimization of the modulator core PLis
very important in this device. With proper design, devices have yielded a good compromise between 
high output power and high modulator extinction ratios with low voltage drive. Typical device 
designs exhibit milli watt-level fiber-coupled output power with a 10-dB extinction ratio at drive 
levels of 2 to 4 V. 

Semiconductor lasers comprise one of the most highly developed implementations of integrated 
optics and are the subject of Chap. 19 in Vol. II, “Semiconductor Lasers.” Semiconductor lasers are 
routinely combined in PICs with other IO elements such as filters, modulators, amplifiers, and 
detectors. Common to most laser, detector or waveguide PICs is the inclusion of a guide containing 
an amplifying or gain medium, or an absorptive medium for detection, and the requirements of 

FIGURE 17 Integrated semiconductor laser/electorabsorption 
modulator PIC.
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current drive or extraction. The design and processing associated with these guided-wave compo-
nents relies heavily on a relatively mature technology associated with semiconductor lasers.100

The gain section of a semiconductor laser is usually fabricated in a buried heterostructure guide, 
as shown in Fig. 2a, and is driven through a forward biased p-n junction where the layers are usu-
ally doped during the crystal growth. With zero or reverse bias, this same structure can function as 
a waveguide photodetector. In a DFB laser or a distributed Bragg reflector (DBR) laser, this feature 
can be used to provide an integrated detector, on the back end of the device external to the cavity, 
for monitoring laser power. Alternatively, a separate gain medium external to the laser cavity can be 
located external to the cavity on the output side to function as an integrated power amplifier for the 
laser. Such a structure is shown in Fig. 18, where an array of DBR laser is followed by a fan-shaped 
amplifier to keep the amplifier medium at a relatively constant state of saturation. These PICs are 
termed master-oscillator/power-amplifiers (MOPAs), and can provide watt-level single-frequency, 
diffraction-limited output beams from a single chip.101

The challenge of laser integration is to fabricate other guided-wave components without com-
promising the intricate processing sequence required to make high-performance lasers. Figure 19 
shows an early implementation of a sophisticated PIC providing a balanced heterodyne receiver that 
might be used for coherent optical communications links.102 Here a tunable local oscillator is tuned 
to an optical frequency offset by a predetermined amount from one of potentially many incoming 
signals. The beat signal are generated in the integrated photodetectors, and whose signals can be 
subtracted for noise reduction, and then electrically amplified, filtered, and fed to a decision circuit 
This PIC combines five different types, and a total of seven, guided-wave optical devices: two tun-
able Bragg reflection filters, an MQW optical gain section, an electrically adjustable phase shifter, a 
zero-gap directional coupler switch, and two MQW waveguide photodetectors. It also demonstrates 
self-aligned connections between the buried heterostructure guides, which offer current access and 
semi-insulating InP lateral current blocking, and the low-loss semi-insulating InP-clad rib guides 
used in the S-bends and input port. The processing sequence for PICs of this complexity has been 
described in some detail in the literature, and can be carried out following most of the same steps 
used in commercial semiconductor laser fabrication.103

Tuning of the DBR lasers, as used in the PIC above, is accomplished by injecting current into the 
(transparent) Bragg reflectors, shifting their index via the plasma and anomalous dispersion effects 
discussed under Sec. 21.3. This shifts the wavelength of peak Bragg reflectivity, thereby selecting 
different longitudinal modes for the laser. The laser can also be continuously tuned by shifting the 
frequency of any particular longitudinal mode by injecting current to provide an index shift in the 
(transparent) phase section of the laser. Detectors in PICs of this type often employ for absorption 
the same layers used for gain in the laser, and typically have a capacitance of several picofarads dom-
inated by the contact pads rather than the depletion capacitance of the p-n junction.

FIGURE 18 Integrated semiconductor master oscillator/power amplifier (MOPA) PIC.
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Early experimental prototypes of PICs of this type have demonstrated total on-chip losses 
including propagation losses, bending losses, radiation losses at the coupler and at the active/passive 
detector transitions, and any departures from 100 percent quantum efficiency in the detectors, of 
approximately 4 dB, providing encouragement for even more complex integrations. This PIC dem-
onstrated error-free heterodyne reception of frequency-shift-keyed digital signals with sensitivities 
of 40 dBm at 200 Mb/s measured in free-space outside the chip. PICs such as this may in the future 
offer a cost-effective pathway for the efficient use of the optical spectrum via electrical filtering and 
encoding techniques, much in the same way cell phone systems operate today.

21.6 APPLICATIONS OF INTEGRATED OPTICS

Digital Transmission

The performance metric in digital optical fiber transmission is the ability of a transmitter to deliver 
a signal to the receiver an the end of the link in a manner such that the receiver can clearly distin-
guish between the “0” and “1” state in each time period or bit slot. Binary amplitude-shift-keyed 
transmission (ASK) is by far the most common format in commercial systems, but high perfor-
mance systems today also employ differential phase-shift-keyed (DPSK) formats. A decision circuit 
at the receiver must distinguish between “0” and “1,” and this circuit will be more susceptible to 
noise when the “0” and “1” level difference is reduced, or when the time over which this difference is 
maintained is reduced below the full bit period.

FIGURE 19 Integrated balanced heterodyne receiver PIC.
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The performance of a transmitter is thus governed by its rise and fall times, and its modulation 
bandwidth or flatness of response to avoid pattern-effects and its output power. Furthermore, the 
spectral characteristics of its optical output can impair transmission. Examples of the latter include 
unnecessary optical bandwidth, as might be present in an LED or a multilongitudinal-mode laser, 
that can produce pulse spreading of the digital pulses due to dispersion in the transmission fiber. 
While transmission sources include current-modulated LEDs, for speeds higher than approximately 
100 Mb/s semiconductor lasers are used, and IO technology has played a fundamental role in the 
evolution of semiconductor laser technology. In very high-speed systems (typically > 1 Gb/s), dispersive 
pulse distortion can cause severe degradation with directly modulated lasers unless devices which 
emit only one longitudinal mode are employed. The incorporation of gratings in DFB and DBR 
lasers has produced sources with exceptional spectral purity and allow multi-gigabit per second 
transmission over intermediate distances (< 100 km) in conventional fiber.

The advent of fiber amplifiers has enabled longer transmission spans without digital regen-
eration, and here the unavoidable frequency excursions that result from directly modulating even 
a single-longitudinal-mode laser again lead to pulse spreading and distortion. In these instances, a 
continuous wave (CW) laser followed by an external modulator is a preferred source. The integrated 
DFB/electroabsorption modulator, as discussed in Sec. 23.5, provides such a source. These PICs have 
demonstrated error-free transmission in excess of 500 km in dispersive fiber at 2.5 Gb/s.104 However, 
even these devices impose a small residual dynamic phase shift on the signal due to electrorefractive 
effects accompanying the induced absorption in the modulator. This can be especially problematic 
with typical percent-level antireflection coatings on the output facet, since this will provide phase-
varying optical feedback into the laser and further disrupt its frequency stability.

The highest performance digital transmission has been achieved using external LiNbO3 Mach-
Zehnder modulators to encode a CW semiconductor laser. Modulators similar to that in Fig. 14 have 
been constructed to allow separate traveling-wave voltages to be applied to each arm of the modu-
lator in a push-pull configuration. This device design can produce a digitally encoded signal with 
zero residual phase shift or chirp.105 Such a source has only its information-limited bandwidth and 
generally provides nearly optimized performance in a dispersive environment. The Mach-Zehnder 
can also be driven to intentionally provide positive or negative chirping to optimize transmission 
characteristics in dispersive links.106 Semiconductor lasers have also been monolithically integrated 
with Mach-Zehnder modulators using electrorefraction from the QCSE.107

Recently there has been significant focus on using phase modulation formats such as DPSK, 
and higher level formats such as differential quadrature phase-shift keyed (DQPSK) modulation 
where each bit period can contain 2 bits of information. Such formats not only allow higher spectral 
efficiency, or information per unit bandwidth in the fiber, but also offer advantages in robustness 
against impairments from fiber nonlinearity which can seriously degrade the performance of long-
distance amplified WDM systems. Just as in the case of the simpler integrated laser-modulator, PIC 
technology provides a powerful vehicle for the precision control of the pathlengths or phase delays 
required to encode and decode such formats in transmitters and receivers.108,109

Analog Transmission

A second application area that is expected to use a large number of IOCs is analog fiber optic links. 
Analog fiber optic links are currently being used to transmit cable television (CATV) signals at the 
trunk and supertrunk level. They are also being used for both commercial and military antenna 
remoting. Analog fiber optic links are being fielded for these applications because of their low dis-
tortion, low loss, and low life-cycle cost when compared to more conventional coaxial cable-based 
transmission systems.

An analog fiber optic link using IOCs is typically configured as shown in Fig. 20. A high-
power CW solid-state laser, such as a 150-mW diode-pumped YAG laser operating at 1319 nm, is 
typically used as the source in order to maximize dynamic range, carrier-to-noise ratio, and link 
gain. An interferometric modulator, such as a Mach-Zehnder interferometer or a Y-fed balanced 
bridge modulator, is typically used to modulate the light with the applied RF or microwave signal 
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via the linear electro-optic effect. Current analog links for CATV signal distribution utilize a 
1-GHz Y-fed balanced bridge modulator biased at the quadrature point (linear 3-dB point).110,111

A predistortion circuit is required to minimize third-order distortion associated with the inter-
ferometric modulator response. The CATV-modulated signal can be transmitted on both output 
fibers of the device. Analog links for antenna remoting typically fit into one of two categories. 
Certain applications require relatively narrow passbands in the UHF region while other microwave-
carrier applications require very broadband (several GHz) performance. Y-fed balanced bridge 
modulators biased at the quadrature point are again used to perform the electrical-to-optical 
conversion, with the electrode structure tailored to the application. In both narrowband and 
broadband applications, 20- to 30-dB preamplifiers are typically utilized to minimize the noise figure 
and maximize the RF gain of the link. 

Two important modulator parameters are the insertion loss and the half-wave drive voltage 
which both impact the link gain and dynamic range. Fully packaged Y-fed balanced bridge modulators 
with 2.5 to 4.0 dB insertion loss are now readily achieved in production for both UHF and micro-
wave bandwidths. A trade-off typically needs to be made between half-wave voltage and bandwidth 
for both lumped-element and traveling-wave electrode structures. Commercially available lumped-
element LiNbO3 interferometric modulators typically have half-wave voltages of approximately 5 V 
for 600-MHz, 1-dB bandwidths. Commercially available traveling-wave LiNbO3 interferometric 
modulators typically have half-wave voltages of approximately 8 V for 12-GHz, 3-dB bandwidths. 
The half-wave voltages of LiNbO3 traveling-wave modulators can be reduced by more than a factor 
of two using a velocity-matched electrode structure as described in Ref. 93.

In order to be used in practical systems, it is critical that the integrated optical modulators have 
well-behaved, flat frequency responses in the band of interest. Modulators for CATV signal trans-
mission and UHF antenna remoting typically required that the amplitude response and the phase 
response be flat to  0.25 dB and  2°, respectively. The frequency response of an integrated optical 
modulator is a function of both the device design and packaging parasitics. Care must be exercised 
in designing modulators since LiNbO3 is both a piezoelectric and an acousto-optic material. Early 
LiNbO3 modulators typically had 1 to 3 dB of ripple in the passband due to acoustic mode excita-
tion. When packaging lumped-electrode devices, it is also critical to keep terminating resistors close 
and wire bonds short to minimize stray inductance and capacitance . When packaging traveling-
wave modulators, it is critical to control the impedance of the launch, the transitions, the device, and 
the termination. Through proper device design and packaging, it is possible to achieve well-behaved 
frequency responses in both lumped-electrode and traveling-wave devices as shown in Fig. 21.
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FIGURE 20 Standard configuration for externally modulated analog fiber 
optic link.
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An additional issue that impacts IOC modulator design for analog links is harmonic and inter-
modulation distortion. Most modulators used in analog links are interferometric in nature with 
a sinusoidal transfer function. By operating the device precisely at the quadrature point, all even 
harmonics can be suppressed. Second-harmonic distortion less than 75 dBc is easily achieved using 
an electronic feedback loop for modulator bias. Alternative techniques are being investigated to laser 
trim one leg of a Mach-Zehnder to bring the modulator to quadrature. Third-order distortion due 
to the sinusoidal transfer function of the interferometric modulator also poses a problem, but the 
transfer functions are very well-behaved and predictable, and this distortion can be suppressed to 
acceptable levels using electronic predistortion or feed-forward techniques.

Forty- and eighty-channel CATV transmitters operating at 1300-nm wavelengths with APE 
LiNbO3 modulators are currently being fielded. Compared to coaxial transmission which requires 
transmitters every 500 m, the fiber optic systems can transmit over distances up to 50 km without 
repeaters. Similarly, externally modulated analog fiber optic links are currently being fielded for 
military and commercial applications. UHF links with 115 dB/Hz2/3 dynamic range, 4-dB noise 
figure, and unity gain have been demonstrated using commercially available hardware. These 
systems will maintain this quality of transmission over temperature ranges of 25 to 50oC. 
Microwave links with 2 to 18 GHz frequency response, 114-dB/Hz2/3 spurious-free dynamic range, 
and input noise figure of 22 dB can also be achieved using commercially available hardware. 

Switching

Arrays of IO switches have been proposed and demonstrated for a variety of space switching and 
time-multiplexed switching (TMS) applications. In space switching, it is generally necessary to 
formulate the switches in a nonblocking geometry and the reconfiguration time can be relatively 
slow (seconds or longer). This requirement led to the development of cross-bar switches in which 
an N  N switch contains N2 IO switches and 2N  1 stages and from 1 to 2N 1 cross points. 
Typically N  4 in LiNbO3 and in InP. More recently, much attention in IO switch arrays has 
shifted to the dilated Benes architecture which is only rearrangeably nonblocking but reconfigu-
rable in short (ns) times suitable for TMS, and has the advantage of requiring substantially fewer 
switches and a constant number 2 log2 N of cross points. 

FIGURE 21 Frequency response of APE LiNbO3 microwave interferometric modulator for 
broadband antenna remoting.
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A schematic of a two-chip 8  8 dilated Benes switch making extensive use of crossovers is 
shown in Fig. 22.112 The performance of switch arrays of the dilated Benes architecture are much 
more forgiving than crossbar switches to the degradation of individual switches. The device shown 
contains 48 delta beta switches driven by a single-voltage arrangement. The switching voltage at 1.3 m
was 9.4 0.2 V, the insertion loss varied from 8 to 11 dB (93 percent of the 256 paths through 
the switch were within 1 dB), the cross-talk levels in individual switches ranged from 22 to 45
dB, and the reconfiguration time was 2.5 ns. Larger 16  16 switches have also been demonstrated.113

An advantage of these types of IO switch arrays is that they are data rate transparent. That is, 
once the switch is reconfigured, the data stream through the device is simply the passage of light 
and can easily be multi-gigabit. Crossbar switches are now commercially available and other types of 
arrays continue to be explored.

Fiber Optic Gyroscopes

Another application that may require large quantities of integrated optical circuits is the fiber optic 
gyroscope (FOG)114–119. A FOG is one form of a Sagnac interferometer, in which a rotation rate 
results in a phase shift between clockwise- and counterclockwise-propagating optical fields. The 
most frequently utilized FOG configuration, which was first proposed by workers at Thomson CSF 
in the mid 1980s,120 is presented in Fig. 23. 

FOG IOCs are typically fabricated in LiNbO3 using the annealed proton exchange (APE) pro-
cess66 although titanium-diffused IOCs with surface plasmon polarizers have also been utilized. 
The IOC performs four primary functions in the fiber gyroscope. First, the Y-junction serves as the 
loop coupler splitting and recombining the clockwise- and counterclockwise-propagating optical 
fields. Second, the IOC functions as a high-quality polarizer. Third, a 90° phase dither (at the eigen 
frequency of the fiber coil) is typically applied to one of the integrated optical phase modulators. 

8500

100

100

15

15

7

7

Waveguides

FIGURE 22 Architecture of 8 8 dilated Benes directional coupler switch array.
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This approach keeps the Sagnac interferometer biased at the 3-dB point where it is linear and most 
sensitive to rotation. Finally, in a closed-loop FOG configuration, one of the phase modulators func-
tions as a frequency shifter. A serrodyne signal (saw-tooth wave) is applied to the phase modulator 
to effectively cancel the shift due to the rotation.

The output signal from a fiber gyro at rest is the sum of white receiver noise, primarily depen-
dent on the amount of optical power arriving at the detector, and an additional long-term drift of 
the mean value. The long-term drift in a FOG associated with a residual lack of reciprocity typically 
limits the sensitivity of the FOG to measure low rotation rates. Another important characteristic of 
a gyro is the scale factor, which is a measure of the linearity between the actual rotation rate and the 
gyro response. The critical performance parameters for a FOG IOC are presented in Table 1. The 
performance of 800- and 1300-nm APE LiNbO3 FOG IOCs that are currently in production is also 
presented in this table. 

One application of the FOG is inertial guidance, requiring a FOG with a bias drift < 0.01°/h 
and a scale factor accuracy < 5 ppm. A 1300-nm LED or an erbium-doped fiber is typically used as 
the light source. A large coil of polarization-maintaining fiber (typically 1 km of fiber wound in a 
15 to 20 cm diameter coil) and precise source spectral stability are required to achieve the desired 
sensitivity. The fiber is typically wound in a quadrupole configuration to minimize sensitivity to 
temperature gradients. With recent improvements in optical sources, integrated optics, and fiber 
coil-winding technology, it is now possible to achieve inertial grade FOG performance over a tem-
perature range of 55 to 95oC.

FIGURE 23 Standard configuration for fiber optic gyroscope incorpo-
rating a three-port integrated optical circuit.

TABLE 1 Critical Performance Parameters for 800- and 1300-nm APE LiNbO3 FOG 
IOCs. Listed Values Are Maintained over a Temperature Range of 55 to 95°C and during 
Vibration up to 15 Grms.

Performance Parameter 1300-nm IOCs 800-nm IOCs

Insertion loss (pigtailed) 3 dB 4 dB
Polarization extinction 70 dB 60 dB
Y-junction split ratio (pigtailed) 48/52 to 52/48 45/55 to 55/45
Polarization crosstalk at fiber-waveguide < 30 dB < 25 dB

interfaces
Optical back reflection < 65 dB < 65 dB
Half-wave voltage 4.5 V 3.5 V
Residual intensity modulation 0.02% 0.05%
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A second tactical-grade FOG design is more typical to aerospace applications, with bias drift and 
scale factor accuracy requirements ranging from 0.1 to 10°/h and 10 to 1000 ppm, respectively. These 
systems are typically designed for operation at 810 to 830 nm to make use of low-cost multimode 
830-nm AlGaAs laser diodes as used in consumer electronic products. These systems typically utilize 2- 
to 5-cm-diameter fiber coils with 100 to 200 m of either polarization-maintaining or single-mode fiber. 
A third very low-cost, low-grade FOG design for automotive navigation is also nearing production. The 
required bias drift is only 1000°/h, and a closed-loop configuration is unneccessary since the scale factor 
accuracy is only 0.1 percent. Current designs to achieve low cost include low-performance IOCs, laser, 
and fiber couplers, fully automated FOG assembly and test procedures, and only approximately 50 m of 
single-mode fiber. More advanced IOCs, including four-port designs that integrate the source/detector 
coupler into the IOC, are also being considered to reduce component count. 

WDM Systems

Wavelength division multiplexing (WDM), by encoding parallel data streams at different wave-
lengths on the same fiber, offers a technique to increase transmission capacity, or increase network-
ing or switching flexibility, without requiring higher speed electronics to process each channel. As 
noted earlier, IO is an enabling technology in WDM demultiplexer design. However, due to the large 
number of component interconnections at the transmit and receive end of a WDM link, PIC tech-
nology offers great promise in cost reduction for both WDM transmitters and receivers by addition-
ally eliminating separate packages for lasers, amplifiers, detectors, and the like.

One key application of PICs for WDM systems is the stable and efficient longitudinal connection 
of optical elements required to form a tunable laser. The tunable Bragg laser was briefly discussed 
earlier in the description of the balanced heterodyne receiver PIC. Figure 24 below shows a more 
complex sampled-grating distributed Bragg reflector PIC. Here the reflectivity of a grating with 

SG-DBR laser

Light out 

Front
mirror Gain Phase

Rear
mirrorAmplifier

EA
modulator

AR

FIGURE 24 Tunable sampled-grating distributed Bragg reflector (SG-DBR) laser with 
integrated semiconductor optical amplifier and electroabsorption modulator.
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sections periodically omitted provides a comb of reflection bands, and if the front and back combs 
have different spacings in frequency, the laser can tune over a wide range with a small index change 
because the laser will operate only at a frequency where the front and back reflection bands coincide 
in frequency.121 Tuning is accomplished by changing the index of the front or back section by current 
injection, for example.

Because the InP materials system readily allows detectors as well as high-quality passives, the 
AWG demultiplexer discussed earlier can be combined with an integrated detector for each wavelength 
output port to make a single-chip WDM receiver. Figure 25 illustrates a 40-channel WDM receiver 
PIC, comprising nine different AWG demultiplexers and 40 photodetectors within a 4.6  4.8 mm 
chip.122 This PIC had only 4-dB on-chip loss and provided less than 35-dB cross talk between different 
wavelength channels.

Figure 26 shows the layout of a WDM transmission PIC, which is perhaps the most sophisticated 
example of commercially deployed active IO demonstrated to date.123 Following the concept initially 
introduced by Aiki et al.124 in combining multiple DFB lasers, this PIC includes 10 frequency tunable 
DFB lasers with wavelength locking function, 10 electroabsorption modulators, 10 monitor detectors, 
10 adjustable attenuators, an AWG for low-loss, frequency-selective combining into a single waveguide 
output port. This PIC provides a 100-Gb/s transmission capacity from a single chip, and together with 
a matching 10-channel WDM receiver PIC has been commercially deployed in telecommunication 
networks worldwide.123 These PICs have demonstrated remarkable performance, and offer significant 
improvements in cost, size, power, and reliability compared to discrete component solutions.

Silicon Photonics Transceivers

As noted in the earlier discussions of IO materials, silicon has gained significant attention in recent 
years due to its ability to harness highly advanced CMOS fabrication technologies, combined with 
the very high index contrast available and effective modulation using the plasma index change 
from free carriers. This modulation is most effectively done at high speed using either a reverse-
biased P-N junction, or using a structure similar to a field-effect-transistor (FET) where charge can 
accumulate on a gate oxide within the optical mode. Both of these designs have been demonstrated 

FIGURE 25 Integrated 40-channel optical channel 
monitor, comprising 9 different AWG demultiplexers and 
40 photodetectors. (By III-V Photonics, Inc.)
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FIGURE 26 Chip architecture for commercially imple-
mented PIC with nearly 50 elements, including 10 frequency 
tunable DFB lasers with wavelength-locking function, 10 elec-
troabsorption modulators, 10 monitor detectors, 10 adjustable 
attenuators, and an integrated AWG combiner.

by several organizations125,126 and commercialized with fabrication conducted within a CMOS 
electronics foundry using nearly standard IC fabrication steps. PICs have been demonstrated that 
include 10 Gb/s transmitters and recievers, and the ability to include CMOS electronics has also 
allowed for on-chip modulator drivers, preamplifiers, clock and data-recovery circuits, and even 
pseudo-random bit-stream generators for on-chip testing.46 Commercial silicon photonics trans-
ceivers have demonstrated low-power operation, and also 40-Gb/s data rates using integration to 
achieve parallelism with only one laser source.

21.7 FUTURE TRENDS

Shift from R&D to Manufacturing

Integrated optical circuit technology has now advanced from R&D into manufacturing as noted in 
the examples given. LiNbO3 modulators and integrated DFB/electroabsorption modulators have 
been critical, high-volume products for more than a decade. There are now several companies pro-
ducing more complex IO and PIC products in LiNbO3, Si/SiO2, and InP in moderate volumes (sev-
eral thousand devices each per year) with considerable success in reducing manufacturing costs and 
achieving high reliability.

The majority of the LiNbO3 devices described in this chapter can be fabricated using either exist-
ing or slightly modified semiconductor processing equipment. Clean room requirements are not 
nearly as tight as what is required for VLSI and MMIC wafer fabrication. Production yields of LiNbO3
integrated optical circuits have been obtained well in excess of 95 percent. The majority of the defects 
were initially mechanical in nature (probes scratching electrodes or fibers damaging polished end 
faces), but these have been minimized as the processes have become more automated. At this time, 
it appears that all wafer-processing operations should be easily scalable to wafer batch processing, 
including the end-face optical polishing. The majority of the cost of an integrated optical circuit is 
currently associated with fiber attachment, packaging, and final testing. While these operations are 
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not fundamentally expensive, the limited production volumes do not always justify the capital expen-
diture required to fully automated processes with robotics and machine vision.

The second area that has seen improvement is device reliability. First-generation commercial 
integrated optic products were plagued by premature failures and poor performance over tem-
perature. The majority of these problems resulted from poor fiber attachment and packaging 
techniques. These problems have been remedied by carefully selecting compatible material systems 
and incorporating proven hybrid electronic packaging techniques. For example, commercially 
available LiNbO3 integrated optical circuits can be thermally cycled hundreds of times from 65 to 

125 oC with less than 1 dB variation in insertion loss. The devices can also withstand 30 Grms 
random vibration testing. Long-term aging effects have been addressed by identifying potential 
failure mechanisms and then by developing physical models of these failures. LiNbO3 integrated 
optical circuit reliability has now achieved a level where devices can be certified for operational 
lifetimes in excess of 25 years for properly designed, fabricated, and assembled devices. Obviously, 
this level of performance can only be guaranteed by fabricating the devices in well-controlled, well-
documented production environments.

In the semiconductor area, reliability certification technology for PICs borrows heavily from 
the more mature level models and aging methodologies developed for semiconductor lasers. 
This includes sequences of purges at high currents or voltages combined with high temperatures, 
together with extended accelerated aging to identify activation energies and aging rates for various 
degradation mechanisms. Integrated laser modulators have been deployed in high volume with out-
standing reliability, also easily in excess of 25 years including wavelength stability for WDM lasers. 
More complex PICs have also shown extremely high reliability, and as with the LiNbO3 IO devices, 
any failures that do occur are most often associated with poorly designed packaging of the device 
rather than the PIC chip itself. This again points to one of the fundamental advantages of PICs, 
where many individual component packages are eliminated by lithographic connections and only 
one package is required for the final PIC or IO device.

Advanced Integration and New PIC Applications

The most active areas of IO and PIC research today are in telecommunications, datacom, and 
sensor applications. In InP materials, for example, there has been extensive work on all-optical 
networking technologies where wavelength-converter PICs have been demonstrated that encode 
incoming data onto a new wavelength determined by an on-chip tunable laser in conjunction with 
nonlinear Mach-Zehnder interferometers with SOA gain elements.127,128 The complexity, speed, and 
wavelength count of high speed WDM transmit and receive PICs continues to grow, with research 
demonstrations of 1.6 Tb/s from a single chip combining 40 tunable DFB lasers with 40 electroab-
sorption modulators running at 40 Gb/s each.129 As transmission technology continues to evolve in 
sophistication and spectral efficiency, work on advanced modulation formats moves forward aggres-
sively. A resurgence of interest in heterodyne-detection technology has shown that many system 
impairments can be effectively removed in the electronic domain when the information is received 
linearly in the optical electric field. It is quite likely that information coding in the optical domain 
will progress to a level that is now commonplace in the world of RF and cell phone technology.

Silicon photonics has made remarkable progress in a short period, and whereas true OEIC inte-
gration with electronics has only had very limited penetration in III-V materials, the potential for 
including sophisticated electronics in silicon has provided a strong incentive to explore and com-
mercialize this technology. In datacom, for example, the proximity of driver circuits and modulator 
devices allows for low power by obviating the usual electrical transmission line and terminating 
resistor approaches. For sensors, the ability to combine preamplification, analog-to-digital converters, 
and digital signal processors is extremely compelling, and biochem sensors that can detect frequency 
shifts in suitably sensitized resonators are now emerging. It is also likely that the mapping of photonic 
functions into commercial CMOS electronics foundries will become more common, and if suitable 
design tools become more widely available, the reduced barriers to using silicon photonics solutions 
may lead to a growth of new market applications.
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Analogies with massively repetitive logic gates in electronics integration are not particularly 
good, but there is indeed now a proliferation of applications where stable designs have emerged that 
require significant numbers of interconnected optical components. In these areas, the improvements 
in size, cost, power, and reliability are extremely compelling, and today it is safe to say that IO and 
PIC technologies have earned a secure footing in the world of optics.
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22.1 GLOSSARY

A, B, C, D constants

A(r, z) converging spherical wavefront

c curvature

D diffusion constant

d diffusion depth

EFL effective focal length

f focal length

g gradient constant

h radial distance from vertex

i imaginary

k conic constants

k wave number

LA longitudinal aberration

l0 paraxial focal length

M total number of zones

NA numerical aperture

n refractive index

r radial distance from optical axis

rmask mask radius

rm radius of the mth zone

t fabrication time
u slope

Wijk wavefront function

X shape factor
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x, y Cartesian coordinates

y height

Z sag

z optical axis

relative refractive difference

propagation distance

wavelength

 rms/2y

rms rms wavefront error

phase

special function

FOV field of view

22.2 INTRODUCTION

Optical components come in many sizes and shapes. A class of optical components that has become 
very useful in many applications is called micro-optics. We define micro-optics very broadly as opti-
cal components ranging in size from several millimeters to several hundred microns. In many cases, 
micro-optic components are designed to be manufactured in volume, thereby reducing cost to the 
customer. The following paragraphs describe micro-optic components that are potentially useful for 
large-volume applications. The discussion includes several uses of micro-optics, design consider-
ations for micro-optic components, molded glass and plastic lenses, distributed-index planar lenses, 
micro-Fresnel lenses, laser printing, grayscale lithography, diamond turning and micromilling, and 
liquid tunable lenses. For further information the reader is directed to Refs. 1–3.

22.3 USES OF MICRO-OPTICS

Micro-optics are becoming an important part of many optical systems. This is especially true in 
systems that demand compact design and form factor. Some optical fiber-based applications include 
fiber-to-fiber coupling, laser diode-to-fiber connections, LED-to-fiber coupling, and fiber-to-
detector coupling. Microlens arrays are useful for improving radiometric efficiency in focal-plane 
arrays, where relatively high numerical aperture (NA) microlenslets focus light onto individual 
detector elements. Microlens arrays can also be used for wavefront sensors, where relatively low-NA 
lenslets are required. Each lenslet is designed to sample the input wavefront and provide a deviation 
on the detector plane that is proportional to the slope of the wavefront over the lenslet area. Micro-
optics are also used for coupling laser diodes to waveguides and collimating arrays of laser diodes. 
An example of a large-volume application of micro-optics is data storage, where the objective and 
collimating lenses are only a few millimeters in diameter.4 Recently micro-optics is also widely used 
in medical applications like endo-microscopy including confocal, multiphoton microscopy and 
optical coherence tomography (OCT). It also has a strong position in consumer market in applica-
tions like cell phone cameras, Blu-Ray readers, etc.

22.4 MICRO-OPTICS DESIGN CONSIDERATIONS

Conventional lenses made with bulk elements can exploit numerous design parameters, such as the 
number of surfaces, element spacings, and index/dispersion combinations, to achieve performance 
requirements for NA, operating wavelength, and field of view. However, fabricators of micro-optic 
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lenses seek to explore molded or planar technologies, and thus the design parameters tend to be 
more constrained. For example, refractive microlenses made by molding, ion exchange, mass trans-
port process resemble single-element optics. Performance of these lenses is optimized by manipulat-
ing one or possibly two radii, the thickness, and the index or index distribution. Index choices are 
limited by the available materials. Distributed-index and graded-index lenses have a limited range 
of index profiles that can be achieved. Additional performance correction is possible by aspherizing 
one or both surfaces of the element. This is most efficiently done with the molding process, but 
molded optics are difficult to produce when the diameter of the lens is less than 1.0 mm. In general, 
one or two aberrations may be corrected with one or two aspheres, respectively.

Due to the single-element nature of microlenses, insight into their performance may be gained by 
studying the well-known third-order aberrations of a thin lens in various configurations. Lens bending 
and stop shift are the two parameters used to control aberrations for a lens of a given power and index. 
Bending refers to distribution of power between the two surfaces, i.e., the shape of the lens, as described 
in R. Barry Johnson’s Chap. 17, “Lenses.” The shape is described by the shape factor X that is

X
C C

C C
1 2

1 2

(1)

where C1 and C2 are the curvatures of the surfaces. The third-order aberrations as a function of X
are shown in Fig. 1. These curves are for a lens with a focal length of 10.0 mm, an entrance pupil 
diameter of 1.0 mm, field angle u 20°, an optical index of refraction of 1.5,  0.6328 μm, and 
the object at infinity. For any given bending of the lens, there is a corresponding stop position that 
eliminates coma,5 and this is the stop position plotted in the figure. The stop position for which 
coma is zero is referred to as the natural stop shift, and it also produces the least curved tangential 
field for the given bending. Because the coma is zero, these configurations of the thin lens necessar-
ily satisfy the Abbe sine condition. When the stop is at the lens (zero stop shift), the optimum shape 
to eliminate coma is approximately convex-plano (X l) with the convex side toward the object. 
The optimum shape is a function of the index, and the higher the index, the more the lens must be 
bent into a meniscus. Spherical aberration is minimized with the stop at the lens, but astigmatism 
is near its maximum. It is interesting to note that biaspheric objectives for data storage tend toward 
the convex-plano shape.

Astigmatism can be eliminated for two different lens-shape/stop-shift combinations, as shown in 
Fig. 1. The penalty is an increase in spherical aberration. Note that there is no lens shape for which 
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FIGURE 1 Third-order aberrations as a function 
of the shape factor, or bending, of a simple thin lens 
with focal length 10.0 mm, entrance pupil diameter of 
1.0 mm, field angle 20 , n = 1.5, and object at infinity. 
The stop position shown is the natural stop shift, that 
is, the position that produces zero coma.
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spherical, coma, and astigmatism are simultaneously zero in Fig. 1, that is, there is no aplanatic solu-
tion when the object is at infinity. The aplanatic condition for a thin lens is only satisfied at finite 
conjugates.

The plano-convex shape (X  –1) that eliminates astigmatism is particularly interesting because 
the stop location is in front of the lens at the optical center of curvature of the second surface. All 
chief rays are normally incident at the second surface. Thus, the design is monocentric.6 (obviously, 
the first surface is not monocentric with respect to the center of the stop, but it has zero power and 
only contributes distortion.)

Two very common configurations of micro-optic lenses are X  +1 and X  –1 with the stop 
at the lens. Typically, the object is at infinity. In Fig. 2, we display contours of normalized rms 
wavefront deviation, rms /2y , versus u and NA, where 2y  diameter of the stop. Aberration 
components in rms include third-order spherical, astigmatism, and coma. The focus is adjusted to 
give minimum rms deviation of the wavefront, so effects of Petzval curvature are not included. Tilt 
is also subtracted. As NA or field angle is increased, rms wavefront aberration increases substantially. 
The usable field of view of the optical system is commonly defined in terms of Maréchal’s criterion7

as field angles less than those that produce 2 1000 0 07y / .  wave. For example, if the optical sys-
tem operates at 2y  1.0 mm,  0.6328 m, NA  0.1, X +1, n 1.5, and u 2°, the wavefront 
aberration due to third-order contributions is
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FIGURE 2 Contours of normalized rms wavefront deviation, rms/2y, versus field 
angle and NA, where 2y is the diameter of the stop. The stop is located at the lens. The focus is 
adjusted to give minimum rms deviation of the wavefront, so effects of Petzval curvature are not 
included. (a) X  1, n  1.5; (b) X 1, n  1.5; (c) X 1, n 3.0; (d) X 1, n  3.0.
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which is acceptable for most situations. Note that the configuration for X  –1 yields rms  0.079 
wave, which is beyond the acceptable limit. When large values of rms are derived from Fig. 2, care 
must be taken in interpretation of the result because higher-order aberrations are not included in 
the calculation. Also, if field curvature is included in the calculation, the usable field of view is sig-
nificantly reduced.

Coma and astigmatism are only significant if the image field contains off-axis locations. In many 
laser applications, like laser diode collimators, the micro-optic lens is designed to operate on axis 
with only a very small field of view. In this case, spherical aberration is very significant. A common 
technique that is used to minimize spherical aberration is to aspherize a surface of the lens. Third-, 
fifth-, and higher orders of spherical aberration may be corrected by choosing the proper surface 
shape. In some lens design codes, the shape is specified by

Z
ch

k c h
Ah Ch Dh

2

2 2

4 6 8 10

1 1 1( )
Bh (3)

where Z is the sag of the surface, c is the base curvature of the surface, k is the conic constant (k 0
is a sphere, k  –1 is a paraboloid, etc.), and h x y2 2 is the radial distance from the vertex. 
The A, B, C, and D coefficients specify the amount of aspheric departure in terms of a polynomial 
expansion in h.

When a plane-parallel plate is inserted in a diverging or converging beam, such as the window 
glass of a laser diode or an optical disk, spherical aberration is introduced. The amount of aberra-
tion depends on the thickness of the plate, the NA of the beam, and to a lesser extent the refractive 
index of the plate,8 as shown in Fig. 3. The magnitude of all orders of spherical aberration is lin-
early proportional to the thickness of the plate. The sign is opposite that of the spherical aberration 
introduced by an X +1 singlet that could be used to focus the beam through the plate. Therefore, 
the aspheric correction on the singlet compensates for the difference of the spherical aberration 
of the singlet and the plate. This observation follows the fact that minimum spherical aberration 
without aspheric correction is achieved with the smallest possible air gap between the lens and the 
plate. For high-NA singlet objectives, one or two aspheric surfaces are added to correct the residual 
spherical aberration.

Considerations on High-Performance Miniature Systems

In recent years, several designs of high-performance miniature optics were implemented.9–13 Since 
one of the major applications is miniature microscopy, many systems have similar characteristics. The 
diameter of miniature objectives is in the range of 1 to 8 mm, consists of multiple lenses (upto 10), 
NA is 0.4 –1.0 and field of view (FOV) 250 to 500 m. All these parameters place high require-
ments on system assembly and fabrication technologies. Examples of manufacturing techniques 
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include (1) grinding and polishing methods, (2) injection glass and plastic molding, (3) grayscale 
lithography, and (4) direct diamond turning/micromilling. Grinding and polishing in glass is the 
most costly technique and requires a large number of components to provide good system cor-
rection (lenses are usually spherical). All other mentioned technologies allow easy application of 
aspherical lenses that significantly reduces the number of parts. On the other hand, these methods 
often rely on application of photosensitive polymers, solgels, or plastics, which limits selection of 
materials with different Abbe numbers. This limitation makes correction for chromatic aberrations 
more difficult. 

An example of an effective approach is to build a high NA system as a combination of glass 
spherical lenses and aspherical plastic/polymer lenses. A comparison of three optical designs with 
single wavelength, NA  1.0, FOV  250 m is shown in Fig. 4. Design A10 is an all glass, spherical 
lenses system. Design B11 uses aspheric plastic injection molded lenses made in Zeonex. Design C13

consists of a leading spherical glass lens followed by two aspherical Zeonex plastic lenses, which can 
be injection molded or diamond turned. All objectives in Fig. 4 are presented in scale and the clear 
aperture of the smallest design (C) is 2.75 mm. These designs show progressive decrease of complex-
ity based on material and surface shape choices. 

A common method used for tolerance analysis of multicomponent systems is Monte Carlo (MC) 
simulation that statistically adjusts design parameters like radius error, thickness error, surface form 
error, surface decenter, surface tilt, and refractive index tolerances.11,13 MC can apply a normal dis-
tribution of errors and then evaluate the performance of the system based on the rms spot size or 
wavefront error. Possible compensation parameters can include the object position, image position, 
and object shape which is for three-dimensional volume imaging in biological applications. The 
acceptance criteria can be defined based on the percentage of results that have a rms spot size equal 
to or less than the diffraction limited Airy disk spot size.

As mentioned above, one of the most significant issues in building high-performance minia-
ture systems is precision assembly. Several alignment-free approaches were recently proposed to 
simplify the manufacturing process. They include techniques like: micro-optical table (MOT),14 

fabrication of kinematic mechanical features embedded in optical components,11,15,16 and self 
centering mounts.13 All these techniques rely on a zero-alignment concept. In practical terms, the 

FIGURE 4 Comparison of designs of miniature NA 1.0, 205 μm FOV microscope 
objectives. Design A10 is an all glass, spherical lenses system. Design B11 uses a plastic 
injection molded objective lens made in Zeonex. Design C13 consists of a leading spheri-
cal glass lens followed by two aspehrical Zeonex plastic lenses.

A

B

C



MINIATURE AND MICRO-OPTICS 22.7

zero-alignment concept translates into assembly errors that are smaller than the tolerances on the 
performance of the optical system. Very low assembly errors are achieved through positioning 
features on each optomechanical and optical component. One technology to fabricate mechani-
cal components is deep reactive ion etching (DRIE)17 in silicon. A less expensive and more robust 
alternative is deep x-ray lithography (DXRL).18 An example of MOT platform fabricated using 
DXRL technology in nickel-steel alloy is shown in Fig. 5b. The DXRL technology delivers sub-
micron assembly precision and helps with packaging. Spring and grove features in MOT shown 
in the figure allow inserting optical components fabricated with grayscale lithography on thin 
glass substrates. Positioning precision is provided by assembly features on both MOT and optics. 
(Grayscale lithography allows fabrication of lens and mechanical features in one step.) Figure 5 
shows (a) the MOT assembly concept, (b) MOT platform made with DXRL process, and (c)
assembled NA 0.4 miniature microscope.19 Table 1 provides assembly precision for MOT tech-
nology with DRIE and lithographically fabricated opto-mechanics.14 These parameters must be 
accommodated in optical design.

The principle of a kinematic mount fabricated with injection molding or a lithographic process 
is shown in Fig. 6. Note that V- or U-shaped grooves can be made in the same process as a lens. 
Precision spheres are then used for stacking consecutive lenses or lens layers, stops, and spacer 

(b)

(a)

(c)

V-shaped channel 
in mounting 

slot wall

V-shaped channel 
in mounting 

slot wall

Silicon spring
in mounting slot

in deflected
position

FIGURE 5 (a) Concept of MOT assembly;14 (b) MOT platform made with DXRL process; and (c) NA  0.4 miniature 
microscope assembled on MOT platform.19

TABLE 1 Assembly Precision for MOT Tech-
nology with DRIE and Lithographically Fabricated 
Optomechanics14

Position Measured Position

Translation along slot  3 μm  1 μm
Yaw rotation (left) 5 arc min  2 arc min
Yaw rotation (right) 5 arc min  2 arc min
Pitch rotation 0.44  0.02
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components.11 Figure 6a shows the concept of kinematic mount and Fig. 6b shows NA 1.0 micro-
scope objective assembled using kinematic mounts embedded in plastic injection molded lenses.11

(The design of the system is presented in Fig. 4b.)
A kinematic approach was also used to build arrays of complex optical systems. Examples of 

applications include microchemical chips using microlens arrays16 (used for illumination and detec-
tion) and array of high NA microscopes for high throughput digital telepathology.15

Another method to position lens components in the objective is to use a self-centering ring, 
which engages the lens surface, flexing away as it makes contact, while centering the lens with respect 
to its optical axis.14 This self-centering ring eliminates any decentration associated with manufactur-
ing error and allows looser lens tolerance. Figure 7 shows a model self-centering lens spring. This 
approach was used for assembly of NA  1.0 plastic-glass objective13 (see also Fig. 4c). 

22.5 MOLDED MICROLENSES

Molded micro-optic components have found applications in several commercial products, which 
include compact disk players, bar-code scanners, and diode-to-fiber couplers. Molded lenses 
become especially attractive when one is designing an application that requires aspheric surfaces. 

(b)(a)

FIGURE 6 (a) The concept of kinematic lens mount and (b) NA 1.0 microscope objective 
assembled using kinematic mount embedded in plastic injection molded lenses.11

FIGURE 7 Model self-centering lens spring 
for lens alignment.
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Conventional techniques for polishing and grinding lenses tend to be time-expensive and do not 
yield good piece-to-piece uniformity. Direct molding, on the other hand, eliminates the need for 
significant grinding or polishing. Another advantage of direct molding is that useful reference sur-
faces can be designed directly into the mold. The reference surfaces can take the form of flats.20 The 
reference flats are used to aid in aligning the lens element during assembly into the optical device. 
Therefore, in volume applications that require aspheric surfaces, molding becomes a cost-effective 
and practical solution. The molding process utilizes a master mold, which is commonly made by 
single-point diamond turning and postpolishing to remove tooling marks and thus minimize scatter 
from the surface. The master can be tested with conventional null techniques, computer-generated 
null holograms,21 or null Ronchi screens.22 Two types of molding technology are described in the 
following paragraphs. The first is molded glass technology. The second is molded plastic technology.

Molded Glass

One of the reasons glass is specified as the material of choice is thermal stability. Other factors 
include low birefringence, high transmission over a broad wavelength band, and resistance to harsh 
environments.

Several considerations must be made when molding glass optics. Special attention must be made 
to the glass-softening point and refractive index.23 The softening point of the glass used in molded 
optics is lower than that of conventional components. This enables the lenses to be formed at lower 
temperatures, thereby increasing options for cost-effective tooling and molding. The refractive index 
of the glass material can influence the design of the surface. For example, a higher refractive index 
will reduce the surface curvature. Smaller curvatures are generally easier to fabricate and are thus 
desirable. 

An illustration is Coming’s glass molding process.23 The molds that are used for aspheric glass 
surfaces are constructed with a single-point diamond turning machine under strict temperature 
and humidity control. The finished molds are assembled into a precision-bored alignment sleeve 
to control centration and tilt of the molds. A ring member forms the outside diameter of the lens, 
as shown in Fig. 8. The glass material, which is called a preform, is inserted between the molds. Two 
keys to accurate replication of the aspheric surfaces are forming the material at high glass viscosity 
and maintaining an isothermal environment. After the mold and preform are heated to the molding 
temperature, a load is applied to one of the molds to press the preform into shape. After molding, the 
assembly is cooled to below the glass transformation point before the lens is removed. Optical perfor-
mance characteristics of the finished lens are determined by the quality of the mold surfaces, the glass 
material, and the preform volume, which also determines the thickness of the lens when pressed.

An alternative process is used at Kodak, Inc., where molded optics are injection molded and 
mounted into precision lens cells.24 In this process, a tuned production mold can reproduce intricate 

FIGURE 8 Mold for glass optics.

Sleeve

Molds

Ring

Molded lens
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mounting datum features and extremely well-aligned optics. It can also form a stop, baffle, or a film-
plane reference in the system. Table 2 lists preferred and possible tolerances for molded glass com-
ponents. The Kodak process has been tested with over 50 optical glasses, which include both crowns 
and flints. This provides a wide index-of-refraction range, 1.51 < n < 1.85, to choose from.

Most of the molded glass microlenses manufactured to date have been designed to operate with 
infrared laser diodes at  780 to 830 nm. The glass used to make the lenses is transparent over a 
much broader range, so the operating wavelength is not a significant factor if designing in the visible 
or near infrared. Figure 9 displays a chart of the external transmission of several optical materials 
versus wavelength. LaK09 (curve B) is representative of the type of glass used in molded optics. The 
external transmission from 300 to over 2200 nm is limited primarily by Fresnel losses due to the 
relatively high index of refraction (n  1.73). The transmission can be improved dramatically with 
antireflection coatings. Figure 10 displays the on-axis operating characteristics of a Corning 350110 
lens, which is used for collimating laser diodes. The rms wavefront variation and effective focal 
length (EFL) are shown versus wavelength. The highest aberration is observed at shorter wave-
lengths. As the wavelength increases, the EFL increases, which decreases the NA slightly. Table 3 lists 
several optical properties of molded optical materials. The trend in molded glass lenses is to make 
smaller, lighter, and higher NA components.25 Reduction in mass and size allows for shorter access 
times in optical data storage devices, and higher NA improves storage density in such devices.

Molded Plastic

Molded plastic lenses are an inexpensive alternative to molded glass. In addition, plastic components 
are lighter than glass components. However, plastic lenses are more sensitive to temperatures and envi-
ronmental factors. The most common use of molded plastic lenses is in compact disk (CD) players.

Precision plastic microlenses are commonly manufactured with injection molding equipment 
in high-volume applications. However, the classical injection molding process typically leaves some 
inhomogeneities in the material due to shear and cooling stresses.26 Improved molding techniques 
can significantly reduce variations, as can compression molding and casting. The current state of the 
art in optical molding permits master surfaces to be replicated to an accuracy of roughly one fringe 

TABLE 2 Preferred and Possible Tolerances for 
Molded Glass Components24

Preferred Possible

Center thickness (mm) 10.00 max 25.00
0.40 min 0.35

0.030 tol 0.015

Diameter (mm) 25.00 max 50.00
4.00 min 2.00

0.10 tol 0.01

Diameter of lens 2.00 0.50
beyond clear  
aperture (mm)  

Surface quality 80 50 40 20

Axis alignment 3  10 3 2  10 3

rad rad

Radius (mm)— 5 to 2 to 
best fit sphere  

Slope ( /mm) 50 max 100 max

Wavelengths ( ) 250 500
departure from BFS
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A: Polystyrene (1.0 mm) 
B: Lak09 (10.0 mm) 
C: Polycarbonate (3.175 mm) 
D: Fotoform (1.0 mm)
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FIGURE 9 External transmission of several optical materials versus wavelength. (A) Polystyrene 
1.0 mm thick, which is used for molded plastic lenses;26 (B) LaK09 10.0 mm thick, which is used 
for molded glass lenses;105 (C) Polycarbonate 3.175 mm thick, which is used for molded plastic 
lenses;26 and (D) Fotoform glass 1.0 mm thick, which is used in the production of SMILE lenses.109
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FIGURE 10 On-axis operating characteristics versus wavelength of a Corning 350110 lens, 
which is a molded glass aspheric used for collimating laser diodes.106
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per 25 mm diameter, or perhaps a bit better.27 Detail as small as 5 nm may be transferred if the 
material properties and processing are optimum and the shapes are modest. Table 4 lists tolerances 
of injection-molded lenses.28 The tooling costs associated with molded plastics are typically less 
than those associated with molded glass because of the lower transition temperature of the plastics. 
Also, the material cost is lower for polymers than for glass. Consequently, the costs associated with 
manufacture of molded plastic microlenses are much less than those for molded glass microlenses. 
The index of refraction for the plastics is less than that for the glass lenses, so the curvature of the 
surfaces must be greater, and therefore harder to manufacture, for comparable NA. 

The glass map for molded plastic materials is shown in Fig. 11. The few polymers that have been 
characterized lie mainly outside the region containing the optical glasses and particularly far from 
the flint materials.29 Data on index of refraction and Abbe number are particularly difficult to obtain 
for molded plastic. The material is supplied in pelletized form, so it must first be molded into a 
form suitable for measurement. The molding process subjects the material to a heating and anneal-
ing cycle that potentially affects the optical properties. Typically, the effect of the additional thermal 
history is to shift the dispersion curve upward or downward, leaving the shape unchanged. A more 
complete listing of optical plastics and their properties is given in Ref. 26. Additional information 

TABLE 3 Properties of Materials Used for Molding Micro-Optics

PMMA PMMA
Property (Acrylic) (Imide) SSMA Polycarbonate Polystyrene Zeonex LaK09 BK7

Index (nd) 1.491 1.528 1.564 1.586 1.589 1.525 1.734 1.517
Abbe # (Vd) 57.4 48 35 30 31 56.2 51.5 64.2
Density (g/mm3) 1.19 1.21 1.09 1.20 1.06 1.01 4.04 2.51
Max service temp (°C) 72 142 87 121 75 80.0 500 500
Thermal expansion 67.9 - 56.0 65.5 50.0 67 5.5 7.1
  coefficient 
  (1E-6 mm/mm °C)
Thermal index 105 - - 107 - - 6.5 3
  coefficient (1E-6/°C)
Young’s modulus 3.02 - 3.30 2.43 3.16 2.2 11.37 83.1
  (10E4 kg/cm2)
Impact strength 2 - 3 3 4 - - 1
Abrasion resistance 4 - 3 3 2 - - 5
Cost/lb 3 - 2 4 2 - - 5
Birefringence 2 - 4 3 5 - - 1

1 = lowest / 5 = highest.

TABLE 4 Injection Molding Tolerances for 
Plastic Lenses

Focal length ±0.5%
Radius of curvature ±0.5%
Spherical power 2 to 5 f
Surface quality 60/40 (40/20 possible)
Vertex thickness (in) ±0.0005
Diameter (in per in DIA.) ±0.002–0.0005
Repeatability lens-to-lens 0.1–0.3%

Tolerances given in optical fringes abbreviated by “f ”. 
Vertex-to-edge thickness ratio

4:1 Difficult to mold
3:1 Moderately easy to mold
2:1 Easy to mold
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can be obtained from the Modern Plastics Encyclopedia,30 the Plastics Technology, Manufacturing 
Handbook and Buyer’s Guide,31 and in John D. Lytle’s Chap. 3, “Polymeric Optics,” in Vol. IV.

Changes in dimension or refractive index due to thermal variations occur in both molded glass 
and molded plastic lenses. However, the effect is more pronounced in polymer optical systems 
because the thermal coefficients of refractive index and expansion are ten times greater than for 
optical glasses, as shown in Table 3. When these changes are modeled in a computer, a majority of 
the optical systems exhibit a simple defocus and a change of effective focal length and correspond-
ing first-order parameters. An experimental study32 was made on an acrylic lens designed for a focal 
length of 6.171 mm at  780 nm and 20°C. At 16°C, the focal length changed to 6.133 mm. At 
60 C, the focal length changed to 6.221 mm. Thermal gradients, which can introduce complex aber-
rations, are a more serious problem. Therefore, more care must be exercised in the design of ather-
malized mounts for polymer optical systems.

The transmission of two common optical plastics, polystyrene and polycarbonate, are shown in 
Fig. 9. The useful transmittance range is from 380 to 1000 nm. The transmission curve is severely 
degraded above 1000 nm due to C-H vibrational overtone and recombination bands, except for 
windows around 1300 nm and 1500 nm. Sometimes, a blue dye is added to the resins to make the 
manufactured part appear “water clear,” instead of slightly yellowish in color. It is recommended 
that resins be specified with no blue toner for the best and most predictable optical results.26

The shape of the lens element influences how easily it can be manufactured. Reasonable edge 
thickness is preferred in order to allow easier filling. Weak surfaces are to be avoided because 
surface-tension forces on weak surfaces will tend to be very indeterminate. Consequently, more 
strongly curved surfaces tend to have better shape retention due to surface-tension forces. 
However, strongly curved surfaces are a problem because it is difficult to produce the mold. Avoid 
clear apertures that are too large of a percentage of the physical surface diameter. Avoid sharp 
angles on flange surfaces. Use a center/edge thickness ratio less than 3 for positive lenses (or 1/3 for 
negative lenses). Avoid cemented interfaces. Figure 12 displays a few lens forms. The examples that 
mold well are C, E, F, and H. Form A should be avoided due to a small edge thickness. Forms A and 
B should be avoided due to weak rear surfaces. Form D will mold poorly due to bad edge/center 
thickness ratio. Form G uses a cemented interface, which could develop considerable stress due to 
the fact that thermal differences may deform the pair, or possibly even destroy the bond.

The plastic injection-molding process may cause flow-induced birefringence in molded optics 
and significantly reduce system performance, as it creates highly localized regions of refractive 
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index changes. The effect is more likely for high-power components with small edge thickness. Plane 
polariscope images of injection-molded lenses are presented in Fig. 13. The very left image is for a 
lens fabricated in a standard injection-molding process, while the center and right images are for the 
same lens type but after lowering fill speed and first-stage packing pressure. The center and right 
image had the same molding parameters, but the position of the optical molding insert pin was cor-
rected. Figure 13 shows how significant birefringence effects may occur in the fabrication process. 
It also shows that it is possible to reduce birefringence effects through parameter adjustment. These 
effects should be taken into considerations during lens form design. Note that CA in the picture 
marks clear aperture of the fabricated lenses.

A B C D

E F G H

FIGURE 12 Example lens forms for molded plastic lenses. Forms C, 
E, F, and H mold well. Form A should be avoided due to small edge thick-
ness. Forms A and B should be avoided due to weak rear surfaces. Form D 
will mold poorly due to bad edge/center ratio. Form G uses a cemented 
interface, which could develop stress.29

FIGURE 13 Plane polariscope images of injection-molded lenses. The lens edge thickness is 0.5 mm. The very left lens was 
fabricated in standard injection-molding process. Center and right lenses were fabricated with lower fill speed and lower first-stage 
packing pressure. CA is clear aperture of the lens.33
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Since polymers are generally softer than glass, there is concern about damage from ordinary 
cleaning procedures. Surface treatments, such as diamond films,34 can be applied that greatly reduce 
the damage susceptibility of polymer optical surfaces.

A final consideration is the centration tolerance associated with aspheric surfaces. With spheri-
cal optics, the lens manufacturer is usually free to trade off tilt and decentration tolerances. With 
aspheric surfaces, this tradeoff is no longer possible. The centration tolerance for molded aspherics 
is determined by the alignment of the mold halves. A common specification is 4 to 6 m, although 
3 to 4 μm is possible.

22.6 DIAMOND TURNING

Ultra precision diamond tool machining is an important technology for fabrication of miniature 
optical systems. It can be used in two ways: (1) producing molds for glass and plastic injection 
molding, and (2) for direct part manufacturing. Diamond turning was originally developed for 
large-scale aspherical optics (reflective and IR optics) for astronomy and military applications.35

Recently, it took an important place in prototyping and fabrication of small-scale systems. Currently 
diamond turning is capable of fabricating parts with diameters from a fraction of millimeter to over 
500 mm. 

Diamond tool machining is a technology using monocrystal diamond-cutting tools assembled 
on an ultraprecision numerically controlled lathe. Diamond tools have nanometer precision edges, 
which allow cutting a variety of materials and produce molds for injection molding (in metals) 
or components like mirrors (metals) and lenses (infrared materials and plastics). The depth of a 
single cut can be below 1 μm. Depending on the material, rough passes have cuts of 10 μm (met-
als) to approximately 100 μm (plastics). The finishing cut is usually in the 1 to 5 μm range. Modern
diamond-turning instruments use air bearings and high-pressure oil bearings to eliminate direct 
contact of moving parts. After application of a counter-balancing mass, it is possible to achieve 
exceptionally high precision machining. Optical interpolators assembled on current instruments 
allow for 1-nm position monitoring. Effective positioning precision is in the range 10 to 50 nm. 
Therefore, the process is capable of producing submicrometer form precision and nanometer 
range roughness. 

An important performance parameters is form error which is usually in the range 0.05 to 5 μm, 
while roughness (Ra) is between 1 and 10 nm. The lowest roughness can be reached for metals, 
where for high-purity aluminum and nickel-plated aluminum Ra is 1 to 5 nm. Slightly worse Ra of 
5 to 10 nm can be obtained for plastics (PMMA. Zeonex), while Ra for infrared crystals is few tens of 
nanometers. Specifications for diamond-turning machines (for example, UPL 250 from Nanotech) 
guarantee form error of 0.125 μm over a 75-mm diameter part, and surface roughness of 3 nm (Ra) 
is achieved for spherical component made with high-purity aluminum. While these parameters 
are manufacturer specific, it is possible to reach values better than 0.05 μm form error and 1.2 nm 
roughness (Ra). No polishing is required after diamond cutting, and both form error and roughness 
depends greatly on the surface size, shape, and material. 

While diamond-machining technology has many advantages, it also has two major limi-
tations. One drawback is a periodic character of surface roughness of the fabricated part. 
Improper surface fabrication may result in diffractive effects. Small cutting depth and low feed 
rate help to mitigate this issue. A second disadvantage is due to material limitations. Diamond 
turning can machine nonferrous metals, infrared crystals, and selected polymers. It is not pos-
sible to machine glass, due to material microcracking. The list of diamond-turnable materials is 
shown in Table 5.

Current diamond-turning machines have up to 5  of freedom to position the part/tool. They 
are all called (in machining jargon axes) X, Y, Z, C, and B. X, Y, and Z correspond to linear transla-
tion of the tool in reference to the part. C axis relates to the angular coordinate of a spindle and 
in consequence angular position of a machined part. The B axis controls the angular position of 
the diamond tool. The variety of axes allows producing aspherical and nonrotational arbitrary 
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Metals Aluminum alloys
Brass
Copper
Gold
Nickel 
Silver

Electroplated

Polymers Acetyl
Acrylic (PMMA)
Fluoroplastic
Polycarbonate
Polypropylene
Polystyrene
Polysulfone
Zeonex (polyolefin)

1.491
1.320
1.586

1.571
1.634
1.528

   57.4
   92
   30.1

   41.2
   23.5
   55.7

0.35–2.1

0.30–2.1

0.37–2.1

Damages tool quickly

Possible clouding

IR Crystals Cadmium sulfide
Cadmium telluride
Calcium fluoride
Cesium iodide
Gallium arsenide
Germanium
Indium antimonite
Iridium
Lithium niobate
Magnesium
Fluoride
Potassium bromide
Potassium 
Phosphate
Silicon
Sodium chloride
Tellurium dioxode
Zinc sellenide
Zinc sulfide

2.537 (0.023)
2.817
1.562
1.781
4.020
4.052
5.130

2.183
( 0.076)
1.377
(0.0188)
1.557

3.478
1.531
2.584 (0.288)
2.591
2.536 (0.022)

0.51–14.8
0.90–30
0.13–12
0.25–62
0.90–17.3
1.80–15
6–25

0.13–7.7
0.20–306

1.1–6.5
0.17–18
0.42–4
0.5–20

Denotes uniaxial 
crystal materials 
Refractive index 
given for birefrin-
gent materials is for 
ordinary wave. Value 
in parenthesis 
is material birefrin-
gence n ne no

1Values in the table are approximate and a general guidance.
2For IR Crystals transmission is given as a wavelength range of 1-mm-thick sample at 300 K, assuming that the value is larger than 10 percent.36 For 
polymers transmission is given for 3.2-mm thick sample and at least 10 percent transmission. Note that polymers with listed transmission range have 
at least 80 percent (3.2-mm sample) transmission in 400 to 1100 nm wavelengths. 

TABLE 5 Summary of Diamond Turnable Materials1

Material Refractive Abbe Transmission2

Category Material Name Index36,37 Number36,37 (μm)36,37 Comments

optical components, like Alvarez plates38 or arrays of lenses. A diagram of a five-axis diamond 
machine geometry is presented in Fig. 14.

Only X and Z axes are required for machining aspherical and axially symmetrical parts. For 
this two-axis mode, the part is mounted on the vacuum chuck of the rotation spindle, while the 
diamond tool is mounted on the Z-axis stage. While the spindle rotates with constant speed, X and 
Z move to provide proper surface height (Z) for the related radius coordinate (X). An example of 
Zeonex aspherical lenses made for a NA  1.0 miniature microscope cut in this two-axis mode is 
presented in Fig. 15. The diameter of the lenses is 2.75 mm.

Arbitrary (free) form machining can be obtained in two cutting modes: diamond turning with C
axis (X, Z, C configuration) and micromilling (X, Y, Z). The B axis is used for changing tool angle and, 
in effect, allows increasing optical power of the fabricated components. Diamond turning using the 
C axis is based on moving the diamond-turning tool in the Z direction synchronously with the rotation 
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angle of the part controlled with spindle controller (C axis). The C axis is used to change the spindle 
rate during the cutting process. C-axis machining can be used in slow-slide servo and fast servo modes. 
The slow-slide servo mode uses the Z stage of the machine to move the diamond tool. Fast-tool 
servo requires the diamond tool to be mounted on a piezo or voice-coil controller (the controller is 
placed on the Z stage) and move it with high frequency and small Z amplitude synchronously with 
angular position of spindle (C axis). The fast-tool servo, depending on the particular design, works 
at 100 to 700 Hz frequency and within the Z range of approximately 50–70 μm to 500 μm (Precitech, 
Moore Nanotechnology Systems). Large scanning range of ±3000 μm is possible at low 20-Hz rate 
(Moore Nanotechnology Systems). The fast-tool servo allows higher fabrication speeds compared with 
slow-slide servo mode, which in some cases slows the spindle down (during process) below 1 rpm. 
Depending on the particular machine, spindle-rotation rates can reach upto 10,000 rpm. Common 
diamond-turning rates are 1000 to 3000 rpm. An example of a lens array fabricated with slow-slide servo 
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FIGURE 14 A geometry of five-axis diamond-turning machine. (Courtesy of Moore 
Nanotechnology System, LLC.)

FIGURE 15 Zeonex aspherical 
lenses made for a NA  1.0 miniature 
microscope cut in this two-axis mode.
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C-axis machining is presented in Fig. 16.39 There is a limitation on the slope angle for diamond turning 
of array components in C-axis mode. It depends on the primary clearance angle of the diamond tool. 
For a standard diamond-cutting tool the slope angle limit is aproximately 20 . Some manufactures can 
supply tools with angles up to 32 , but these tools are very fragile. Note that the slope angle limitation 
can be mitigated with B axis or in micromilling mode.

Micromilling technology requires the diamond tool to be mounted on the spindle and the part 
now on the Z-axis stage. While the spindle (tool) rotates, it can be moved in X, Y, Z directions in 
reference to the fabricated part. The cutting time of free-form surfaces with diamond micromilling 
is significantly longer than for diamond turning in C-axis mode. For that reason, it is more appro-
priate for small optic applications. On the other hand, micromilling is very effective for fabrication 
of parts that conform to the shape of the tool. For example, making arrays of spherical lenses can be 
very fast (1-μm cutting depth/revolution) and deliver high surface quality. Micromilling spindle rates 
are usually faster than for normal diamond-turning applications and typically are 6000 to 8000 rpm. 
An example of a lens array cut with micromilling is shown in Fig. 17. Micromilling can produce 
high-power components, like hemispherical lenses or arrays of such lenses.

Research on fabrication of aspherically shaped tools is currently being pursued.40 If successful, 
it will provide tremendous benefits for micromilling fabrication and will allow fast production of 
arrays of high-power aspherical lenses.

22.7  LITHOGRAPHY FOR MAKING REFRACTIVE
COMPONENTS

In recent years lithographic techniques became important for micro-optics fabrication. Since lithog-
raphy is designed for making small, planar components it is more appropriate for fabrication of 
miniature and micro components rather than for large optics. While entire micro-optics systems 
can be made with lithographic processes, fabrication of large-scale devices is limited to phase 

FIGURE 16 An example of a lens array fabricated with 
slow-slide servo C-axis machining.39
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correctors/plates. As lithography was derived from electronics, it allows producing components in 
large quantities (parts can be diced out of the wafer) or arrays of systems. Additional benefits are 
obtained with use of grayscale lithography, which allows making components of arbitrary shape. 
In this process, fabrication of aspherical surfaces is as easy as making spherical ones (no rotational 
symmetry is necessary) and it gives the designer enormous work freedom. One example applica-
tion of grayscale lithography for making arbitrary surfaces was proposed by J. Rogers in the design 
of miniature microscope.41 The goal of the design was to remove ghost reflections through lens tilts 
and to at the same time maintain high performance of NA  0.4 optics. Shapes of lens surfaces made 
with grayscale lithography corrected for aberrations originating from tilts. Another benefit of using 
grayscale lithography is making optomechanical (assembly) features in the same process as optics. 
This combination can significantly improve assembly precision (see also Sec. 22.4).

While lithography has many advantages, it also has lens sag limitations (in effect limits lens 
power) currently between 100 and 150 μm.42 To improve lens parameters research on higher refrac-
tive index materials (for example, solgel) is currently being pursued. 

Grayscale lithography can be divided into two major categories: (1) direct printing and (2) lithog-
raphy using grayscale masks. Direct printing can be performed using laser, x-ray or e-beam 
writing in photosensitive material. In this chapter we will concentrate on fabrication using laser 
direct writing.

Laser Direct Write Fabrication of Micro-optical Elements

The maskless optical lithography technique referred to in this section is laser direct write 
(LDW) technology. Most LDW phototools have been developed by modulating a single laser 
spot focused by a microscope objective. The exposure media is moved under the single focused 
spot using a translation stage, as shown in Fig. 18.43 Both rectilinear raster scan and rotational 
scan techniques have been studied. The rotational scan spins the media on a rotary table, and 
the objective translates across a radius, as shown in Fig. 19.44 Rectilinear raster scan by means 
of a translating X-Y stage allows patterning of nonrotational profiles with the advantage of pat-
terning more than one element.43 This method adds a nonrotational pattern structure to the 
final image.

FIGURE 17 A lens array cut with diamond micromilling. (Courtesy of 
Moore Nanotechnology Systems, LLC.)
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The process steps used in a typical application using LDW technology are

1. Calculate the desired two-dimensional surface sag matrix in the lens material, based on the 
optical wavefront desired in transmission or reflection. In transmission, properties of the opti-
cal material used for the micro-optical element must be considered at the design wavelength. 
Exposure into simple photoresist is often sufficient for many applications, but the pattern may 
also be milled or etched into an underlying substrate, like fused silica or GaP.

2. If all other process steps are linear, the surface sag matrix is directly proportional to the depth of 
material removed with a positive-tone photoresist, which is the most common type of photoresist.

3. However, these process steps are rarely linear. Typically, the designer must compensate the 
surface sag by the nonlinear properties of the photoresist and the etching or milling processes. 
Nonlinear properties of the photoresist are best calibrated directly on the LDW phototool 
immediately before exposure. A calibration ramp is shown in Fig. 20, where responses of the 
exposure system and photoresist to a linear input ramp show a strongly nonlinear behavior. 
Depending on the milling or etching technique used, the additional correction for differential 
milling rate (etch rate of the optical material divided by the etch rate of the resist) must be 
accommodated. In dry-etch system, the differential etch rate is typically 6:1, but may be as high 
as 100:1 or as low as 1:1.
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FIGURE 18 Typical laser direct write (LDW) system employing a stable 
base and x-y scan stage with a modulated laser to expose the photosensitive 
surface at each scan point.43
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4. Resist layer is deposited on the substrate, exposed and developed according to the compensated 
exposure profile. Certain photoresist process steps are required, such as prebake to remove 
residual solvents and postbake or postdevelop bake, which depend on the chemistry being used. 
If resist is used as the optical material, there are no more process steps required.

5. If the pattern is transferred into the substrate material, the substrate must be mounted into the 
milling chamber or etch bath for further processing.
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FIGURE 19 Polar coordinate writer for fabrication of micro-optical components.44 The substrate rotating 
on the spindle is exposed with a focused and modulated laser beam along a diameter. A translation stage moves 
the focused beam along the spindle radius to expose different diameters. Good synchronization between the 
spindle and laser modulation can produce arbitrary gray-scale profiles.
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Although exposure in photoresist is the most common method, other materials may be used for 
direct laser writing. For example, Poleshchuk et al. use a polar coordinate writer to change the absorption 
of amorphous silicon as a function of position for fabrication of gray-scale masks, as shown in Fig. 21.44

The reduction in optical absorption is caused by an induced crystallization of the amorphous silicon.
Other types of LDW phototools have also been proposed. A system using x-y galvanometer mir-

rors has been constructed to fabricate micro-optical components by photodeposition of amorphous 
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FIGURE 20 Response curve of positive-tone photoresist to a lin-
early increasing exposure signal (0 to 100 percent laser power) that takes 
into account nonlinearities of the exposure system and the photoresist.
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selenium (a-Se).45 The galvanometer mirrors are used instead of x-y stages to move the focused 
laser spot across the sample. Yet another system uses digital multi-micromirror device (DMD) 
array with a 10:1 lithographic reduction camera to expose micro-optical patterns.46 In this system, 
the DMD is illuminated with a He g-line (436 nm) illumination system, and pixels of the DMD 
are turned “on” or “off ” to direct light into or away from, respectively, the projection camera. A 
full image of the DMD array is exposed at one time with this system, thus increasing throughput. 
Pixels in the “on” state expose the resist. Still another system under development is the high-speed 
maskless lithography tool (MLT) at the University of Arizona.47 In this system, an 8-bit modulated 
370-nm laser beam is reflected from a rotating polygon and focused to a scan line (x dimension) 
in the photoresist. As the polygon rotates, the photoresist-coated sample is slowly translated with 
a linear stage perpendicular (y dimension) to the scan line. By the time the scan line is complete, 
the stage has moved a y distance corresponding to the width of 1 pixel in that dimension and is 
ready for the next scan line. A twelve-sided polygon rotating at 3000 rpm provides 12,000 pixels 
across one scan line. Pixel dimensions are 2.1 m square, and the spot size is approximately 
2.5 m. The length of the written pattern in the y direction depends on the range of the stage 
and the size of the computer buffer memory. One 25 mm  25 mm substrate can be exposed 
in approximately 12 seconds.

Lithography with Gray-Scale Masks

Lithography with use of gray-scale masks is a three step process: 

1. Substrate is coated with photoresist, polymer, or solgel glass.

2. Sample is exposed with UV light through gray-scale mask.

3. Sample is developed to create refractive lens component.

For transferring lens shape into glass, an additional step of deep reactive ion etching (DRIE) is 
required. A conceptual graph presenting the gray-scale lithography process is shown in Fig. 22. The 
process requires two critical components, which are a gray-scale mask and a photosensitive material 
with linear relationship between optical density and level of polymerization so the lens height will 
directly relate to energy delivered to the sample. Note that a nonlinear relation is also possible to use, 
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FIGURE 22 Principle of gray-scale lithography process.
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but it requires a careful calibration process for the mask fabrication, exposure, and development 
process. Examples of technologies to make gray-scale masks include3

Photographic masks—can be made with photoreduction on photosensitive emulsion or with 
variable laser intensity writing. 

Halftoning—gray levels are obtained by different density and size of binary structure.

HEBS masks—high energy beam sensitive glass is used to fabricate masks with e-beam writing.

Comparison of parameters for these mask techniques is presented in Table 6. 
During the lithography process negative-tone photosensitive material (solgel, photoresist) is 

polymerized with UV light and immersed in developer. Regions less exposed to UV radiations 
dissolve more quickly and create variable height components. An example of structure height as a 
function of optical density is shown in Fig. 23.48

Especially interesting is the gray-scale lithography process with thick solgel and photoresist 
materials, as it allows higher optical power and larger components. It is especially important for 
miniature imaging systems (miniature microscopes, endoscopes, cameras). These devices need to 
obtain large FOV and therefore their size cannot be too small. High-film thicknesses is a prerequisite 
to optical elements of greater optical power, that is, shorter focal length. Small root-mean-square 
(rms) surface roughness is demanded to minimize undesired scattering from lithographically 

TABLE 6 Comparison of Achievable 
Resolution for Different Type of Gray-Scale 
Mask3

Minimum 
Mask Type Feature Size

Photographic masks <5 μm
Halftoning 8 μm
HEBS masks <1 μm
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FIGURE 23 Optical component surface height as a function of optical 
density for hybrid solgel glass.48
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fabricated optical elements. Values of large thickness (up to 135 μm) at a low rms roughness of 
10 nm were reported.42 An example of a solgel lens fabricated with gray-scale process is shown in 
Fig. 24.48 Features around the lens were designed for optomechnical assembly and work in the MOT 
setting. (For more details refer to Sec. 22.4.)

22.8 MONOLITHIC LENSLET MODULES

Monolithic lenslet modules (MLMs) are micro-optic lenslets configured into close-packed arrays. 
Lenslets can be circular, square, rectangular, or hexagonal. Aperture sizes range from as small as 
25 μm to 1.0 mm. Overall array sizes can be fabricated up to 68  68 mm. These elements, like those 
described in the previous section, are fabricated from molds. Unlike molded glass and plastic lenses, 
MLMs are typically fabricated on only one surface of a substrate, as shown in the wavefront sensing 
arrangement of Fig. 25. An advantage of MLMs over other microlens array techniques is that 
the fill factor, which is the fraction of usable area in the array, can be as high as 95 to 99 percent. 

FIGURE 24 SEM image of the lens fabricated using solgel and gray-
scale HEBS photomasks.48

Input wavefront

Lenslets
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Centroid deviation as 
a result of local 
wavefront tilt

FIGURE 25 Monolithic lenslet modules (MLMs) config-
ured for wavefront sensing.57
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Applications for MLMs include Hartman testing,49 spatial light modulators, optical computing, 
video projection systems, detector fill-factor improvement,50 and image processing.

There are three processes that are used to construct MLMs.51 All three techniques depend on 
using a master made of high-purity annealed and polished material. After the master is formed, a 
small amount of release agent is applied to the surface. In the most common fabrication process, a 
small amount of epoxy is placed on the surface of the master. A thin glass substrate is placed on top. 
The lenslet material is a single-part polymer epoxy. A slow-curing epoxy can be used if alignment is 
necessary during the curing process.52 The second process is injection molding of plastics for high-
volume applications. The third process for fabrication of MLMs is to grow infrared materials, like 
zinc selenide, on the master by chemical vapor deposition. Also, transparent elastomers can be used 
to produce flexible arrays.

MLMs are advertised53 to be diffraction-limited for lenslets with NA < 0.10. Since the lens mate-
rial is only a very thin layer on top of the glass substrate, MLMs do not have the same concerns that 
molded plastic lenses have with respect to birefringence and transmission of the substrate. For most 
low-NA applications, individual lenslets can be analyzed as plano-convex lenses. Aspheres can be 
fabricated to improve imaging performance for higher NAs. Aspheres as fast as NA  0.5 have been 
fabricated with spot sizes about twice what would be expected from a diffraction-limited system. 
The residual error is probably due to fabrication imperfections observed near the edges and corners 
of the lenslets.54

22.9 DISTRIBUTED-INDEX PLANAR MICROLENSES

A distributed-index planar microlens, which is also called a Luneberg lens,55 is formed with a radi-
ally symmetric index distribution. The index begins at a high value at the center and decreases to 
the index value of the substrate at the edge of the lens. The function that describes axial and radial 
variation of the index is given by56

n r z n g r
g n
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z( , ) ( , )

( , )
0 0 1

2 0 02 2
2

2 (4)

where r is the radial distance from the optical axis, z is the axial distance, n(0, 0) is the maximum 
index at the surface of the lens, g is a constant that expresses the index gradient, d is the diffusion 
depth, and (n(0, 0) – n2)/n(0, 0), where n2 is the substrate index. Typical values are  0.05, 
d 0.4 mm, rmax  0.5 mm, n2  1.5, and g r2 0 63 1/ mmmax . . These lenses are typically fabri-
cated on flat substrates and yield hemispherical index profiles, as shown in Fig. 26. Two substrates 
placed together will produce a spherical lens. Several applications of light coupling with distributed-
index microlenses have recently been demonstrated.57 These include coupling laser diodes to fibers, 
LEDs to fibers, fibers to fibers, and fibers to detectors. In the future, arrays of lenslets might aid in 
parallel communication systems.

One way to introduce the index gradient is through ion exchange.58 As shown in Fig. 26, a glass 
substrate is first coated with a metallic film. The film is then patterned with a mask that allows 
ions to diffuse from a molten salt bath through open areas of the mask. Ions in the glass substrate 
are exchanged for other ions in the molten salt at high temperatures. The diffused ions change the 
refractive index of the substrate by an amount that is proportional to their electric polarizability 
and concentration. To increase the index, diffusing ions from the salt bath must have a larger elec-
tronic polarizability than that of the ions involved in the glass substrate. Since ions that have larger 
electron polarizability also have larger ionic radius, the selective ion exchange changes the index 
distribution and creates local swelling where the diffusing ion concentration is high. The swelling 
can be removed with polishing for a smooth surface. Alternatively, the swelling can be left to aid 
in the lensing action of the device. To obtain the proper index distribution, the mask radius and 
diffusion time must be chosen carefully.59 If the mask radius, rmask, is small compared to the diffu-
sion depth, the derivative of the index distribution with respect to radial distance r monotonically 
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decreases. Since the curvature of a light ray passing through the medium is proportional to the gradient 
of the logarithm of the refractive index, the rays tend not to focus. A suitable combination of diffu-
sion time t and mask radius is given by Dt r/ mask

2 0 4. , where D is the diffusion constant of the dop-
ant in the substrate. Table 7 displays the diffusion time necessary for making a planar microlens 
with a radius of 0.5 mm. Typically, the paraxial focal length in the substrate is l0  20 rmask, and the 
numerical aperture is NA n2/20.

Other fabrication techniques can also be used. Planar lens arrays in plastics are fabricated 
with monomer-exchange diffusion.60,61 Plastics are suitable for making larger-diameter lenses 
because they have large diffusion constants at relatively low temperatures (100°C). The electro-
migration technique62 is more effective for creating devices with short focal length. For example, 
by applying an electric field of 7 V/mm for 8 hours, it is possible to obtain a planar microlens 
with radius of 0.6 mm and focal length of 6.8 mm.59 A distributed-index microlens array using 
a plasma chemical vapor deposition (CVD) method has also been reported.63 In this process, 
hemispherical holes are etched into a planar glass substrate. The holes are filled with thin layers 
of a combination of SiO2 and Si2N4. These materials have different indices of refraction, and the 
composition is varied from the hemispherical outside shell to the center to provide a Luneburg 
index distribution.

Diffusion Deep diffusion

High NA PML with swell
(PMLS)

Surface polish 
(DI-PML)

Glass substrate

Deposition of metal film

Patterning

FIGURE 26 Planar distributed-index microlens array and fabrication 
process.57

TABLE 7 Summary of Diffusion Times for Planar DI Lenses61

Materials Wn/n D (m2/s) t (s)

Plastics (DIA-MMA) 0.05 3  10–10 3  102

Glass (TI) ion-exchange 0.05 4  10–13 9  104

Glass (TI) 0.05 — 3  104†

electromigration

t  (r2
m/D)  0.4.

†Experimental data with radius of 0.6 mm.
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Shearing interferometry can be used to measure the index distribution from thinly slieed samples 
of lenslets. Samplets are acquired laterally or longitudinally, as shown in Fig. 27. Results of the mea-
surement on a lateral section are shown in Fig. 28 for the ion-exchange technique. The solid line is the 
theoretical prediction, and the dotted line corresponds to measured data. The large discrepancy between 
measured and theoretical results is probably due to concentration-dependent diffusion or the interac-
tion of the dopants. Figure 29 shows the two-dimensional index profile resulting from a deep electromi-
gration technique.64 These data correspond much more closely to the theoretical values in Fig. 28.

(a)

(b)

FIGURE 27 Slicing a lens to obtain a thin sample 
for interferometric characterization.59 (a) Lateral slice and 
(b) longitudinal slice.
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The ray aberration of a distributed-index lens is commonly determined by observing the longitudi-
nal aberration at infinite conjugates, as shown in Fig. 30. The paraxial focusing length, l0, is given by 

l d
g

gd
0

11 2 2

2
cot

sin
(5)

The amount of longitudinal aberration is defined by LA  (l – l0)/l0, where l is the distance at which 
a ray crosses the optical axis. LA increases with the radius r of the ray. In order to display the effects 
of different  and n2 parameters, we define a normalized numerical aperture that is given by
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FIGURE 29 Two-dimensional index distribution of a distributed-index planar microlens prepared with the deep 
electromigration technique.64

l0
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r rmax l

LA

FIGURE 30 Longitudinal ray aberration, LA, of a distributed-
index planar microlens. The object is at infinity. l0 is the paraxial 
focal distance. LA increases with r.
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and is plotted in Fig. 31 versus diffusion depth for several values of LA. Notice that, for small values 
of LA, the maximum NA

—–—
 occurs at a diffusion depth of d  0.9/g.

Wave aberration of a planar distributed index microlens is shown in Fig. 32. The large departure 
at the maximum radius indicates severe aberration if used at full aperture. Swelled-structure lenses 
can exhibit much improved performance.65 It has been determined that the index distribution contributes 
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very little to the power of the swelled-surface element. Most of the focusing power comes from the 
swelled surface-air interface. A few characteristics of ion-exchanged distributed-index microlenses 
are shown in Table 8.

22.10 MICRO-FRESNEL LENSES

The curvature of an optical beam’s wavefront determines whether the beam is converging, diverg-
ing, or collimated. A bulk lens changes the wavefront curvature in order to perform a desired func-
tion, like focusing on a detector plane. The micro-Fresnel lens (MFL) performs the same function 
as a bulk lens, that is, it changes the curvature of the wavefront. In a simple example, the MFL con-
verts a plane wavefront into a converging spherical wavefront, A(x, y, z), as shown in Fig. 33. The 
difference between an MFL and a bulk lens is that the MFL must change the wavefront over a very 
thin surface.

A Fresnel lens is constructed of many divided annular zones, as shown in Fig. 34. Fresnel lenses 
are closely related to Fresnel zone plates.66,67 Both zone patterns are the same. However, unlike a 
Fresnel zone plate, the Fresnel lens has smooth contours in each zone, which delay the phase of the 
optical beam by 2 radians at the thickest point. In the central zone, the contour is usually smooth 
enough that it acts as a refractive element. Toward the edges, zone spacing can become close to 
the wavelength of light, so the Fresnel lens exhibits diffractive properties. Also, due to the quasi-
periodical nature of the zones and the diffractive properties, Fresnel lenses have strong wavelength 
dependencies.

Advantages of the Fresnel lens are that they can be made small and light compared to bulk opti-
cal components. Note that binary optics, which are described in Michael W. Farn and Wilfrid B. 
Veldkamp’s Chap. 23, “Binary Optics,” are stepped approximations to the MFL smooth-zone contour.

TABLE 8 Fundamental Characteristics of the Planar DI 
Microlens28

Diameter (μm) NA Focal Length (μm)

Planar 10–1000 0.02–0.25 20–4000
Swelled 50–400 0.4–0.6 55–500

z

MFL
+–

A(x, y, z)

z = 0
f

FIGURE 33 A micro-Fresnel lens (MFL) is often used to 
convert a planar wavefront into a converging spherical wave, A(x, y, z),
which focuses a distance f away from the MFL. The phase of the 
light in a plane on either side of the MFL is described by and .
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To understand the zonal profiles of the MFL, we return to our example problem illustrated in 
Fig. 33. Our development is similar to that described by Nishihara and Suhara.68 The converging 
spherical wavefront is given by

A r z
A

i k t
A

i r z( , ) [ ( )] exp [ ( , )]exp0 0 (7)

where A0 is the amplitude of the wave, 2 2 2 2 2( ) ,z f r r x y f, is the focal length, and 
k 2 / . The phase of A(x, y, z) at t  0 and in a plane just behind the MFL is given by

( , , )x y k f r0 2 2 (8)

We could add a constant to Eq. (8) and not change any optical properties other than a dc phase shift. Let

( ) ( , , ) ( )r x y kf k f f r0 2 2 2 2 (9)

Zone radii are found by solving

k f f r mm( )2 2 2 (10)

where m 1, 2, 3, . . . is the zone number. The result is

r fm mm 2 2( ) (11)

d(r)

1st zone

0th zone

r1 r2

rM

FIGURE 34 Fresnel lens construction. M-divided 
annular zones occur at radii ri in the same manner as a 
Fresnel zone plate. The profiles of each zone are given 
by d(r), and they are optimized to yield the maximum 
efficiency in the focused beam.
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Equation (9) becomes

m r m k f f r( ) ( ) ( )2 1 2 2 (12)

The job of the MFL is to provide a phase change so that the incident wavefront phase, (r), is 
changed into (r). The phase introduced by the MFL, MFL(r), must be

MFL( ) ( ) ( )r r r (13)

A phase change occurs when a wave is passed through a plate of varying thickness, as shown in Fig. 35. 
(r) is given by

( ) ( ) ( ) [ ( )]
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MMFL n d r kni i) ( )

(14)

where d(r) is the thickness profile, ni, is the refractive index of the image space, nMFL is the refractive 
index of the substrate, and  is the maximum thickness of the MFL pattern. d(r) is found by substi-
tuting Eq. (14) into Eq. (12). Note that the factor  is a constant and only adds a constant phase shift 
to Eq. (14). Therefore, we will ignore  in the remainder of our development. If ni  1, the result is

d r
m

n

f r f

nm( )
( )1

1 1

2 2

MFL MFL

(15)

ni

nMFL

+–

d(r)

FIGURE 35 Portion of a Fresnel lens profile show-
ing the thickness variation of the pattern. The thickness 
at any radius is given by d(r), where r is the radial dis-
tance from the center of the lens. The phase shift that is 
added to wavefront  is determined by d(r), the index 
of refraction of the substrate, nMFL, and the index of 
refraction of the image space, ni. The maximum thick-
ness of the pattern is given by . The resulting phase in a 
plane just after the MFL is given by .
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where we have arbitrarily set (r)  0. The total number of zones M for a lens of radius rM is

M
rM ( )1 1 2NA

NA
(16)

The minimum zone period, min, occurs at the outermost part of the lens and is given by

min

( )

( )
r r r

f M

M f MM M M1

2

2
1 1

2 2 1

2
(17)

The following approximations may be used without significant error if NA < 0.2 and M 1:

d r
m f r
f nm( )

.
( )
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(18)

r m fm 2 (19)

M
rM

2
NA (20)

and

min NA
(21)

The consequence of using Eqs. (18) and (19) for NA > 0.2 is that a small amount of spherical aber-
ration is introduced into the system.

The aberration characteristics of the MFL and the Fresnel zone plate are very similar. Aberrations 
of Fresnel zone plates have been discussed by Young.69 For convenience, we describe a zone plate 
with the stop at the lens that is illuminated with a plane wave at angle . For an MFL made accord-
ing to Eq. (15) and used at the proper conjugates, there will be no spherical aberration or distor-
tion. Coma, astigmatism, and field curvature are given by W r fM131

3 22/ , W r fM222
2 2 2/ , and 

W r fM220
2 2 4/ , respectively. When M  1 and is small, the dominant aberration is coma, W131.

If the substrate of the zone plate is curved with a radius of curvature equal to the focal length, coma 
can be eliminated.70 Chromatic variations in the focal length of the MFL are also similar to a Fresnel 
zone plate. For NA < 0.2,

f
r

M
M
2

2
(22)

A focal-length-shift versus wavelength comparison of a Fresnel (hologram) lens and some single-ele-
ment bulk-optic lenses are shown in Fig. 36. Note that the dispersion of the MFL is much greater than 
the bulk lens, and the dispersion of the MFL is opposite in sign to that of the bulk lenses. These facts 
have been used to design, hybrid achromats by combining bulk lenses and diffractive lenses into the 
same system.71 The thermal variations in MFLs primarily result in a change of focal length given by72

f 2f g T (23)

where f is the nominal focal length, g is the coefficient of thermal expansion for the substrate mate-
rial, and T is a uniform temperature change of the element. For most optical glasses, g ranges 
from 5  10 4 °C 1 to 10  10 4 °C 1.
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The diffraction efficiency, , of an MFL is defined as the ratio of the power in the focused spot to 
the power in the unfocused beam transmitted through the lens. At best, Fresnel zone plates exhibit 

 40.5 percent.73 Blazing the grating profile can significantly increase the efficiency of the lens. 
Theoretically,  of an MFL can be 100 percent with the proper profile. However, there are several 
process parameters that limit , as shown in Fig. 37, where a perfect zone profile has width T and
height dMAX /(nMFL–1). Variation of film thickness, overetching, and swell all exhibit sinc-squared 
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FIGURE 36 Single-element dispersions for a 
Fresnel (hologram) lens and refractive singlets. The 
focal lengths (arbitrary units) of thin lenses are 
plotted versus wavelength for refractive lenses of 
various optical glasses. Each lens was constructed 
to have a focal length of 10 at g  0.5876 μm.71
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FIGURE 37 Four parameters that influence the dif-
fraction efficiency of MFLs are: (a) film thickness variation; 
(b) overetching; (c) swell of the resist; and (d) imperfection 
of the shoulders. A profile of one zone is illustrated for each 
parameter. The ideal profile is shown as a dotted line, where 
dMAX is the ideal height and T is the ideal period. The diffrac-
tion efficiency  of each profile is determined from extrapo-
lating the result obtained from an infinite blazed grating.75
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dependency on the errors. Shoulder imperfection is the most critical parameter, with  proportional 
to (s/T).2 For > 90 percent, s/T  0.95, which implies that the falling edge of the zone profile must 
take no more than 5 percent of the grating period. This is possible with low NA systems, where the 
zone spacing is large compared to the resolution of the exposure system, but it becomes difficult in 
high NA systems, where the zone spacing is on the order of several microns. Analysis of the three 
remaining parameters indicates fairly loose tolerances are acceptable. For  > 98 percent, tolerance 
on individual parameters are: |d(n  1)/  1| < 0.25, a/T > 0.50, and d(n 1)/ < 0.50. Due to 
the increasing difficulty in fabricating correct zone profiles with decreasing zone width, most MFLs 
exhibit a variation in diffraction efficiency versus radius. In the center of the zone pattern, where the 
zone spacing is large, the measured diffraction efficiency can be in excess of 90 percent. At the edge 
of the zone pattern, where the zone spacing can be on the order of a few wavelengths, the measured 
diffraction efficiency is much lower. One possible solution to this problem is to use “superzone” 
construction,74 in which the zone radii are found from a modified form of Eq. (10), that is

k f f r NmM( )2 2 2 (24)

where N is the superzone number. This results in a maximum thickness of dMAX  N /(nMFL 1). 
Note that N 1 corresponds to the standard MFL. N 2 implies that zones are spaced at every 4
phase transition boundary instead of at every 2 phase transition boundary. Although this makes 
the zones wider apart, the surface relief pattern must be twice as thick.

Molding provides a potentially valuable process for fabricating large quantities of MFLs eco-
nomically. MFLs can be produced with conventional injection molding, but due to the large thermal 
expansion coefficient of polymers, the lenses are sensitive to thermal variations. An alternative MFL 
molding process is shown in Fig. 38, where a glass substrate is used to avoid large thermal effects. 

(a) Master

Nt

UV-curable resin

Substrate

UV light

(b) Electro forming

(c) Stamper

(d)

(e) Molded MFL

FIGURE 38 Molding process for a MFL on a glass sub-
strate. First, a master is made by electron-beam lithography, 
then a stamper is electroformed from the master. MFLs are 
molded by potting a UV-curable resin between the stamper 
and the substrate and then exposing through the substrate.53
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First, a master lens is formed with electron-beam or laser writing. A stamper is prepared using con-
ventional nickel electro-forming methods.76 After potting a UV-curable resin between the stamper 
and the glass substrate, the replica lenses are molded by the photopolymerization (2P) process.77

The wavefront aberration versus temperature for a  780 nm, NA  0.25, diameter  0.5 mm lens 
formed with this technique is shown in Fig. 39.78 A variation on this technique is to use the stamper 
as a substrate in an electron-beam evaporation device.79 Inorganic materials of various refractive 
indices can be deposited on the stamper, resulting in a thin lens of high refractive index. The high 
refractive index of a material like ZnS (n  2.35) can be used to lower the maximum thickness 
requirement of the lens, which makes fabrication of the master with electron-beam writing easier.

22.11 LIQUID LENSES

Integrated micro and miniature systems are often limited by fixed geometry, difficult realignment, 
and tuning capabilities. Therefore, extensive research was performed to develop miniature opti-
cal components with adjustable optical power. Even though zoom solutions, like applications of 
Alvarez-Humphrey plates mounted on microelectro mechanical system (MEMS) actuators, were 
recently suggested,80 the most successful tunable miniature optic components are based on prin-
ciples of liquid lenses or liquid crystals. In general, the concept of liquid lenses arises from the fact 
that it is possible to change the shape of the liquid volume and provide an optical power change. 
This power change can be done in several ways, including electrowetting,81,82 pressure,83 85 or tem-
perature change.86 Liquid crystal lenses87 are based on changing an electric field to create different 
crystal orientations and, in consequence, refractive index distribution. One of the most successful 
approaches for tunable miniature lenses is the concept of an electrowetting lens.81 It was developed 
primarily for consumer market applications, like cell phone or credit card cameras. The limited 
amount of space and relatively high cost does not permit using traditional motor-driven systems in 
these products. Another application of electrowetting lenses is Blu-Ray Disk (BD) recording systems 
for dual layer disks. 
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FIGURE 39 Wavefront aberration versus substrate temperature for a 
0.25 NA molded MFL on a glass substrate designed to operate at  780 nm.78
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The principle of an electrowetting lens is presented in Fig. 40.81 It relies on using two non-
mixable liquids, where one is conductive and one nonconductive. An example of conductive liquid 
is salted water, while a nonconductive example is nonpolar oil. Both liquids must have significantly 
different refractive index (typically n  0.15–0.20) and similar density. Refractive index difference 
is required to provide optical power, while similar density makes the lens insensitive to vibrations 
and shocks. Liquid is placed in a cylinder where the cylinder wall and bottom are metal coated and 
act as two electrodes. Note that the cylinder wall is separated from the conductive liquid by an insu-
lating layer. Changing potential between these two electrodes influences the shape of the conductive 
liquid and creates either a convex or a concave refractive lens. 

An example of electrowetting camera lens from Philips is presented in Fig. 41.81 The outer 
diameter of the lens (Fig. 40) is 4 mm, inner diameter is 3 mm, and height 2.2 mm. Typical switch-
ing voltage is in range of 50 to 120 V. Note that a concave lens is a natural state when no voltage is 
applied (voltage application allows to decrease negative power or obtaining convex lenses). The 
switching time is about 10 ms. The Philips lens can achieve maximum negative power of 100 diop-
tres, and positive of 50 dioptres. This corresponds to focus lengths of 10 mm and 20 mm, respec-
tively. Optical power D can be described as

D nC (25)

where C is lens curvature (reciprocal of lens radius).
Electrowetting lenses can provide sufficiently good optical performance. The main imperfec-

tions arise from asymmetric cylinder shape and nonuniform coating. Major wave aberrations in 
the lens are coma and astigmatism. It has been shown that they can be within diffraction limit 
of 0.07  wavefront error81 within their operating range. Note that work on aspherical, asymmetric 
electrowetting optical components82 and reconfigurable lens arrays88,89 is currently an active research 
area. For the purpose of this chapter, however, we limit our discussion of electrowetting to a prin-
ciple level analysis only.
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FIGURE 40 A-B schematic cross section of electrowetting lens for convex and con-
cave lens, respectively. C-D photographs of electrowetting lenses.81
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Another tunable lens concept is based on using liquids/gels and a pressure change to adjust 
optical power.83 84 85 In this case diameter of the cylinder containing the gel or liquid is covered 
with an elastic membrane (most often polydimethylsiloxane [PDMS]). The membrane is pushed 
out or pulled in by an increase/decrease of liquid pressure, respectively, and can create convex or 
concave lenses. The principle of the pressure-based liquid lens is presented in Fig. 42.

Depending on the liquid and lens diameter, pressure change lenses can obtain approximately 
1.0 to 10 mm and 1.0 to 10 mm focal lengths. If the membrane is sufficiently thin, the same 
equation as used for electrowetted lenses can be used to estimate lens power. The pressure change 
technique allows easy population of lenses in micro fluidic systems and fabrication of tunable lens 
arrays.83 84 85 An array of 200-μm (diameter) lenses made on a substrate glass in PDMS is shown in 
Fig. 43.83

Note that membrane lenses are subject to spherical aberrations, since the membrane shape pro-
duces an aspherical form due to lower membrane stiffness in the middle area of a lens that creates 
a nonuniform curvature. Liquid material used for an array prototype (Fig. 42) was a microscope 
immersion oil (n 1.51) or UV-curable polymers (Norland 63, n 1.56), but other materials are 
also possible.

While the majority of applications for pressure-based liquid lenses are “lab on a chip” use, they 
were also recently prototyped for use in optical coherence tomography (OCT). An example of liquid 
lens and complete head of an OCT probe is shown in Fig. 44.90

Tunable lenses can also implement thermal change of the liquid volume.85 This method is suitable 
for small millimeter or submillimeter components. It is due to the fact the volume change V V T.

FIGURE 41 A prototype of camera module with electrowetting liquid lens.81
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Membrane

Membrane

Pressure = 0

LiquidLiquidLiquid

Pressure > 0 Pressure < 0

FIGURE 42 The principle of the pressure-based liquid lens.
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Larger masses require in linear proportion more heat energy. Therefore, this method is more effec-
tive for small liquid volumes. Note that  denotes volume expansion coefficient, V and V material 
volume and volume change, respectively, and T is the introduced temperature change. An example 
of a thermally controlled liquid lens is presented in Fig. 45.86 The liquid chamber is covered with 
PDMS lens (gives system an initial optical power) made in a two-step replication process. PDMS 
was applied as a flexible and easily stretchable material. This lens has 1.9-mm clear aperture. The 
entire package is 8.5 mm  6.5 mm  1.5 mm. The lens requires voltage change (for thermal actua-
tion) of 0 to 14 V, which corresponds to temperature change from about 20 to 50°C. In effect, focal 
length changes from 14.7 to 2.8 mm.

Entirely different technology for making tunable lenses is based on the liquid crystal principle87

in which it is possible to create a continuously changing electric field that causes axially symmetric 

Circular chamber

(a) (b)

Microfluidic channels
400 m

PDMS membrane

PDMS LIQUID GLASS

1. The lens array is filled with liquid

2. The array is pressurized to form the lenses

Microlenses

FIGURE 43 (a) Picture of the pressure base microfluidic lens array. (b) Schematic of the microlens array.83
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FIGURE 44 (a) Microfluidic pressure lens and (b) picture of entire OCT head.90
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orientation changes of liquid crystals (LC). The crystal orientations results in a distribution of 
refractive index similar to that obtained in gradient index (GRIN) lenses. LC lenses are being used in 
machine vision, photonics, and eyeglasses. 

The LC lens principle can be described following Naumov et al.87 and his design of a liquid crystal 
lens. The LC is placed between two transparent electrodes deposited on glass substrates. One is the 
control electrode with distributed resistance much higher than the distributed resistance of the 
ground electrode. The LC layer placed between these two electrodes acts as a capacitor. In case of 
application of AC voltage to the single circular contact at the control electrode, the active imped-
ance of the control electrode and the reactive impedance of the capacitor create a distributed voltage 
divider. This divider results in a distributed AC voltage over the layer of LC relatively close to a para-
bolic distribution. In consequence the axially symmetric distribution of liquid crystals provides a 
change of optical power. It is also possible to build cylindrical lenses by using two line contacts at the 
control electrode. LC lenses are very convenient, due to the fact that they are electrically controlled 
integrated components. Switching voltage of LC lenses, depending on design, is usually in 0 100 V 
range. Their major drawback arises from relatively low optical power and polarization effects due to 
the crystal structure.

Liquid crystal lens research is a very broad area. For the purpose of this discussion we con-
centrate on selected examples. One group of miniature liquid lenses includes relatively large 
components of 5 to 10 mm in diameter and quite low optical power with focal length between 
few hundred millimeters and infinity.87 Multilayer liquid crystal lenses91 can increase opti-
cal power and obtain a range of 93 to 1230 mm. Examples of negative lenses with a glass lens 
embedded between liquid crystal layers were also demonstrated.92 Most recently, research on 
aspheric liquid crystal components (like axicons) is also being pursued.93 A second group of liquid 
crystal lenses are microlenses94 and arrays of microlenses.95,96 The diameter of a single lens is usu-
ally few hundred microns (200 to 600 μm) and these lenses can achieve short focal lengths in 
range ±2 to ±10 mm.

To compare various techniques for making tunable miniature or microlenses, a summary of 
parameters of various lens types are presented in Table 9. Values from literature are rounded to show 
achievable range rather than detailed numbers. Note that it is possible to find examples of systems 
going outside values summarized in Table 9.

Other tunable liquid lens approaches can be found in literature including adaptive liquid 
microlenseses activated with different stimuli.97 The optical power of these lenses may potentially 
be designed in a way so it will adapt to the environment, which means that optical power will 
change depending on conditions (PH, temperature, etc.). Detailed discussions of these quite new 
approaches are omitted, as they are in initial research stages.

Actuator Thermal sensor

Filling inlet

Lens position

Chamber

Conductive
pads

(a) (b)

Feedback control

Sensing circuit

Glass plateLiquidSilicon substrate

FIGURE 45 (a) Schematic of an integrated thermal volume change lens. (b) Photo of a complete packaged lens.86
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22.12 OTHER TECHNOLOGIES

There are several other technologies that are potentially valuable for micro-optic components. Four 
particularly interesting technologies are melted-resin arrays,98 laser-assisted chemical etching,99 mass 
transport,100 and drawn preform cylindrical lenses.98

Melted-resin arrays of hemispherical ball lenses are formed with the process shown in Fig. 46. 
First, an Al film is deposited on a quartz substrate and patterned with holes that serve as aperture 

TABLE 9 Comparison of Parameters of Different Tunable Lenses

Common Size of Possible Range of Tuning Switching
Technique Clear Aperture Focal Range Shapes Parameter Time

Electrowetted 0.2–5.0 mm 20 mm– Convex Voltage 10 ms
10 mm– Concave 50–120 V

Pressure change 0.2–2 mm 1.0–10.0 mm Convex Pressure 500 ms– 
1.0– 10 mm Concave 0–50 KPa few seconds

Volume change ~2.0 mm, possible 2.0–15.0 mm Convex Temperature 50 seconds
Decrease to 300 μm  20–50°C

Liquid crystal 5–10 mm 100 mm– Convex Voltage 500 ms–
0.2–0.6 mm 2–10 mm Convex 0–100 V few seconds

2– 10 mm Concave

Hardened
pedestals

Al mask

(a)

(b)

(c)

(d)

Substrate

Thermal
cycle

Resin
cylinders

Microlenses

FIGURE 46 Process used to form melted-resin micro-
lenses: (a) an AL film is deposited on the substrate and pat-
terned with holes to serve as aperture stops for the array; 
(b) circular pedestals are formed on top of the aperture holes 
and hardened; (c) cylinders of resin are developed of the ped-
estals; and (d) pedestals are melted to form spherical surfaces.98
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stops for the array. Next, circular pedestals are formed on top of the aperture holes. The pedestals 
are hardened so that they are insoluble and stable for temperatures in excess of 180 C. Cylinders 
of resin are then developed on top of the pedestals. The device is heated to 140 C to melt the 
resin. The pedestals serve to confine the melting resin. The lenses form into hemispherical shapes 
due to surface tension forces. Lens diameters have been demonstrated at 30 μm with good wave-
front performance and uniformity.98

Similar to the process for making melted resin arrays is fabrication of reflow lenses.3,16 The 
graphical representation of reflow process is presented in Fig. 47.16 Figure 48 shows example of fab-
ricated lenslet array.16

Fabrication of reflow lenses consists of two major steps: (1) A layer of photoresist or solgel is 
exposed through lithographic binary mask and then developed; (2) photoresist cylinders are melted 
to create surfaces close to spherical shape. The third step of reactive ion etching3,16 or plasma etch-
ing101 can be added to transfer lens shapes into a substrate. For the melting step, the sample is heated 
to the glass temperature of the resist, which is in range of 150 to 200°C. After Sinzinger and Jahns,3

the focal length equation in Eq. (26) of the obtained lens is

f
r

n
c

1
(26)

FIGURE 48 SEM picture of 5-μm diameter microlenses 
packed hexagonally.16 Lenses were made using reflow process in 
photoresist.

UV light

mask

resist

Resist
cylinders

Resist
lenses

FIGURE 47 Principle of fabrication of microlens arrays using photoresist reflow technique.16
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where rc is radius of curvature derived from properties of binary cylinders:

r
h

D

hc

2
2

4
2

(27)

Note that h is the height of the droplet and corresponds to lens sag and D is diameter of the cylinder. 
Knowledge of cylinder volume allows also to find a relation between cylinder thickness and the 

droplet height (sag),3

t
h h

D6
3 4

2

2
(28)

Reflow lenses require very careful selection of photosensitive material (high viscosity, e.g., Hoechst 
AZ 4562), cylinder diameter, and its height. If the cylinder structure is too shallow, the melting 
process may create lenses deviating significantly from a sphere. The ratio between cylinder height 
and diameter is usually in range of 0.04 to 0.5. To improve quality of fabricated lenses, preshaping of 

(a)

20 m
(b)

FIGURE 49 SEM photographs showing perspective views of (a) etched 
multilevel mesa structure and (b) the microlens formed after mass transport.100
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photoresist can be applied. It is also possible to fabricate asymmetric lenses using either preshaping 
or noncircular masks.

The reflow technique can be further extended and combined with a molding process.102,103 After 
exposure, developing, and melting steps the lens array can be coated with PDMS and cured. In 
result, one obtains the negative impression of the photoresist array. Due to the fact that PDMS is 
hydrophobic and elastic such a created mold easily comes of the substrate and can be used in addi-
tional steps to create solgel (or other polymer) lens arrays.103

The quality of reflow fabricated lenses is high, resulting in surface roughness in the range of 
Ra  1 nm and deviation from perfect sphere of /10 (RMS) can be achieved. By application of afor-
mentioned method103 large sag and NA values can be obtained. 

Diameters of reflow lenses usually vary between 5 and 2000 μm3,16 and their sag is within 2.5 and 
60 to 70 μm. Reported focal lengths were few and 9000 μm3 where longer focal lengths were obtained 
for larger lens diameters.

Laser-assisted chemical etching (LACE) can be used to make arrays of F/0.7–F/10 lenslets with 
spacings of 50 to 300 μm. Microlenses have been fabricated in glass, silicon, CdTe, and sapphire with 
95 percent fill factors and figure quality better than 1/10th wave.99 In the LACE process, a focused 
laser beam is scanned over a thick layer of photoresist. The irradiance of the laser beam is modu-
lated in order to vary the exposure and thus the thickness of the developed resist. With the proper 
irradiance mapping, accurate lens profiles can be produced in the developed resist. If lenslet material 
other than photoresist is required, a pattern can be exposed in the photoresist and transferred into 
the new material by ion milling.

Our discussion of the mass-transport process follows discussion presented in Ref. 100. In the 
mass-transport process, a multilevel mesa structure is first etched into a semiconductor, as shown 
in Fig. 49a. The semiconductor must be a binary compound in which the evaporation rate of one 
element is negligible compared to that of the other. For example, InP has been used successfully. The 
mesa structure is placed in a furnace at an elevated temperature. Since some surface decomposition 
occurs with InP, a minimum phosphorus vapor pressure must be maintained in the gas ambient 
to prevent the sample from being transformed into metallic In. The decomposition produces free 
In atoms located at the crystal surface, which are in equilibrium with phosphorus in the vapor and 
InP in the crystal. The concentration of In in the vapor is negligible. The equilibrium concentra-
tion of free In atoms increases with increasing positive surface curvature, since the higher surface 
energy of the high-curvature regions translates into a lower bonding energy in the decomposition 
process. Consequently, a variation in curvature across the surface will result in diffusion of free In 
atoms from regions of high positive curvature, where the concentrations are high, to low-curvature 
regions, where the In-diffused atoms exceed the equilibrium concentration and have to be reincor-
porated into the crystal by reaction with P to form InP. (The diffusion of P in the vapor phase is 
presumably much faster than the diffusion of free In atoms on the surface. The latter is therefore 
assumed to be the rate-limiting process.) The mass transport of InP, resulting from decomposition 
in high-curvature regions, will continue until the difference in curvature is completely eliminated. 
After mass transport, a smooth profile is obtained, as shown in Fig. 49. The design of the mesa 
structure can result in very accurate control of the lens profile, as shown in Fig. 50. Mass-transport 
lens arrays have been used to collimate arrays of laser diodes, with diffraction-limited performance 
at NA ~0.5.

Very accurate cylindrical lenses can be drawn from performs.104 An SEM photo of an elliptical 
cylindrical lens is shown in Fig. 51. The first step in the process is to make a preform of a suitable 
glass material. Since the cross-sectional dimensions of the preform are uniformly reduced (typtically 
~50 to 100 ) in the fiber drawing process, small manufacturing errors become optically insignificant. 
Therefore, standard numerically controlled grinding techniques can be utilized to generate a pre-
form of any desired shape. Besides maintaining the preform shape, the drawing process also polishes 
the fiber. Results are presented98 that demonstrate a 200-μm-wide elliptical cylindrical lens. The 
SFL6 preform was about 0.75 cm wide. The lens has a nominal focal length of 220 μm at  800 
μm. The lens is diffraction-limited over about a 150-μm clear aperture, or NA ~0.6. The application 
is to collimate the fast axis of laser diodes.
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FIGURE 50 Stylus surface profiles of the multilevel mesa structure 
and the microlens formed after mass transport (upper half) and the com-
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FIGURE 51 Scanning electron microscope photo of an elliptical cylindrical microlens. 
The lens width is 200 μm.104
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23.1 GLOSSARY

A aspheric

C describes spherical aberration

Cm Fourier coefficients

c curvature

c(x, y) complex transmittance

D local period

f focal length

k, l running indices

li paraxial image position

L, M direction cosines

m diffraction order

P partial dispersion

s spheric

t thickness

Vd Abbe number

x, y, z Cartesian coordinates

wavelength

diffraction efficiency

i paraxial image height

(x, y) phase
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23.2 INTRODUCTION

Binary optics is a surface-relief optics technology based on VLSI fabrication techniques (primarily 
photolithography and etching), with the “binary” in the name referring to the binary coding scheme 
used in creating the photolithographic masks. The technology allows the creation of new, uncon-
ventional optical elements and provides greater design freedom and new materials choices for con-
ventional elements. This capability allows designers to create innovative components that can solve 
problems in optical sensors, optical communications, and optical processors. The technology has 
advanced sufficiently to allow the production of diffractive elements, hybrid refractive-diffractive 
elements, and refractive micro-optics which are satisfactory for use in cameras, military systems, 
medical applications, and other demanding areas.

The boundaries of the binary optics field are not clearly defined, so in this chapter, the concen-
tration will be on the core of the technology: passive optical elements which are fabricated using 
VLSI technology. As so defined, binary optics technology can be broadly divided into the areas of 
optical design and VLSI-based fabrication. Optical design can be further categorized according to 
the optical theory used to model the element: geometrical optics, scalar diffraction theory, or vector 
diffraction theory; while fabrication is composed of two parts: translation of the optical design into 
the mask layout and the actual micromachining of the element. The following sections discuss each 
of these topics in some detail, with emphasis on optical design. For a more general overview, the 
reader is referred to Refs. 1 for many of the original papers, 2 and 3 for a sampling of applications 
and research, and 4 to 6 for a lay overview. 

Directly related areas which are discussed in other chapters but not in this one include micro-
optics and diffractive optics fabricated by other means (e.g., diamond turning, conventional manu-
facturing, or optical production), display holography (especially computer-generated holography), 
mass replication technologies (e.g., embossing, injection molding, or epoxy casting), integrated 
optics, and other micromachining technologies.

23.3 DESIGN—GEOMETRICAL OPTICS

In many applications, binary optics elements are designed by ray tracing and “classical” lens design 
principles. These designs can be divided into two classes: broadband and monochromatic. In 
broadband applications, the binary optics structure has little optical power in order to reduce the 
chromatic aberrations and its primary purpose is aberration correction. The device can be viewed 
as an aspheric aberration corrector, similar to a Schmidt corrector, when used to correct the mono-
chromatic aberrations and it can be viewed as a material with dispersion an order of magnitude 
greater than and opposite in sign to conventional materials when used to correct chromatic aber-
rations. In monochromatic applications, binary optics components can have significant optical 
power and can be viewed as replacements for refractive optics.

In both classes of designs, binary optics typically offers the following key advantages:

Reduction in system size, weight, and/or number of elements

Elimination of exotic materials

Increased design freedom in correcting aberrations, resulting in better system performance

Generation of arbitrary lens shapes (including micro-optics) and phase profiles

Analytical Models

Representation of a Binary Optics Element As with any diffractive element, a binary optics structure is 
defined by its phase profile (x, y) (z is taken as the optical axis), design wavelength 0, and the surface 
on which the element lies. For simplicity, this surface is assumed to be planar for the remainder of this 
chapter, although this is commonly not the case. For example, in many refractive/diffractive systems, 
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the binary optics structure is placed on a refractive lens which may be curved. The phase function is 
commonly represented by either explicit analytical expression or decomposition into polynomials in 
x and y (e.g., the HOE option in CODE V).

Explicit analytic expressions are used in simple designs, the two most common being lenses 
and gratings. A lens used to image point (xo, yo, zo) to point (xi, yi, zi) at wavelength 0 has a phase 
profile

( , ) ( ) ( )x y z x x z y y zo o o o o/ /
2

1 1
0

2 2 2 2

z x x z y y zi i i i i( ) ( )2 2 2 2 1 1/ /

(1)

where zo and zi are both taken as positive to the right of the lens. The focal length is given by the 
gaussian lens formula:

1 1 10/ / /f z zi o (2)

with the subscript indicating that f0 is the focal length at 0. A grating which deflects a normally 
incident ray of wavelength 0 to the direction with direction cosines (L, M) is described by

( , ) ( )x y xL yM
2

0

(3)

Axicons are circular gratings and are described by

( , ) ( )x y x y L
2

0

2 2 (4)

where L now describes the radial deflection.
For historical reasons, the polynomial decomposition of the phase profile of the element com-

monly consists of a spheric term and an aspheric term:

( , ) ( , ) ( , )x y x y x yS A (5)

where

A kl
k l

lk

x y a x y( , )
2

0

and the spheric term S(x, y) takes the form of Eq. (1). Since the phase profiles produced by 
binary optics technology are not constrained to be spheric, S(x, y) is often set to zero by using 
the same object and image locations and the aspheric term alone is used to describe the profile. 
The binary optics element is then optimized by optimizing the polynomial coefficients akl. If nec-
essary, the aspheric term can be forced to be radially symmetric by constraining the appropriate 
polynomial coefficients.

It is possible to describe the phase profile of a binary optics element in other ways. For example, 
(x, y) could be described by Zernike polynomials or could be interpolated from a two-dimensional 

look-up table.
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Ray Tracing by the Grating Equation A binary optics element with phase (x, y) can be ray traced 
using the grating equation by modeling the element as a grating, the period of which varies with 
position. This yields

L L
m

x2
(6)

M M
m

y2
(7)

where m is the diffracted order, L, M are the direction cosines of the incident ray, and L , M  are the 
direction cosines of the diffracted ray.7 In geometrical designs, the element is usually blazed for the first 
order (m 1). Note that it is the phase gradient (x, y) (a vector quantity proportional to the local 
spatial frequency) and not the phase (x, y) which appears in the grating equation. The magnitude of 
the local period is inversely proportional to the local spatial frequency and given by

D x y( , ) /| |2 (8)

where | | denotes the vector magnitude. The minimum local period determines the minimum fea-
ture size of the binary optics structure, a concern in device fabrication (see “Fabrication” later in 
this chapter).

Ray Tracing by the Sweatt Model The Sweatt model,8 which is an approximation to the grating 
equation, is another method for ray tracing. The Sweatt approach models a binary optics element as 
an equivalent refractive element and is important since it allows results derived for refractive optics 
to be applied to binary optics. In the Sweatt model, a binary optics element with phase (x, y) at 
wavelength 0 is replaced by a refractive equivalent with thickness and refractive index given by

t x y
n

x y
t( , )

( , )0

0
01 2

(9)

n n( ) ( )1 1
0

0 (10)

Here, t0 is a constant chosen to make t(x, y) always positive and n0 is the index of the material at 
wavelength 0. The index n0 is chosen by the designer and as n0 , the Sweatt model approaches 
the grating equation. In practice, a value of n0 10,000 is sufficiently high for accurate results.9

In the special case of a binary optics lens described by Eq. (1), the more accurate Sweatt lens10

can be used. In this case, the element is modeled by two surfaces of curvature

c n zo o1 1 0/[( ) ] (11)

c n zi i1 1 0/[( ) ] (12)

and conic constant n0
2, with the axis of each surface passing through the respective point source. 

The refractive index is still modeled by Eq. (10).

Aberration Correction

Aberrations of a Binary Optics Singlet As a simple example of a monochromatic imaging system, 
consider a binary optics singlet which is designed to image the point (0, 0, zo) to the point (0, 0, zi)
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at wavelength 0. The phase profile of this lens can be derived from Eq. (1) and the focal length f0
from Eq. (2). Now consider an object point of wavelength  located at (0, o, lo). The lens will form 
an image at (0, i, li) (see Fig. 1), with the paraxial image position li and height i given by7

1 1

0 0 0l f li

(13)

i i o ol l/ / (14)

Note that the first equation is just the gaussian lens law but using a wavelength-dependent focal 
length of

f f( ) 0
0 (15)

The focal length being inversely proportional to the wavelength is a fundamental property of dif-
fractive lenses. In addition, due to the wavelength shift and position change of the object point, the 
lens will form a wavefront with a primary aberration of 7

W x y
l l z zi o i o
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1
8

1 1 1 1
3 3

0
3 3

( )

(

x y

l l l
y x

i i o
i

2 2 2

2 2

1
2

1 1 22 2

2
2 2

2

3

4

1 1 1

4

1 1

y

l l l
y

l l l
i i o
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)

i x2 2

(16)

where the ray strikes the lens at (x, y). The first term is spherical aberration, the second is coma, and 
the last two are tangential and sagittal field curvature. As noted by Welford, all the off-axis aberra-
tions can be eliminated if and only if li lo, a useless configuration. In most systems of interest, the 
limiting aberration is coma.

The performance of the binary optics singlet can be improved by introducing more degrees of 
freedom: varying the stop position, allowing the binary optics lens to be placed on a curved surface, 
using additional elements, etc. For a more detailed discussion, see Refs. 1, 7, and 11.

Chromatic Aberration Correction Binary optics lenses inherently suffer from large chromatic 
aberrations, the wavelength-dependent focal length [Eq. (15)] being a prime example. By themselves, 

FIGURE 1 Primary aberrations of a binary optics 
lens.7
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they are unsuitable for broadband imaging and it has been shown that an achromatic system con-
sisting only of diffractive lenses cannot produce a real image.12

However, these lenses can be combined successfully with refractive lenses to achieve chromatic 
correction (for a more detailed discussion than what follows, see Refs. 4, 13, and 14). The chromatic 
behavior can be understood by using the Sweatt model, which states that a binary optics lens 
behaves like an ultrahigh index refractive lens with an index which varies linearly with wavelength 
[let n0  in Eq. (10)]. Accordingly, they can be used to correct the primary chromatic aberration 
of conventional refractive lenses but cannot correct the secondary spectrum. For the design of achro-
mats and apochromats, an effective Abbe number and partial dispersion can also be calculated. For 
example, using the C, d, and F lines, the Abbe number is defined as V n n nd d F C[ ( ) ]/[ ( ) ( )]1 .
Substituting Eq. (10) and letting n0  yields

Vd d F C/( ) .3 45 (17)

In a similar fashion, the effective partial dispersion using the g and F lines is

PgF g F F C( ) ( ) ./ 0 296 (18)

By using these effective values, the conventional procedure for designing achromats and apochromats15

can be extended to designs in which one element is a binary optics lens.
Figure 2 plots the partial dispersion PgF versus Abbe number Vd for various glasses. Unlike all 

other materials, a binary optics lens has a negative Abbe number. Thus, an achromatic doublet can 
be formed by combining a refractive lens and a binary optics lens, both with positive power. This 
significantly reduces the lens curvatures required, allowing for larger apertures. In addition, the 
binary optics lens has a position in Fig. 2 which is not collinear with the other glasses, thus also 
allowing the design of apochromats with reduced lens curvatures and larger apertures.

Monochromatic Aberration Correction For a detailed discussion, the reader is referred to Refs. 1 
and 11. As a simple example,4 consider a refractive system which suffers from third-order spherical 
aberration and has a residual phase given by

r x y C x y( , ) ( )
2 2 2 2 (19)

FIGURE 2 Partial dispersion vs. Abbe number.14
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where C describes the spherical aberration. Then, a binary optics corrector with phase

b x y C x y( , ) ( )
2

0

2 2 2 (20)

will completely correct the aberration at wavelength 0 and will reduce the aberration at other wave-
lengths to

r b C x y
2

1 0
2 2 2( / )( ) (21)

The residual aberration is spherochromatism.

Micro-Optics

Binary optics technology is especially suited for the fabrication of micro-optics and micro-optics 
arrays, as shown in Fig. 3. The advantages of binary optics technology include the following:

Uniformity and coherence. If desired, all micro-optics in an array can be made identical to opti-
cal tolerances. This results in coherence over the entire array (see Fig. 4).

Refractive optics. Binary optics is usually associated with diffractive optics. This is not a fun-
damental limit but results primarily from fabrication constraints on the maximum achievable 
depth (typically, 3 μm with ease and up to 20 μm with effort). However, for many micro-optics, 
this is sufficient to allow the etching of refractive elements. For example, a lens of radius R0

FIGURE 3 96 64 array of 51 61 μm CdTe microlenses.
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which is corrected for spherical aberration15 and focuses collimated light at a distance z0 (see Fig. 5) 
has a thickness of

t n R z z nmax ( )0
2

0
2

0 1/ (22)

where n is the index of the material.

Arbitrary phase profiles. Binary optics can produce arbitrary phase profiles in micro-optics just 
as easily as in macro-optics. Fabricating arrays of anamorphic lenses to correct the astigmatism 
of semiconductor lasers, for example, is no more difficult than fabricating arrays of conventional 
spherical lenses.

100 percent fill factor. While many technologies are limited in fill factor (e.g., round lenses on a 
square grid yield a 79 percent fill factor), binary optics can achieve 100 percent fill factor on any 
shape grid.

Spatial multiplexing. Each micro-optic in an array can be different from its neighbors and the 
array itself can compose an arbitrary mosaic rather than a regular grid. For example, a binary 
optics array of individually designed micro-optics can be used to optimally mode-match one-
dimensional laser arrays to laser cavities or optical fibers.16

Optical Performance

Wavefront Quality The wavefront quality of binary optics components is determined by the accu-
racy with which the lateral features of the element are reproduced. Since the local period (typically 
several μm) is usually much larger than the resolution with which it can be reproduced (of order 
0.1 μm), wavefront quality is excellent. In fact, wavefront errors are typically limited by the optical 
quality of the substrate rather than the quality of the fabrication.

FIGURE 4 Micro-optic telescope using (a) coherent arrays and 
(b) incoherent arrays.

FIGURE 5 Thickness of a refractive lens.15
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Diffraction Efficiency The diffraction efficiency of a device is determined by how closely the binary 
optics stepped-phase profile approximates a true blaze. The theoretical efficiency at wavelength  of 
an element with I steps designed for use at 0 is

4

( , ) ( )
sin ( )

sin
sinc /I I

I
I

1
2

(23)

where sinc (x) sin ( x)/( x) and ( )0 1/ /I .

This result is based on scalar theory, assumes perfect fabrication, and neglects any material dispersion. 
Figure 6 plots the efficiency ( , I) for different numbers of steps I; while Table 1 gives the average 
efficiency over the bandwidth  for a perfectly blazed element (I ).4 The efficiency equation is 
asymmetric in  but symmetric in 1/ .

The use of scalar theory in the previous equation assumes that the local period D(x, y) [see 
Eq. (8)] is large compared to the wavelength. As a rule of thumb, this assumption begins to lose 
validity when the period dips below 10 wavelengths (e.g., a grating with period less than 10 0 or 
a lens faster than F/5) and lower efficiencies can be expected in these cases. For a more detailed 
discussion, see Ref. 17.

The efficiency discussed here is the diffraction efficiency of an element. Light lost in this context 
is primarily diffracted into other diffraction orders, which can also be traced through a system to 
determine their effect. As with conventional elements, binary optics elements will also suffer reflection 
losses which can be minimized in the usual manner.
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FIGURE 6 Diffraction efficiency of binary optics.4
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23.4 DESIGN—SCALAR DIFFRACTION THEORY

Designs via scalar diffraction theory are based on the direct manipulation of the phase of a wavefront. 
The incident wavefront is generally from a coherent source and the binary optics element manipulates 
the phase of each point of the wavefront such that the points interfere constructively or destructively, 
as desired, at points downstream of the element. In this regime, binary optics can perform some unique 
functions, two major applications being wavefront multiplexing and beam shaping.

Analytical Models

In the scalar regime, the binary optics component with phase profile (x, y) is modeled as a thin-
phase screen with a complex transmittance of

c x y j x y( , ) exp[ ( , )] (24)

The phase screen retards the incident wavefront and propagation of the new wavefront is modeled 
by the appropriate scalar formulation (e.g., angular spectrum, Fresnel diffraction, Fraunhofer dif-
fraction) for nonperiodic cases, or by Fourier series decomposition for periodic cases.

The design of linear gratings is an important problem in the scalar regime since other problems 
can be solved by analogy. A grating with complex transmittance c(x) and period D can be decom-
posed into its Fourier coefficients Cm, where

C
D

c x j mx D dxm

D1
2

0
( )exp( )/ (25)

c x C j mx Dm
m

( ) exp( )2 / (26)

The relative intensity or efficiency of the mth diffracted order of the grating is

m mC| |2 (27)

Due to the fabrication process, binary optics gratings are piecewise flat. The grating transmission 
in this special case can be expressed as c(x) ci for xi < x < xi 1, where ci is the complex transmission 
of step i of I total steps, x0 0, and xI D. The Fourier coefficients then take the form

C c j m mm i i
i

I

i i
0

1

2exp ( ) ( )sinc (28)

where i i i i i ix x D x x D( ) ( ) ( ).1 1 2/ and /

TABLE 1 Average Diffraction Efficiency 
for Various Bandwidths4

/ 0

0.00 1.00
0.10 1.00
0.20 0.99
0.30 0.98
0.40 0.96
0.50 0.93
0.60 0.90
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The sinc term is due to the piecewise flat nature of the grating. If, in addition to the above, the grat-
ing transition points are equally spaced, then xi iD/I and Eq. (28) reduces to

C j m I m I
I

c j mi Im i
i

exp( ) ) exp( )/ sinc ( / /
1

2
00

1I

(29)

The bracketed term is the FFT of ci, which makes this case attractive for numerical optimizations. If the 
complex transmittance is also stepped in phase by increments of 0, then c jii exp( )0  and Eq. (29) 
further reduces to18

C j I m I m I
I

Im exp{ [( ) ]} ( )
sin ( )

s
1 / sinc /

iin
(30)

where 0 2/ /( ) m I . This important case occurs whenever a true blaze is approximated by a 
stepped-phase profile. The efficiency equation [Eq. (23)] is a further specialization of this case.

Wavefront Multiplexers

Grating Designs Grating multiplexers (also known as beam-splitter gratings) split one beam into 
many diffracted beams which may be of equal intensity or weighted in intensity.19 Table 2 shows 
some common designs. In general, the designs can be divided into two categories: continuous phase 
and binary. Continuous phase multiplexers generally have better performance, as measured by the 
total efficiency and intensity uniformity of the diffracted beams, while binary multiplexers are easier 
to fabricate (with the exception of several naturally occurring continuous phase profiles). Upper 
bounds for the efficiency of both continuous and binary types are derived in Ref. 20.

If the phase is allowed to be continuous or nearly continuous (8 or 16 phase levels), then the grat-
ing design problem is analogous to the phase retrieval problem and iterative techniques are commonly 
used.21 A generic problem is the design of a multiplexer to split one beam into K equal intensity beams. 
Fanouts up to 1:50 with perfect uniformity and efficiencies of 90–100 percent are typical.

The complex transmittance of a binary grating has only two possible values [typically 1 and −1, 
or exp ( j 0) and exp (− j 0)], with the value changing at the transition points of the grating. By 
nature, the response of these gratings has the following properties:

The intensity response is symmetric; that is, m m.

The relative intensities of the nonzero orders are determined strictly by the transition points. 
That is, if the transition points are held constant, then the ratios m/ n for all m, n 0 will be 
constant, regardless of the actual complex transmittance values.

The complex transmittance values only affect the balance of energy between the zero and non-
zero orders.

TABLE 2 Grating Multiplexers of Period D, 0 < x < D

 Phase Profile  −1 0 1 Remarks

( , )x y
x D
D x

/
/

0 2
2

0.41 0 0.41 Binary 1:2 splitter

( , )
.

x y
x D
D x

/
/

0 2
2 01 2

0.29 0.29 0.29 Binary 1:3 splitter

( , )x y x D/ 0.41 0.41 Continuous 1:2 splitter

( , ) )]x y x Darctan[2.657 cos ( /2 0.31 0.31 0.31 Continuous 1:3 splitter
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Binary gratings are usually designed via the Dammann approach or search methods and tables of 
binary designs have been compiled.22,23 Efficiencies of 60–90 percent are typical for the 1:K beam-
splitter problem.

Multifocal Lenses The concepts used to design gratings with multiple orders can be directly 
extended to lenses and axicons to design elements with multiple focal lengths by taking advan-
tage of the fact that while gratings are periodic in x, paraxial lenses are periodic in (x2 y2), 
nonparaxial lenses in x y f2 2

0
2 , and axicons in x y2 2 . For gratings, different diffraction

orders correspond to plane waves traveling in different directions, but for a lens of focal length f0, the
mth diffraction order corresponds to a lens of focal length f0/m. By splitting the light into dif-
ferent diffraction orders, a lens with multiple focal lengths (even of opposite sign if desired) can 
be designed.

As an example, consider the paraxial design of a bifocal lens, as used in intraocular implants. 
Half the light should see a lens of focal length f0, while the other half should see no lens. This is a 
lens of focal length f0, but with the light split evenly between the 0 and 1 orders. The phase profile 
of a single focus lens is given by ( ) ( )r r f2 22

0 0/ , where r2 x2 y2. This phase, with the 2
ambiguity removed, is plotted in Fig. 7a as a function of r and in Fig. 7b as a function of r2, where 
the periodicity in r2 is evident. To split the light between the 0 and 1 orders, the blaze of Fig. 7b is 
replaced by the 1:2 continuous splitter of Table 2, resulting in Fig. 7c. This is the final design and the 
phase profile is displayed in Fig. 7d as a function of r.
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FIGURE 7 Designing a bifocal lens: (a) lens with a single focus; (b) same as (a), but showing periodicity in r2;
(c) substitution of a beam-splitting design; and (d) same as (c), but as a function of r.
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Beam Shapers and Diffusers

In many cases, the reshaping of a laser beam can be achieved by introducing the appropriate phase 
shifts via a binary optics element and then letting diffraction reshape the beam as it propagates. If 
the incoming beam is well characterized, then it is possible to deterministically design the binary 
optics element.24 For example, Fig. 8a shows the focal spot of a gaussian beam without any beam-
forming optics. In Fig. 8b, a binary optics element flattens and widens the focal spot. In this case, 
the element could be designed using phase-retrieval techniques, the simplest design being a clear 
aperture with a  phase shift over a central region. If the beam is not well-behaved, then a statistical 
design may be more appropriate.25 For example, in Fig. 8c, the aperture is subdivided into randomly 
phased subapertures. The envelope of the resulting intensity profile is determined by the subaper-
ture but is modulated by the speckle pattern from the random phasing. If there is some random-
ness in the system (e.g., changing laser wavefront), then the speckle pattern will average out and the 
result will be a design which reshapes the beam and is robust to variations in beam shape.

Other Devices

Other Fourier optics-based applications which benefit from binary optics include the coupling of 
laser arrays via filtering in the Fourier plane or other means26 the fabrication of phase-only com-
ponents for optical correlators,27 and the implementation of coordinate transformations.16,28 In all 
these applications, binary optics is used to directly manipulate the phase of a wavefront.

23.5 DESIGN—VECTOR DIFFRACTION THEORY

Binary optics designs based on vector diffraction theory fall into two categories: grating-based 
designs and artificial index designs.

Grating-based designs rely on solving Maxwell’s equations for diffraction by the element. 
This is practical for periodic structures. Two major methods for this analysis are the expansion 
in terms of space harmonics (coupled wave theory) and the expansion in terms of modes (modal 
theory).29 In this category, optical design is difficult since it can be both nonintuitive and compu-
tationally intensive.

Artificial index designs are based on the following premise. When features on the component are 
small compared to the wavelength, then the binary optics element will behave as a material of some 
average index. Two common applications are shown in Fig. 9. In Fig. 9a, the device behaves as an 
antireflection coating (analogous to anechoic chambers) since, at different depths, the structure has a 
different average index, continuously increasing from n1 to n2. In Fig. 9b, the regular, subwavelength 
structure exhibits form birefringence.30 For light polarized with the electric vector perpendicular to 
the grooves, the effective index is

1 1
1

1
2

1
2

2
2n

p
n

p
neff

( ) (31)

(a) (b) (c)

FIGURE 8 Reshaping a focused beam: (a) gaussian focus; (b) deterministic 
beam-shaper; and (c) statistical diffuser.
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where p is the fraction of total volume filled by material 1. However, for light polarized with the 
electric vector parallel to the grooves,

n pn p neff
2

1
2

2
21( ) (32)

In both these cases, the period of the structure must be much less than the wavelength in either 
medium so that only the zero order is propagating.

23.6 FABRICATION

Mask Layout

At the end of the optical design stage, the binary optics element is described by a phase profile (x, y). 
In the mask layout process, this profile is transformed into a geometrical layout and then converted 
to a set of data files in a format suitable for electron-beam pattern generation. From these files, a 
mask maker generates the set of photomasks which are used to fabricate the element.

The first step is to convert the phase profile (x, y) into a thickness profile (see Fig. 10a and b)
by the relation

t x y
n

( , )
( )

( mod )0

02 1
2 (33)

where 0 is the design wavelength and n0 is the index of the substrate at 0. The thickness profile is 
the surface relief required to introduce a phase shift of ( , )x y . The thickness varies continuously 
from 0 to t0, where

t n0 0 0 1/( ) (34)

is the thickness required to introduce one wave of optical path length difference.
To facilitate fabrication, t(x, y) is approximated by a multilevel profile t (x, y) (Fig. 10c), which 

normally would require one processing cycle (photolithography plus etching) to produce each 
thickness level. However, in binary optics, a binary coding scheme is used so that only N processing 
cycles are required to produce

I N2 (35)

thickness levels (hence the name binary optics).

FIGURE 9 Artificial index designs: (a) antireflection 
layer and (b) form birefringence.
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The photomasks and etch depths required for each processing cycle are determined from con-
tours of the thickness t(x, y) or equivalently the phase (x, y), as shown in Table 3. The contours can 
be generated in several ways. For simple phase profiles, the contours are determined analytically. 
Otherwise, the contours are determined either by calculating the thickness at every point on a grid 
and then interpolating between points31 or by using a numerical contouring method,32 analogous to 
tracing fringes on an interferogram.

To generate the photomasks, the geometrical areas bounded by the contours must be described in 
a graphics format compatible with the mask vendor (see Fig. 11a and b). Common formats are GDSII 
and CIF,33 both of which are high-level graphics descriptions which use the multisided polygon (often 
limited to 200 sides) as the basic building block. Hierarchical constructions (defining structures in 
terms of previously defined structures) and arraying of structures are also allowed.

The photomasks are usually written by electron-beam generators using the MEBES (moving 
electron beam exposure system) format as input. Most common high-level graphics descriptions 
can be translated or “fractured” to MEBES with negligible loss in fidelity via existing translation 
routines. Currently, commercial mask makers can achieve a minimum feature size or “critical 
dimension” (CD) of 0.8 μm with ease, 0.5 μm with effort, and 0.3 μm in special cases. The CD of a 

TABLE 3 Processing Steps for Binary Optics

Layer Etch Region, Defined by t(x, y) Etch Region, Defined by ( , )x y Etch Depth

1 0 < t mod (t0) < t0/2 0 <  mod 2 < t0/2
2 0 < t mod (t0/2) < t0/4 0 <  mod < /2 t0/4
3 0 < t mod (t0/4) < t0/8 0 <  mod /2 < /4 t0/8
4 0 < t mod (t0/8) < t0/16 0 <  mod /4 < /8 t0/16

(a)
0 x

4

2

(x)

(b)
0

t0

x

t(x)

(c)
0

t0

x

t (x)

FIGURE 10 Translation from (x, y) to micromachined surface: 
(a) phase (x, y); (b) thickness t(x, y); and (c) binary optics profile t (x, y).
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binary optics element is determined by the minimum local period [see Eq. (8)] divided by the num-
ber of steps, Dmin/I. For lenses,

D Fmin 2 0 (36)

where F is the F-number of the lens; while, for gratings, Dmin is the period of the grating.
In MEBES, all geometrical shapes are subdivided into trapezoids whose vertices lie on a fixed 

rectangular grid determined by the resolution of the electron-beam machine (see Fig. 11c). The 
resolution (typically 0.05 μm) should not be confused with the CD achievable by the mask maker.

In summary, the description of the photomask begins as a mathematical description based on 
contours of the thickness profile and ends as a set of trapezoids whose vertices fall on a regular grid 
(see Fig. 11). This series of translations results in the following artifacts. First, curves are approxi-
mated by straight lines. The error introduced by this approximation (see Fig. 12) is

R R( cos )1 2 82/ / (37)

Normally, the maximum allowable error is matched to the electron-beam resolution. Second, all 
coordinates are digitized to a regular grid. This results in pixelization artifacts (which are usually 
negligible), analogous to the ziggurat pattern produced on video monitors when plotting gently 
sloped lines. Finally, the MEBES writing process itself has a preferred direction since it uses electro-
static beam deflection in one direction and mechanical translation in the other.

In addition to the digitized thickness profile, photomasks normally include the following features 
which aid in the fabrication process. Alignment marks34 are used to align successive photomasks, 
control features such as witness boxes allow the measurement of etch depths and feature sizes with-
out probing the actual device, and labels allow the fabricator to easily determine the mask name, 
orientation, layer, etc.

Micromachining Techniques

Binary optics uses the same fabrication technologies as integrated circuit manufacturing.34,35

Specifically, the micromachining of binary optics consists of two steps: replication of the photomasks 

FIGURE 11 Mask layout descriptions: (a) mathematical description based on 
thickness contours; (b) high-level graphics description; and (c) MEBES.

FIGURE 12 Quantization angle.
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pattern into photoresist (photolithography) and the subsequent transfer of the pattern into the sub-
strate material to a precise depth (etching or deposition).

The replication of the photomasks onto a photoresist-covered substrate is achieved primarily via 
contact, proximity, or projection optical lithography. Contact and proximity printing offer lower 
equipment costs and more flexibility in handling different substrate sizes and substrate materials. In 
contact printing, the photomask is in direct contact with the photoresist during exposure. Vacuum-
contact photolithography, which pulls a vacuum between the mask and photoresist, results in the 
highest resolution (submicron features) and linewidth fidelity. Proximity printing, which separates 
the mask and photoresist by 5 to 50 μm, results in lower resolution due to diffraction. Both contact 
and proximity printing require 1:1 masks. In projection printing, the mask is imaged onto the pho-
toresist with a demagnification from 1  to 20 . Projection printers are suitable for volume manu-
facturing and can take advantage of magnified masks. However, they also require expensive optics, 
strict environmental controls, and can only expose limited areas (typically 2 cm 2 cm).

Following exposure, either the exposed photoresist is removed (positive resist) or the unexposed 
photoresist is removed (negative resist) in a developer solution. The remaining resist serves as a pro-
tective mask during the subsequent etching step.

The most pertinent etching methods are reactive ion etching (RIE) and ion milling. In RIE, a 
plasma containing reactive neutral species, ions, and electrons is formed at the substrate surface. 
Etching of the surface is achieved through both chemical reaction and mechanical bombardment by 
particles. The resulting etch is primarily in the vertical direction with little lateral etching (an aniso-
tropic etch) and the chemistry makes the etch attack some materials much more vigorously than 
others (a selective etch). Because of the chemistry, RIE is material-dependent. For example, RIE can 
be used to smoothly etch quartz and silicon, but RIE of borosilicate glasses results in micropatterned 
surfaces due to the impurities in the glass. In ion milling, a stream of inert gas ions (usually Ar) is 
directed at the substrate surface and removes material by physical sputtering. While ion milling is 
applicable to any material, it is usually slower than RIE.

For binary optics designed to be blazed for a single order (i.e., designs based on geometrical 
optics), the major effect of fabrication errors is to decrease the efficiency of the blaze. There is little 
or no degradation in the wavefront quality. Fabrication errors can be classified as lithographic errors, 
which include alignment errors and over/underexposure of photoresist, and etching errors, which 
include depth errors and nonuniform etching of the substrate. As a rule of thumb, lithographic 
errors should be held to less than 5 percent of the minimum feature size (<0.05 Dmin/I), which can 
be quite challenging; while etching errors should be held to less than 5 percent of t0, which is usually 
not too difficult. For binary optics designed via scalar or vector diffraction theory, manufacturing 
tolerances are estimated on a case-by-case basis through computer simulations.
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24.1 GLOSSARY

A constant

a, b constants

g constant

hi constants

n refractive index

r radius

Vij Abbe numbers

z Cartesian coordinate (optical axis direction)

power

24.2 INTRODUCTION

Gradient index (GRIN) optics1 refers to the field of optics in which light propagates along a curved 
path. This contrasts with normal homogeneous materials in which light propagates in a rectilinear 
fashion. Other terms that have been used to describe this field are inhomogeneous optics, index of 
refraction gradients, and distributed index of refraction. The most familiar example of a gradient 
index phenomenon is the mirage when a road appears to be wet on a hot summer day. This can be 
understood by the fact that the road is absorbing heat, thus slightly raising the temperature of the 
air relative to the temperature a few meters above the surface. By the gas law, the density decreases, 
and therefore the index of refraction decreases. Light entering this gradient medium follows a 
curved path. The ray path, as shown in Fig. 1, is such that the ray propagates downward toward 
the road and then gradually upward to the observer’s eye. The observer sees two images. One is the 
normal image propagating through the homogeneous material and the second is an image that is 
inverted and appears below the road surface. Thus, the index of refraction gradient acts as a mirror 
by gradual light refraction rather than reflection.
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24.3 ANALYTIC SOLUTIONS

Over the approximately 150 years that gradient index optics has been studied, a wealth of very 
interesting analytic solutions has been published.2 A classic example was published by James Clerk 
Maxwell in 1850. Maxwell3 showed through geometrical optics that the ray paths in a spherically 
symmetric material whose index of refraction is given by

n r a b r( ) ( )/ 2 2 (1)

are circles. The object and the image lie on the surface of the sphere but, otherwise, the imaging is 
perfect between the conjugate points on the sphere. The medium between the object and the image 
is continuous with no discreet surfaces. A century later, Luneburg4 modified the system to allow for 
discontinuities of the index of refraction. While these have not been implemented in ordinary opti-
cal systems, they have, however, been shown to be useful in integrated optics.5

A final example of a numerical solution is that of a radial (cylindrical) gradient in which the 
index of refraction varies perpendicular to a line. In 1954, Fletcher6 showed that if the index of 
refraction is given by

n r n sech aro( ) ( )2 (2)

then the ray paths inside the material in the meridional plane are sinusoidal. Nearly 50 years earlier, 
Wood7 had shown experimentally that the paths appeared to be sinusoidal. This solution has several 
important commercial applications. It is the basis of the Selfoc lens used in arrays for facsimile and 
photocopying machines and in endoscopes used for medical applications.

24.4 MATHEMATICAL REPRESENTATION

Most of the gradient index profiles are represented by a polynomial expansion. While these expan-
sions are not necessarily the most desirable from the gradient materials manufacturing standpoint, 
they are convenient for determining the aberrations of systems embodying GRIN materials. There 
are basically two major representations for gradient index materials. The first, used by the Nippon 
Sheet Glass, is used exclusively by representing radial gradient components. In this case, the index of 
refraction is written as a function of the radial coordinate r

N r N h r h r( ) ( )0
2

4
4

6
61 2Ar / (3)

FIGURE 1 Light from point A emits or reflects in all directions. Light propagating several meters 
above the heated road travels in a straight line. Light passing through the lower index of refraction 
region near the road undergoes a bending. This light appears to have come from below the road. 
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The second method of representing index of refraction profiles is a polynomial expansion in 
both the radial coordinate r and the optical axis coordinate z. In this case, the representation is

N r z N r zij
i

i j

j

( , )
0

2

0
(4)

where the coefficients Nij are the coefficients of the index of refraction polynomial. A pure axial 
gradient (in the z direction) has coefficients only in the form of N0 j and those in the radial would 
be of the form of Ni0. These representations for the index of refraction polynomial have been the 
basis of the aberration theory which was first developed for gradient index materials with discreet 
surfaces by Sands.8 These coefficients are wavelength dependent and are typically defined at three 
wavelengths. A gradient dispersion is defined by using a general Abbe number

V N N Nij ij d ij F ij C, , ,( )/ (5)

except for i and j both equal to zero. In the case for i = j = 0, then the Abbe number becomes the 
standard form, namely

V N N Nd F C00 00 00 001( ) ( ), , ,/ (6)

The subscripts d, F, and C refer to the wavelengths 0.5876, 0.4861, and 0.6563 μm, respectively. 
Unlike the normal dispersion of glasses where V00 is between 20 and 90, the Vij can have negative 
and positive values or can be infinite (implying that the gradient is the same as both the red and the 
blue portions of the spectrum).

24.5 AXIAL GRADIENT LENSES

When the index of refraction varies in the direction of the optical axis (the z direction), the bend-
ing of the light within the material is very small. Thus, the main feature of an axial gradient is its 
ability to correct aberrations rather than to add power to the lens. Sands showed that the effect of 
an axial gradient on monochromatic aberrations is exactly equivalent to that of an aspheric sur-
face. In fact, one could convert any aspherical surface to an axial gradient with a spherical surface 
and have the same image performance to the third-order approximation. There is, however, one 
very important difference between aspheric surfaces and axial gradients, i.e., the variation of the 
index of refraction profile with wavelength. Since an aspheric is the same for all wavelengths, its 
effect on spherochromatism is established once the aspheric has been determined. Further, an 
asphere has no effect on paraxial axial or lateral chromatic aberrations. This is not the case for 
axial gradients. Since the index of refraction profile varies with wavelength, it is possible to signifi-
cantly modify the spherochromatism of the lens and, in the case where the gradient extends from 
the front to the back surface, to affect the paraxial chromatic aberrations. Depending upon the 
dispersion of the gradient index material, the spherochromatism can be increased or decreased 
independent of the monochromatic correction. The effect of an axial gradient on paraxial axial 
chromatic aberration is best understood by placing a surface perpendicular to the optical axis 
in the middle of a single lens dividing it into two parts. The gradient dispersion implies that the 
medium will have one dispersion at the front surface and a different dispersion at the second 
surface. Thus, if one were to design a material in which the dispersion of the front surface is 60 
and at the rear surface is 40, then the combination of a positive (convex surface on the front) and 
negative lens (concave surface on the back), reduces the chromatic aberration. This can only be 
done if the lens is meniscus. In that case, the theoretical front lens is plano-convex while the back 
one is plano-concave. If the negative element has the higher dispersion (lower V numbers), then it 
is possible to chromatize the lens by a proper bending of the lens surfaces. This was first shown in 
the infrared part of the spectrum using a zinc sulfide-zinc selenide gradient material.9
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The simplest example of an axial gradient is the linear profile in which the index of refraction is 
written as

N z N N z( ) 00 01
(7)

The coefficient N01 is an additional degree of freedom which can be used to correct any of the third-
order monochromatic aberrations except Petzval curvature of field. There are two ways to approach 
the design of these lenses. In the case where the index of refraction profile does not continue to the rear 
surface (see Fig. 2), a simple formula can be used to relate the amount of index change to the F-number 
of the lens surface if the third-order spherical aberration and coma are to be correct to zero,10 namely,

n N f( . ( ) ) #0 0375 100
2 2/ / (8)

in this formula, the important parameters are the index of refraction of the base material, N00, the 
change in index of index of refraction, n, from the polar tangent to the maximum sag point, and 
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FIGURE 2 Diagram of axial gradient terminology. 
The effective region of the gradient is in the “region of sag.” 
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the F-number of the lens. One sees that if the F-number of the lens is doubled, then the amount of 
index change necessary to correct the spherical aberration and coma to zero increases by a factor of 4. 
Thus, while it is possible to correct the spherical aberration of the singlet operating at F/4 with an 
index change of only 0.0094, that same lens operating at F/1 will require an index change of 0.15. 
In most lenses, one never corrects the spherical aberration of individual elements to zero, but corrects 
the total amount of spherical aberration of all lens elements to zero.

Axial gradients have been used in a number of lens designs. Most of the work in this field has 
occurred in photographic objectives.11,12 In these cases, they offer a slight advantage over aspherics 
because of the chromatic variation of the gradient.

24.6 RADIAL GRADIENTS

In the most generalized case for radial gradients (one in which all coefficients are nonzero), it is 
possible not only to use the gradient for aberration correction, but also to modify the focal length 
of the lens. Independent of which representation is used, the coefficient of the parabolic term 
[Eq. (2) or Eq. (3)] dictates the amount of power that is introduced by the radial gradient component. 
Assuming only a radial gradient component, Eq. (4) can be expanded as

N r N N r N r( ) 00 01
2

02
4 (9)

Equating the terms in Eq. (3) and Eq. (9) gives

N N N N A00 0 10 0 2and / (10)

In the most general form, the power , due to the radial gradient component, is written as

N A A t0
0 5 0 5. .sin( ) (11)

From Eq. (11), the length of the material t determines the focal length of the system. In fact, depending 
on the choice of length, the power can be positive, negative, or zero. See Fig. 3a. A convenient variation 

(b)

(a)

FIGURE 3 Diagram of radial gradient: (a) a long radial gradient lens 
illustrating period ray path and (b) wood lens. 
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on this formula is to determine the length at which light entering the material collimated will be 
focused on the rear surface. This length is called the quarter pitch length of the rod and is given by

P / /1 4 00 10
0 52 2/

.( )( ( ))N N (12)

The full period length of the rod is simply four times Eq. (12).
For the case where the focal length (the reciprocal of the power) is long compared to its thick-

ness, this can be approximated by the formula (see Fig. 3b)

2 10N t (13)

This simplifying formula was derived by the entomologist Exner13 in 1889 while he was analyzing 
insect eyes and found them to have radial gradient components. Since the dispersion of a gradient 
material can be positive, negative, or infinity, the implication is that the paraxial axial chromatic 
aberration can be negative, positive, or zero. This leads to the possibility of an achromatized singlet 
with flat surfaces; or, by combining the dispersion of the gradient with that of the homogeneous 
materials, to single element lenses with curved surfaces that are color-corrected.

The radial gradient lens with flat surface is a very important example, both from a theoretical 
and a commercial standpoint. Consider such a lens with an object of infinity where the lens is thin 
relative to its focal length. As has already been shown, the value of N10 and the thickness determine 
the focal length of such a lens. According to third-order aberration theory,8 the only other term that 
can influence the third-order monochromatic aberrations is the coefficient N20. This term can be 
used to correct any one of the third-order aberrations except Petzval curvature of field. The coef-
ficient N20 is normally used to correct the spherical aberration; however, once this choice is made, 
there are no other degrees of freedom to reduce other aberrations such as coma. It can be shown 
that the coma in such a single element lens is very large if the lens is used at infinite conjugates. Of 
course, if such a lens is used at unit magnification in a system which is symmetric about the aperture 
stop, the coma (as well as the distortion and paraxial lateral color) is zero. As the length of the rod 
increases, the approximation for the focal length becomes inaccurate and the more rigorous formula 
given by Eq. (11) is appropriate. However, the rules governing the aberration correction remain the 
same. That is, the choice of the value of N20, or in the Nippon sheet glass representation, in h4 coef-
ficient, corrects the third-order spherical aberration to zero. In Fletcher’s original paper, he showed 
that rays propagating in a material whose index of refraction is given by Eq. (2) would focus light in 
the meridional plane periodically with no aberration along the length of such a rod. If one expands 
a hyperbolic secant in a polynomial expansion, one obtains

N N N20 10
2

005 6/ (14)

The implication is that if N20 is chosen according to Eq. (14), then not only is the spherical aberra-
tion corrected, but so is the tangential field (that is, the sum of three times the astigmatism plus the 
field curvature). Rawson14 showed that a more appropriate value for N20 was 3 210

2
00N N/ . This is a 

compromise for the correction of sagittal and tangential fields.
The second limiting case is to use these rods with arbitrary length but at unit magnification. This 

has important commercial applications in photocopying and fax machines, for couplers for single-
mode fibers, and in relays used in endoscopes. In all of these systems, the magnification is ±1 and 
thus there is no need to correct the coma, the distortion, or the lateral color. Thus, the choice of N20
can be used to either correct the spherical aberration or to achieve a compromise between the tan-
gential and sagittal fields.

In one of the most common applications, a series of lenses is assembled to form an array (see 
Fig. 4). In this case, the magnification between the object and the image must be a 1 with an 
inverted image halfway through the gradient index rods. Light from an object point is imaged 
through multiple GRIN rods depending on the numerical aperture of each of the rods. The effective 
numerical aperture of the array is significantly higher than that of a single rod. Theoretically, a full 
two-dimensional array can be constructed to image an entire two-dimensional object. In practice, 
to reduce costs the object is scanned by moving the object across the fixed lens array with either a 
charged couple device or a transfer drum used to record the image.
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24.7 RADIAL GRADIENTS WITH CURVED SURFACES

While the radial gradient with flat surfaces offers tremendous commercial applications today, it has 
limited applications because of the large amount of coma that is introduced unless the lens system 
is used at unit magnification. Thus, it is often desirable to introduce other degrees of freedom that 
may improve the imagery. The simplest way to do this is to make one or both of the end cases 
curved. The ability to chromatize such a lens is not lost so long as the power resulting from the 
curved surfaces and that of the radial gradient maintain the same ratio (but with opposite sign) 
as that of the Abbe number of homogeneous material and the Abbe number of N10. Thus, the lens 
shape can be determined to reduce the coma to zero and the value of the N20 coefficient is chosen 
to eliminate the spherical aberration. An example of a curved lens with a radial gradient was devel-
oped by Nippon Sheet Glass for a compact disc player.15 In that case, it is not necessary to achro-
matize the lens since the source is a monochromatic laser diode, but it was necessary to extend the 
field and reduce the amount of spherical aberration simultaneously. It is also often desirable to 
place part of the power on the curvature rather than using the gradient to refract all of the light. 
This reduces the magnitude of the index change and makes the lens easier to manufacture.

In a radial gradient material with curved surfaces, it is possible to eliminate four out of five 
monochromatic aberrations,16 and any four can be chosen. However, these lenses tend to be very 
sensitive to slight manufacturing errors, as they require a very delicate balance between the coeffi-
cients of the gradient profile and typically have very large amounts of higher-order aberrations.

24.8 SHALLOW RADIAL GRADIENTS

An interesting compromise between an axial gradient and a radial gradient with power is the shal-
low radial gradient (SRGRIN). In this type of gradient, there is no power generated by the gradient 
(i.e., N10 = 0). Like the axial gradient, it has no effect on Petzval curvature of field, but its aberration 
correction is significantly different than that of axial gradients. Sands8 showed that in the case of an 
axial gradient, the important parameter is the differential refraction of the ray at the surface which 
causes an additional surface contribution. In the shallow radial gradient there is no surface contribu-
tion, since the N10 coefficient is zero. All of the aberration correction is from the transfer contribution 
through the material.8 The implication of this fact is that the thickness of the shallow radial gradient 
is very important and, in fact, the most important parameter is the product of the thickness and the 
N20 coefficient. Thus, if only a small index change can be manufactured, the same amount of aberration 
correction can be achieved by increasing the thickness of the element. The other significant difference 
between this gradient and a normal radial gradient is the sign of the index change. In most lenses 
designed to date, the index of refraction of a conventional radial gradient should be lower at the 
periphery than it is at the center, thus creating a positive lens. However, in the shallow radial gradient, 
the index of refraction should be higher at the periphery than at the center. This has also normally 

FIGURE 4 An array of radial gradient lenses (only three shown) 
can be used to form an image of an extended object. This principle is 
used in photocopying and fax machines.
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been the case in the axial gradient in which the index of refraction should be higher at the polar tan-
gent plane than at the maximum sag point. This has important implications for the manufacturing 
process. Furthermore, the amount of index change necessary for shallow gradient correction is usually 
very small compared to the amount of index change needed in a regular radial gradient.

24.9 MATERIALS

While several materials systems have been proposed for forming gradient index materials, gradi-
ents have only been made for commercial applications in glasses and polymers. However, research 
has been conducted in zinc selenide-zinc sufilde,17 and germanium-silicon18 for the infrared por-
tion of the spectrum, and in fluoride materials for the ultraviolet.19 However, none of these have 
reached the stage, at this writing, which can be commercialized. For glasses, several processes 
have been proposed. The most common method of making gradient index materials is by the ion 
exchange process. In this case, a glass containing a single valence ion (such as sodium, lithium, or 
potassium) is placed in a molten salt bath at temperatures between 400 and 600°C. The molten salt 
bath contains a different ion than that in the glass. The ions from the salt diffuse into the glass and 
exchange for an ion of equal valence in the glass. The variation in composition leads to a variation 
in index of refraction. The variation in index of refraction occurs due to the change of polarizability 
between the two ions and the slight change in the density of the material. In some cases, these two 
phenomena can cancel one another, producing a composition variation, but no corresponding 
change in index of refraction. A model for predicting the index refraction change as well as the 
chromatic variation of the gradient has been developed.20 In this system, it is clear that the maxi-
mum index change is limited by the changes in the properties of single valence ions. While very 
large index changes have been made (approaching 0.27), these gradients suffer from large amounts 
of chromatic aberration. In axial gradients, a large amount of chromatic aberration is desirable, 
as it normally improves the spherochromatism. In the case of radial gradients, however, it creates 
large paraxial axial chromatic aberration which is normally not desirable. 

The manufacturing method is quite simple. If one wishes to make axial gradients, a sheet of glass 
is placed in a molten salt bath. Typical times for diffusion are a few days for diffusion depths of 3 to 
7 mm at temperatures around 500°C. The higher the temperature, the faster the diffusion; however, 
at high temperature the glass will begin to deform. Lower temperatures increase the diffusion times. 
For radial gradients, one simply starts with glass with cylindrical symmetry and places the rods 
inside an ion exchange bath. In order to form good parabolic profiles, it is necessary for the ions to 
diffuse through the center. 

Two other methods have been proposed for making gradients in glass. In the first, the gradi-
ent is formed by leaching or by stuffing in a sol-gel formed glass. This system has only shown to 
be applicable to radial gradients. After the glass is formed by the sol-gel (solution gelatin process), 
the glass is in a porous state where one of the components can be dissolved out in an acid bath21 or 
molecules can be stuffed into the glass to form the index of refraction gradient.22 By the leaching 
method, gradients have been formed in either titanium or zirconium. Index changes of up to 0.03 
have been formed by this method. Alternatively, the glass can be stuffed with ions such as lead. The 
lead precipitates on the walls of the porous material whereupon it is included in the glass during the 
sintering step. While it is possible to get much larger changes using the method based on lead, both 
of these techniques suffer from large amounts of chromatic aberration. 

A new method shown to be very useful for axial gradients is based on the fusion of glass slabs.23

The index of refraction of each slab is slightly different than its adjacent slab. Very large index of 
refraction changes can be formed by this technique ( n = 0.4). Further, these materials can be made 
in apertures up to 100 mm. 

Two basic methods for manufacturing of polymers for gradient index have been demonstrated. 
In the first, an exchange of one monomer for a monomer in a partially polymerized material forms 
a profile in the same way as the ion exchange method.24 In the second, ultraviolet light is used to 
induce photocopolymerization to form an index of refraction in the material.25
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25.1 GLOSSARY

AF auto focus

CCD charge coupled device

CRT cathode ray tube

HDTV high definition television

IR infrared

IRED infrared emitting diode

FP film plane

LCD liquid crystal display

LP line pairs

SLR single lens reflex

MT mount

25.2 INTRODUCTION

Thanks to technical progress and vigorous competition, the camera buyer faces a difficult challenge 
in making a choice. This chapter will attempt to reduce the difficulty by asking the buyer to consider 
the final image; its purpose, its audience, and its appearance.

Next, some of the more recent technical features are discussed. These include the intriguing abil-
ity to select objects in a scene for focus and/or exposure measurement by tracking the position of 
the user’s eye. Finally, various types of cameras and their accessories are described.

In terms of technical sophistication, a moderately priced 35-mm snapshot camera made today 
would astonish a photographer who was suddenly time shifted from the 1950s. Consider the auto-
mation of exposure, focus, film loading, winding, rewinding, plus flash exposures from a tiny inte-
gral electronic flash unit no bigger than a spare roll of film.

The net result, for the snapshooter, is a higher percentage of “good” pictures per roll of film than ever 
before. The specialist also profits, particularly when the basis and limits of the feature are understood.

A good share of these technical features have been incorporated in the more advanced cameras; 
sometimes just because it can be done. Looking beyond this, the most basic technical camera ever 
made, the view camera, remains virtually unchanged for the past century. It is to photography what 
the wooden match is to fire making.

Portions of this chapter are adapted from the author’s book, Camera Technology: The Dark Side 
of The Lens (Academic Press, 1992). The author acknowledges, with thanks, the permission granted 
by Academic Press to use certain material from that book in this chapter.
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25.3 BACKGROUND

Imagine the first camera as nothing more than a tent with a small hole in the side casting an image 
upon the opposite wall. From this accidental version of a “pinhole” camera to today’s “smart” cameras, 
we find a cornucopia of ingenuity embracing optics, mechanics, electronics, and chemistry.

The variety of cameras ranges from one tiny enough to be concealed in a man’s ring to one large 
enough for several people to walk around it without obscuring the image. The price range of cameras 
stretches from few dollars for a disposable model (complete with film) to several thousand dollars 
(without film).

Cameras have recorded images of the deepest ocean trenches and the surface features of Jupiter’s 
moons. There are cameras that can freeze a bullet in midair or compress the germination of an 
acorn into a few minutes. From intimate portraits of bacteria to a 360° panoramic view of the Grand 
Canyon, there’s a camera for any task.

Nonetheless, there is a common denominator: all cameras produce an image. This image may 
be the end product, or it may be converted in some way to the final image intended for viewing, as 
shown in Fig. 1. To choose the best camera for a given task, the properties of this final image should 
be determined first.

Digital Instant

Final image
(note “a”)

Storage
(note “b”)

Conventional

A/D conversion Transparency

Chemical processing

Paper print ProjectionVideo

Enlarging

Transmit

Receive

Chemical processing

Final image

FIGURE 1 Final image flow chart. (a) Many instant photos can be 
manipulated just as the digital and conventional types, but are treated 
here in their primary use. (b) Storage means include magnetic tape and 
disks, optical disks, etc.
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25.4 PROPERTIES OF THE FINAL IMAGE

1. Appearance

a. Black-and-white

b. Color

c. High contrast

d. Continuous tone

2. Smallest detail to be resolved

3. Type of display

a. Audience population

b. Viewing conditions

(1) Viewing distance

(a) Minimum

(b) Maximum

(2) Ambient illumination

c. Display choices

(1) Print

(2) Projection

(3) Self-luminous

4. Distribution

By considering the properties listed, we’re obliged to visualize the final image through the 
viewer’s eyes. Esthetics aside, we’ll assume that the prime purpose of the final image is to convey 
information to the viewer.

25.5 FILM CHOICE

The appearance of the final image affects the choice of a camera by the kind of film required to 
produce that appearance. There are some films that are not available in all sizes. Other films are 
available in certain sizes only by special order. The availability of some films in some sizes changes 
over time, so check with your supplier before you select a camera for which film may be scarce.

Most film makers will be glad to send you their latest data on their current films, but be prepared 
for changes, because this is a very competitive field. New 35-mm color films in particular seem to 
come out with every change in the seasons.

25.6 RESOLVING FINE DETAIL

If the information in the final image is to be of any use, it must be legible to its detector, which 
we’ll assume to be the human eye. Figure 2 shows that for high-contrast detail viewed under at 
least 50 foot-candles (office lighting), the eye has an angular resolution of about 1 minute of arc. 
This means that we can resolve about seven line-pairs per millimeter (LP/mm) at a distance of 
250 mm. Since most photographic images exhibit moderate contrast and are viewed in moderate 
light, a more conservative limit of resolution would be 3.4 minutes of arc, which is good enough to 
resolve a pattern of 2 LP/mm at 250 mm.
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In most cases, the final image is a magnification of the primary image formed in the camera. 
All else being equal, there is a practical limit to the extent of this magnification, after which the 
structure of the film, residual lens aberrations, focus inaccuracy, and/or diffraction effects begin to 
obscure fine image details.

Suppose then, that for some film we set a practical limit of magnification at 10 . Based on the 
visual resolution limit given previously, the smallest detail in the primary image could be 20 LP/mm, 
each line 0.025 mm wide.

Looking at it another way, if you want to photograph fine details and display the image legibly at 
a distance of 250 mm from the viewer, choose a film that will clearly resolve at least 20 LP/mm and 
is capable of being enlarged 10 diameters without its grain or other structure obscuring the image. 
Most films in common use today easily satisfy this criterion.

25.7 FILM SIZES

In terms of the widest variety of films available, 35-mm ranks number one. The most common format 
for this film is 24 36 mm. Although seldom used today, other 35-mm formats include 18 24 mm 
and 24 24 mm.

Next in line for a broad choice of film types is known as medium-format and is sold in 61.5-mm-
wide rolls. The shortest rolls are paper-backed and are called 120. Many cameras that accept 120 film 
will also accept 220 film, which has an opaque paper leader and trailer, but no paper backing over the 
film. This permits a longer strip of film (more exposures per roll) and better film flatness than 120.

Common formats include (nominal dimensions) 45 60 mm, 60 60 mm, 60 70 mm, and 
60 90 mm. Some medium-format cameras also accept 70-mm film that has a row of sprocket holes 
along each edge and may be loaded in special cassettes for use in the camera’s large capacity, motorized, 
interchangeable film magazine.

The large formats, commonly referred to by their sheet film sizes in inches include 4 5, 5 7, and 
8 10, to name the most well known. They may not offer as broad a choice of film as the smaller formats, 
but the most essential films are available for them.

25.8 DISPLAY

Choosing the best type of display for the final image should start with the number of people in the 
viewing audience. For large groups, a projected transparency has the advantage of being visible to 
the entire audience simultaneously. This is especially important if you want to use a pointer to sin-
gle out detail in the image. Image detail should be clearly resolved by everyone in the audience, from 

0.07 mm

50 fc

250 mm

FIGURE 2 Visual resolution. Under ideal viewing 
conditions, we can resolve seven line-pairs per millimeter.
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the front row (image not too grainy) to the last row (image detail within the visual limits). In some 
cases, the best display is both a projected transparency that the lecturer can refer to with a pointer 
and a print for each viewer to examine closely, regardless of his position in the audience.

For the best viewing of projected images, the only light striking the screen should be that com-
ing through the transparency. In other words, the room should be pitch black. Unless this condition 
is met, there is no possibility of reproducing the full tonal range, from deepest black to sparkling 
white, that the image could contain.

When this condition is difficult to satisfy, a self-luminous display may be best. One or more 
video monitors located at strategic points can provide good image contrast even under office illu-
mination. The type of monitor may be the conventional cathode ray tube (CRT) or liquid crystal 
display (LCD). Of the two, the CRT produces a brighter image and is the least expensive. But it is 
bulky and fragile. The LCD has the virtue of minimal thickness; it’s a flat screen display that can be 
hung on a wall like a framed photo.

At present, neither type can equal the fine detail and subtle color reproduction of a high-grade 
projected transparency viewed under the proper conditions. However, the gap in image quality is 
closing, especially now that high-definition television (HDTV) are widely available.

25.9 DISTRIBUTING THE IMAGE

For many applications, the ease and speed with which an image can be distributed is crucial. Thanks 
to scanners, fax machines, modems, color photocopy machines, rapid photofinishing plants, self-
processing “instant” films, etc., we can send practically any image to practically anyone who wants it 
in a matter of minutes. At present, our ability to do this depends on transforming the analog infor-
mation in the subject into digital information for transmission, reception, manipulation, analysis, 
storage, and/or display, as indicated in Fig. 1.

25.10 VIDEO CAMERAS

If speed of acquisition and distribution is most important, we can capture the image on the charge 
coupled device (CCD) of the widely available camcorder, whose video and audio output signals are 
available in real time. These video cameras are versatile and moderately priced.

The still-picture counterpart to the camcorder seems to have come to a fork in the road. One path 
goes to a complete camera system, designed from scratch around the CCD chip and incorporating a 
miniature magnetic disk drive. The second path leads to a special video back, designed to replace the 
standard back of a conventional (film) camera. The video back contains a CCD chip and associated 
circuitry. In some cases the video back and the recorder, in which hundreds of images can be stored, 
require an “umbilical” cord between them. Some of the newer designs have integrated the back and 
recorder into a single (cordless) unit. Some of these backs can store up to 50 images internally.

As the capacity for image storage and/or manipulation grows, we see the emergence of systems 
within systems, where black box A converts black box B to communicate with computer C as long as 
you have the right adapter cables D, E, and F. This is typical of many rapidly expanding technologies.

Users of a video back on a conventional film camera will notice an unusually narrow angle 
of view for the lens in use if the light-sensitive area of the CCD chip is smaller than that of the 
film normally used in the camera. The reason is that only the central region of the camera’s for-
mat is used. The result is that the camera’s lenses perform as though their focal lengths have been 
“stretched” compared to their performance with conventional film that covers the whole format.

For example, Kodak’s DCS 200 replaces the back of an unmodified 35-mm SLR camera, the 
Nikon N8008s. The “normal” lens for this camera’s 24 36 mm film format has a 50-mm focal 
length, producing a (diagonal) angle of view of about 47°. The same lens used with the video back 
produces an angle of view of 37° because the CCD measures only 9.3 14 mm. To duplicate the 47° 
angle of view for this size CCD, a 19.3-mm focal length lens should be used.
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Concerning the resolution from CCD images, Kodak’s data for the DCS 200 gives a count of 1.54 
million (square) pixels, arranged in a 1012 1524 pixel array that measures 9.3 14 mm. This gives a 
pixel spacing of 0.018 mm, which theoretically can resolve 54.4 monochromatic LP/mm. The color 
version uses a checkerboard pattern of red, green, and blue filters over the array, so divide the mono-
chrome figure by three to come up with a color resolution of 18.1 LP/mm.

This is quite close to the criterion, discussed earlier, of 2 LP/mm for a 10 enlargement viewed 
at 250 mm. A 10 enlargement of the CCD image just described would measure 93 140 mm, about 
the size of a typical snapshot.

25.11 INSTANT PICTURES

For many applications, instant, self-processing film is the best choice. A familiar example is the 
oscilloscope camera loaded with high-speed film. With minimum, moderately priced equipment, a 
transient waveform on the scope screen can be captured on the film. Seconds later the print can be 
examined.

Polaroid dominates this field, which they spawned in 1948. Their range of camera models goes 
from snapshot to trucksize. They also have special backs which can be used on various cameras to 
adapt them for use with Polaroid films.

These films range from 35-mm color transparency to 8 10 in (and larger) color print. Included in 
this variety are black-and-white sheet films that yield both a positive print and a negative. The nega-
tive must be stabilized, then washed and dried before being placed in an enlarger or contact printer.

25.12 CRITICAL FEATURES

In many cases, the availability of an accessory such as a Polaroid and/or digital image back is impor-
tant enough to dictate the choice of a camera. Other factors that may tip the scales in favor of one 
camera over another might not be discovered until the chosen camera is used for some time.

For example, it may be very useful to have the kind of exposure automation that measures 
the light reflected from the film plane, before and during the exposure, thus being capable of 
responding instantly to any change in the scene luminance. There are some cameras that have this 
capability, yet they lack another feature that may be more valuable for some kinds of photography: 
the ability to observe the image through the viewfinder of an SLR not just before, but during the 
exposure.

Most SLRs employ a mirror that swings out of the way just before the exposure begins. This 
allows the image-forming light to reach the film, but it also blacks out the viewfinder, so that during 
the crucial instant of the exposure the photographer is momentarily blind. Figure 3 illustrates that 
by using a beam splitter instead of a conventional mirror in an SLR, the problem is eliminated.

When the advantages of a beam-splitting system are considered, it seems strange that the feature 
isn’t used more widely. Eliminating the swinging mirror reduces the noise and vibration generated each 
time an exposure is made. This can be crucial when the camera is attached to a microscope or telescope. 
Some SLRs provide for the mirror to be locked in its raised (shooting) position when desired.

25.13 TIME LAG

Even more important for some types of photography, substituting a beam splitter for a moving mir-
ror in an SLR should reduce the camera’s time lag. This is the interval between pressing the camera’s 
trip button and the beginning of the exposure. It’s a characteristic shared by all cameras and is 
rarely mentioned in a manufacturer’s specifications of a camera. With few exceptions, time lag has 
increased in step with camera automation.
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Testing 40 different 35-mm SLRs for their time lag resulted in a broad range, with the minimum 
of 46 ms and the maximum of 230 ms. The average was 120 ms. Figure 4 shows that during this 
interval, a walker moves about 0.8 ft, a runner about twice as far, a galloping horse about 7.0 ft, and 
a car going 60 mph moves 10.6 ft.

FIGURE 3 Beam-splitter SLR. The beam splitter eliminates 
the moving mirror, resulting in shorter time lag, reduced noise 
and vibration, plus the ability to monitor exposure and other 
image properties in real time.

FIGURE 4 Time and motion.
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Various other cameras were also tested for their time lag, with these results:

Minox 35 EL (35-mm ultracompact): 8 ms

Leica M3 (35-mm coupled range finder classic): 17 ms

Hasselblad 500C (6 6 cm SLR classic): 82 ms

Kodak Disk 4000 (subminiature snapshot): 270 ms

Polaroid SX-70 Sonar (autofocus instant SLR): 600 ms

25.14 AUTOMATION

Camera automation has taken full advantage of the miniaturization and economy of electronic 
devices, making two features, autoexposure and autofocus, available in all but the least expensive 
cameras. This increases the percentage of (technically) good photos per roll of film exposed by the 
typical amateur.

It’s the amateur photographer that is first served when it comes to most of the significant camera 
automation features. Curious as this may seem, camera makers prefer to introduce a new concept 
by offering it first in a model intended for the casual snapshooter. This generally means large num-
bers will be produced. If problems with the feature show up, improvements are made and a “new, 
improved” model follows. Typically, the feature will be scoffed at by the more seasoned photogra-
pher who has learned to overcome the difficulties of making a technically good photograph with 
the most basic equipment. In time, the new feature is mature enough to be included in the camera 
maker’s premier model. Eventually, even those that scoffed at the feature in its infancy learn to love 
it, but only after they discover how to recognize and compensate for its weaknesses, if any.

Autoexposure

Early autoexposure systems measured the average luminance of a scene with a selenium photocell, 
then regulated the shutter speed and/or f-stop based on the deflection of a galvanometer connected 
to the photocell. These were known as trapped needle systems and were successful in their prime 
mission: to produce acceptable exposures in snapshot cameras with the just-available color films, 
whose exposure error tolerance is much smaller than that of black-and-white film.

Most of the first generation autoexposure cameras using the trapped needle system relied on 
brute force, requiring a long, hard push to trip the camera. This caused camera motion, resulting in 
a (correctly exposed) smeared image. Nonetheless, many resourceful photographers used these early 
autoexposure cameras, bolted together with an intervalometer and electromagnetic tripping system, 
to create an unmanned camera for surveillance, traffic studies, etc.

Amateur movie cameras eagerly adopted autoexposure systems, which proved to be at least as 
much, if not more, of an improvement for them as they were in still cameras. The movie camera 
autoexposure systems work by regulating the lens opening (the f-stop), either with a galvanometer 
or a servomotor. With autoexposure, the movie maker can follow the subject as it moves from bright 
sunshine to deep shade without the distraction of manually adjusting the f-stop.

This same freedom to follow action without the distraction of manually resetting camera and/or 
lens controls explains the need for autofocus, a feature whose introduction enjoyed greater enthu-
siasm from amateur movie makers than from still photographers. Once again, the amateur models 
were the first to incorporate the feature, but in far less time than it took for autoexposure’s accep-
tance, autofocus became a standard feature in both the amateur and front-line models from most of 
the makers of 35-mm cameras.

There are similarities between the automation of exposure and focusing. Both have become increas-
ingly sophisticated as user expectations increase. Paradoxically, in the effort to perfect the making of a 
routine snapshot, some of the more sophisticated automation intrudes on the process by offering the 
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user certain choices. Instead of simplifying photography, these technological marvels require the user 
to select a mode of operation from several available modes. For example, many cameras with autoex-
posure offer factory-programmed combinations of shutter speed and f-stop that favor

Action: fast shutter speed, wide f-stop

Maximum depth of field: small f-stop, slow shutter speed

Average scenes: midway between the first two

Fill-flash: to illuminate portraits made against the light (backlit)

It comes down to this: if you know enough about photographic principles to choose the best 
autoexposure program, you will rarely need any of them. But when an unexpected change in the 
subject occurs, such as a cloud moving across the sun, some form of autoexposure can be valuable.

One of the more helpful refinements of autoexposure is the automatic shift of shutter speed with 
the focal length setting of a zoom lens. This is based on the time-honored guide that gives the slowest 
shutter speed that may be used without objectionable image motion from normal body tremor. 
The rule of thumb is to use the shutter speed given by the reciprocal of the lens’s focal length. For 
example, if you’re using a 35- to 105-mm zoom lens, the slowest shutter speed for arresting body 
tremor will shift as you zoom, from 1/35 to 1/105 s (nominal). If the focal length’s reciprocal doesn’t 
coincide with a marked shutter speed, use the next faster speed. This guide applies to a handheld 
camera, not for a camera mounted on a tripod.

Another autoexposure refinement combines a segmented silicon or gallium photocell with a micro-
processor to automatically select the best exposure based on the distribution of light reflected from the 
subject. It amounts to making a series of narrow-angle “spot” readings of the subject, then assigning 
weighting factors to the different readings according to their relative importance. The weighting factors 
are determined by the camera maker based on the analysis of thousands of photographs.

Reduced to its most spartan form, a segmented photocell could have a very small central region, 
surrounded by a broad field. The user can flip a switch to select the desired reading—the center 
segment for spot readings, the broad segment for full field readings, or both segments for center-
weighted full field readings.

To ensure optimum exposure for a subject, seasoned photographers “bracket” exposure settings 
by making at least three exposures of the subject. The first exposure obeys the meter’s reading. The 
next two are one exposure step less and one greater than the first. This exposure bracketing, with 
some variations, has been incorporated as an on-demand automatic feature in some cameras.

Autofocus

Autofocus (AF), in one form or another, has become a standard feature in camcorders and in most 
35-mm cameras. The latter can be divided into two main types: (1) the snapshot “point–and–shoot,” 
also known as “PHD” (press here, dummy) and (2) the SLR, spanning a wide range in price and sophis-
tication. In between, there are several models which can be thought of as “PHDs on steroids.” They have 
zoom lenses and elaborate viewfinders, making them too bulky to fit easily into a shirt pocket.

There are two main types of autofocus systems, the active and the passive. The active type emits 
a signal toward the subject and determines the subject’s distance by measuring some property of the 
reflected signal. The passive type measures subject distance by analyzing the subject’s image.

Active Autofocus Systems Nearly every active system uses two windows, spaced some distance 
apart. The user centers the subject in the viewfinder’s aiming circle and presses the shutter trip 
button. Figure 5 shows how a narrow infrared (IR) beam is projected from one of the windows, 
strikes the subject, and is reflected back to the second window. A photocell behind this window 
detects the reflected beam. The photocell is sensitive to the position of the beam on its surface 
and relays this information to its associated circuitry to regulate the camera’s focus setting.

Initially, this was a straight-forward triangulation system, using a single infrared beam. But too 
many users were getting out-of-focus pictures of the main subject when it wasn’t in the center of 
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the picture. The camera’s instruction book gives the solution: center the main subject in the finder’s 
aiming circle, press the trip button halfway down, and hold it there, then recompose the scene and 
press the trip button all the way to make the exposure. This requires a fair amount of concentration 
and discipline, so it contradicted the purpose of having an automatic camera—to be free of cumber-
some details, relying on the camera to make properly exposed, sharp photos.

A big improvement was made by projecting three beams from the camera, instead of one. The 
beams are divergent and the center beam coincides with the finder’s aiming circle. Focus is set on 
the object closest to the camera.

A very different type of active autofocus is the ultrasonic system used by Polaroid in several models. 
Basically, it’s a time-of-flight device that’s been compared to sonar and bats. It uses an electrostatic 
transducer to emit an ultrasonic “chirp” toward the subject. Based on a round-trip travel time of 
about 5.9 ms/m, the time it takes for the chirp to reach the subject and be reflected back to the camera 
is translated into subject distance and a servomotor sets the focus accordingly.

A significant advantage of the active autofocus systems just described is their ability to work in 
total darkness. On the minus side is their inability to focus through a pane of glass or on a subject 
with an oblique glossy surface that reflects the signal away from the camera.

Passive Autofocus Systems Passive autofocus systems can be broadly characterized as acquiring two 
views of the subject, each view coming from a slightly different position, then focusing the lens to 
make the two views match. In this sense, the system operates just like a coincidence-type of optical 
range finder, but there are important differences.

With an optical range finder we rely on our ability to see when the two images are perfectly 
superimposed, so our focusing accuracy depends on our visual acuity. In a passive autofocus system, 
we relieve our eye of this burden and let the tireless electro-optical technology take over.

For the point-and-shoot camera, a passive autofocus system uses two windows, one whose line 
of sight coincides with that of the viewfinder’s, and a second window, spaced some distance from 
the first. A simple, symmetrical optical system behind the windows includes a CCD for each win-
dow. The signal from the first CCD is taken as the reference against which the second CCD’s signal 
is compared. Differences in the light distribution and/or differences in the relative location of the 
waveforms causes the control circuit to change the focus setting.

Autofocus SLRs Instead of the two windows just described, autofocus SLRs use two bean-shaped 
segments on opposite sides of the camera lens’s exit pupil. Figure 6 shows how this is done. Two 
small lenslets are located a short distance behind the geometric equivalent of the camera’s film 

IR beam
to subject

Return beam
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Far
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Far
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Near
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FIGURE 5 Active autofocus. Subject distance determines the angle 
of the reflected IR beam. The segmented photocell detects this angle, the 
AF system translates the angle to distance, moves the lens accordingly.
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plane. Each lenslet receives light only from its side of the exit pupil and projects it onto a CCD line 
array, one for each lenslet. The relative position of each image on its CCD strip is analyzed by the 
system’s microcomputer which is programmed to recognize the focus condition as a function of 
the CCD’s signals. If the signals deviate from the programmed values, the microcomputer issues the 
appropriate command to the focus motor.

For off-center subjects, it’s necessary to prefocus on them by pressing the trip button halfway, 
holding it there as you recompose the scene, then pressing all the way on the trip button to make 
the exposure. This is asking too much of a photographer shooting any sort of action, and many of 
them mistrusted their autofocus SLRs. In response, camera makers offered new models with broader 
CCD arrays to provide a larger central region of autofocus sensitivity. Some of these can be switched 
between narrow and broad sensitivity regions.

Other refinements to SLR autofocusing include

Optimization of camera settings to maximize depth of field

Prediction of moving subject’s distance at instant of exposure

Accommodation for horizontal and vertical subject detail

Focus priority according to position of user’s eye

Camera lens

FP Lenslets

CCD

Reference

Out of focus
move lens

Signal

Out of focus
move lens

In focus

FIGURE 6 Autofocus SLR.
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To optimize depth of field, the user aims the camera at the near point and presses the trip button 
halfway. This is repeated for the far point. Then the scene is recomposed in the viewfinder and the 
exposure is made with the actual focus set automatically to some midpoint calculated by the camera’s 
microcomputer.

For predicting the distance of a moving subject, the subject’s motion should be constant, both in 
direction and velocity. Under these conditions, the autofocus sensor’s signals can be used to calculate 
where the subject will be when the exposure is made. The calculation must consider the camera’s 
inherent time lag.

Early AFSLRs used focus sensors that were shaped to respond to vertical image detail, with dimin-
ishing response as the detail approached the horizontal, where they were unable to respond. One 
solution incorporates three sets of lenslets and their CCD detector arrays. One set is laid out horizon-
tally to respond to vertical detail, while the other two sets are vertical and straddle the first to form 
the letter “H.” The two vertical sets respond to horizontal detail. Another solution has the individual, 
rectangular, detector segments (pixels) slanted to respond to both horizontal and vertical details.

By combining information from the autofocus detector and the focal length tracer in a zoom 
lens, some AFSLRs can maintain the image size (within the limits of the zoom range) chosen by the 
user, even as the subject distance changes.

Eye Tracking Figure 7 shows how Canon’s model EOS A2E overcomes the need for the subject 
to be centered in the viewfinder in order to be in focus. Canon devised an eye tracking system that 
detects what portion of the viewscreen the user is looking at. Using low-power infrared emitting 
diodes (IREDs) to illuminate the eye, the system is matched to the user by having him/her look at 
the extremities of the five autofocus aiming patches in the viewfinder’s center. The reflections from 
the eye are detected by a 60 100 pixel CCD array and the resulting signals are stored in the camera’s 

Eye

Ocular

60 100 pixel CCD array

Beamsplitting prismPentaprism

0.3-mW, 880-nm IREDs

Viewscreen

Man Fish Jeep

FIGURE 7 Canon’s Eye Tracking SLR. The user’s eye, illuminated by IREDs, is imaged on a CCD 
array. The resulting signal shifts in step with eye movements, causing a corresponding focus patch on the 
viewscreen to glow, indicating where the camera should focus.
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memory. The five aiming patches occupy a 15-mm horizontal strip at the center of the finder. As it 
is, the camera’s 16 user-selectable operational modes include one in which both the autofocus and 
autoexposure systems are commanded by the eye-tracking feature.

If the user wants to preview the depth of field, all that’s necessary is to look at a small patch near 
the finder’s upper left corner (not shown here). This brief glance causes the lens to close down to the 
f-stop chosen by the autoexposure system.

Because this eye-tracking feature is in an SLR, the user can see if it’s working as expected just by 
looking at the viewscreen image. This indicates if, but not how, it works. To see how it works, I set 
up a simple experiment to measure the distribution of the light reflected from my eye as I shifted 
my gaze between two marks on a wall. The separation between the marks and their distance from 
my eye were chosen to duplicate the angle swept by the eye when looking from one side to the 
other of the 15-mm focus patch array on the Canon EOS A2E viewscreen. As indicated by Fig. 8, 
the format was nearly filled with the image of my eye. Consistent eye placement was assured with 
a chin and head rest. Once the image of my eye was recorded on tape, I could play back and pause 
at any point, then select a line at half screen height and store its waveform in a storage oscilloscope. 
By superimposing line scan waveforms from the frames showing my gaze from one side to the 
other, I could easily see the difference and dismissed my skepticism. This novel feature has intrigu-
ing possibilities.

Lamp

Canon EOS A2E
viewscreen

Eyeball rotates 13.2  to scan the
15-mm AF patch array on the viewscreen

Beamsplitter

Test set-up

Camcorder

Eye

Straight ahead

ScleraSkin Iris Pupil Catchlight

6.6  to the left

13.2
15

231.4

1000

Black
paper

6.6  to the right

Monitor

FIGURE 8 Eye tracking experiment. Line scan of the monitor’s image at half screen height. 
(Dashed lines indicate image shift.)



25.16  INSTRUMENTS

25.15 FLASH

Many 35-mm cameras feature a built-in electronic flash unit. Some are designed to flash every time 
the shutter is tripped, unless the user switches off the flash. Others fire only when the combination 
of scene luminance and film speed calls for flash. In some of the more advanced models with zoom 
lenses, the beam angle emitted by the flash changes in step with the focal length setting of the lens.

Red Eye

In the interest of compactness, the majority of cameras with built-in flash units have the flash close 
to the lens. The resulting flash photos of people frequently exhibit what is commonly known as “red 
eye,” which describes the eerie red glow in the image of the pupils of a subject’s eyes. The red glow is 
the light reflected from the retina, which is laced with fine blood vessels. Young, blue-eyed subjects 
photographed in dim light seem to produce the most intense red-eye images.

The effect is reduced by (1) increasing the angle subtended to the subject’s eye by the separation 
between the centers of the lens and the flash; (2) reducing the subject’s pupil diameter by increasing 
the ambient brightness or having the subject look at a bright light for a few seconds before making 
the exposure.

Examples of how some camera makers fight red eye include Kodak’s Cobra Flash, used on sev-
eral of their point-and-shoot models, and the “preflash,” used on many different camera makes and 
models. The Cobra Flash describes a flash unit whose flashlamp/reflector unit is hinged at the cam-
era’s top. When the camera is not in use, the flash is folded down, covering the lens. To use the cam-
era, the flash is swung up, positioning it further from the lens than would be possible if it had been 
contained in the camera’s main body. One of their most compact cameras featuring the Cobra Flash 
is the Cameo motordrive model, which slips easily into a dress shirt pocket when the flash is folded 
down. When opened for use, the flash is 72 mm above the lens. Test shots were free of red eye when 
the subject was no more than 7 ft away.

Another Kodak approach to the elimination of red eye is their single-use Fun Saver Portrait 35, 
whose integral electronic flash unit points upward, instead of forward. To use the camera, a simple 
white plastic panel, hinged at the camera’s top rear edge above the flash is pulled open. It latches at a 
45° angle to switch the flash circuit on and direct the light from the flash forward. The result is a dif-
fused beam that appears to originate from a point 100 mm above the lens.

Other makes and models have integral flash units that pop up at short distance when put into 
play. This may only gain several millimeters of lens-to-flash separation, but my experiments indicate 
that, as sketched in Fig. 9, for every extra millimeter of separation between the lens and the flash, the 
(red-eye-free) subject distance can be increased about 30 mm.

Several 35-mm cameras use the preflash method to reduce red eye by emitting a brief, rapid burst 
of low intensity flashes just before the main flash goes off for the exposure. A variation uses a steady 
beam from an incandescent lamp in the flash unit. The beam switches on shortly before the flash-
lamp fires for the exposure. The purpose in both methods is to make the subject’s pupils close down, 
reducing the light reflected from the eye during the exposure.

The preflash approach has two drawbacks: (1) it drains energy from the camera’s battery, reduc-
ing the number of pictures per battery; (2) many times the subject reacts to the preflash and blinks, 
just in time for the exposure.

25.16  FLEXIBILITY THROUGH FEATURES 
AND ACCESSORIES

The seemingly endless combinations of operating modes with a camera like the Canon EOS A2E 
might be taken as an attempt to be all things to all photographers. Another way to look at it is to see 
it as a 3-lb Swiss army knife: you’ll never use all of the tools all of the time, but if there’s the need for 
some tool, even just once, it might be nice to know you have it.
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Many cameras have long lists of accessories. A typical camera system can be thought of as a box 
with an open front, top, and rear. For the front, the user may choose from as many as 40 different 
lenses. For the top, there may be three or more viewfinder hoods. For the back, choose one of per-
haps five image receptacles.

Then there are the other groups, shown in Fig. 10: flash units, motor drives, close-up hardware, 
carrying cases, neck straps, lens hoods, filters, remote control cables, transmitters and receivers, 
mounting brackets, eyepiece magnifiers, corrective eyepiece lenses, cold weather heavy-duty battery 
packs, and more.

No matter how varied your photographic needs may be, the camera maker wants you to find every-
thing you need in his or her catalog. Possibly, the availability of just one accessory, such as a wide-angle 
lens with tilt-shift controls for perspective correction, can decide which camera you choose.

25.17 ADVANTAGES OF VARIOUS FORMATS

In terms of versatility through a broad range of accessories plus the camera’s intrinsic capabilities, 
it’s hard to beat one of the major brands of 35-mm SLRs. No other type of camera has had as much 
ingenuity and as many refinements lavished on it for so many years. It’s one of the most highly 
evolved consumer-oriented products.

100 mm

72 mm

S

Camera

Flash
lampBeam reflected from eye

Subject’s eye

U

(a) (b)

(c)

FIGURE 9 (a) Kodak’s “Fun Saver Portrait 35” bounces its flash from a folding reflector. 
(b) Kodak’s “Cameo Motordrive” uses the folding “Cobra Flash.” (c) A beam reflected from the 
subject’s eye misses the lens when the subject’s distance “U” is not more than 20 S.
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Accompanying the evolution in optics, mechanics, and electronics, film emulsions have improved 
over the years, making the 35-mm format just as able as the larger formats for most applications. 
Even so, all else being equal, there is no substitute for “real estate”—the precious additional square 
millimeters of emulsion offered by the many 120-size medium formats. As the data in Fig. 11 shows, 
some of these are SLRs with systems as extensive as their 35-mm counterparts.

25.18 LARGE FORMAT: A DIFFERENT WORLD

When you make the jump from medium-format to large-format, you’re in a different world. You use 
individual sheets of film, not rolls. Your camera will be used on a tripod or copy stand most of the 
time. Your photography will be contemplative, careful, and unhurried—perhaps better.

Scene composition and focusing are done with the lens at full aperture. Then the lens is stopped 
down, the shutter closed, the film holder inserted, its dark slide pulled, the shutter tripped, the dark 
slide replaced, and the film holder removed.

In a short time you’ll realize that the large-format (view) camera can be thought of as a compact 
optical bench. As such, it lends itself to special applications that could be difficult for the smaller 
formats.

View Camera Versatility

To illustrate, suppose you need a picture of a picket fence at some obliquity, with every picket 
board, from near to far, in sharp focus and with the lens wide open. This calls for the use of the 
“Scheimpflug condition,” shown in Fig. 12. It requires that the planes containing the lensboard, film, 
and subject all intersect on a common line. When this condition is satisfied, the entire surface of the 
subject plane will be in focus, even with the lens wide open.

Fisheye
Ultrawide
Extrawide
Wideangle

High magnification

Compact normal
Fast normal
Macro normal

Portrait
Short tele

Macro medium
Medium tele

Lenses
Viewfinder

hoods Flash
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Long tele

Tilt-shift

Short zoom
Medium zoom
Long zoom

Compact shoe MT.

Nondedicated
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Bracket MT.

Zoom head

Compact normal

Bulk load
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Motor drive
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Close-up

FIGURE 10 Camera system.
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FIGURE 11 Major camera features.

Picket board

Lens board

Lens

Line of
intersection

Film

In-focus region

FIGURE 12 Scheimpflug condition. All of the picket boards within the field of view 
will be in focus when the planes of the lens board, film, and picket boards intersect on 
a common line.
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The necessary camera movements, involving lensboard and film plane, are standard features of 
even the most Spartan view cameras. These movements are known as swings and tilts. They take 
just a few seconds to adjust on a view camera and the job doesn’t require a special lens. You can do 
it with a smaller format camera too, but you’ll need one of their special (expensive) tilt-shift lenses 
or a bellows unit with articulated front and rear panels, plus a lens with a large enough image circle. 
The resulting combination may not retain all of the small-format camera’s features, such as exposure 
metering, autofocus, etc.

The view camera’s fully articulated front and rear provide for swing, tilt, rise, fall, and left-right 
shift. Thanks to this flexibility, objects such as boxes and buildings can be photographed without 
distortion, and distracting detail near the image borders can be omitted.

It takes first-time users a while to get used to the inverted and reversed image seen on the view 
camera’s groundglass screen. This can be annoying when shooting a portrait, since an upside-down 
smile looks like a frown until you accept the fact that even though you understand the basic camera 
optics, it doesn’t mean you have to enjoy coping with it. Worse, you’ll need to drape a dark cloth 
over the back of the camera and over your head in order to see the image if you’re working in bright 
light. If you’re claustrophobic, this may bother you.

On the plus side, large-format negatives are frequently contact-printed or only slightly enlarged 
for the final image. Because the image is large, depth of field and other image properties can 
be examined easily on the groundglass viewscreen with a small magnifier of modest power—a 
4 loupe works well. The large negative has another attribute: it lends itself to retouching, masking, 
and other image manipulations, but these may be lost arts now that clever computer programs are 
available for doing the same things, provided your image is in digital form.

25.19 SPECIAL CAMERAS

Some photographic tasks call for cameras with special features, such as the ability to form images 
in near-total darkness or inside of a crowded mechanism. Among the long list of special cameras, 
we find

Aerial

Clandestine

Endoscopic

High-speed

Periphery

Sewer

Stereo (3-D)

Streak

Thermal imaging

Underwater

Wide-angle

Aerial Cameras

Aerial cameras come in a variety of sizes and features. Among the more common features are 
image motion compensation, where focal length, speed, and altitude are factored into the move-
ment of the film during the exposure; a vacuum back to hold the film flat during the exposure; and 
a calibrated lens so that any rectilinear distortion can be factored into the measurements made of 
the image.
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Clandestine Cameras

Clandestine or “spy” cameras have been with us since photography was invented. In the broadest 
sense, any camera that is not recognized as such by the subject being photographed might be considered 
a successful spy camera. Many early box cameras were dubbed “detective” cameras because they were 
much smaller and more drab than a “real” camera with its prominent bellows and sturdy stand.

Cameras have been disguised as books, rings, binoculars, cigarette packs and lighters, match-
boxes, portable radios, briefcases, canes, cravats, hats, even revolvers. Among them, the classic Minox 
is probably the best known. It can be concealed in an adult’s fist, focuses down to eight inches, and 
is nearly silent. Its smooth exterior and gently rounded corners have inspired the belief among many 
that it was designed to be concealed in a body cavity with minimal discomfort.

Endoscopic Cameras

Endoscopic cameras use a tiny, short-focal-length lens to form an image that’s transferred by a 
coherent, flexible fiber-optic bundle to a relay system that forms the image on the detector (film or 
CCD) in the camera. To illuminate the subject, the coherent bundle may be surrounded by an inco-
herent ring of fibers optically coupled to a light source at its free end, close to the camera.

Often fitted with a 90° prism on its tip, these cameras are used to photograph inside humans and 
machines. Another application is shown in Fig. 13: getting close-up views of architectural models 
from “ground” level. Variations include those without illumination optics but having a very small 
diameter image bundle to fit inconspicuously in some object for surveillance photography.

High-Speed Cameras

High-speed cameras were once defined as being able to make exposures of less than 1/1000 s. Today 
this would include many 35-mm SLRs which have a top speed of 1/10,000 s, a speed equaled by 
several consumer-grade camcorders. When shorter exposures are called for, a common, low-cost 
electronic flash unit can give flash durations as short as 1/32,000 s.

Video camera

Monitor

Prism

Objective

Architectural
model

Coherent
fiber bundle

Coupler

FIGURE 13 Endoscopic camera. While most often used for medical purposes, the endoscopic 
camera’s properties make it valuable for photographing miniature scenes from the perspective of 
a miniature photographer.
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The next step includes the Kerr cell and Faraday shutters, both of which work by discharg-
ing a high-voltage capacitor across a medium located between crossed polarizers. This produces 
a momentary rotation of the plane of polarization within the medium, permitting light to pass 
through to the detector. Exposure times are in the nanosecond range for these electro-optical/
magneto-optical devices.

For exposures in the picosecond range accompanied by image intensification, there’s the elec-
tronic image tube. When a lens forms an image on the photocathode at the front of this tube, elec-
trons are emitted. Their speed and direction are controlled by electrodes within the tube. A second-
ary image is formed by the electrons as they strike the phosphor screen at the rear of the tube. This 
image may be photographed, or, if the tube has a fiber-optic faceplate behind the screen, the image 
can be directly transferred to a film held against the faceplate.

By placing a microchannel plate in front of the phosphor screen, the image can be intensified by 
a factor of 10,000 or more. A microchannel plate is a thin glass disk riddled with microscopic holes 
that pierce the disk at an angle. In Fig. 14 the wall surface of each hole is coated with a substance 
that reacts to the impact of an electron by emitting more electrons. A high voltage across the disk 
accelerates the stream of electrons. For every electron that enters one of the angled holes, about 
100,000 electrons emerge to strike the phosphor screen.

Periphery Cameras

A periphery camera is used to make photos of objects like gas engine pistons, bullets, and other 
cylindrical objects whose surface detail must be imaged as though the surface was “unrolled” and 
laid out flat before the camera. Depending on the size of the subject, either it or the camera is 
rotated about its longitudinal axis at a constant angular velocity. The image strikes the film mov-
ing behind a slit that’s parallel to the axis of rotation. The film’s velocity matches that of the image 
unless deliberate image compression or elongation is desired.

Sewer Cameras

A sewer camera is designed to photograph the inside of pipes, tunnels, etc. It may be thought of as 
a small underwater camera on a sled. The camera’s lens is encircled by an electronic flashtube and 
reflector to illuminate the scene. Pictures are made at regular intervals, as judged by distance marks 
on the cable attached to the sled. Other cables attached to the camera convey signals to and from 

FIGURE 14 Microchannel plate.
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the camera. With the miniaturization of video cameras, they have taken over this task, except where 
maximum resolution is required. This is where film cameras have excelled.

Stereo Cameras

Stereo cameras seem to come in and out of vogue with some mysterious rhythmic cycle. The root 
idea has been around since the dawn of photography and is based on the parallax difference between 
the views of our left and right eyes. The classic stereo camera mimics nature by using two lenses 
spaced about 65 mm apart to form two images of the subject.

The two images can be made in other ways. A simple reflection system using four small mirrors 
or an equivalent prism system placed in front of a normal camera’s lens will form two images of the 
subject, as shown in Fig. 15. Another method requires that the subject be stationary because two 
separate exposures are made, with the camera being shifted 65 mm between exposures. In aerial ste-
reo photography, two views are made of the ground, some seconds apart.
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FIGURE 15 Stereo adapter set.
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When the images are viewed in a manner that restricts the left and right images to their respective 
eye, the stereo effect is achieved. Various methods for viewing stereo pairs include projection, where 
the left and right views are polarized at 90° to each other. The viewer wears glasses with polarizing 
filters oriented to let each eye see the view intended for it.

Another viewing system is called a parallax stereogram. It (optically) slices the left and right 
images into narrow, interlaced strips. When viewed through a series of vertical lenticular prisms 
with a matching pitch, the 3-D effect is seen.

Streak Cameras

Streak cameras are useful for studying relative motion between the subject and camera. They share 
certain characteristics with the periphery camera described previously, insofar as they match the 
movement of the film to that of the image coming through a slit at the film plane. Exposure time is 
determined by how long it takes for a point on the film’s surface to travel across the slit’s width.

The basics of the streak camera are shown in Fig. 16. It would be pointless to use a streak camera 
without some relative motion between the image and film. Some photographers use a streak camera 
for creative effects, such as depicting motion tack-sharp at its beginning, then gradually elongating 
or compressing it, and ending in a smear. This is done by varying the relative velocity between the 
image and the film during the exposure, either by moving the camera, the subject, or the film, These 
motions may be made singly or in combination. Varying the focal-length setting of a zoom lens with 
the film moving also produces unusual images.

A streak camera’s format has a width defined by the film it uses, but each picture has its own 
length, limited only by the length of the roll of film. One of the more critical factors to look for 
in a streak camera is freedom from cogging, a local density variation in exposure while the film is 
moving at a fixed velocity. The result of periodic or intermittent speed variations, the cause may be 
improperly meshed gears, a bad bearing, poor fit between the film drive sprocket teeth and the film’s 
sprocket perforations, or the magnetic pole effects of the drive motor.

FIGURE 16 Streak camera. When film motion matches image motion, image 
will be free of distortion. If the film moves too fast, the image will be stretched. If the 
film moves too slow, the image will be compressed.
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Thermal Image Cameras

Thermal imaging cameras convert the intrinsic heat of a subject into a visible image. Among their 
many applications are detection of heat losses from buildings, blood circulation disorders, and sur-
veillance. Some of these cameras produce false color images, in which each color represents a differ-
ent temperature.

Among the various methods to form visible images of temperature variations, the most direct 
way is to use a normal camera loaded with film that’s sensitive to the infrared portion of the electro-
magnetic spectrum.

In a more elaborate system, a moving mirror scans the subject and, line-by-line, projects its 
image onto a heat-sensitive semiconductor device whose output is proportional to the IR intensity. 
The output is used to modulate a beam of light focused on the surface of a conventional film.

Another version uses the semiconductor to modulate a stream of electrons striking a phosphor 
screen in an image converter tube. The image can then be photographed.

Underwater Cameras

Underwater cameras come in a wide variety of sophistication, from the inexpensive disposable to 
the expensive high-tech versions. In between, there are dozens of underwater housings designed for 
specific cameras. Typically, these housings permit the user to change the camera’s settings through 
watertight couplings. Most of the cameras used in such housings have motorized film advance, 
autoexposure, and autofocus, so the only external control needed is a pushbutton at one end of a 
simple electrical switch.

External attachments include flashguns, viewfinders, and ballast weights. The flashgun connec-
tions should be carefully examined because they are one of the leading sources of problems. In gen-
eral, the simpler the connector, the better.

Wide-Angle Photography

There are several 35-mm and medium-format cameras designed specifically for wide-angle pho-
tography. These include straightforward types which use lenses designed for wide-angle views on 
larger-format cameras. Essentially these cameras use only a rather long horizontal strip of the broad 
image circle the lens produces. This type of camera is uncomplicated and rugged.

Panoramic Cameras A special kind of wide-angle camera is known as a panoramic camera, and 
there are two main types: one where the entire camera rotates; the other, where just the lens rotates.

The rotating camera type is capable of a full 360° vista. As the camera turns on its vertical axis, 
the film is moved past a narrow, stationary slit at the center of the film plane. The motion of the film 
is matched to that of the image. Because these cameras rotate slowly, a common prank in photos of 
large groups is for the prankster to stand at the edge of the group that’s exposed first, then dash 
behind the group to the opposite edge in time for its exposure, with the result that the same person 
appears twice in the same photo, once at either edge of the group.

The rotating lens type shown in Fig. 17 produces images of about 140°. It works by rotating 
its lens on a vertical axis coinciding with its real nodal point. The image is swept across the film 
through a tubular image tunnel at the rear of the lens. The tunnel extends almost to the film surface 
and has a narrow slit at its end. The slit is parallel to the axis of rotation and extends over the width 
of the film. During the exposure the film is held stationary against a cylindrical film gate whose 
radius equals the focal length of the lens. The slit width, the rotating speed, and the lens opening 
may be adjusted for exposure control.

The panoramic cameras described here regulate their speed of rotation with precision governing 
systems to ensure edge-to-edge uniformity of exposure, so they should be kept as clean as possible. 
Also, to avoid unpleasant distortion, use care in leveling them and always use the best single camera 
accessory money can buy: a good, solid tripod.
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FIGURE 17 Panoramic camera. The lens rotates about its 
rear nodal point from A to B. Image-forming light reaches the 
film from A to B  through a slit at the end of the image tunnel.
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SOLID-STATE CAMERAS
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26.1 GLOSSARY

Quantity Definition Unit
AD photosensitive area of a detector m2

c speed of light 3 108 m/s

C sense node capacitance F

Ee-faceplate( ) spectral radiant incidance W μm−1 m−2

Eq-faceplate( ) spectral photon incidance photons s−1 μm−1 m−2

d detector size mm

dCCH detector pitch mm

D aperture diameter m

DRarray array dynamic range numeric

DRcamera camera dynamic range numeric

fl focal length m

F f-number numeric

G source follower gain numeric

h Planck’s constant 6.626 10−34 J s−1

Me radiant exitance W/m2

Mq( ) spectral photon exitance photons s−1 μm−1 m−2

moptics optical magnification numeric

Mv photometric exitance lumen m2

ndark number of dark current electrons numeric

nPE number of photoelectrons numeric

nwell charge well capacity numeric

q electronic charge 1.6 10−19 C

Req equivalent resolution mm
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e( ) detector responsivity A/W

ave average detector responsivity V/(J cm−2)

tint integration time s

U nonuniformity numeric

Vmax maximum output voltage V

Vsignal voltage created by photoelectrons V

<nfloor> noise created by on-chip amplifier rms electrons

<npattern> pattern noise rms electrons

<nPRNU> photoresponse nonuniformity noise rms electrons

<nshot> shot noise rms electrons

<nsys> total array noise rms electrons

image space horizontal spatial frequency cycles/mm

C optical cutoff in image space cycles/mm

N Nyquist frequency in image space cycles/mm

S sampling frequency in image space cycles/mm

( ) spectral quantum efficiency numeric

wavelength μm

26.2 INTRODUCTION

The heart of the solid-state camera is the solid-state array. It provides the conversion of light intensity 
into measurable voltage signals. With appropriate timing signals, the temporal voltage signal represents 
spatial light intensities. When the array output is amplified and formatted into a standard video format, 
a solid-state camera is created. Because charge-coupled devices (CCDs) were the first solid-state 
detector arrays, cameras are popularly called CCD cameras even though they may contain charge 
injection devices (CIDs) or complementary metal-oxide semiconductors (CMOS) as detectors.

Boyle and Smith1 and Amelis et al.2 invented CCDs in 1970. Then came considerable literature3-11

on CCD physics, fabrication, and operation. A CCD refers to a semiconductor architecture in which 
charge is transferred through storage areas. This architecture has three basic functions: (1) charge 
collection, (2) charge transfer, and (3) the conversion of charge into a measurable voltage. The basic 
building block of the CCD is the metal-insulator semiconductor (MIS) capacitor. The most impor-
tant MIS is the metal-oxide semiconductor (MOS). Because the oxide of silicon is an insulator, it is a 
natural choice.

Charge generation is often considered as the initial function of the CCD. With silicon photo-
detectors, each absorbed photon creates an electron-hole pair. Either the electrons or holes can be 
stored and transferred. For frame transfer devices, charge generation occurs under an MOS capacitor 
(also called a photogate). For some devices (notably interline transfer devices), photodiodes create 
the charge.

The CID does not use a CCD for charge transfer. Rather, two overlapping silicon MOS capacitors 
share the same row and column electrode. Column capacitors are typically used to integrate charge 
while the row capacitors sense the charge after integration. With the CID architecture, each pixel is 
addressable (i.e., it is a matrix-addressable device).

Active pixel sensors (APSs) are fabricated with CMOS technology. The advantage is that one 
or more active transistors can be integrated into the pixel. As such, they become fully addressable 
(to read selected pixels) and can perform on-chip image processing.

Devices may be described functionally according to their architecture (frame transfer, interline 
transfer, etc.) or by application. To minimize cost, array complexity, and electronic processing, 
the architecture is typically designed for a specific application. For example, astronomical cam-
eras typically use full-frame arrays, whereas video systems generally use interline transfer devices. 
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The separation between general imagery, machine vision, scientific devices, and military devices 
becomes fuzzy as technology advances.

26.3 IMAGING SYSTEM APPLICATIONS

Cameras for the professional broadcast television and consumer camcorder markets are designed to 
operate in real time with an output that is consistent with a standard broadcast format. The resolution, 
in terms of array size, is matched to the bandwidth that is recommended by the standard. An array 
that provides an output of 768 horizontal by 484 vertical pixels creates a satisfactory image for con-
ventional (U.S.) television. Eight bits (256 gray levels) provide an acceptable image in the broadcast 
and camcorder industry.

In its simplest version, a machine vision system consists of a light source, camera, and computer 
software that rapidly analyzes digitized images with respect to location, size, flaws, and other pre-
programmed data. Unlike other types of image analysis, a machine vision system also includes a 
mechanism that immediately reacts to an image that does not conform to parameters stored in the 
computer. For example, defective parts are taken off a production line conveyor belt.

For scientific applications, low noise, high responsivity, large dynamic range, and high resolution 
are dominant considerations. To exploit a large dynamic range, scientific cameras may digitize the 
signal into 12, 14, or 16 bits. Scientific arrays may have 5000 5000 detector elements.12 Theoretically, 
the array can be any size, but manufacturing considerations ultimately limit it.

Although low-light-level cameras have many applications, they tend to be used for scientific 
applications. There is no industrywide definition of a low-light-level imaging system. To some, it 
is simply a solid-state camera that can provide a usable image when the lighting conditions are less 
than 1 lux (lx). To others, it refers to an intensified camera and is sometimes called a low-light-level 
television (LLLTV) system. An image intensifier amplifies a low-light-level image that can be sensed 
by a solid-state camera. The image intensifier/CCD camera combination is called an intensified 
CCD (ICCD). The image intensifier provides tremendous light amplification but also introduces 
additional noise. The spectral response of the ICCD is governed by the image intensifier.

The military is interested in detecting, recognizing, and identifying targets at long distances. 
This requires high-resolution, low-noise sensors. Target detection is a perceptible act. A human 
determines if the target is present. The military uses the minimum resolvable contrast (MRC) as a 
figure of merit.13

26.4  CHARGE-COUPLED DEVICE ARRAY 
ARCHITECTURE

Array architecture is driven by its application. Full-frame and frame transfer devices tend to be used 
for scientific applications. Interline transfer devices are used in consumer camcorders and professional 
television systems. Linear arrays, progressive scan, and time delay and integration (TDI) are used 
for industrial applications. Despite an ever-increasing demand for color cameras, black-and-white 
cameras are widely used for many scientific and industrial applications.

The basic operation of linear, full-frame, frame transfer, and interline transfer devices is described 
in Chap. 32, “Visible Array Detectors,” by Timothy J. Tredwell in Vol. II. This section describes some 
additional features.

Full-Frame Arrays

In full-frame arrays, the number of pixels is often based upon powers of 2 (e.g., 512 512 or 
1024 1024) to simplify memory mapping. Scientific arrays have square pixels and this simplifies 
image-processing algorithms.
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Data rates are limited by the amplifier bandwidth and, if present, the conversion capability of the 
analog-to-digital converter. To increase the effective readout rate, the array can be divided into sub-
arrays that are read out simultaneously. In Fig. 1, the array is divided into four subarrays. Because 
they are all read out simultaneously, the effective clock rate increases by a factor of 4. Software then 
reconstructs the original image. This is done in a video processor that is external to the CCD device 
where the serial data are decoded and reformatted.

Interline Transfer

The interline transfer array consists of photodiodes separated by vertical transfer registers that are 
covered by an opaque metal shield (Fig. 2). Although photogates could be used, photodiodes offer 
higher quantum efficiency. After integration, the charge that is generated by the photodiodes is 
transferred to the vertical CCD registers in about 1 μs. The main advantage of interline transfer 
is that the transfer from the active sensors to the shielded storage is quick. There is no need to 
shutter the incoming light. The shields act like a venetian blind that obscures half the information 
that is available in the scene. The area fill factor may be as low as 20 percent. Because the detector 
area is only 20 percent of the pixel area, the output voltage is only 20 percent of a detector that would 
completely fill the pixel area. A microlens can optically increase the fill factor.

Because interline devices are most often found in general imagery products, most transfer regis-
ter designs are based upon standard video timing. Figure 3 illustrates a four-phase transfer register 
that stores charge under two gates. With 2:1 interlace, both fields are collected simultaneously but 
are read out alternately. This is called frame integration. With EIA 170 (formerly called RS 170), 
each field is read every 1/60 s. Because the fields alternate, the maximum integration time is 1/30 s
for each field.

Subarray Subarray

Subarray Subarray

Readout Readout

Readout Readout

Sense
node
and
amplifier

Sense
node
and
amplifier

Sense
node
and
amplifier

Sense
node
and
amplifier

FIGURE 1 A large array divided into four subarrays. Each subarray is read 
out simultaneously to increase the effective data rate. Very large arrays may have 
up to 32 parallel outputs.
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Pseudointerlacing (sometimes called field integration) is shown in Fig. 4. Changing the gate 
voltage shifts the image centroid by one-half pixel in the vertical direction. This creates 50 percent 
overlap between the two fields. The pixels have twice the vertical extent of standard interline transfer 
devices and therefore have twice the sensitivity. An array that appears to have 240 elements in the 
vertical direction is clocked so that it creates 480 lines. However, this reduces the vertical modulation 
transfer function (MTF). With some devices, the pseudointerlace device can also operate in a standard 
interlace mode.

Serial readout
Sense node

and amplifier

Transfer
gate

Photo diodes

Chip

Shielded vertical
transfer registers

FIGURE 2 Interline transfer architecture. The charge is rapidly transferred 
to transfer registers via the transfer gate. Interline transfer devices can also have a 
split architecture similar to that shown in Fig. 1.
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FIGURE 3 Detailed layout of the 2:1 interlaced array. (a) The odd 
field is clocked into the vertical transfer register and (b) the even 
field is transferred. The vertical transfer register has four gates and 
charge is stored under two wells. The pixel is defined by the detector 
center-to-center spacing, and it includes the shielded vertical register 
area. The transfer gate is not shown.
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26.5 CHARGE INJECTION DEVICE

A CID consists of two overlapping MOS capacitors sharing the same row and column electrode. 
Figure 5 illustrates the pixel architecture. The nearly contiguous pixel layout provides a fill factor of 
80 percent or greater. Charge injection device readout is accomplished by transferring the integrated 
charge from the column capacitors to the row capacitors. After this nondestructive signal readout, 
the charge moves back to the columns for more integration or is injected (discarded) back into the 
silicon substrate.

Although the capacitors are physically orthogonal, it is easier to understand their operation by 
placing them side by side. Figure 6 illustrates a functional diagram of an array, and Fig. 7 illustrates 
the pixel operation. In Fig. 7a, a large voltage is applied to the columns, and photogenerated carriers 
(usually holes) are stored under the column gate. If the column voltage is brought to zero, the charge 
transfers to the row gate (Fig. 7b). The change in charge causes a change in the row gate potential 
that is then amplified and outputted. If V1 is reapplied to the columns, the charge transfers back to the 
column gate. This is nondestructive readout and no charge is lost. By suspending charge injection, 

Pixel

Shielded
vertical
transfer
register

Active
detectors

Pixel

Shielded
vertical
transfer
register

(a) (b)

FIGURE 4 Pseudointerlace. By collecting charge from alternating 
active detector sites, the pixel centroid is shifted by one-half pixel. 
(a) Odd field and (b) even field.

Gate
oxide

Row
select

Pixel

Column select

FIGURE 5 CID pixel architecture.
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multiple-frame integration (time-lapse exposure) is created. In this mode, the observer can view the 
image on a display as the optimum exposure develops. Integration may proceed for up to several 
hours. Reset occurs by momentarily setting the row and column electrodes to ground. This injects
the charge into the substrate (Fig. 7c).

The conversion of charge into voltage depends upon the pixel, readout line, and amplifier capacitance. 
The capacitance is high because all the pixels on a given row are tied in parallel. Therefore, when 
compared with a CCD, the charge conversion is small, yielding a small signal-to-noise ratio (SNR). 
Because the readout is nondestructive, it can be repeated numerous times. The multiple reads are 
averaged together to improve the SNR.

Because each pixel sees a different capacitance, CIDs tend to have higher pattern noise compared 
with CCDs. However, off-chip algorithms can reduce the amount of pattern noise. With no charge 
transfer, CIDs are not sensitive to charge transfer efficiency effects. Without multiple gates, CIDs 
have larger well capacities than comparably sized CCDs. Charge injection devices inherently have 
antibloom capability. Because charge is limited to a single pixel, it cannot overflow into neighboring 
pixels. Perhaps the greatest advantage of CIDs is random access to any pixel or pixel cluster. 
Subframes and binned pixels can be read out at high frame rates.

FIGURE 6 Functional layout of a 3 3 CID array. The row and 
column select registers are also called decoders. The select registers and 
readout electronics can be fabricated with CMOS technology.
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FIGURE 7 CID pixel operation. (a) Integration, (b) readout, 
and (c) injection.
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26.6  COMPLEMENTARY METAL-OXIDE 
SEMICONDUCTOR

With the APS approach, highly integrated image sensors are possible.14 By placing processing on 
the chip, a CMOS camera can be physically smaller than a CCD camera that requires clocks, image 
reformatting, and signal processing in separate hardware. A sophisticated APS array can create15

a “camera on a chip.” It is possible to build a frame transfer device where pixels can be binned to 
enhance the SNR and provide variable resolution imaging.16

In 1993, Fossum17 described state-of-the-art active pixel concepts such as the double-gate floating 
surface transistor, charge modulation device, bulk charge modulation device, based-stored image 
sensor, and the static induction transistor. See also Ref. 14.

The APS contains a photodiode, row select transistor, and a reset transistor. As shown in Fig. 8, 
by activating a row, the data from the pixels in that row are simultaneously copied into the columns. 
Each column will have a load transistor, a column select switch, and a sampling switch. The chip 
may also have an analog-to-digital converter and provide correlated double sampling. The pixels are 
then reset and a new integration is started. The APS does not rely upon charge transfer. Rather, the 
photodiode drives a capacitance line. The total capacitance limits the chip speed. APSs can be fully 
addressable and subarrays can be read out at high frame rates just like CIDs.

Complementary metal-oxide semiconductor devices tend to have higher dark currents due to 
the highly doped silicon used. Therefore, CMOS sensors will not replace CCDs for low-noise scientific 
applications. Because the active devices often take up real estate, the area for the photosensor is 
reduced. This leads to reduced sensitivity that can be partially offset by a microlens. Because each 
pixel has its own amplifier, pattern noise is larger. However, more logic can be added to each pixel 
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FIGURE 8 (a) Passive pixel device and (b) APS. 
Charge-coupled devices and CIDs are regarded as passive 
pixel sensors. Charge injection devices use photo-gates; 
CCDs use either photogates or photodiodes; CMOS 
devices typically use photodiodes.
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for on-chip signal processing that suppresses pattern noise.18 With charge limited to a single pixel, 
it cannot overflow into neighboring pixels and create blooming as seen with CCDs.

A further advantage of APS is its low power consumption. It can operate from a 5-V battery or 
less (compared with 10 to 15 V for a CCD). CMOS may compete with CCDs in the general video 
marketplace where weight, size, and power consumption are deciding factors.

26.7 ARRAY PERFORMANCE

The most common array performance measures are responsivity, read noise, and charge well capacity. 
From these the minimum signal, maximum signal, SNR, and dynamic range can be calculated. Full 
characterization includes quantifying the various noise sources, charge transfer efficiency, spectral 
quantum efficiency, linearity, and pixel nonuniformity.19 These additional metrics are necessary for 
the most critical scientific applications.

Signal

Device specifications depend, in part, upon the application. Arrays for general video applications 
may have responsivity expressed in units of volts per lux. For scientific applications, the units may 
be in V/(J cm 2) or, if a digital output is available, DN/(J cm 2) where DN refers to a digital number. 
For example, in an 8-bit system, the digital numbers range from 0 to 255. These units are incomplete 
descriptors unless the device spectral response and source spectral characteristics are furnished.

The number of photoelectrons created by a detector is

n A E t dD qPE faceplate int( ) ( )
1

2
(1)

where AD is the effective photosensitive area, tINT is the integration time, ( ) is the spectral quantum 
efficiency, and Eq-faceplate( ) is the spectral photon incidance in unit of photons s 1 μm 1 m 2 (discussed 
further in Sec. 26.8). Some arrays have a transparent window protecting the array. The faceplate 
is the front surface of that window. With this approach, the array quantum efficiency includes the 
transmittance of the window.

For CCDs, charge is converted to a voltage by a floating diode or floating diffusion. The diode, 
acting as a capacitor, is precharged at a reference level. The capacitance, or sense node, is partially 
discharged by the amount of negative charge transferred. The difference in voltage between the final 
status of the diode and its precharged value (reset level) is linearly proportional to the number of 
photoelectrons. The signal voltage after the source follower is

V V V n
qG
Csignal reset out PE

(2)

The gain, G, of a source follower amplifier is approximately unity, and q is the electronic charge 
(1.6 10 19 C). The charge conversion is q/C. The output gain conversion is qG/C. It typically 
ranges from 0.1 to 10 μV/e . The signal is then amplified and processed by electronics external to 
the CCD sensor.

Responsivity The spectral quantum efficiency is important to the scientific and military communi-
ties. When the array is placed into a general video or industrial camera, it is convenient to specify the 
output as a function of incident flux density or energy density averaged over the spectral response of 
the array.

The faceplate spectral photon incidance can be converted into the spectral radiant incidence by

E
hc

E
W

e q-faceplate -faceplate m m
( ) ( )

2
(3)
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where h is Planck’s constant (6.626 10 34 J s 1) and c is the speed of light (3 108 m s 1). Quantities 
associated with power (watts) have the subscript e, and those associated with photons have the 
subscript q. The quantum efficiency can be converted to amperes per watt by

e

q
hc

( ) ( ) (4)

Then, the array output voltage (after the source follower amplifier) is

V
G
C

A E t dD e esignal -faceplate( ) ( ) int
1

2 (5)

It is desirable to express the responsivity in the form

V E t designal ave -faceplate int( )
1

2
(6)

The value ave is an average responsivity that has units of V/J cm2 and the quantity in the brackets 
has units of J/cm2. Combining the two equations provides

ave

-faceplate

-face

G
C

A
E d

E
D

e e

e

( ) ( )
1

2

pplate

V/(J cm
( )

)
d

1

2

2 (7)

The value ave is an average responsivity that depends upon the source characteristics and the 
spectral quantum efficiency. While the source can be standardized (e.g., CIE illuminant A or illuminant 
D6500), the spectral quantum efficiency varies by device. Therefore, extreme care must be exercised when 
comparing devices solely by the average responsivity.

If a very small wavelength increment is selected, Ee-faceplate( ) and e( ) may be considered as 
constants and Eq. (7) can be approximated as

ave

G
C

AD e( )0
(8)

Minimum Signal The noise equivalent exposure (NEE) is an excellent diagnostic tool for production 
testing to verify noise performance. NEE is a poor array-to-array comparison parameter and should 
be used cautiously when comparing arrays with different architectures. This is so because it depends 
on array spectral responsivity and noise. The NEE is the exposure that produces a SNR of one. If the 
measured root-mean-square (rms) noise on the analog output is Vnoise, then the NEE is calculated 
from the radiometric calibration:

NEE J/cm rmsnoise

ave

2
V (9)

When expressed in electrons, NEE is simply the noise value in rms electrons. The absolute minimum 
noise level is the noise floor, and this value is used most often to calculate the NEE. Although noise 
is an rms value, the notation “rms” is often omitted.

Maximum Signal The maximum signal is that input signal that saturates the charge well and is 
called the saturation equivalent exposure (SEE). It is

SEE J/cm
ave

2
Vmax (10)

The total number of electrons that can be stored is the well capacity, nwell. The well size varies with 
architecture, number of phases, and pixel size. It is approximately proportional to pixel area. Small 
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pixels have small wells. If an antibloom drain is present, the maximum level is taken as the white clip 
level. The maximum signal is

V
qG
C

n nmax well dark( ) (11)

For back-of-the-envelope calculations, the dark current is often considered negligible (ndark 0).

Dynamic Range The array dynamic range is

DRarray
well dark

sys

n n

n
(12)

where <nsys> is the overall rms noise. The array noise consists of dark current, shot, pattern, and 
readout noise (noise floor). In the absence of light and with negligible dark current, the dynamic range 
is most often quoted as

DRarray
well

floor

n

n
(13)

Noise

Many books4–8 and articles20–23 have been written on noise sources. The level of detail used in noise 
modeling depends on the application. The noise sources include shot noise, reset noise, pattern 
noise, on-chip amplifier noise, and quantization noise. It is customary to specify all noise sources in 
units of equivalent rms electrons at the detector output.

Reset noise can be reduced to a negligible level with correlated double sampling (CDS). CDS also 
reduces the source follower 1/f noise. The off-chip amplifier is usually a low-noise amplifier such 
that its noise is small compared with the on-chip amplifier noise. The use of an analog-to-digital 
converter that has more bits reduces quantization noise.

On-chip amplifier noise may be called readout noise, mux noise, noise-equivalent electrons, or 
the noise floor. The value varies by device and manufacturer. For most system analyses, it is sufficient 
to consider

n n n nsys shot floor pattern
2 2 2 (14)

where <n2> is the noise variance and <n> is the standard deviation measured in rms electrons.

Shot Noise Both photoelectrons and dark current contribute to shot noise. These follow Poisson 
statistics so that the variance is equal to the mean:

n n nshot PE dark
2 (15)

While the dark current average value can be subtracted from the output to provide only the signal 
due to photoelectrons, the dark current noise cannot. Cooling the array can reduce the dark current 
to a negligible value and thereby reduce dark current noise to a negligible level.

Pattern Noise Pattern noise refers to any spatial pattern that does not change significantly from 
frame to frame. Pattern noise is not noise in the usual sense. This variation appears as spatial noise 
to the observer. Fixed-pattern noise (FPN) is caused by pixel-to-pixel variations in dark current.24,25

As a signal-independent noise, it is additive to the other noise powers. Fixed-pattern noise is due to 
differences in detector size, doping density, and foreign matter getting trapped during fabrication.

Photoresponse nonuniformity (PRNU) is the variation in pixel-to-pixel responsivities and, as 
such, is a signal-dependent noise. This noise is due to differences in detector size, spectral response, 
and thickness in coatings. Photoresponse nonuniformity can be specified as a peak-to-peak value or 
an rms value referenced to an average value. This average value may either be full well or one-half 
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full well value. That is, the array is uniformly illuminated and a histogram of responses is created. 
The PRNU can be the rms of the histogram divided by the average value or the peak-to-peak value 
divided by the average value. The definition varies by manufacturer so that the test conditions must 
be understood when comparing arrays. 

Because dark current becomes negligible when the array is sufficiently cooled, PRNU is the 
dominant pattern component for most arrays. As a multiplicative noise, PRNU is traditionally 
expressed as a fraction of the total number of charge carriers. If U is the fixed pattern ratio or 
nonuniformity, then

n n Unpattern PRNU PE (16)

Frame averaging will reduce all the noise sources except FPN and PRNU. Although FPN and 
PRNU are different, they are sometimes collectively called scene noise, pixel noise, pixel nonunifor-
mity, or simply pattern noise.

Photon Transfer For many applications it is sufficient to consider photon shot noise, noise floor, 
and PRNU. The simplified noise model provides

n n n Unsys PE
2

floor
2

PE( )2 (17)

Recall that the mean square photon fluctuation is equal to the mean photon rate. Either the rms 
noise or noise variance can be plotted as a function of signal level. The graphs are called the photon 
transfer curve and the mean-variance curve, respectively. Both graphs convey the same information.

For very low photon fluxes, the noise floor dominates. As the incident flux increases, the photon 
shot noise dominates. For very high flux levels, the noise may be dominated by PRNU. Figure 9 
illustrates the rms noise as a function of photoelectrons when the dynamic range (nwell/<nfloor>) is
60 dB. With large signals and small PRNU, the total noise is dominated by photon shot noise. When 
PRNU is large, U dominates the array noise at high signal levels. General video and industrial cameras 
tend to operate in high-signal environments, and cooling will have little effect on performance. A full 
SNR analysis is required before selecting a cooled camera.

26.8 CAMERA PERFORMANCE

Camera performance metrics are conceptually the same as array metrics. The camera is limited by 
the array noise and charge well capacity. The camera’s FPN and PRNU may be better than the array 
pattern noise when correction algorithms are present. Frame averaging and binning can reduce the 
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FIGURE 9 Photon transfer curve when U 2.5 percent. 
The charge well capacity is 100,000 electrons and the noise floor 
is 100 e− rms to produce a dynamic range of 60 dB. The noise 
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random noise floor and thereby appear to increase the camera’s dynamic range. If the camera does 
not introduce any additional noise, modify the noise bandwidth, or minimize the maximum output, 
the camera SNR and DRcamera will be identical to the array values.

Camera Formula

The number of photoelectrons created by an object is

n
M

F m
A t

q

DPE
optics

optics( )
( )

( )
(int4 12 2

))d
1

2
(18)

where Mq( ) is the object’s spectral photon exitance in photons/s μm m2 and optics( ) is the lens 
system transmittance. The f-number has the usual definition (F f l/D), and the optical magnifica-
tion is moptics R2/R1. Here, R1 and R2 are related to the system’s effective focal length, f l, by

1 1 1

1 2R R f l
(19)

As the target moves to infinity ( )R1
, moptics approaches zero.

Electronic still cameras are matched to conventional photographic cameras. In photography, 
shutter speeds (exposure times) vary approximately by a factor of two (e.g., 1/30, 1/60, 1/125, 1/250, 
etc.). Thus, changing the shutter speed by one setting changes nPE approximately by a factor of 2. 
F-stops have been standardized to 1, 1.4, 2, 2.8, 4, 5.6, 8, . . . . The ratio of adjacent F-stops is 2 .
Changing the lens speed by one F-stop changes the f-number by a factor of 2 . Here, also, the nPE
changes by a factor of 2.

The measurement of faceplate illumination [see Eq. (1)] is usually performed with a calibrated 
lens. The value Mq is measured with a calibrated radiometer or photometer, and then Eq-faceplate
is calculated according to

E
M

F mq

q

-faceplate
optics

optics4 12 2( )
(20)

Minimum Signal

The maximum and minimum signals depend on the spectral output of the source and the spectral 
response of the detector. The source color temperature is not always listed but is a critical parameter for 
comparing systems. Although the CIE illuminant A is used most often, the user should not assume 
that this was the source used by the camera manufacturer.

Based on signal detection theory, the minimum illumination would imply that the SNR is one. 
However, the definition of minimum illumination is manufacturer dependent. Its value may be 
(a) when the video signal is, for example, 30 IRE units, (b) when the SNR is one, or (c) when an 
observer just perceives a test pattern. Because of its incredible temporal and spatial integration 
capability, the human visual system can perceive SNRs as low as 0.05. Therefore, comparing cameras 
based on “minimum” illumination should be approached with care.

The voltage signal [Eq. (5)] exists at the output of the array. This voltage must be amplified by 
the camera electronics (gain Gcamera) to a value that is consistent with video standards. The minimum 
signal provided with gain “on” (Gcamera greater than one) is usually calculated due to the difficulty 
of performing accurate, low-level radiometric and photometric measurements. These values may 
be provided at 30, 50, or 80 percent video levels. That is, the illumination that is given produces an 
output video that gives 30, 50, or 80 IRE units, respectively. Although a higher-gain amplifier could 
provide 100 percent video, the user can optimize the image by adjusting the gain and level of the 
display. That is, the display’s internal amplifiers can be used for additional gain. In this context, the 
camera system consists of the camera and display.
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If Gcamera is expressed in decibels, it must be converted to a ratio. The scene illumination that 
creates a 30 percent video signal is

M
M

Gv
v( % )

. (max )
30

0 3
video

video

camera

(21)

where Mv (max video) is the scene illumination that produces the maximum output. The subscript v
indicates photometric units, which are usually lux. For 50 and 80 percent video, the factor becomes 
0.5 and 0.8, respectively. The input signal that produces a SNR of one is

M Mv v

DR

( ) ( )SNR max video
camera-dB

1 10 20 (22)

where the camera’s dynamic range is expressed in decibels (dB). Although photometric units are 
used most often, radiometric quantities can be used in Eqs. (21) and (22).

Dynamic range depends on integration time, binning, and frame integration. In addition, the 
spectral content of the source and the array spectral responsivity affect the camera output voltage. 
Thus, the camera dynamic range can be quite variable depending on test conditions.

Although the theoretical maximum signal just fills the charge wells, the manufacturer may limit 
the maximum output voltage to a lower stored-charge value. Because the dynamic range is often 
expressed in decibels,

DR
V

Vcamera-dB
max

noise

20 log (23)

Many camera manufacturers list the dynamic range as the signal-to-noise ratio. This value 
should not be confused with the actual SNR. With most cameras, the noise level is approximately 
equivalent to the array read noise. The electronics may increase the camera noise and image-processing 
techniques may reduce it somewhat. Usually the dynamic range is calculated from the measured 
signal and noise. Because the read noise is amplifier white noise, it is appropriate to include the 
bandwidth as part of the measurements. For standard video-compatible cameras, the bandwidth is 
equal to the video format bandwidth.

26.9 MODULATION TRANSFER FUNCTION

The MTF of the camera is the product of all the subsystem MTFs. Usually, the electronics MTF does 
not significantly affect the overall MTF. Therefore, it is often adequate to consider only the optics 
and detector MTFs.

The MTF of a single rectangular detector in image space is

MTFdetector( )
sin( )

( )
u

d
d

(24)

where d is the horizontal extent of the photosensitive surface and  is the image-space horizontal 
spatial frequency variable (in cycles/mm). The detector size may be different in the horizontal and 
vertical directions, resulting in different MTFs in the two directions.

The MTF for a circular, clear-aperture, diffraction-limited lens is

MTFoptics( ) cos
2

11

C C C

2

(25)

The optical cutoff is C D/ f lave( ), where D is the aperture diameter and ave is the average wavelength.
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26.10 RESOLUTION

Detector arrays are specified by the number of pixels, detector size, and detector pitch. These are not 
meaningful until an optical system is placed in front of the array. The most popular detector resolu-
tion measure is the detector angular subtense. In object space, it is

DAS
fl

mrad
d (26)

and in image space, the detector size, d, becomes the measure of resolution.
Perhaps the most popular measure of optical resolution is Airy disk size. It is the bright central 

spot of the diffraction pattern produced by an ideal optical system. In the focal plane of the lens, the 
Airy disk diameter is

d
D

Fairy f l2 44 2 44. . (27)

While often treated independently, the camera resolution depends upon both the optical and 
detector resolutions.

Shade created a metric for system performance. As reported by Lloyd,26 Sendall modified Shade’s 
equivalent resolution such that

R
d

eq

sysMTF

1

2 2

0
| ( )|

(28)

As a summary metric, Req provides a better indication of system performance than a single metric, such 
as the detector size or blur diameter. Req cannot be directly measured. It is a mathematical construct 
simply used to express overall performance. As the MTF increases, Req decreases and the resolution 
“improves” (smaller is better). As an approximation, the system resolution may be estimated from the 
subsystem equivalent resolutions by

R R Req optics detector
2 2 (29)

Substituting the diffraction-limited MTF into Eq. (28) provides

R Foptics = 1.845 (30)

Note that Shade’s approach provides a value that is smaller than the Airy disk diameter. Recall that 
Req is only a mathematical construct used to analyze system performance. When Roptics dominates Req,
we say the system is optics-limited.

Substituting the detector MTF into Eq. (28) provides

R ddetector (31)

Here, Shade’s resolution matches the common method of describing detector performance: The 
smallest target that can be discerned is limited by the detector size. When Rdetector dominates Req, we 
say the system is detector-limited.

Using Eq. (29) to estimate the composite resolution in image space,

R d
F

deq

1 845
1

2
. (32)

As F/d decreases, Req approaches d. For large values of F/d, the system becomes optics-limited and 
the equivalent resolution increases.



26.16  INSTRUMENTS

The more common 1 2/ -inch-format CCD arrays have detectors that are about 10 μm in size. 
Figure 10 illustrates Req as a function of f-number. Reducing the f-number below 5 does not improve 
resolution because the system is in the detector-limited region.

For most CCD camera applications, it is assumed that the camera is operating in the detector-
limited region. This is only valid if F/d is small. If F/d is large, then the minimum discernable 
target size is definitely affected by the optics resolution.

We live in a world where “smaller is better.” Detector sizes are shrinking. This allows the system 
designer to create physically smaller cameras. Replacing a 1 2/ -in-format array with a 1 4/ -in-format array 
(typical detector size is 5 μm) implies a 2  improvement in resolution. However, this is only true if 
the system is operating in the detector-limited region. As d decreases, the f-number must also decrease 
to stay within the detector-limited region. Further, the f-number must also decrease to maintain the 
same signal intensity [Eq. (18)]. Reducing the f-number can place a burden on the optical designer.

26.11 SAMPLING

Sampling is an inherent feature of all electronic imaging systems. The scene is spatially sampled in 
both directions due to the discrete locations of the detector elements. The horizontal sample rate is

S d
1

CCH

cycles/mm (33)

Staring arrays can faithfully reproduce signals up to the Nyquist frequency:

N
S

d2
1

2 CCH

cycles/mm (34)

The pitch in the horizontal and vertical directions, dCCH and dCCV, respectively, may be different 
and, therefore, the sampling rates will be different. Any input frequency above the Nyquist frequency 
will be aliased to a lower frequency (Fig. 11). After aliasing, the original signal can never be recov-
ered. Diagonal lines appear to have jagged edges, or “jaggies,” and periodic patterns create moiré 
patterns. Periodic structures are rare in nature and aliasing is seldom reported when viewing natural 
scenery, although aliasing is always present. Aliasing may become apparent when viewing periodic 
targets such as test patterns, picket fences, plowed fields, railroad tracks, and Venetian blinds. It 
becomes bothersome when the scene geometric properties must be maintained as with mapping. It 
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affects the performance of most image-processing algorithms. While this is a concern for scientific 
and military applications, it typically is of little consequence to the average professional television 
broadcast and consumer markets.

We have become accustomed to the aliasing in commercial televisions. Periodic horizontal lines 
are distorted due to the raster. Cloth patterns, such as herringbones and stripes, produce moiré 
patterns. Cross-color effects occur in color imagery (red stripes may appear green or blue). Many 
videotape recordings are undersampled to keep the price modest, and yet the imagery is considered 
acceptable when observed at normal viewing distances.

Because the aliasing occurs at the detector, the signal must be band limited by the optical system to 
prevent it. Optical band limiting can be achieved by using small-diameter optics, blurring the image, or 
by inserting a birefringent crystal between the lens and array. The birefringent crystal changes the effective 
detector size and is found in almost all single-chip color cameras. Unfortunately, these approaches also 
degrade the MTF (reduce image sharpness) and are considered unacceptable for scientific applications.

If a system is Nyquist frequency-limited, then the Nyquist frequency is used as a measure of resolution.
Because no frequency can exist above the Nyquist frequency, many researchers represent the MTF as zero 
above the Nyquist frequency (Fig. 12). This representation may be too restrictive for modeling purposes.

The fill factor can vary from 20 percent for interline transfer devices to nearly 100 percent for 
frame transfer devices. In the detector-limited region, the detector MTF determines the potential 
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spatial frequencies that can be reproduced. The center-to-center spacing uniquely determines the 
Nyquist frequency (Fig. 13). A microlens will increase the effective detector size, but it does not affect 
the center-to-center spacing. The absolute value of the Nyquist frequency (1/2d

CCH
) does not change. 

By increasing the detector size, the detector cutoff decreases. The relative locations of the sampling 
and Nyquist frequencies change. The figures in this text use relative (normalized) frequency scales.

Less-expensive color cameras contain only a single CCD chip. A color filter array (CFA) is placed 
over the chip to create red, green, and blue pixels. Figure 20 in Chap. 32, “Visible Array Detectors,” in 
Vol. II, provides a variety of CFA patterns. In many sensors, the number of detectors that are devoted 
to each color is different. The basic reason is that the human visual system (HVS) derives its detail 
information primarily from the green portion of the spectrum. That is, luminance differences are 
associated with green, whereas color perception is associated with red and blue. The HVS requires 
only moderate amounts of red and blue to perceive color. Thus, many sensors have twice as many 
green as either red or blue detector elements. An array that has 768 horizontal elements may devote 
384 to green, 192 to red, and 192 to blue. This results in an unequal sampling of the colors (Fig. 14). 
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The output R, G, and B signals are created by interpolation of the sparse data (sparse pixels). The 
output signals appear as if there are 768 red, green, and blue pixels. This interpolation does not 
change the Nyquist frequency of each color. A birefringent crystal28 inserted between the lens and the 
array effectively increases the detector sizes. A larger detector will have reduced MTF and this reduces 
aliasing. It also reduces edge sharpness.

Pseudointerlacing (Fig. 4) doubles the size of the detector. This reduces the detector cutoff 
and makes it equal to the Nyquist frequency (Fig. 15). From an aliasing point of view, aliasing has 
been significantly reduced. However, the MTF has also been reduced, and this results in reduced-
edge sharpness.

26.12 STORAGE, ANALYSIS, AND DISPLAY

Chapter 32, “Visible Array Detectors,” in Vol. II describes the physics of CCD detectors. This chapter 
has described some additional features of CCDs and introduced CID and CMOS detectors. These 
solid-state devices are the basic building blocks of the solid-state array. Certain array architectures 
lend themselves to specific applications. Once the camera is fabricated, the user selects an optical 
system. The minimum signal, maximum signal, and resolution discussed in this chapter include the 
lens f-number. It would appear that with all this knowledge, it would be easy to select a camera. A 
camera only becomes operational when its output is analyzed. Analysis is performed by an observer 
(general video) or a computer (machine vision).

For general video, the camera output must be formatted into a data stream consistent with the 
display device. The monochrome standard is often called EIA 170 (originally called RS 170) and 
the color format is simply known as NTSC (originally called EIA 170A or RS 170A). Worldwide, 
three color broadcast standards exist: NTSC, PAL, and SECAM. For higher vertical resolution, 
more lines are required. EIA 343A (originally RS 343A) is a high-resolution monochrome stan-
dard used for closed-circuit television cameras (CCTV). Although the standard encompasses 
equipment that operates from 675 to 1023 lines, the recommended values are 675, 729, 875, 945, 
and 1023 lines per frame.

These standards are commonplace. Monitors that display these formats are readily available. For 
computer analysis of this imagery, frame grabbers that accept multiple standards are easily obtained. 
The output of most general video cameras is an analog signal, and the frame grabber digitizes this 
signal for computer processing.
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In principle, the clock rate of an analog-to-digital converter within the frame grabber can be set 
at any rate. However, to conserve on memory requirements and minimize clock rates, some frame 
grabbers tend to just satisfy the Nyquist frequency of a standard video signal. That is, if the highest 
frequency of the video bandwidth is fBW, then the frame grabber sampling clock operates at 2fBW.

Some frame grabbers have an internal antialias filter. This filter ensures that the frame grabber 
does not produce any additional aliasing. The filter cutoff is linked to the frame grabber clock and 
is not related to the camera output. Once aliasing has occurred in the camera, the frame grabber 
antialias filter cannot remove it. If the filter does not exist, the frame grabber may create additional 
aliasing.29 On the other hand, some frame grabbers have antialiasing filters that significantly limit 
the analog signal bandwidth and thereby reduce resolution. The number of digital samples is simply 
related to the frame grabber clock rate and is not necessarily equal to the number of detector ele-
ments. Even if the number of digital samples matches the number of detector elements, phasing 
effects will corrupt the resolution. Image-processing algorithms operate on the digitized signal and 
the image-processing specialist must be aware of the overall resolution of the system. The frame 
grabber is an integral part of that system. These issues are mitigated when the camera output is in 
digital form and the frame grabber can accept digital signals.

As society moves toward digital television [high-definition television (HDTV) or advanced tele-
vision system (ATS)], new demands are placed upon displays and frame grabbers. New standards 
also require new video-recording devices. This creates storage, frame grabber, and display problems. 
New standards do not impose any difficulties on camera design. The solid-state array can be made 
any size and appropriately designed electronics can support any video format.

Industrial and scientific applications require some forethought. The camera output is no longer a 
conventional format. Web inspection cameras may contain a linear array with as many as 4096 elements. 
Split architecture (Fig. 1) may have as many as 32 parallel outputs. Charge injection devices and 
CMOS cameras may offer variable-sized subframes at variable frame rates. Finding suitable frame 
grabbers is a challenge for these applications. Nonstandard formats (even after digitization) are not 
easy to display.
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27.1 INTRODUCTION

Camera lenses have been discussed in a large number of books and articles. The approach in this 
chapter is to concentrate on modern types and to describe imaging performance in detail both in 
terms of digital applications and in terms of the optical transfer function. By modern types, we 
mean lens forms that were found on cameras in 1992. The chapter deals almost entirely with lenses 
for the 35-mm (24  36 mm) format. This limitation is unfortunate but not really inappropriate, 
given the widespread use of this format. Moreover, the different lens types that are described are 
used for applications ranging from 8-mm video to 6  9 cm roll film.

We have not included any specific design examples of lenses for large-format cameras, but the 
imaging capabilities of these lenses are described in terms of digital applications. By digital appli-
cations we mean the comparison of different lens types in terms of total pixels and pixels per unit 
solid angle. It is hoped that this feature will make comparisons between radically different imaging 
systems possible and also help to classify lenses in terms of information capability. See “Further 
Reading” at the end of this chapter for related information about photographic lenses, particularly 
with respect to older design types.

27.2 IMPOSED DESIGN LIMITATIONS

There are some limitations that are imposed on the design of camera lenses. The most significant 
ones are listed as follows.

Microprism focusing in single lens reflex cameras (SLRs) is difficult at apertures smaller than 
about F/4.5. Recent advances permit the use of microprisms at apertures down to F/5.6 and this is 
usually the smallest maximum aperture permitted in the specification of a lens for the SLR camera.

Depending on the camera type, there is a maximum rear lens opening allowable at the flange on 
SLR lenses. The limitation is approximately 33 to 36-mm diameter at flange to film plane distances 
of 40.5 to 46 mm. This affects the maximum possible aperture on normal lenses (typically to F/1.2) 
and also requires appropriate design of the exit pupil location on long-focal-length and high-speed 
retrofocus lenses in order to avoid excessive vignetting.

27.1
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The minimum back focal length (BFL) allowable on SLR lenses (because of the swinging mirror) 
is about 38.5 mm. The BFL cannot be too short on non-SLRs because of in-focus dust or cosmetic 
problems on optical surfaces close to the film plane. The actual limitation depends on the minimum 
relative aperture that would be used but is rarely less than 4 mm and usually more than 8 mm.

Since most lens accessories such as filters and lens-shades are mounted on the front of a lens, 
there is a practical limitation to the allowable front diameter of most lenses. Filter sizes larger than 
72 mm are not desirable, and smaller is always preferred. The actual clear aperture at the front of a 
lens is considerably smaller than the filter size, depending on the angular field and the mounting 
details of the filter. Obviously there are lenses such as 600-mm F/4 telephotos for which the 72-mm 
limitation is not possible. In these cases, the lens can be designed to use internal filters that are 
incorporated into the design.

Mechanical cams are still in widespread use for the practical realization of the required motions 
in zoom lenses. This technology requires that the motions themselves be controlled at the design 
stage to be reasonably monotonic and often to have certain mutual relationships. These require-
ments are particularly severe for the so-called “one-touch” zoom and focus manual control found 
on many SLR zoom lenses.

In general, size and weight restrictions pose the biggest problems for the designer of most cam-
era lenses. Almost any lens can be designed if there are no physical limitations. These limitations 
are sometimes a consequence of ergonomic considerations but can equally be an effort to achieve 
a marketing advantage. Size restrictions almost always adversely affect the design, and exceptionally 
small lenses (for a given specification) should be regarded with suspicion.

27.3 MODERN LENS TYPES

Normal (with Aspherics) and Variations

Thirty-five-mm SLR normal lenses are invariably Double-Gauss types. Refer to Fig. 1. This lens 
form is characterized by symmetry about a central stop to facilitate the correction of coma, distor-
tion, and lateral color. These lenses are relatively easy to manufacture and a user can expect good 
quality in a production lens. Total angular coverage of about 45° is typical, and speeds as fast as F/l 
are achievable. Extremely good optical performance is possible, particularly if the angular field and 
speed are reduced somewhat. Image quality generally deteriorates monotonically from axis to corner 
and improves dramatically as the lens aperture is reduced by about two F-numbers. With the addi-
tion of a fixed rear group, conjugate stability can be achieved over a wide range. Refer to Fig. 2.

Wide-Angle

An interesting new wide-angle lens type is a four-component form found commonly on the 
so-called compact 35-mm cameras. This lens is characterized by a triplet construction followed by 
a rear element that is strongly meniscus-shaped, convex to the image plane. This lens has much less 
astigmatism than either conventional triplets or Tessars and can cover total fields of up to 75° at 
speeds of around F/4. Faster speeds are possible if the angular field is reduced. Most importantly, the 
rear meniscus component takes the burden of field flattening away from the triplet front part. This 
results in considerably lower individual element powers and correspondingly lower sensitivities to 
tilts and decentrations of the elements. It is this problem that makes conventional triplets extremely 
difficult to manufacture. Refer to Fig. 3.

Inverted Telephoto (Retrofocus)

These lens types, characterized by a long back focal length, are typically used for wide-angle appli-
cations for single lens reflex cameras having a swinging viewing mirror behind the lens. Inverted 
telephoto implies a front negative group followed by a rear positive group, just the reverse of a 
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27.6  INSTRUMENTS

telephoto construction. This type of construction tends to result in relatively large front aperture 
sizes, and it is not easy to design small lenses without compromising on image quality. Retrofocus 
designs sometimes have a zone of poorer image quality in a field area between the axis and the 
corner. This zone is a by-product of the struggle to balance lower- and higher-order aberrations 
so that the outer parts of the field have acceptable image quality. These lenses have particularly 
good relative illumination both because the basic construction results in an exit pupil quite far 
from the image plane and also because it is possible for the size of the pupil to increase with field 
angle. In order to achieve conjugate stability, it is necessary to employ the use of so-called “floating 
elements” or variable airspaces that change with focusing. However, this feature does result in addi-
tional optomechanical complexity.

The newer forms of this lens type fall into four broad subcategories.

Very Compact Moderate Speed These include six-element 35-mm F/2.8 with a front negative 
element and seven-element 28-mm F/2.8 with a leading positive element. Refer to Figs. 4 and 5, 
respectively. These relatively simple constructions are suitable for speeds of F/2.8 or slower and total 
angular coverages of up to 75°.

Highly Complex Extreme Speed As the complexity of both the front and rear groups is increased, the 
inverted telephoto form can be designed to achieve speeds of F/1.4 and angular fields of 90°. The use of 
aspherical surfaces is essential in order to achieve these specifications. Refer to Figs. 6, 7, 8, and 9.

Highly Complex Extreme Wide-Angle with Rectilinear 
Distortion Correction

These are inverted telephoto designs covering total fields of up to 120°, often with speeds as fast as 
F/2.8. Distortion correction is rectilinear. The chromatic variations of distortion, astigmatism, and 
coma are usually the limiting aberrations and are virtually impossible to correct beyond a certain 
point. Refer to Figs. 10 and 11.

Extreme Wide-Angle with Nonrectilinear Distortion (“Fish-Eye Lenses”) Without the requirement 
of rectilinear correction of distortion, inverted telephoto designs can be achieved quite readily with 
total angular fields exceeding 180°. For these lenses, the image height h and focal length f are often 
related by h f · , where  is the semifield angle. See, for example, USP 4,412,726.

Telephoto Lenses

The term telephoto strictly applies to lenses having a front vertex length less than the focal length 
(telephoto ratio less than one). The classic telephoto construction has a front positive group fol-
lowed by a rear negative group. This can lead to telephoto ratios that are as short as 0.7 or less. The 
term telephoto is often loosely used to refer to any long-focal-length lens and one sometimes sees 
references made to the telephoto ratio of a wide-angle lens.

Two significant advances characterize the newer types of telephoto lenses, particularly those used 
for 35-mm SLR cameras. The first is the use of small internal groups for focusing, sometimes in 
conjunction with the front group. This feature has also led to significant improvement in the per-
formance of these lenses with change of conjugate. This has been a problem with telephoto lenses, 
particularly with respect to attaining close focus with good optical quality. Internal focusing of a 
long-focal-length lens also has considerable advantages in terms of mechanical simplicity because a 
smaller mass is being moved over a significantly shorter distance.

The second advance is the employment of optical glasses having anomalous dispersion for the 
correction of chromatic aberrations. These newer glasses have anomalous dispersion characteristics 
similar to those of calcium fluorite, but with physical and chemical properties that make their use 
practical. These glasses are still expensive and more difficult to use than ordinary ones, but they do 
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CAMERA LENSES  27.13

1 cm =

System first-order properties 
Field:      54.0                     f/ 2.80
Stop: 0.00 after surface            18.   Dia:    12.712

EFL:   14.9998
BFL:   38.2902

FVD:   126.743 
BRL :   88.4531

ENP:   33.0862 
EXP:   –43.8210

Even polynomial aspheres
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FIGURE 10 15-mm F/2.8 for 35-mm SLR.

offer significant advantages in terms of reducing the chromatic aberrations that otherwise severely 
limit the imaging potential of all long-focal-length refracting optics. Typical available versions of 
these glass types are the FK Schott, FCD Hoya, FPL Ohara, and PFC Corning series of glasses.

These design types offer outstanding optical correction together with remarkable specifications, 
resulting in considerable size and cost. Commercial embodiments include 300-mm F/2 and 400-mm 
F/2.8 for 35-mm. They are widely used for sports and wildlife photography. Since secondary color 
increases as the front vertex distance is reduced, it is advisable to regard excessively short all-refractive 
telephotos with some caution. Refer to Figs. 12 and 13. The letter z in the thickness column in Fig. 12 
(later in Figs. 14, 16, and 17 ) represents the zooming or variable space between the lenses.
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CAMERA LENSES  27.17

Zoom Lenses

Zoom lenses have evolved significantly in the past 20 years. In the early 1970s, there was basi-
cally only the classic four-group type of zoom lens. This four-group zoom has two moving groups 
between a front group used only for focusing and a stationary rear (master) group. This type is still 
found on consumer video cameras. Figures 14 and 15 show a variation of this form with the rear 
group also moving for zooming. The master group could often be changed to yield a different zoom 
with the same ratio over a different range.

The second basic form, originating in the mid 1970s, was the two-group wide-angle zoom, typi-
cally 24 to 48 mm and 35 to 70 mm for the 35-mm format. Both the front negative group and the 
rear positive group move for zooming, and the front group is also used for focusing. This lens type 
has an inherently long back focal length, making it eminently suitable for the SLR camera. See, for 
example, USP 4, 844, 599. The maximum zoom range is about 3 : 1.

In order to achieve lens types such as a 28- to 200-mm zoom for 35-mm, new ideas had to be 
employed. The resulting lenses have up to five independent motions, including that of the diaphragm. 
These degrees of freedom allow for the location of the entrance pupil to be near the front of the lens 
at the short-focal-length position and also for the exit pupil to be located near the rear, particularly 
at the long-focal-length setting. These conditions result in acceptably small size. The extra zooming 
motions permit a large focal-length range to be achieved without any one motion being excessively 
long. There is a constant struggle in the design of these zooms to minimize the diameter of the front 
of the lens. This is not only to reduce size and weight, but also to permit the use of acceptably small 
filters. Some designs do have problems with relative illumination at the wide-angle end.

In the past, these lenses have been focused either by moving the front group or by moving the 
entire lens, the latter option leading to the so-called varifocal zoom. However, more recent devel-
opments in miniature electromechanical and autofocusing systems have led to the evolution of 
extended range zooms in which the distinction between a focusing and a compensating group has 
become academic. As a result, small internal zooming groups can serve a dual function as focusing 
groups under the control of an autofocusing system. Refer to Figs. 16, 17, and 18.

A recent new development in zooms is one for the so-called compact 35-mm camera. In its most 
basic form, this type can have as few as three elements and is characterized by having a front posi-
tive component and a rear negative component. This lens has an inherently short back focal length 
at the wide end, making it not suitable for SLR cameras with swinging mirrors. In more complicated 
versions, this idea can be extended to 28 to 160 mm or further, the main limitation being a small 
relative aperture at the long-focal-length end. A recent practical embodiment is a four-element 
38- to 90-mm F/3.5 to 7.7 having three aspherical surfaces. See, for example, USP 4, 936, 661.

Zoom lenses are also found on most consumer video cameras. The classic fixed front-and rear-
group type (with the aperture stop in the rear group) is still commonly used because the very small 
format sizes can permit acceptably small lenses. This lens form is also used for motion picture and 
television zooms. In many of these applications, it is desirable to have an exit pupil position that 
does not change with zooming. Telecentricity of the exit pupil is also sometimes required. In addi-
tion, the motion picture industry still prefers zoom lenses that have conventional front-group focus-
ing in order to easily calibrate tape-measure focus measurements.

Very long range television zooms (often 30 : 1 or more) are also of the fixed front and rear type, 
with a succession of cascading zooming groups in between.

27.4 CLASSIFICATION SYSTEM

A wide variety of camera lenses has been classified in Table 1 in terms of total pixel capability P
and pixels per steradian AD. Pixels are defined as digital resolution elements relative to a specified 
modulation level and are calculated as follows:

The polychromatic optical transfer function of each lens is calculated and the spatial frequencies 
at which the modulation falls to 0.5 and 0.2 is noted at each of five field points. The lower of the 
meridional and sagittal values is used.
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TABLE 1 Pixel Imaging Characteristics of Camera Lenses

EFL D 2W F-no P0.5 P0.2 AD0.5 AD0.2 Comments

5.1 11 94 1.8 0.27 0.93 0.14 0.47 Cinegon 2/3" video
6.7 21 114 1.8 0.36 1.06 0.13 0.37 Xenoplan

10.2 16 76 1.8 0.66 1.59 0.50 1.19 Cinegon 1" video
15.0 41 108 2.8 0.95 3.39 0.37 1.31 Ultrawide 35-mm SLR
17.1 11 36 1.0 0.25 0.66 0.81 2.15 Xenar 2/3" video
17.5 42 100 2.9 1.48 3.14 0.66 1.40 Ultrawide 35-mm SLR
17.6 11 35 1.4 0.69 1.93 2.37 6.64 Xenon 2/3" video
20.6 41 90 1.5 0.52 4.05 0.28 2.20 Ultrawide 35-mm SLR
24.5 41 80 2.1 1.24 4.86 0.84 3.30 Very wide 35-mm SLR
25.5 27 56 2.8 1.61 2.56 2.19 3.48 Panavision Primo zoom
28.0 30 56 2.8 1.32 8.74 1.79 11.88 Xenar 35-mm cine
28.0 41 72 2.8 2.32 7.28 1.93 6.06 Wide 35-mm SLR
28.5 41 71 1.5 0.82 3.14 0.70 2.69 Wide 35-mm SLR
28.8 40 70 4.1 3.35 10.31 2.95 9.08 Wide-tele 35-mm SLR
35.0 42 62 2.8 3.43 17.54 3.82 19.54 Wide 35-mm SLR
35.8 40 58 3.2 1.45 10.43 1.84 13.24 Snapshot 35-mm
36.0 42 60 1.2 2.63 5.27 3.12 6.26 Wide 35-mm SLR
50.0 38 42 4.4 3.23 14.28 7.74 34.21 Wide-tele 35-mm SLR
51.0 40 43 1.4 0.76 7.02 1.74 16.06 Normal 35-mm SLR
55.5 41 41 1.2 0.87 3.41 2.17 8.58 High-speed 35-mm SLR
55.5 41 41 1.2 0.54 4.22 1.35 10.60 Asph normal 35-mm SLR
57,5 40 37 1.4 0.98 3.67 3.05 11.41 Close focus 35-mm SLR
58.0 133 98 5.6 13.77 60.12 6.37 27.82 Super-Angulon large-format
72.0 40 31 2.9 3.22 10.44 14.11 45.70 Telezoom 35-mm SLR
73.8 16 12 2.8 0.31 1.26 9.01 36.61 Tele-xenar 1" video
75.0 30 23 2.0 1.87 14.12 14.83 111.95 Xenar 35-mm cine
80.0 80 53 2.8 13.32 53.45 20.18 80.97 Xenotar medium-format
90.0 173 88 8.0 19.42 61.93 11.01 35.12 Super-Angulon large-format
90.0 207 98 5.6 30.07 75.59 13.92 34.98 Super-Angulon large-format

100.0 27 15 2.8 3.11 6.65 57.86 123.72 Panavision Primo zoom
100.0 116 60 5.6 33.11 85.72 39.34 101.84 APO-Symmar large-format
120.0 143 62 5.6 30.31 100.43 33.78 111.91 APO-Symmar large-format
120.0 168 70 5.6 23.78 113.14 20.93 99.57 Super-Symmar large-format
146.0 39 15 5.7 2.67 12.85 48.44 232.76 Wide-tele 35-mm SLR
150.0 80 30 4.0 12.35 87.89 57.69 410.55 Tele-Xenar medium-format
150.0 138 49 5.6 12.12 28.95 21.42 51.18 Xenar large-format
150.0 202 68 5.6 17.87 117.45 16.64 109.35 Super-Symmar large-format
180.0 300 45 5.6 100.80 368.45 210.77 770.41 Makro-Symmar 1 : 1
197.0 41 12 2.9 4.17 16.37 121.10 475.55 Telephoto 35-mm SLR
204.0 40 11 4.1 4.18 12.15 139.28 405.17 Telezoom 35-mm SLR
210.0 274 66 5.6 18.37 126.58 18.12 124.88 Super-Symmar large-format
210.0 400 87 8.0 22.62 130.62 13.11 75.70 Super-Angulon large-format
240.0 164 19 9.0 44.94 111.55 521.56 1294.60 Artar 1 : 1
250.0 126 28 5.6 38.05 89.71 203.88 480.70 Tele-Artar large-format
268.0 27 6 2.8 3.11 7.64 361.19 887.30 Panavision Primo zoom
296.0 39 8 2.1 5.36 20.36 388.37 1473.60 Telephoto 35-mm SLR
360.0 392 57 6.8 45.09 378.07 59.22 496.57 APO-Symmar large-format
400.0 250 35 5.6 33.77 160.01 116.13 550.27 APO-TXR large-format
480.0 327 19 11.0 76.29 256.34 885.40 2975.00 APO-Artar 1 : 1
480.0 400 45 8.4 86.48 509.51 180.83 1065.30 APO-Symmar large-format
800.0 500 35 12.0 108.62 460.37 373.54 1583.10 APO-TXR large-format

D — image diameter in mm W—semifield angle in degrees
Pm—pixels  106 at modulation level m ADm—pixels × 106 per steradian at modulation level m
F-no —F-number of the lens EFL—effective focal length of the lens in mm
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The image field of the lens, assumed to be circular with diameter D, is divided into four annular 
regions. The outer boundaries of each region correspond, respectively, to 0.35H, 0.7H, 0.85H,
and 1.0H, where H is the maximum field height. The area of each region is computed.

The average of the inner and outer boundary-limiting spatial frequency values is assigned to each 
region. This is done for both the 0.5 and 0.2 modulation levels.

The area of each annular region, in square millimeters, is multiplied by the square of the spatial 
frequency values from the previous step to yield regional pixel counts for both 0.5 and 0.2 modu-
lation levels.

The pixel counts are summed over all regions to yield the D data in Table 1.

The AD data in Table 1 are obtained by dividing the total pixel values by the solid angle of the 
lens in object space. The solid angle S is given by the following formula:

S  2 (1 cos W)

where W is the semifield angle of the lens in degrees.

In general, for a given image diameter D, a larger P implies higher image quality or greater 
information-gathering capability. A lens designed for a smaller D will have a lower P than a lens of 
similar quality designed for a larger D. These same generalizations hold for AD except that, in addition, 
a lens designed for a smaller field angle and a given D will have a larger AD than a lens of similar 
image quality designed to cover a wider field for the same D. In other words, for the same image-
quality level and format size, wide-angle lenses have lower AD values than do narrow angle lenses.

27.5 LENS PERFORMANCE DATA

A wide variety of camera lenses has been selected to show typical performance characteristics. In most 
cases, the data have been derived from the referenced published U.S. patents. The authors have taken 
the liberty of reoptimizing most of the data to arrive at what would, in our judgment, correspond to 
production-level designs. All performance data have been shown at maximum aperture. It is important 
to realize that photographic lenses are invariably designed so that optimum performance is achieved at 
F-numbers at least 2 stops slower than maximum. A general explanation of the data page follows.

The lens drawing shows the marginal axial rays together with the upper and lower meridional 
rays for seven-tenths and full field.

The lens prescription and all other data are in millimeters. Glass catalogs are Hoya, Ohara, and 
Schott. Distances to the right of a surface are positive. A positive radius means that the center of cur-
vature is to the right of the surface. The thickness and glass data indicate the distance and medium 
immediately following the particular surface.

The optical transfer function (OTF) plots show the through-focus modulation transfer func-
tion (MTF) on the left and the OTF at best axial focus on the right. The data are shown for five field 
points, viz., the axis, 0.35H, 0.70H, 0.85H, and 1.0H, where H is the maximum field angle in object 
space. The actual field angles are indicated in the upper-right-hand corner of each best-focus OTF 
block and are in degrees. The through-focus data are at the indicated spatial frequency in cycles per 
millimeter with an additional frequency on-axis (dotted curve). Both the through-focus and best-
focus data indicate meridional (solid curves) and sagittal (dashed curves) MTF. The modulus scale is 
on the left of each block and runs from zero to one. The phase of the OTF is shown as a dotted curve 
in the best-focus plots. The scale for the phase is indicated on the right of each best-focus block and 
is in radian measure. All the OTF data are polychromatic. The relative weights and wavelengths 
used appear in the lower-right-hand corner of each page. The wavelengths are in micrometers and 
the weights sum to one. The axial focus shift indicated beneath the best-focus plots is relative to the 
zero position of the through-focus plots. The best-focus plane is at the peak of the additional axial 
through-focus plot (dotted curve).
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Vignetting for each field angle is illustrated by the relative pupil area plots on the right-hand 
side of each page. The distortion plots shows the percentage of radial distortion as a function of 
fractional field height. The MTF astigmatism plot shows the loci of the through-focus MTF peaks as 
a function of fractional field height. The data can be readily determined directly from the through-
focus MTF plots.

Certain acronyms are used in the system first-order properties:

Effective focal length (EFL)

Back focal length (BFL)

Front vertex distance (FVD)

Barrel length (BRL)

Entrance pupil distance (ENP)

Exit pupil distance (EXP)

The ENP and EXP data are measured from the front and rear vertices of the lens, respectively. 
A positive distance indicates that the pupil is to the right of the appropriate vertex.
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28.1 GLOSSARY

f focal length

M magnification

n refractive index

NA numerical aperture

z distance along optical axis

wavelength of light

I irradiance, sometimes called intensity

28.2 INTRODUCTION

The optical principles and basic lens design needed to generate a diffraction-limited, highly magni-
fied image with the light microscope were already essentially perfected a century ago. Ernst Abbe 
demonstrated how a minimum of two successive orders of diffracted light had to be captured in 
order for a particular spacing to be resolved (see historical sketch about Abbe principle1). Thus, he 
explained and demonstrated with beautiful experiments the role of the wavelength of the imaging 
light and the numerical aperture (NA n sin , Fig. 1)2 of the objective and condenser lenses on the 
resolving power of the microscope. In general, the minimum spacing  for line gratings that can just 
be resolved cannot be smaller than

2 NA
(1)

when the NA of the condenser is equal to the NA of the objective.
For generating an image, contrast is just as important as resolution. Much of the early use of 

the light microscope depended on the relatively high image contrast that could be generated by dif-
ferential absorption, scattering, reflection, birefringence, and the like due to specimen composition 
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or structure. Specimens, such as unstained living cells and other transparent objects introducing 
small optical path differences, were generally not amenable to direct microscopic observation for 
they would not produce detectable image contrast when brought to exact focus.

These impediments were removed by Zernike who showed how contrast in the microscope image 
is generated by interference between the light waves that make up the direct rays (that are undevi-
ated by the specimen) and those that were scattered and suffered a phase difference by the presence 
of the specimen. Using this principle, Zernike invented the phase-contrast microscope.3 For the first 
time it became possible to see, in focus, the image of small, nonabsorbing objects. Zernike’s revela-
tions, together with Gabor’s further contributions,4 not only opened up opportunities for the design 
of various types of interference-dependent image-forming devices but, even more importantly, 
improved our understanding of the basic wave optics involved in microscope image formation.

About the same time as Zernike’s contributions, perfection of the electron microscope made it 
possible to image objects down to the nanometer range, albeit necessitating use of a high-vacuum 
environment and other conditions compatible with electron imaging. Thus, for four decades follow-
ing World War II, the light microscope in many fields took a back seat to the electron microscope.

During the last decades, however, the light microscope has reemerged as an indispensable, 
powerful tool for investigating the submicron world in many fields of application. In biology and 
medicine, appropriate tags, such as fluorescent tags, are used to signal the presence and location 
of selected molecular species with exceptionally high sensitivity. Dynamic behaviors of objects far 
below the limit of resolution are visualized by digitally enhanced video microscopy directly in their 
natural (e.g., aqueous) environment. Very thin optical sections are imaged by video microscopy, and 
even more effectively with confocal optics. Quantitative measurements are made rapidly with the 
aid of digital image analysis.

Specimen

Condenser iris
diaphragm

+

+

Rear focal plane
(    back aperture)
of objective lens

~

FIGURE 1 Definition of numerical 
aperture of objective (NAobj n sin ) and 
condenser (NAcond n sin ).2
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At the same time, computer chips and related information-processing and storage devices, whose 
availability in part has spurred the new developments in light microscopy, are themselves miniatur-
ized to microscopic dimensions and packaged with increasingly higher density. These electronic and 
photonic devices in turn call for improved means for mass manufacturing and inspection, both of 
which require advanced microscope optics.

Driven by the new needs and aided in part by computerized ray tracing and the introduction 
of new optical materials, we see today another epochal advance in the quality of lens design. The 
precision and remote control capabilities of mechanical components are also steadily improving.
Furthermore, we may expect another surge of progress, hand-in-hand with development of improved 
electro-optical and electromechanical devices, in regulated image filtration, contrast-generating 
schemes, as well as in optical manipulation of the specimen employing microscope optics.

There are a number of excellent review articles and books discussing the optical principles of 
light microscopes1,5,6 and microscopic techniques,2,7–10 and their applications.11–14 Among the many 
resources on microscopy available on the Internet, the Molecular Expressions website (http://www.
microscopy.fsu.edu/index.html) stands out for its comprehensive treatment, beautiful illustrations, 
and interactive tutorials on the subject. 

The present chapter is intended in part to bridge the territories of the manufacturer and the user 
of the microscope, including those who incorporate microscope optics into other equipment or 
apply them in unconventional ways. In this revision for the third edition of the Handbook of Optics,
we reorganized the material, expanded the description of techniques that are typically covered only 
in passing by recent reviews and books on microscopy (e.g. interference and polarization micros-
copy), and added brief descriptions of imaging modes that are based on new optical concepts or 
new approaches to extract quantitative information from traditional imaging modes.

Many of the optical concepts and techniques, which are introduced here in the context of 
microscopy, are discussed in more detail in other chapters of this Handbook. On general optical 
considerations consult the Handbook chapters in this volume, “General Principles of Geometrical 
Optics” (Chap. 1) and on optical elements, such as “Lenses” (Chap. 17), “Polarizers” (Chap. 13), as 
well as chapters on physical optics for wave phenomena such as “Interference” (Chap. 2), “Diffraction” 
(Chap. 3), “Coherence Theory” (Chaps. 5 and 6), and “Polarization” (Chap. 12) which, as phenomena, 
are essential to the workings of the various contrast modes of the microscope. Material on image 
detection and processing can be found in Handbook chapters on vision in Vol. III, imaging detectors in 
Vol. II, and optical information and image processing in Chap. 11 of this volume.

28.3  OPTICAL ARRANGEMENTS, LENSES,  
AND RESOLUTION

Optical Arrangements

Geometric Optical Train, Magnification, Conjugate Planes In the optical train of a compound 
microscope (Fig. 2) invented by Galileo around 1610, the objective lens Lob projects an inverted, 
real, magnified image O  of the specimen O (or object plane) into the intermediate image plane (or 
primary image plane). The intermediate image plane is located at a fixed distance f z  behind Lob,
where f  is the back focal length of Lob and z  is the optical tube length of the microscope. In general, 
O  is an aerial image for which an ocular Loc (or the eyepiece) acts as a magnifier in front of the eye. 
Since Loc, coupled with the corneal surface and lens of the eye, produces an erect image O  of O on 
the retina, the object appears inverted to the observer. The ocular may also be used to project the 
image onto a screen. The aerial image at O  can also be exposed directly onto conventional film or 
an electronic sensor.

Continuing with the schematic diagram in Fig. 2, using thin-lens approximations, O is placed at 
a short distance z just outside of the front focal plane of Lob, such that z + f = a, where f is the front 
focal length of Lob and a is the distance between O and Lob. O  is formed at a distance b = (z  + f )
behind Lob. For a height y of O, the image height y  = y b/a. Thus, Lob magnifies O by Mob = b/a.
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Also, Mob = f /z = z /f . Mob is the transverse or lateral magnification of Lob. In the case of an infinity-
corrected objective (Fig. 3), Mob is the ratio ftb/f, with ftb the focal length of the specific tube lens 
Ltb. In turn, y  is magnified by Loc by a factor Moc = 25 cm / foc, where foc is the focal length of the 
ocular (in cm) and 25 cm is the so-called near distance from the observer’s eye (see Vol. II of this 
Handbook). Thus, the total transverse magnification of the microscope Mtot = Mob Moc.

Note that most microscope objectives are corrected for use only within a narrow range of image 
distances, and, in case of older style objectives, only in conjunction with specific groups of oculars. 
Mob, which is the magnification inscribed on the barrel of the objective lens, is defined for its specified 
tube length (for high-power objectives, Mob z /f ) or, in case of infinity-corrected objectives, when 
used together with its specified tube lens. These factors, as well as those mentioned under “Microscope 
Lenses, Aberrations,” must be kept in mind when a microscope objective is used as a magnifying lens, 
or in reverse as a high-numerical-aperture reducing lens, to form a truly diffraction-limited image. 

Continuing the optical train back to the light source in a transilluminating microscope, Fig. 4a
shows the ray paths and foci of the waves that focus on an on-axis point in the specimen. In Köhler 
illumination, the distance between the specimen and the condenser are adjusted so that the image of 
the field diaphragm in the illuminator is superimposed with the focused region of the specimen, and 
the lamp collector lens is adjusted so that the source image is focused in the plane of the condenser 
aperture diaphragm. Thus, O, O, O  and O  all lie in image planes that are conjugate with each other.

Tracing the rays emitted from a point in the light source (Fig. 4b), the rays are parallel between 
the condenser and the objective lenses. This situation arises because in Köhler illumination the light 

FIGURE 2 Ray path in the microscope from object to observer’s eye 
(see text).

FIGURE 3 Ray path in microscope with infinity-corrected objective and 
tube lens.
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source (the filament of an incandescent bulb or the bright arc of a discharge lamp) is projected into 
the front focal plane of the condenser. Also, since the pupil of an (experienced) observer’s eye is 
placed at the eyepoint or back focal plane of the ocular, the four aperture planes L, L , L , and L  are 
again conjugate to each other.

As inspection of Fig. 4a and b15 shows, the field planes and aperture planes are in reciprocal space 
relative to each other throughout the whole optical system. This reciprocal relationship explains how 
the various diaphragms and stops affect the cone angles, paths, and obliquity of the illuminating and 
image-forming rays, and the brightness, uniformity, and size of the microscope field. More funda-
mentally, a thorough grasp of these reciprocal relationships is needed to understand the wave optics 
of microscope image formation and for designing various contrast-generating devices and other 
microscope optical systems.

Transillumination The full impact of the illumination system on the final quality of the micro-
scope image is often not appreciated by the microscope user or designer. Undoubtedly, part of this 
neglect arises from a lack of understanding of the roles played by these components, in particular the 
condenser, and the common practice of closing down the condenser iris diaphragm to adjust image 
contrast for comfortable viewing. Regardless of the conventional view, critical examination of the 
microscope image or point spread function reveals the importance of the alignment, focus, tilt, NA, 
and effective aperture function of the condenser. The effects are especially noticeable when contrast is 
enhanced, e.g., by video microscopy. A further illustration of the importance of the illumination on 
the resolving power of the light microscope can be found in the section on “Structured Illumination.”

(a) (b)

Illuminated field
diaphragm

Object

Primary image

Retina

Eyepiece

Field diaphragm of
eyepiece

Aperture diaphragm
of objective
Objective

Condenser

Illuminated field
diaphragm
Lamp collector

Lamp

Eye Exit pupil of microscope
(Ramsden disc)

Back focal plane
of objective

Illuminating aperture
diaphragm

Lamp filament

FIGURE 4 Ray paths in a transmitted light microscope adjusted for Köhler illumination. Two sets of 
conjugate planes are shown: set O in (a) is conjugate with the object O and with the field diaphragm planes; 
set L in (b) is conjugate with the lamp filament L and with aperture diaphragm planes.15
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Ernst Abbe was the first to systematically analyze the resolving power of microscope optics by 
fabricating precision line gratings and imaging them in the microscope. As indicated earlier, a grating 
is resolved if the objective lens captures at least two successive diffraction orders which are typically 
the zero- and first-order diffraction. Abbe summarized his results in a simple expression, relating the 
minimum resolvable pitch  to the numerical aperture of the objective and condenser lens:

NA NAobj cond

(2)

with  the wavelength of light used. This formula can be derived by considering the diffraction of 
linear gratings that are illuminated obliquely. In the limiting case of zero condenser NA, the grating 
is illuminated coherently by a collimated beam of light that is parallel to the microscope’s optical 
axis. The minimum resolvable pitch is proportional to the wavelength and inversely proportional to 
the objective NA. By increasing the condenser NA, oblique rays are added to the illuminating light, 
increasing the angular span between diffraction orders captured by the same objective lens, and thus 
decreasing the minimum resolvable pitch. By making the condenser and objective NA equal, the 
grating is effectively illuminated incoherently and Eq. (2) reduces to Eq. (1). 

The influence of the condenser NA on resolving two nearby point objects was considered by 
Hopkins and Barham.16 They applied the Rayleigh criterion for resolving two pinholes that are 
equally bright and illuminated incoherently (NAcond  NAobj) and found a minimally resolved distance 
d 0 61. /NAobj (Fig. 5, m  1).17 Distance d is a factor 1.22 larger than the limiting pitch of a grating 
illuminated and imaged by the same condenser and objective lens [Eq. (1)]. However, for the case of 
coherent illumination (NAcond  0), the minimal distance of two resolved points only increases by 
40 percent instead of 100 percent, as is the case for gratings. Hopkins and Barham calculated a maxi-
mum resolution (minimal d) for NAcond  1.5  NAobj. Such high NAcond is usually not achievable for 
high-NA objective lenses, and, in addition, with most objectives, flare due to internal reflection would 
reduce image contrast to an extent possibly unsalvageable even with video contrast enhancement. 
Again, reduction of NAcond, generally achieved by closing down the condenser iris diaphragm, tends 

FIGURE 5 Effect of the condenser aperture on the resolution of 
two pinholes of equal brightness. m is the ratio of the numerical aper-
tures of condenser to objective. L is the minimum resolved distance 
between the pinholes (Rayleigh criterion) in units of the wavelength 
divided by the objective aperture.17



MICROSCOPES  28.7

to raise image contrast so that even experienced microscopists tend to use an NAcond (0.3, . . . , 0.5)
NAobj to obtain a compromise between resolution and visibility. With video and other modes of elec-
tronic enhancement, the loss of contrast can be reversed so that improved lateral, and especially axial, 
resolution is achieved by using an NAcond that equals, or nearly equals, the NAobj.

Under optimum circumstances, the light source and condenser should be focused for Köhler 
illumination (Fig. 4) to minimize flare and to improve the homogeneity of field illumination. 
Alternately, image brightness, especially in the middle of the field, can be maximized by critical 
illumination where the condenser is somewhat defocused from Köhler illumination to produce an 
image of the source rather than the field diaphragm superimposed on the specimen. Either mode of 
illumination can yield resolution approximately as given by Eq. (2).

The aperture function of the microscope can become nonuniform, or limited, for a number of 
reasons. These include misalignment between the objective and condenser lenses; misalignment of 
the condenser iris (relative to the condenser lens elements); misalignment of the illuminator and 
condenser axes; tilted objective or condenser lenses or lens elements; nonuniform illumination of the 
condenser aperture; limited source size; nonuniform intensity distribution in the source; and improper 
choice, or focusing, of the condenser or source collector. Whether intentional or accidental, these con-
ditions can reduce the effective NAcond and/or induce oblique illumination, thus sacrificing resolution 
and image quality. An improvement, using a single optical fiber light scrambler, which allows the filling 
of the full condenser aperture with uniform illumination and little loss of field brightness (especially 
when using concentrated arc lamps) was introduced by Ellis18 (also see Figs. 3-13, 3-14 in Ref. 2).

Epi-Illumination In the epi-illumination mode, a beam splitter, part-aperture-filling mirror, 
or wavelength-discriminating dichromatic (unfortunately often called dichroic) mirror, placed 
behind the objective lens diverts the illuminating beam (originating from a light source placed in 
the side arm of the microscope) into the objective lens, which also acts as the condenser (Fig. 6).19

Alternatively, a second set of lenses and a beam-diverting mirror (both of whose centers are bored 
out and are arranged coaxially around the objective lens) can provide a larger NA-illuminating 
beam, much as in dark field illumination in the transillumination mode.

FIGURE 6 Schematic of epi-illuminating light path. The rotatable 
set of filter cubes with excitation filters, dichromatic mirrors, and bar-
rier filters matched to specific fluorochromes are used in epifluorescence 
microscopy.19
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This latter approach limits the maximum NA of the objective lens to around 1.25, but has the 
advantage that the illuminating beam traverses a path completely isolated from the image-forming 
beam. When the two beams do pass through the same objective lens, as is the case with most epi-
illuminating systems, the lens elements must be carefully designed (by appropriate choice of cur-
vature and use of highly efficient antireflection coating) to reduce hot spots and flare introduced by 
(multiple) reflection at the lens surfaces. Modern microscope objectives for metallurgical and indus-
trial epi-illuminating systems in particular are designed to meet these qualities. In addition, circular 
polarizers (linear polarizer plus /4 wave plate) and appropriate stops are used to further exclude 
light reflected from the surfaces of lens elements, cover glass, and the like. For epi-illumination 
fluorescence microscopy, dichromatic beam splitters, and barrier filters can reduce background con-
tamination that arises from the exciting beam to less than one part in 104.

Orthoscopic versus Conoscopic Imaging The common mode of observation through a microscope 
is by orthoscopic observation of the focused image. For certain specific applications, particularly 
with polarizing microscopes, examination of the aperture plane, or conoscopic observation, sheds 
valuable complementary information.

Conoscopic observation can be made either by replacing the regular ocular with a telescope that 
brings the aperture plane into focus or by inserting a Bertrand lens (that serves as a telescope objec-
tive) in front of a regular ocular. Conversely, one can observe the aperture plane simply by remov-
ing the ocular and looking down the microscope body tube (in the absence of a Bertrand lens) or 
by examining the Ramsden disk above the ocular with a magnifier. Levoy and Oldenbourg used a 
microlens array for generating a hybrid image that consists of an array of small conoscopic images, 
each sampling a different object area.20,21

The polar coordinates of each point in the aperture plane, that is the radius r and azimuth angle 
 are related to the rays traversing the specimen by: r  sin  and  azimuth orientation of the ray 

projected onto the aperture plane (Fig. 7). Thus, conoscopic observation provides a plane projection 
of all of the rays traversing the specimen in three-dimensional space. For specimens, such as single 
crystal flakes or polished mineral sections in which a single crystal is illuminated (optically isolated) 

FIGURE 7 Parallel rays with inclination 
and azimuth orientation  traversing the speci-
men plane, and focused by the objective lens at a 
point with radius r and same azimuth angle  in 
the aperture plane.
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by closing down the field diaphragm, the conoscopic image reveals whether the crystal is uniaxial 
or biaxial, its optic axis angle and directions, as well as sign and strength of birefringence and other 
anisotropic or optically active properties of the crystal.22

Conoscopic observation also reveals several attributes of the condenser aperture plane and its 
conjugate planes (e.g., in Köhler illumination, the plane of the condenser iris diaphragm and the 
illuminating source). Thus, conoscopy can be used for checking the size, homogeneity, and alignment 
of the illuminating light source as well as the size and alignment of the condenser iris diaphragm and 
phase-contrast annulus (located at the front focal plane of the condenser) relative to the objective exit 
pupil or the phase ring (located at the back focal plane of the objective). It also reveals the state of 
extinction in polarized light and interference-contrast microscopy and provides a visual estimate of 
the aperture transfer function for the particular optical components and settings that are used.

The aperture plane of the microscope is also the Fourier plane of the image, so that diffraction 
introduced by periodic textures in the specimen can be visualized in the aperture plane by cono-
scopic observation. Depending on the NA of the objective and the spatial period in the specimen, 
the pattern of diffraction up to many higher orders can be visualized in the aperture plane when the 
condenser iris is closed down to illuminate the specimen with a parallel beam of light. Closing down 
the condenser iris restricts the zero-order light to a small area in the aperture plane and higher-
order diffraction maxima produce additional images of the diaphragm displaced in the directions of 
the periodic texture in the specimen. 

Microscope Lenses, Aberrations

Objective Lenses With few exceptions, microscope objective lenses are designed to form a diffraction-
limited image in a specific image plane that is located at a fixed distance from the objective lens (or from 
the tube lens in the case of an infinity-focus system). The field of view is often quite limited, and the 
front element of the objective is placed close to the specimen with which it must lie in optical contact 
through a medium of defined refractive index n, usually air (n  1, dry objectives), water (n  1.33, water 
immersion objectives), oil (n  1.52, oil immersion objectives) or other high refractive index media.

Depending on the degree of correction, objectives are generally classified into achromats, 
fluorites, and apochromats with a plan designation added to lenses with low curvature of field and 
distortion (Table 1). Some of these characteristics are inscribed on the objective lens barrel, such 
as Plan Apo 60/1.40 oil 160/0.17, meaning 60 power/1.40 NA Plan Apochromatic objective lens 
designed to be used with oil immersion between the objective front element and the specimen, cov-
ered by an 0.17-mm-thick coverslip, and used at a 160-mm mechanical tube length. Another exam-
ple might be Epiplan-Neofluar 50 /0.85 /0, which translates to Plan “Fluorite” objective designed 
for epi-illumination (i.e., surface illumination of specimen through the objective lens rather than 
through a separate condenser) with a 50  magnification and 0.85 NA to be used in air (i.e., without 
added immersion medium between the objective front element and coverslip or specimen), with no 
coverslip, and an (optical) tube length of infinity. “Infinity-corrected” objectives require the use of 

TABLE 1 Objective Lens Types and Corrections

Type Spherical Chromatic Flatness

Achromat  2 No
F-achromat  2 Improved
Neofluar 3 < 3 No
Plan-neofluar 3 < 3 Yes
Plan apochromat 4 > 4 Yes

 corrected for two wavelengths at two specific aperture angles.
2  corrected for blue and red (broad range of visible spectrum).
3  corrected for blue, green, and red (full range of visible spectrum).
4  corrected for dark blue, blue, green, and red.
Source: Zeiss publication #41-9048/83.
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a designated tube lens to eliminate residual aberrations and to bring the rays to focus into the image 
plane. Several other codes are inscribed or color-coded on microscope objectives (Tables 2 and 3).

Older style objective lenses are designed to be used with a specified group of oculars or tube 
lenses that are placed at specific distances in order to remove residual errors. For example, compen-
sation oculars were used in conjunction with apochromatic and other high-NA objectives to elimi-
nate lateral chromatic aberration and improve flatness of field. However, modern style objectives 
together with their tube lenses are typically fully corrected so as not to require additional chromatic 
or other type corrections.

Coverslip Correction For objective lenses with large NAs, the optical properties and thicknesses 
of the media lying between its front element and the specimen critically affect the calculations 

TABLE 2 Common Abbreviations Designating Objective Lens Types

DIC, NIC Differential (Nomarski) interference contrast

L, LL, LD, LWD, ELWD, ULWD Long working distance (extra-) (ultra-)

FL, FLUOR, NEOFLUOR, FLUOTAR With corrections as with “fluorite” objectives but no longer 
implies the inclusion of fluorite elements

PHASE, PHACO, PC, PH 1, 2, 3, etc. Phase contrast, using phase condenser annulus 1, 2, 3, etc.

DL, DM, PLL, PL, PM, PH, NL, NM, NH Phase contrast: dark low, dark medium, positive low low, low, 
medium, high contrast (regions with higher refractive index 
appear darker); negative low, medium, high contrast (regions 
with higher refractive index appear lighter)

PL, PLAN; EF Flat field; extended field (larger field of view but not as high as 
with PLAN, achromats unless otherwise desginated)

PLAN APO Flat field apochromat

NPL Normal field of view plan

P, PO, POL Low birefringence, for polarized light

UV UV transmitting (down to approx. 340 nm), for UV-excited 
epifluorescence

ULTRAFLUAR Fluorite objective for imaging down to approx. 250 nm in UV as 
well as in the visible range

CORR, W/CORR With correction collar

I, IRIS, W/IRIS Adjustable NA, with iris diaphragm built into back focal plane

M Metallographic

NC, NCG No coverslip

EPI Surface illumination (specimen illuminated through objective 
lens), as contrasted to dia- or transillumination

BD, HD For use in bright or darkfield (hell, dunkel)

CF Chrome-free (Nikon: objective independently corrected 
longitudinal chromatic aberrations at specified tube length)

ICS Infinity color-corrected system (Carl Zeiss: objective lens 
designed for infinity focus with lateral and longitudinal 
chromatic aberrations corrected in conjunction with a specified 
tube lens)

OIL, HI, H; WATER, W; GLY Oil immersion, Homogeneous immersion, water immersion, 
glycerol immersion

U, UT Designed to be used with universal stage (magnification/NA 
applies for use with glass hemisphere; divide both values by 
1.51 when hemisphere is not used)

DI; MI; TI Michelson Interferometry: noncontact; multiple-beam (Tollanski)

ICT; ICR Interference contrast: in transillumination; in reflected light
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needed to satisfy the aplanatic and sine conditions and otherwise to correct for image aberrations. 
For homogeneous immersion objectives (that are designed to be used with the refractive indices 
and dispersion of the immersion oil, coverslip, and medium imbibing the specimen, all matched to 
that of the objective lens front element), the calculation is straightforward since all the media can be 
considered an extension of the front lens element.

However, with nonimmersion objectives, the cover glass can become a source of chromatic aber-
ration, which is worse the larger the dispersion and the greater the thickness of the cover glass. The 
spherical aberration is also proportional to the thickness of the cover glass. In designing objectives 
not to be used with homogeneous immersion, one assumes the presence of a standard cover glass 
and other specific optical media between the front lens element and the specimen. As one departs 
from these designated conditions, spherical aberration (and also coma) increases with the NA of the 
lens, since the difference between the tangent and sine of the angle of incidence is responsible for 
departure from the needed sine condition.

It should also be noted that oil immersion objectives fail to provide full correction, or full NA, 
when the specimen is mounted in an imbibing medium with a different refractive index, for exam-
ple aqueous media, even with the objective and cover glass properly oil-contacted to each other. 
With such an arrangement, the diffraction image can degrade noticeably as one focuses into the 
specimen by as little as a few micrometers.23 Special water immersion objectives (e.g., Nikon Plan 
Apo 60 /1.2 NA and short-wavelength transmitting Fluor 40 /1.0 NA, both with collar to correct 
coverslip thickness deviation from 0.17 mm) overcome such aberrations, even when the specimen is 
imaged through an aqueous medium of 200-μm thickness.

For lenses that are designed to be used with a standard coverslip of 0.17-mm thickness (and nD
1.515), departure from standard thickness is not overly critical for objectives with NA of 0.4 or less. 
However, for high-NA, nonhomogeneous immersion lenses, the problem becomes especially critical 
so that even a few micrometers’ departure of the cover glass thickness degrades the image with high-
dry objectvies (i.e., nonimmersion objectives with high NA) of NA above 0.8 (Fig. 8).24 To compensate 
for such error, well-corrected, high-dry objectives are equipped with correction collars that adjust the 
spacing of their intermediate lens elements according to the thickness of the cover glass. Likewise, 
objective lenses that are made to be viewed through layers of silicon or plastic, or of different immer-
sion media (e.g., water/glycerol/oil immersion lenses), are equipped with correction collars.

The use of objective lenses with correction collars does, however, demand that the observer is 
experienced and alert enough to reset the collar using appropriate image criteria. Also, the focus tends 
to shift, and the image may wander, during adjustment of the correction collar. Figure 9 shows an 

TABLE 3 Color-Coded Rings on Microscope Objectives

Color code (narrow colored ring located near the specimen end of objective)

Black Oil immersion
Orange Glycerol immersion
White Water immersion
Red Special

Magnification color code (narrow band located further away from specimen 
than immersion code)

Color Magnification

Black 1, 1.25, 1.5
Brown 2, 2.5
Red 4, 5
Yellow 10
Green 16, 20
Turquoise blue 25, 32
Light blue 40, 50
Cobalt (dark) blue 60, 63
White (cream) 100 and higher
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FIGURE 8 Calculated maximum intensity in the image of a point object 
versus the deviation of the coverglass thickness from the ideal thickness.24

G1 G2

(a)

G3

G1 G2

(b)

G3

FIGURE 9 High-dry objective lens (60 /0.7 NA) equipped with 
a correction collar for (a) focusing at the surface or (b) through plane 
glass of up to 1.5-mm thickness. The lens group G2 is moved forward 
to enhance the spherical and chromatic correction by G1 and G2 when 
focused on the surface, while it is moving backward to compensate for 
the presence of the glass layer when focusing deeper through the glass.24

(U.S. Patent 4666256.)



MICROSCOPES  28.13

example of a 60/0.7 objective lens equipped with a correction collar for focusing at the surface or 
through a cover glass of up to 1.5-mm thickness without altering the focal setting of the lens.

Tube Lengths and Tube Lenses for Which Microscope Objectives Are Corrected For finite-focused 
“biological” objective lenses, most manufacturers had standardized the mechanical tube length to 
160 mm. More recently most manufacturers have switched to infinity focus for their biomedical and 
metallurgical microscopes.

For infinity-focused objective lenses, the rays emanating from a given object point are paral-
lel between the objective and tube lens. Since the physical distance (Dp, Fig. 3) and optical path 
length between the objective and tube lens are not critical, optical plane-parallel components, such 
as compensators, analyzers, and beam splitters, can be inserted in this space without altering the 
objective’s corrections. The tube lens focuses the parallel rays onto the intermediate image plane.

The magnification of an infinity-focused objective lens is calculated by dividing the focal length of 
the tube lens (also called reference focal length) by the focal length of the objective lens. The reference 
focal lengths adopted by several manufacturers are listed in Table 4.

Working Distance Microscope objectives are generally designed with a short free working distance, 
that is the distance from the front element of the objective lens to the surface of the cover glass or, 
in the case of lenses that are designed to be used without cover glass, to the specimen surface. For 
some applications, however, a long free working distance is indispensable, and special objectives are 
designed for such use despite the difficulty involved in achieving large numerical apertures and the 
needed degree of correction.

Field Size, Distortion The diameter of the field in a microscope is expressed by the field-of-view 
number, or simply field number, which is the diameter of the field in millimeters measured in the 
intermediate image plane. The field size in the object plane is obviously the field number divided 
by the magnification of the objective. While the field number is often limited by the magnification 
and field stop of the ocular, there is clearly a limit that is also imposed by the design of the objective 
lens. In early microscope objectives, the maximum usable field diameter tended to be about 18 mm 
or considerably less, but with modern plan apochromats and other special flat field objectives, 
the maximum usable field can be as large as 28 mm or more. The maximum useful field number of 
objective lenses, while available from the manufacturers, is unfortunately not commonly listed in 
microscope catalogs. Acknowledging that these figures depend on proper combination with specific 
tube lenses and oculars, we should encourage listing of such data together with, for example, UV 
transmission characteristics (e.g., as the wavelength at which the transmission drops to 50 percent, 
or some other agreed upon fraction).

Design of Modern Microscope Objectives Unlike earlier objective lenses in which the reduction of 
secondary chromatic aberration or curvature of field were not stressed, modern microscope objectives 
that do correct for these errors over a wide field tend to be very complex. Here we shall examine two 
examples, the first a 60/1.40 Plan Apochromat oil-immersion lens from Nikon (Fig. 10).24

Starting with the hyperhemisphere at the front end (left side of Fig. 10) of the objective, this 
aplanatic element is designed to fulfill Abbe’s sine condition in order to minimize off-axis spheri-
cal aberration and coma, while providing approximately half the total magnifying power of the 
objective (Fig. 11). In earlier designs, the hyperhemisphere has been made with as small a radius 

TABLE 4 Reference Focal Lengths for Infinity-
Focused Objective Lenses

Leica 200 mm B, M
Olympus 180 mm B, M
Carl Zeiss 164.5 mm B, M
Nikon 200 mm B, M

B  biological, M  metallurgical.
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as possible in order to maximize its magnifying power and to minimize its spherical and chro-
matic aberrations, since these aberrations increase proportionally with the focal length of the lens. 
Modern demands for larger field size and reduced curvature of field, however, introduce a conflict-
ing requirement, namely, the need to maintain as large a radius as practical in order to minimize the 
hyperhemisphere’s contribution to the Petzval sum (the algebraic sum of the positive and negative 
curvatures multiplied by the refractive indices of the lens elements).25 The hyperhemisphere in these 
Plan Apochromats is made with a high-index, low-dispersion material to compensate for the greater 
radius. Additionally, a negative meniscus is generated in the front surface of the hyperhemisphere 
to which is cemented a minute, plano-convex lens. The negative curvature in the hyperhemisphere 
contributes to the reduction of the Petzval sum. At the same time the minute plano-convex lens 
protects the material of the hyperhemisphere which is less resistant to weathering. Index matching 
between the minute plano-convex lens and immersion oil eliminates or minimizes the refraction 
and reflection at the lens-oil interface and provides maximum transmission of the all-important 
high-NA rays into the objective lens. The index matching also reduces the influence of manufacturing 
errors of this minute lens element on the performance of the objective.

FIGURE 10 Design of Nikon Plan Apochromat oil-immersion objec-
tive with 60  magnification and 1.40 NA.24

FIGURE 11 Aplanatic condition of the hyperhemisphere placed at the front end of an 
oil-immersion objective. The front lens has the same refractive index as the coverglass and 
immersion oil. The aplanatic condition describes the necessary relationship between refrac-
tive index n, distance d between object and spherical surface, and radius r of the spherical 
surface, in order to make all rays emanating from an object point on the axis leave the hemi-
spherical surface after refraction without introducing spherical aberration. According to the 
sine condition, the magnification  has to be constant for all angles . On the right, the small 
amount of longitudinal spherical aberration and chromatic deviation due to dispersion from 
the ideal focus point of the hyperhemisphere is shown for different wavelengths ( C  656 
nm, d  588 nm, F  486 nm, g  436 nm). Abscissa: longitudinal deviation on lens axis. 
Ordinate: numerical aperture from 0 (lens axis) to 1.4 NA.24

NA = 1
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The low-dispersion-glass singlet behind the aplanatic hyperhemisphere further reduces the 
cone angle of the rays entering the doublets that follow, allowing these and the subsequent lenses 
to concentrate on correcting axial and lateral chromatic aberration as well as curvature of field. 
These errors, as well as residual spherical aberrations, are corrected by inclusion of low-dispersion 
positive and high-dispersion negative lens elements, use of thick-lens elements, appropriate place-
ment of positive and negative lens curvatures, and through extensive ray tracing. Near the exit pupil, 
the height of the ray paths through the concave surfaces is reduced in order to generate additional 
negative values that minimize the Petzval sum (to complement the inadequate negative contribution 
made by the concave surface in the hyperhemisphere), so that field flatness can be improved without 
overly reducing the objective lens’ magnifying power or adding to its spherical aberration.

In reality, the Petzval sum of the objective as a whole is made somewhat negative in order to 
compensate for the inevitable positive Petzval sum contributed by the ocular. Thus, the image at the 
intermediate image surface, especially the sagittal surface of modern objectives, bows away from the 
object. Unless the image area is relatively small, one needs to use specified oculars in order to attain 
maximum field flatness combined with optimum correction otherwise.

Unlike earlier objective lenses whose design did not appreciably vary from one manufacturer to 
another, the design of lenses in modern microscope objectives can vary considerably. For example, 
compare the Nikon Chrome Free 60/1.4 Plan Apo objective discussed above and the Zeiss Infinity 
Color-Corrected Systems 63/1.4 Plan Apo objective in Fig. 12. Both are excellent, state-of-the-art 
lenses. But in addition to general design philosophy, including the decision to avoid or to use tube 
lenses to achieve full chromatic corrections, other factors such as choice of optical elements with 
special dispersion characteristics; degrees of UV transmission; freedom from fluorescence, birefrin-
gence, aging loss of transmittance, and the like all affect the arrangement of choice.

While a modern research-grade microscope is corrected to keep the aberrations from spreading the 
image of a point source beyond the Airy disk, geometrical distortion of the image formed by micro-
scope objectives tends not to be as well-corrected (e.g., compared to photographic objectives at the 
same picture angle). Thus, in objectives for biological use, pincushion distortions of up to 1 percent 
may be present. However, in objectives that are designed for imaging semiconductors, the distortion 
may be as low as 0.1 percent and they can be considered nearly distortion-free. To reduce stray light 
and flare, modern microscope objectives contain lens elements with carefully tuned, antireflection 
coatings, and lens curvatures are selected to minimize ghost images arising from multiple reflections.

Given the sophisticated design to provide a wide flat field, with spherical aberrations corrected 
over a broad wavelength range, and with low longitudinal as well as chromatic aberrations corrected 
at high NA, the aberration curves of these modern microscope objectives no longer remain simple 
cubic curves, but turn into complex combinations of higher-order curves (Fig. 13).

FIGURE 12 Carl Zeiss Infinity Color-Corrected 63/1.4 Plan Apo objective. 
(Courtesy of E. Keller, Carl Zeiss, N.Y.)
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Oculars As conventionally illustrated, the ocular in a light microscope further magnifies the 
primary (intermediate) image formed by the objective lens (Figs. 2 and 3). The ocular can also 
be viewed as the front elements of a macro (relay) lens system made up of the ocular plus the 
refractive elements of the viewer’s eye (Fig. 4a) or a video or photographic camera lens. Special 
video and photo oculars combine these functions of the ocular plus the video or photo lenses into 
single units.

The intermediate image plane (that lies between the lenses in many ocular types or precedes the 
lens elements in the Ramsden-type oculars), or its conjugate plane is used to place field-limiting 
stops, iris diaphragms, reticles, micrometer scales, comparator beam splitters, and the like that need 
to appear in the same focal plane as the specimen.

The Ramsden disk, the exit pupil of the objective lens imaged by the ocular, generally appears 
a short distance above the ocular (Fig. 4b). Since the Ramsden disk should lie in the observer’s 
pupil, special high-eye-point oculars are provided for the benefit of observers wearing corrective 
eye glasses (especially those for astigmatism). High-eye-point oculars are also used for inserting 
beam-deviating devices (such as the scanning mirrors in laser scanning confocal microscopes) or 
aperture-modifying devices (such as aperture occluders for stereo viewing through single objective 
binocular microscopes2).

The magnification of an ocular is defined as 25 cm divided by the ocular’s focal length. On 
the ocular, the magnification and field number are inscribed (e.g., as 10 /20, meaning 10-power 
or 25-mm focal length with a field of view of 20-mm diameter), together with manufacturer’s 
name and special attributes of the ocular such as chromatic-aberration-free (CF), wide-field 
(W, WF, EWF), plan (P, Pl), compensation (Comp, C, K), high-eye-point (H, picture of glasses), 
with cross hair and orientation stub for crystallography (pol), projection (pro), photographic 
(photo), video (TV), and the like. Also, special oculars provide larger and flatter fields of view 
(designated wide field, extra wide field, plan, periplan, hyperplan, etc., some with field numbers 
ranging up to 28 mm).

FIGURE 13 Spherical aberration curves for spectral lines 
(C, d, F, and g) of a highly corrected modern microscope objective 
with a high numerical aperture.24 Ordinate: numerical aperture 
from 0 (lens axis) to NA  0.95. Abscissa: longitudinal deviation 
of focal distance on lens axis indicated in millimeters. (The depth 
of focus for a 40 /0.95 NA apochromatic objective is approxi-
mately 1 mm which corresponds to a depth of field of 0.6 um in 
specimen space.)
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Compared to microscope objective lenses, fewer design standards have been adopted and fewer 
standard abbreviations are used to designate the performance or function of the oculars. Two 
physical parameters of the oculars have, however, become more or less standardized. The outside 
diameter of the ocular is either 23.2 mm or 30.0 mm, and the reference distance, or the parafocal-
izing distance of the ocular (i.e., the location of the intermediate image plane below the flange of the 
ocular) is now generally set to 10 mm.

In the past, oculars with wide ranges of incremental magnifications were provided to adjust the 
total image magnification of the microscope, but this practice is now replaced by the use of much 
fewer, better-corrected oculars coupled with a telan magnification changer in the microscope’s body 
tube, or a zoom projection ocular.

Factors affecting choice of ocular focal length and magnification include optimizing the micro-
scope total magnification and image resolution to match the MTF characteristics of the detector and 
to adjust the available field coverage. In video-enhanced fluorescence, differential interference con-
trast, polarizing, dark field, and the like microscopy, the total magnification often needs to be raised 
beyond the classical “empty magnification” limit, in order to be able to visualize minute objects 
whose diameters lie well below the limit of microscope resolution.2 However, depending on the 
MTF characteristics, sensitivity, and total pixels available in the sensor, conflicts may arise between 
the need for greater magnification, image brightness, and field coverage. To optimize the total image 
magnification, fine trimming of the ocular magnification may be needed, in addition to choosing 
an objective with the appropriate magnification and NA-to-magnification ratio. Zoom oculars are 
especially suited for fine-tuning the magnification to optimize S/N ratio and image integration time 
in video microscopy. For very low light level images, for example in photon-counting imaging, ocu-
lar magnifications of less than one may be needed in order to sufficiently elevate the S/N ratio, albeit 
at a sacrifice to spatial resolution.

In addition to adjusting image magnification and placing the microscope’s exit pupil at a 
convenient location, the ocular compensates for the aberrations that have not been adequately 
corrected in the objective and tube lens. Huygens oculars combined with lower-power achromatic 
objectives, and compensating oculars combined with higher-NA achromatic and apochromatic 
objectives, correct for lateral chromatic aberration. Some higher-NA achromatic objectives are 
purposely designed to provide residual aberrations (including field curvature) that are similar to 
those in the apochromats, so that the same compensation oculars can be used to compensate for 
both types of objectives.

Modern objectives used with the appropriate tube lens are sufficiently well corrected to require 
minimum or no compensatory correction by the oculars. In research-grade microscopes, the 
image projected by the objective and tube lens is often recorded directly by placing an electronic 
image sensor into the intermediate image plane. With objectives that are designed to produce 
well-corrected intermediate images, oculars themselves are made independently free of lateral and 
longitudinal chromatic and some spherical aberrations. Regardless of the degree of correction 
relegated to the ocular, modern microscopes provide images with color corrections, fields of view, 
and flatness of field much superior to earlier models.

Resolution

Airy Disk and Lateral Resolution Given a perfect objective lens and an infinitely small point of 
light residing in the specimen plane, the image formed in the intermediate image plane by the 
objective lens is not another infinitely small point, but a diffraction image with a finite spread 
(Fig. 14a). This Airy diffraction image is the Fraunhofer diffraction pattern formed by the exit 
pupil of the objective lens from which spherical waves converge to the focal point. The distribu-
tion of irradiance of the diffraction image (Fig. 14b)26 is given by an expression containing the 
first-order Bessel function J1(v):

I v I
J v

v
( )

( )
0

1

2
2

(3)
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with v proportional to the diffraction angle. If the irradiance is calculated as a function of radius 
measured from the center of the Airy diffraction pattern located in the intermediate image plane, v
takes on the form

v
M

ri2
NA

(4)

where NA is the numerical aperture and M the magnification of the objective lens,  the wavelength 
of light, and ri the radial distances measured in the intermediate image plane. If we express ri as a 
distance ro in the object plane, with ri M ro, we obtain the more familiar relationship:

v ro2
NA

(5)

The central bright disk of the diffraction image is known as the Airy disk, and its radius (the radius 
from the central peak to the first minimum of the diffraction image) in object plane units is given by

rAiry NA
0 61. (6)

When there exist two equally bright, self-luminous points of light separated by a small distance d in 
object space, that is the specimen plane, their diffraction images lie side by side in the image plane. 
The sum of the two diffraction images, assuming the two points of light were mutually incoherent, 
appears as in Fig. 15a. As d becomes smaller so that the first minimum of one diffraction image 
overlaps with the central maximum of the neighboring diffraction image (d rAiry, Fig. 15b),26

their sum (measured along the axis joining the two maxima) still contains a dip of 26.5 percent of 
the peak intensities that signals the twoness of the source points (the Rayleigh criterion). Once d
becomes less than this distance, the two diffraction images rapidly pass a stage where instead of a 
small dip, their sum shows a flat peak (the Sparrow criterion) at d  0.78 rAiry, and thereafter the sum 
of the diffraction images appears essentially indistinguishable from one arising from a single point 
source instead of two. In other words, we can no longer resolve the image of the two points once 
they are closer than the Rayleigh criterion, and we loose all cues of the twoness at spacings below 
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FIGURE 14 Airy pattern of circular aperture: image (a) of central Airy disk, first dark ring and 
subsidiary maximum and graph (b) of radial intensity distribution.26
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the Sparrow criterion. Since the diameter of the Airy diffraction image is governed by NAobj and the 
wavelength of the image-forming light , this resolution limit normally cannot be exceeded (for 
exceptions, see the section “Beyond the Diffraction Limit” later in this chapter).

The consideration given here for two-point sources of light applies equally well to two absorbing 
dots, assuming that they were illuminated incoherently. (Note, however, that it may, in fact, be dif-
ficult or impossible to illuminate the two dots totally incoherently since their spacing may approach 
the diameter of the diffraction image of the illuminating wave. For the influence of the condenser 
NA on resolution in transillumination, refer to the section on “Transillumination” earlier in this 
chapter. Also, the contrast of the diffraction images of the individual absorbing dots diminishes rap-
idly as their diameters are decreased, since the geometrical size of such small dots would occupy a 
decreasing fraction of the diameter of their diffraction images. For further detail see.)27

The image of an infinitely small point or line thus acquires a diameter equal to that of the Airy 
disk when the total magnification of the image becomes sufficiently large so that we can actually 
perceive the diameter of the Airy disk. In classical microscopy, such a large magnification was deemed 
useless and defined as empty magnification. The situation is, however, quite different when one is 
visualizing objects smaller than the limit of resolution with video microscopy. The location of the 
Airy disk can, in fact, be established with very high precision. Distances between lines that are clearly 
isolated from each other can, therefore be measured to a precision much greater than the resolution 
limit of the microscope. Also, minute movements of nanometer or even Ångstrom steps have been 
measured with video-enhanced light microscopy using the center of gravity of the highly magnified 
diffraction image of marker particles (see “Beyond the Diffraction Limit” later in this chapter).

Three-Dimensional Diffraction Pattern, Axial Resolution, Depth of Focus, Depth of Field The 
two-dimensional Airy pattern that is formed in the image plane of a point object is, in fact, a cross 
section of a three-dimensional pattern that extends along the optical axis of the microscope. As 
one focuses an objective lens for short distances above and below exact focus, the brightness of the 
central spot periodically oscillates between bright and dark as its absolute intensity also diminishes. 
Simultaneously, the diameters of the outer rings expand, both events taking place symmetrically 
above and below the plane of focus in an aberration-free system (Fig. 16).28

FIGURE 15 Overlapping Airy patterns: (a) clearly resolved and (b) center of Airy pat-
terns separated by d  rAiry, Rayleigh criterion.26
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Figure 17 shows an isophote (lines of equal brightness) of the longitudinal section of this three-
dimensional diffraction image. The relationship between v and the lateral distance ri is given by Eq. (4). 
The axial distance zi, oriented perpendicular to the image plane, is related to u by

u
M

zi2
2NA

2
(7)

In the graph we recognize at v  1.22  (and u  0, focal plane) the first minimum of the Airy pat-
tern which we discussed in the preceding section. The intensity distribution along u perpendicular 
to the focal plane has its first minima at u  ±4  and v  0( z1 in Fig. 17a). To find the actual 
extent of the three-dimensional diffraction pattern near the intermediate plane of the microscope, 
we express the dimensionless variables v and u of Fig. 17c as actual distances in image space.

FIGURE 16 The evolution of the diffraction image of a circular aperture with 
differing planes of focus in an aberration-free system.28
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FIGURE 17 (a) Axial intensity distribution of irradiance near focal point;23 (b) meridional 
section through diffraction pattern near focal point of a point source of light focused by lens 
with a uniform circular aperture;23 and (c) contour plot (isophote) of the same cross section as in 
(b).17,23,29 The three-dimensional diffraction pattern is obtained by rotating the meridional sec-
tion around the optic axis. The three-dimensional diffraction pattern is also called the intensity 
point spread function.
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The first minimum (u  4 ) is at a distance z1  (2M2 )/NA2. To transfer distance zi in image 
space to distance zo in object space, we use the relationship zi zoM

2/n. (Note that for small axial 
distances, to a close approximation, the axial magnification is the square of the lateral magnifica-
tion M divided by the refractive index n of the object medium.) The distance from the center of the 
three-dimensional diffraction pattern to the first axial minimum in object space is then given by:

z
n

min 2
2NA

(8)

zmin corresponds to the distance by which we have to raise the microscope objective in order to 
change from exact focus of a small pinhole to the first intensity minimum in the center of the 
observed diffraction pattern (see Fig. 16).

In correspondence to the lateral resolution limit, which is taken as the Airy disk radius rAiry [Eq. (6)], 
we can use zmin as a measure of the limit of axial resolution of microscope optics. Note that the ratio 
of axial to lateral resolution (zmin/rAiry  3.28 n/NA) is inversely proportional to the numerical aperture 
of the objective lens.

The axial resolution of the microscope is closely related to the depth of focus, which is the axial 
depth on both sides of the image plane within which the image remains acceptably sharp (e.g., when 
a focusing screen at the image plane is displaced axially without moving the object or objective). 
The depth of focus D is usually defined as 1/4 of the axial distance between the first minima above 
and below focus of the diffraction image of a small pinhole. In the intermediate image plane, this 
distance is equal to z1/2, with z1 defined earlier. The depth of focus defined by z1 is the diffraction-
limited, or physical, depth of focus.

A second and sometimes dominating contribution to the total depth of focus derives from the 
lateral resolution of the detector used to capture the image. This geometric depth of focus depends 
on the detector resolution and the geometric shape of the light cone converging to the image point. 
If the detector is placed in the intermediate image plane of an objective with magnification M and 
numerical aperture NA, the geometrical depth of focus D is given by

D
M

e
NA

(9)

with e the smallest distance resolved by the detector (e is measured on the detector’s face plate).
The depth in specimen space that appears to be in focus within the image, without readjustment 

of the microscope focus, is the depth of field (unfortunately often also called the depth of focus). To 
derive expressions for the depth of field, we can apply the same arguments as outlined above for the 
depth of focus. Instead of moving the image plane in and out of focus, we keep the image plane in 
the ideal focus position and move the small pinhole in object space. Axial distances in object space, 
however, are a factor n/M2 smaller than corresponding distances in image space. Therefore, we apply 
this factor to the expression for the geometrical depth of focus [Eq. (9)] and add the physical depth 
of field [derived from Eq. (8)] for the total depth of field dtot:

d
n n

M
etot 2NA NA

(10)

Notice that the diffraction-limited depth of field shrinks inversely proportionally with the square of 
the NA, while the lateral limit of resolution is reduced inversely proportionally to the first power 
of the NA. Thus, the axial resolution and thinness of optical sections that can be attained are affected 
by the system NA much more so than is the lateral resolution of the microscope.

These values for the depth of field, and the distribution of intensities in the three-dimensional 
diffraction pattern, are calculated for incoherently illuminated (or emitting) point sources (i.e., 
NAcond  NAobj). In general, the depth of field increases, up to a factor of 2, as the coherence of 
illumination increases (i.e., as NAcond  0). However, the three-dimensional point spread function 
with partially coherent illumination can depart in complex ways from that so far discussed when 
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the aperture function is not uniform. In a number of phase-based, contrast-generating modes of 
microscopy, the depth of field may turn out to be unexpectedly shallower than that predicted from 
Eq. (9) and may yield extremely thin optical sections.30

Beyond the Diffraction Limit In recent years the microscope’s limit of resolution, as stated in 
Eq. (1), has been exceeded by different means, relying either on optical, photophysical, photo-
chemical, or computational methods, or a combination thereof. Here we briefly refer to some 
of the schemes that rely on photonic properties of the specimen, while later in this chapter we 
will touch on schemes that rely on far-field optical methods, such as structured illumination and 
confocal microscopy.

Driven by the success of fluorescence microscopy in biomedical research and the need for higher 
resolution to understand the molecular machinery of the living cell, several methods were devised 
that exploit the photophysical and photochemical nature of fluorescent molecules. Most of these 
“super-resolving” methods take advantage of the fact that the position of a single fluorescent mol-
ecule (or point of light) can be determined to a much higher precision than the optical resolution 
of an imaging system. While the resolution of a traditional microscope, as described by Eq. (1), typi-
cally does not exceed 200 nm, the same microscope can be used to determine the position of a single 
fluorophore to 20 nm or better, depending on the number of photons captured and the mobility of 
the fluorescent molecule.31,32 Here we briefly describe those methods that have become prominent 
and are recognized by their acronyms. For a more detailed discussion we refer to a number of excel-
lent reviews33–36 and to the original publications cited below.

Fluorescence imaging with one nanometer accuracy (FIONA) was introduced to measure the 
detailed stepping motion of a molecular motor (myosin V) along an immobilized track (filamentous 
actin).37 The detailed, hand-over-hand motion was determined by measuring the location of a single 
fluorophore, attached to the motor-protein, with a spatial resolution of 1.5 nm and a temporal reso-
lution of 0.5 s. The challenge here included the recording of a sufficient number of photons, within 
the 0.5 s time window, to localize a single fluorophore that also needed to be photostable enough to 
allow its observation over several minutes.

Photo-activated localization microscopy (PALM) was introduced to localize immobilized fluo-
rophores at nanometer spatial resolution.38 To this end, fluorophores are used that have to be pho-
toactivated to become fluorescent. A low dose of typically short wavelength light activates a small, 
random subset of fluorophores that are spaced far enough for their point spread functions to not 
overlap. The locations of activated fluorophores are measured at nanometer precision and during 
the measurement process fluorophores become irreversibly bleached. The cycle of low-dose acti-
vation and subsequent position measurements is repeated many times and the aggregate position 
information from all cycles is assembled into a single, super-resolution image.

Stochastic optical reconstruction microscopy (STORM) uses similar principles as PALM but 
exploits photo-switchable fluorophores that can be turned on and off by exposing them to light 
pulses of differing wavelengths.39

Single molecule high-resolution colocalization (SHREC) takes advantage of separating the fluo-
rescence of two or more single fluorophores by their spectral characteristics.40 By using chromati-
cally differing fluorescent molecules as probes, the probes can approach each other closer than the 
Rayleigh limit and still be distinguished. The technique is typically used to measure intramolecular 
distances of 10 nm or more in doubly labeled macromolecules or molecular complexes.

Fluorescence resonance energy transfer or Förster resonance energy transfer (FRET) refers to a 
photophysical effect that transfers the excitation energy of a fluorescent donor molecule to a nearby 
fluorescent acceptor molecule. The appropriately chosen donor and acceptor molecules have to be 
less than 10 nm apart for the radiationless transfer to be effective. For example, FRET can be used to 
analyze the conformational change of a protein that brings two molecular subunits closer together 
or farther apart, resulting in enhanced or reduced acceptor fluorescence, respectively. Hence, FRET 
is a ratiometric method that allows measurement of the internal distance in the molecular frame 
rather than in the laboratory frame, which makes it largely immune to instrumental noise and drift. 
While regular FRET reveals the population distributions of interdye distances, single molecule FRET 
is used to monitor single molecules for long stretches of time.41,42
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Stimulated emission depletion (STED) provides a means of point spread function engineering 
to improve the optical resolution beyond the diffraction limit. A typical single-point scanning STED 
microscope uses a regularly focused excitation beam that is superimposed by a doughnut-shaped 
STED beam that instantly quenches excited molecules at the periphery of the excitation spot, thus con-
fining fluorescence emission to the doughnut zero. Saturated quenching results in a fluorescent spot far 
below diffraction whose scanning across the sample yields a subdiffraction-resolution image.34,43

All the above methods rely on fluorescence microscopy. A general approach to improve resolu-
tion was proposed by Harris44 who argued that the diffraction pattern in the Fourier plane can be 
extrapolated beyond the spatial frequency that is cut off by the NA of the objective lens—in other 
words, that the limit of resolution can be exceeded by computational extrapolation of the diffraction 
orders as long as the specimen is illuminated in a narrowly limited field.

The field of illumination can be reduced beyond that defined by diffraction by placing the min-
ute exit aperture of a tapered light guide or a minute pinhole closely adjacent to the specimen. By 
scanning such an aperture relative to the specimen, one obtains a proximity-scanned image whose 
resolution is no longer limited by the diffraction orders captured by the objective lens. Instead, only 
the size of the scanning pinhole and its proximity to the specimen limit the resolution.45

For nonoptical microscopes, for example in scanning tunneling, force, and other proximity- 
scanning microscopes, resolution down to atomic dimensions can be obtained on images that reflect 
topological, electronic, ionic, and mechanical properties of the specimen surface.46 In these types 
of proximity-scanning microscopes, a fine-tipped probe, mounted on a piezoelectric transducer 
that provides finely controlled x, y, and z displacements of the probe, interacts with specific proper-
ties of the specimen surface (alternatively, the probe may be fixed and the sample mounted to the 
transducer). The resulting interaction signal is detected and fed back to the z-axis transducer, which 
generally induces the probe tip to rise and fall with the surface contour (that reflects the particular 
electrical or mechanical property of the surface) as the probe is scanned in a raster fashion along 
the x and y directions over an area several tens of angstroms to several tens of micrometers wide. A 
highly magnified contour image of the atomic or molecular lattices is generated on a monitor that 
displays the z signal as a function of the x, y position.

28.4 CONTRAST AND IMAGING MODES

In microscopy, the generation of adequate and meaningful contrast is as important as providing 
the needed resolution. Many specimens are practically transparent and differ from their surround-
ings only by slight changes in refractive index, absorbance, reflectance, or optical anisotropy such as 
birefringence and dichroism. Most objects that are black or show clear color when reasonably thick 
become transparent or colorless when their thickness is reduced to a few tenths of a micrometer 
(since absorption varies exponentially with thickness). Additionally, in microscopy the specimen is 
often illuminated using a highly convergent beam to maximize resolution, thus reducing shadows 
and other contrast cues that aid detection of objects in macroscopic imaging. Furthermore, contrast 
is reduced at high spatial frequency because of an inherent fall-off of the contrast transfer function.

Many modes of contrast generation are used in microscopy partly to overcome these limitations 
and partly to measure, or detect, selected optical characteristics of the specimen. Thus, in addition to 
simply raising contrast to make an object visible, the introduction of contrast that reflects a specific 
physical or chemical characteristic of the specimen may impart particularly important information.

As a quantitative measure of expected contrast generation as functions of spatial frequencies, the 
modulation transfer functions (MTFs, of sinusoidal gratings) can be calculated theoretically for var-
ious contrast-generating modes assuming ideal lenses (Figs. 18 and 19),47,48 or on the basis of mea-
sured point or line spread functions.49 Alternatively, the contrast transfer function (CTF, of square 
wave gratings) can be measured directly using test targets made by electron lithography (Fig. 20).50

The rapid advance of electronic imaging and digital image processing in recent years made the 
quantitative evaluation of microscope images much more practical. Many computerized image-
processing platforms provide standard functions to characterize the morphology and geometric 
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FIGURE 18 Modulation transfer function (MTF) curves 
for microscope lenses, calculated for periodic specimens in 
focus: (a) each curve represents a different numerical aper-
ture (NA), which is the same for the objective and condenser 
lens in these curves. (b) These MTF curves all represent an 
objective lens of 1.32 NA, but with different condenser NAs; 
the conditions are otherwise the same as in (a). (Courtesy of 
Dr. G. W. Ellis.)2

relationship between image features. In addition, specialized systems that provide computer control 
of microscope components and settings in conjunction with quantitative image analysis provide 
advanced imaging modalities and new contrast modes that can no longer be viewed through the 
ocular, but can only be displayed on a computer screen. These hybrid contrast modes usually build 
on a traditional imaging mode and extend it through exact control and quantitation of image con-
tent. Therefore, in the following section we will present traditional imaging modes and give brief 
descriptions of related hybrid contrast modes.

Bright Field

Whether on an upright or inverted microscope, bright field is the prototypic illumination mode in 
microscopy (Fig. 4). In transmission bright-field illumination, image contrast commonly arises from 
absorption by stained objects, pigments, metal particles, etc., that possess exceptionally high extinction 
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FIGURE 19 Modulation transfer function curves calculated for different 
modes of microscope contrast generation. A  bright field, B  phase contrast, 
C  differential interference contrast, and D  single-sideband edge enhance-
ment. The curves are plotted with their peak modulation normalized to 1.0. 
(Courtesy of Dr. G. W. Ellis.)2

FIGURE 20 Measured contrast transfer values plotted as a function of 
spatial period in Airy disk diameter units, to normalize the values measured 
with different lenses and wavelengths. Data points were obtained with a laser 
spot scan microscope operating in the confocal reflection mode (solid points)
and the nonconfocal transmission mode (circles). Curves are calculated con-
trast transfer values for the coherent confocal and the incoherent nonconfocal 
imaging mode.50
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coefficients (Fig. 21). Transparent objects only generate very weak contrast based on Becke lines 
introduced by refraction at object boundaries that are slightly out of focus. (The dark Becke line, 
which is used for immersion determination of refractive index of particles,51 surrounds, or lies just 
inside, a boundary with a sharp gradient of refractive index when the boundary is slightly above or 
below focus. The Becke line disappears altogether when a thin boundary is exactly in focus.)

To gain additional contrast, especially in bright-field microscopy, the condenser NA is com-
monly reduced by closing down its iris diaphragm. This practice results in loss of resolution and 
superimposition of diffraction rings, Becke lines, and other undesirable optical effects originating 
from regions of the specimen that are not exactly in focus. The various modes of optical contrast 
enhancement discussed in following sections obviate this limitation and provide images with 
improved lateral and axial resolution as well as improved contrast.

Before the advent of phase-contrast and differential interference-contrast (DIC) microscopy, oblique 
illumination (that can be attained by off-centering a partially closed condenser iris diaphragm) was used 
to generate contrast of transparent objects. While this particular approach suffered from the problems 
listed in the previous paragraph, combination of oblique illumination at large condenser NA with video 
contrast enhancement proves to be an effective method for generating DIC-like thin optical sections.52

Recently, the optical phenomenon that leads to the formation of the Becke line has been explored 
more thoroughly, from a theoretical and an experimental point of view.53–56 The goal is to retrieve 
phase information from images of objects that affect the phase of transmitted or reflected light, but 
not necessarily its amplitude. Usually, phase information is gained from specially designed setups 
that enhance interference effects between light waves that have different optical paths through the 
specimen. The following sections on phase-contrast, polarized light, and interference microscopy 
give examples of these specialized imaging modes. Streibl,53 on the other hand, proposed to use a 
regular bright field microscope and the phenomenon of the Becke line to retrieve phase information 
of weakly scattering objects. He presented a theoretical framework based on the intensity transport 
equation and demonstrated the enhancement of phase objects based on images that were recorded 
at slightly different focus positions. Nugent and collaborators55–57 have refined the theory and devel-
oped a practical implementation called quantitative phase microscopy.

FIGURE 21 Siemens star, line and dot patterns that are part of the MBL/NNF test target imaged in bright 
field using transmitted light and a 60 /1.4 NA Plan Apo oil immersion objective lens (Nikon Inc.) and matching 
condenser. The dark background is due to the low transmittance of the 50-nm-thick aluminum film. Bright fea-
tures were edged into the film using electron lithography. Numbers above and below bar gratings show period 
in microns. The Siemens star consists of 36 wedge pairs, with an outer diameter of 75 μm. The period near the 
outer edge is 6.5 μm, decreasing continuously toward the center. The smallest period is 0.1 μm near the inner 
black disk, which has a diameter of 1.2 μm.
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In reflection bright-field microscopy, the image is formed by the reflected or backscattered light 
of the specimen, which is illuminated through the objective (see the section “Epi-illumination”). 
Reflection contrast is used primarily for opaque and thick samples, especially for metals and semi-
conductors. Reflection contrast is also finding increasing applications in autoradiography and in 
correlative light and electron microscopy for detecting the distribution of colloidal gold particles 
that are conjugated to antibodies and other selective indicators.

Total frustrated reflection microscopy58 generates contrast due to objects that are present in a 
low-refractive-index medium located within the evanescent wave that extends over a distance only 
a fraction of a wavelength from the microscope coverslip surface. Regions of the specimen whose 
refractive index differs from its milieu produce interference fringes whose contrast sensitively 
reflects the refractive index difference and distance from the coverslip surface.

Dark Field

In dark field microscopy the illuminating beam is prevented from entering the image-forming ray 
paths. The background of the field is dark, and only light scattered by optical discontinuities in 
the specimen is designed to appear in the image as bright lines or dots. Thus, contrast can become 
extremely high, and diffraction images can be detected as bright points or lines even when the 
diameter of the scattering object becomes vanishingly small compared to the microscope’s limit of 
resolution.8,27,30,59

For small objects that are not obscured by other light-scattering particles (a condition rather 
difficult to achieve) and are free in a fluid substrate, Brownian motion of the object and the time 
constant and sensitivity of the detector, rather than the object’s absolute size, are more likely to set a 
lower limit to the size of the object that can be clearly visualized with dark field microscopy.

Phase-Contrast and Other Aperture-Modifying 
Contrast Modes

Microscopic objects, distinguished from their surround only by a difference of refractive index, lose 
their Becke line and disappear altogether when brought exactly into focus. Nevertheless, light dif-
fracted by the small object still suffers a /4 phase shift relative to the undeviated background wave 
by the very act of being scattered (by a nonabsorbing object; the phase shift upon scattering by an 
absorbing object is /2).60 As shown in Fig. 22, light s scattered by the small object and the undevi-
ated light u, both originating from a common small point A of the condenser aperture, traverse dif-
ferent regions of the objective lens aperture. At the objective aperture, the undeviated light traverses 
only point B that is conjugate to A, while the scattered light passes those regions of the aperture 
defined by the spatial periods of the object.

Since light waves s and u arise from the same points in object space but traverse regions that 
are spatially separated in the objective aperture plane, a phase plate introduced in that plane can be 
used to modify the relative phase and amplitudes of those two waves. The phase plate is configured 
to subtract (or add) a /4 phase to u relative to s so as to introduce a /2 (or zero) phase difference 
between the two and, in addition, to reduce the amplitude of the u wave so that it approximates that 
of the s wave. Thus, when the two waves come to focus together in the image plane, they interfere 
destructively or constructively to produce a darker or brighter in-focus image of the small, transpar-
ent object against a dark gray background (positive and negative phase contrast).

As generally implemented, an annulus replaces the pinhole in the condenser aperture, and a 
complementary phase ring in the objective aperture plane or its conjugates (covering a somewhat 
larger area than the undisturbed image of the annulus in order to handle the u waves displaced 
by out-of-focus irregularities in the specimen) replaces the simple phase disk. Figure 23 shows an
example of a phase object that was imaged using phase-contrast optics as described above. The object is
a Siemens star that was etched into a thin layer of silica and imaged using a Olympus 100 /1.3NA 
Plan Apo objective and condenser with complementary phase rings.
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In the Polanret system, the phase retardation and effective absorbance of the phase ring can be 
modified by use of polarization optical components so that the optical path difference of a moderately 
small object can be measured by seeking the darkest setting of the object.61,62 Similarly, the Polanret 
system can be used to accentuate color or low contrast due to slight absorption by the object.

Several modes of microscopy, including phase contrast, take advantage of the facts that (1) the 
front condenser and back objective lens apertures are conjugate planes, (2) the illuminating beam 
arising out of each point of the condenser aperture is variously deviated by the specimen structure 
according to its spatial frequency, and (3) the back objective aperture is the Fourier plane of the 
specimen plane.

In Hoffman modulation contrast microscopy, the condenser aperture contains a slit mask with 
the slit placed toward the edge of the aperture. The objective aperture holds a second, comple-
mentary mask, called a modulator, which consists of two parts (Fig. 24).63 The dark part covers the 
smaller sector to one side of the projected slit and the gray part covers the slit area. The objective 
mask thus attenuates the zero-order light undeviated by the specimen and removes the light dif-
fracted by the specimen to one side of the zero-order beam. The light deviated by specimen struc-
ture away from the dark sector of the mask passes unchanged, while the light deviated toward the 
dark sector is blocked. Thus, the image becomes shadow-cast, similar in appearance to DIC that 
reflects gradients of refractive indices or of optical path differences in the specimen.

Developed by Gordon W. Ellis in 197864 single-sideband edge enhancement microscopy (SSEE) 
generates directional image contrast of phase objects, with greater modulation transfer than by 
phase-contrast or DIC microscopy at high spatial frequencies (Fig. 19). SSEE is also capable of gen-
erating exceptionally thin optical sections (Fig. 25). (In 1988, Ellis also devised aperture-scanning 
phase-contrast microscopy, a method which generates full resolution phase-contrast images with 
virtually no halos;65 see Fig. 2-47 in Ref. 2.)

FIGURE 22 Optical principle of phase-contrast 
microscopy illustrating the phase relationships between 
waves of the light s scattered by the specimen and the 
undeviated light u (see text).
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SSEE takes advantage of the fact that illuminated by a condenser whose aperture is half masked, 
the two side bands (shifted by specimen diffraction to the left and right) are both phase shifted 
relative to the illuminating light (carrier wave) by /4, but with opposite signs. (As shown by 
Zernike,60 the image contrast of a phase grating viewed with a bright field microscope disappears 
at exact focus, since the two side bands are in opposite phase.)

In the SSEE microscope, contrast is generated by interference between the attenuated carrier 
wave and one of the side bands (Fig. 26). Alternately, both side bands may be used with one of the 
side bands phase shifted by /2 (and appropriately attenuated) relative to the other. Interference 
between the attenuated carrier wave and the side band generates a high-contrast, high-resolution, 
in-focus image of the specimen’s phase boundaries proportional to their orientation perpendicular 
to the straight edge of the half mask in the condenser. 

FIGURE 23 Siemens star etched into 90-nm-thick SiO2 layer and imaged 
with phase contrast. The dimensions of the star pattern are the same as the one 
described in Fig. 21. The wedges that were etched away appear bright in this 
image. Light that has passed through the etched wedges is phase-advanced with 
respect to light that has passed through the rest of the pattern. (The SiO2 layer 
was deposited on a 170-μm-thick coverglass, etched using electron lithography, 
and mounted on a microscope slide, leaving an air gap between slide and silica 
layer; 100 /1.3NA oil immersion Plan Apo objective.) The intensity profile along 
a horizontal line near the top illustrates deviations from the step function of the 
corresponding optical path difference. The accentuation of the edge contrast in 
this profile is an artifact of the phase-contrast method commonly implemented 
in form of an illumination ring in the condenser aperture and a complementary 
phase ring in the objective aperture.
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FIGURE 24 Schematic diagram indi-
cating regions of the modulator that modify 
light from phase gradients in the object to 
enhance contrast.63

FIGURE 25 Optical section of the silicate shell of a diatom (Surirella gemma) observed 
with SSEE. The tiny pores are in focus over only a highly limited region of the shell due to the 
highly effective optical sectioning capability of SSEE. (Image copied and cropped from Fig. 2-50 in 
Ref. 2. Original image courtesy of Dr. Gordon W. Ellis, University of Pennsylvania.)
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FIGURE 26 Schematic diagram of the edge enhancement single-sideband 
microscope (SSEE).64
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In SSEE, polarizing elements placed after the specimen attenuate and phase shift the carrier wave 
relative to the side bands (Fig. 26). Thus by adjusting the azimuth of the polarizer immediately fol-
lowing the specimen, one can capture exceptionally high resolution images reflecting the birefrin-
gence distribution and axes in the specimen (Fig. 27). Also, since the specimen is not sandwiched 
between crossed polarizers, image contrast in SSEE is not affected by birefringence of the specimen 
chamber as is the case with polarization and DIC microscopy.

Interference

While all modes of contrast generation in light microscopy in fact depend on interference phenom-
ena, a group of instruments is nevertheless known separately as interference microscopes. These 
microscopes form part of an interferometer, or contain an interferometer, that allows direct mea-
surements of optical path difference (or generation of contrast) based on interference between the 
waves passing the specimen and a reference wave. The interferometric and polarization microscopy 
techniques, which are considered below, generate complementary phase images of the specimen: 
distribution of refractive index and distribution of refractive index anisotropy, respectively. 

Many interference microscopes employ amplitude-dividing beam splitters for setting up the 
two-beam interference scheme. Instead of amplitude division, division of wavefront can also be used 
to create both beam paths, especially when using a laser light source. Among the many designs that 
have been proposed and manufactured, amplitude division interference microscopes can be classi-
fied into three major groups: (1) the two-arm type with two separate beam paths, one containing 
the sample, the other for controlling the reference beam, with separate microscope optics in both 
arms or microscope optics only in the sample arm; (2) the beam-shearing type in which the refer-
ence wave is generated by displacing a beam laterally within the field of a single microscope; and 

FIGURE 27 Gyres of chromosomes in live sperm head of cave cricket. The images were obtained 
with SSEE using selected e-vectors as described in the text. Besides rectified polarization microscopy 
(Fig. 36), few contrast-generating methods besides SSEE have been able to distinctly display these 
chromosome gyres. (Image copied from Fig. 2-51 in Ref. 2. Original image courtesy of Dr. Gordon W. 
Ellis, University of Pennsylvania.)
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(3) the dual focus type in which the reference wave is focused to a different level than the specimen 
plane, again in a single microscope. All schemes can be implemented in transmission or reflection 
mode.66,67

The image in an interferometric microscope is created by the superposition of a probe and a 
reference beam. We denote the intensities in the probe and reference beam as Ip and Ir, and their 
respective phases as p and r . The intensity that results from superimposing the probe and reference 
beam can be expressed as described in17,26

I I I I Ip r pr p r p r2| | cos( ) (11)

where | |pr  is the modulus of the normalized mutual coherence function or the degree of coher-
ence between the probe and reference image. This equation does not include polarization effects and 
assumes that both interfering beams have the same polarization. For quasi-monochromatic light the 
optical path difference (OPD) that is associated with the phase angle difference is given by

OPD
2

( )p r
(12)

where  is the center wavelength.
We note that in Eq. (11) I can stand for an array of intensity values representing the pixels of a 

digital image that was recorded with an appropriate camera attached to an interference microscope.
When using white light, each wavelength produces its own interference picture. White light 

interference pictures are only observed when the optical path difference between the probe and the 
reference beam is less than a few wavelengths. Let’s assume that in a uniform image region the OPD 
is zero, hence the interference of each wavelength is constructive and the recorded spectrum in that 
region is white. However, if the OPD is finite, the wavelength that is twice the OPD is suppressed due 
to destructive interference and therefore that wavelength is missing from the spectrum recorded in 
the region. When systematically increasing the OPD from 0 to 2000 nm, for example, a characteristic 
change in spectrum is observed in the region, transitioning from white (OPD = 0), to blue (OPD = 
300 nm), to yellow (OPD = 600 nm), to indigo (OPD = 900 nm), to a greenish yellow (OPD = 1600 
nm), and bluish grey (OPD = 2000 nm).68 As the OPD increases above 1000 nm, colors become less 
saturated and approach white again for OPDs of several thousand nanometers.

In some interferometric schemes there is an additional achromatic half-wave phase shift, for 
instance, due to polarization transformation, reflection, and the like. In this case, a zero optical path 
difference produces destructive interference at all wavelengths and a uniform image region with 
zero OPD appears black. For small OPDs (< 200 nm) the destructive interference is relaxed for all 
wavelengths simultaneously and the brightness of the region increases, first with a white spectral 
composition. With increasing OPD, the region becomes colored due to constructive and destructive
interference of specific wavelengths leading to the following color sequence: light yellow (OPD = 300 
nm), indigo (OPD = 600 nm), yellow (OPD = 900 nm), grey blue (OPD = 1600 nm), and whitish grey
(OPD = 2000 nm). This sequence of interference colors is reproduced in the Michel-Lévy chart (see
Fig. 28), which is used to rapidly estimate the OPD based on the observed color of a uniform region. 
When the OPD increases above 2000 nm, the interference colors turn white and can no longer be 
used to reliably determine the OPD.

Both interference schemes are implemented. The scheme with destructive interference at 0 OPD 
is more sensitive (higher signal to noise ratio) for measuring small OPDs, because the background 
of 0 OPD is black (ideally) and doesn’t carry any shot noise, while the white light intensity of con-
structively interfering beams is subject to shot noise.

When using monochromatic light, the optical path difference between the probe and refer-
ence beam can be determined precisely by measuring the intensity in a uniform image region [see 
Eq. (11)]. However, measurements of OPDs that are larger than the wavelength  of the mono-
chromatic light result in an apparent OPD that is between 0 and . This ambiguity is often referred 
to as the order of the OPD. The order can be determined by making measurements with two or 
more wavelengths.
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Further improvement in measuring the OPD can be achieved by controlling the phase of the 
reference beam. For example, we can measure the probe plus reference image four times, each 
time changing the phase of the reference image by a quarter wavelength. According to Eqs. (11) 
and (12) we find

I I I I Ip r pr p r2
2

| | OPDcos

I I I I Ip r pr p r2
2

| | OPDsin

I I I I Ip r pr p r2
2

| | OPDcos

I I I I Ip r pr p r2
2

| | OPDsin

(13)

Assuming all other factors constant we can compute the OPD based on the four intensity mea-
surements:

OPD
2

4 2

1 3

arctan
I I

I I
(14)

The last expression relates the OPD to a ratio of intensity differences. Hence, the OPD is mea-
sured independent of an intensity offset (because only intensity differences are entered) and inde-
pendent of a gain factor that is common to all four intensity values (because only an intensity ratio 
is entered).

As noted earlier, I1, . . . , I4 can be interpreted as arrays of intensity values representing the pixels 
of four digital images. In this case, the expression for OPD represents an image arithmetic operation 
that generates a map of the spatial variations of the measured optical path differences. This or simi-
lar image-processing schemes can be implemented using various interference microscope designs 
after adding appropriate equipment for electronic imaging and phase control.

Mach-Zehnder Interference Microscope The classical two-arm interference microscope with iden-
tical optics in both arms is the Mach-Zehnder interference microscope as designed by Horn (Leitz of 
Wetzlar) in the 1950s (Fig. 29). The intricate and sturdy design earned it the nickname “Rolls Royce 
of the microscopes,”69 including its cost, which was comparable to that of an electron microscope of 
the time. The microscope, while straightforward in principle, requires close matching of the optics 
in the two interferometer arms and a mechanical design that provides exceptional precision and stabil-
ity. Thus, in addition to using matched pairs of objectives and condensers and inserting a blank slide 
(that is similar to the specimen-containing slide) into the reference arm, one needs to carefully adjust 
the built-in beam deviators, path equalizers, and wedge components to reduce the difference in optical 
path length between the two arms to less than the coherence length of the quasi-monochromatic light. 
(The coherence length of light with a center wavelength  and a bandwidth of  is 2 30/ m
for 550 10nm nm, .) While unfortunately no longer manufactured, this type of microscope 
permits precise interferometric measurements of microscopic objects both in the uniform field mode 
and the fringe displacement mode, and can even be used to generate holograms.2

Linnik Interference Microscope In 1933, V.P. Linnik proposed a two-arm reflective-type interfer-
ence microscope with two matching objectives and a single ocular.70 The optical scheme, also called 
the Linnik microinterferometer, is shown in Fig. 30a. The illumination is split and recombined by 
the same beam splitter before the microscope objective lens where the beam has low divergence. The 
probe beam and reference beam then pass through separate but matching objectives and reflect off 
the specimen and reference mirror, respectively. The objectives can have high NA and short work-
ing distance, but require close matching for efficient interference of the probe and reference beams 
in the common image plane or behind the ocular. Closely matched objectives reduce the influence 



MICROSCOPES  28.37

FIGURE 29 Designed by Horn the Mach-Zehnder-type interference microscope with two complete sets of microscope 
optics, one in each arm of a Mach-Zehnder interferometer.
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FIGURE 30 The Linnik-type interference microscope with two identical objectives, one in each arm.

of chromatic dispersion and other optical aberrations on the interference image. This is essential if a 
broad-band light source is used, because the dispersion and the optical path length must be closely 
matched across the entire useful field in each arm. Linnik type interference microscopes are still 
manufactured by LOMO, Russia.

The original Linnik design can be modified as proposed here by Michael Shribak and shown 
in Fig. 30b. The modification replaces the regular beam splitter with a polarizing one and adds 
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FIGURE 31 The Jamin-Lebedev type interference microscope.

quarter-wave plates to improve sensitivity and to provide a convenient way of measuring the phase. 
Its enhanced features include a rotatable polarizer, which is used to balance the intensities of the 
probe and reference beam. The quarter-wave plates following the beam splitter create circularly 
polarized light, which is reflected by the specimen/reference surface. The reflection induces an inver-
sion of the circularity of the two beams, which causes them to be combined after the beam splitter in 
the arm with the Senarmont compensator and ocular. The compensator consists of a quarter-wave 
plate at azimuth 45° and a rotatable analyzer at azimuth . Image regions with different phase angles 
can be brought to extinction by rotating the analyzer to different angles. The phase difference 
between two regions with extinction angles 1 and 2 is 2 2 1( ). Other compensation schemes 
can be used, including liquid crystal devices, and a camera can be added for quantitative imaging.

Jamin-Lebedev Interference Microscope The first interference microscope was constructed by 
Lebedev in 193071–73 using a beam-shearing design based on the two-beam polarization interfer-
ence scheme introduced by Jamin in 1868.74 The optical scheme of the Jamin-Lebedev interference 
microscope is shown in Fig. 31.

In this instrument, a small plane-parallel plate of calcite is cut at 45° to the optic axis and 
cemented to the front of the objective lens. An identical calcite plate is cemented to the front of the 
condenser, with an additional half-wave plate facing the specimen. The axes of the two calcite plates 
are parallel, and at 45° to the axes of the half-wave plate. The specimen under investigation is placed 
between the half-wave plate and the calcite plate fixed to the objective. The plate fixed to the objective 
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produces the necessary lateral separation between the probe and reference beams in the intermedi-
ate image plane of the microscope. Thanks to the calcite and half-wave plate placed next to the 
condenser, the path difference of the interfering rays does not vary with the inclination of the rays. 
This compensation permits quite large openings of the substage condenser diaphragm.

In the beam-shearing Jamin-Lebedev microscope, the probe and reference beam travel a com-
mon physical path except along the short distance between the two calcite plates. Because of the 
common path many design criteria, including mechanical stability and duplication of optical com-
ponents, can be significantly relaxed in this beam shearing microscope, compared to the dual-arm 
Mach-Zehnder design. The compromise lies in the lateral shear distance between probe and refer-
ence beam, which is limited by the field size and the requirement for telecentric paths for both probe 
and reference beam. Because both, the probe and reference beam pass through the same specimen 
slide, the observer has to be wary of ghost images introduced by the reference beam.

The design shown in Fig. 30 was manufactured in the 1960s by Carl Zeiss, Oberkochen, West 
Germany. The calcite plate next to the objective lens can be slightly rotated to align the shear planes 
of the two calcite plates. An additional calcite plate introduces a bias in the optical path difference 
adjusted by a small tilt of the plate. The microscope comes with three pairs of matched condenser 
and objective lenses, with the objectives designated as 10 /0.22NA, 40 /0.65NA, and 100 /1.0NA Oil. 
Their shear distances are 500, 170, and 50 μm, respectively. Optical path differences of less than one 
wavelength are measured using monochromatic light and a Senarmont compensator. For measuring 
higher path differences, white light and a Michel-Levy chart (Fig. 28) can be used. 

Differential Interference-Contrast Microscope Differential interference-contrast (DIC) microscopy 
is used extensively in materials research and the life sciences for observing microscopic particles 
and structures that are associated with refractive index and thickness changes in the specimen. 
A DIC microscope is a beam-shearing interferometer in which the reference beam is sheared by 
only a small amount, generally by less than the diameter of the Airy disk that is associated with 
the imaging optics. The technique produces a shadow-cast image that displays the local gradients 
of the optical path length. A region of the specimen where the optical path length increases along 
a reference direction appears brighter (or darker), while a region where the optical path length 
decreases appears in reverse contrast. As the gradient of the optical path grows steeper, image 
contrast is increased. Another important feature of the DIC technique is that it produces effective 
optical sectioning. This is particularly obvious when high numerical aperture (NA) objectives are 
used together with high NA condenser illumination. The thin optical section is a consequence of 
the small shear between the interfering beams, which are appreciably separated only in a thin layer 
around the focal plane.

The DIC technique was invented by F. H. Smith in 1947.75,76 He placed between a pair of polariz-
ers one Wollaston prism at the front focal plane of the condenser and a second one in the back focal 
plane of the objective lens (Fig. 32). The first Wollaston prism splits the linearly polarized input 
beam into two orthogonally polarized beams that are separated by a small angle 1. The condenser 
lens converts the angular split in the focal plane into a small spatial shear in the object plane. The 
objective lens joins the two beams again in the back focal plane where the second Wollaston prism 
deviates the beams to form two parallel beams again. While parallel, the two beams are orthogonally 
polarized and therefore cannot interfere. Therefore, a linear analyzer is needed after the second 
Wollaston prism to create a common polarization and to enable the beams to interfere. The interfer-
ence generates the typical relief image representing the optical path gradients in the specimen (see 
inset in Fig. 32). 

The small angular split 1 and 2 in the condenser and objective focal planes are related to the shear 
amount d in the object plane and the focal lengths of the condenser ( fc) and objective ( fob) lenses by

f f dc 1 2ob (15)

This optical configuration creates a polarizing shearing interferometer, by which one visualizes optical 
path gradients of the specimen under investigation.

In conventional medium- to high-NA objective lenses, the back focal plane is located inside the 
lens system and therefore not available for insertion of a Wollaston prism. If the Wollaston prism 



28.40  INSTRUMENTS

FIGURE 32 DIC microscope setup: polarizer at 45° azimuth; WP1: first Wollaston prism at 0° azimuth; 1: splitting angle; fc:
condenser lens focal distance; d: shear amount; : optical path difference introduced by specimen under investigation; : azimuth 
of rotatable stage; fob: objective lens focal distance; WP2: second Wollaston prism at 0° azimuth (the second prism introduces 
bias ); 2: splitting angle; analyzer at 45° azimuth; Wollaston prism can be replaced by Nomarski prism.

is placed far from the back focal plane, the prism produces parallel beams, but the beams are spa-
tially displaced and hence are not recombined. Therefore, the Smith DIC system requires specially 
designed objective lenses that allow the insertion of a Wollaston prism.

In 1952 G. Nomarski proposed a special prism, the Nomarski prism, which simultaneously 
introduced spatial displacement and angular deviation of two orthogonally polarized beams77,78

(see inset in Fig. 31). The prism can therefore be placed outside the objective lens. By using crystal 
wedges with appropriately oriented axes, the Nomarski prism recombines the two beams that were 
separated by the condenser Wollaston prism, as though a regular Wollaston prism were located in 
the back aperture plane of the objective lens. The Nomarski DIC scheme can therefore be used with 
regular high NA microscope objectives.

A DIC image can be modeled as the superposition of one image over an identical copy that is 
displaced by a small amount d and phase shifted by a bias . The intensity distribution I(x, y) of the 
combined image depends on the specimen orientation and varies proportionally with the cosine of 
the angle between the gradients azimuth  and the relative direction of wavefront shear :79

I x y I x y d x y( , ) cos ( ( , ) cos( ( , )
1
2

1
2

0 )) (16)

where I0 is the initial beam intensity, (x, y) and (x, y) are the gradient magnitude and azimuth. 
(For a theoretical framework of DIC imaging see Refs. 8, 79–81.)

Thus, regular DIC techniques show the two-dimensional distribution of optical path or phase 
gradients projected onto the shear direction. It is therefore prudent to examine unknown objects at 
several azimuth orientations.



MICROSCOPES  28.41

Video-enhanced DIC (VE-DIC), in addition to providing images with improved contrast, allows 
the removal of unwanted background signal (such as shading and fixed image noise due to dust 
particles or other imperfections in the optical system) by subtraction of a reference image with no 
specimen.82 Salmon and Tran gave a comprehensive description of the VE-DIC method.83 They 
indicate that the best optical contrast of microscopic, lowly refractile particles can be achieved with 
a bias of 1/15-1/20 the wavelength.

A further increase in sensitivity and sectioning capability was achieved by video-enhanced DIC 
microscopy with retardation modulation.84–87 By switching the polarization of the incident light in 
alternate video frames with a computer-controlled liquid crystal variable retarder, the contrast signal 
is increased by a factor of 2, relative to “standard” video-enhanced DIC. The modulator switches 
image highlights into shadows and vice versa. By subtracting alternate frames, a difference DIC 
image is created in which contrast is doubled while image defects and noise tend to be cancelled.

Recently, Carl Zeiss introduced a “C-DIC” technique for reflective-type microscopes, which 
avoids the need to rotate the specimen. Instead, the new system uses a single, mechanically rotatable 
Nomarski prism that is shared between the illumination and imaging path.88

Even in a transmission-type microscope one can obtain a DIC image using only one Wollaston 
or Nomarski prism placed in the imaging path, if the illumination beam is made spatially coherent.  
Pluta described a DIC setup with a slit condenser diaphragm.8 A similar system is currently manufac-
tured by Carl Zeiss called a “PlasDIC.” In the latter case the specimen is illuminated with unpolarized 
light using a condenser that has a slit in its aperture plane. Only a single polarizer is used and placed 
behind the Nomarski prism that follows the objective. The system is less sensitive to birefringence of 
the specimen, can be used with plastic dishes, and does not require strain-free optics. Disadvantages 
include a reduced illumination intensity caused by the slit (instead of a fully open aperture) and a 
deterioration of the optical sectioning capability.

The contrast in DIC images is proportional to the scalar product between the phase gradient in 
the specimen and the shear generated in the microscope’s prisms. Based on the phase gradient it is 
possible to restore the phase information using computational methods. The restored phase image 
shows the refractive index (dry mass) distribution within a thin layer of the specimen. Compared to 
a conventional phase-contrast image, the DIC-based phase image provides better sectioning due to 
the intrinsic sectioning capability of the DIC method.

The DIC phase image can be obtained by computing the line integral parallel to the shear 
direction.79,89 Other techniques use iterative phase computation,90 noniterative Fourier phase 
integration,91 or nonlinear optimization using hierarchical representations.92 Axelrod et al. used two 
phase-shifted DIC images to reconstruct the phase based on linearized expressions of interference.93

Biggs developed an iterative deconvolution approach for computation of phase images, based on the 
same principles as deconvolution techniques normally used to remove out-of-focus haze.94

Dyson and Mirau Interference Microscopes A third group of interference microscopes, in which 
the reference wave is focused to a different level than the specimen plane, are represented by the 
Dyson and Mirau interference microscopes.

In 1950, J. Dyson designed a double-focus system for transmitted light (Fig. 33a).95 In this sys-
tem, the initial transparent beam-dividing surface is formed on the upper side of the first glass plate 
mounted normally to the optical axis of the microscope immediately beneath the specimen slide. 
The illuminating beam, convergently directed through this upper surface by the substage condenser, 
is then partially reflected back to the lower surface of the plate, which has a small opaquely silvered, 
reflecting central spot. The lower surface of the first plate therefore reflects this second beam back 
through the upper surface of the plate. As a result, the specimen area is illuminated by two beams, 
one of which is focused on the specimen after direct transmission through the plate while the other 
reaches the specimen in a defocused condition due to internal reflection within the plate. A similar
plate between the specimen and the objective lens functions in much the same way, so that the por-
tion of the second defocused beam, which passes directly through it becomes combined with a por-
tion of the first focused beam internally reflected within it.

The image formed by the microscope objective consequently consists of a correctly focused 
image of the specimen area seen in interferometric comparison with a strongly defocused image of it. 
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A glass block with an upper spherical surface, which is fully reflecting apart from a central totally 
transmitting spot is included between the second plate and the objective to allow medium- and high-
power objective lenses to focus through to the specimen. The two plates are made slightly wedge-
shaped so that the optical path difference can be manually adjusted by traversing the condenser 
plate in a direction parallel to the principal section of the wedge across the optical axis of the micro-
scope. This operation varies the effective thickness difference between the two plates and thereby 
controls the optical path difference. By calibrating this movement the optical path difference can be 
determined.

Mirau introduced a single objective reflecting system.96 In this design (Fig. 33b) a flat, semire-
flecting beam-dividing surface is placed midway between the front of the objective and the specimen 
surface. A small central area of the front surface of the objective is silvered to form a miniature mir-
ror, a reflected image of which becomes superimposed on the normal image of the specimen surface 
by virtue of the intervening semireflecting beam divider. To maintain the required degree of optical 
path similarity, the beam-dividing surface is formed on the internal side of one of a pair of identical 
plates, which are cemented together.

Holographic Soon after its invention the laser was employed for holographic imaging in micros-
copy. In the early 1960s, Gordon Ellis built one of the first holographic microscopes.97 He used a 
helium-neon laser as light source and photographic film for recording the hologram. After develop-
ment of the film, the hologram allowed to reconstruct images using a divergent laser beam.

In digital holographic microscopy (DHM), the hologram of interfering wave fronts is recorded 
with an electronic sensor (e.g. CCD chip, Fig. 34)98 and images are digitally reconstructed by a 
computer. A digitized hologram represents a three-dimensional record of the optical features of 
the specimen. Based on a single hologram, several images can be reconstructed that correspond to 
specific focus planes in the specimen. Furthermore, the digital reconstruction allows to simulate 
different contrast modes, such as phase contrast and dark field imaging.99–101 In addition to the 
specimen, the hologram can also contain information on the rest of the optical path, depending on 
the coherence length of the light source. For example, a hologram can provide the opportunity to 
correct for lens aberrations.102

FIGURE 33 (a) Dyson and (b) Mirau’s interference microscope. In (b), the incident light beam, emerging from the objective 
O1, is split in two parts in the semireflective surface. One part is transmitted to the object P and the other is reflected to the refer-
ence area R extending over a small portion of the objective front surface. The wavefronts reflected by R and P are recombined at G
to produce the interference pattern.5



MICROSCOPES  28.43

The digital analysis of a set of holograms, each recorded with a beam that illuminates the sample 
from a different direction, allows to emulate an objective with a larger numerical aperture than actu-
ally employed, leading to a corresponding enhancement in image resolution.103

Optical Coherence Tomography Optical coherence tomography (OCT) is an imaging method that 
performs depth-resolved imaging of various turbid media. At the core of the OCT technique is a 
low-coherence, two-arm interferometer, which works in reflection mode.104,105 The low-coherence 
interferometer is used to select only a small volume named the “coherence gate” that determines the 
depth in the sample from where the back-reflected or back-scattered signal is processed. The depth 
of the coherence gate is defined and controlled by matching the optical path in the probe and refer-
ence interferometer arms. A variable delay line in one of the arms changes the gate position. In addi-
tion to its depth-selectivity feature, the low coherence interferometer is used to “amplify” very weak 
signals back-scattered by the sample.

In OCT, the coherence length is shortened to a distance of several micrometers, thanks to the use 
of a broadband light source. Light of appropriate bandwidth is typically generated by a superlumines-
cent diode or laser with extremely short pulses. The spatial resolution of OCT in the axial direction is 
provided by the coherence gate, which selects signal light only from a cross-sectional volume of thick-
ness defined by the coherence length of the illumination source. Superluminescent diodes typically 
provide 10- to 20-μm axial resolution. Higher resolution can be obtained with ultrashort pulsed lasers.

Interference of the light reflected by the sample and the reference mirror in the interferometer 
arms can occur only when the optical path lengths of the two arms match to within the coherence 
length of the optical source. Depth scanning can be performed in the time- or spectral domain. 
Time-domain OCT systems vary the reference arm path length, inducing changes in the depth from 
which the backscattered light of the sample is detected. In spectral-domain or Fourier-domain OCT, 
the axial signal intensity is calculated based on changes in the interference spectrum. The interfer-
ence between probe and reference beam causes changes in the spectrum which is measured using a 
suitable spectrometer,106 or by rapidly and repeatedly sweeping a narrow line width laser source in a 
mode called swept-source OCT.106–108

FIGURE 34 Optical principle of a holographic microscope. A collimated laser beam is divided by the 
beamsplitter BS1. One beam passes through the specimen and the microscope objective lens and forms the object 
wave. The second beam is the reference wave and is recombined on-axis with the first beam behind the objective 
lens. The interference pattern (hologram) of the object and reference wave is recorded by a CCD camera that 
is located near a conjugate plane of the backfocal plane of the objective lens. Other optical setups are possible, 
including for reflective-type specimens and for using an off-axis interference arrangement.98
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In addition to amplitude and phase, OCT can also be used to analyze changes in polarization of 
the probe beam, revealing the polarization properties (birefringence, dichroism) of selected regions 
inside a turbid medium.109

Optical coherence microscopy (OCM) combines the advantages of confocal microscopy with 
the principles of low-coherence interferometry.104,110,111 High contrast and detection sensitivity 
are achieved via rejection of out-of-focus light, resulting in improved optical sectioning capabili-
ties deep within highly scattering media. Both OCT and OCM usually employ single-mode optical 
fibers for illuminating and collecting light from the sample. However, OCT uses a low NA objective 
lens with an extended depth of field, providing sectioning through coherence only. OCM, on the 
other hand, utilizes a high NA lens, providing sectioning through a combination of coherence and 
confocal effects.

Polarizing

The polarizing microscope (Fig. 35) generally differs from a standard transilluminating micro-
scope by the addition of a polarizer before the condenser; a compensator slot and analyzer 
behind the objective lens; strain-free optics; a graduated, revolving stage; centrable lens mounts; 
cross-hairs in the ocular aligned parallel or at 45° to the polarizer axes; and a focusable Bertrand 
lens that can be inserted for conoscopic observation of interference patterns in the back aperture 
of the objective lens. In addition, the front element of the condenser can be swung into place for 
higher-NA conoscopic observations or swung out for low-NA orthoscopic observations of larger 
field areas.

The same components can be made to fit on an epi-illumination stand for observing opaque 
or reflective-type samples, such as in metallurgy. As outlined earlier, in epi-illumination a beam-
splitting mirror separates the illumination and imaging light paths before the objective lens. In 
polarizing microscopy one needs to pay special attention to the beam-splitting mirror, which typi-
cally introduces polarization aberrations. The aberrations can be significantly reduced by a so-called 
Smith reflector replacing the regular dichromatic or half-shaded mirror. While a regular beam 
splitter reflects the incoming beam with a 45° angle of incidence, the Smith reflector uses two 22.5° 
reflections, first off a full mirror, followed by a second reflection off a 50/50 beam splitter. While 
the number of reflections has doubled, the steeper angle of incidence of 22.5° for both reflections 
reduces the overall polarization distortions compared to a regular beam splitter.

Filter
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Polarization
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Meniscus
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FIGURE 35 Optical train of a polarized light microscope with polarizer, analyzer, and compensator. An optional polar-
ization rectifier can achieve improved sensitivity for low retardance measurements. With an optional Bertrand lens one exam-
ines the objective back focal plane for conoscopic interference figures.
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Equipped with these standard components, the polarizing microscope represents a powerful 
analytical tool for the identification of crystals, fibers, and other optically anisotropic materials.51,68

With standard polarizing microscopes, one can image and measure polarization optical parameters 
on objects which are larger than a few micrometers and which introduce retardance values greater 
than several tens of nanometers. However, as the dimension of the object or magnitude of retar-
dance decrease below these ranges, one needs to use special techniques or devices for detecting and 
measuring birefringence or even for generating a reliable image with high-NA lenses.

The basic ingredients that are needed to detect low levels of birefringence (retardance  10 nm) 
are high-extinction optics, use of low-retardance compensator, light source with high irradiance, 
and high-sensitivity detector (e.g., dark adaptation for visual observation and measurements). 
The need for high extinction optics applies to all components of the polarization optical train, 
which starts and ends with the polarizer and analyzer, respectively, and all optical components 
placed between them. Most manufacturers carry objective and condenser lenses that are either 
made or specially selected for polarized light observations. Such objectives typically carry the 
designation P, PO, or POL on their lens barrel and are designed to induce minimal polarization 
distortions (see Table 2).

Dichroic polarizing filters have replaced calcite prisms (which introduce astigmatism to all but 
collimated rays) as polarizer and analyzer in all but the most demanding applications. Modern 
dichroic polarizers are available with extinction factors better than 1000 and transmission better 
than 90 percent of the light that is fully polarized parallel to the transmission axis. These specs are 
satisfactory for most applications, in part because even POL-designated microscope lenses that are 
placed between the polarizer and analyzer cause polarization distortions that typically reduce the 
extinction of the polarization optical train significantly below 1000. The polarization distortions 
are typically caused by stress birefringence in the lens glass and by the differential transmission and 
phase shift of polarized light that passes through the peripheral regions of highly curved lens sur-
faces.112 The latter distortions result in four bright quadrants separated by a dark cross (the Maltese 
cross) that is seen conoscopically for crossed linear polarizers in the absence of a birefringent speci-
men. These distortions also give rise to anomalous diffraction, based on a four-leaved clover pattern 
replacing the Airy disk or each weakly birefringent image point.113,114

To counteract polarization distortions that occur at high NA lens surfaces, Inoué and colleagues 
have introduced polarization rectifiers115,116 made of a zero power lens with meniscus and a half-
wave plate (Fig. 35). Using rectified optics Inoué and Sato117 were able to reveal the chromosome 
arrangement in living sperm based on high-contrast polarized light images (Fig. 36). Unfortunately, 
rectifiers are commercially not available for modern microscope objectives, which contain many 
lens elements and complex antireflection coatings, making the construction of a rectifier highly spe-
cific to each objective and condenser lens. However, some manufacturers have succeeded better than 
others in selecting antireflection coatings that minimize the polarization distortions. Therefore, it is 
advisable to carefully select microscope optics, testing the polarization performance of similar lenses 
from several manufacturers and even within the product range of the same manufacturer, before 
acquiring critical components.

The compensator is located between the polarizer and analyzer, either before or after the speci-
men. There are several types of compensators (often named after their inventors), which are typi-
cally made of birefringent plates or wedges that can be translated or rotated in fine increments while 
observing the specimen.118 The effect of the compensator on the polarization of the transmitted or 
reflected light either adds to or subtracts from (compensates) the effect caused by the specimen. 
While not absolutely necessary for some basic observations, the compensator (a) can significantly 
improve the detection and visibility of weakly birefringent objects, (b) is required to determine the 
slow and fast axis of specimen birefringence, and (c) is an indispensable tool for the quantitative 
measurement of object birefringence (see, e.g., Ref. 119); for a discussion of the Poincaré sphere as 
an analogue device to compute the effect of compensators, or of birefringent objects in general, on 
polarized light see Ref. 120).

Over the years several schemes have been proposed to automate the measurement process and 
exploit more fully the analytical power of the polarizing microscope. These schemes invariably 
involve the traditional compensator, which is either moved under computer control121 or replaced 
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by electro-optical modulators, such as Pockel-cells,122 Faraday rotators,123 and liquid crystal variable 
retarders.124 These schemes also involve quantitative intensity measurements using electronic light 
detectors, such as photomultipliers or charge-coupled device (CCD) cameras. For strictly quantita-
tive measurements, acquisition and processing algorithms relate measured image intensities and 
compensator settings to optical characteristics of the specimen (see, e.g., Ref. 125). As an example 
of a quantitative, high-resolution birefringence map, we show in Fig. 37 the retardance image of a 
Siemens star that was etched into a thin silica layer.50 The image was recorded using the LC-PolScope 
equipped with a liquid-crystal universal compensator.126

Polarized light microscopy is usually practiced in two, mutually exclusive observation modes, 
called orthoscopy and conoscopy. In orthoscopy, the specimen is viewed directly, while in conoscopy 
the ocular is replaced by a telescope lens that lets one observe conoscopic interference figures formed 
in the back focal plane of the objective lens.68 In conoscopy, the sample birefringence is measured as a 
function of the tilt angle of rays passing through the specimen. Hence, this observation mode reveals 
the inclination angle of the optic axis of a uniformly birefringent specimen region, in addition to the 
azimuth of the optic axis. In orthoscopy, the inclination angle, which is the angle between the optic 
axis and the plane of observation, is usually not evident. Recently, orthoscopic and conoscopic views 
were combined in a single, so-called polarized light field image recorded with a microlens array in the 
intermediate image plane of an LC-PolScope.21

Another approach to measuring the three-dimensional birefringence properties of small bire-
fringent objects uses a so-called universal stage, invented by E.S. Fedorov more than 100 years ago, in 

FIGURE 36 Sperm head observed with a rectified polarizing micro-
scope at three different settings of mica compensator. Detailed distribu-
tion of birefringence in these chromosomes is shown with great clarity 
by immersion in dimethyl sulfoxide (refractive index 1.475). White bars: 
positions of chromosomal “breaks”; probably correspond to the end of 
each chromosome.117



MICROSCOPES  28.47

which the specimen is mounted between two glass hemispheres.22 Rotation of the specimen through 
measured angles around two or more axes allows one to explore the three-dimensional birefringence 
patterns of a small specimen region that is located in the common center of rotation. Alternatives to 
the universal stage include the spindle stage by Bloss128 and motorized goniometric stages by Glazer 
and collaborators.129,130

Instead of rotating the specimen under a stationary optical system, Shribak and Oldenbourg 
implemented a scheme involving a high numerical aperture imaging system and oblique illumination 
with varying tilt angle of the illuminating beam.131 For each angle a high-resolution retardance map 
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FIGURE 37 Siemens star etched into 90-nm-thick SiO2 layer and imaged with the LC-PolScope. The 
dimensions of the star pattern are the same as the one described in Fig. 21. Image brightness is linearly propor-
tional to the retardance measured at all pixel locations. Insets show magnified portions of the pattern with lines 
indicating the measured slow axis orientation. (a) In the central region birefringence is observed all the way to 
the inner black disk. Unresolved wedge tips generate form birefringence with the slow axes parallel to the wedge 
orientations. (b) Edges of a well-resolved wedge portion display edge birefringence, which is composed of two 
birefringent layers flanking each edge.127 (60 /1.4 NA PlanApo oil objective lens and oil condenser with aper-
ture diaphragm reduced to 0.9 NA.)
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is generated representing the polarization properties of the sample as projected along the tilted axis 
of illumination. Four such maps, each generated with a different tilt angle, are combined to produce 
a three-dimensional birefringence map. The system is called Scanned Aperture LC-PolScope and is 
described here in more detail in the section “Aperture Scanning.”

Fluorescence

Fluorescence microscopy is one of the few modes of microscopy in which the illuminating wave-
length differs from that of the emitted. In early designs, the exciting waves were prevented from con-
taminating the fluorescence image by a combination of (1) special illumination (such as the use of a 
dark-field condenser) that prevented the direct rays from entering the objective lens, and (2) the use 
of a barrier filter. The barrier filter absorbs the exciting light while transmitting much of the longer 
fluorescence wavelengths.

Today most fluorescence microscopes (or attachments) use epi-illumination incorporating 
interchangeable filter cubes (after Ploem, see Fig. 6) that are matched to the fluorochrome. The fil-
ter cube is placed in the collimated beam between the objective and a tube lens, at the intersection 
of the microscope axis and that of the excitation illuminator located on a side arm. The objective 
lens serves both as the condenser and the objective. A field diaphragm, and sometimes an aperture 
iris, is placed in the illuminating side arm together with the source collector at appropriate conju-
gate planes. The illuminating beam, commonly emitted by a xenon or mercury arc lamp, is filtered 
through a narrow band path interference filter and reflected down into the objective by a dichro-
matic beam splitter. The fluorescence imaging beam originating from the specimen passes straight 
through the dichromatic beam splitter and associated barrier filter and reaches the ocular or camera. 
Each fluorescence cube contains the appropriate excitation interference filter, dichromatic beam 
splitter, and barrier filter so that they can be switched as a group, for example, to rapidly inspect 
specimens containing (or stained with) multiple fluorochromes.

For fluorochromes requiring shorter-wave UV excitation, objective lenses must be designed 
for greater short-wavelength transmission and low autofluorescence. While aberrations for the 
shorter-UV exciting wavelengths are generally not as well-corrected as for the imaging wavelengths, 
it should be noted that such aberrations, or lack of parfocality, directly affect the resolution and effi-
ciency in the case of confocal fluorescence microscopes.

Also, it should be noted that, while little effort is commonly made to fill the objective aperture 
with the illuminating beam (presumably with the rationale that this should not affect image resolu-
tion because each fluorescent object is emitting incoherently relative to its close neighbor), one finds 
that in practice the fluorescent image is much improved by filling the aperture, for example, by use 
of an optical fiber light scrambler. While the reasons for this improvement are not fully understood, 
one explanation might lie in the more efficient excitation of randomly oriented fluorophores by a 
high-NA illumination beam, which excites even those fluorophores that have their linear transition 
moment aligned parallel to the microscope axis.

While most fluorescence microscopes today use epi-illumination (since epi-illumination pro-
vides advantages such as avoiding loss of excitation by self-absorption by underlying fluorochrome 
layers, generating an image that more closely approximates an intuitive one when reconstructed 
in three dimensions, etc.), improvements in interference filters open up new opportunities for 
fluorescence microscopy using transillumination. New interference filters are available with excep-
tionally high extinction (>105) and sharp cutoff of the excitation wavelengths, coupled with high 
transmission of the pass band. With transillumination, one can more reliably combine fluorescence 
with polarization-based microscopy or carry out polarized fluorescence measurements with greater 
accuracy, since one can avoid the use of dichromatic beam splitters, which tend to be optically 
anisotropic.

Fluorescence microscopy particularly benefits from electronic imaging, especially with the use of 
low-noise, chilled CCDs as imaging detectors, digital computers to enhance and rapidly process the 
signal (such as in ratio imaging), and the new fluorescence-conjugated chemical probes that provide 
incredible sensitivity and selectivity.11,12,132–135
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For imaging specimens that are labeled with more than two or three types of spectrally distinct 
fluorophores, a technique known as spectral imaging is becoming available. Spectral imaging com-
bines spectroscopy and imaging, measuring the spectral composition of the light recorded at each 
point of the image. When spectral imaging is applied to fluorescence microscopy, the filter cube is 
modified as to transmit a broad range of emission wavelengths. A spectrometer placed before the 
detector samples the emission spectrum at appropriate resolution and intervals (channels) for wave-
lengths longer than the excitation wavelength. Spectral imaging systems can either be integrated into 
the microscope (manufacturers include Leica, Nikon, Zeiss) or can be added to an existing stand 
(manufacturers include Cambridge Research and Instrumentation Inc., Lightform Inc.). Datasets 
are typically stored as stacks of images, in which each slice corresponds to a wavelength channel. 
Powerful algorithms reduce an experimental dataset to indicate for each image point the weighted 
contributions of pure fluorophores whose spectra are stored in a library.136,137

Confocal Microscopy

In confocal microscopy, the specimen is scanned point by point either by displacing the specimen 
(stage scanning) or by scanning a minute illuminating spot (beam scanning), generally in a TV-raster 
fashion. In either case, the scanning spot is an Airy disk formed by a high-NA objective lens. An exit 
pinhole is placed conjugate to the spot being scanned so that only the light originating from the 
scanned spot is transmitted through the exit pinhole. Thus, light originating from other regions of 
the specimen or optical system is prevented from reaching the photo detector (Fig. 38).138,139

This optical arrangement reduces blurring of the image from out-of-focus light scattering, fluo-
rescence, and the like, and yields exceptionally clear, thin optical sections. The optical sections can 
then be processed and assembled electronically to yield three-dimensional displays or tilted plane 
projections. Alternatively, the specimen itself can be scanned through a tilted plane (e.g., by imple-
menting a series of x scans with y, z incremented) to yield a section viewed from any desired orienta-
tion, including that normal to the microscope axis.

FIGURE 38 Optical path in simple confocal microscope. The condenser lens C forms 
an image of the first pinhole A onto a confocal spot D in the specimen S. The objective lens 
O forms an image of D into the second (exit) pinhole B which is confocal with D and A.
Another point, such as E in the specimen, would not be focused at A or B, so that the illumi-
nation would be less and, in addition, most of the light g-h scattered from E would not pass 
the exit pinhole. The light reaching the phototube P from E is thus greatly attenuated com-
pared to that from the confocal point D. In addition, the exit pinhole could be made small 
enough to exclude the diffraction rings in the image of D, so that the resolving power of the 
microscope is improved. The phototube provides a signal of the light passing through points 
D1, D2, D3, etc. (not shown), as the specimen is scanned. D1, D2, D3, etc. can lie in a plane nor-
mal to the optical axis of the microscope (as in conventional microscopy), or parallel to it, or 
at any angle defined by the scanning pattern, so that optical sections can be made at angles 
tilted from the conventional image plane. Since, in the stage-scanning system, D is a small 
spot that lies on the axis of the microscope, lenses C and O can be considerably simpler than 
conventional microscope lenses.138,139
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The stage-scanning confocal microscope can yield vastly expanded fields of view. Here the image 
area is not limited by the field of view of the optics but only by the range of movement of the speci-
men and ability of the photo detector and processor to handle the vast information generated at 
high speed. Furthermore, the objective lens needs only to be corrected for a narrow field of view on 
axis.6,138 Laser disk recorders are a form of application that takes advantage of these attributes.

The beam-scanning confocal microscope is typically implemented in the reflective or epi-illumination 
mode. This mode has the advantage that the illuminating beam and the returning light scattered 
back by the sample pass through the same objective lens and beam-steering devices needed for scanning 
the sample. The prototype of a modern beam-scanning confocal microscope uses two galvanometric 
mirrors (one for each dimension of a two-dimensional image) that scan a focused laser beam across 
a stationary sample field. The backscattered light is collected by the objective and bounces off the 
same mirrors which “descan” the returning light before it passes through a stationary beamsplitter 
(to separate the backscattered light from the incoming beam) and a stationary exit pinhole. The exit 
pinhole is located in a conjugate image plane, while the scanning mirrors are located in positions that 
are conjugate to the back focal plane of the objective lens. By (indirectly) placing the mirrors into 
the objective back focal plane, the angular scan of the mirrors is translated into a positional scan of 
the focused laser beam in the specimen. Beam-scanning microscopes typically require additional 
relay optics that project the objective back focal plane into the mirror locations.

The laser-scanning, epi-illuminating confocal microscope was developed into a practical instru-
ment in the late 1980s and immediately adopted with great enthusiasm for fluorescence imaging in 
the life sciences. Because laser beams are typically highly collimated, a source or entrance pinhole is 
commonly omitted in this instrument. The beam splitter combining and separating the illumina-
tion and imaging paths is implemented as a dichroic (also called dichromatic) mirror providing 
high reflectivity at short wavelengths and high transmissivity at longer wavelengths (or vice versa, 
depending on the particular optical design). A whole industry has evolved around designing and 
manufacturing dichromatic mirrors that are appropriate for specific fluorescent dyes and combina-
tion of dyes.

For direct viewing of confocal images in reflective mode a Nipkow disk is used for scanning 
multiple beams across a stationary sample field. The multiple beams originate in many thousands 
of pinholes arranged helically on a modified Nipkow disk that is located in the image plane of the 
objective lens. Thus, a single spinning disk can be made to provide synchronously scanning entrance 
and exit pinholes.140,141 To overcome the considerable light loss associated with the original designs 
by Petrán and Kino, Yokogawa Electric Corp. employed a second, coaxially aligned Nipkow disk 
containing microlenses in its CSU-10 disk confocal scanner (Fig. 39). Each pinhole on the first 
Nipkow disk has a corresponding microlens on the second Nipkow disk that focuses the laser light 
into the pinhole. Thus, the light efficiency is increased by a factor equal to the ratio of the microlens 
to pinhole area. Instead of the 1 percent or so found with conventional Nipkow disk systems, some 
40 to 60 percent of the light impinging on the disk containing the microlenses becomes transmitted 
through the pinholes to illuminate the specimen. Accordingly, the CSU-10 provides a light efficient 
scan unit that permits direct visual viewing of the confocal image, a great advantage when studying 
moving objects such as living cells.142,143

In a confocal microscope, the exit pinhole can be made smaller than the diameter of the Airy dif-
fraction image formed by the objective lens so that the Airy disk is trimmed down to regions near 
its central peak. With this optical arrangement, the unit diffraction pattern that makes up the image 
turns out to be the square of the Airy pattern given in Eq. (2). Thus, the radius at half maximum 
of the central bright area (Airy disk) is reduced by a factor of 1.36. (The radial position of the first 
minimum in both patterns is still equal to rAiry.) The shape of the unit diffraction pattern is thus 
sharpened so that, compared to nonconfocal imaging, two points which radiate incoherently (as 
in fluorescence microscopy) can be expected to approach each other by up to a factor of 2 closer 
to each other before their diffraction patterns encounter the Rayleigh limit. In Fig. 20 the contrast 
transfer characteristics of a confocal microscope in the coherent imaging mode is compared with 
the nonconfocal, incoherent imaging mode using the same lenses. Note that the limiting resolution 
is the same for both imaging modes, while the contrast transfer of the confocal mode increase more 
steeply for increasing grating periods.
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FIGURE 39 Schematic of the Yokogawa CSU-10 confocal 
disk scanner. The expanded and collimated laser beam illuminates 
the upper Nipkow disk containing some 20,000 microlenses. Each 
microlens focuses the laser beam onto its corresponding pinhole, 
thus significantly raising the fraction of the illuminating beam that 
is transmitted by the main Nipkow disk containing the pinhole 
array. The backscattered or fluorescent light is collected by the 
objective lens and focused back onto the Nipkow disk containing 
the array of pinholes, which now act as confocal exit pinholes. A 
beam splitter located between the first and second Nipkow disk 
reflects the light toward a camera. A lens projects an image of the 
pinhole array onto the camera, that acquires a confocal image while 
the Nipkow disk rotates with high speed. After carefully designing 
the array pattern and implementing a precise and vibration-free 
rotation of the Nipkow disks, the confocal disk scanner can produce 
clean, high-resolution images free of fixed pattern noise. In fluores-
cence imaging, the camera can be replaced by an ocular for direct 
viewing of the confocal image. (Schematic provided by Yokogawa 
Electric Corporation.)

Rather than using confocal optics to eliminate image blurring from out-of-focus planes, one can 
achieve the same end by computational deconvolution of a stack of serial optical sections obtained 
by wide field microscopy.49,144,145 While computationally intensive and time consuming, this image 
restoration method allows one to isolate clean optical sections from a stack of images that can be 
acquired at higher speed and higher efficiency than with laser-scanning confocal microscopy and in 
modes of contrast generation typically not accessible to confocal imaging.

Alternatively, thin optical sections can be obtained directly with digital enhanced video micros-
copy using high-NA condenser and objective lenses. Requiring little processing, this approach is 
especially convenient when many stacks of optical sections have to be acquired at high rates in suc-
cession, for example in order to record rapid, three-dimensional changes in microscopic domains 
over time.
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Structured Illumination

The quest for improved resolution beyond the diffraction limit has led to the development of sev-
eral methods that modify the illumination pattern in wide-field microscopy. In standard wide field 
microscopy, the specimen is illuminated using condenser optics that ideally projects a uniform field 
of light into the specimen. In structured illumination setups, however, a finely patterned illuminat-
ing field is projected into the specimen, providing a means for generating optical sections similar to 
confocal microscopy and for improving resolution.

Wilson and colleagues146 first described a simple method of obtaining optical sectioning in a con-
ventional wide-field microscope by projecting a single-spatial-frequency grid pattern onto the object. 
Images taken at three spatial positions of the grid were processed in real time to produce optically 
sectioned images that are substantially similar to those obtained with confocal microscopes. The sec-
tioning capability is achieved by superimposing an illumination pattern that is only in focus at a thin 
section through the specimen, while all other sections of the specimen are illuminated with a more or 
less blurred version of the pattern. The specimen with the superimposed grid pattern is then imaged 
with regular wide field optics focused on the grid pattern inside the specimen. Hence, all image fea-
tures that have the grid pattern imposed on them are located in this specimen section, while image 
features from other sections of the specimen appear nearly uniformly illuminated. For removing those 
out-of-focus features and removing the intruding effect of the illumination pattern on the specimen 
image, three raw sample images are recorded, each with the illumination pattern slightly shifted in 
position. Subsequently, the raw images are computationally combined to generate an optical section of 
the sample without the grid pattern noticeable in the image. The company Carl Zeiss has adopted this 
strategy in its ApoTome slider module for generating optical sections using epi-illumination.

Instead with a regular grid pattern, the sample can also be illuminated with a random speckle 
pattern to provide depth discrimination in thick, fluorescently labeled tissues.147,148 The technique 
consists of illuminating a sample with a sequence of speckle patterns and displaying the differential 
intensity variance of the resultant sequence of fluorescence images. The advantage of speckle illumi-
nation is that it provides diffraction-limited illumination granularity that is highly contrasted even 
in scattering media.

Structured illumination strategies that go beyond optical sections and provide lateral reso-
lution that exceeds the classical diffraction limit by a factor of 2 or more have been devised by 
Gustafsson.149 The sample is illuminated with a series of excitation light patterns, which cause nor-
mally inaccessible high-resolution information to be encoded into the observed image. The recorded 
images are linearly processed to extract the new information and produce a reconstruction with 
twice the normal resolution. Unlike confocal microscopy, the resolution improvement is achieved 
with no need to discard any of the light arriving from the specimen.

In addition to improving the lateral resolution this method can be applied in three dimensions to 
double the axial as well as the lateral resolution, with true optical sectioning.150 A grating is used to 
generate three mutually coherent light beams, which interfere in the specimen to form an illumina-
tion pattern that varies both laterally and axially. The spatially structured excitation intensity causes 
normally unreachable high-resolution information to become encoded into the observed images 
through spatial frequency mixing. This new information is computationally extracted and used to 
generate a three-dimensional reconstruction with twice as high resolution, in all three dimensions, 
as is possible in a conventional wide-field microscope.

Structured illumination is primarily used in fluorescence microscopy, where in principle it is 
capable of unlimited resolution. To achieve unlimited resolution, structured illumination has to 
be combined with a nonlinear dependence of the fluorescence emission rate on the illumination 
intensity.151,152 As an example of this concept, Gustafsson experimentally demonstrated saturated 
structured-illumination microscopy, in which the nonlinearity arises from saturation of the excited 
state. This method can be used in a simple, wide-field (nonscanning) microscope, which uses only 
a single, inexpensive laser, and requires no unusual photophysical properties of the fluorophore. 
The practical resolving power is determined by the signal-to-noise ratio, which in turn is limited by 
photobleaching. Experimental results show that a two-dimensional point resolution of < 50 nm is 
possible on sufficiently bright and photostable samples.
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Light Field

Instead of increasing resolution in a single image plane, it is sometimes desirable to trade lateral 
resolution for axial resolution in a three-dimensional image stack. To this end, Marc Levoy and 
colleagues20 have replaced the regular camera on a standard, wide-field microscope by a camera 
with microlens array, a so-called light field camera or plenoptic camera.153 The array consists of a 
hundred thousand or more microlenses arranged in a square up to the size of the microscope’s field 
number. The array is placed in the intermediate image plane of the objective lens. Behind the array 
the sensor chip is located in the backfocal plane of the microlenses. In other words, the light field 
camera samples the specimen image on a regular grid at intervals that corresponds to the pitch of 
the microlens array. At each grid point the camera captures a small subimage of the objective’s back 
focal plane. Hence, the camera captures a hybrid image of the specimen that is sampled not only in 
space but also along different directions through the specimen.

The raw light field image, when presented to the eye, cannot be directly interpreted since it con-
sists of a multitude of small disk-shaped images (of the objective’s back focal plane) arranged on a 
regular grid. However, a single light field image is used to reconstruct a multitude of conventional 
images of a specimen that is viewed along different directions or focused to different object planes.20

These differing views are all based on a single light field image that was captured by a single camera 
exposure. Hence light field microscopy can be especially useful when imaging three-dimensional 
structures that change rapidly in time, such as living cells and tissues. Based on a single snapshot 
one can reconstruct a stack of optical sections that were all recorded at the same point in time, thus 
avoiding registration problems between sections.

However, the versatility of generating different views and optical sections from a single light 
field image comes at a price. The sacrifice one makes is a reduction in image size. Specifically, if 
each microlens subimage contains N N pixels, then the computed images will contain N 2 fewer 
pixels than if the microlenses were not present. In return, we can compute N2 unique oblique 
views of the specimen, and we can generate a focal stack containing N slices with nonoverlapping 
depths of field.20

The recording of light field images is compatible with several contrast modes, including fluores-
cence and polarized light microscopy. One of the first areas to take advantage of simultaneous opti-
cal sections was fluorescence microscopy of functional neuronal tissues and the recording of three-
dimensional excitation patterns. In polarized light field microscopy, the microlens array generates 
a hybrid image consisting of an array of small conoscopic images, each sampling a different object 
area.21 Analysis of the array of conoscopic images reveals the birefringence of each object area as a 
function of the propagation direction of transmitted light rays. Compared to traditional conoscopy 
and related methods, the vastly improved throughput and quantitative analysis afforded by the light 
field LC-PolScope, for example, make it the instrument of choice for measuring three-dimensional 
birefringence parameters of complex structures. Since light field microscopy was implemented only 
a few years ago, additional application areas of this new method are likely to emerge in the future.

Aperture Scanning

In the aperture-scanning microscope devised by Ellis for phase-contrast microscopy, the tip of a 
flexible signal optical fiber, illuminated by an Hg arc, makes rapid circular sweeps at the periphery of 
the condenser aperture.65 This circular, scanning illumination spot replaces the conventional phase 
annulus in the condenser aperture plane. A quarter-wave plate and absorber, both covering only a 
small area conjugate to the illuminating spot, spins in synchrony with the fiber at the objective back 
aperture (or its projected conjugate). Thus, the specimen is illuminated by a narrow, coherent beam 
that enters the specimen obliquely at high NA, with the azimuth orientation of the beam swinging 
around and around to generate a full cone of illumination within the integration time of the detec-
tor. With this aperture-scanning approach, the specimen is illuminated by a large-NA cone of light
which is temporally incoherent, with the phase disk covering only a small fraction of the area nor-
mally occupied by the phase ring in conventional phase-contrast systems. The small size of the phase 
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disk, while appropriately reducing the amplitude and introducing the requisite /4 wave phase 
retardation to the rays not scattered by the specimen, allows the transmission of a much larger frac-
tion of the scattered rays that carry the high spatial frequency information. The aperture-scanning 
phase-contrast microscope thus provides a very thin optical section. The image is also virtually free 
of the phase halo that obscures image detail adjacent to refractile boundaries in conventional phase-
contrast microscopy.

For polarized light microscopy an aperture scanning scheme was designed and built by Shribak 
and Oldenbourg using a liquid crystal device in the front focal plane of the condenser lens.131,154

The liquid crystal device was designed for two functions: (1) to create oblique illumination of the 
specimen, and (2) to measure the birefringence parameters of microscopic objects for each of four 
oblique tilt angles of illumination. By measuring the object retardance along each of the four tilted 
projections, the inclination angle of the optic axis of birefringent objects was revealed, in addition to 
the orientation or azimuth angle in the plane of focus. The inclination angle of the optic axis is usu-
ally not evident from traditional polarized light images (see section on polarized light).

Extending this concept, modulation of the transfer functions of the condenser and objective 
apertures with electro-optical devices should open up intriguing new opportunities. Such modula-
tion eliminates the need for mechanical scanning devices, the spatial distribution of the modulation 
function can be altered at will, and the amplitude and phase of light passing each point in the aper-
ture can be adjusted rapidly, even coupled dynamically to the image signal through a feedback loop 
to generate dynamic spatial filters that enhance or select desired features in the image.

28.5 MANIPULATION OF SPECIMEN

In addition to viewing microscopic specimens, the light microscope and microscope objectives are 
also used to project reduced high-intensity images of source patterns into the object plane in order 
to optically manipulate minute regions of the specimen. Photolithography and laser disk record-
ers are examples of important industrial applications, which have prompted the design of specially 
modified objective lenses for such purposes.

Microbeam Irradiation, Ablation

Many applications are also found in the biomedical field, initially using UV-transmitting, mod-
erately high NA objectives that are parfocalized for visible light and UV down to approximately 
250 nm (Zeiss Ultrafluar, also quartz monochromats from Leitz). In its extreme form, a concen-
trated image of a circular- or slit-shaped UV or laser source of selected wavelengths is imaged 
onto a biological specimen to locally ablate a small targeted organelle; for example, a part of a 
chromosome, the microtubules attached thereto, or tiny segments of cross-striated muscle, are 
irradiated with the microbeam in order to sever their mechanical connections and, for example, 
to analyze force transduction mechanisms.155,156 In other cases, oriented chromophores can be 
selectively altered at the submolecular level, for example, by polarized UV microbeam irradiation. 
The stacking arrangement of the DNA nucleotide bases (which exhibit a strong UV dichroism, as 
well as birefringence in visible light) can be selectively altered and disclose the coiling arrange-
ment of DNA molecules within each diffraction-limited spot in the nucleus of living sperm.117

Brief microirradiation of slit- or grid-shaped patterns of UV are used to bleach fluorescent dyes 
incorporated into membranes of living cells. The time course of recovery of fluorescence into the 
bleached zone measures the rate of diffusion of the fluorescently tagged molecules in the mem-
brane and reveals unexpected mobility patterns of cell membrane components.157,158

Lasers have become the dominant source for microbeam irradiation experiments in cell and 
developmental biology and in other application areas. Laser sources can have a wide range of tun-
able wavelengths (217 to 800 nm), energies, and exposure durations (down to 25  10 12).159 They are 
often used together with sensitizing dyes or fluorescent markers to target specific organelles.160 They 
can be used in conjunction with versatile beam-shaping optics such as spatial light modulators.161
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Photosensitive and Caged Compounds

Selected target molecules within minute regions in living cells can be modified, tagged, or activated 
by focused beams of light. The target molecules can be naturally photosensitive species such as 
chlorophyll (which produces oxygen where illuminated with the appropriate visible wavelengths), 
rhodopsin (which isomerizes and triggers the release of calcium ions and action potentials in retinal 
cells), or artificially introduced photosensitive reagents such as the drug colchicine (whose antimi-
totic activity is abolished locally with 366-nm irradiation).

Of the photosensitive compounds, the caged compounds have a far-reaching potential. These are 
compounds that are synthesized so as to “cage” and hide the active chemical group until a photo-
sensitive part of the compound is altered (e.g., by long-wavelength UV irradiation) and unmasks 
the hidden active group. Thus, by preloading with the appropriate caged compound and irradiat-
ing the cell selectively in the region of interest, one can test the role of the uncaged compound. 
For example, the role of ATP can be tested using caged ATP and ATP analogs; response to subtle 
increase in calcium ions can be seen using caged calcium or caged calcium chelators.162,163 Likewise, 
caged fluorescent dyes are irradiated to locally label and follow the transport of subunits within 
macromolecular filaments in a dividing cell.164 Caged glutamate in brain slices was photolyzed 
using a holographically generated illumination pattern for simultaneous multispot activation of 
different dendrites.161

Optical Tweezers

Intense laser beams concentrated into a diffraction spot can generate a photon-driven force 
great enough to capture and suspend small particles whose refractive index differs from its 
surrounding.165,166 Applied to microscopy, a single swimming bacterium or micrometer-sized organ-
elles in live cells can be trapped and moved about at will at the focus of a near-infrared laser beam 
focused by an objective lens of high NA. While the energy density concentrated at the laser focus is 
very high, the temperature of the trapped object remains within a degree or so of its environment; 
biological targets typically exhibit low absorbance at near-infrared wavelengths and thermal diffu-
sion through water from such minute bodies turns out to be highly effective. Thus, the bacterium 
continues to multiply while still trapped in the focused spot, and it swims away freely when the laser 
beam is interrupted.

The ability to use “optical tweezers,” not only to capture and move about minute objects but to 
be able to instantly release the object, provides the microscopist with a unique form of noninvasive, 
quick-release micromanipulator.167

Optical tweezers are now being used in the investigation of an increasing number of biochemi-
cal and biophysical processes, from the basic mechanical properties of biological polymers to the 
multitude of molecular machines that drive the internal dynamics of the cell. Innovation continues 
in all areas of instrumentation and technique, with much of this work focusing on the refinement 
of established methods and on the integration of this tool with other forms of single-molecule 
manipulation or detection. These developments have important implications for the expanded use 
of optical tweezers in biochemical research.168
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29.1 GLOSSARY

A 4th-order aspheric deformation coefficient

AN 4th-order nonsymmetric deformation coefficient

B 6th-order aspheric deformation coefficient

C 8th-order aspheric deformation coefficient

c surface base curvature

CON conic constant

D 10th-order aspheric deformation coefficient

FN focal ratio

GLA glass type

h radial surface height

INF infinite radius of curvature

k conic constant

n index of refraction

R radius of curvature

RDX radius of curvature in the x dimension

RDY radius of curvature in the y dimension

STO stop surface

SUR surface number

t element thickness

THI thickness of element or distance to next surface or element

Z surface sag
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29.2 INTRODUCTION

During the initial stages of an optical design, many optical engineers take advantage of existing con-
figurations that exhibit useful properties. This chapter is a compilation of reflective and catadioptric
objective designs that should help inform the reader of available choices and provide reasonable 
starting solutions.

The chapter also includes a cursory introduction to some of the more important topics in system 
analysis, such as angular and linear blur size, image irradiance, scaling, and stray light control.

An extensive list of referenced reading material and brief definitions of terms italicized throughout 
the text are included.

29.3 GLASS VARIETIES

Glasses used in the designs are represented in terms of index of refraction and Abbe number or V
number, below. The V number indicates glass dispersion. Most glasses can be obtained from a num-
ber of vendors.

Glass Index of Refraction V Number

BK7 1.516 64.2
F2 1.620 36.3
F9 1.620 38.1
FK51 1.487 84.5
FN11 1.621 36.2
Germanium 4.037 117.4
LLF1 1.548 45.8
LAK21 1.640 60.1
PSK2 1.569 63.2
Silica 1.445 27.7
Silicon 3.434 147.4
Sapphire 1.735 15.5
SK1 1.610 56.5
SK2 1.607 56.8
SK3 1.609 58.9
SK16 1.620 60.3
SF5 1.673 32.1
SF10 1.728 28.5
UBK7 1.517 64.3

29.4  INTRODUCTION TO CATADIOPTRIC 
AND REFLECTIVE OBJECTIVES

The variety of objectives presented in this chapter is large. Most of the intricate detail relating to 
each design is therefore presented with the design itself. In the following paragraphs, analysis of 
the general features of the catadioptric and reflective objectives is undertaken.

Conic Mirrors

It is apparent after a brief perusal of the designs that there are many surface types. Among 
these are the sphere, paraboloid, hyperboloid, prolate ellipsoid, and oblate ellipsoid. The oblate 
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ellipsoid is a prolate ellipsoid turned on its side. The equation of a conic is given by the 
expression

Z
ch

k c h

2

2 21 1 1( )
(1)

where Z is the surface sag, k is the conic constant, c is the surface base curvature, and h is the radial 
height on the surface. The relative shapes of these surfaces are illustrated in Fig. 1.

Conic mirrors give perfect geometric imagery when an axial point object is located at one conic 
focus and the axial point image is located at the other conic focus. Figure 2 illustrates these ray paths.

General Aspheres

General aspheres are surfaces with fourth- and higher-order surface deformation on top of a flat or 
curved surface.1 The surface deformation of a rotationally symmetric general asphere is given by 
the relation

Z
ch

k c h
Ah Bh Ch Dh

2

2 2

4 6 8 10

1 1 1( )
(2)

where A, B, C, and D are 4th-, 6th-, 8th-, and 10th-order coefficients that determine the sign and 
magnitude of the deformation produced by that order. Although general aspheres allow correction 
of third- and higher-order aberrations and may reduce the number of elements in an optical system, 
general aspheres are more expensive than spheres or conics. If aspheric deformation is required, 
conic surfaces should be tried first, especially since a conic offers higher-order correction.2

FIGURE 1 Relative shapes of conic surfaces in two dimensions.
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Obscurations

Obscurations that block portions of the entering beam reduce image irradiance and image contrast3,4

in reflective and catadioptric systems. Several methods are used to reduce or eliminate completely the 
effects of an obscuration (see Fig. 3).

Figure 3a illustrates a commonly employed technique for reducing large-mirror obscuration: a small 
secondary mirror close to the intermediate image moves the larger tertiary mirror out of the beam path.

Figure 3b is an illustration of an eccentric pupil system. All elements are symmetric about the 
same axis and the aperture stop is decentered for a clear light path.

Sphere Paraboloid Ellipsoid Hyperboloid

FIGURE 2 Ray paths for perfect axial imagery.

FIGURE 3 Reducing the size of or eliminating an obscuration.
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Figure 3c is an example of an off-axis objective with the field of view biased to direct the center of view 
away from any intervening elements. All elements and apertures are symmetric about the optical axis.

Figure 3d is an illustration of a tilted and decentered-component objective. Each element is 
rotationally symmetric about its own unique optical axis which may be tilted and/or decentered. 
The imaging behavior of this system is more complicated to deal with than the imaging behavior 
of eccentric pupil and off-axis systems. Vector aberration theory5,6 has been developed to properly 
model the imaging behavior of these systems.

Stray Light Suppression

Suppression of light diffracted from apertures and obscurations is facilitated with intermediate 
images and a real and accessible Lyot stop. Figure 4a illustrates a generic refractive configuration 
with an intermediate image and Lyot stop. Figure 4b illustrates where the diffracted light (shaded 
region) originates and terminates (at one edge of each aperture, for clarity).

A field stop is placed at the focus of the first lens to block diffracted light produced by the front 
light baffle. To block unwanted objects within the field of view, an occulting disc may be inserted at 
the focus of the first lens, as is done with a Lyot coronagraph in order to block the sun. By oversizing 
the field stop slightly, the light diffracted at the field stop falls just outside of the detector area.

Following the field stop is a second lens that reimages the intermediate image to the final image 
and the entrance pupil to the Lyot stop (the shaded region in Fig. 4a illustrates how the entrance 
pupil is imaged). Undersizing the Lyot stop blocks the light diffracted at the entrance pupil. In this 
way the Lyot stop becomes the aperture stop of the system.

Another application of the Lyot stop in the infrared (assuming the Lyot stop is located exte-
rior to the objective optics) is as a cold stop.7 The cold stop (Fig. 4a) is a baffle that prevents 
stray infrared light, radiated from the housing, from impinging upon the detector from outside 
its intended field.

Reflective and Catadioptric Objective Designs

The objectives to follow are listed according to focal ratio and design type. Objectives have a 
20-cm diameter and catadioptric systems are optimized for a wavelength range from 480 to 

Baffle
Entrance

pupil Field
stop

Lyot stop
or cold stop

Image

FIGURE 4 Generic objectives with apertures.
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680 nm unless otherwise stated. The angles of surface and element tilts are with respect to the 
horizontal optical axis. Decenters are also with respect to the optical axis. Since many of the 
designs are aplanatic, anastigmatic, and free of chromatic aberrations, the position of the stop 
does not affect third-order aberration correction and may be chosen to minimize vignetting, 
distortion, element size, or stray light contamination. All aberrations mentioned in this section are 
third-order unless otherwise stated.

Definitions of the abbreviated terminology used in the lens data are as follows:

SUR Surface number.

RDY Surface radius of curvature. A positive value means the center of curvature lies to the right 
of the surface; negative to the left.

THI Thickness of element or distance to next element. The value is positive if the next surface 
lies to the right of the surface.

GLA Glass-type or mirror surface, the latter referred to by the abbreviation REFL.

CON Conic constant k.

STO Stop surface.

INF A surface with an infinite radius of curvature; that is, a flat surface.

A, B, C, D The 4th-, 6th-, 8th-, and 10th-order aspheric deformation coefficients in Eq. (2).

A potential source of confusion is the terminology used to describe Mangin elements; that is, 
refractive elements with reflective back surfaces. This is illustrated in design 2 (F/4 Mangin): a 
ray enters the second refractive surface of the element (surface 2) and travels to the right where it 
intersects the mirror surface (surface 3). The thickness of surface 2 is therefore positive. The ray is 
reflected by the mirror surface (surface 3) and travels back through the glass element to surface 2; 
hence, the notation F9/REFL and the negative surface 3 thickness. Since surface 2 and 4 represent 
the same surface, the radii are the same.

F/4 Paraboloid Objective

Comments A single parabolic mirror objective can be arranged in a variety of forms, the best 
known being the Newtonian. Here a mirror flat diverts the image away from the light path. A tipped-
mirror configuration is the Herschelian; a modern version is untipped and employs an eccentric-pupil 
to give an accessible image. A “backwards” Newtonian, the Pfund has a large flat-mirror primary. The 
Pfund has a smaller obscuration than the Newtonian and requires no diffraction-inducing support 
structure for the folding flat.

As has been mentioned, the on-axis performance of a paraboloid objective is perfect. Off-axis, 
coma quickly degrades image quality. For objectives slower than F/11, the easy-to-fabricate spherical 
mirror gives the same performance as a paraboloid when diffraction is also considered.

The paraboloid objective has image quality as good as a Cassegrain (design 3) of equivalent 
FN and aperture diameter, and is easier to align. The Cassegrain has the advantage of being 
compact.
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Comments The Mangin8 was invented by a French engineer of the same name to replace 
difficult-to-fabricate paraboloids in light houses. The objective relies upon the overcorrected 
spherical aberration produced by the negative first surface to cancel the undercorrected spherical 
aberration produced by the focusing, reflective surface. The chromatic aberration of the Mangin 
is reduced by achromatizing with two glasses of different dispersions. Secondary spectrum limits 
on-axis performance, and coma, one-half that of a spherical mirror, is the primary field-limiting 
aberration. Kingslake9 takes the reader through the design of a Mangin mirror.

Mangin mirrors are susceptible to ghost reflections from the refractive surfaces. Antireflection 
coatings are usually needed.

In some cases the overcorrected chromatic aberration of a Mangin is used to cancel undercorrected 
chromatic aberration produced by a refractive element. The Schupmann or medial objective10,11 has a posi-
tive refractive element with undercorrected chromatic aberration which is annulled by a Mangin element.

F/4 Cassegrain

SUR RDY THI GLA

1 75.15 1.0 BK7
2 307.1 1.4 F9
3 123.63 1.4 F9/REFL
4 307.1 1.0 BK7
5 75.15 80.48

F/4 Mangin

SUR RDY THI GLA CON

STO 45.72 16 REFL 1
2 19.2 24.035 REFL 3.236

Comments The ubiquitous Cassegrain is predominant in situations where a small field of view, 
high resolution, compact size, long effective focal length, and accessible image are required. The 
classical Cassegrain is composed of a paraboloid primary and hyperboloid secondary, giving perfect 
imagery on-axis whenever the primary image coincides with the hyperboloidal focus. Coma and
field curvature limit off-axis performance.

Many books discuss the first- and third-order properties of Cassegrain objectives. The Rutten,12

Schroeder,13 Korsch,14 and Smith3 texts are among these.

F/4 Ritchey-Chretien

SUR RDY THI GLA CON

STO 45.72 16 REFL 1.072
2 19.2 24.034 REFL 3.898
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Comments The aplanatic Cassegrain or Ritchey-Chretien15 is also corrected for coma, leaving 
astigmatism and field curvature uncorrected. Both mirrors of the Ritchey-Chretien are hyperboloids.

Numerous modern telescope objectives are of Ritchey-Chretien form; among these are the 
Hubble space telescope and the infrared astronomical satellite IRAS.

F/9 Ritchey-Chretien Telescope with Two-Lens Corrector

SUR RDY THI GLA CON

STO 2139.7 794.0 REFL 1.0778
2 802.83 853.96 REFL 4.579
3 67.73 2.54 BK7
4 90.39 9.9
5 1925.6 1.27 BK7
6 129.1 14.39

Comments This is a design by Wynne16 for the correction of the Cassegrain focus of a large 
(350-cm) Ritchey-Chretien. The corrector removes the inherent astigmatism and field curvature of the 
Ritchey-Chretien. Other Cassegrain focus correctors are discussed by Schulte,17 Rosin,18 and Wilson.19

F/4 Dall-Kirkham

SUR RDY THI GLA CON

STO 45.72 16 REFL 0.6456

Sixth-order term: 0.593E-10

2 19.2 24.035 REFL

Comments The Dall-Kirkham is another Cassegrain corrected for spherical aberration. The 
primary is an ellipsoid with sixth-order aspheric deformation and the secondary is spherical. 
An inverse Dall-Kirkham, or Carlisle, is just the reverse, with a spherical primary. There is zonal 
spherical aberration without the sixth-order deformation. Five times more coma is produced by 
the Dall-Kirkham than the classical Cassegrain, seriously limiting the field of view.

F/4 Cassegrain with Field Corrector and Spherical Secondary

SUR RDY THI GLA CON

1 94.21 27.937 REFL 1
STO 94.29 17.72 REFL
3 17.59 0.35 Silica
4 8.76 0.491  
5 64.15 0.6 Silica
6 13.41 13.67
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Comments By adding zero-power refractive correctors, the performance of a reflective objec-
tive is substantially enhanced. Zero power is maintained to prevent axial color. Such is the case with 
this objective similar to one designed by Rosin.20 All third-order aberrations, with the exception of 
distortion, are corrected. The surfaces, with the exception of the primary, are spherical. One of the 
most attractive features of this design, in comparison to the Schmidt which will be discussed shortly, 
is the small size of the refractive elements. Add to this the capability of eliminating any remaining 
spherical aberration in an assembled objective by adjusting the axial positions of the lenses.

Zero Petzval sum and, hence, a flat image (in the absence of astigmatism) is ensured by giving the 
mirrors the same curvature and the lens elements equal and opposite power.

F/15 Spherical-Primary Cassegrain with Reflective Field Corrector

SUR RDY THI GLA CON

STO 84.03 30.69 REFL
2 46.56 36.83 REFL 20.97
3 17.39 14.77 REFL 0.8745
4 20.87 16.26 REFL 96.62

Comments This well-corrected design from Korsch14 has an easily manufactured spherical 
primary and is intended for use as a large-aperture telescope objective. Another all-reflective corrector 
of Gregorian form has been developed for a fast (F/0.6) spherical primary.21

Afocal Cassegrain-Mersenne Telescope

SUR RDY THI GLA CON

STO 100 35 REFL 1
2 30 40 REFL 1

Comments The Mersenne contains two confocal paraboloids working at infinite conjugates. It 
is aplanatic, anastigmatic, and can be made distortion-free by choosing an appropriate stop location. 
The utility of confocal mirrors has been emphasized by Baker22 and Brueggeman,23 and is illustrated 
in the following design.

Dual-Magnification Cassegrain

SUR RDY THI GLA CON

STO 33.99 11.69 REFL 1
2 10.61 12.76 REFL 1
3 10.486 0.877 Silicon
4 25.673 0.462
5 48.33 0.798 Germanium
6 22.68 7.57
7 3.52 1.0 Silicon
8 4.22 0.377
9 INF 0.16 Sapphire

10 INF 0.396
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Comments This IR design is related to one introduced by Fjeidsted.24 The system offers two 
magnifications and fields of view. The high-magnification configuration is with the afocal Mersenne 
in the optical path. Removing the secondary lets light pass directly to the refractive assembly and a 
larger field of view is observed. The spectral range is from 3.3 to 4.2 μm.

F/3.2 Three-Lens Prime Focus Corrector

SUR RDY THI GLA CON

STO 1494.57 684.08 REFL 1
2 26.98 2.6 UBK7
3 31.3 22.43
4 53.96 0.586 UBK7
5 19.0 28.87
6 33.36 2.042 UBK7
7 236.7 11.65

Comments This is a three-lens corrector for a 250-cm parabolic mirror. The corrector was 
developed by Wynne16,25 for the region of the spectrum extending from 365 to 1014 nm. It is used 
to extend the field of a parabolic mirror. Versions for a Ritchey-Chretien primary also exist. The 
corrector is able to correct spherical aberration, coma, astigmatism, and field curvature while 
keeping chromatic aberrations under control. The field of view can be extended considerably for 
smaller apertures.

The three-spherical lens corrector is one of the best large-optics prime-focus correctors to come 
along, both in terms of image quality and ease of fabrication. Other designs have either not performed 
as well or were heavily dependent on aspheric figuring.

This and other prime-focus correctors are surveyed in articles by Gascoigne,26 Ross,27 Meinel,28

Schulte,29 Baker,30 and Wynne.31

F/4 Gregorian

SUR RDY THI GLA CON

STO 24.62 16 REFL 1
2 6.4 24.1 REFL 0.5394

Comments The classical Gregorian is aberration-free on-axis when the paraboloidal mirror 
image coincides with one of the ellipsoidal-mirror foci; the other focus coincides with the final 
image. Like the Cassegrain, off-axis image quality is limited by coma and field curvature. The ellip-
soidal secondary reimages the entrance pupil to a location between the secondary and final image. 
Thus, there exists the possibility of unwanted-light suppression at the primary-mirror image and 
exit pupil.

The Gregorian is longer than the Cassegrain and thus more expensive to support and house, but 
it produces an erect image and the concave secondary is easier to produce. In eccentric-pupil ver-
sions it has an accessible prime focus.
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F/4 Aplanatic Gregorian

SUR RDY THI GLA CON

STO 24.62 16 REFL 0.989
2 6.4 24.1 REFL 0.5633

Comments The aplanatic Gregorian is corrected for spherical aberration and coma. Both mir-
rors are ellipsoids. Astigmatism and field curvature limit off-axis imagery.

F/1.25 Flat-Medial-Field Aplanatic Gregorian

SUR RDY THI GLA CON

STO 34.68 22.806 REFL 0.767
2 6.47 7.924 REFL 0.1837

Comments The Gregorian’s field performance is enhanced if image accessibility is sacrificed. 
This version of the Gregorian14 is aplanatic. A flat medial image is achieved by balancing Petzval cur-
vature with astigmatism, which remains uncorrected.

F/1.25 Flat-Medial-Field Aplanatic Gregorian with Spherical Primary

SUR RDY THI GLA CON

STO 42.59 21 REFL
2 INF 46.51 REFL

Tilt: 45°

3 49.84 54.08 REFL 0.078

Comments The field of this objective14 is larger than its cousins, the classical and aplanatic 
Gregorians, even with the spherical primary. Spherical aberration and coma are corrected, and 
the medial image is flat. The design has a real intermediate image and exit pupil. The obvious 
drawback is the size of the secondary in relation to the size of the entrance pupil, which is 15 cm 
in diameter.

Korsch14 analyzes two other designs that are loosely referred to as Gregorians.
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Afocal Gregorian-Mersenne Telescope

SUR RDY THI GLA CON

STO 50 30 REFL 1
2 10 40 REFL 1

Comments The Gregorian Mersenne, also composed of confocal paraboloids, is aplanatic, 
anastigmatic, and can be corrected for distortion. The Gregorian-Mersenne has an intermediate 
image and an accessible exit pupil.

F/1.25 Couder

SUR RDY THI GLA CON

STO 142.86 52.9 REFL 6.285
2 23.08 7.1142 REFL 0.707

Comments The Couder,32 composed of two conic mirrors, is corrected for third-order spherical 
aberration, coma, and astigmatism. Unfortunately, the Couder is long for its focal length and the 
image is not readily accessible.

F/1.25 Aplanatic, Flat-Medial-Image Schwarzschild

SUR RDY THI GLA CON

STO 91.57 38.17 REFL 2.156
2 23.67 4.637 REFL 5.256

Comments The aplanatic, flat-medial-image Schwarzschild33 is similar in appearance to the Couder 
but the secondary mirror and image locations are different for identical secondary magnifications.

F/1.25 Aplanatic, Anastigmatic Schwarzschild

SUR RDY THI GLA

1 30.62 49.44 REFL
2 80.14 80.26 REFL
STO INF 24.864
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Comments The spherical-mirror Schwarzschild33 is aplanatic, anastigmatic, and distortion-free.34

The Schwarzschild relies on the principle of symmetry for its high level of aberration correction and 
a large field of view. All surfaces have the same center of curvature at the aperture stop. Hence, there 
are no off-axis aberrations. Spherical aberration is produced but each mirror produces an equal and 
opposite amount, thus canceling the effect of the aberration. Some higher-order aberrations are also 
corrected.34 Eccentric portions of this design—above and below the optical axis in the picture—form 
well-corrected, unobscured designs. Zonal spherical aberration from the mix of third- and higher-
order terms limits on- and off-axis performance.

An aspheric plate positioned at the center-of-curvature of the mirrors removes this aberration as 
illustrated in the next design.

Wetherell and Rimmer,35 Korsch,14 Schroeder,13 Linfoot,36 and Gascoigne26 offer a general third-
order analysis of two-mirror systems. The closed-form solutions described provide insight into 
third-order aberration theory of reflective systems.

F/1 Aplanatic, Anastigmatic Schwarzschild with Aspheric Corrector Plate

SUR RDY THI GLA

1 24.547 39.456 REFL
2 63.92 64.528 REFL
STO INF 19.098 REFL

A: 0.9998E-7
B: 0.1269E-9

Comments With an aspheric plate at the aperture stop, spherical aberration is eliminated. 
The only aberrations still remaining are of higher order. To correct these, the mirrors must also be 
aspherized. Linfoot36 and Abel34 describe this design.

F/1.25 Anastigmatic, Flat-Image Schwarzschild

SUR RDY THI GLA CON

1 69.7 50.56 REFL 5.47
STO 71.35 61.26 REFL 0.171

Comments With just two conics, this design type33 achieves aplanatic and anastigmatic per-
formance on a flat image surface. The flat field is attained by making the curvatures of the mirrors 
equal. Eccentric portions above or below the optical axis form unobscured versions; the design may 
alternatively be used off-axis. Sasian6,37 and Shafer38 have explored many of this design’s features.



29.14  INSTRUMENTS

F/1.25 Schmidt

SUR RDY THI GLA CON

STO 1554 1 PSK2

A: 0.2825E-5
B: 0.1716E-8

2 INF 52.33
3 52.95 26.215 REFL

Comments The Schmidt39 also relies on the principle of symmetry; that is, the aperture stop is 
located at the center of curvature of the spherical mirror and hence the mirror produces no off-axis 
aberrations.

The Schmidt corrector is flat with aspheric deformation figured in to correct the spherical 
aberration produced by the mirror. It is positioned at the aperture stop because off-axis aberra-
tions are independent of aspheric deformation when an aspheric surface coincides with the stop. 
Hence the Schmidt plate has no effect on off-axis aberrations, and the benefits of concentricity 
are preserved.

The corrector introduces chromatic variation of spherical aberration (spherochromatism). A 
small amount of positive power in the corrector introduces undercorrected axial color to reduce the 
effects of this aberration. Further improvement is obtained by achromatizing the corrector with two 
glasses of different dispersions.

Higher-order aberrations degrade image quality at low focal ratios and large field angles. 
Kingslake,9 Schroeder,13 Maxwell,40 and Linfoot36 provide additional details of this and other cata-
dioptric objectives.

F/1.25 Field-Flattened Schmidt

SUR RDY THI GLA

STO 598.7 1.155 PSK2

A: 0.273E-5
B: 0.129E-8

2 INF 40.38
3 52.95 24.06 REFL
4 10.35 1.49 PSK2
5 INF 0.637

Comments As is known from third-order aberration theory, a thin element will be nearly 
aberration-free, except for Petzval curvature, and distortion when it is placed in close proximity 
to an image. Therefore, by properly choosing the lens power and index to give a Petzval curvature 
of equal and opposite sign to the Petzval curvature introduced by the other optics, the image 
is flattened.

The image in the Schmidt above has been flattened with the lens near the image plane. The 
only aberrations introduced by the lens are spherochromatism and lateral color, lateral color being 
the most noticeable aberration; this can be removed by achromatizing the field-flattening lens. 
The close proximity of the lens to the image can cause problems with light scattered from areas 
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on the lens surfaces contaminated by dirt and dust particles. Clean optics are a must under these 
circumstances.

The field-flattening lens provides two more positive results. First, the lens introduces a small 
amount of coma which is compensated by moving the Schmidt corrector toward the mirror some-
what, thus reducing the overall length of the objective. Second, oblique spherical aberration, one of 
the primary field-limiting, higher-order aberrations of the Schmidt, is substantially reduced.

Besides its usual function as a telescope or photographic objective, the field-flattened Schmidt 
has also been used as a spectrograph camera.41

F/1.25 Wright

Comments The Wright42 is one-half the length of the Schmidt. It also relies on aspheric defor-
mation of the corrector plate for the elimination of spherical aberration. Coma, introduced as the 
corrector is removed from the center of curvature of the mirror, is cancelled with conic deformation 
of the mirror; the surface figure is that of an oblate ellipsoid. The remaining astigmatism and Petzval 
curvature are balanced for a flat medial image. The only on-axis aberration, spherochromatism, is 
corrected by achromatizing the corrector.

F/4 Reflective Schmidt

SUR RDY THI GLA CON

1 INF 1.0 BK7
2 699.8 26.1 BK7

A: 0.6168E-5
B: 0.5287E-8

3 53.24 26.094 REFL 1.026

SUR RDY THI GLA

STO 66752 67.37 REFL

A: 0.5083E-7

2 INF 66.6 REFL
3 133.97 66.85 REFL

Comments Another way of defeating chromatic aberration is to eliminate it altogether with a 
reflective corrector.43 The elements are removed from the light path with a field bias (9°), and hence 
the objective is off-axis. Spherical aberration, coma, and astigmatism are all corrected. At large field 
angles, beyond about 12° half-field angle, oblique spherical aberration becomes evident, but other-
wise this design provides excellent performance on a curved image over a 24° field of view. In order 
to avoid severe obstruction of the light path, the full 24° can be taken advantage of only in the plane 
that extends perpendicular to the picture of the design above. A considerably reduced field of view is 
allowed in the plane of the picture.
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F/0.6 Solid Schmidt

SUR RDY THI GLA CON

1 62.69 1.69 BK7
2 103.38 8.39

A: 0.1492E-4
B: 0.1988E-7
C: 0.1013E-10
 D: 0.35E-12

3 169.36 16.47 BK7
STO 37.05 16.47 REFL\BK7
5 INF 0.3952 BK7
6 45.86 0.245
7 10.295 1.136 BK7
8 INF 0.026

Comments All monochromatic aberrations, with the exception of distortion, are corrected by 
the appropriately-named solid Schmidt, a system used mostly as a spectrograph camera.44 All chro-
matic aberrations, with the exception of lateral color, are corrected. The imaging theory behind the 
solid Schmidt is expounded by Baker.45 With a refractive index n, the solid Schmidt is n2 times faster 
than the conventional Schmidt. Focal ratios of F/0.3 have been obtained. Schulte44 offers a design 
similar to the one given here.

F/1.25 Schmidt-Cassegrain

SUR RDY THI GLA CON

STO INF 0.8 489.574

A: 0.1928E-4
B:  0.298E-7

2 2269.1 1.0 583.303
3 INF 16.49

A: 0.1085E-4
B:  0.2806E-7

4 55.9 15.0 REFL 1.077
5 INF 10.267 REFL
6 9.1 1.2 489.574
7 8.577 0.018
8 8.59 0.3 583.303
9 87.44 1.317

Comments The Schmidt-Cassegrain46 represents a successful attempt to resolve the difficul-
ties related to the curved image, considerable length, and awkwardly located image of the Schmidt 
objective, without destroying the positive attributes of the design.

The Schmidt-Cassegrain comes in a wide variety of forms—too many to go into here. Linfoot36

performs an extensive exploration of the design, with one and two aspheric plate correctors. 
Warmisham47 has gone as far as three. Wayman48 has analyzed a monocentric Schmidt-Cassegrain.

In this fast version of the Schmidt-Cassegrain, the corrector is close to the flat secondary. Usually 
one or both mirrors are aspherics. An achromatized image-flattening lens has been introduced. 
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An image-flattening lens is not usually required with a Schmidt-Cassegrain since enough degrees 
of freedom exist for aberration correction and a flat image. In this case, the secondary mirror is 
flat and one degree of freedom is lost. Additionally, the primary mirror power introduces a strong 
Petzval contribution which necessitates a field-flattening lens.

The first three digits of the six-digit code in the glass column identify the indices of the materials 
in the design, in this case plastics. These are 1.489 and 1.583; the Abbe-numbers are given by the last 
three digits and they are 57.4 and 30.3, respectively. The two plastics have nearly identical thermal 
coefficients and are very light. Buchroeder49 analyzes designs of this variety with two aspheric correc-
tors. Shafer50 offers a Schmidt-Cassegrain with an aspheric meniscus corrector. Only two elements 
are used since the secondary mirror surface is on the corrector. Rutten12 has examples of Schmidt-
Cassegrains in a number of configurations.

F/3.4 Reflective Schmidt-Cassegrain

SUR RDY THI GLA CON

STO INF 92.16 REFL

A: 0.13344E-6  AN: 0.1255E-1

2 84 26 REFL
3 84 25.848 REFL 0.3318

Comments The reflective Schmidt-Cassegrain exhibits all the nice properties of the Schmidt-
Cassegrain and, in addition, is achromatic. Schroeder51 points out that, because the corrector is 
tilted (9° here), adequate aberration correction requires a nonrotationally symmetric corrector plate. 
The nonaxially symmetric surface deformation in this design is given by

Z A AN X AN Y[( ) ( ) ]1 12 2 2 (3)

where A is the fourth-order symmetric coefficient and AN is the fourth-order nonsymmetric coef-
ficient. The y dimension is in the plane of the picture; the x dimension is perpendicular to it.

Since the corrector is tilted by 9°, the reflected rays are deviated by twice that amount. The ele-
ment spacings (THI) are no longer measured along the horizontal optical axis after reflection off the 
corrector, but along the line of deviation. The secondary and tertiary are tilted by 18°.

F/2 Shafer Relayed Virtual Schmidt

SUR RDY THI GLA

STO 320 159.82 REFL
2 106.7 80.0 REFL
3 INF 68.51 REFL

A:  0.1882E-5
B:  0.1273E-8
C: 0.1757E-12
D:  0.1766E-14

4 63.967 40.774 REFL

Comments Shafer52 has introduced an eccentric-pupil (18-cm stop decenter), virtual Schmidt 
objective similar to this but with a decentered quaternary mirror. The center of curvature of 
the spherical primary is imaged by the concave secondary onto the flat Schmidt tertiary mirror. 
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Now the Schmidt plate, which appears to be at the primary center of curvature, is aspherized to 
produce a well-corrected virtual image, hence the name (see Fig. 5). In this configuration, the 
Schmidt plate is one-half the size of the primary.

The Schmidt plate and the spherical quaternary mirror form a finite conjugate Schmidt system. 
Thus, the spherical aberration of this mirror is also corrected.

Figure 5 shows a pictorial representation of the Shafer design with the last mirror decentered 
to provide a more accessible image. Since the primary and quaternary mirrors no longer share the 
same axis of symmetry, a two-axis Schmidt corrector is required to remove the aberrations of both 
mirrors. The shape of this surface is described by Shafer, for an F/1, unobscured, wide-field design 
with an intermediate image and Lyot stop.

F/2.2 Spherical-Primary Objective that Employs the Schmidt Principle of Correction

Virtual image

FIGURE 5 Picture of virtual Schmidt with 
decentered quaternary.

SUR RDY THI GLA CON

STO 88.07 42.517 REFL
2 INF 2.2 REFL

Tilt: 45°

3 4.433 0.33 FK51
4 2.527 9.217
5 10.21 9.217 REFL 0.8631
6 2.527 0.33 FK51
7 4.433 0.64

Comments Baker22 reports on a system where the center of curvature of a large, spherical primary 
is imaged by a positive lens onto a much smaller mirror where aspheric correction of spherical aberra-
tion occurs. A small field offset (0.25°) is required so that the one-to-one relay doesn’t reimage the pri-
mary image back onto itself. To avoid overlap, this design is best used over a small or strip field of view.

Because of the geometry of the design, coma, astigmatism, image curvature, chromatic aberra-
tions, and distortion are eliminated in addition to the spherical aberration correction from aspheric 
figuring of the tertiary mirror. Baker22 offers several other interesting designs in his article, including 
an F/0.8, 10.6-μm, 180° field-of-view Roesch,53 a design that incorporates a Schmidt with a strong 
negative lens or lens group before the aspheric corrector. The strong divergence produced by this lens 
reduces the amount of light blocked by the image plane but increases the size of the spherical mirror.
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F/2 Maksutov

SUR RDY THI GLA CON

STO INF  31.788
2 23.06 3.5 BK7
3 25.53 51.09
4 83.9 43.8 REFL

Comments The all-spherical Maksutov54 was intended as an inexpensive alternative to the 
Schmidt at slower speeds. In small sizes it is indeed less expensive. The meniscus corrector is “self-
achromatic” when the following relationship is satisfied:

t
n

n
R R

2

2 2 11
( ) (4)

where R1 and R2 are the radii, t is the thickness, and n is the refractive index of the corrector.
Bouwers55 also developed a meniscus corrector. All elements of the Bouwers are concentric about 

the aperture stop. This ensures correction of third-order, off-axis aberrations over a nearly unlimited 
field of view. In exchange for the wide field, axial color is not well-corrected.

F/1.25 Solid Maksutov-Cassegrain

SUR RDY THI GLA CON

STO INF 20.5
2 20.5 0.955 Silica
3 25.92 0.0313
4 138.58 15.3 Silica
5 45.61 12.973 REFL\Silica
6 51.89 13.41 REFL\Silica
7 INF 0.0475
8 12.026 1.68 Silica
9 16.07 0.545

10 INF 0.394 Silica
11 INF 0.155

Comments The solid Maksutov-Cassegrain shown here and the solid Schmidt-Cassegrains 
have been studied extensively by Wynne.56,57 Lateral color is the most consequential aberration left 
uncorrected.
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F/1.2 Wide-Field Objective with Maksutov Correction

SUR RDY THI GLA CON

1 12.467 9.684 REFL 3.243
2 4.81 1.267 FK51
3 3.762 3.679  
STO   INF 17.189  
5 15.98 10.64 REFL

Comments This very wide field imaging system similar to one in Courtes58 is essentially a 
Maksutov focused on the virtual image of the object produced by the hyperboloidal mirror. Both 
speed (F/1) and a very wide field of view (80° 120°) can be achieved with this design form on a flat 
image but only for small apertures—1.25 cm in this case. Courtes et al.59 describes similar systems 
with refractive and reflective Schmidt plates instead of a Maksutov corrector.

F/1 Gabor

SUR RDY THI GLA

STO 23.3 2 SKI
2 25.468 39.5
3 83.33 40 REFL
4 1.67 1 BK7
5 9.85 0.5 SF5
6 7.71 0.942

Comments Another meniscus design was invented by Gabor.60 The Gabor is more compact 
than the Maksutov or Bouwers, and has a smaller focal ratio and field of view.

The design shown here began without the field lens. The lens was introduced into the design 
with the surface closest to the image being concentric about the chief ray and the other surface being 
aplanatic.61 A surface concentric about the chief ray is free of coma, astigmatism, distortion, and 
lateral color. The aplanatic surface is free of spherical aberration, coma, and astigmatism with the 
result that the lens is coma- and astigmatism-free. The spherical aberration produced by the lens is 
balanced against the spherical aberration produced by the two other elements. The chromatic aber-
rations were corrected by achromatizing the lens.

Shafer62,63 offers interesting suggestions for design with aplanatic and concentric surfaces. 
Several varieties of field-flattening lens are described. Kingslake9 runs through the design proce-
dure for a Gabor.
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F/4 Schmidt-Meniscus Cassegrain

SUR RDY THI GLA

1 22.5 4.28 BK7
2 19.13 19.75

STO 11,783 1.4 F2

A: 0.558E-6
B:   0.244E-8

4 135.5 1.3 SK2
5 INF 23.92
6 29.31 4.28 BK7
7 32.42 25.1
8 55 25.1 REFL
9 32.42 4.28 BK7

10 29.31 1.45

Comments The Baker64 super-Schmidt, a design that incorporates both meniscus and Schmidt 
correction, achieves excellent performance over a wide field of view. The field-limiting aberration of 
a fast Schmidt, oblique spherical aberration, is controlled by adding a concentric meniscus lens which 
also introduces overcorrected spherical aberration, thus reducing the amount of overcorrection 
needed from the Schmidt plate. Since oblique spherical is proportional to the amount of overcorrec-
tion in the Schmidt plate, the effect of this aberration is reduced.

The most apparent aberration produced by the meniscus is axial color. This is minimized by 
achromatizing the Schmidt corrector. Spherochromatism is reduced since the magnitudes produced 
by the Schmidt corrector and meniscus are nearly equal and have opposite signs. Another meniscus 
element is added to further reduce aberrations.

Comments This system, originally by Bouwers, uses a slightly positive plate to compensate the 
overcorrected chromatic aberration produced by the meniscus. The Bouwers produces very good 
quality on a flat image, over a large field of view.

Fourth- and sixth-order deformation added to the plate eliminates any residual spherical aberra-
tion. Lateral color and oblique spherical aberration affect field performance, although both are small.

F/1.2 Baker Super-Schmidt

SUR RDY THI GLA

STO 787.7 1.4 BK7
2 INF 32.69
3 32.69 2.62 BK7
4 35.6 63.446
5 81.97 21.78 REFL
6 79.5 38.65 REFL
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F/1 Baker-Nunn

SUR RDY THI GLA

1 491.9 1.06 LLF1
2 115.6 4.23  

A: 0.8243E-5
B:   0.1348E-8

STO 125.78 0.64 SK3

A: 0.1158E-4
B: 0.427E-8
C: 0.7304E-11

4 125.78 4.23

A: 0.1158E-4
B: 0.427E-8
C: 0.7304E-11

5 115.6 1.06 LLF1

A:  0.8243E-5
B: 0.1348E-8

6 491.87 36.77
7 42.03 21.961 REFL

Comments The Baker-Nunn65 was born of work by Houghton66 during World War II. 
Houghton wished to find a less expensive alternative to the Schmidt. The result was a zero-power, 
three-lens combination with easy-to-make spherical surfaces. Spherical aberration and coma can 
be eliminated for any position of the corrector. The surfaces have equal radii so they can be tested 
interferometrically against one another using the Newton ring method. Residual spherical aberra-
tion that remains after assembly is removed by altering the spacing between the lenses.

F/10 Houghton-Cassegrain

SUR RDY THI GLA

STO 145 1.2 BK7
2 172.1 0.164
3 111.9 0.639 BK7
4 264.7 44.61
5 129.7 43.16 REFL
6 63.94 66.84 REFL

Comments A two-lens, afocal corrector developed by Houghton and Sonnefeld67 is used 
here as a corrector for a Cassegrain system. Sigler68 has written on the subject of Cassegrains with 
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Houghton, Schmidt, and Maksutov refractive correctors. This Houghton-Cassegrain gives well-
corrected imagery on a curved image surface. An afocal achromatized doublet corrector has also 
been tried.69

F/3.6 Houghton-Cassegrain

SUR RDY THI GLA

STO 69.64 1.607 UBK7
2 148.71 3.045
3 61.43 1.607 LAK21
4 97.53 21.733
5 85.11 21.733 REFL
6 97.53 21.733 REFL
7 70.44 1.2 UBK7
8 15.47 0.18
9 15.23 1.3136 SK16

10 517.29 11.03

Comments Another Houghton corrector, with meniscus elements, is utilized in this design by 
D. Rao.70 The spectral range is 550 to 850 nm. The design is similar to one introduced by Mandler.71

Examples of other Houghton-Cassegrains of this form are studied by Gelles.72

F/1.25 Shenker

SUR RDY THI GLA

STO 49.42 1.5 BK7
2 203.6 5.4
3 34.7 0.863 BK7
4 79.25 5.08
5 27 0.98 BK7
6 38.87 9.32
7 31.96 9.32 REFL
8 38.87 8.1 REFL
9 13.73 0.39 BK7

10 21.8 0.05
11 7.925 0.895 BK7
12 8.56 0.856

Comments Shenker has studied a large number of variations on the theme of three-element 
correctors for a Cassegrain. This is related to one of the configurations developed by Shenker.73 Note 
that the third corrector is also the secondary mirror. Zonal spherical aberration limits performance 
on-axis. This may be removed by aspherizing one or more surfaces. All elements are of the same 
glass. Laiken74 has a similar version of this design as well as other catadioptric objectives. Maxwell40

has design examples and catadioptric imaging theory.
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F/1.25 Mangin-Cassegrain with Correctors

SUR RDY THI GLA

STO 80.62 1.64 BK7
2 102.3 9.07
3 30.43 2.02 BK7
4 54.52 2.02 BK7/REFL
5 30.43 9.07
6 102.3 1.64 BK7
7 80.62 1.01 BK7
8 526.4 1.01 BK7/REFL
9 80.62 1.64 BK7

10 102.3 8.32
11 11.06 0.75 BK7
12 30.43 2.02 BK7
13 54.52 0.5 SF10
14 52.92 1.445

Comments Mangin mirrors are evident in this design by Canzek75 and two elements are used 
twice. The design has exceptionally good on-axis performance. Lateral color and higher-order aber-
rations limit the field.

F/1.25 Mangin-Cassegrain with Correctors

SUR RDY THI GLA

STO 80.83 1.09 FN11
2 325.9 8.5
3 191.4 0.728 FN11
4 440.3 9.69
5 31.44 1.456 FN11
6 46.13 1.456 FN11/REFL
7 31.44 9.69
8 440.3 10 REFL
9 26.97 0.582 FN11

10 38.33 0.544
11 8.44 0.728 FN11
12 40.87 2.025

Comments Another short and fast catadioptric by Amon76 is shown here. The second corrector 
is also the secondary mirror.
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F/4 Eisenburg and Pearson Two-Mirror, Three-Reflection Objective

SUR RDY THI GLA CON

STO 48.0 17.289 REFL 1.05
2 14.472 17.289 REFL 1.539
3 48 18.195 REFL 1.05

Comments This aplanatic, two-mirror, three-reflection configuration was first introduced by 
Rumsey.77 The design presented here comes from Eisenburg and Pearson.78 The first and third sur-
face represent the same surface.

F/4 Shafer Two-Mirror, Three-Reflection Objective

SUR RDY THI GLA CON

STO 106.7 80.01 REFL 0.4066
2 80.01 80.01 REFL 5.959
3 106.7 80.05 REFL 0.4066

Comments Shafer79 has documented numerous versions of multiple-reflection objectives. This 
is an aplanatic, anastigmatic design with field curvature. For optimum aberration correction, the 
primary is at the center of curvature of the secondary mirror. Shafer80 suggests a ring field for a flat, 
accessible image on an annular surface, and a Lyot stop.

A simple ring field design is depicted in Fig. 6. Only one field angle is required, easing the difficul-
ties associated with off-axis aberration correction. The single viewing direction is rotated about the 
optical axis, forming, in this case, a ring image. In reality, less than half the ring image is used to avoid 
interference of the image with the entering beam.

FIGURE 6 The ring field system.
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F/15 Two-Mirror, Three-Reflection Objective

SUR RDY THI GLA CON

STO 116.33 46.53 REFL 1.024
2 22.6 46.53 REFL 1.0037
3 116.33 67.05 REFL 1.024

Comments This is another aplanatic, anastigmatic, eccentric-pupil design which gives well-
corrected imagery on a curved image. It has a 30-cm stop decenter.

F/15 Yolo

SUR RDY THI GLA CON

STO 1015 160.36 REFL 4.278

Tilt: 3.5°

2 1045.72 208.19 REFL

RDX: 1035.0
Tilt:   9.82°

Image tilt:  11.7°

Comments Leonard81,82 invented the Yolo (named after a scenic county in California) so that 
he could have an achromatic system without obscurations. The result is a tilted and decentered 
component objective that gives the high contrast of an unobscured refractive objective without the 
chromatic effects.

Spherical aberration is corrected by the hyperboloidal figuring of the first surface. The ana-
morphism introduced into the secondary (by a warping harness) corrects astigmatism; RDX is the 
surface radius of curvature perpendicular to the picture. Coma is eliminated by adjusting the curva-
tures and tilting the secondary.

Relatives of the two-mirror Yolo are the Solano, an in-line three-mirror Yolo, or the three-
dimensional, three-mirror Yolo.83 As in design 28, thickness (THI) is measured along the deviated 
ray paths. With the angle of reflection known, element decenter may be easily determined.

F/15 Schiefspiegler

SUR RDY THI GLA CON

STO 397.2 101.4 REFL 0.607

Tilt angle: 4.5°

2 552.5 35.84 REFL

Tilt angle: 3.64°

3 3411 0.52 BK7

Tilt angle: 50°

4 INF 111.11  

Tilt angle: 50.0529°
Image tilt angle: 22.80°
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Comments The Schiefspiegler (“oblique reflector” in German) was introduced about a cen-
tury ago, and at the time was called a brachyt (or bent). The motivation behind the Schiefspiegler’s 
design is essentially the same as the Yolo’s. Like the Yolo, elements are tilted and decentered. Coma 
and astigmatism are corrected by tilting the secondary and corrector lens. The lens is thin and 
slightly wedged to minimize chromatic effects. Spherical aberration is corrected with the aspheric 
deformation of the primary.

A three-mirror Schiefspiegler, or Trischiefspiegler, has been developed by Kutter.84 This design 
is all-reflective and completely achromatic. Like the Schiefspiegler, aspheric deformation of the 
primary corrects spherical aberration; coma and astigmatism are corrected with element tilts.

A four-mirror Schiefspiegler was recently introduced by Brunn.85 For more on unusual tele-
scope objectives, see Manly.86

F/8 Catadioptric Herschelian Objective

SUR RDY THI GLA

STO 269.61 1.487 BK7
2 INF 2.147

Element tilt: 0.35°

3 269.61 1.321 BK7
4 INF 151.97

Element tilt: 5.38°

5 317.26 158.69 REFL

Tilt angle: 3.0°
Image tilt angle: 0.174°

Comments Several centuries ago, Herschel tilted his large parabolic mirror to give him access 
to the image. A spherical mirror in this design by D. Shafer87 has been tilted for the same reason. 
Element tilts in the Houghton corrector control the astigmatism introduced by tilting the mirror. 
The Houghton corrector also eliminates the spherical aberration of the mirror with lens bending. 
Note the smaller focal ratio of this design compared to either the Yolo or the Schiefspiegler.

Other catadioptric Herschelians, as well as Schiefspieglers and Yolos, have been studied by 
Buchroeder88 and Leonard.82 Tilted, decentered, and unobscured Cassegrains are discussed by Gelles.89

F/4 SEAL

SUR RDY THI GLA CON

1 181.2 147.8 REFL
2 350.9 147.8 REFL 0.404
STO INF 147.8 REFL
4 350.9 119 REFL 0.404

Comments For an all-reflective objective, this flat-image design provides an exceptionally 
wide, unobscured field of view—greater than 90° with a ring field. Referred to as the SEAL,90 it is 



29.28  INSTRUMENTS

derived from its cousin the WALRUS;91 a related design has been described by Shafer.92 The SEAL 
is another Mersenne-Schmidt hybrid: primary and secondary form an inverse-Mersenne; tertiary 
and quaternary (also the secondary) form a reflective Schmidt. Residual spherical aberration limits 
the performance, but by aspherizing the flat, this residual aberration is corrected as well. Clearing 
all obscurations requires at least a 22° field offset. The SEAL shown here is optimized for a 20° strip 
field although a square, rectangular, annular, or almost any shape field is possible.

F/4 Paul Three-Mirror Objective

SUR RDY THI GLA CON

STO 117.1 42.87 REFL   1
2 31.38 42.87 REFL .6076
3 42.87 21.42 REFL

Comments This design is based on work by Paul93 and later by Baker,94 who was looking for an 
achromatic field corrector for a parabolic primary. Their efforts culminated in a design similar to 
this one, which combines the properties of an afocal Cassegrain-Mersenne in the first two elements 
with the properties of an all-reflective Schmidt in the secondary and tertiary elements. Since both 
modules are corrected for spherical aberration, coma, and astigmatism to third order, the complete 
system is aplanatic and anastigmatic. Petzval curvatures are equal and opposite so a flat image is 
achieved. The conic deformation of the secondary is modified to give it an ellipsoidal shape. This 
gives the required Schmidt aspherization needed to correct the spherical aberration of the tertiary 
mirror.

Other all-reflective designs have been proposed by Meinel21,95 and Baker.22 The Meinel-Shack 
objective96 exhibits similar performance and offers a more accessible image.

F/4 Alternative Paul Three-Mirror Objective

SUR RDY THI GLA CON

STO 142.4 49.28 REFL 1
2 39.51 49.28 REFL
3 54.69 30.7 REFL 0.101

Comments This Paul objective has an aspheric tertiary mirror, instead of an aspheric secondary.

F/4 Off-Axis, Eccentric-Pupil Paul-Gregorian

SUR RDY THI GLA CON

STO INF 79.2  
2 158.4 118.8 REFL 1
3 79.2 79.2 REFL 1

A: 0.2707E-6
B: 0.117E-9

4 77.53 38.768 REFL
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Comments This eccentric-pupil (22-cm), off-axis (1°) design utilizes a Gregorian-Mersenne 
module in the primary and secondary mirrors. Spherical aberration produced by the spherical 
tertiary mirror is corrected by superimposing aspheric deformation on the paraboloid secondary, 
located at the tertiary mirror center of curvature. With all concave surfaces, field curvature is uncor-
rected. A real and accessible exit pupil and intermediate image offer possibilities for excellent stray-
light suppression.

As is the case with the virtual Schmidt system, the tertiary mirror may be decentered to provide a 
more convenient image location. This requires two-axis aspheric deformation of the secondary mirror.97

F/4 Three-Mirror Cassegrain

SUR RDY THI GLA CON

STO 39.67 15.814 REFL 0.9315
2 10.66 21 REFL 2.04
3 INF 9.05 REFL

Tilt: 45°

4 13.66 13.651 REFL 0.4479

Comments A design similar to the aplanatic, anastigmatic, flat-image design shown here was 
conceived by Korsch98 and is described by Williams,99 Korsch,100 and Abel.43 The exit pupil is acces-
sible and an intermediate image exists. A 1° field offset is needed to displace the image from the 
folding flat. Residual coma limits field performance. Small element tilts and decenters will improve 
the performance of this design.

Three-Mirror Afocal Telescope

SUR RDY THI GLA CON

STO 100.725 33.514 REFL 1
2 46.109 100 REFL 3.016
3 74.819 55.56 REFL 1

Comments This 5  afocal design from Smith2 is an eccentric-pupil Cassegrain and a parabolic 
tertiary combined. The design is aplanatic and anastigmatic. The entrance pupil is decentered 
by 32 cm.

Three-Mirror Afocal Telescope

SUR RDY THI GLA CON

STO 240 200 REFL 1
2 160 200 REFL 9
3 480 250 REFL 1
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Comments A similar design by Korsch14 is also aplanatic and anastigmatic. The entrance pupil 
is decentered by 20 cm. Other afocal designs are described by Gelles101 and King.102

F/4 Three-Mirror Cassegrain

SUR RDY THI GLA CON

STO 59.64 18.29 REFL 1.134
2 28.63 33.74 REFL 2.841
3 55.05 13.244 REFL 5.938

Comments Robb103 has introduced another aplanatic, anastigmatic, flat-image, three-mirror 
Cassegrain without an intermediate image.

F/6.7 Spherical Primary Three-Mirror Objective

SUR RDY THI GLA CON

STO 429.67 149.87 REFL
2 104.16 211.14 REFL 3.617
3 126.49 73.0 REFL 0.179

Comments Making the largest element in an objective a spherical mirror reduces cost and may 
enhance performance. This aplanatic, anastigmatic, flat-image, eccentric-pupil design ( 35 cm stop 
decenter) with an unobscured light path is similar to one described by Korsch14 and another devel-
oped for use as an astrometric camera by Richardson and Morbey.104

F/4 Spherical Primary Three-Mirror Objective

SUR RDY THI GLA CON

STO 194.58 79.13 REFL
2 64.42 113.68 REFL 12.952
3 38.47 26.24 REFL 0.4826

Comments Here is another aplanatic, anastigmatic, flat-field, eccentric-pupil design with a 
17-cm stop decenter and large spherical primary. There is an intermediate image and an accessible 
exit pupil.

F/4 Three-Mirror Korsch Objective

SUR RDY THI GLA CON

1 201.67 133.36 REFL 0.689
STO 96.5 131.8 REFL 1.729
3 172.54 200.83 REFL
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Comments This off-axis (5°) design by Korsch105 is aplanatic, anastigmatic, and has a flat image. 
The same configuration has been employed by Pollock106 as a collimator. Characteristics include a 
large field of view, low pupil magnification, accessible pupils, and an intermediate image.

The tertiary in this design is spherical. With reoptimization, the secondary may also be spherical.

F/4 Three-Mirror Cook Objective

SUR RDY THI GLA CON

1 123.2 57.38 REFL 0.7114
2 37.46 57.45 REFL 3.824
3 51.89 35.87 REFL 0.1185
STO INF −15.92  

Comments This objective was introduced by Cook.107–109 The aplanatic, anastigmatic, flat-image 
design shown here has a larger pupil magnification and a smaller field than the previous design. The 
eccentric-pupil, off-axis design has a −3.2-cm stop decenter and a 5° field bias. A space-based sur-
veillance objective in this configuration has been developed and built by Wang et al.110

F/4 Three-Mirror Wetherell and Womble Objective

SUR RDY THI GLA CON

1 166.19 38.78 REFL 2.542
STO 55.19 38.78 REFL 0.428
3 82.46 65.24 REFL 0.133

Comments Another aplanatic, anastigmatic, flat-image, off-axis (9°) design has been intro-
duced by Wetherell and Womble.111 Figosky112 describes a variant of this form to be sent into orbit. 
The aperture stop is located at the secondary mirror; hence, this mirror is symmetric with respect to 
the optical axis.

F/10 Korsch Three-Mirror, Four-Reflection Objective

SUR RDY THI GLA CON

STO 66.44 22.15 REFL 1.092
2 22.15 22.15 REFL 1.295
3 66.44 22.15 REFL 1.092
4 44.29 21.96 REFL 0.8684



29.32  INSTRUMENTS

Comments The three-mirror, four-reflection design shown here from Korsch113 is extremely 
compact for its 200-cm focal length, and the image is accessible.

F/1.25 McCarthy

SUR RDY THI GLA CON

STO 81.57 40.21 REFL 1
2 INF 25.09 REFL

Tilt: 45°

3 48.68 29 REFL 1
4 19.15 30.64 REFL
5 49.85 65.483 REFL

Comments McCarthy114 intended this design, which combines a Cassegrain-Mersenne primary 
and tertiary mirror with a quaternary and quintenary Schwarzschild arrangement, as a wide strip-
field imager. Both the Mersenne and Schwarzschild groups are separately corrected for spherical aber-
ration, coma, and astigmatism. The Petzval curvature of the Mersenne is equal and opposite in sign 
to the Petzval curvature of the Schwarzschild and hence there is no net Petzval curvature. The quater-
nary mirror may be moved out from the entering beam with only a slight reduction in performance.

F/2.2 Cassegrain Objective with Schwarzschild Relay

SUR RDY THI GLA CON

1 51.49 19.01 REFL 1.048
2 37.37 34.19 REFL 20.35
3 38.18 10.493 REFL 1.358
4 29.94 11.27 REFL
STO    INF 40.484  

Comments Williams115 describes a technique for optimizing a high-resolution system similar 
to this one while maintaining proper clearances, obscuration sizes, and packaging requirements. An 
all-reflective zoom system of the above configuration, developed by Johnson et al.,116 gives a 4  zoom 
range and a field-of-view range of 1.5 to 6.0°. The Schwarzschild module and image position change 
with zoom position, while the front Cassegrain module remains fixed.

F/4 Altenhof Objective

SUR RDY THI GLA CON

STO INF 80 REFL

Tilt: 25°

2 155.64 165.53 REFL
3 77.26 38.57 REFL 0.0897
4 34.146 40.367 REFL
5 80.65 82.539 REFL
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Comments This objective is similar to one designed by Altenhof.117 Intended as a ring field 
system, the flat primary couples the light incident from a large azimuthal angle (60°) into the system 
where the spherical primary mirror focuses the light to a poorly corrected image.

The three-mirror Offner relay,9,118 a unit magnification relay which is corrected for spherical aber-
ration, coma, and astigmatism, improves the degraded image in the process of reimaging it to a flat 
focal surface in the form of an annulus. A two-dimensional scene is imaged by rotating the flat mirror 
about an axis perpendicular to the picture so as to scan the other dimension. A two-dimensional 
mosaic image can also be produced by building up a series of one-dimensional annular strip images 
as the imaging system is moved along its trajectory.

F/4.5 Shafer Four-Mirror, Unobscured Objective

SUR RDY THI GLA

1 158.1 71.21 REFL

Tilt angle: 16.44°

STO 186.8 74.25 REFL

Tilt angle: 20.88°

3 337.4 111.4 REFL

Tilt angle: 24.82°

4 239.1 121.4 REFL

Tilt angle: 34.76°
Image tilt angle: 24.29°

Comments This is a tilted and decentered-component infrared imaging system by David Shafer. 
Mirror tilts provide an unobscured path and help correct the aberrations. Thickness is measured along 
the deviated ray paths. With the reflection angle known, element decenter may be easily determined.

F/4.5 Shafer Five-mirror, Unobscured Objective

SUR RDY THI GLA

1 239.5 160.2 REFL

Tilt angle: 6.4°

2 228.9 48.69 REFL

Tilt angle: 9.2°

3 75.94 37.24 REFL

Tilt angle: 19.01°

STO 39.81 39.24 REFL

Tilt angle: 28.82°

5 78.72 74.5 REFL

Tilt angle: −40.55°
Image tilt angle: −11.28°
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Comments Another all-spherical, tilted, and decentered-component infrared imager by Shafer 
is presented here. The entrance pupil is accessible and there is an intermediate image. A number of 
variations on this arrangement are described by Shafer.80

Korsch Two- and Three-Mirror Objectives

Comments A new class of eccentric-pupil objectives has been introduced by Korsch.14 Unlike 
most systems, which are conceived using third-order aberration theory, these systems are based 
upon the fulfillment of axial stigmatism, the Abbe sine condition, and the Herschel condition; meeting 
these three conditions guarantees a perfect axial point image, axially perpendicular image area, and 
axial line element, respectively.

Design examples are not given for two reasons. First, rays strike some mirror surfaces at angles 
greater than 90°, which can cause ray-trace errors. Second, some of the surface shapes are particu-
larly complex and must be entered in design software as a user-defined surface.

Design (c) gives perfect imagery on-axis and less than one milliradian resolution at all other 
points over a 6° field of view, for an aperture diameter equal to F/6.0 (F is focal length).

29.5 FIELD-OF-VIEW PLOTS

The plots that follow give rms spot size and angular resolution as a function of half-field of view. 
The curves have been generated by calculating the resolution for a number of field angles and con-
necting them with smooth curves. The dashed horizontal line is the Airy disc diameter for 0.55-μm 
radiation.

The numbers in the plots correspond to the designs presented in the previous section. The aper-
ture of each design is 20 cm and the spectral range 480 to 680 nm, unless stated otherwise in the 
previous section.
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It should be kept in mind that these are representative designs: they have usually been optimized 
for a specific purpose; they are meant to be a starting place for the design of a new system that may 
have entirely different requirements.

Flat-field designs show consistent performance out to the field angle for which the objective is 
optimized. Beyond this point, the graph leaps upward. Reoptimization is needed if the field of view 
is to be extended further; a considerable increase in the average rms spot size may occur if this is 
attempted. The curved-image designs show a quadratic dependence with field angle.

Off-axis and eccentric-pupil designs have rectangular fields with most of the field of view in one 
dimension only. Data plotted for these designs are representative of the larger field.

In Figs. 8 and 10, plots for the curved image designs are provided. The curvature of the image is 
adjusted to give optimum performance. Figures 7 and 9 are for the flat image designs.
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FIGURE 7 Field-of-view plots: F/1.25 on a flat image.

25

31

29

24

17 19

22 37

20

36

20

15

R
M

S 
Sp

ot
 d

ia
m

et
er

 (
m

)

R
M

S
A

n
gu

la
r 

di
am

et
er

 (
r)

10

5

0.1 10

F/1.25

Half field in degrees

100

20

40

60

80

100

Blur diameter

FIGURE 8 Field-of-view plots: F/1.25 on a curved image.
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29.6 DEFINITIONS

Abbe number: A number that indicates the dispersion of a glass. Low dispersion glasses have a high 
Abbe number.

Abbe sine condition: A condition for zero coma, based on the requirement of equal marginal and 
paraxial magnifications. See Welford,61 Kingslake,9 or Korsch.14

anastigmatic: A surface or system free of astigmatism. Also stigmatic.

aperture stop: The aperture that limits the size of the axial beam passing through the system; the 
chief ray always passes through its center.

aplanatic: A surface or system that is corrected for spherical aberration and coma.
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astigmatism: An aberration that generates two different focal positions for rays in two perpendicu-
lar planes centered on the optical axis. These are called the sagittal and tangential planes.

axial color: The variation in focal position with wavelength.

axial stigmatism: A characteristic of a surface which is able to produce a perfect image of a single 
point object on-axis.

catadioptric: An optical system composed of refractive and reflective elements: catoptric, reflective 
and dioptric, refractive.

chief ray: A ray that passes through the center of the aperture stop and the edge of the image 
or object.

coma: An aberration resulting from the change in magnification with ray height at the aperture, 
so that rays near the edge of the aperture are focused further from rays near the axis, for the same 
field point.

conic constant: A constant defined by

k 2

where  is the eccentricity of the conic.

distortion: The variation in magnification with field angle.

entrance pupil: The image of the aperture stop in object space. The chief ray passes or appears to 
pass through the center of the entrance pupil.

exit pupil: The image of the aperture stop in image space. The chief ray passes or appears to pass 
through the center of the exit pupil.

focal ratio: The effective focal length of an objective divided by its entrance-pupil diameter. Focal 
ratio is also referred to as the FN, F-number, and speed.

field curvature: Image curvature produced by the combined effects of astigmatism and Petzval cur-
vature. When astigmatism is absent, the image surface coincides with the Petzval surface.

field stop: An aperture that limits the size of an intermediate or final image.

Herschel condition: A condition for invariance of aberrations with change in axial conjugates. See 
Welford61 and Korsch.14

higher-order aberrations: Aberrations defined by the higher-order terms in the aberration power 
series expansion. See Welford61 and Schulz.1

lateral color: An aberration that produces a dependence of image size on wavelength; also called 
chromatic difference of magnification.

Lyot stop: A real and accessible image of the aperture stop; used to block stray light.

marginal ray: A ray that passes through the center of the object or image and past the edge of the 
aperture stop.

medial image: The image halfway between the sagittal and tangential images. See Welford.61

monocentric system: An optical system in which all surfaces are concentric about the chief ray.

oblique spherical aberration: A higher-order aberration that is the variation of spherical aberration 
with field angle.

optical axis: The axis about which all optical elements are symmetric. In tilted and decentered sys-
tems, each element has a unique optical axis.

Petzval sum: The sum defined by

p
n

where is element power and n is the index of refraction. The reciprocal of the Petzval sum is the 
image radius of curvature.
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secondary magnification: System focal length divided by primary-mirror focal length.

secondary spectrum: The difference in focal position between two wavelengths corrected for axial 
color and one other wavelength which is not. For example, the blue and red focus coincide and the 
yellow focus is axially displaced.

spherical aberration: The only on-axis monochromatic aberration, spherical aberration results from 
rays at different heights coming to focus at different points along the optical axis. Smith,3 Rutten,12

Kingslake,9 Mackintosh,83 and Welford61 discuss aberrations. Welford specifically addresses aberrations.

third-order aberrations: Any of the Seidel aberrations: spherical aberration, coma, astigmatism, 
Petzval curvature, and distortion. See Welford.61

vignetting: The off-axis clipping of light by apertures in an optical system.

virtual image: A real image is visible when a screen is placed at its location. The image is visible 
because rays from the object converge at the image. A virtual image is not visible when a screen is 
placed at its location since real rays do not converge.

zonal spherical aberration: The incomplete correction of spherical aberration at radial zones in the 
aperture. For example, spherical aberration could be corrected for rays close to the center and edge 
of the aperture, but not corrected at other ray heights in the aperture.
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30.1 GLOSSARY

a aperture shape factor; calibrates diffraction angle as function of aperture intensity distribution

A area

C capacitance, electrical

d grating spacing, array element spacing

D useful beam width in scan direction (see W ); Dm  enlarged beam width due to a

fe data bandwidth

f focal length

F F-number (f/D)

FL field lens

FOV field of view

FWHM full width (of ) measured at half maximum intensity

H vehicle height

I resolution invariant; adaptation of Lagrange invariant, I D D , normalized intensity

k scanning constant (see m)

m scan magnification (d /d ) (for m  constant, m k / )

m composite magnification

M optical magnification (image/object)

n number of facets, refractive index, diffractive order

N number of resolution elements subtended by  or S

total number of cells in a phased array

P radiant power (watts)

PSF point spread function (intensity distribution of focused spot)

q number of cells in array period

Q q-factor (electromechanical)

30.1
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r radius

R reciprocity failure factor ( 1), scanner rpm

s sensitivity (recording medium)

S format width, no. of scans per revolution of scanner

t time

T time period, optical transfer factor ( 1)

V vehicle velocity, electrical voltage

W full aperture width, of which D is utilized (see )

w width at 1/e2 intensity

x along-scan direction

y cross-scan direction

  angular departure from normal beam landing, spectral power transfer factor, radiation intensity 
parameter

phosphor utilization factor ( 1)

spot size; if Gaussian, measured across 1/e2 intensity width or at FWHM

shift distance

chromatic error, ellipticity

duty cycle, conversion efficiency ( 1), efficiency

, optical scan angle, angular beamwidth

mechanical scan angle, along-track optical scan angle, optical field angle

wavelength

wavelength (acoustic grating), array period

truncation ratio (W/D)

Gaussian standard deviation

transit time (acoustic), retrace time, dwell time

30.2 INTRODUCTION

This chapter provides an overview of optical scanning techniques in context with their operational 
requirements. System objectives determine the characteristics of the scanner which, in turn, influence 
adjacent system elements. For example, the desired resolution, format, and data rate determine the 
scanner aperture size, scan angle, and speed, which then influence the associated optics. The purpose 
of this chapter is to review the diverse options for optical scanning and to provide insight to associated 
topics, such as scanned resolution and the reduction of spatial errors. This broad perspective is, how-
ever, limited to those factors which bear directly on the scanner. Referencing is provided for related sys-
tem relationships, such as image processing and data display. Topics are introduced with brief expres-
sions of the fundamentals. And, where appropriate, historical and technical origins are referenced.

The subject of scanning is often viewed quite differently in two communities. One is classified 
as remote sensing and the other, input/output scanning. Associated component nomenclature and 
jargon are, in many cases, different. While their characteristics are expanded in subsequent sections, 
it is useful to introduce some of their distinctions here. Remote sensing detects objects from a dis-
tance, as by a space-borne observation platform. An example is infrared imaging of terrain. Sensing 
is usually passive and the radiation incoherent and often multispectral. Input/output scanning, 
on the other hand, is local. A familiar example is document reading (input) or writing (output). 
Intensive use of the laser makes the scanning active and the radiation coherent. The scanned point is 
focused via finite-conjugate optics from a local fixed source.

While the scanning components may appear interchangeable, special characteristics and 
operational modes often preclude this option. This is most apparent for diffractive devices such as 
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acousto-optic and holographic deflectors. It is not so apparent regarding the differently filled scanning 
apertures, imparting important distinctions in resolution and duty cycle. The unification of some of 
the historically separated parameters and nomenclature is considered an opportunity for this writing.

A recent concentration of R&D in the field of agile beam steering is presented in Sec. 30.8. 
Intensive work has yielded encouragement in the long quest for achieving, for example, the per-
formance of articulated large mirrors while avoiding some of the systemic burdens of size, weight, 
and inertia. Recently, remarkable work has been done using microelectromechanical systems 
(MEMS) to make scanners on a small scale. Two particularly interesting devices are presented and 
are the digital micromirror device (DMD) incorporated into digital light processing (DLP) pro-
jectors and gimbal-less two-axis scanning-micromirror devices (GSMD). The DMD is essentially 
a two-dimensional array binary-state scanner or light switches, while the GSMD is a fully analog 
dual-axis scanner.

System Classifications

The following sections introduce the two principal disciplines of optical scanning, remote sensing, 
and input/output scanning, in preparation for discussion of their characteristics and techniques.

Remote Sensing The applications for passive (noninvasive) remote sensing scanners are varied and 
cover many important aspects of our lives. A signature representative of the target is obtained to 
form a signal for subsequent recording or display. This process is operationally distinct from active 
scanning, as expressed further in this chapter. Table 1 lists typical applications of these techniques. 
Clearly, remote scanning sensors can be hand held to satellite-borne.

A variety of scanning methods has been developed to accomplish the formation of image (or 
imagelike) data for remote sensing. These methods may be roughly divided into framing, push-
broom, and mechanical. Generally stated, frame scanning requires no physical scan motion and 
implies that the sensor has a two-dimensional array of detectors which are read out by use of elec-
tronic means (e.g., CCD), electron beam, or light beam. Such an array requires an optical system 
that has two-dimensional wide-angle capability. Pushbroom methods typically employ some exter-
nal means to move the image of a linear array of detectors along the area to be imaged. Mechanical 
methods generally include one- and two-dimensional scanning techniques incorporating as few as 
one detector to multiple- detector arrays. As is the case for pushbroom methods, image formation 
by one-dimensional mechanical scanning requires that the platform containing the sensor (or in 

TABLE 1 Representative Applications of Passive 
Scanning Sensors

Medical Government
Cancer Forest fires
Arthritis Police
Whiplash Smuggling

Industrial Search and rescue
Energy management Military

  Thermal fault detection  Gun sights
Electronic circuit Night vision

  detection   Tactical
Nondestructive testing   Navigation

Scientific Missiles
Earth resources Strategic
Weather   Aircraft
Astronomy   ICBM

Surveillance
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some cases the object) be moved to create the second dimension of the image. The latter two meth-
ods are discussed further in later sections of this chapter.

Mechanical scanners can be configured to perform either one- or two-dimensional scan patterns. 
In the case of a one-dimensional scanner, the second dimension needed to form an image is most 
often generated by movement of the sensor platform.

A number of optical scanning systems have been invented to satisfy the wide variety of applica-
tions. In the early years of passive scanning systems, the entire optical system was often moved in 
order to produce either a one- or two-dimensional scan pattern. The advent of airborne mapping or 
reconnaissance electro-optical systems began during the 1950s. Typically, the scanner performed a 
one-dimensional scan in object-space, as defined under the section “Object-Space and Image-Space 
Scanners,” orthogonal to the flight direction of the aircraft, while the motion of the aircraft gener-
ated the second dimension of the image. The resultant video information is stored on a recording 
medium such as photographic film, digital tape, and the like. The design and resultant performance 
of a scanning system are governed by a variety of parameters that are related by trade-off equations 
and considerations. The selection of the scanner type typically has a strong influence upon the ulti-
mate system performance. In subsequent discussion, the more important parameters related to the 
scanner selection will be covered. The complexities of the total system design and optimization are 
not within the scope of this chapter.

Input/Output Scanning In contrast to remote sensing, which captures passive radiation, active 
input/output scanning illuminates an object or medium with a “flying spot,” derived typically from 
a laser source. Some examples appear in Table 2, divided into two principal functions: input (detect-
ing radiation scattered from the scanning spot) and output (recording or display). Input is modu-
lated by the target to form a signal; output is modulated by a signal.

Some merit clarification. Under input is laser radar—a special case of active remote sensing, 
using the same coherent and flying-spot scanning disciplines as the balance of those exemplified. 
Earth resources imaging is the recording of remotely sensed image signals. Finally, data/image display 
denotes the general presentation of information, which could include “hard copy” and/or actively 
projected and displayed images.

Active scanning is synonymous with flying-spot scanning, the discipline most identified with the 
ubiquitous cathode-ray tube (CRT). While the utilized devices and their performance differ signifi-
cantly, the distinctions between CRT and laser radiation are primarily their degrees of monochro-
maticity and coherence, as addressed later in this chapter.

Thus, most high-resolution and high-speed flying-spot scanning are now conducted using the 
laser as a light source. This work in input/output scanning concentrates on the control of laser 
radiation and the unique challenges encountered in deflecting photons, devoid as they are of the 
electric and magnetic fields accompanying the electron beam. Reference is provided1–3 for pursuit of 
the CRT scanning discipline.

TABLE 2 Examples of Input/Output Scanning

Input Output

Image scanning/digitizing Image recording/printing
Bar-code reading Color image reproduction
Optical inspection Medical image outputs
Optical character recognition Data marking and engraving
Optical data readout Microimage recording
Graphic arts camera Reconnaissance recording
Scanning confocal microscopy Optical data storage
Color separation Phototypesetting
Robot vision Graphic arts platemaking
Laser radar Earth resources imaging
Mensuration Data/Image display
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Scanner classification Following the nomenclature introduced in the early 1970s,4,5 laser scan-
ners are designated as preobjective, objective, and postobjective. Figure 1 indicates the scan regions 
within a general conjugate optical transfer of a fixed reference (object) point Po to a moving focal 
(image) point Pi. The component which provides principal focusing of the wavefront identifies the 
objective lens.

The scanner can perform two functions (see section “Objective, Preobjective, and Postobjective 
Scanning” later in this chapter): one is translation of the aperture with respect to the information 
medium. This includes translation of the lens element(s) or translation of the object, or both, and 
is identified as an objective scan. The other is angular change of the optical beam with respect to the 
information medium. Angular scanners are exemplified by plane mirrors on rotating substrates. 
Although lenses can be added to an angular scanner, it is seldom so configured. The scanner is 
either preobjective or postobjective. In holographic scanning, however, the hologram can serve as an 
objective lens and scanner simultaneously.

Radial symmetry and scan magnification A basic characteristic of some angular scanners is 
identified as radial symmetry. When an illuminating beam converges to or diverges from the nodal 
or rotating axis of an angular scanner, it is said to exhibit radial symmetry.6 The collimated beam 
which is parallel to the rotating axis is a special case of radial symmetry, in which the illuminating 
beam propagates to or from a very distant point on the axis. Scanners exhibiting radial symmetry 
provide unity angular optical change for unity mechanical change. That is, m d d/ 1, where 
is the optical scan angle and is the mechanical change. The parameter m is called the scan magnifica-
tion, discussed later under “Augmented Resolution, the Displaced Deflector” for Eq. (19). It ranges 
typically between 1 and approximately 2, depending on the scanner-illumination configuration, per 
Table 3. In remote sensing, m / k. (See “Compound Mirror Optics Configurations.”)

The prismatic polygon (see “Monogon and Polygon Scanners”) exhibits a variable m, depending 
on the degree of collimation or focusing of the output beam. When collimated, m  2. When focus-
ing, the value of m shifts from 2 according to the composite magnification

m r f2 / (1)

where f and r are according to Fig. 4 and Eq. (19). This is similar to the ratio of angular velocities of 
the scanned focal point along the arc of a limaçon,5

/
cos

/
2 1

1 f r
(2)

FIGURE 1 Conjugate imaging system, showing scan regions, as determined by position of scanning member relative to 
the objective lens. Translational (objective) scan and angular (pre/postobjective) scan can occur individually or simultaneously.4
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Note that when r  0 or when f , / 2. In holographic scanners which are not radially sym-
metric, m depends on the angles of incidence and diffraction of the input and first-order output beam,

m di osin sin / (3)

where i and o are the input and diffracted angles (with respect to the grating normal) and d is the 
grating spacing. For example, when i o  30°, m  1; when i o  45°, m 2.

30.3 SCANNED RESOLUTION

Remote Sensing Resolution and Data Rates

Figure 2 illustrates the scanning geometry for an airborne line-scanning system where the aircraft 
is flying along a “track” at a height H and velocity V. The total scanned field of view is max and the 
cross-track and along-track instantaneous fields of view are  and , respectively.  The direction 
directly below the aircraft and normal to the scanned surface is called the nadir. The instantaneous field 

TABLE 3 Typical Features of Pyramidal and Prismatic Polygon Scanners

Item Description Pyramidal Prismatic

1 Input beam directiona Radially symmetricb Perpendicular to axisc

(typically parallel to axis)
2 Output beam directiona Arbitrary angle to axis Perpendicular to axisc

(typically perpendicular)
3 Scan magnificationb 1 2b

(scanning constant)
3a Along-scan error 1 2b

magnification
3b Max. scan angle, max 2 /n 4 /nb

(n  no. of facets)
4 Output beam rotation Yes No

about its axisd

5 Aperture shapee Triangular/keystone Rectangular
(overilluminated)

6 Enlargement of along- No Yes f

scan beam width Dm D/cos 
7 Error due to axial Yes No

polygon shiftg

8 Error due to radial Yes Yes
polygon shiftg

9 Fabrication cost Greater Lower

aWith respect to rotating axis.
bSee sections “Radial Symmetry and Scan Magnification” and “Augmenting and Scan Magnification.” Output beam assumed col-
limated.
cAll beams typically in same plane perpendicular to axis. See Figs. 26 and 28.
dObservable when beam is nonisotropic; e.g., elliptic, polarized, etc. Rotation of isotropic beam normally not perceived. See 
“Image Rotation and Derotation.”
eSee Table 4.
f  angular departure from normal landing. See “Scanner-Lens Relationships.”
gShift of image focal point in noncollimated light. No error in collimated light.

Cross-track and along-track in remote sensing correspond to along-scan and cross-scan, respectively, in input/output scanning.
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of view is defined as the geometrical projection of the detector with spatial dimensions dct and dat by 
the optics having a focal length of F. Therefore,  dct/F and dat/F. Figure 2 shows the “bow-tie” 
distortion of the scanning geometry which will be discussed further under “Image Consequences.”

The basic equation relating the aircraft velocity to the angular velocity of the scanning system to 
produce contiguous scan lines at the nadir is V H s/ , where s is the scanning system’s scan rate in 
scans per second. For a system with n detector elements aligned in the flight direction, V H ns/ .

The number of resolution elements or pixels in a single scan line is

N max (4a)

2

360
max

°
(4b)

where  is in radians, max is the total field of view measured in radians in Eq. (4a) and in 
degrees in Eq. (4b), for the scanning means employed, taking due regard for the duty cycle given 

FIGURE 2 Scanning geometry for an airborne line-
scanning system with a total scanned FOV of max. The air-
craft is flying at height H and velocity V. The cross-track and 
across-track instantaneous FOVs are  and , respectively. 
(After Wolfe, Proc. IRE, 1958.)
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in Eq. (23). The scan rate, in scans per second, may be expressed as a function of the scan mirror 
speed by

s
RS
60

(5)

where R is the scan mirror rpm and S is the number of scans produced by the scanning mechanism 
per revolution of the optics. It follows that the number of resolution elements or pixels per second 
per scan line is

N
RS2

60 360
max

. . (6)

The angle max (in degrees) is determined by the configuration of the scan mirror and is max 360 · k/S,
where k is the scanning constant or scan magnification  and can have values ranging from 1 to 2. The 
specific value is dependent upon the optical arrangement of the scanner as exemplified in Table 3. 
The pixel rate may now be written as

N
kR2

60
(7)

The information retrieval rate of a system is often expressed in terms of the dwell time  or the 
data bandwidth fe as

f
N

e

1
2 2

(8)

By combining the preceding equations, the data bandwidth for a multiple-detector system can be 
expressed as

f
k V H

nSe

( )/
(9)

which illustrates clearly the relationship between important system parameters such as fe being 
inversely proportional to instantaneous field-of-view solid angle ( ).

Input/Output Scanning

Resolution Criteria, Aperture Shape Factor The resolution of an optical scanner is expressed5,7 by 
the number N of spots or elements that can be conveyed along a contiguous spatial path. The path is 
usually (nearly) linear and traversed with uniform velocity. Although the elements  are analogous 
to the familiar descriptors pixels or pels (picture elements), such identification is avoided, for pixels 
often denote spatially digitized scan, where each pixel is uniform in intensity and/or color. Active 
optical scan, on the other hand, is typically contiguous, except as it may be subjected to modulation. 
Normally, therefore, the scanned spots align and convolve to form a continuous spatial function that 
can be divided into elements by modulation of their intensity. To avoid perturbation of the elemen-
tal point spread function (PSF) by the modulating (or sampling) process, we assume that the scan 
function is modulated in intensity with a series of (Dirac) pulses of infinitesimal width, separated by 
a time t such that the spatial separation between spot centers is w vt, where v is the velocity of the 

See “Radial Symmetry and Scan Magnification” regarding scan magnification m which represents a more general form of 
the scanning constant k.
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scanned beam. It is often assumed that the size  of the thus-established elemental spot corresponds 
to w; that is, the width of the imaged spot is equal to the spacing from its neighbor.

To quantify the number N of such spots, those which exhibit a Gaussian intensity distribu-
tion are usually considered overlapping at one of two widths; at their 1/e2 intensity points, or at 
their 50 percent intensity points [the latter denoted as full width at half maximum (FWHM)]. 
Their relationship is

FWHM 0 589
1 2.
/e

(10)

The resolution N is identified with its measurement criterion, for the same system will convey 
different apparent N, per Eq. (10). That is, it will count approximately 1. 7 times as many spots at 
FWHM than at 1/e2 intensity.

These distinctions are accommodated8 by their aperture shape factors a. For example, the above 
Gaussian aperture distribution is represented by shape factors

a
e1 2

4
1 27

/
. (11a)

a a
eFWHM 0 589 0 75

1 2. .
/ (11b)

When adapted to the applicable equation for spot size

aF (12)

where F f/D is the F-number of the cone converging over the distance f from beam width D, and 
is the radiation wavelength, the resulting Gaussian spot size becomes

1 2

4
1 27

/
.

e

f
D

F (13a)

when measured across the 1/e2 intensity points, and

FWHM 0 75. F (13b)

when measured across FWHM.
The factor a further accommodates the resolution changes due to changes in aperture shape, as 

for apodized and truncated Gaussians. Ultimate truncation is that manifest when the illuminating 
spatial distribution is much larger than the limiting aperture (overillumination or overfilling), form-
ing the uniformly illuminated aperture.  Familiar analytic examples are the rectangular and round 
(or elliptic) apertures, which generate (for the variable x) the normalized intensity distributions 
[sin(x)/x]2 and [2J1(x)/x]2, respectively, where J1(x) is the first-order Bessel function of the first kind.

Figure 3 illustrates† the MTFs9 of several uniformly illuminated apertures. Their intersections 
with the 0.5 MTF value identifies the spatial frequency at which their modulation is 50 percent. With 
the rectangular aperture as a reference (its straight line intersects 0.5 MTF at 50 percent of the limit 
frequency, forming a  1), the intersections of the others with MTF  0.5 yield corresponding spatial 
frequencies and relative a-values. Since the spatial frequency bandpass is proportional to D/f  1/F,
the apertures of the others must be widened by their a-values (effectively lowering their F-numbers) 
to render equivalent response midrange.

Although the illumination and resulting PSFs are of a coherent wave, scanning forms a sequence of incoherently related 
intensity measurements of the space-shifting function, yielding an incoherent MTF.

†See Figs. 23 and 24 and related discussion for reduced power throughput due to approaching uniform illumination within 
the aperture.
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Table 4 summarizes the aperture shape factors (a) for several useful distributions.8 Truncated, 
when applied, is two dimensional. Noteworthy characteristics are

1. Scanning is in the direction of the width D or W.

2. The a-value of 1.25 for the uniformly illuminated round/elliptic aperture corresponds closely to 
the Rayleigh radius value of 1.22.

3. The Gaussian-illuminated data requires that the width D, measured at the 1/e2 intensity points be 
centered within the available aperture W. Two conditions are tabulated: untruncated10 (W  1.7D)
and truncation at W D.

4. The Gaussian-illuminated data also provides the a-values for 50 percent MTF, allowing direct 
comparison with performance of the uniformly illuminated apertures.

This data relates to apertures which, if apodized, are truncated two dimensionally. However, one-
dimensional truncation of a Gaussian beam by parallel boundaries is not uncommon, typical of that for 
acousto-optic scanning. There, the limiting aperture width W is constant, as determined by the device, 
while the Gaussian width D is variable.4,5,11,12 Table 5 tabulates the shape factor a for such conditions.

TABLE 4 Aperture Shape Factor a

Uniformly Illuminated Gaussian Illuminated

 (Spot a (Untruncated) a (Truncated) 
Shape a Overlap) W  1.7 D W D

Rectangular 1.0 @ 1/e2 Intensity 1.27 1.83
Round/elliptic 1.25 @ 1

2 –Intensity 0.75 1.13
Keystone 1.5 for 50% MTF 0.85 1.38
Triangular 1.7  Beam width D @ 1/e2, intensity

Width D for 1.7  centered within aperture width W
50% MTF

FIGURE 3 Modulation transfer function versus relative spatial fre-
quencies for uniformly illuminated rectangular, round, keystone, and trian-
gular apertures. Spatial frequency at 50 percent modulation (relative to 
that of rectangular aperture) determines the a value.5
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To relate to data in Table 4, the case of W/D  0 represents illumination through a narrow slit. 
This corresponds to the uniformly illuminated rectangular aperture, whence a  1. When  1, then 
W D and the parallel barriers truncate the Gaussian beam at its 1/e2 intensity points. Compared to 
symmetric truncation, this allows more of the Gaussian skirts to contribute to the aperture width, 
providing a  1.15 versus 1.38. When  2, the Gaussian beam of half the width of the boundaries 
is effectively untruncated, halving the resolution (a  1.75 vs. 0.85), but maximizing radiometric 
throughput. (See Fig. 24, observing nomenclature, where D  2wx and W  2ro.)

Fundamental Scanned Resolution The section on “Input/Output Scanning” introduced the two 
forms of optical scan: translation and angular deflection. Beam translation is conducted by objective 
scan, while angular deflection is either preobjective or postobjective. Examples of each are provided 
later in this chapter.

The resolution Ns of translational scan, by a beam focused to spot size  executing a scanned 
path distance S, is simply,

N
S

s (14)

Extremely high resolutions are practical, but are often limited to moderate speeds and bandwidths. 
Common implementations provide Ns  3000 to 100,000.

The resolution N of angular scan,† represented schematically in Fig. 4, capable of much higher 
speeds, is given by4,5,7

N
D

a
o (15)

where  is the useful deflected optical angle and Do is the effective aperture width at its nodal center, 
discussed in the next section. Common implementations provide N  2000 to 30,000. Equation 
(15) is independent of spot size  and dependent only on the aperture characteristics of Do and a,
and the wavelength . The beam could be converging, collimated, or diverging. When collimated, 
Do D, the actual width of the illuminated portion of the aperture. When converging or diverging, 
resolution augmentation occurs (see next section).

The numerator of Eq. (9) is a form of the Lagrange invariant,13 expressed in this nomenclature as

n D n D' ' ' (16)

TABLE 5 Aperture Shape Factor a for One-
Dimensional Truncation of a Gaussian Intensity 
Distribution

Truncation Ratio Shape Factor a
W/D for 50% MTF

0 1.0
0.5 1.05
1.0 1.15
1.5 1.35
2.0 1.75

W  width of aperture.
D  width of Gaussian beam at 1/e2 intensity points.
W and D measured in scan direction.

A high-resolution laser printer provides N = 3000 to 10,000, and a high-resolution graphic arts imager N = 10,000 to 100,000.
†Derived from Eq. (4a) with sin  = a /Do.
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where the primed terms are the refractive index, (small) angular deviation, and aperture width, 
respectively, in the final image space. For the common condition of n n  in air, the D product 
and resolution N are conserved, invariant with centered optics following the deflector.

Augmented Resolution, the Displaced Deflector In general, a scanning system can accumulate reso-
lution N by adding the two processes described previously, augmentation of angular scan with linear 
translation, forming

N N Ns (17)

Augmentation occurs, for example, with conventional multielement scanners (such as polygons) 
having deflecting elements (facets) which are displaced from the rotating axis by a distance r, and 
whose output beam is noncollimated. One active element (of width D) and its focused output beam 
is illustrated in Fig. 4. For convenient analysis,6 the deflecting element appears as overilluminated 
with an incident beam. The resulting resolution equations and focal spot positions are independent 
of over- or underillumination (see “Duty Cycle”).

Augmentation for increased resolution is apparent in Fig. 4, in which the output beam is derived 
effectively from a larger aperture Do which is located at o. By similar triangles, Do D (1 r/f ), 
which yields from Eq. (15),

N
D

a
r
f

1 (18)

This corresponds to Eq. (17), for in the Ns term the aperture D executes a displacement component 
S r , which, with Eq. (12) forms Eq. (14).

Following are some noteworthy observations regarding the parenthetic augmentation term:

1. Augmentation goes to zero when r  0 (deflector on nodal axis) or when f  (output beam 
collimated).

2. Augmentation adds when output beam is convergent ( f positive) and subtracts when output 
beam is divergent ( f negative).

3. Augmentation adds when r is positive and subtracts when r is negative (output derived from 
opposite side of axis o).

The fundamental or nonaugmented portion of Eq. (18), N D/a , has been transformed to 
a nomograph, Fig. 5, in which the angle  is represented directly in degrees. D/a  is plotted as a 
radius, particularly useful when a  1 μm, whereupon D/a  becomes the aperture size D, directly 
in mm. The set of almost straight bold lines is the resolution N. Multiples of either scale yield cor-
responding multiples of resolution.

Augmenting and scan magnification Equation (18) develops from Fig. 4, assuming that the opti-
mal scan angle  is equal to the mechanical angle . This occurs only when the scanner exhibits 

f

D

o

Do

p

r

FIGURE 4 Deflecting element of width D (e.g., mirror of polygon) dis-
placed by radius r from axis o, propagating a converging beam to p over focal 
distance f. Effective larger aperture Do appears at rotating axis.4
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radial symmetry (see “Radial Symmetry and Scan Magnification”). When, however, m d /d  1, 
as for configurations represented in the section “Objective, Preobjective, and Postobjective 
Scanning,” account must be taken of scan magnification m. Thus, the more complete resolution 
equation is represented by6,14

N
D

a
r

mf
1 (19)

where  per Fig. 4,  optical scan angle (active)
D  scan aperture width

 wavelength (same units as D)
 a  aperture shape factor
m  scan magnification ( d /d )

 mechanical scan angle about o
  r  distance from o to D
  f  distance from D to p

[see variations for r and f under Eq. (18)].
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Considering m /  as a constant, another useful form is

N
D

a
m

r
f

(20)

whose augmenting term shows a composite magnification

m m r f/
(21a)

which, for the typical prismatic polygon becomes

m r f2 / (21b)

Duty Cycle The foregoing resolution equations refer to the active portion of a scan cycle. The full 
scan period almost always includes a blanking or retrace interval. The ratio of the active portion 
to the full scan period is termed the duty cycle . The blanking interval can include short overscan 
portions (straddling the active format), which are used typically for radiometric and timing calibra-
tion. The duty cycle is then expressed as

1 /T (22)

where  is the blanking interval time and T is the full scan period. A reduced duty cycle increases 
instantaneous bandwidth for a given average data rate. In terms of the scan angle of polygons, for 
example, it limits the useful component to

max (23)

where max is the full available scan angle (see Table 3).

Over- and Underillumination (Over- and Underfilling) In overillumination, the light flux encom-
passes the entire useful aperture. This is usually implemented by illuminating at least two adjacent 
apertures (e.g., polygon facets) such that the active one is always filled with light flux. This not only 
allows unity duty cycle, but provides for resolution to be maximized for two reasons: (1) blanking or 
retrace may be reduced to zero; and (2) the full available aperture width is operative as D through-
out scan. The trade-off is the loss of illuminating flux beyond the aperture edges (truncation) and 
attendant reduction in optical power throughput (see “Coherent Source” under Sec. 30.5, p. 30.26). 
An alternative is to prescan15 the light flux synchronously with the path of the scanning aperture 
such that it is filled with illumination during its entire transit.

In underillumination, the light flux is incident on a portion of the available aperture, such that this 
subtense delimits the useful portion D. A finite and often substantive blanking or retrace interval results, 
thereby depleting the duty cycle, but maximizing the transfer of incident flux to the scanned output.

30.4 SCANNERS FOR REMOTE SENSING

Early Single-Mirror Scanners

Early scanning systems comprised an object-space mirror followed by focusing optics and a detector 
element (or array). The first scanners were simple rotating mirrors oriented typically at 45° to the 
axis as illustrated in Fig. 6. The rotational axis of the scan mirror lies parallel to the flight direction. 
In Fig. 6a, the scan efficiency and duty cycle of the oblique or single ax-blade scanner (see monogon 
under “Monogon and Polygon Scanners”) is quite low since only one scan per revolution (S  1) is 
generated. The scan efficiency of the wedge or double ax-blade scanner shown in Fig. 6b is twice 
as great (S  2), although the effective optical aperture is less than half that of the oblique scanner 
for the same mirror diameter. The scanning constant is k  1 for both types (see “Remote Sensing 
Resolution and Data Rates” in Sec. 30.3).
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Compound Mirror Optics Configurations

The aforementioned scanners suffered from a varying optical aperture as a function of view 
angle. To overcome this difficulty that causes severe variation in the video resolution during a 
scan line, several new line scanner configurations were developed. Most notable among these was 
the rotating prism scanner invented by Howard Kennedy16 in the early 1960s and which forms 
the basis for most of the produced wide-field-of-view line scanners. Figures 7 and 8 illustrate two 

Axi
s Axi

s

(a) (b)

FIGURE 6 Early forms of scanners for remote sensing. The oblique or single 
ax-blade scanner is shown in (a) and the wedge or double ax-blade is shown in (b).

FIGURE 7 Basic split-aperture scanner with a three-
sided scan mirror developed in the early 1960s. This scanner 
features wide FOV, constant optical aperture versus scan 
angle, and compact mechanical configuration.

FIGURE 8 Basic split-aperture scanner with a four-
sided scan mirror developed in the early 1960s. This scanner 
features wide FOV, constant optical aperture versus scan 
angle, and compact mechanical configuration.
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configurations of this scanner. The three-sided scan mirror (SM) shown in Fig. 7 rotates about 
its longitudinal axis at a high rate and the concomitant folding mirrors (FMs) are arranged such 
that the scanned flux is directed onto suitable focusing optics (FO) which focuses the flux at the 
detector D. As may be seen in the drawing of a four-sided scanner shown in Fig. 8, the effective 
optical aperture is split into two portions such that their sum is a constant value as a function 
of view angle. The width of each portion varies as the view angle is changed, with the portions 
being of equal value at the nadir position. The isometric view in Fig. 8 shows a portion of the 
scanner comprising the scan mirror, one folding mirror, and the focusing mirror. For this design, 
the number of scans per rotation of the scan mirror is equal to the number of faces on the scan 
mirror, and the scanning constant is k  2, which is also known as optical doubling (see item 3 
of the prismatic polygon in Table 3). Also, two faces of the scan mirror are always used to form 
the total optical aperture. Another advantage of this scanner configuration is that it produces a 
compact design for the total scanner system, a major reason for its popularity for over a quarter 
of a century.

Image Consequences

In airborne sensing, it is reasonable to assume that the earth is flat beneath the aircraft. When view-
ing along the nadir, the detector spatial footprint on the ground is H  and H  in the across- and 
along-track directions, respectively. As the view angle ( ) moves away from the nadir, the geometric 
resolution on the ground changes as illustrated in Fig. 2, which creates the bow-tie pattern. In the 
cross-track direction, it is easily shown that the footprint dimension is H  · sec2 , while in the 
along-track direction, the footprint dimension is H  · sec . The change in footprint as a function 
of view angle can be significant. For example, if max  120°, then the footprint area at the extremes 
of the scan line is about eight times greater than at the nadir.

Image Relation and Overlap

When a linear array of n detectors is used, it is easily seen that the image of the detector array rotates 
by exactly the same amount as the view angle if the scanner is pyramidal as shown in Fig. 6. No such 
rotation occurs for the prismatic polygon, as in the Kennedy scanner, for which each scan comprises 
n adjacent detector footprints on the ground that form a segmented bow tie. The next scan footprint 
has significant overlap with the preceding scan(s) for  0. A means to compensate for the radio-
metric difficulties caused by the overlap of scans has been developed.17 In a single detector system, 
this artifact is easily compensated by electronic means.

Rotating Wedge Scanner

Figure 9 shows a simple rotating wedge scanner that allows the generation of a wide variety of scan 
patterns, including a line scan. By controlling the rotational rates and phasing of the wedges, such 
patterns as included in Fig. 10 can be realized.18

Circular Scan

In some cases, a circular scan pattern has found utility. Typically, the entire optical system is rotated 
about the nadir with the optical axis inclined at an angle  to the nadir. Figure 11 depicts an object-
plane scanner showing how the aircraft or satellite motion creates contiguous scans. Although the 
duty cycle is limited, an advantage of such a scanner is that, at a given altitude, the footprint has the 
same spatial size over the scanned arc.
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FIGURE 9 Basic geometry of a simple rotating wedge scanner. A wide variety of scan 
patterns can be produced by controlling the rotational rates and phasing of the wedges. In 
principal, the detector can view any point within the circular scanned FOV of the scanner. 
Figure 10 presents typical scan patterns for constant rotational rates. Two-dimensional 
raster scans can be generated if general positional control of each prism is allowed.

FIGURE 10 Typical scan patterns for a rotating wedge scanner. The ratio of the rotational fre-
quencies of the two prisms is m, the ratio of the prism angles is k, and the phase relation at time zero is 

 (  = 0 implies the prism apexes are oriented in the same direction). A negative value of m indicates 
that the prisms are counter-rotating. (After Ref. 18, Fig. 12, p. 12.)
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Pushbroom Scan

A pushbroom scanner comprises typically an optical system that images onto the ground a linear 
array of detectors aligned in the cross-track direction or orthogonal to the flight direction. The 
entire array of detectors is read out every along-track dwell time which is at /(V/H). Often, 
when a serial read-out array is employed, the array is rotated slightly such that the read-out time 
delay between detectors creates an image that is properly aligned to the direction of motion. Some 
state-of-the-art arrays can transfer the image data in parallel to a storage register for further process-
ing. The principal advantage of the pushbroom scanner is that no moving parts are required other 
than the moving platform upon which it is located.

Two-Dimensional Scanners

Two-dimensional scanners have become the workhorses of the infrared community during the past 
two decades even though line scanners still find many applications, particularly in the area of earth 
resources. Scanners of this category can be classified into three basic groups, namely, object-space 
scanner, convergent-beam or image-space scanner, and parallel-beam or intermediate space scanner. 
Figure 12 depicts the generic form of each group.

Object-Space and Image-Space Scanners

The earliest two-dimensional scanners utilized an object-space scan mechanism. The sim-
plest optical configuration is a single flat-mirror (see Fig. 12a) that is articulated in such a 
manner as to form a raster scan. The difficulty with this scan mechanism is that movement 
of a large mirror with the necessary accuracy is challenging. The size of the mirror aperture 
when in object space must be greater than that of the focusing optics. By using two mirrors 
rotating about orthogonal axes, the scan can be generated by using smaller mirrors, although 

ABCABC Portion of scanned 
ground path

utilized

Detector ground patch

Focusing optics

Detector system

Vehicle motion

Scanning mirror

FIGURE 11 Basic configuration of a circular or conical scanner. 
The normal of the scanning mirror makes an angle  with the nadir. 
The scan pattern of the ground forms a series of arcs illustrated by 
scans A, B, and C. (After Ref. 19, Fig. 8-3, p. 340.)
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the objective optics must have the capability to cover the entire field of view rather than the 
FOV of the detector. Figure 13 illustrates such a scanner21 where mirror SM1 moves the beam 
in the vertical direction at a slow rate while mirror SM2 generates the high-speed horizontal 
scan. Although the focusing optics is shown preceding the image-space scan mirrors, the optics 
could be placed following the mirrors which would then be in object space. Although the high-
F-number or low-numerical-aperture focusing lens before the mirrors must accommodate the 
FOV, it allows the use of smaller mirror facets. The left-hand side of Fig. 13 shows an integral 
recording mechanism that is automatically synchronized to the infrared receptor side. This fea-
ture is one of the more notable aspects of the configuration and sets the stage for other scanner 
designs incorporating the integrated scene and display scanner. A disadvantage of this scanner 
is the large size and weight of the vertical scan mirror, in part, to accommodate both scene and 
display scan.

A variation of the two-mirror object-space scanner is known as the discoid scanner, which 
produces a raster scan at TV rates.22 Figure 14 depicts the scanner configuration which uses a high-
speed, multiple-facet scan mirror SM1 to generate the horizontal scan and a small, oscillating flat 
mirror SM2 to produce the vertical scan. An advantage of this scanner is that only a single detector 
is needed to cover the FOV, although a linear array oriented in the scan direction is sometimes used, 
with time-delay integration, to improve sensitivity. A feature of the “paddle” mirror scanner is the 
maintenance of a relatively stable aperture on the second deflector without the use of relay optics 
(see Figs. 21 and 32 and the section on the “Parallel-Beam Scanner”).

FIGURE 12 The three basic forms of two-dimensional scanners are shown in (a), (b), and (c). The object-space 
scanner in (a) comprises a scan mirror located in object space where the mirror may be moved in orthogonal angular 
directions. Image-space or convergent-beam scanner in (b) forms a spherical image surface due to motion of the scan 
mirror (unless special compensation motion of the scan mirror is provided). The parallel-beam or intermediate-
space scanner is illustrated in (c). It is similar to the scanner in (a) except that the scan mirror is preceded by an afocal 
telescope. By proper selection of the afocal ratio and FOV, the scan mirror and focusing lens become of reasonable 
size. The scan mirror forms the effective exit pupil. (After Ref. 20, Figs. 7.1 and 7.10.)
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Figure 15 depicts a reflective polygon scanner that generates the high-speed horizontal scan (per 
facet) by rotation of mirror SM about its rotational axis and the vertical movement of the scan pattern 
by tilting the spinning mirror about pivots P1 and P2 using cam C and its follower CF.23 The path of 
the flux from the object reflects from the active facet A of the scan mirror to the folding mirror FM to 
the focusing mirror FO back through a hole in mirror FM to the detector located in dewar D. Almost 

FIGURE 13 Early slow-scan-rate, image-space scanner where the flux from 
the scanned scene is imaged by the focusing objective lens FO onto the detector. 
The scene is scanned by mirrors SM1 (vertical) and SM2 (horizontal). A raster 
image of the scene is formed by imaging the light source using lenses L1 and L2. 
The display image and the scanned scene are synchronized by using the same 
pair of mirrors. The light source is modulated by the output of the detector.

FIGURE 14 Real-time, object-space scanner that has a compact 
geometry. The exit pupil EP is located on the active facet of the hori-
zontal scan mirror SM1.
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all scanners of this type exhibit scanned-field distortion; that is the mapping of object to image 
space is nonrectilinear (e.g., see the target distortion discussion in the section “Image Consequences” 
on p. 30.16).

In general, convergent-beam, image-space scanners suffer from severe defocus over the scanned 
field of view due to the field curvature produced by the rotation of the scan mirror in a convergent 
beam. The use of this type scanner is therefore rather limited unless some form of focus correction 
or curved detector array is employed. A clever invention by Lindberg24,25 uses a high-speed refrac-
tive prism and a low-speed refractive prism to create the scanned frame. Figure 16 shows the basic 

FIGURE 15 Object-space scanner that generates a raster scan using a single mirror SM which is driven by motor M1. 
The vertical motion of the mirror is accomplished by tilting the housing containing the scan mirror SM about pivots P1 
and P2 using the drive mechanism comprising motor M2, cam C, and CF. The FOV of scanners of this type can exceed 30°.

FIGURE 16 Basic configuration of a refractive prism scanner. The scan 
is generated by rotation of the prism. As shown, four scans are produced per 
complete rotation of the prism. By proper selection of the refractive index of the 
prism, reasonably wide FOV can be realized. Although only one prism is shown, a 
second prism can be included to produce the orthogonal scan direction.
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configuration for a one-dimensional scanner where the cube P is rotated about the axis orthogonal 
to the page. By proper selection of the refractive index and the geometry of the prism, focus is main-
tained over a significant and useful field of view. As can be seen from the figure, flux from the object 
at a given view angle is focused by lens L onto surface I which is then directed to the detector D by 
the refraction caused by the rotated prism. Numerous commercial and military thermographic sys-
tems have utilized this principle for passive scanning. Since the field of view, maximum numerical 
aperture, optical throughput, and scan and frame rates are tightly coupled together, such scanners 
have a reasonably constrained design region.

Other image-space scanners used in a convergent beam are the “soupbowl” and carousel scan-
ners.20 The soupbowl scanner shown in Fig. 17 uses a rotating array of mirrors to produce a circu-
larly segmented raster scan. The mirror facets may be at the same angle to generate more frames per 
rotation, given a detector array that has adequate extent to cover the field of view. The facets could 
also be tilted appropriately with respect to one another to produce contiguous segments of the field 
of view if a small detector array is employed. Figure 18 illustrates the configuration of the carou-
sel scanner which uses an array of mirrors arranged such that they create essentially a rectangular 
scan of the field of view. Another scanning means that has been used for certain forward-looking 
infrared systems (FLIRs) was to mechanically rotate a detector array of angular extent  about the 

FIGURE 17 Rotating reflective or “soupbowl” scanner. (After Ref. 20, Fig. 7.21, p. 309.)

FIGURE 18 Rotating reflective carousel scanner. (After Ref. 20, Fig. 7.22, 
p. 309.)
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optical axis of the focusing optics such that one end of the array was located an angular distance os
from the optical axis. The rotating action generated a circular arc scan pattern similar to that of a 
windshield wiper. The inner radius of the scan pattern is os and the outer radius is os . Clearly, 
the scan efficiency is rather poor and the necessity to use slip rings or the equivalent to maintain 
electrical connections to the detector array complicated acceptance of this scanner. The windshield 
wiper scan can also be generated by rotating only the optics if the optics incorporates anamorphic 
elements. A pair of cylindrical lenses placed in an afocal arrangement, as illustrated in Fig. 19 at 
rotational angles  and  90°, will rotate the beam passing through it at twice the rotational rate of 
the optics.26 See “Image Rotation in Derotation” in Sec. 30.6.

Multiplexed Image Scanning

With the advent of detector arrays comprising significant numbers of elements, the use of a single 
scan mirror became attractive. Figure 20 presents the basic parallel-beam scanner configuration 
used for the common module FLIR and thermal night sights. The flat scan mirror SM is oscillated 
with either a sawtooth or a triangular waveform such that the detector array D (comprising 60, 120, 
or 180 elements) is scanned over the FOV in the azimuthal direction while the extent of the detec-
tor covers the elevation FOV. Since the detectors are spaced on centers two detector widths apart, 
the scan mirror is tilted slightly in elevation every other scan to produce a 2:1 interlaced scan of 
the FOV. As shown in Fig. 20, the back side of the scan mirror is used to produce a display of the 
scanned scene by coupling the outputs of the detectors to a corresponding array of LEDs which are 
projected to the user’s eye by lenses L1, L2, L3, and L4.

Parallel-Beam Scanner

A more complex two-dimensional, parallel-beam scanner configuration of the type shown in Fig. 12c
has been developed by Barr & Stroud and is illustrated in Fig. 21, which incorporates an oscillating 
mirror SM1, a high-speed polygon mirror SM2 driven by motor M2, and relay optics L1. (See discussion 

(a)

Scanned
scene

(b)

Scanned
scene

FIGURE 19 “Windshield wiper” scanner. The circular scan 
is generated by rotating the anamorphic optics about its optical 
axis. The detector array is located radially and offset from the 
optical axis. Two scans are produced for each complete rotation 
of the optics. The lens is shown in (a) at rotation angle  and in 
(b) at rotation angle  + 90°. Although the lens shown is focal, the 
lens could be afocal and followed by a focusing lens.



30.24  INSTRUMENTS

FIGURE 20 Basic configuration of the common module scanner. The front side of the flat 
scan mirror SM is used to direct the flux from the scanned scene to the detector D through the 
focusing lens. The outputs from the infrared detector array are used to modulate a correspond-
ing LED array. The LED array is collimated by L1 and scanned over image space by the back side 
of SM. Lenses L2–L4 are used to project the image of the LED array to the observer’s eye.

FIGURE 21 Compact real-time scanner. The horizontal scan mirror SM2 is 
shown in two positions to illustrate how the field of view is related to location on 
mirror L1. Mirror L1 serves as a relay mirror of the pupil on mirror SM1 to SM2.
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at end of Sec. 30.5.)27 An afocal telescope is located before the scanner to change the FOV, as is typi-
cal of parallel-beam scanners. Another innovative and compact two-dimensional scanner design by 
Kollmorgen is depicted in Fig. 22 and features diamond-turned fabrication technology for ease of 
manufacture and alignment of the mirrors and mounts.28 Another parallel-beam scanner that uses a 
simple scan mirror has been developed.29 The scan mirror is multifaceted with each facet tilted at an 
angle that positions the detector array in a contiguous manner in elevation. By having the nominal 
tilt angle of the facets be 45° to the rotation axis, minimal scanned-field distortion is realized.

30.5 SCANNING FOR INPUT/OUTPUT IMAGING

Power Density and Power Transfer

Incoherent Source This topic merits introduction as the predecessor to laser scanning—cathode-
ray tube (CRT), flying-spot scanning and recording.1,2,3 Adaptation to other forms of incoherent 
sources, such as light-emitting diodes (LEDs) will be apparent. Similarities and contrasts with the 
handling of coherent sources are expressed.

In a CRT, the electron beam power P (accelerating voltage beam current) excites a phosphor of 
conversion efficiency  and utilization factor . The resulting radiant power is transferred through 
an imaging system of optical transmission efficiency T and spectral power transfer  to a photosen-
sitive medium of area a during a time t. The resulting actinic energy density is given by3

E
T Pt
A

J/cm2 (24)

[1 J (joule)  1 W-s (watt-sec)  107 ergs].

FIGURE 22 Extremely compact, real-time scanner. Diamond-turned 
optics are used throughout this configuration. (After Ref. 28, Fig. 1.)
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The first four terms are transfer factors ( 1) relating to the CRT, but adaptable to other radiant 
sources. They are determined3 for a principal group of CRT recording phosphors having varying 
processes of deposition and aluminizing, and for two typical (silver halide) photosensitive spectral 
responses: noncolor sensitized and orthochromatic. The spectral transfer term  is determined from the 
relatively broad and nonanalytic spectral characteristics of the CRT phosphors and the photosensors,
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where the Ps and the Ss are the radiant power and medium sensitivity, respectively, taken at signifi-
cant equal wavelength increments .

The optical transfer term T is composed of three principal factors, T TrTfTv, where Tr is the 
fixed transmission which survives losses due to, for example, reflection and scatter, Tf is the fixed 
geometric transfer, and Tv is the spectrally variable transmission of, for example, different glass 
types. The fixed geometric transfer is given by3

T
Mf

V

F

cos4

2 21 4 1( )
(26)

The numerator ( 1) is a transfer factor due to field angle  and vignetting30 losses, F is the lens 
F-number, and M is the magnification, image/object. The variable component Tv requires evaluation 
in a manner similar to that conducted for the . The resulting available energy density E is determined 
from Eq. (24) and compared to that required for satisfactory exposure of the selected storage material.

Coherent Source Determination of power transfer is much simplified by utilization of a mono-
chromatic (single-line laser) source. Even if it radiates several useful lines (as a multispectral source), 
power transfer is established with a finite number of relatively simple determinations. Laser lines are 
sufficiently narrow, compared to the spectral characteristics of most transmission and detection 
media, so that single point evaluations at the wavelengths of interest are usually adequate. The com-
plexity due to spectral and spatial distributions per Eqs. (25) and (26) are effectively eliminated.

In contrast to the incoherent imaging system described above, which suffers a significant geo-
metric power loss represented by Tf of Eq. (26), essentially all the radiant power from the laser 
(under controlled conditions discussed subsequently) can be transferred to the focal spot. Further, 
in contrast to the typical increase in radiating spot size with increased electron beam power of a 
CRT, the radiating source size of the laser remains essentially constant with power variation. The 
focused spot size is determined (per the section “Resolution Criteria, Aperture Shape Factor”) 
by the converging beam angle or corresponding numerical aperture or F-number, allowing for 
extremely high power densities. Thus, a more useful form of Eq. (24) expresses directly the laser 
power required to irradiate a photosensitive material as

P
sR
T

A
t

watts (27)

where  s  material sensitivity, J/cm2

  R  reciprocity failure factor, 1
  T  optical throughput efficiency, 1
  A  exposed area, cm2

  t  time over area, A

The reciprocity failure factor R appears in Eq. (27), since the exposure interval t (by laser) can 
be sufficiently short to elicit a loss in sensitivity of the photosensitive medium (usually registered by 
silver halide media). If the A/t value is taken as, for example, an entire frame of assumed uniform 
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exposure interval (including blanking), then the two-dimensional values of  must appear in the 
denominator, for they could represent a significant combined loss of exposure time.

The optical throughput efficiency T is a result of loss factors including those due to absorption, 
reflection, scatter, diffraction, polarization, diffraction inefficiency in acousto-optic and holographic 
elements, and beam truncation or vignetting. Each requires disciplined attention. While the radia-
tion from (fundamental mode) laser sources is essentially conserved in traversing sufficiently large 
apertures, practical implementation can be burdensome in scanners. To evaluate the aperture size 
consistent with throughput power transfer, Figs. 23 and 24 are useful. The data is generalized to 
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FIGURE 23 Irradiance of a single-mode laser 
beam, generalized to elliptical, centered within a circular 
aperture of radius ro.

31 Glossary as published; D (as used 
here) = 2wx and w (as used here) = 2ro.
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FIGURE 24 Variations of the encircled energy 100 × L(%) versus the ellipticity  and the ratio 
ro/wx as a parameter.31 Glossary as published; D (as used here) = 2wo and w (as used here) = 2ro.
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elliptic, accommodating the irradiance of typical laser diodes.31,32 Figure 23 shows an irradiance dis-
tribution having ellipticity wx/wy (w @ 1/e2 intensity) apertured by a circle of radius ro. Figure 24 
plots the encircled power (percent) versus the ellipticity, with the ratio ro/wx as a parameter. When 

 1, it represents the circular Gaussian beam. Another parameter closely related to this efficiency 
is the aperture shape factor (discussed previously) affecting scanned resolution. (Note: D  2wx
and w  2ro.)

Objective, Preobjective, and Postobjective Scanning

Classification Characteristics The scanner classifications designated as preobjective, objective, and 
postobjective were introduced previously and represented in Fig. 1 as a general conjugate optical 
transfer. This section expresses their characteristics.

Objective scan (transverse translational) Translation of an objective lens transverse to its axis 
translates the imaged focal point on the information surface. (Axial lens translation which optimizes 
focus is not normally considered scanning.) Translation of the information medium (or object) 
with respect to the objective lens forms the same effect, both termed objective scan.  The two forms 
of objective scan appear in Fig. 25, the configuration of a drum scanner.

Preobjective scan (angular) Preobjective scan can provide a flat image field.† This is exemplified 
by angularly scanning a laser beam into a flat-field or f-  lens,33 as illustrated in Fig. 26, an important 
technique discussed further under “Pyramidal and Prismatic Facets” and “Flat-Field Objective Optics.”

FIGURE 25 Drum configuration executing two forms of objec-
tive scan: (a) lens and its focal point translate with respect to storage 
medium and (b) storage medium translates with respect to lens during 
drum rotation.4

Objective scan is limited in speed because the translating lens elements or storage medium must execute the desired final 
scan velocity, limited by the articulation of relatively massive components.

†Applies beyond the small scan angle  arctan , which may be considered linear. Also, no separate dynamic focus to aid 
forming a flat field.
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Postobjective scan (angular) Postobjective scan which is radially symmetric per Fig. 27 generates 
a perfectly circular scan locus.  Departure from radial symmetry (e.g., focal point not on the axis of 
Fig. 27) generates noncircular (e.g., limacçon5) scan, except for when a postobjective mirror with its 
surface on its axis generates a perfectly circular scan locus, illustrated in Fig. 28. The input beam is 
focused beyond the axis at point o. Scan magnification m  2.

Placing the objective lens in the output beam and coupling it rigidly to the scanner (e.g., of Fig. 27) maintains the same 
characteristic. This is identified as objective scan (angular). The scanner and lens may be combined, as in a hologram.

FIGURE 26 Polygon preobjective scan. The rotating polygon reflects and scans the input beam through 
the angle . The flat-field lens transforms this  change to (nominally) linear x displacement along a straight 
scan line. The input beam and the scanned beam reside nominally in the same plane.4

FIGURE 27 Monogon postobjective scan. Generates a curved image. When input 
beam is focused on the axis (at point o), then system becomes radially symmetric, and 
image locus forms section of a perfect circle.4
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Objective Optics

The objective lens converges a scanned laser beam to a moving focal point. The deflector can appear 
before, at, or after the lens, forming preobjective, objective, and postobjective scanning, respectively 
(see previous discussion).

On-Axis Objective Optics The simplest objective lens arrangement is one which appears before 
the deflector, as in Fig. 27, where it is required only to focus a monochromatic beam on-axis. The 
(postobjective) deflector intercepts the converging beam to scan its focal point. Ideally, the process 
is conducted almost aberrationlessly, approaching diffraction-limited performance. Since the lens 
operates on-axis only (accommodates no field angle), if the F-number of the converging cone is 
sufficiently high (see “Resolution Criteria, Aperture Shape Factor”), it can be composed of a single 
lens element. This simple arrangement can scan a perfectly circular arc [see “Postobjective Scan 
(Angular)]”, the basis for the elegance of the internal drum scanner and the requirement for adapt-
ing the information medium to a curved surface.

Flat-Field Objective Optics Almost all other lens configurations are required to form a flat field 
by transforming the angular scan to a straight line.33 The deflector appears before the lens—
preobjective. The most common configuration is similar to that of Fig. 26, as detailed further in 
“Design Considerations” under “Monogon and Polygon Scanners,” in which the scanned beam is 
shown collimated. Application is not limited to polygon scanners. Similar lenses adapt to a variety 
of techniques, including galvanometer, acousto-optic, electro-optic, and holographic scanners. The 
lens must accept the scanned angle  from the aperture D and converge the beam throughout the 
scanned field to a best-focus along a straight-line locus. Depending on the magnitudes of  and D,
the F-number of the converging cone and the desired perfection of straight-line focus and linear-
ity, the lens assembly can be composed of from 2 to 7 (or more) elements, with an equal number 
of choices of index of refraction, 4 to 14 (or more) surfaces, and 3 to 8 (or more) lens spacings, all 
representing the degrees of freedom for the lens designer to accommodate performance. A typical 
arrangement of three elements is illustrated in Fig. 34.

FIGURE 28 Postobjective scan with mirror surface on rotating axis. Input beam is focused by objective lens 
to point o, intercepted by mirror and reflected to scanning circular locus. Scan magnification m  d /d 24.
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Telecentricity A more demanding arrangement is illustrated in Fig. 29, showing six elements 
forming a high-performance scan lens in a telecentric configuration.30 Telecentricity is represented 
schematically in Fig. 30, in which an ideal thin-lens element depicts the actual arrangement of Fig. 
29. Interposed one focal length f between the scanning aperture D (entrance pupil) and the flat 
image surface, the ideal lens transforms the angular change at the input to a translation of the out-
put cone. The chief ray of the ideal output beam lands normal to the image surface. The degree of 
telecentricity is expressed by the angular departure from normal landing. Telecentricity is applied 
typically to restrict the spread of the landing beam and/or to retroreflect the probing beam efficiently 

FIGURE 29 High-performance telecentric lens at output of pyramidal 
polygon scanner, see Fig. 34. (Lens elements shown cut for illustration only.)4

Ideal
lens

D

Entrance
aperture

Translating
output cone

Axis

Scanned
focal point

Image
plane

ff

FIGURE 30 Telecentric optical system. Schematic illustration of ideal lens transforming angular scan 
 from aperture D to translational scan landing normal to the image plane.4
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for internal system calibration. This facility comes dearly, however, for the final lens elements must 
be at least as wide as the desired scan format. A further requirement is the need to correct the non-
linearity of the simple system of Fig. 30, in which the spot displacement is proportional to the tan-
gent of the scan angle, rather than to the angle directly. As in all scan lenses, compensation to make 
displacement proportional to scan angle is termed the f-  correction.

Double-pass and beam expansion Another variation of the objective lens is its adaptation to 
double-pass,4,5,33 as depicted in Fig. 31. The lens assembly serves two functions: first, as the col-
limating portion of a lenticular beam expander 33 and second, upon reflection by the scanner, as 
a conventional flat-field lens. This not only provides compaction, but since the illuminating beam 
is normal to the undeflected facet, the beam and facet undergo minimum enlargement, conserving 
the size of the deflector. A slight skew of the input and output planes, per Fig. 31, avoids obstruc-
tion of the input and scanned beams at the folding mirror. An alternate input method is to make 
the lens array wide enough to include injection of the input beam (via a small mirror) from the 
side; at an angle sufficiently off-axis to avoid obstruction of the reflected scanned beam.33 This 
method imposes an off-axis angle and consequential facet enlargement and beam aberration, but 
allows all beams to remain in the same plane normal to the axis, avoiding the (typically) minor 

FIGURE 31 Prismatic polygon in double-pass configuration. Narrow input 
beam is focused by positive lens, expanded, and picked-off by folding mirror to be 
launched through flat-field lens (in reverse direction). Beam emerges collimated, 
illuminates facets and is reflected and scanned by rotating polygon to be recon-
verged to focus on scan line. Input and output beams are slightly skewed above and 
below lens axis to allow clear separation by folding mirror. (Flat-field lens elements 
shown cut for illustration.)4

Beam expansion/compression can also be achieved nonlenticularly with prisms.34 Introduction in 1964 of the phrase “beam 
expander” by Leo Beiser, and its dissemination to generic form, is summarized in App.1 of Ref. 6.
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scanned bow which develops in the aforementioned center-skewed method. Other factors relating 
to increased surface scatter and reflection need be considered.

The requirement for beam expansion noted here is fundamental to the formation of the aperture 
width D which provides a desired scanned resolution. Since most gas lasers radiate a collimated 
beam which is narrower than that required, the beam is broadened by propagating it through an 
inverted telescope beam expander, that is, an afocal lens group having the shorter focal length 
followed by the longer focal length.  Operation may be reversed, forming beam compression, as 
required. In the previously described double-pass system (Fig. 31), the objective lens provides the 
collimating portion (long-focal-length group) of a beam expander.

Conservation of Resolution A most significant role of objective optics following the scanner is 
its determination of the integrity of scanned format, not of scanned resolution, as discussed under 
“Input/Output Scanning”. Denoting N as the total number of scanned elements of resolution to 
be conveyed over a full format width, in first analysis, N is invariant with intervening ideal optics. 
In reasonably stigmatic systems, the lens determines the size of the spots, not their total number.
The number of spots is determined at the deflector, whether it be galvanometer, acousto-optic, 
electro-optic, polygonal, holographic, phased array, or any other angular scanner. This invariance 
is expressed as

I D D (28)

an adaptation of the Lagrange invariant [see “Fundamental Scanned Resolution,” Eq.(16)], which 
is illustrated effectively with telescopic operation. If the scanned beam is directed through a 
telescope (beam compression), as in Fig. 32, the demagnification of f2/f1 reduces D to D , but 
also expands  to  by the same paraxial factor, sustaining resolution invariance. If D were the 
deflecting aperture width and L1 were its objective lens (telecentric in this case), then the image 
along surface S would exhibit the same number of N spots as would appear if the output beam 
from D  were focused by another objective lens to another image plane. This schematic represents, 
effectively, a pupil-transferring optical relay.4,5 (See Chap. 17, “Lenses” and Chap. 18, “Afocal Systems” 
in this volume.)
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FIGURE 32 Illustration of invariance I = D = D  with telescopic transfer of scanned angle  from aperture D.4
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30.6 SCANNER DEVICES AND TECHNIQUES

Many of the techniques addressed here for input/output imaging apply equally to remote sens-
ing. Their reciprocal characteristic can be applied effectively by reversing the positions (and ray 
directions) of the light source(s) and detector(s). Preobjective and postobjective scanning have 
their counterparts in object-space and image-space scanning. A notable distinction, however, is 
in the option of underillumination or overillumination of the deflecting aperture in input/out-
put imaging, while the aperture is most often fully subtended in collecting flux from a remote 
source. This leads to the required attention to aperture shape factor in input/output imaging, 
which is less of an issue in remote sensing. Another is the need to accommodate a relatively 
broad spectral range in remote sensing, while input/output operation can be monochromatic, or 
at least polychromatic. The frequent use of reflective optics in both disciplines tends to normalize 
this distinction.

Monogon and Polygon Scanners

The rotating mirrored polygon is noted for its capacity to render high data rate at high resolution. It 
is characterized by a multiplicity of facets which are usually plane and disposed in a regular array on 
a shaft which is rotatable about an axis. When the number of facets reduces to one, it is identified as 
a monogon scanner.

Pyramidal and Prismatic Facets Principal arrangements of facets are termed prismatic (Fig. 33) 
or pyramidal (see Fig. 34 and “Scanner-Lens Relationship”). Figure 27 is a single-facet pyramidal 
equivalent, while Fig. 28 is a single-facet prismatic equivalent (common galvanometer mount).

The prismatic polygon of Fig. 33 is oriented typically with respect to its objective optics in a 
manner shown in Fig. 26, while Fig. 34 shows the relationship of the pyramidal polygon to its flat-
field lens. The pyramidal arrangement allows the lens to be oriented close to the polygon, while, as 
in Fig. 26, the prismatic configuration requires space for clear passage of the input beam.  Design 
consideration for this most popular arrangement is provided later in this chapter.

In remote sensing, applying reciprocity, this is the detected beam.

FIGURE 33 Prismatic polygon (underilluminated). Input beam perpendicular to 
axis. Its width D illuminates a portion of facet width W. Rotation through angle  yields 
scanned angle  = 2 , till facet corner encounters beam. Scan remains inactive for fraction 
D/W, yielding duty cycle  = 1 Dm/W.4
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Table 3 lists significant features and distinctions of typical polygon scanners. Consequences of 
item 3, for example, are that the scan angle of the prismatic polygon is twice that of the pyramidal 
one for a given rotation. To obtain equal scan angles  of equal beam width D (equal resolutions 
N) and to provide equal duty cycle (see “Augmenting and Scan Magnification”) at equal scan rates, 
the prismatic polygon requires twice the number of facets, is almost twice the diameter, and rotates 
at half the speed of the pyramidal polygon. The actual diameter is determined with regard for the 
aperture shape factor (previously discussed) and the propagation of the beam cross section (pupil) 
across the facet during its rotation (see “Design Considerations”).

Image Rotation and Derotation When a beam having a round cross section is focused to an iso-
tropic point spread function (psf), the rotation of this distribution about its axis is typically unde-
tectable. If, however, the psf is nonisotropic (asymmetric or polarized), or if an array of 2 or more 
points is scanned to provide beam multiplexing,6 certain scanning techniques can cause an unde-
sired rotation of the point and the array of points on the image surface.

Consider a monogon scanner, per Fig. 27. As shown, the input beam overilluminates the rotating 
mirror. Thus, the mirror delimits the beam, establishing a rectangular cross section which maintains 
its relative orientation with respect to the image surface. Thus, if uniformly illuminated, the focal 
point on the image surface (having in this case a sinc2x · sinc2 y psf, x  along-scan and y  cross-
scan) maintains the same orientation along its scanned line. If, however, the input beam is polarized, 
the axis of polarization of the imaged point will rotate directly with mirror rotation within the rect-
angular psf. Similarly will be rotation for any radial asymmetry (e.g., intensity or ellipticity) within 
the aperture, resulting in rotation of the psf.

Consider, therefore, the same scanner underilluminated with, for example, an elliptical Gaussian 
beam (with major axis horizontal). The axis of the imaged elliptic spot (intended major axis vertical) 

FIGURE 34 Pyramidal polygon (overilluminated). Input beam, parallel to 
axis, is scanned (by 45° pyramidal angle) in plane perpendicular to axis. When 
input beam illuminates two facets (as shown), one facet is active at all times, 
yielding (up to) 100 percent duty cycle. Facet width is full optical aperture D,
minimizing polygon size for a given resolution, but wasting illumination around 
unused facet regions. Can operate underilluminated (per Fig. 33) to conserve 
throughput efficiency, but requires increased facet width (and polygon size) to 
attain high-duty cycle. (Flat-field lens elements shown cut for illustration.4)
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will rotate directly with the mirror. Similarly, if the scanner is illuminated with multiple beams 
displaced slightly angularly in a plane (to generate an in-line array of spots), the axis of the imaged 
array will rotate directly with mirror rotation.

This effect is transferrable directly to the pyramidal polygon which is illuminated per Fig. 34. It may 
be considered as an array of mirrors, each exhibiting the same rotation characteristics as the monogon 
of Fig. 27. The mirrors of Fig. 34 are also overilluminated, maintaining a stationary geometric psf dur-
ing scan (if uniformly illuminated), but subject to rotation of, for example, polarization within the psf. 
Similarly, it is subject to rotation of an elliptical beam within the aperture, or of a multiple-beam array.

Not so, however, for the mirror mounted per Fig. 28 (galvanometer mount), or for the prismatic 
polygon of Figs. 26 and 33, which may be considered a multifacet extension of Fig. 28. When the 
illuminating beam and the scanned beam form a plane which is normal to the axis of mirror rota-
tion, execution of scan does not alter the characteristics of the psf, except for the possible vignett-
ing of the optical aperture and possible alteration of reflection characteristics (e.g., polarization) 
with variation in incident angle. It is noteworthy that in the prior examples, the angles of incidence 
remained constant, while the image is subject to rotation; and here, the angles of incidence change, 
while the image develops no rotation.

The distinction is in the symmetry of the scanning system with respect to the illumination. The 
prior examples (maintaining constant incidence while exhibiting image rotation) are radially sym-
metric. The latter examples (which vary incidence but execute no image rotation) represent the limit 
of radial asymmetry. While mirrored optical scanners seldom operate in regions between these two 
extremes, holographic scanners can, creating possible complications with, for example, polarization 
rotation. This is manifest in the variation in diffraction efficiency of gratings for variation in p and s
polarizations during rotation. (See “Operation in the Bragg Regime.”)

Image Derotation Image derotation can be implemented by interposing another image-rotating 
component in the optical path to cancel that caused by the scanner. The characteristic of an image 
rotator is that it inverts an image.13 Thus, with continuous rotation, it rotates the image, develop-
ing two complete rotations per rotation of the component. It must, therefore, be rotated at half the 
angular velocity of the scanner.

While the Dove prism13 is one of the most familiar components used for image rotation, other 
coaxial image inverters include13

Three-mirror arrangement, which simulates the optical path of the Dove prism

Cylindrical/spherical lens optical relay

Pechan prism, which allows operation in converging or diverging beams

Design Considerations A commonly encountered scanner configuration is the prismatic polygon 
feeding a flat-field lens in preobjective scan, illustrated schematically in Fig. 26. The size and cost of 
the flat-field lens (given resolution and accuracy constraints) is determined primarily by its prox-
imity to the scanner and the demand on its field angle. A larger distance from the scanner (pupil 
relief distance) imposes a wider acceptance aperture for a given scan angle, and a wider scan angle 
imposes more complex correction for off-axis aberration and field flattening. The pupil relief dis-
tance is determined primarily by the need for the input beam (Fig. 26) to clear the edge of the flat-
field lens. Also, a wider scan angle reduces the accuracy requirement for pixel placement. Since the 
scan angle  subtends the desired number N of resolution elements, a wider angle provides a larger 
angular subtense per element and correspondingly larger allowed error in angle  for a desired 
elemental placement accuracy N. This applies in both along-scan and cross-scan directions, x
and y, respectively (see Sec. 30.7).

Subsequent consideration of the scanner-lens relationships requires a preliminary estimate of 
the polygon facet count, in light of its diameter and speed. Its speed is determined by the desired 
data rates and entails considerations which transcend the optogeometric ones developed here. 
Diffraction-limited relationships are used throughout, requiring adjustment for anticipated aberration 
in real systems. The wavelength  is a convenient parameter for buffering the design to accommodate 
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aberration. For example, an anticipated fractional spot growth of 15 percent due to systematic aber-
ration is accommodated by using  1.15 .

Performance characteristics which are usually predisposed are the resolution N (elements per 
scan), the optical scan angle , and the duty cycle . Their interrelationships are presented under 
“Input/Output Scanning,” notably by Eqs. (15) and (23). The values of N and  for a desired image 
format width must be deemed practical for the flat-field lens.

Following these preliminary judgments, the collimated input beam width D is determined from 
[see “Fundamental Scanned Resolution” Eq. (15)]

D Na / (29)

where a is the aperture shape factor and  is the wavelength. For noncollimated beams, see 
“Augmented Resolution, the Displaced Deflector,” notably Eq. (19). The number of facets is deter-
mined from Table 3 and Eq. (23),

n 4 / (30)

whereupon it is adjusted to an integer.

Scanner-lens relationships The polygon size and related scan geometry into the flat-field lens 
may now be determined.35 Figure 35 illustrates a typical prismatic polygon and its input and output 
beams, all in the same plane. One of n facets of width W is shown in three positions: undeflected and 
in its limit-rotated positions. The optical beams are shown in corresponding undeflected and limit 
positions, deflected by /2. A lens housing edge denotes the input surface of a flat-field lens. Angle 
 provides clear separation between the input beam and the down-deflected beam or lens housing. 

The pupil relief distance P (distance ac) and its slant distance Pe (distance bc) are system parameters 
which establish angle  such that cos P/Pe. Angle  represents the off-axis illumination on the 
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FIGURE 35 Polygon, beam, and lens relationships. Showing undeflected and limit facet and beam positions.4
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polygon which broadens the input beam on the facet. The beam width Dm on the facet is widened 
due to  and due to an additional safety factor t (1 t  1.4) which limits one-sided truncation of 
the beam by the edge of the facet at the end of scan. Applying these factors, the beam width becomes

D
Dt

m cos
(31)

Following Eq. (15), the duty cycle is represented by  1 − Dm/W, yielding the facet width

W Dm /( )1 (32)

from which the outer (circumscribed) polygon diameter is developed;35 expressed by

D
Dt

np ( )1 sin / cos
(33)

Solution of Eq. (33) or expressions of similar form36 entails determination of , the angle of off-
axis illumination on the facet. This usually requires a detailed layout, similar to that of Fig. 35. Series 
approximation of cos  allows transformation of Eq. (33) to replace  with more direct dependence 
on the important lens parameter P (pupil relief distance), yielding,

D
Dt

n
Ds P

p ( )sin1
1 2

1 82/
/

/
(34)

where, per Fig. 35, s  2 is a safety multiplier on D for secure input/output beam separation and clearance.
Orientation of the scanner and lens also requires the height h, the normal distance from the lens 

axis to the polygon center. This is developed35 as

h Rc sin / /( )2 4 (35)

where Rc is the radial distance oc, slightly shorter than the outer radius R, approximated to be

R R nc 1
1
4

2( )/ (36)

Holographic Scanners

General Characteristics Almost all holographic scanners comprise a substrate which is rotated 
about an axis, and utilize many of the concepts representative of polygons. An array of holographic 
elements disposed about the substrate serves as facets, to transfer a fixed incident beam to one which 
scans. As with polygons, the number of facets is determined by the optical scan angle and duty cycle 
(see “Duty Cycle”), and the elemental resolution is determined by the incident beam width and the 
scan angle [see Eq. (15)]. In radially symmetric systems, scan functions can be identical to those of 
the pyramidal polygon. While there are many similarities to polygons, there are significant advan-
tages and limitations.6 The most attractive features of holographic scanners are

1. Reduced aerodynamic loading and windage with elimination of radial discontinuities of the substrate

2. Reduced inertial deformation with elimination of radial variations

3. Reduced optical-beam wobble when operated near the Bragg transmission angle

Additional favorable factors are

1. Operation in transmission, allowing efficient beam transfer and lens-size accommodation

2. Provision for disk-scanner configuration, with facets disposed on the periphery of a flat surface, 
designable for replication
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3. No physical contact during exposure; precision shaft indexing between exposures allows for high 
accuracy in facet orientation

4. Filtering in retrocollection, allowing spatial and spectral selection by rediffraction

5. Adjustability of focus, size, and orientation of individual facets

Some limiting factors are

1. Need for stringent design and fabrication procedures, with special expertise and facilities in dif-
fractive optics, instrumentation, metrology, and processing chemistry.

2. Accommodation of wavelength shift: exposure at one wavelength (of high photosensitivity) and 
reconstruction at another (for system operation). Per the grating equation6 for first-order diffraction,

sin sin /i o d (37)

where i and o are the input and diffracted output angles with respect to the grating normal 
and d is the grating spacing, a plane linear grating reconstructs a collimated beam of a shifted 
wavelength at a shifted angle. Since wavefront purity is maintained, it is commonly employed,6

although it requires separate focusing optics (as does a polygon). When optical power is added 
to the hologram (to provide self-focusing), its wavelength shift requires compensation for aber-
ration.6 Further complications arise when intended for multicolor operation, even if plane linear 
gratings. Further, even small wavelength shifts, as from laser diodes, can cause unacceptable 
beam misplacements, requiring corrective action.6,37

3. Departure from radial symmetry develops complex interactions which require critical balancing 
to achieve good scan linearity, scan-angle range, wobble correction, radiometric uniformity, and 
insensitivity to input beam polarization.6,36 This is especially demanding in systems having opti-
cal power in the holograms.

4. Systems which retain radial symmetry to maintain scan uniformity may be limited in Bragg angle 
wobble reduction, and can require auxiliary compensation, such as anamorphic error correction.

Holographic Scanner Configurations A scanner which embodies some of the characteristics 
expressed above is represented in Fig. 36.38 A cylindrical glass substrate supports an array of equally 
spaced hololenses which image the input beam incident at o to the output point at P. Since point o
intersects the axis, the scanner is radially symmetric, whereupon P executes a circular (arced) scan 
concentric with the axis, maintaining magnification m /  1. A portion of the radiation inci-
dent on the image surface is backscattered and intercepted by the hololens, and reflected to a detec-
tor which is located at the mirror image o  of point o. The resolution of this configuration is shown 
to be analogous to that of the pyramidal polygon.6

An even closer analogy is provided by an earlier reflective form illustrated in Fig. 37, emulating 
the pyramidal polygon, Fig. 34. It scans a collimated beam which is transformed by a conventional 
flat-field lens to a scanned focused line. This is one of a family of holofacet scanners,6 the most 
prominent of which tested to the highest performance yet achieved in combined resolution and 
speed—20,000 elements per scan at 200 Mpixels/s. This apparatus is now in the permanent collec-
tion of the Smithsonian Institution.

Operation in the Bragg Regime The aforementioned systems are radially symmetric and utilize 
substrates which allow derivation of the output beam normal to the rotating axis. While operation 
with radial asymmetry was anticipated in 1967,39 it was not until operation in the Bragg regime was 
introduced6,40 that major progress developed in disk configurations. Referring to Fig. 38, the input 
and output beams I and O appear as principal rays directed to and diffracted from the holographic 
sector HS, forming angles i and o with respect to the grating surface normal.

For the tilt-error reduction in the vicinity of Bragg operation, the differential in output angle d o
for a differential in hologram tilt angle d  during tilt error  is given by

d do
i

o

1
cos

cos

( )

( )
(38)
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Hence, when i o, a small  is effectively nulled. While the i and o depart from perfect Bragg 
symmetry during hologram rotation and scan, the reduction in error remains significant. An anal-
ogy of this important property is developed for the tilting of a refractive wedge operating at mini-
mum deviation.6 When i o  45°, another property develops in the unbowing of the output 
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FIGURE 36 Transmissive cylindrical holographic scanner. Input beam underilluminates hololens which 
focuses diffracted beam to image surface. Dashed lines designate optional collection of backscattered radiation 
for document scanning.6
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FIGURE 37 Reflective holofacet scanner, underilluminated. Flat-field microimage scanner (100 1p/mm 
over 11-mm format).
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scanned beam: the locus of the output beam resides (almost) in a plane normal to that of the paper 
over a limited but useful range.6,37 Further, the incremental angular scan for incremental disk rotation 
becomes almost uniform: their ratio m at small scan angles is shown to be equal to the ratio /d of 
the grating equation [see the section on “Radial Symmetry and Scan Magnification” and Eq. (3)].6 At 

i o  45°, m /d 2. This results in the output-scan angle to be 2 larger (in its plane) than 
the disk-rotation angle. While such operation provides the above attributes, it imposes two practical 
restrictions.

1. For high diffraction efficiency from relief gratings (e.g., photoresist), the depth-to-spacing ratio 
of the gratings must be extremely high, while the spacing d / 2 must be extremely narrow. 
This is difficult to achieve and maintain, and difficult to replicate gratings which provide efficient 
diffraction.

2. Such gratings exhibit a high polarization selectivity, imposing a significant variation in diffrac-
tion efficiency with grating rotation (see “Image Rotation and Derotation”).

Accommodation of these limitations is provided by reducing the Bragg angle and introducing a 
bow correction element to straighten the scan line. This is represented in Fig. 39; a high-performance 
scanner intended for application to the graphic arts. The Bragg angle is reduced to 30°. This reduces 
the magnification to m  1 /d (as in radially symmetric systems), increases d to equal  for more real-
izable deep-groove gratings, and reduces significantly the angular polarization sensitivity of the grating.

The elegance of the 45° Bragg configuration has been adapted6 to achieve self-focusing in less 
demanding tasks (e.g., laser printing). This is exemplified in Fig. 40, which includes a holographic 
lens to balance the wavelength shift of the laser diode,41,42,43 to shape the laser output for proper 
illumination of the scanner and to accommodate wavelength shift reconstruction. However, such 
multifunction systems are compounded by more critical centration requirements6 and balancing of 
characteristics for achievement of a discrete set of objectives.

Galvanometer and Resonant Scanners

To avoid the scan nonuniformities which can arise from facet variations (see Sec. 30.7) of polygons 
or holographic deflectors, one might avoid multifacets. Reducing the number to one, the polygon 
becomes a monogon. This adapts well to the internal drum scanner (Fig. 27), which achieves a high 

FIGURE 38 Holographic scanner in Bragg regime; 

i = o, in which output angle o is stabilized against tilt 
error  of holographic segment HS.
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duty cycle, executing a very large angular scan within a cylindrical image surface. Flat-field scan-
ning, however, as projected through a flat-field lens, allows limited optical scan angle, resulting in 
a limited duty cycle from a rotating monogon. If the mirror is vibrated rather than rotated com-
pletely, the wasted scan interval may be reduced. Such components must, however, satisfy system 
speed, resolution, and linearity. Vibrational scanners include the familiar galvanometer and resonant 
devices4,5,44,45 and the less commonly encountered piezoelectrically driven mirror transducer.5,45

FIGURE 39 Plane linear grating (hologon) holographic disk scanner. Bragg 
angle of 30° provides fabricatable and polarization-insensitive grating structure, 
but requires bow compensation prism. Useful scan beam is in and out of plane of 
paper. (After Holotek Ltd, Rochester, NY product data.)

FIGURE 40 Holographic disk scanner with corrective 
holographic lens, both operating in approximately Bragg regime, 
providing complex error balancing.42
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The Galvanometer Referring to Fig. 41a, a typical galvanometer driver is similar to a torque motor. 
Permanent magnets provide a fixed field which is augmented ( ) by the variable field developed 
from an adjustable current through the stator coils. Seeking a new balanced field, the rotor  executes 
a limited angular excursion ( /2). With the mirror and principal ray per Fig. 28, the reflected 
beam scans through /2, twice that of the rotor.

The galvanometer is a broadband device, damped sufficiently to scan within a wide range of 
frequencies, from zero to an upper value close to its mechanical resonance. Thus, it can provide the 
sawtooth waveform with a longer active linearized portion and shorter retrace time . This is repre-
sented in Fig. 42 (solid lines) showing rotation angle  versus time. As a broadband device, it can 
also serve for random access, positioning to an arbitrary location within its access-time limitations. 
For this feature of waveform shaping, the galvanometer was categorized as a low inertia scanner.5

The Resonant Scanner When damping is removed almost completely, large vibrations can be sus-
tained only very near the resonant frequency of the oscillating system. The resonant scanner is thus 
characterized by larger angular excursions at a fixed and usually higher frequency, executing near-per-
fect sinusoidal oscillations. A typical driver configuration is illustrated in Fig. 41b. Figure 42 (dashed 
lines) shows a sinusoid with the same zero-crossings as those of the sawtooth waveform. Contrary 
to its popular designation as “low-inertia,” the resonant scanner provides rigid time increments, as 
though it exhibits a high inertia. While the rotary inertia of the suspension system is low to allow high 
repetition rates, it permits no random access and no scan waveform shaping, as do the galvanometer, 
acousto-optic, electro-optic, and other wideband scanners designated as low-inertia devices.5

Suspension Systems In the vibrational scanners, the bearings and suspension systems are the prin-
cipal determinants of scan uniformity. The galvanometer shaft must be sufficiently stiff and long to 
inhibit cross-scan wobble. However, to maximize the oscillating frequency, the armature is restricted 
in size and mass. Fortunately, its reciprocating motion tends to retrace its path (and its perturba-
tions) faithfully over many cycles, making adjacent scans more uniform than if the same shaft 
rotated completely within the same bearings, as in a motor.

FIGURE 41 Examples of galvanometer and resonant scanner transducers. Fixed field of permanent 
magnet(s) is augmented by variable field from current through stator coils. (a) Galvanometer: torque rotates 
iron or magnetic core. Mirror surface (not shown) on extended shaft axis. (b) Resonant scanner: torque from 
field induced into single-turn armature coil (in plane perpendicular to paper) rotates mirror suspended between 
torsion bars. One stator coil may be nondriven and used for velocity pick-off.

Rotor types include moving iron, moving magnet, or moving coil. Figure 41a illustrates the first two and Fig. 41b exempli-
fies the moving coil type. Moving magnet types (having NdFeB high-energy magnetic material) can exhibit some advantage in 
lower inertia and higher torque.
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Some bearings are flexure, torsion, or taut-band devices which insert almost no along-scan per-
turbations.44 Because of their low damping, these suspensions are most often applied to the resonant 
scanner. When damped, they can serve for the galvanometer, suffering a small sacrifice in bandwidth 
and maximum excursion, but gaining more uniform scan with very low noise and almost unlimited 
life. Some considerations are their low radial stiffness and possible coupling perturbation from tor-
sion, shift of the axis of rotation with scan angle, and possible appearance of spurious modes when 
lightly damped. Most of these factors can be well-controlled in commercial instrument designs.

Adaptations and Comparisons Because the resonant scanner oscillates sinusoidally, and we seek 
typically a linearized scan, some significant adaptations are often required. As illustrated in Fig. 42 
(dashed lines), we must select from the sine function a central portion which is sufficiently linear 
to be linearized further by timing the pixels or extracting them out of memory at a corresponding 
rate.46 To limit the variation in pixel rate to 2:1 (i.e., velocity at zero crossover will be twice that at 
the same limit), then the useful excursion must be restricted to 60°/90° or 66.7 percent of its peak 
angle. When scanning with only one slope of the sinusoid (as for generation of a uniformly spaced 
raster), this represents a duty cycle of only 33.3 percent. To raise the duty cycle, one must accom-
modate a greater variation in data rate. If, for example, the useful scan is 80 percent of its full excur-
sion (40 percent when using one slope), then the velocity variation rises to 3.24 . That is, the data 
rate or bandwidth at crossover is 3.24 times that at the scan limit. Also, its bandwidth at crossover is 
approximately 2 1/2 times that of the galvanometer, as represented by their relative slopes in Fig. 42

There is a corresponding variation in the dwell time of the pixels, resulting in predictable but 
significant variation in image exposure or detectivity: 2:1 for 33.3 percent duty cycle and 3 1/4: 1 
for 40 percent duty cycle. This may require compensation over the full scan interval, using posi-
tion sensing and control.45–48 In contrast, the broadband galvanometer with feedback can provide a 
highly linearized scan44 at a duty cycle of approximately 70 percent.5

Acousto-Optic Scanners

Acousto-optic diffraction serves effectively for high-speed low-inertia optical deflection. It can provide 
random beam positioning within extremely short access times, or generate repetitive linear scans at 
very high rates, or divide a single beam into multiple beams for multiplexing applications. The trade-
off is, however, relatively low resolution, seldom providing more than N  1000 elements per scan.
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FIGURE 42 Waveforms (  vs. time) of vibrational scanners having same 
period and zero crossings. Solid line: galvanometer with linearized scan, providing 
70 percent duty cycle. Dashed line: Resonant scanner providing 33.3 percent duty 
cycle (unidirectional) with 2:1 slope change, or 40 percent duty cycle with 3.24:1 
slope change. Ratio of maximum slopes: resonant/galvanometer 2.6/1.4
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The principles of acousto-optics were formulated in 193249 and its attributes were applied only 
5 years later to the Scophony TV projection system.50 Its potential for laser scanning was explored 
in the mid-1960s.51,52 While various acousto-optic interactions exist, laser scanning is dominated by 
operation in the Bragg regime.5,53

Fundamental Characteristics Diffraction from a structure having a periodic spacing  is expressed 
as sin i  sin o n / , where i and o are the input and output beam angles respectively, n is the 
diffractive order, and  is the wavelength. Bragg operation requires that i o B. In a “thick” dif-
fractor, length L 2/ , wherein all the orders are transferred efficiently to the first, and the Bragg 
angle reduces to

B

1
2

(39)

Per Fig. 43, the grating spacing is synthesized by the wavefront spacing formed by an acoustic 
wave traveling through an elastic medium. An acoustic transducer at one end converts an electri-
cal drive signal to a corresponding pressure wave which traverses the medium at the velocity vs,
whereupon it is absorbed at the far end to suppress standing waves. The varying pressure wave in 
the medium forms a corresponding variation in its refractive index. An incident light beam of width 
D is introduced at the Bragg angle (angle shown exaggerated). An electrical drive signal at the center 
frequency fo develops a variable index grating of spacing  which diffracts the output beam at B
into position b. The drive signal magnitude is adjusted to maximize beam intensity at position b,
minimizing intensity of the zero-order beam at position a. When fo is increased to fs fo f, the 
grating spacing is decreased, diffracting the output beam through a larger angle, to position c. The 
small scan angle  is effectively proportional to the change in frequency f.

The scan angle is /  ( /vs) f. The beam width, traversed by the acoustic wave over the 
transit time  is D vs . Substituting into Eq. (15) and accounting for duty cycle per Eq. (22), the 
resolution of the acousto-optic scanner (total N elements for total f) is

N
f

a
T( )1 / (40)

The f component represents the familiar time-bandwidth product, a measure of information-
handling capacity.

Deflection Techniques Because the clear aperture width W of the device is fixed, anamorphic 
optics is often used to illuminate W with an adjusted beam width D—encountering selective trunca-
tion by the parallel boundaries of W. The beam height (in quadrature to D) can be arbitrarily nar-
row to avoid apodization by the aperture. This one-dimensional truncation of the Gaussian beam 
requires assignment of an appropriate aperture shape factor a, summarized in Table 5.

Additional topics in acousto-optic deflection are cylindrical lensing due to linearly swept fs,
53 cor-

rection for decollimation in random access operation,5 Scophony operation,54 traveling lens or chirp 
operation,55 correction for color dispersion,56 polarization effects,57 and multibeam operation.58

Electro-Optic (Gradient) Scanners

The gradient deflector is a generalized form of beam scanner4,5,59 in which the propagating wave-
fronts undergo increasing retardation transverse to the beam, thereby changing the wavefront spacing 
(wavelength) transverse to the beam. To maintain wavefront continuity, the rays (orthogonal trajec-
tories of the wavefronts) bend in the direction of the shorter wavelength. Referring to Fig. 44a, this 
bend angle  through such a deflection cell may be expressed as

k dn dy lo( )/ (41)
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where n is taken as the number of wavelengths per unit axial length l, y is the transverse distance, 
and ko is a cell system constant. For the refractive material form in which the wavefront traverses a 
change n in index of refraction and the light rays traverse the change in index over the full beam 
aperture D in a cell of length L, then the relatively small deflection angle becomes4,5

( )n n L Df/ / (42)

where nf is the refractive index of the final medium (applying Snell’s law and assuming sin ). 
Following Eq. (15), the corresponding resolution in elements per scan angle is expressed as

N n n L af( )/ / (43)

The n is given by

(for class I materials) n n r Eo ij z
3 (44a)

(for class II materials) n n r Ee ij z
3 (44b)
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FIGURE 43 Bragg acousto-optic deflector (angles exaggerated for illustration). Electrical 
drive signal generates traveling acoustic wave in medium which simulates a thick optical grating. 
Relationship between the output beam position and the electrical drive frequency is tabulated.4
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where no,e is the (ordinary, extraordinary) index of refraction, rij is the electro-optic coefficient, 
and Ez V/Z is the electric field in the z direction (see Fig. 45).

Methods of Implementation An electroacoustic method of developing a time-dependent index 
gradient was proposed in 196360 utilizing the (harmonic) pressure variations in an acoustically 
driven cell (of a transparent elastic material). Although this appears similar to acousto-optic deflec-
tion (see “Acousto-Optic Scanners”), it differs fundamentally in that the cell is terminated reflec-
tively rather than absorptively (to support a standing wave). Also, the acoustic wavelength is much 
longer than the beam width, rather than much shorter for Bragg operation. A method of approach-
ing a linearly varying index gradient utilizes a quadrupolar array of electrodes bounding an electro-
optic material;61,62 and is available commercially.63

A continuous index gradient can be simulated by the use of alternating electro-optic prisms.59,64

A single stage biprism is illustrated in Fig. 44b and an iterated array for practical implementation 
appears in Fig. 45. Each interface imparts a cumulative differential in retardation across the beam. 
The direction and speed of retardation is controlled by the index changes in the electro-optic mate-
rial. While resolution is limited primarily by available materials, significant experiment and test is 
reported for this form of deflector.5

Drive Power Considerations The electrical power dissipated within the electro-optic material is 
given by5

P V Cf Q
1
4

2 / (45)

1 1

2
2

D Grad n (y)

(a)

y

x

1
1

2
2

D na nb
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FIGURE 44 Equivalent gradient deflectors: (a) basic deflector cell 
composed of material having grad n(y). Ray 1, propagating through a 
higher refractive index, is retarded more than Ray 2, tipping the wavefront 
through angle  (including boundary effect). (b) Analogous prismatic cell, 
in which na > nb, such that Ray 1 is retarded more than Ray 2, tipping the 
wavefront through angle .4
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where V is the applied (p-p sinusoidal) voltage in volts, C is the deflector capacitance in farads, f is 
the drive frequency in hertz and Q is the material Q factor [Q  1/loss tangent (tan )  1/power 
factor, (Q > 5)].

The capacitance C for transverse electroded deflectors is approximately that for a parallel-plate 
capacitor of (rectangular) length L, width Y, and dielectric thickness Z (per Fig. 45)

C LY Z0 09. / picofarads (46)

where k is the dielectric constant of the material (L, Y, Z in centimeters).
The loss characteristics of materials which determine their operating Q are often a strong func-

tion of frequency beyond 105 Hz. The dissipation characteristics of some electro-optic materials are 
provided,5,65,66 and a resolution-speed-power figure of merit has been proposed.67

Unique Characteristics Most electro-optic coefficients are extremely low, requiring high drive 
voltages to achieve even moderate resolutions (to N  100). However, these devices can scan to very 
high speeds (to 105/s) and suffer effectively no time delay (as do acousto-optic devices), allowing use 
of broadband feedback for position control.

30.7 SCAN-ERROR REDUCTION

High-resolution scanners often depend on precise rotation of a shaft about its axis, said shaft sup-
porting a multiplicity of deflecting elements (facets, mirrors, holograms). The control of angular 
uniformity of these multielements with respect to the axis, and of the axis with respect to its frame, 
can create an imposing demand on fabrication procedures and consequential cost. Since uniformity 
of beam position in the cross-scan direction may not be approached by phasing and timing of the 
data (as can be the along-scan errors), several noteworthy techniques have been developed to allevi-
ate this burden.

FIGURE 45 Iterated electro-optic prism deflector. Indicating alternating crystallographic (z) axes. Input beam 
polarization for class 1 electro-optic coefficient (r63) materials.4
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Available Methods

The general field of cross-scan error reduction is represented in Table 6. Fabrication accuracy may be 
selected as the only discipline, or it may be augmented by any of the auxiliary methods. The active
ones utilize high-speed low-inertia (A-O or E-O) or piezoelectric deflectors5,68 or lower-speed (gal-
vanometer) deflectors which are programmed to rectify the beam-position errors. While open-loop 
programming is straightforward (while accounting for angular magnification/demagnification as a 
function of the accessed beam size), elegant closed-loop methods may be required to rectify pseudo-
random perturbations. This must, however, be cost-effective when compared to the alternatives of 
increased fabrication accuracy and of the passive techniques.

Passive Methods

Passive techniques require no programming. They incorporate optical principles in novel configura-
tions to reduce beam misplacement due to angular error in reflection or diffraction. Bragg-angle error 
reduction of tilted holographic deflectors is discussed in the section, “Operation in the Bragg Regime.”

Anamorphic Error Control Anamorphic control, the most prominent treatment, may be applied to 
any deflector. The basics and operational characteristics6 are summarized here.

Separating the nonaugmented portion of the resolution equation [Eq. (19)] into quadrature 
components and denoting the cross-scan direction as y, then the error, expressed in the number of 
resolvable elements, is

N
D

ay

y y (47)

where a  is assumed constant, y is the angular error of the output beam direction, and Dy is the 
height of the beam illuminating the deflector. The objective is to make Ny  0. Mechanical accuracies 
determine y, while anamorphics are introduced to reduce Dy; usually accomplished with a cylin-
drical lens focusing the illuminating beam in the y direction upon the deflector. [The quadrature 
(along-scan) resolution is retained by the unmodified Dx and scan angle x.] As Dy is reduced, the 
y displacement error is reduced. Following deflection, the y-direction scanned spot distribution 
is restored by additional anamorphics—restoring the nominal converging beam angle (via Fy, the 
F-number forming the scanning spot in the y direction).

The error reduction ratio is

R D Dy y/ (48)

where Dy  is the compressed beam height and Dy is the original beam height on the deflector.

TABLE 6 Techniques for Cross-Scan Error Reduction
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A variety of anamorphic configurations has been instituted, with principal variations in the 
output region, in consort with the objective lens, to reestablish the nominal Fy while maintaining 
focused spot quality and uniformity.

Double-Reflection Error Control In double-reflection (Table 6), the deflector which creates a cross-
scan error is reilluminated by the scanned beam in such phase as to tend to null the error. This can 
be conducted in two forms: internal and external.

An internal double-reflection scanner is exemplified by the pentaprism monogon69 in Fig. 46a;
a (glass) substrate having two of its five surfaces mirrored. This is an optically stabilized alternate 
to the 45° monogon of Fig. 27, operating preobjective in collimated light. Tipping the pentaprism 
cross-scan (in the plane of the paper) leaves the 90° output beam unaffected. A minor translation 
of the beam is nulled when focused by the objective lens. The pentamirror69 per Fig. 46b, requires, 
however, significant balancing and support of the mirrors, since any shift in the nominal 45° 
included angle causes twice the error in the output beam. A stable double-reflector is the open mir-
ror monogon70 of Fig. 46c. Its nominal 135° angle serves identically to maintain the output beam 
angle at 90° from the axis, independently of cross-scan wobble. With a rigid included angle and 
simple balancing, it can provide high-speed operation.

Two variations which double the duty cycle, as would a two-faceted pyramidal polygon or ax-blade 
scanner (see “Early Single-Mirror Scanners”) appear in Fig. 47. Figure 47a is effectively two pentamirrors 
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Mirrored
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Mirrored

45

(a)

Output
beam

Input
beam Axis

(b)

Output
beam

Input
beam Axis

(c)

135

FIGURE 46 Monogon scanners employing double-reflection: (a) pentaprism; (b) pentamirror; and (c) open mirror.4

FIGURE 47 Paired scanners employing double-reflection: (a) paired pertamirror “butterfly” scanner 
and (b) paired open mirror scanner. 4
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forming a butterfly scanner71 and Fig. 47b is effectively a pair of open mirrors.72 The absolute angles 
of each half-section must maintain equality to within half of the allowed error in the output beam. 
Also, the center section of Fig. 47a must be angularly stable to within one-quarter of the allowed error, 
because an increased included angle on one side forms a corresponding decrease on the other. Other 
dynamic considerations involve inertial deformation, and the beam displacements and mirror widths 
(not shown) to accommodate the distance of the input beam from the axis during rotation.

The need for near-perfect symmetry of the multiple double-reflectors can be avoided by transferring 
the accuracy requirement to an external element that redirects recurrent beam scans. One such form73 is 
illustrated in Fig. 48. A prismatic polygon illuminated with a collimated beam of required width (only 
principal rays shown) deflects the beam first to a roof mirror, which returns the beam to the same facet 
for a second deflection toward the flat-field lens. The roof mirror phases the returned beam such as to 
null the cross-scan error upon the second reflection. Several characteristics are noteworthy:

1. The along-scan angle is doubled. That is, scan magnification m  4 rather than 2.

2. This normally requires increasing the number of facets to provide the same angle with the same 
duty cycle.

3. However, during polygon rotation, the point of second reflection shifts significantly along the 
facet and sacrifices duty cycle.

4. The pupil distance from the flat-field lens is effectively extended by the extra reflections, requir-
ing a larger lens to avoid vignetting.

5. The roof mirror and flat-field lens must be sized and positioned to minimize obstruction of the 
input and scanned beams. Allow for finite beam widths (see “Scanner-Lens Relationships”).

30.8 AGILE BEAM STEERING

A class of low-inertia scanning, called agile beam steering74–77 was developed initially for such 
challenging tasks as laser radar (LIDAR) and forward-looking infrared (FLIR) systems. Further 
advancement may allow its extension to more general application. The motivation for this 

FIGURE 48 Method of external double-reflection—shown 
in undeflected position. Components and distances not to scale. 
Only principal rays shown.4
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work is to achieve the performance of the scanned mirror while avoiding some of the concomi-
tant burdens of size, weight, and inertia. This has been a long-envisioned goal of many earlier 
researchers in work having important similarities5 to the more current activity in agile beam 
steering. Recent research has harvested new resources such as liquid crystal E-O phase shift-
ers micromachined devices, and microlens techniques assembled in novel configurations. Two 
principal approaches have dominated investigation and development, viz., the phased array and 
the decentered microlens array; along with some of their principal variations. Although the basic 
operation of these two array types differ, they both develop the same form of the steered output 
wavefronts

Phased Array Beam Steering

The directing of radiation in the radio and microwave regions by driving antenna arrays with con-
trolled relative phase was especially familiar to the early radar specialist.78,79 Its adaptation to the 
optical spectrum, notably as radiated by lasers, was investigated80 in 1964 following the invention 
of the laser and continued81–83 through the early 1970s. The prospect of altering the direction of a 
laser beam with small adjustments on a group of radiators appeared very attractive. With the intro-
duction of electrostatically actuated membrane mirror arrays82 in 1971, and the programming of 
electro-optic crystal arrays83 in 1972, operational utility was affirmed. Beam steering with arrays of 
mirrors was investigated81 in 1967. Further work was conducted in mirror array beam steering in 
the infrared region, where mirror reflectance exceeds the transmittance of even the exotic infrared 
materials, and where the longer wavelength imposes lower requirements on mirror flatness. With the 
current use of faster acting electro-optic materials and novel design variations, substantive advances 
have been achieved.

The steering of an optical wavefront by phase variation is introduced with the effect of refractive 
prisms.84,87 Figure 49a illustrates a plane wavefront in air incident parallel to the plane surface of one 
dielectric wedge. Within the material of refractive index >1, the wavelength is compressed propor-
tionately, while the fronts remain parallel to the incident wavefront. A linearly increasing local phase 
delay results from the progressive retardation of the wavefronts across the enlarging wedge thick-
ness. Traversing the tilted boundary, the wavelength in air is reexpanded and its angle of propaga-
tion is refracted as illustrated. This is exemplified in the iterated prismatic deflector of Fig. 45 given 
the dynamics of the electro-optic material.

To provide a wide aperture, the single prism of Fig. 49a can exhibit substantive bulk. To relieve 
this, the long wedge profile is divided into an array of smaller wedge increments where each causes a 
linear phase delay of from 0 to 2 . As illustrated in Fig. 49b, when implemented as described below, 
it provides the same deflection as the continuous single wedge. Along with the need to accommodate 
both the slope and refractive index of the material, one must dimension the periods of the wedges 
such that they form 2  phase differentials (or multiples thereof, i.e., modulo 2 ) at the operating 
wavelength to assemble continuous nonstaircased wavefronts in the near field. This is functionally 
analogous to the reflective blazed grating, in which high efficiency is achieved when the angle of 
specular reflection (from the sawtooth slopes of the grating surfaces) coincides with the angle of 
diffraction at the selected wavelength. Thus, an array formed of such 2  phase differentials exhibits 
dispersion which limits efficient performance to narrow spectral-band (near-monochromatic) 
operation. Work conducted to alleviate this limitation is discussed in if “Development of Phased 
Arrays” subsection.

The above examples provide continuous phase retardation by virtue of their linear surface 
slopes; incremental or continuous. Incremental phase retardation can be controlled in transmis-
sion by an array of small electro-optic cells, and in reflection by precise actuation of individual 
mirrored pistons. An array of refractive phase retarders and the assembly of the radiated wavelets 
into contiguous wavefronts is represented in Fig. 49c. Operation is similar with pistons, except that 
the reflective piston requires displacement of only half of the 2  phase-retardation distance. A thin 
electro-optic retarder having a reflective ground plane requires not only half thickness, but attains a 
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FIGURE 49 Illustrative steps (a, b, and c) toward optical-phased array beam 
steering. (Wavefront enters parallel to each bottom surface.) (a) Single dielectric 
wedge, illustrating familiar refraction of plane wavefront. (b) Synthesis of (a) with 
array of wedges. Each wedge imparts a 2  phase delay over each array period. 
(c) Synthesis of (b) with multiple delay elements (4 per 2  period). Output wave-
lets superpose into wavefronts having idealized efficiency of 81 percent. Greater 
multiplicity provides higher efficiency. (After Refs. 84 and 87.)
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fourfold increase in switching speed which can be useful for a nominally slow liquid crystal retarder. 
An alternative option, shown in this figure, shows division of the full 2  phase change into four 
substeps per full cycle, which diffracts 81 percent of the energy into the first order. If more steps are 
available, then the diffraction efficiency is greater. For example, eight-step cycle attains an otherwise 
lossless efficiency of 95 percent. Figure 49 is a combination of three separated illustrations84,87 to 
unify their progression.74,85,86 The heuristic observations rendered above are affirmed by the consid-
erations which follow.

The Analytic Base

The angular beam relationships of the phased array are expressed by the diffraction grating 
equation,87

sin( ) sin( )i o /n (49a)

where i and o are the input and output beam angles with respect to the grating normal (bore-
sight), n is the diffraction order,  is the free space wavelength, and  is the grating (array) period, 
per Fig. 49b and c. As in Fig. 49c showing four delay elements per array period, for q delay ele-
ments, each separated by a fixed distance d, qd . Since the number of elements in each period 
is q  2 / , where  is the phase shift between elements, then ( )2 / d  is the distance required 
to assemble a one-wave phase difference. When i  0, the angle of first-order wave propagation 
(Fig. 49c) is given by

sin o / (49b)

/ /qd d2 (49c)

The normalized intensity I of the radiation pattern follows the analogy of the one-dimensional 
microwave phased array79 expressed as

I N N(sin sin )/ 2 (50)

with
d/ o(sin sin ) (51)

where  is the angle with respect to the grating normal at which the field in free space is measured, 
and N is the number of phase shifters in the array. The elemental spacing d provides uniform phase 
difference  between elements.

The efficiency q of a linear array having the nominal (blazed) 2  phase resets, illustrated in Fig. 
49b and c is expressed by

q

q
q q

sin

/
sinc

2

2 (52)

where q is number of elements per 2  array period. This may be recognized as similar to the 
Fourier transform13 of a uniformly illuminated linear aperture.87 Inserting values of q, i.e., 4 
and 8, Eq. (52) yields 4  0.81 and 8  0.95, respectively, as indicated earlier. With a reduced 
q, lower efficiency results from depletion of the main lobe to the sidelobes due to wavefront 
staircasing.
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Typical liquid crystal phase retarder elements exhibit a unique loss factor established by the 
minimum space required to relax its orientation from a 2  phase shift to zero. This “flyback” transi-
tion is analogous to the flyback time  of many conventional scanners as expressed in Eq. (22) as 
1 /T, where T is the full scan period. This represents a time loss burdening high-speed operation. 
The duty cycle for liquid crystal elements is given by 

( )1 2/ (53)

where the time terms are replaced with  representing the flyback width and  the full 2  width. 
The expression is squared to denote the radiated intensity rather than the time in Eq. (22), as 
illustrated by the solid line in Fig. 42. In addition, fill factor accounts for a cell having its operat-
ing portion occupy less than its full allotted area while the vignetting factor accounts for the loss 
of input illumination beyond the boundary of the array.

The far-field angular beamwidth B is expressed as a minor variation to the familiar diffraction 
relation

B a D/ (54a)

where a is the aperture shape factor87 modifying the beamwidth, discussed in Sec. 30.3. With the full 
aperture width D Nd,

B a Nd/ (54b)

The Resolution of Phased Arrays

Equation (54) denotes the output beamwidth, that is the breadth of the principal lobe of radiation. For 
scanned resolution (Sec. 30.3), the number N of these adjacent lobes which fill the field-of-view along a 
linear track represents the number of phase-shifting calls in a linear phased array. Analogous to Eq. (4a),

/ B (55)

Half of the full deflected field angle  is represented by the (positive) first diffracted order of 
grating [i.e., n 1 in Eq. (49)]. When the array is addressed in complementary phase sequence, the 
same deflection magnitude results in the opposite (n 1) direction. Thus, for typically small o in 
Eq. (49) and with D d, the numerator for Eq. (55) becomes

2 2
qd qD

(56)

With B a D/  providing the denominator of Eq. (55), and accounting for the central boresight 
position, the steered resolution reduces to

1
2

aq
(57a)

which is independent of wavelength. Although Eq. (57) appears to differ from the fundamental Eq. 
(15) for scanned resolution, substituting Eq. (56) into the fundamental equation and adding one for 
the boresight beam yields Eq. (57).

With a as a relative constant, the ratio of the two variables  and q dominates the total number of 
elements divided by the number of elements per phase reset. Thus, the number of phase resets is the prin-
cipal variable which determines the steered resolution and /q  D/ , where  is the array period. Since 
q is a parameter of the system, its adjustment also affects88 the closeness of the adjacent steering states.

When a is unity, it denotes uniform illumination upon a rectangular aperture. This yields a 
far-field intensity distribution89 of the sinc2(x) function having a main lobe within equispaced null 
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intervals. Rayleigh resolution requires this uniform illumination upon a rectangular aperture, and 
that the adjacent spots in the far field overlap such that the maximum of each main lobe coincides 
with the first null of each adjacent one. Further delimiting Eq. (57a) is that it is impractical to form 
a modulo 2  array in which q is less than three cells in view of the resulting disruption of the ramp 
wavefronts and the loss in efficiency. Letting a  1 and setting qmin  3, the steered resolution is often 
expressed as an assumed Rayleigh resolution yielding

max 1
2
3

(57b)

A common illumination (laser) is the Gaussian function, with adjustment of the aperture overfill 
(and/or with complementary Gaussian filtering) to control the intensity distributed across the full 
aperture width W. The degree of overfill is, however, moderated by the reduction in light through-
put due to aperture vignetting. As W is illuminated more uniformly, it may be limited by the 
appearance of fine structure beyond the main lobe when approaching the appearance of the sinc2

function.
To quantify this value of a, different conditions can be considered87 and tabulated, summariz-

ing its value for the Gaussian beam of width D, either falling substantially within the aperture W
(untruncated beam), or when the 1/e2 intensity of the input beam occurs at the aperture boundary 
(truncated beam). These are two typical illumination conditions of most conventional deflectors. 
For the rectangular aperture of width W > height, illumination with a Gaussian beam primarily 
in the W or scan direction is further evaluated and tabulated (Table 5) providing data of current 
interest. A variable beam width D (at 1/e2 intensity) illuminates the full width W of a linear array. 
Assigning a parameter  W/D, when  1, the 1/e2 beamwidth matches the full aperture width W.
At  1.5, the array is 1.5 times wider than that of the 1/e2 beamwidth. This terminates the Gaussian 
function at 3 , where its intensity tapers to a small fraction of its maximum value, representing a 
practical limit on the narrowness of the input beam. At the other extreme, when 0, the input 
beamwidth D W , extracting near-uniform illumination from the center of the beam, and impos-
ing extreme light loss beyond the aperture. This is the case of a 1. The aperture shape factors for 
the other two cases are determined; at  1, a  1.15 and at  1.5, a  1.35. Related to the topic of 
resolution is the finesse which is the smallest addressable increment of beam position. Consideration 
of this factor87 involves (a potentially nonuniform) adjustment of the values of q (number of delay 
elements per array period).

Development of Phased Arrays

Work using nematic-phase liquid crystal electro-optic retarders is detailed comprehensively in a 
1993 Air Force document.86 The materials are known as types E7 and PTTP-33 liquid crystals, hav-
ing birefringence ( ) .n ne o 0 2 in the infrared, requiring a cell be only 5 optical waves thick for 
a full-wave phase shift in transmission and only 2.5 waves thick in reflection. The thinner the cell, 
the shorter is its reorientation time. Switching speeds in the millisecond range with high-efficiency, 
diffraction-limited steering have been demonstrated at 10.6 pm with CO2 lasers, and at 1.06 μm and 
0.53 μm with Nd:YAG lasers. The cascading of tandem scanners by optical relaying5 is a means for 
adding the contributions of two or more deflectors with each operating optimally. One-dimensional 
arrays may be compounded having one for azimuth and one for elevation. Also, individual deflec-
tors requiring excessive spatial separation may be cascaded using relay optics to avoid walk-off of 
the beam from the second aperture by the action of the first deflector.89

Another approach to tandem arrays,90 named discrete/offset cascade, reduces potential “noise” 
(beam artifacts) n in the instances of large quantization mismatches when cascading phase-delayed 
groups. Experiments have demonstrated improved overall diffraction efficiency, along with requir-
ing a reduced number of control lines. (A similar approach was demonstrated with microlens 
arrays.91) Also significant is the use of an electro-optic phase retarder other than liquid crystal. The 
material selected was PLZT (lead lanthanum zirconate titanate) which exhibits a large electro-optic 
coefficient, broadband optical transmission, very fast switching, and good thermal stability,92 and is 
a well-documented ceramic material, familiar in electro-optic modulation and deflection. Mirrored 
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piston-like phase adjustment is also reviewed,76 and later work93 describes both continuous phase 
change and binary phase shift.

Problems in broadband operation of phased arrays are reviewed74 and early work was directed 
toward their solution.94,95 A wavelength-independent phase shift is achieved by polarization modu-
lation of chiral smectic liquid crystals (CSLC), providing action similar to the mechanical rotation 
of a waveplate. However, grating dispersion remains due to wavelength deviation from nominal 2
phase resets, rendering a variation in efficiency d similar to Eq. (52)

d sinc2 (58)

where  is the chromatic error due to mismatch of the nominal 2  phase reset. Not only is energy 
lost, but side-lobe amplitudes increase and nondiffracted components result in image blurring and 
interference from sources outside the desired acceptance angle. This dispersion is reduced with the 
application of achromatic Fourier transform optics,96 as investigated in more recent comprehensive 
work,97 yielding precautions regarding the ability to reduce dispersion completely and the difficulty 
in implementation of the technology. More conventional achromatic optics has been applied98 to 
the decentered lens; the second of the two major techniques for agile beam steering which is dis-
cussed next.

The Decentered Lens and Microlens Arrays

The decentering of one lens with respect to a matching afocal lens is an alternative to the phased 
array described above. Although its basic action differs from the phased systems, when smaller 
lenses are formed into a mating periodic array, the assembly can exhibit some of the characteristics 
of phased arrays, including functioning as blazed gratings.75 However, single lens-group operation 
can avoid some of the image faults of array steering as later discussed.

Consider Fig. 50a illustrating a pair of afocal lenses (denoted 1 and 2) oriented originally on 
a common axis, now with lens 2 shifted “downward” through a distance  (dotted axes). Beyond 
the focus of lens (left lens), the diverging beam continues into lens 2 shifted angularly off its axis, 
resulting in deflecting the recollimated output beam through an angle o. Thus, a transverse shift of 
one lens with respect to the other affects beam steering. The vignetting of the output beam and the 
related diversion of its residual output flux outside the lens is discussed subsequently. Constraining 
this simple two-lens technique is its limitation on the width of the lens aperture, consistent with the 
energy required for rapid  shift within a reasonable burden on acceleration of its more massive 
components.

Consider combining many lens pairs like lenses 1 and 2 (maintaining the F) to form an array 
of microlenses, as illustrated in Fig. 50b, and illuminating the group from the left by a single broad 
beam. The steered waves sum into the total field in a manner similar to those of the prior phased 
arrays and similar to Fig. 49b. This results in a significant decrease in mass for a given full aperture 
size and a decrease in shift distance  for the same steered angle. The effect is a reduction in  and 
in the acceleration/deceleration forces required for rapid beam steering. Although the composite 
wavefront is discontinuous, the segments are tipped at the same slopes such that the output exhibits 
the characteristics of a blazed grating. When, at the operating wavelength their junctions exhibit 
2  phase differentials, a sawtooth pattern is formed typified by a high-diffraction efficiency blazed 
grating. This technique is satisfactory for small steered angles, where high fill factors remain at the 
second lens array, and the spurious components are a small residue. At wider steering angles, how-
ever, when the vignetting and the disruptive effects of the spurious components become significant, 
remedies are required.

A classic method for the control of such vignetting is to include a field lens99 into the microlens 
array.75 Fig. 50c illustrates this as a variation of Fig. 50a with a field lens (FL) inserted at the com-
mon focal plane of the original two lenses. The bar over the output pair of lenses represents physical 
connection for simultaneous shift. With equal focal lengths for all lenses, the expanding light cone 
completely fills the lens pair during  shift. This technique for realizing output efficiency and spec-
tral quality is directly transferrable to the microlens array of Fig. 50b with an added plane of field 
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FIGURE 50 Beam steering with decentered lens of afocal pair shifted 
through distance . (a) Single lens pair, showing -shift deflecting major 
portion of output beam through angle o while upper portion of the beam 
by-passes lens 2. (b) Microlens arrays operating as in (a), but lighter and 
with smaller -shift. The desired outputs accumulate, while the by-pass 
portions become spurious. (c) Field lens (FL) added to (a) provides con-
stant filling of lens 2. When added to (b), the FLs maintain the wavefront 
synthesis of a blazed grating. (After Refs. 75 and 87.)

lenses affixed to the output array. The inertia can be accommodated by the force of piezoelectric or 
electrodynamic drive transducers. Alternatively, the single-element group may be shifted instead. A 
microlens-field lens design was fabricated and tested100 over a 1.6° field. Larger angles ( 17°) have 
been demonstrated,101 but with loss of beam quality.

Further consideration for reduction of the spurious beams during shift is represented in Fig. 51. 
The method of Fig. 51a provides75 some tolerance for beam displacement on lens 2 by changing 
the ratio of focal lengths. The initial condition of f1 f2 is adjusted to f f1 2 1/ . This forms a beam 
compressor (see Fig. 32) with a compression ratio 2 1: . A similar approach is investigated102 using 
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a positive-negative lens combination. Method in Fig. 51a employs the equivalent of a Keplerian tele-
scope and method in Fig. 51b that of a Galilean telescope. While the spurious components of Fig. 
50b may be abated over its initial range of operation, the fill factor at the second array is reduced. 
Although the energy is conserved in this reduced light cone, the ideal sawtooth pattern of the blazed 
grating is disrupted by the truncated sawtooth function. This, in turn, causes its own spurious 
noise75,102 which limits operation to a small range of shift. It is propsed102 that the second array 
be maximally filled ideally by reducing the lens separation in Fig. 51b toward zero. Practically, this 
is approached with the development of thin binary optics microlens arrays. Binary forms of Fresnel 
zone patterns are fabricated utilizing high-resolution etching and transfer techniques formed on 
substrate materials. Hundred percent fill factors of lenslet arrays are attainable, approximating a 
continuous phase profile in a stepwise manner, to allow achievement of high diffraction efficiency. 
As presented earlier for a phased array composed of q elements per 2  phase reset [Eq. (52)], the 
efficiency b of a multilevel binary optic of m levels within one width of a Fresnel feature is given 
by103

b sinc /2 1( )m . An experimental system102 utilized such arrays of F/5 microlenses; each having 
a 0.2 mm diameter. The second lenslet array was spaced from the first by 10 μm, allowing relative 
translation. This system steered a 6-mm HeNe beam over an 11.5° field using 0.1-mm travel at 
a 35-Hz sweep rate. Practical mask alignment, etch errors, and transfer errors during fabrication 
reduced the 95 percent theoretical efficiency to 84 percent and 72 percent for the positive and nega-
tive lens arrays, respectively. Overall efficiency of the unsteered beam measured approximately 50 
percent. The F/5 system exhibited low efficiency when steered. This is expected to improve with 
more precise fabrication and operation at lower F-numbers.

A variation to the above work was conducted using “phased-arraylike” binary optics.77 A con-
tinuous quadratic phase function was sampled at equal intervals of x, forming a stepwise matching 
of the continuous phase profile. The  shifts are conducted in integral increments of x, where the 
formerly disruptive region is shown analytically to render a continuous linear phase profile across 
the full aperture. Experimental binary micro-optics were designed to compare phased-arraylike and 
microlens arrays, fabricated simultaneously and adjacent on the same quartz substrate. Tests con-
firmed that the phased-arraylike structure provided approximately. 50 percent increased intensity in 
the steered mode, and less than 1 percent leakage into the immediate (local) sidelobes. While stron-
ger distant sidelobes developed, they were well separated from the steered mode.

As mentioned previously, achromatic optics applied to a single decentered lens system98 reduces 
dispersion and allows operation in the 2 to 5 μm IR band. The prototype design of Fig. 50c was 
altered to avoid the high power intensity focus and its potential damage within the field lens FL. 

FIGURE 51 Elimination of spurious radiation over a range of 
operation with increased focal length ratio f1/f2. (a) Similar to Fig. 50
(b) with f1/f2  2. (b) Analogous galilean form with f1/f2  2.5 and the 
beam energy is conserved. However, the spaced output beams represent 
diffraction from a discontinuous blazed grating. (After Refs. 75, 102 and 87).
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Thus, per Fig. 52a, the positive field lens of Fig. 50c was replaced with a negative one, requiring a 
focal length one-fourth that of the positive lens. The system was achromatized and optimized for 

22.5° maximum deflection, as represented in Fig. 52b. The negative field lens and the output lens 
now require unequal and opposite shift directions to implement scan. The 60-mm diameter output 
lens requires 30 mm of  shift. This work demonstrated that for some systems, a single group of 
three cemented achromatic doublets enables eliminating several problems associated with microlens 
arrays, such as spurious diffraction, multiple beam orders, blind spots, and large dispersion while 
accommodating relatively wide scan angles.

Digital Micromirror Device

In 1987, the first digital micromirror device (DMD) was created at Texas Instruments.104,105 Larry 
Hornbeck was granted the first patent for the DMD design in 1991.106 This initial design was the 
basis for current digital micromirror device chips which were incorporated into digital light pro-
cessing (DLP) projectors for both visible and infrared applications.107–109,110 Although the DMD is 
an all-digital spatial light modulator (SLM) rather than the more traditional optical scanners of this 

1/2 1/2

(a)

(b)

FIGURE 52 Adaptation for high power and achromatic opera-
tion. (a) Intense power at focus within the (positive) field lens FL of 
Fig. 50c is avoided by replacing it with a negative field lens (having 
1/2 the focal length of the positive lenses). (b) System (to scale) ach-
romatized and optimized for beam deflection of 22.5°. The field lens 
is shifted downward through distance , while the output lens is 
shifted upward through the greater distance . (After Ref. 98.)
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chapter, it is briefly discussed as it can be considered a binary-state scanner. Its impact on the display 
industry has been most significant.

A DMD is an array of “light switches” having a MEMS structure that is fabricated by using 
micromachining CMOS processes over a CMOS static random access memory (SRAM) integrated 
circuit.110,111 Each light switch has an aluminum mirror that can reflect light in one of two directions 
depending on the state of the underlying memory cell. With the memory cell in the On state, the 
mirror rotates to 10°. With the memory cell in the Off state, the mirror rotates to 10°. By combin-
ing the DMD with a suitable light source and projection optics, the mirror reflects incident light 
either into or out of the pupil of the projection lens. Thus, the On state of the mirror appears bright 
and the Off state of the mirror appears dark. Gray scale is achieved by binary pulsewidth modulation 
of the incident light while color is achieved by using color filters, either stationary or rotating, in com-
bination with one, two, or three DMD chips.

The DMD light switch is a MEMS structure consisting of a mirror that is rigidly connected to 
an underlying yoke. The yoke in turn is connected by two thin, mechanically compliant torsion 
hinges to support posts that are attached to the underlying substrate. Electrostatic fields developed 
between the underlying memory cell and the yoke and mirror cause rotation in the positive or neg-
ative rotation direction. The rotation is limited by mechanical stops to typically 10°. The use of 
semiconductor and MEMS processing technologies allow production of very large arrays of these 
individually controllable micromirrors having minimal defects and high reliability.112–114

Gimbal-Less Two-Axis Scanning Micromirrors

Gimbal-less two-axis scanning-micromirror devices (GSMD) have been recently developed by 
Mirrorcle Technologies, Inc. and are based on multilevel beam silicon-on-insulator micro-elec-
tromechanical (SOI-MEMS) fabrication technology.115 Due to their small scale and electrostatic 
actuation, these devices require ultralow power and can provide fast optical beam scanning in two 
axes when compared to the large-scale galvanometer-based optical scanners.116 Laser beams can 
be deflected to optical scanning angles of up to 32° at very high speeds in both axes. Continuous 
full-speed operation of the electrostatic actuators that drive the GSMD dissipates less than 1 mW 
of power. These devices are made entirely of monolithic single-crystal silicon, resulting in excel-
lent repeatability and reliability. The flat, smooth mirror surfaces can be coated with a thin film of 
metal with desired reflectivity. Larger mirrors can be bonded onto actuators for custom aperture 
sizes. In contrast to the two-state mirror movement of the DMD, the GSMD mirror movement is 
fully analog and can maintain a selected tilt angle or move dynamically upon command. At this 
time, huge arrays of micromirrors comprise typical DMD arrays, while GSMD arrays are presently 
limited to a few micromirrors; however, GSMD mirrors can be physically much larger than the 
DMD mirrors.

The GSMD are designed and optimized for point-to-point optical beam scanning mode of oper-
ation. A steady-state analog actuation voltage results in a steady-stage analog angle of rotation of the 
micromirror. Specifically, there is a one-to-one correspondence of actuation voltages and resulting 
angles that is highly repeatable. Positional precision in open-loop driving of the micromirrors is at 
least 14 bits, that is within 10 μrad. For a particular high-speed 3D tracking and position-measurement 
application, 16-bit precision has been demonstrated.117 Devices can be operated over a very wide 
bandwidth from DC (they maintain position at constant voltage) to several kilohertz. Such fast and 
broadband capability allows nearly arbitrary waveforms such as vector graphics, constant veloc-
ity scanning, point-to-point step scanning, and the like.118 The major advantage of the gimbal-less 
design is the capability to scan optical beams at equally high speeds in both axes. A typical GSMD 
with a 0.8-mm diameter micromirror achieves angular beam scanning of up to 600 rad/s and has 
first resonant frequency in both axes above 5 kHz. Devices with larger-diameter micromirrors are 
correspondingly slower due to the increased inertia.

The gimbal-less design combines one-axis electrostatic combdrive-based rotators,115 and allows 
their operation to be nearly independent of the other axis’ operation without the added inertia of a 
gimbal frame. A schematic diagram of the conceptual operation of the gimbal-less two-dimensional 
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designs is shown in Fig. 53. Two one-axis rotators are utilized for each axis of the overall two-
dimensional scanner. For the x axis, actuators A and A  are utilized, and for the y axis, actuators B 
and B . The inside linkages are designed such that they allow torsion on the axis, specifically during 
the operation of the orthogonal axis. In other words, each linkage that connects a rotator to the cen-
tral micromirror is actually designed to be a two degree-of-freedom component.

GSMD can also operate in the dynamic, resonant mode. When operated near the resonant fre-
quency, devices give significantly more angle at lower operating voltages and sinusoidal motion. 
Resonant frequencies are in the range of several kilohertz, although in some cases one of the axes is 
made exceptionally stiff to achieve 16 kHz and faster actuation for video projection applications.119

The gimbal-less design lends itself inherently to a modular design approach, hence, several types 
of dual-axis actuator designs are available.120 Each actuator can utilize rotators of arbitrary length, 
arbitrarily stiff linkages, and arbitrarily positioned mechanical rotation transformers. In addition, 
the GSMD can have an arbitrarily large mirror diameter. Because of modularity, these devices can 
be customized for the requirements of a particular application. 

Silicon mirrors of up to 1.2 mm diameter can be fabricated as an integral (monolithic) part of some 
GSMDs. Due to the limitations of the fabrication steps of the actuator, the standard mirrors are rela-
tively thick (24 μm.) The inherent properties of the single crystal silicon substrate yield a polished sur-
face with nearly perfect flatness. Larger and customizable mirror sizes and shapes can be utilized by fab-
ricating those separately and assembling them on top of gimbal-less actuators. A SEM image of a 2-mm 
diameter bonded mirror on an actuator is shown in Fig. 54. Sets of electrostatic actuators optimized for 
speed, angle, area footprint, or resonant driving are designed and realized in a self-aligned deep reactive 
ion etching (DRIE) fabrication process.121 Metalized, ultralow inertia, single crystal mirrors stiffened 
by a backbone of thicker silicon beams (see Fig. 53) are created in a separate fabrication process. The 
diameter, as well as geometry, of the mirror is selected by customers, in order to optimize the trade-offs 
between speed, beam size, and scan angle for each individual application. The mirrors are subsequently 
bonded to the actuators. The modular approach allows either the absolute optimization of a device 
prior to fabrication, or the ability to economically adapt a small set of fabricated devices for a wide range 
of applications. Larger sizes up to 3.6 mm are regularly assembled in experiments and applications. 

Summary of Agile Beam Steering

Two basic methods for low-inertia laser beam steering are presented: the phased array and the 
decentered lens. Although their operating principles differ, as arrays, they both form diffraction 
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FIGURE 53 Schematic diagram of a gimbal-less two-axis scanning actuator based on four high aspect ratio rotators con-
nected to the central pedestal by two degrees-of-freedom (2 DOF) linkages. Cross-sectional depiction of device operation.116

(Diagram courtesy of Mirrorcle Technologies, Inc.).
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gratings yielding output wavefronts having the properties of a blazed grating. While this results 
in high diffraction-efficiency at a selected wavelength, typical grating dispersion limits broad-
band operation. Complicating corrective measures have been applied to both array systems to 
approach broadband operation. The single decentered lens group avoids array dispersion. And, 
if its increased size and inertia can be tolerated, lenticular dispersion remains controllable with 
familiar achromatizing techniques. The dominant phased arrays are completely electro-optic, 
while the microlens array requires very small translations of reasonably low inertia assemblies. 
An alternative phased array utilizes individual micromirrors requiring minute ( /4) axial dis-
placements. However, difficulty may be encountered in fabrication of high optical-integrity and 
in providing the high optical-fill-factor of the electro-optic types. Another alternative microlens 
array is formed of Fresnel-lens-type binary optics. For low F-number lenticules, whose theoretical 
steering efficiency is high, their minimum feature sizes become miniscule and presently are dif-
ficult to fabricate.

Auxiliary control facilities can impose burdens of mass, volume, and cost. Phased arrays utilize 
complex multielement electrical programming, while the lens arrays require small but very precise 
positioning of their assemblies. Though such additional requirements are generally not detailed in 
the literature, a comparative analysis121 provided some related observations. The authors preferred 
a microlens array over the liquid crystal phased array, thereby avoiding the “heavy burden” on 
electronic control of the many phase-delay elements. An x-y microlens array system was designed 
and built for test, and was compared to a two-galvanometer x-y system assembled of commercial 
components. Evaluations confirmed that the microlens system steered faster, consumed lower 
power, and packaged smaller and lighter. However, no comment appeared on design to minimize 
mirror inertia and to reduce the bulk of the components and their assembly. Nor was x-y relay 
optics5 considered to allow minimum-sized mirrors serve to reduce inertia. Also, meriting evalu-
ation is the single mirror suspended and actuated in x-y for precise two-dimensional scan.122,123 

Such diverse considerations are invaluable for rating design alternatives for their relative compli-
ance to system requirements.

FIGURE 54 SEM image of a 2.0-mm diameter micromirror bonded to dual-axis 
actuators. (Photograph courtesy of Mirrorcle Technologies, Inc.)
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115. V. Milanović, “Multilevel-Beam SOI-MEMS Fabrication and Applications,” IEEE/ASME J. Microelectromechanical 
Systems, 13(1):19–30, (Feb. 2004).
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31.1 GLOSSARY

Aba Einstein coefficient for spontaneous emission

ao Bohr radius

Bif Einstein coefficient for transition between initial state |i  and final state | f
e electron charge

ED electric dipole term

EDC Dirac Coulomb term

Ehf hyperfine energy

En eigenvalues of quantum state n

EQ electric quadrupole term

E(t) electric field at time t

E( ) electric field at frequency 

ga degeneracy of ground level

gb degeneracy of excited level

gN gyromagnetic ratio of nucleus

h Planck’s constant

Hso spin-orbit interaction Hamiltonian

I nuclear spin

I(t) emission intensity at time t

j total angular momentum vector given by j l  1/2

li orbital state

m electron mass

MD magnetic dipole term

n (T)  equilibrium number of photons in a blackbody cavity radiator at angular frequency  and 
temperature T

31.1
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QED quantum electrodynamics

Rnl
r( ) radial wave function

R Rydberg constant for an infinitely heavy nucleus

s spin quantum number with the value 1/2

si electronic spin

T absolute temperature

Wab transition rate in absorption transition between states a and b

Wba transition rate in emission transition from state b to state a

Z charge on the nucleus

e c2
04/ fine structure constant

natural linewidth of transition

D Doppler width of transition

o permittivity of free space

(r) spin-orbit parameter

B Bohr magneton

( ) energy-density at frequency 

R radiative lifetime

angular frequency

k mode k with angular frequency 

f V i| | matrix element of perturbation V

31.2 INTRODUCTION

This chapter outlines the physical basis of optical measurements in the wavelength/frequency and 
time domains. From the multiplicity of different apparatus, only simple examples are given of spec-
trometers designed for optical absorption, photoluminescence, and radiative decay measurements. 
Rather more detailed expositions are given of modern developments in laser spectrometers espe-
cially where high resolution is possible in both frequency and time domains. Included are specific 
developments for linewidth measurements down to tens of kilohertz using saturated absorption 
techniques as well as temporal decay characteristics in the sub-picosecond domain. A description is 
also given of a multiple resonance spectrometer including optically detected electron spin resonance 
and optically detected electron nuclear double resonance.

31.3 OPTICAL ABSORPTION SPECTROMETERS

General Principles

In optical absorption spectroscopy, electromagnetic radiation in the near-ultraviolet, visible, or 
near-infrared regions is used to excite transitions between the electronic states. Whereas atoms 
in low-pressure gas discharges exhibit very sharp lines, electronic centers in molecules and con-
densed matter display a variety of different bandshapes. In consequence, the absorbed intensity is 
a function of the photon wavelength (or energy). The most desirable experimental format plots 
the absorption coefficient  as a function of the radiation frequency v, because v is directly propor-
tional to the energy separation between the states involved in the transition. Nevertheless, optical 
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spectroscopists quote peak positions and linewidths in energy units E (eV, meV), in wave numbers 
v  (in cm 1), in frequency units (v or ), or in wavelength  [nanometers (nm) or micrometers 
( m)]. The following approximate relationships exist: 1 cm 1 1.24 10 4 eV; 1 eV 8066 cm 1;
and E(eV) 1.24/  ( m).

Very often the spectrometer output is given in terms of the specimen transmission, T I v I vo( ) ( )/
expressed as a percentage, or the optical density (or absorbance), OD log ( )10 1/T , which are related 
to the absorption coefficient  by

OD / /log ( ) ( ) .10 1 2 303T v l (1)

where l is the thickness of the sample. Typically one measures the absorption coefficient  over the 
wavelength range 185 to 3000 nm. Since  may be a function of both frequency v and polarization 
ˆ, we may use the designation ( , ˆ)v . For a center containing N noninteracting absorbing centers 
per unit volume, each absorbing radiation at a frequency v and polarization ˆ, the attenuation of a 
beam of intensity I vo( , ˆ) by a solid of thickness l is given by

I v I v v lo( , ˆ) ( , ˆ)exp[ ( , ˆ) ] (2)

Experimentally I vo( , ˆ) represents the transmission of the system in the absence of an absorbing 
specimen. In practice I vo( , ˆ) and I v( , ˆ) are measured and the value of the absorption coefficient 

( , ˆ)v  at a particular frequency is obtained using the formula

( , ˆ)
( , ˆ)

( , ˆ)
v

l

I v

I v
oln

1
(3)

( , ˆ)v  has units of cm 1 or m 1. The variation of the absorption coefficient with frequency is dif-
ficult to predict. In general, the absorption transition has a finite width, and the absorption strength, 

( , ˆ)v dv, is related to the density of absorbing centers and to the transition probability.
The value of the absorption coefficient in an isotropic material is related to the Einstein A coef-

ficient for spontaneous emission by1

( ) ( )v N
g

g
N A

c

v n
G va

b

a
b ba

2

2 28

1
(4)

where ga and gb are the statistical weights of the states, G(v) is the lineshape function [defined such 
that G v dv( ) 1], c/n is the velocity of light in the medium, and n is the refractive index. In Eq. (4), 
the population densities in the ground and excited states, Na and Nb, respectively, have been assumed 
to be invariant with time and unaffected by the absorption process. Under conditions of weak exci-
tation we can ignore the small value of Nb, and replace Na by N so that

( ) ( ) ( )v NA
v

v vba
b

a

c

n

g

g
G N G

2

2 28

1
(5)

where  is the absorption cross section per center. The absorption strength, i.e., the area under the 
absorption band, is related to  by

( )v dv N (6)
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If we ignore the refractive index and local field correction factors and assume a gaussian-shaped 
absorption band, then

Nfab o0 87 1017. ( )v v (7)

where (vo) is measured in cm 1, v, the full-width at half maximum absorption, is measured in 
eV, and N is the number of centers cm 3. Equation (7) is often referred to as Smakula’s formula. To 
obtain the oscillator strength from the area under the absorption band, one needs an independent 
determination of the density of centers. For impurity ions in solids, N may be determined by chemi-
cal assay or by electron spin resonance.

The Double-Beam Spectrophotometer

The first essential of an absorption spectrophotometer is a broadband source: deuterium, hydro-
gen, xenon, and tungsten lamps are commonly used. Their outputs cover different wavelength 
ranges: a hydrogen lamp is suitable for wavelengths in the range 150 to 350 nm whereas high-
pressure xenon lamps have usable light outputs in the range 270 to 1100 nm. For Xe arc lamps 
the output is relatively continuous in the wavelength range 270 to 800 nm apart from some sharp 
lines near 450 nm. In the infrared region 800 to 1100 nm, much of the most intense part of the 
output is in the form of sharp lines. In the arc lamp, radiation is due to the collision of Xe atoms 
with electrons which flow across the arc. Complete separation of the excited electrons from the 
atoms leads to ionization and the continuum output. The formation of Xe atoms in excited 
states leads to the sharp lines in the output from Xe arc lamps. Tungsten filament lamps may 
also be used in absorption spectrophotometers. The spectral output from such a heated filament 
is approximately that of a blackbody radiator at a temperature of 2000 K. In consequence, the 
emission intensity is a smooth function of wavelength with peak at 1500 nm, with the detailed 
curve following Planck’s thermal radiancy law. Accordingly, the peak in the distribution of light 
varies with filament temperature (and therefore current through the filament), being determined 
by max .T 2 898 10 3 mK. This relationship expresses Wien’s wavelength displacement law. 
Although containing all wavelengths from the ultraviolet into the infrared region, the total output 
is fairly modest compared with a high-pressure mercury lamp.

Accurate measurements of the absorption coefficient at different wavelengths are best made 
using a double-beam spectrophotometer: a schematic is shown in Fig. 1. The exciting beam from the 
broadband source passes through a grating monochromator: the resulting narrow band radiation 
is divided by a beam-splitting chopper into separate monochromatic beams which traverse the 
sample and a reference channel. Thus the light incident on the sample and that which passes 
through the reference channel have the same wavelengths and is square-wave modulated (on/
off) at some frequency in the range 1 to 5 kHz. The sample and reference beams are recombined 
at the phototube, and the magnitude and phase of sample and reference signals are amplified 
and compared by the lock-in detector. Chopping at a preselected frequency permits narrowband 
amplification of the detected signal. Thus any noise components in the signal are limited to a nar-
rowband centered at the chopping frequency. The dc output from the lock-in detector is plotted 
as a function of wavelength using a pen recorder. Alternatively, the signal may be processed using 
a microcomputer, so that the absorbed intensity may be signaled as the transmission, the optical 
density [Eq. (1)], or the absorption coefficient [Eq. (3)] of the sample as a function of wavelength 

, wave number v , or photon energy (E hv).
Ensuring a high light throughput in both sample and reference channels usually limits the 

resolution of the monochromator used in the spectrophotometer (Fig. 1). In consequence, very 
narrow absorption lines, < 0.1 nm, are normally broadened instrumentally. Note that because 
in an absorption spectrophotometer one measures the light transmitted by the sample relative to 
that transmitted by the reference chamber [Eqs. (2) and (3)], the absorption coefficient is inde-
pendent of the spectral dependencies of the lamp, the monochromator, and the detection system. 
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The measurement is also independent of the polarization properties of the monochromator sys-
tem. By taking ratios, many nonideal behaviors of the components cancel.

31.4 LUMINESCENCE SPECTROMETERS

General Principles

To study luminescence it is necessary to optically pump into the absorption spectrum using high-
intensity sources. Typical sources used in luminescence spectroscopy, which have broadbands in 
near ultraviolet and blue regions, include hydrogen and xenon arc lamps. The xenon arc lamp is 
particularly useful for exciting luminescence in the yellow-red region of the spectrum since xenon 
does not show interfering sharp line emission in this region. In general, high-pressure mercury (Hg) 
arc lamps have higher intensities than Xe arc lamps. However, the intensity is concentrated in sharp 
lines. Consequently, such lamps are utilized mainly with broadband absorbers or in situations that 
permit the individual lines to suit the absorption lines of the particular sample. In addition, a vari-
ety of lasers may be used, including Ar , Kr , He-Ne, and He-Cd lasers which have emissions at fixed 
wavelengths. Tunable dye lasers can be selected to closely match the absorption bands of particular 
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FIGURE 1 Block diagram of a dual-beam absorption spectrometer.
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materials. Because of their low intensity, tungsten filament lamps are not normally used in lumines-
cence spectrometers.

The light emitted is resolved into its component lines/bands using a monochromator. For 
medium resolution a 1-m Czerny-Turner monochromator will give a spectral resolution of about 
0.02 nm. An order of magnitude lower resolution can be achieved using a grating spectrometer with 
focal length 0.25 m. The light emerging from the monochromator is detected using an electron mul-
tiplier phototube with associated high-voltage power supplies. Gallium arsenide phototubes operate 
with good quantum efficiency in the range 280 to 860 nm. For measurements in the near-infrared, 
a lead sulphide cell, cooled germanium photodetector, or special III-V compound photodiode may 
be used. Under steady-state optical pumping, a steady-state luminescence output is obtained and 
detected as a photocurrent which is amplified and converted to a voltage signal to be displayed on 
a pen recorder. Luminescence detection is inherently more sensitive than absorption measurements 
and sensitivities of 1011 centers cm 3 are routine.

Ideally, the excitation source should yield a constant light output at all wavelengths, the mono-
chromator must pass all wavelengths with equal efficiency, and be independent of polarization. In 
addition, the detector should detect all wavelengths with equal efficiency. Unfortunately, such ideal 
light sources, monochromators, and phototubes are not available and it is necessary to compro-
mise on the selection of components and to correct for the nonideal response of the luminescence 
spectrometer. Generally, luminescence spectra are recorded by selecting the excitation wavelength 
which results in the most intense emission and then scanning the wavelength of the emission mono-
chromator. In consequence, techniques must be developed to allow for the wavelength-dependent 
efficiency of the emission monochromator and photomultiplier tube. This is not required in 
absorption spectrophotometers where the ratio of I v I vo( , ˆ) ( , ˆ)|  are used to compute the values of 

( , ˆ)v  from Eq. (3).
Modern spectrometers use diffraction gratings in monochromators rather than prisms. This 

results in less interference from stray light and in greater dispersion. Stray light may also be reduced 
using narrow entrance and exit slits as well as double monochromators (i.e., monochromators 
incorporating two gratings). Nevertheless, the transmission efficiency of the grating monochroma-
tor is a strong function of wavelength, which can be maximized at any given wavelength by choice 
of the blaze angle: the efficiency is less at other wavelengths as Fig. 2 shows. The stray light levels are 
to some extent controlled by exit and entrance slits. Smaller slit widths also yield higher resolution 
as do gratings with greater numbers of grooves per unit area. The efficiency of a grating monochro-
mator also depends upon the polarization of the light. For this reason, the observed fluorescence 
intensities can be dependent upon the polarization of the emitted radiation. A typical plot of the 

FIGURE 2 Showing how the grating efficiency varies 
with wavelength for gratings blazed at 300, 500, and 1000 nm.
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wavelength dependence of the efficiency of a ruled grating as a function of polarization is shown in 
Fig. 3. As a consequence, the emission spectrum of a sample can be shifted in wavelength and altered 
in shape by the polarization properties of the monochromator. In modern spectrometers the mono-
chromators can be calibrated using standard lamps and polarizers, the information stored in the 
memory of the control computer, and the detected intensities corrected at the data processing stage 
of the experiment. Most manufacturers also provide data sheets describing monochromator perfor-
mance, and use can be made of such data for approximate corrections to the measured spectra.

Care must be taken with polarization anisotropy measurements. Thin-film polarizers have absorp-
tion properties which are strongly wavelength-dependent. Precise corrections can be made using 
computer-controlled facilities with provision for computerized data processing. However, it is prefera-
ble to use a Glan-Thompson prism made from quartz or calcite which has good transparency from the 
ultraviolet into the infrared. Furthermore, the polarization properties are not wavelength-dependent.

In general terms, the light signal is detected using a photomultiplier tube in which the photon 
flux produces an electrical current that is proportional to the light intensity. The basis of the device 
is the photoelectric effect. Incident photons cause photoelectrons to be emitted from a photocath-
ode with an efficiency dependent upon the incident wavelength. The photocathode is held at a high 
negative potential of 1000 to 2000 V. The photoelectrons are incident upon a series of dynodes 
which are also held at negative potentials in order to accelerate electrons toward the next dynode. 
Each photoelectron arriving at the first dynode chain causes the ejection of a further 10 to 20 elec-
trons, depending on the voltage difference between photocathode and first dynode. This process of 
electron multiplication and consequent current amplification continues down the dynode chain 
until a current pulse arrives at the anode. Although the photomultiplier tube responds to individual 
photons, the individual current pulses are generally detected as an average signal.

The anode current must be directly proportional to the light intensity. However, at wavelengths 
longer than the work function of the photocathode, the photomultiplier tube is no longer sensi-
tive to the incident photons. Thus, different photocathodes are used in different wavelength ranges. 
For phototubes used in the ultraviolet region, quartz windows are used. For the ultraviolet-visible 
region (200 to 550 nm) a K-Cs bialkali photocathode may be used; such devices have high quantum 
efficiency, up to 25 percent between 350 to 500 nm, high gain, and low dark current. Typically, the 
operating anode currents are of the order of a few microamps, whereas the dark current is in the 
nanoamp range. A somewhat more useful device, in that the quantum efficiency is almost constant 
from 300 to 860 nm, uses a GaAs photocathode. For longer wavelength operation, 800 to 1250 nm, a 
germanium photodiode may be used. In other words, spectroscopic studies over a wide wavelength 
range may require several different photodetectors to be used. Techniques for correcting for the 
nonideal wavelength-dependent properties of the monochromator, polarizers, and photomultiplier 
tubes have been described at length by Lackowicz.2
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and blazed at 500 nm.
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Luminescence Spectrometers Using 
Phase-Sensitive Detection

Where phase-sensitive detection techniques are used, the excitation intensity is switched on and off 
at a certain reference frequency so that the luminescence intensity is modulated at this same fre-
quency. The detection system is then set to record signals at the reference frequency only. This effec-
tively eliminates all noise signals except those closely centered on the modulation frequency. A typi-
cal luminescence spectrometer is shown in Fig. 4. The pumping light is modulated by a mechanical 
light chopper operating at frequencies up to 5 kHz. A reference signal is taken from the chopper to 
one channel of a lock-in detector. The magnitude and phase of the luminescence signal is then com-
pared with the reference signal. Because of the finite radiative lifetime of the emission and phase 
changes within the electronics, the luminescence signal is not in phase with the reference signal. 
Hence, to maximize the output from the lock-in detector, the phase control of the reference signal 
is adjusted until input (luminescence) and reference signals to the lock-in detector are in phase. Of 
course, the phase of the reference signal may also be adjusted so that reference and luminescence 
signals are in quadrature giving zero output from the lock-in. This method of phase adjusting may 
enable one to separate the overlapping luminescence bands from different centers. In such experi-
ments, the chopping frequency is adjusted so that there is an appreciable reduction in the lumines-
cence intensity during the “off” half-cycle. This effectively puts an upper limit on the rate at which 
the lock-in system can operate.

FIGURE 4 Schematic of a spectrometer for measuring luminescence spectra by 
phase-sensitive detection techniques.
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The use of a mechanical chopper restricts the maximum modulation frequency to 5 kHz. 
Essentially, the mechanical chopper consists of a rotating blade of metal into which slots are cut at 
regular angular intervals. When the excitation beam is incident on the metal section, the excitation 
intensity at the sample is zero, and when on the slot, the sample receives the full intensity in the 
excitation beam. If the blade is rotated at a frequency of 1 Hz and there are n slots cut in the blade, 
then the excitation beam is essentially switched on/off at a rate of n Hz. Obviously, the modulation 
rate can be increased either by increasing the number of slots cut in the blade and/or by increasing 
the revolution rate. If the excitation is well-focused onto the chopper, then the modulation is in the 
form of a square wave with maximum modulation index M  1.

Other modulators impose sinusoidal variations in the excitation intensity, at frequencies up 
to 50 MHz.2 There are various means for providing sinusoidal intensity variations, including 
Kerr cells and Pockels cells. Both types require high electric fields to obtain the desired modula-
tion and such high driver voltages may interfere with the detection of weak signals. Kerr cells do 
not transmit ultraviolet light and so may only be used in the visible/near-infrared region. The 
Pockels cells may be used in the ultraviolet region as well as at visible and infrared wavelengths. 
They may also be operated at variable frequencies. However, since they require highly collimated 
light sources for efficient operation, they require a laser for excitation. The ultrasonic Debye-Sears 
modulator overcomes the experimental difficulties associated with both Pockel cells and Kerr 
cells. A vibrating quartz crystal is used to set up standing waves in a tank containing an ethanol-
water mixture. (The crystal restricts the device to operate at the fundamental and one or two 
harmonic frequencies only.) The standing waves act as a closely spaced refractive index diffrac-
tion grating normal to the incident exciting radiation. A slit permits only the undiffracted light 
to pass to the sample. The result is a sinusoidally varying light intensity with about 50 percent 
modulation index.

The emission signal is forced to respond to the modulated excitation at the same circular fre-
quency  as the excitation. However, the detected emission signal is delayed in phase by an angle 
relative to the excitation, and with reduced modulation depth. The radiative lifetime may be calcu-
lated from the measured phase angle  and demodulation factor m. For a single exponential decay 
the appropriate relations are3

tan R
(8)

and

m R1 2 2
1 2/

(9)

Even with more complex processes, where several decaying species are present, phase angles and 
demodulation factors can be measured and used to calculate actual lifetimes.3,4

Phase-sensitive detection techniques may also be used to “time-resolve” overlapping absorption/
luminescence spectra with different decay characteristics. The phase-sensitive detector (PSD) yields 
a direct-current signal proportional to the modulated amplitude and to the cosine of the phase dif-
ference between the detector phase D and the signal phase , i.e.,

I m ID s o D( , ) ( )cos( ) (10)

where  is the wavelength, Io( ) is the steady-state excitation intensity, and ms is the source modula-
tion index. Now suppose that there are two components A and B with lifetimes A B. The modu-
lated emission measured with the PSD results in an unmodulated signal given by

I m I m Is
A

o
A

D A s
B

o
B( , ) ( )cos( ) ( )cos(D DD B) (11)
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If the phase-control of the PSD is adjusted so that D B + 90°, then the second term in Eq. (11) is 
zero, and the output intensity is given by

I m ID s
A

o
A

B A( , ) ( ) ( )sin (12)

In other words, the emission output from species B has been suppressed. Species A can be sup-
pressed at the detector phase angle D A + 90°. If we now scan the wavelength, then the conse-
quence of Eq. (12) is that the steady-state spectrum of species A is recorded, i.e., Io

A( ), and con-
versely for species B.

In the example given in Fig. 5a, the steady-state fluorescence of a mixture of indole and dim-
ethylindole dissolved in dodecane is shown.5 With the detector phase angle set to 90° 9.7 and 
using a modulation frequency of 10 MHz in Fig. 5b, we resolve the indole emission with wavelength 
maximum at 306 nm. The phase angle of 9.7° corresponds to a radiative lifetime close to the isolated 
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methylindole molecules in dodecane ( R  5 ns). The suppression of the indole signal gives the 
dimethylindole spectrum with peak at 323 nm at a phase angle of 28.6 – 90°, giving the R value of 
indole as 9.0 ns.

Luminescence Excitation Spectrometers

Some inorganic solids have strong overlapping absorption bands due to nonluminescent cen-
ters, which completely overwhelm the absorption spectrum related to a particular luminescence 
center. These difficulties are overcome by excitation spectroscopy, Fig. 6, in which the intensity 
of the luminescence output is recorded as a function of the wavelength of the excitation beam. 
Strong emission at a particular excitation wavelength signals that the emitting center absorbs 
strongly at that wavelength. In this way it is possible to determine the shape and position of the 

FIGURE 6 Schematic representation of a luminescence excitation spectrometer.
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absorption bands which excite the emission process. A low-resolution scanning monochroma-
tor is placed immediately after the chopper, and light from its exit slit is then focused onto the 
sample. This monochromator may be of focal length only 250 mm and have a grating of area 
5 cm 5 cm, ruled with only 600 lines per mm. Alternatively, it may be a double monochromator 
chosen to reduce stray light levels. In either case, an optical band pass filter may be used in front of 
the monochromator. Generally, the grating blaze is chosen to give high efficiency in the ultraviolet/
blue/green regions for the excitation monochromator (e.g., gratings blazed at 300 nm or 500 nm), 
whereas the emission monochromator is chosen to give high efficiency at visible and near-infrared 
wavelength (i.e., gratings blazed at 500 nm or 750 nm). With such an apparatus, it is possible to 
distinguish absorption transitions from several centers whose absorption bands partially or 
completely overlap. The example given in Fig. 7 shows the luminescence pattern emitted by 
F2 centers in magnesium oxide and the excitation spectrum associated with this emission. Other 
strong absorption bands due to Fe3  ions and F centers which overlap the F2-absorption bands are 
strongly discriminated against by selective detection of the F2-center luminescence.

31.5 PHOTOLUMINESCENCE DECAY TIME

Radiative Lifetime

In order to measure the radiative lifetime of a transition it is necessary to use a sharp intense pulse 
of excitation in the absorption band together with some means of recording the temporal evolu-
tion of the luminescence signal. Suitable excitation sources include pulsed lasers, flash lamps, or 
stroboscopes. Laser systems may produce pulses of duration 0.1 to 100 ps; flash lamps and strobo-
scopes will produce pulses of order 10 8 s and 10 5 s, respectively. A possible spectrometer system is 
shown in Fig. 8. Usually the luminescence yield following a single excitation pulse is too small for 
good signal-to-noise throughout the decay period. In consequence, repetitive pulsing techniques are 
used together with signal averaging to obtain good decay statistics. The pulse reproducibility of the 
stroboscope is advantageous in the signal averaging process in which the output from the detector is 
sampled at equally spaced time intervals after each excitation pulse. If the pulse is repeated N times 

FIGURE 7 Luminescence and excitation luminescence spectrum of F2 centers 
in MgO.
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then there is an N1/2 improvement in the signal-to-noise ratio. If a multichannel analyzer is used, the 
excitation pulse is used to trigger the analyzer, and hence the time between pulses need not be con-
stant. Of course the phase sensitive detection spectrometer may also be used to measure lifetimes, 
but only down to about 100 s.

An illustration of the data obtainable using the stroboscope technique is shown in Fig. 9. The 
luminescence signal detected is the broadband emission with peak at 780 nm from Cr3  ions in 
orthorhombic symmetry sites in magnesium oxide measured at 77 K. At low Cr3  ion concentra-
tion, the radiative lifetime of this luminescence center is 35 s. These data show that the evolution 
of the intensity during the pulse-decay cycle is not necessarily in the form of a single exponential 
decay. On sampling the emission at times long relative to R there is a component with charac-
teristic decay time of 11.4 ms, which is the lifetime of Cr3  ions occupying octahedral symmetry 
sites in magnesium oxide and which emit a characteristic R-line emission at 698.1 nm. This result 
implies that excitation is being transferred from excited Cr3  ions in octahedral sites to Cr3  in 
orthorhombic sites.

For rather faster decay processes (10 10 – 10 8 s), fast flashlamps are used to excite the lumi-
nescence. The gated flashlamps have extremely reproducible pulses, down to 0.8-ns width with 
repetition rates of up to 50 kHz.2 The usual gases for such lamps are hydrogen, deuterium, and air. 
Hydrogen has several advantages, not the least being the continuum output in the ultraviolet and 
visible ranges, with pulse profiles which are independent of wavelength. The combination of pulse-
sampling techniques and computer deconvolution of the decaying luminescence enables decay 
times to be measured down to 20 ps. However, judicious choice of photomultiplier tube and care-
ful design of the photomultiplier dynode chain is necessary to eliminate signal noise. It is usual to 
use coincidence single-photon counting techniques to obtain good decay data.2

FIGURE 9 Decay in the intensity of Cr3+ lumines-
cence in MgO. Detection of the broadband luminescence 
at 790 nm shows two components, one fast ( R = 35 s) 
and one slow ( R = 11.4 ms). Detection of the R-line at 
698.1 nm shows a single component with R = 11.4 ms.

FIGURE 8 Spectrometer for measuring 
luminescence decay times.
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Picosecond and Sub-Picosecond Relaxation

During the past two decades there have been quite remarkable developments in techniques for gen-
erating and measuring ultrashort pulses into the femtosecond domain. In semiconductors, a very 
wide range of ultrafast phenomena are being studied—electronhole plasma formation, exciton and 
biexciton formation dynamics, hot electron effects, phase-conjugate self-defocusing, and degener-
ate four-wave mixing. However, one very general optical phenomenon that may be addressed using 
ultrashort pulses involves nonradiative decay times in nonresonant fluorescence spectra. Such pro-
cesses include ionic relaxations around a center in decaying from an excited state, sometimes includ-
ing reorientations of anisotropic centers. Many picosecond phenomena, especially nonradiative 
decay processes, are studied by excite-and-probe techniques in which light pulses at wavelength 1
are used to excite a phenomenon of interest, and then a delayed optical pulse at wavelength 2 inter-
rogates a change of some optical property of this phenomenon. Ideally, two sources of picosecond 
pulses at different, independently tunable wavelengths are required, which must be synchronized on 
the picosecond timescale.

A convenient experimental system for studying vibrational relaxation at color centers and 
transition metal ions in ionic crystals is shown in Fig. 10.6 A mode-locked dye laser producing sub-
picosecond pulses at wavelength 1 is used both to pump in the absorption band and to provide 
the timing beam. Such pumping leads to optical gain in the luminescence band and prepares the 
centers in their relaxed state. The CW probe beam, collinear with the pump beam, operates at a 
longer wavelength, 2. The probe beam and gated pulses from the pump laser are mixed in a nonlin-
ear optical crystal and a filter allows only the sum frequency of the pump and probe beams, which 
is detected by a phototube. The photomultiplier tube actually measures the rise in intensity of the 
probe beam which signals the appearance of gain when the FA(Li)-centers have reached the relaxed 
excited state. The pump beam is chopped at low frequency to permit phase-sensitive detection. The 
temporal evolution gain signal is measured by varying the time delay between pump and gating 
pulses. Although specifically used by Mollenauer et al.6 to probe the relaxation dynamics of color 
centers, the spectrometer system shown in Fig. 10 is readily adapted to other four-level systems, 
including transition metal ions.

FIGURE 10 A sub-picosecond pump and probe spectrometer for measuring vibrational relaxation times 
in excited defects and transition metal ions.
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31.6 POLARIZATION SPECTROMETERS

General Principles

The absorbed intensity is sometimes dependent on the optical anisotropy of the sample. Whether or 
not a transition is allowed in a particular polarization is determined by examining the value of the 
square of the matrix element b aj , see “Optical Spectroscopy and Spectroscopic Lineshapes” 
(Chap. 10 in this volume), Eqs. (12) and (13), where a and b are the states involved in the transition, · j
is the appropriate component of the dipole operator summed over all j electrons involved in the 
transition. Optical transitions may be linearly or circularly polarized. For an electronic dipole tran-
sition, the dipole operator is e · E where e j jre is summed over the j electrons and E is the unit 
electric polarization vector parallel to the E-field of the radiation. The matrix element is evaluated 
using group theory, which shows how the symmetry properties of the states affect the transition 
rate.1 From this matrix element the selection rules of the transition are determined. The polariza-
tion of the radiation is defined in Fig. 11 by reference to the ẑ direction of the system, which itself 
is assumed to be parallel to an external perturbation (static electric or magnetic fields) or to unique 
symmetry direction in a crystal. For the -and -senses of linear polarization, the radiation travels 
in a direction perpendicular to ẑ with its electric field ˆ

E either parallel to ẑ ( -polarization) or 
perpendicular to ẑ ( -polarization). The electric dipole operators are then given by j j je z e zjr ˆ
for -polarization and j exj or j eyj for -polarization. The x̂  and ŷ  directions have been assumed
equivalent. In -polarization the radiation propagates along the unique symmetry axis, ẑ , with ˆ

E
anywhere in the x-y plane: in this case the electric dipole operator is also j exj or j eyj. We define 
right circularly polarized (RCP) radiation as having electric (and magnetic) polarization vectors 
which rotate clockwise when viewed from behind the direction of propagation. For electric dipole 
absorption transitions, the electric dipole operator for RCP light propagating in the z direction is 

j je x jy( ) / 2. Accordingly, in the case of LCP light, where the sense of rotation is anticlockwise, 
the electric dipole operator is j je x iy( ) / 2.

Polarized Absorption

Although the selection rules of dipole transitions provide for polarized spectra, the optical spectra 
of atoms in the absence of external fields and of electronic centers with octahedral symmetry in 
solids are isotropic. Since the unit polarization vector, ˆ

E, has direction cosines cos , cos , and 

FIGURE 11 Definitions of the senses of -, - and -polarized 
light beams relative to a local symmetry axis.1
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cos , where the angles , , and  are defined in Fig. 12a, the square of the electric dipole matrix 
element is

| | | |b ax y zcos cos cos 2 (13)

When the center has octahedral symmetry the cross terms in Eq. (13) are zero so that the squared 
matrix element becomes

x y z
2 2 2 2 2 2cos cos cos (14)

using x xb a| | with similar expressions for y  and z . Since in octahedral symmetry

x y z
2 2 2 (15)

| ˆ |2 becomes x
2 and the strength of the transition is independent of the direction of the 

polarization of the incident radiation and the direction of propagation.
In octahedral solids, the local symmetry of an electronic center may be reduced by the applica-

tion of an external perturbation or internally through the presence of a nearby defect. In tetragonal 
symmetry with the z axis parallel to the symmetry axis, the transition probability is again given by 
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and z axes and (b) two different geometrical arrangements used for polarized excitation 
luminescence spectroscopy.
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Eq. (14) but with x y z
2 2 2. Since the transition probability for radiation at polarization 

ˆ
E is then proportional to

x z A B2 2 2 2 2 2(cos cos ) cos cos (16)

where A and B are constants, the spectroscopic properties of the center are anisotropic. In terms of 
the experimental situation referred to in Fig. 12b, in -polarization the angle  is always /4 radians, 
and the intensity is proportional to A. For -polarization, the angles are /4, /4 , and 

0, and the intensity is proportional to B. Similarly, for -polarization, the intensity is proportional 
to A. This shows that in tetragonal symmetry a rotation of the polarizer from the 0 to /4 in, 
for example, the y-z plane determines the magnitudes of A and B. The linear dichroism D is then 
given by D  (B A)/(A  B).

To illustrate these ideas, Fig. 13 shows the polarization of the 2
1 2

2
1 2

2
3 2S P P/ / /,  lines of atomic 

sodium, i.e., the D1 and D2 absorption lines, in the presence of an applied magnetic field. The 
Zeeman splittings of energy levels are much smaller than the spin-orbit splitting between the 2P1/2
and 2P3/2 levels. The wave functions are labeled in Fig. 11 by the MJ-values: the relevant Clebsch-
Gordan coefficients and theoretical intensities of the transitions for linear and circular polarizations 
are shown in Fig. 13, as are the theoretical intensities of the 2

1 2
2

1 2
2

3 2S P P/ /,  right circularly polar-
ized (RCP) and left circularly polarized (LCP) absorption transitions. The experimental pattern of 
lines for - and -polarizations are in excellent agreement with the predicted Zeeman pattern.

An analysis of the polarization properties of the sample absorption requires that a polarizer be 
inserted in the light path immediately prior to the sample chamber. For accurate measurements of 
the absorption anisotropy, the polarizers must be accurately positioned relative to the beam and 
rotatable. The angle of rotation about the beam must be accurately indexed so that the orientation-
dependence of the anisotropy may be determined. The polarizer should also be removable since 
it is unnecessary for measurements with optically isotropic solids. A sample which has different 
absorption coefficients in different crystallographic directions is said to be dichroic. The dichroism is 
defined as

D
( ) ( )
( ) ( )

( ) ( )
( ) ( )

1
l

I I
I I

(17a)

in the limit of small absorption coefficients.
Although discussion has focused on radiative absorption transitions via electric dipole transi-

tions, a similar analysis can be made for magnetic dipole transitions. In this case, the phase relation-
ships between the magnetic fields Bx and By are exactly the same as those between Ex and Ey, and the 
magnetic dipole operator is m B; where m je m l sj( ) ( )/2 2  and B is the unit vector along the 
direction of the magnetic field of the radiation. If the absorption transitions used to excite the lumi-
nescence are unpolarized, so too will be the resulting luminescence spectrum. However, as discussed 
above, the absorption spectrum of an atomic system may be made anisotropic by the application of 
an external field or by using polarized exciting radiation. The resulting emission spectrum will be 
correspondingly polarized. Absorption and luminescence spectra from optically isotropic solids can 
also be made anisotropic using similar techniques.

Polarized Absorption/Luminescence

Just as the absorption spectra of free atoms and isotropic solids are unpolarized, so too are the lumi-
nescence spectra, at least when exciting with unpolarized radiation. This is shown by simple exten-
sions to the arguments leading to Eq. (15) in which the electric dipole operators for luminescence 
are the complex conjugates of those for the appropriate absorption transitions. In practice, both 
absorption and emission properties are anisotropic. Although the host crystal may possess a cubic 
unit cell in which the electronic centers are anisotropic, a regular distribution of equivalent sites will 
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FIGURE 13 Zeeman splittings of 2S1/2
2P1/2,

2P3/2 levels of sodium. The electric 
dipole matrix elements and relative intensities of linearly and circularly polarized 
absorption transitions are compared with some experimental spectra.1
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still result in isotropic spectra. The use of polarized absorption/luminescence techniques can reveal 
details of the local site anisotropy. Such methods have been discussed by Henderson and Imbusch1

and in more detail by Feofilev.7

To measure the effects of polarization on the absorption coefficient [i.e., ( , ˆ)v ] it is necessary 
to place a polarizer immediately before the beam splitter in the double-beam spectrophotometer, 
Fig. 1. In polarized luminescence measurements, linear polarizers are placed immediately before the 
sample in the absorption channel and just after the sample in the emission channel of a lumines-
cence excitation spectrometer such as that shown in Fig. 6. The spectrometer may then operate in 
the “straight through” configuration or the emitted light may be collected in a direction at 90° to the 
direction of the excitation light, as illustrated in Fig. 13. Note that provision is made for rotatable 
polarizers in both excitation ( ) and detection channels ( ), and the measured emission signal will 
be a function of both  and .

The circular dichroism may be defined in an analogous manner to the linear dichroism, i.e., 
Eq. (17a). Since circular dichroism has a specific relevance to the Zeeman effect, we use Fig. 14a
and consider circularly polarized absorption transitions which are excited between two Kramers 
doublets. With light propagating along the direction of the magnetic field, the selection rule is that 
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-polarized light induces Ms 1 absorption transitions and -polarized light induces absorption 
transitions in which Ms 1. As a result of the Zeeman effect, the absorption peak splits into two 
overlapping bands (Fig. 14b) centered at different wavelengths with absorption coefficients ± in 

- and -polarizations that are different at particular frequencies. The peaks in the two oppositely 
polarized bands are separated in energy by (ge gg) BB, where the g-values refer to the excited e and
ground g states. The energy difference corresponds to a frequency splitting v g g eB me g( ) 4 ,
which for ge gg  2.0 and B  1 T gives a separation between band peaks of 0.04 nm for a band 
centered at 500 nm. In a magnetic field, the difference [ (v)] in the absorption coefficients for 
and  circularly polarized light is referred to as magnetic circular dichroism (MCD). In the limit of 
small absorption coefficient the circular dichroism is

( )
( ( ) ( ))

( ( ) ( ))
v

v v

v v

2 I I

l I I
(17b)

where l is the sample thickness and I (v), I (v) refer to the transmitted intensities of the  and 
circularly polarized light at frequency v.

In most cases, a splitting of only 0.04 nm would be hard to resolve directly by Zeeman effect 
measurements on a broadband. However, this Zeeman structure may be resolved by measuring 

(v) as a function of magnetic field, as can be seen from a simple estimate. We approximate the 
MCD signal, (v) for a sample of thickness l, as the product of the magnetic splitting v with the 
rate of change of the absorption coefficient with frequency which is given by d v dv vo( ) ( )/ / , for 
a symmetrical, structureless band. Hence

v
v

v
( )

( )l o

(18)

In a typical experiment, (v)l 10 5 and (vo)l ~ 1, hence v 10 5 . For a typical broadband, 
0.25 eV 2000 cm 1 and Eq. (18) yields v 0.02 cm 1 (i.e., ~ 0.05 nm) which is of the 

same order of magnitude as the Zeeman splitting calculated above. Although the intensity changes, 
which determine the magnitude of (v), may be quite small, they may be assumed very precisely 
using lock-in techniques. This is done very efficiently by replacing the circular polarizer in the 
excitation system by a stress-modulated quarter-wave plate, a device which transmits circularly 
polarized light, the polarization of which is switched between  and  at the vibration frequency 
of the plate, usually 50 kHz. Using this piezo-optic modulation, MCD signals as low as 10 6 can 
be measured.8

The MCD signal is strongly dependent on both frequency and temperature. Since at low tem-
peratures the populations N± of the Ms = 1/2 levels of the spin 1/2 ground state are different for a 
system in thermal equilibrium, the MCD signal [Eq. (17b)] is given by

( ) ( ) ( ) tanv v G vl
B

kTo h Bg

2
(19)

In this expression o(v) and the sample thickness, l, are experimental constants and, in conse-
quence, the MCD signal only varies through the Brillouin function for the s 1/2 ground state 
[i.e., tan /h g B k T( )B 2 ]. This MCD signal is paramagnetic, being strongest at high field and low 
temperature, and measurement of its magnitude probes the ground-state magnetization. In order 
to test Eq. (19) experimentally, it is best to work at either the positive or negative peak in Fig. 14 
and so maximize the MCD signal. Having thus obtained a suitable MCD signal, its variation with 
temperature and magnetic field can then be measured. Excitation of the Kramers’ system in Fig. 14 
with circularly polarized radiation of appropriate frequency results in the circularly polarized emis-
sion. The electric dipole operators for RCP and LCP emission are the complex conjugates of those 
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for absorption. The consequent change in emission intensity, Eq. (17), is referred to as the magnetic 
circular polarization (MCP).

Optically Detected Magnetic Resonance

In optical absorption spectroscopy, electronic transitions (usually) out of the ground state may 
result in one of a rich tapestry of possible bandshapes, depending upon the strength of the electron-
phonon coupling. Photoluminescence measurements involve transitions which originate on an 
excited electronic state and frequently the terminal state is the electronic ground state. Overlapping 
absorption and luminescence bands can cause difficulty in assigning individual optical absorption 
and luminescence bands to particular optical centers. Since the lifetimes of excited states are in the 
range 10 3 to 10 8 s, it is no trivial matter to measure excited-state electron spin resonance using the 
microwave detection techniques pioneered in ground-state studies. Geschwind et al.9 developed 
techniques in which the excited-state ESR was detected optically. In favorable cases this method 
enables one to correlate in a single experiment ESR spectra in the ground state and in the excited 
state with particular optical absorption and luminescence spectra. The technique of measuring 
the effect of resonant microwave absorption on the MCD and/or MCP signal may be termed opti-
cally detected magnetic resonance (ODMR). In ODMR measurements involving the MCD signal, 
microwave-induced transitions between the Zeeman levels of the ground state are detected by a 
change in intensity of the absorption (i.e., MCD) spectrum. Electron spin resonance transitions in 
the excited state are signaled by microwave-induced changes in the MCP signal.

Figure 15 is a schematic drawing of an ODMR spectrometer. There are three necessary channels: 
a microwave channel and channels for optical excitation and detection. The microwave system is 
relatively simple, comprising a klystron or Gunn diode operating at some frequency in the range 8.5 
to 50 GHz, followed by an isolator to protect the microwave source from unwanted reflected signals 
in the waveguide path. The microwave power is then square-wave modulated at frequencies up to 
10 kHz, using a PIN diode. A variable attenuator determines the power incident upon the resonant 
cavity, although for high-power operation a traveling-wave amplifier might be added to the wave-
guide system. The sample is contained in the microwave cavity, which is designed to allow optical 
access of the sample by linearly or circularly polarized light traveling either parallel or perpendicular 
to the magnetic field direction. The cavity is submerged in liquid helium to achieve as large a popu-
lation difference as possible between the Zeeman levels. The magnetic field is provided either by 
an electromagnet (B 0 2.0 T) or a superconducting solenoid (B 0 6.5 T). Radiation from the 
sample is focused onto the detection system, which in its simplest form consists of suitable filters, a 
polarizer, and photomultiplier tube. A high-resolution monochromator may be used instead of the 
filters to resolve sharp features in the optical spectrum. The signal from the phototube is processed 
using a phase-sensitive detector, or alternatively using computer data collection with a multichan-
nel analyzer or transient recorder. The recorded spectrum is plotted out using a pen recorder as 
a function of either magnetic field or photon energy (or wavelength). With such an experimental 
arrangement one may examine the spectral dependence of the ODMR signal on the wavelength of 
the optical excitation or on the wavelength of the detected luminescence by use of one of the two 
scanning monochromators.

In order to carry out ODMR, microwave radiation of fixed frequency v is introduced while the 
optical wavelength is kept at the positive or negative peak in Fig. 14c. The magnetic field is then 
adjusted until the ESR condition, hv g BB, is satisfied. Since ESR transitions tend to equalize the 
populations N  and N , resonance is observed as a decrease in (v), and as the microwave power 
is increased, the MCD gradually tends to zero. In certain circumstances the ground-state spin polar-
ization may be used to monitor excited-state ESR transitions because of the selectivity of the transi-
tions induced by circularly polarized radiation. This measurement technique is an example of trigger 
detection where one microwave photon in absorption triggers the detection of one optical photon 
emitted. The resulting enhancement in sensitivity relative to the normal ESR technique is approxi-
mately in the ratio of optical to microwave frequency (i.e., 1015/1010  105). At x-band ( 10 GHz), 
the ESR sensitivity is about 1010 spins per gauss linewidth so that ODMR sensitivity is of order 105
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FIGURE 15 A schematic representation of a spectrometer for measuring optically 
detected magnetic resonance spectra via circularly polarized absorption or emission transitions.

atoms in the excited state. With the ODMR technique, one may gather information on a wide range 
of important solid-state processes including spin-lattice and cross relaxation, spin memory, energy 
transfer, electron-hole recombination, phonon bottlenecks, and spin coherence effects.

A major attribute of the ODMR technique is illustrated in Fig. 16, showing the optical charac-
teristics of the ODMR spectrum of F centers in calcium oxide.10 These spectra were measured at 
18.7 GHz and 1.6 K with the magnetic field along a crystal 100  direction. A high-pressure xenon 
discharge lamp and monochromator (M1 in Fig. 15) set at 400 nm was used to excite the fluorescence, 
which was detected through monochromator M2. The spectrum consists of four equally spaced 
lines due to an S 1 state of a center with tetragonal symmetry. Then with the magnetic field set at 
the strongest ODMR line, the excitation wavelength is scanned using monochromator M1 (Fig. 15) 
over the visible and near-ultraviolet region. A single broad structureless excitation peak is observed 
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at 400 nm corresponding to the 1
1

1
1A Tg u absorption band of the F center (Fig. 16). Subsequently, 

the excitation monochromator is set at the peak of this excitation band and the same magnetic field 
while the detecting monochromator (M2 in Fig. 15) is scanned over the fluorescence spectrum. This 
spectral dependence (Fig. 16) shows a sharp zero-phonon line at a wavelength of 574 nm with an 
accompanying broad vibronic sideband with peak at 602 nm. In a single experiment, a unique and 
unambiguous relationship is established between the ESR spectrum, absorption, and fluorescence 
bands of an intrinsic lattice defect.

31.7 HIGH-RESOLUTION TECHNIQUES

Inhomogeneous broadening arises when individual atoms are distinguished by the frequency at 
which they absorb light. The absorption profile is then the sum of separate absorption lines. In 
atomic spectroscopy, the major source of the spectral linewidth is Doppler broadening; the fre-
quency shift is ( v/v)  ±(vz/c) due to an atom moving with velocity component vz towards ( ) or 
away from ( ) the observer. At thermal equilibrium, a gaussian lineshape is observed because of the 

FIGURE 16 The ODMR spectrum of triplet 
state of F-centers in CaO.
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Maxwell-Boltzmann velocity distribution. In solids, the distribution of internal strains is a source of 
inhomogeneous broadening. Because crystals contain imperfections, electronic centers experience 
crystal fields which vary slightly from site to site in the crystal; in consequence, zero-phonon lines 
may have linewidths of order 0.1 to 50 cm 1. The use of narrow-band laser excitation makes it pos-
sible to eliminate inhomogeneous broadening and to realize a resolution limited only by the homo-
geneous width of the transition, which in crystals can vary from kilohertz to gigahertz. This factor of 
103 to 104 improvement in resolution enables the spectroscopist to carry out high-resolution studies 
of the physical properties and electronic structures of centers and of the mechanisms responsible for 
homogeneous broadening. Contributions to homogeneous width come from population dynamics 
and random modulation of the optical frequency by phonons and nuclear spins.

Saturated Absorption and Optical Holeburning

The experimental basis of recovering the homogeneous width of an inhomogeneously broadened 
optical spectrum, so-called saturated absorption or optical holeburning (OHB) spectroscopy, is 
illustrated in Fig. 17. An inhomogeneously broadened line of width inh is produced by many nar-
row components of homogeneous width hom inh. Each component is centered at a different 

FIGURE 17 Optical holeburning (OHB) and fluorescence line narrowing 
(FLN) of an inhomogeneously broadened spectroscopic line.1
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frequency within the inhomogeneous line profile. If a narrow laser line of frequency vL and band-
width L < hom is incident upon an atomic assembly having an inhomogeneously broadened 
linewidth inh, the resulting absorption of laser radiation depletes only that subassembly of excited 
centers whose energies are within hom of the laser line frequency vL. Consequently, a “hole” is 
burned in the lineshape in the neighborhood of vL. Resolution of the homogeneous width requires 
that L hom inh. In holeburning spectroscopy, the narrow laser linewidth and high power 
make it possible to maintain a significant fraction of those atoms with transition frequency vL in 
the excited state, where they no longer contribute to the absorption at this frequency. To observe 
holeburning experimentally requires that 5 percent of those centers within the pump laser band-
width be transferred to the excited state.

The first measurements of optical holeburning or saturated absorption spectroscopy in atoms 
were made by the Stanford group on the H -line ( )n n2 3  in hydrogen using a pulsed dye 
laser.11 A schematic diagram of an appropriate absorption spectrometer is shown in Fig. 18. A strong 
laser beam interacts with those atoms that are moving with the right velocity to Doppler and shift 
them into resonance. If the laser beam is intense enough, it tends to equalize the population in the 
two levels, thereby reducing the intensity. The hole burned in the absorption profile, which extends 
over the natural width of the transition, is probed by a second beam at the same frequency but lower 
intensity and traveling in the opposite direction. This beam interacts with atoms having the same 
velocity but in the opposite direction to the saturating beam. When the laser is tuned to line center, 
both pump and probe beams interact with atoms moving with zero longitudinal velocity. The probe 
beam then measures the reduced absorption caused by the saturating beam. In experiments using 
pulsed lasers, very high intensity is required to achieve saturation and hence there must be very tight 
focusing and overlap of pump and probe beam. In consequence, CW lasers are preferred in both 
gas-phase and solid-state spectroscopy. Saturated absorption measurements on atomic hydrogen 
have been reviewed by Ferguson and Tolchard12 and OHB in solids by Selzer13 and by Yen.14

To burn a hole in a narrow absorption line in crystals requires that the laser be focused onto the 
sample for periods of order 102 to 103 s, depending upon the specific system. When the laser excita-
tion is switched off, the holes recover on some timescale characteristic of the physical process respon-
sible for holeburning. For short-lived holes the exciting beam is divided using a beam splitter into 
pump and probe beams. The weaker probe beam passes through an optoacoustic modulator which 
scans it backward and forward over the hole.13 To observe long-lived holes, the sample is irradiated 
for a short time in the zero-phonon line with a few hundred milliwatts of single-mode dye laser light 
with a width of a few megahertz. The shape of the hole is then displayed by reducing the laser inten-
sity to a few milliwatts and scanning the laser over the inhomogeneous line profile. Figure 19 shows 
an example of holeburning in the 601.28-nm line of Pr3 : LaCl3. The homogeneous width measured 
in this holeburning experiment is hom 10 MHz, which corresponds to a lifetime of 10 ns. There 
have been many reports of holeburning spectroscopy on transition metal ions, rare-earth ions, and 
color centers in inorganic materials. For rare-earth ions, holeburning with lifetimes determined 
by the nuclear spin relaxation processes have been reported to vary from 10 to 103 s. Many mea-
surements are aimed at the mechanisms leading to the homogeneous width of optical transitions. 

Sample
Lock-in
amplifier

Saturating beam

Chopper

Tunable laser

Probe beam

FIGURE 18 A spectrometer system for Doppler-free saturation spectroscopy.12
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In these cases, techniques have been developed for the detection of coherent transients (e.g., photon 
echo or free induction decay) because the measurements are made on the timescale of the dephasing 
and are not affected by spectral diffusion and other such processes.

Polarized Absorption Spectrometers

Polarized absorption spectroscopy is a technique related to sub-Doppler absorption spectros-
copy. However, in this case use is made of the circularly polarized absorption properties of 
atomic transitions. In the Wieman-Hansch experiment,11 the probe beam passes through crossed 
polarizers immediately before and after the sample. If the pump beam is unpolarized, the sample 
is optically isotropic and no light falls on the detector. However, if the s p transitions are 
excited using RCP light, the pump beam induces optical anisotropy in the medium with which it 
interacts. In consequence, as pump and probe beams are tuned to line center so that both inter-
act with the same class of atoms, the weak probe beam becomes slightly elliptically polarized 
and light is transmitted through the crossed polarizers. The advantage of the method is a factor 
of about 103 enhancement in sensitivity relative to saturation absorption spectroscopy. Sub-
Doppler two-photon absorption spectroscopy is also much used in atomic physics.15 The selec-
tion rule for two-photon absorption is that l 0 or 2. In consequence, for l  1 electron atoms 
S S and S D transitions are allowed.

 = 601.8 nm

LaCl3 : 0.5% Pr3+

5 GHz

1 GHz

Photon energy

A
bs

or
ba

n
ce

FIGURE 19 Optical holeburning in the 601.28-nm 
line of Pr3+ ions in LaCl3. The hole was burned using 
some 200 W cm−2 of single-frequency laser light with 
a bandwidth of 2 MHz. The zero-phonon line has an 
inhomogeneous width of 7.5 GHz. (After Harley and 
Macfarlane, 1986, unpublished.)
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Laser Stark Spectroscopy of Molecules

Sub-Doppler resolution enhancement is also used in studying the heterogeneously broadened 
rotational/vibrational spectra of molecules. Such spectra are generally observed in the mid-IR 
region and are studied using a wide variety of gas lasers (e.g., N2O, CO, and CO2). Such laser lines 
are not usually in exact resonance with the particular molecular transition: laser and molecular 
transition are brought into register using a variable electric field to tune the molecular system 
into resonance. In general, parallel-plate Stark cells are used in which free-space propagation of 
the short-wavelength infrared radiation occurs. This makes it easy to use both perpendicular and 
parallel polarization configurations in the electric resonance experiments so that both MJ 0 and 

MJ ±1 transitions are observed. The subject of laser Stark spectroscopy has been discussed at 
length by Duxbury.16

A schematic intracavity laser Stark spectrometer is shown in Fig. 20; the same basic principles 
are obtained as with optical holeburning spectroscopy. The effects of the saturating laser field are 
confined to a narrow frequency region centered on the velocity component of those molecules 
whose absorption is Doppler-shifted into resonance. In a standing wave field, two holes are burned, 
one on either side of the line center, corresponding to molecules moving toward or away from the 
detector. The applied electric field is used to tune the two holes to line center where they coalesce to 
give a sharp dip in the absorption coefficient at line center. Since the resonance method relies on the 
use of an electric field for tuning, it is necessary both to generate high uniform fields and to study 
molecules with appreciable Stark tuning coefficients. In order to generate high electric fields, which 
may approach 90 kV cm 1, narrow electrode spacings from 1 to 4 mm are commonly used. With 
such narrow gaps, the plates must be flat to one or two fringes of visible light, and must be held 
accurately parallel. The gas pressure used must also be restricted to the low-pressure region below 
100 mtorr. A potential difference of roughly 3000 V may be sustained without electrical breakdown 
across any gas at a pressure of 100 mtorr and below.

The electric field is then modulated at some convenient frequency to permit the use of phase-
sensitive detection techniques. In order to get above the principal noise region of the electric 
discharge lasers used in the 5- and 10-μm regions and as pumps for the FIR lasers, it is necessary 
to use electric field modulation frequencies in the range from 5 to 100 kH. The amplitude of the 
electric field modulation used to detect the signals is usually small compared to the equivalent 
electric field linewidth of the transitions. The most common modulation waveform is sinusoidal. 

FIGURE 20 Schematic diagram of an intracavity laser Stark spectrometer. PSD 
stands for phase sensitive detector, DVM for digital voltmeter, HV for high voltage, and 
MOD for modulation source.16
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If the modulation amplitude is much smaller than the linewidth, detection at the fundamental 
modulation frequency results in a first derivative lineshape as in analogous electron spin resonance 
spectra. In order to remove the effects of sloping baselines produced by transitions with a slow Stark 
effect, it is common to use detection at either the second or third harmonic of the modulation fre-
quency. Second-harmonic detection produces a second-derivative signal resembling a sharpened 
absorption line but with negative side lobes. Third-harmonic detection produces a third-derivative 
signal which resembles a sharpened first derivative, but which again possesses side lobes. Theoretical 
lineshapes are illustrated in Fig. 21. Second- and third-harmonic detection are particularly useful for 
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FIGURE 21 Lineshapes which occur when detecting at harmonics of the modu-
lation frequency when small-amplitude field modulation is used. Doppler-broadened 
line showing the Lamb dip. (a) 30-MHz scan of a partially saturated Doppler-
broadened line showing the Lamb dip; (b) 30-MHz scan with first-derivative detec-
tion; (c) 30-MHz scan with second-harmonic, second-derivative detection. The gain 
is increased by a factor of four from (a); and (d) 30-MHz scan with third-harmonic, 
third-derivative detection.
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the observation of narrow saturation features free from background effects. The detectors used are 
quantum-limited liquid nitrogen cooled devices, PbSnTe or CdHgTe in the 10-μm region and InSb 
or Au doped Ge in the 5-μm region. In the far infrared, Golay cells have been used but in order to 
achieve a better signal-to-noise ratio it is necessary to use detectors cooled by liquid helium.

Just as in atomic spectroscopy one may use atomic beam spectroscopy as an alternative to 
absorption saturations, so too may one use molecular beam systems in high-resolution studies of 
the rotational-vibrational spectra of molecules.

Fluorescence Line Narrowing

Fluorescence line narrowing (FLN) is a technique complementary to that of OHB. It may also 
be understood by referring to Fig. 17. A narrow laser line is used to pump within the inhomoge-
neous linewidth inh. The laser interacts only with the subset of levels spanning the bandwidth of 
the laser L. These centers reradiate to some lower lying level, with a fluorescence linewidth much 
narrower than the inhomogeneous width. The fluorescence linewidth approaches the homoge-
neous width. In fact, for centers involved in a resonance fluorescence transition, the total FLN 
lineshape is a convolution of the laser lineshape and twice the homogeneous lineshape (once for 
the pump bandwidth and once for the fluorescence). The FLN linewidth  is then usually written 
as L 2 h. Experimentally, FLN requires a little more sophistication than does holeburn-
ing spectroscopy. Of course, one still requires a stable, high-resolution laser. Care must be used 
in extracting the true homogeneous linewidth, especially for nonresonant fluorescence. Many of 
the experimental problems relative to solid samples are discussed in the review by Selzer,13 and 
numerous examples are given by Yen and Selzer.17 The CW FLN spectrum shown in Fig. 22 is for 
the Cr3  ion in aluminum oxide.18 The fluorescence lifetime is 3.4 ms at 4.2 K. Hence the homo-
geneous width is of the order 0.3 kHz. A direct-phonon relaxation process between the two 2E
levels, 2A and E, separated in energy by 29 cm 1, broadens the homogeneous width to 130 kHz. 
In CW measurements, a homogeneous width in excess of 100 MHz was reported.18 The problem 
is relaxations due to super-hyperfine interactions with neighboring aluminum nuclei. The appli-
cation of a dc magnetic field of only 40 mT has the effect of inhibiting relaxation due to local 
fields at the Cr3  ions due to the 17Al nuclear moments. A very considerable narrowing of the Cr3+

FLN spectrum is then achieved.

FIGURE 22 FLN in the R1 transition of ruby.18
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31.8 LIGHT SCATTERING

Light-scattering experiments are now a routine feature in many optical laboratories. The first obser-
vations of light scattering by small particles were reported by Tyndall.19 Subsequently, theoretical 
work by Lord Rayleigh20 showed both that the scattered intensity varied as the fourth power of the 
frequency and that the scattering was due to molecules rather than dust particles. Many of the early 
studies were concerned with the depolarization of the light after being scattered by the dust-free 
atmosphere. Of course, in the prelaser era, sufficient light intensity could only be achieved by use 
of strongly condensing lenses to focus light onto the gas cell. Very great care was then necessary to 
obtain reliable depolarization measurements. Even in the laser era it is still essential to avoid any 
effects due to parasitic light which often plague light-scattering experiments.

A significant early result from scattering of light by gases was that the scattered light intensity 
varied with the density of the gas being used as the sample. However, Lord Rayleigh discovered that 
the intensity scattered per molecule decreased by a factor of order 10 on condensation to the liquid 
phase. There is a somewhat smaller decrease in going from the liquid phase to the solid. Obviously, 
some scattering experiments become rather difficult in the solid state. The classical experimental 
geometry for studying Rayleigh scattering is in the 90° orientation for the scattered radiation. This is 
also the most useful orientation for Raman scattering in solids.21

One important feature of the structure of solids is the periodic disturbance of the crystal struc-
ture by the propagation of quantized elastic waves (i.e., phonons). Those elastic waves which travel 
at the velocity of sound (i.e., sonic waves) are essentially thermal density fluctuations in the elastic 
medium. Brillouin predicted that such fluctuations should give rise to fine structure in the Rayleigh 
scattered light when the Bragg coherence condition 1 2 2p sin( )/  is obeyed. Here 1 is the wave-
length of light, p is the wavelength of those phonons responsible for scattering the light, and  is the 
scattering angle. Because the scattering centers are in motion, the scattered light is frequency shifted 
by the Doppler effect. It is an easy matter to show that the Doppler shift, v, is given by

v v v cp 2 21( ) ( )v/ sin / (20)

where vp is the frequency of the density fluctuations in the medium and v is the velocity of sound in the 
medium. For light in the visible region then, that part of the phonon spectrum probed by the Brillouin 
scattering is in the gigahertz frequency region. In addition, the Brillouin components are completely 
polarized for 90° scattering. Before the advent of lasers, the study of Brillouin scattering effects in solids 
was exceedingly difficult. It remains a technique more used in gases than in condensed media.

Raman was one of numerous scientists engaged in research into light scattering during the 
decade 1920 to 1930. Much of his work was carried out using sunlight as a source. However, in 
experiments using monochromatic light, he observed in the spectrum of light scattered at 90° by liq-
uid samples, new lines at wavelengths not present in the original light.21 The frequency displacement 
of these new lines from source frequency was found to be independent of the wavelength of the 
incident light. This was contrary both to fluorescence excitation and Brillouin scattering [Eq. (20)]; 
hence was born a new scattering phenomenon for which Raman was awarded the Nobel prize and 
which now bears his name. The frequency shifts in the Raman spectrum of a particular substance 
are related to but not identical to infrared absorption frequencies. In general, infrared transitions 
occur when there is a change in the electric dipole moment of a center as a consequence of the local 
atomic vibrations. The Raman lines occur when a change in polarizability is involved during atomic 
vibrations. This usually means that infrared transitions occur only between states of opposite parity 
whereas Raman transitions occur between states of the same parity. Thus the infrared and Raman 
spectra give complementary information about the vibrational spectra of spectroscopic centers.

Raman scattering measurements have found wide application in condensed matter physics. The 
spectrometer systems have much in common with fluorescence spectrometers, although lasers pro-
vide the excitation source almost without exception. Single-frequency lasers (He-Ne, Ar , Ke ) and 
tunable dye lasers and solid-state lasers have all been used. Most lasers provide a polarized output 
and it is necessary to modify this to allow the excitation polarization to be varied. The scattered 
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light is observed via a monochromator in a direction normal to the laser beam. Again, provision 
is made for the polarization of the scattered radiation to be analyzed. To permit observation closer 
to the laser line, double or triple monochromators are used to eliminate all traces of stray light. 
Furthermore, one must take trouble to separate out the Raman-scattered light from any fluores-
cence signal. Since the Raman signal is instantaneous, it is comparatively straightforward to recover 
the desired signal from the decaying fluorescence signal using time-resolution techniques.

An example of the application of Raman spectroscopy in color center physics is shown in Fig. 23. 
The intensity of scattering versus wavelength shift from the Ar  laser excitation is shown for F-centers 
in NaCl22 for which the longitudinal optic frequency is 270 cm 1. The major Raman-shifted spectrum 
occurs below 200 cm 1, showing that the vibrational interaction is due to ionic displacements close 
to the defect. These local modes have broad peak centers near  175 cm 1. A comparison of the 
polarized and unpolarized excitation spectra shows that the local mode scattering is supplemented by 
a lattice vibrational contribution covering much of the 0 to 500 cm 1 frequency shift.
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32.1 GLOSSARY

A area

a amplitude 

C ratio of peaks to valleys 

d distance

E electric field

F finesse

FSR free spectral range

I intensity

Ji(  ) Bessel function

L length

m integer

N number of fringes

n refractive index

p optical path difference

R reflectance

r radius

T transmittance

v velocity

wavelength

angle

frequency

phase

phase difference

angular velocity
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32.2 INTRODUCTION

Optical interferometers have made possible a variety of precision measurements using the interfer-
ence phenomena produced by light waves.1,2 This chapter presents a brief survey of the basic types 
of interferometers and discusses some of their applications.

32.3 BASIC TYPES OF INTERFEROMETERS

Interferometric measurements require an optical arrangement in which two or more beams, 
derived from the same source but traveling along separate paths, are made to interfere. 
Interferometers can be classified as two-beam interferometers or multiple-beam interferometers 
according to the number of interfering beams; they can also be grouped according to the methods 
used to obtain these beams.

The Fizeau Interferometer

In the Fizeau interferometer, as shown in Fig. 1, interference fringes of equal thickness are formed 
between two flat surfaces separated by an air gap and illuminated with a collimated beam. If one of 
the surfaces is a standard reference flat surface, the fringe pattern is a contour map of the errors of 
the test surface. Absolute measurements of deviations from flatness can be made by an intercom-
parison of three surfaces. Modified forms of the Fizeau interferometer are also used to test convex 
and concave surfaces by using a converging or diverging beam.3

The Michelson Interferometer

The Michelson interferometer, shown schematically in Fig. 2, uses a beam splitter to divide and 
recombine the beams. As can be seen, one of the beams traverses the beam splitter three times, 
while the other traverses it only once. Accordingly, a compensating plate of the same thickness as 
the beam splitter is introduced in the second beam to equalize the optical paths in glass. With an 
extended source, the interference pattern is similar to that produced in a layer of air bounded by the 
mirror M1 and M2

, the image of the other mirror in the beam splitter. With collimated light, fringes 
of equal thickness are obtained. The Michelson interferometer modified to use collimated light (the 
Twyman-Green interferometer) is used extensively in optical testing.4

FIGURE 1 The Fizeau interferometer.
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The Mach-Zender Interferometer

The Mach-Zehnder interferometer uses two beam splitters and two mirrors to divide and recombine 
the beams. As shown in Fig. 3, the fringe spacing and the plane of localization of the fringes obtained 
with an extended source can be controlled by varying the angle between the beams and their lateral 
separation when they emerge from the interferometer. The Mach-Zehnder interferometer has been 
used for studies of gas flows and plasmas.

The Sagnac Interferometer

In the Sagnac interferometer, as shown in Fig. 4, the two beams traverse the same closed path in 
opposite directions. Because of this, the interferometer is extremely stable and easy to align, even 
with an extended broadband light source.

FIGURE 3 The Mach-Zehnder interferometer.

FIGURE 2 The Michelson interferometer.
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The Sagnac interferometer has been used for rotation sensing. When the interferometer is 
rotated with an angular velocity  about an axis making an angle  with the normal to the plane of 
the interferometer, a phase difference  is introduced between the beams given by the relation

( )8 A ccos / (1)

where A is the area enclosed by the light path,  is the wavelength, and c is the speed of light.

Polarization Interferometers

Polarization interferometers are used in interference microscopy.5 The Nomarski interferometer, shown 
schematically in Fig. 5, uses two Wollaston (polarizing) prisms to split and recombine the beams. If the 
separation of the beams in the object plane (the lateral shear) is small compared to the dimensions of 
the object, the optical path difference corresponds to the phase gradients in the test object.

Grating Interferometers

Gratings can be used as beam splitters in the Michelson and Mach-Zender interferometers. Such an 
arrangement is very stable, since the angle between the beams is affected only to a small extent by the 
orientation of the gratings. Figure 6 is a schematic of an interferometer that has been used to test fine-
ground surfaces at grazing incidence utilizing two diffraction gratings to split and recombine the beams.6

Shearing Interferometers

Shearing interferometers are widely used for optical testing, since they eliminate the need for a refer-
ence surface. As shown in Fig. 7, in a lateral shearing interferometer two images of the test wavefront 
are superimposed with a mutual lateral displacement, while in a radial shearing interferometer one 
of the images is contracted or expanded with respect to the other.7,8

The Fabry-Perot Interferometer

The Fabry-Perot interferometer9 is used widely in high-resolution spectroscopy. It consists of two 
flat, parallel surfaces with highly reflecting, semitransparent coatings. If the surfaces are separated 
by a distance d and the medium between them has a refractive index n, the normalized value of the 
transmitted intensity at a wavelength  for rays traversing the interferometer at an angle  is

I T R RT ( ) ( )2 21 2/ cos (2)

FIGURE 4 The Sagnac interferometer.
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FIGURE 6 Grating interferometer used to test fine-ground surfaces 
at grazing incidence. (From Ref. 6.)

where T and R are, respectively, the transmittance and reflectance of the surfaces and 
( ) cos4 / nd . With an extended source of monochromatic light, the fringes seen by transmis-

sion are narrow, concentric rings. The free spectral range (FSR), which corresponds to the range of 
wavelengths that can be handled without successive orders overlapping, is given by the relation

FSR /2 2nd (3)

FIGURE 5 The Nomarski interferometer.
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while the width of the peaks at half the maximum intensity corresponds to a change in  given by 
the relation

2 1 1 2( ) /R R/ (4)

The ratio of the free spectral range to the width of the fringes at half maximum intensity is known 
as the finesse F, and is given by the relation

F R R1 2 1/ ( )/ (5)

Two useful variants of the Fabry-Perot interferometer are the multiple-passed Fabry-Perot inter-
ferometer and the confocal Fabry-Perot interferometer. With the conventional Fabry-Perot interfer-
ometer, the ratio of the intensity at the maxima to that at the minima between them is

C R R[( ) ( )]1 1 2/ (6)

x

y

S

(a)

(b)

d2d1

FIGURE 7 Fields of view in (a) lateral and (b) radial 
shearing interferometers.
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and for typical values of reflectance ( . ),R 0 95  the background due to a strong spectral line may 
mask a neighboring weak satellite. A much higher contrast factor may be obtained by double- or 
multiple-passing the interferometer.10,11

The confocal Fabry-Perot interferometer uses two spherical mirrors whose spacing is chosen, as 
shown in Fig. 8, so that their foci coincide. Any ray, after traversing the interferometer four times, 
then emerges along its original path.12 The confocal Fabry-Perot interferometer has a higher through-
put than the plane Fabry-Perot interferometer and produces a uniform output field. It is, therefore, 
the preferred form for operation in a scanning mode by using piezoelectric spacers to vary the sepa-
ration of the mirrors.

32.4  THREE-BEAM AND DOUBLE-PASSED 
TWO-BEAM INTERFEROMETERS

Because of the sinusoidal intensity distribution in two-beam interference fringes, it is difficult to 
estimate their position visually to better than 1/20 of their spacing. However, it is possible to detect 
much smaller optical path variations using the intensity changes in a system of interference fringes.

Three-Beam Interferometers

Zernike’s three-beam interferometer, shown schematically in Fig. 9, uses three beams produced by 
division of a wavefront at a screen containing three parallel, equidistant slits.13 In this arrangement, the 
optical paths of all three beams are equal at a point in the back focal plane of the lens L2. The two outer 
slits provide the reference beams, while the beam from the middle slit, which is twice as broad, is used 
for measurements. The intensity at any point in the interference pattern is then given by the relation

I I0 3 2 2 4[ ]cos cos cos (7)

where  is the phase difference between the two outer beams, and  is the phase difference between 
the middle beam and the two outer beams at the center of the field. The intensities at adjacent max-
ima are equal only when  is an odd multiple of /2. Two positions of the plane of observation can 

FIGURE 8 Ray paths in a confocal Fabry-Perot inter-
ferometer.

FIGURE 9 Zernike’s three-beam interferometer.
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be found that satisfy this condition, one inside and the other outside the focus, and any small change 
in the optical path of the middle beam can be measured from the shift in these positions.

Three-beam fringes can also be produced with an optical system similar to that in the Jamin 
interferometer.14 Settings are made by means of a compensator in the middle beam and can be 
repeated to /200 by visual observation, and to better than /1000 with a photoelectric detector.15

Double-Passed Two-Beam Interferometers

Fringes whose intensity is modulated in the same manner as three-beam fringes can be produced by 
reflecting the beams emerging from a two-beam interferometer back through the interferometer.16

In this case also, the intensity of the adjacent fringes is equal when the phase difference between the 
single-passed beams is

( )2 1 2m / (8)

where m is an integer. Measurements can be made with a precision of /1000.

32.5 FRINGE-COUNTING INTERFEROMETERS

One of the main applications of interferometry has been in accurate measurements of length using 
the wavelengths of stabilized lasers. Electronic fringe counting has become a practical technique for 
such measurements.17

The very narrow spectral line widths of lasers make it possible to use a heterodyne system. In one 
implementation of this technique, a He-Ne laser is forced to oscillate simultaneously at two frequen-
cies, v1 and v2, separated by a constant frequency difference of about 2 MHz, by applying an axial 
magnetic field.18 These two waves, which are circularly polarized in opposite senses, are converted to 
orthogonal linear polarizations by a /4 plate.

As shown in Fig. 10, a polarizing beam splitter reflects one beam to a fixed reflector, while the 
other is transmitted to a movable reflector. A differential counter receives the beat frequencies from 
the photodetector Ds and a reference photodetector DR. If the two reflectors are stationary, the two 
beat frequencies are the same, and the net count is zero. However, if one of the reflectors is moved, 
the change in the optical path is given by the net count.

FIGURE 10 Heterodyne fringe-counting interferometer. (After Ref. 18 © Copyright 
Hewlett-Packard Company. Reproduced with permission.)
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32.6 TWO-WAVELENGTH INTERFEROMETRY

If a length is known within certain limits, the use of a wavelength longer than the separation of 
these limits permits its exact value to be determined unambiguously by a single interferometric 
measurement. One way to synthesize such a long wavelength is by illuminating the interferometer 
simultaneously with two wavelengths 1 and 2. The envelope of the fringes then corresponds to the 
interference pattern that would be obtained with a synthetic wavelength

s 1 2 1 2/| | (9)

This technique can be implemented very effectively with a carbon dioxide laser, since it can oper-
ate at a number of wavelengths that are known very accurately, yielding a wide range of synthetic 
wavelengths.19

Two-wavelength interferometry and fringe-counting can be combined to measure lengths up to 
100 m by switching the laser rapidly between two wavelengths as one of the mirrors of a Twyman-
Green interferometer is moved over the distance to be measured.20

32.7 FREQUENCY-MODULATION INTERFEROMETERS

New interferometric techniques are possible with laser diodes which can be tuned electrically over a 
range of wavelengths.21 One of these is frequency-modulation interferometry.

Figure 11, shows a frequency-modulation interferometer that can be used to measure absolute 
distances, as well as relative displacements, with high accuracy.22 In this arrangement, the signal 
beam reflected from the movable mirror returns as a circularly polarized beam, since it traverses the 

/8 plate twice. The reference beam reflected from the front surface of the /8 plate interferes with 
the two orthogonally polarized components of the signal beam at the two detectors to produce out-
puts that vary in quadrature and can be fed to a counter to determine the magnitude and sign of any 
displacement of the movable mirror.

To make direct measurements of the optical path difference, the frequency of the laser is ramped 
linearly with time by using a function generator to vary the injection current of the laser. An optical 

IsolatorLaser diode

Polarizing
beam splitter

Detector

Detector

Movable
mirror

Fixed reflector
( /8 plate)

Fringe counter Storage CRO

Function
generator

FIGURE 11 Frequency-modulation interferometer for measurements of distance. 
(From Ref. 22.)
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path difference p introduces a time delay p/c between the two beams, so that they produce a beat 
signal with a frequency

f p c dv dt( )( )/ / (10)

where dv/dt is the rate at which the laser frequency is varying with time.

32.8 HETERODYNE INTERFEROMETERS

In heterodyne interferometers, a frequency difference is introduced between the two beams by 
means of two acousto-optic modulators operated at slightly different frequencies. The output signal 
from a square-law detector then contains an ac component at the difference frequency whose phase 
corresponds to the phase difference between the interfering light waves.23

Heterodyne techniques can also be used for measurements of very small changes in length.24,25 In 
the setup shown in Fig. 12, the frequency of a laser is locked to a transmission peak of a Fabry-Perot 
interferometer formed by attaching two mirrors to the ends of the sample. The beam from this slave 
laser is mixed at a photodetector with the beam from a stable reference laser. Changes in the separa-
tion of the mirrors can be evaluated from the changes in the beat frequency.

A simple arrangement for measuring small displacements uses two diode lasers with external cavi-
ties. A displacement of the reflecting mirror of one cavity results in a change in the beat frequency.26

32.9 PHASE-SHIFTING INTERFEROMETERS

In phase-shifting interferometers, the phase difference between the two beams in the interferom-
eter is varied linearly with time and the values of intensity at any point in the interference pat-
tern are integrated over a number of equal segments covering one period of the sinusoidal signal. 

FIGURE 12 Heterodyne interferometer for measurements of thermal expansion. 
(From Ref. 24.)
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Alternatively the phase difference between the two beams can be changed in a number of equal 
steps, and the corresponding values of intensity at each data point are measured and stored. In both 
cases, the values obtained can be represented by a Fourier series, whose coefficients can be evaluated 
to obtain the original phase difference between the interfering beams at each point.27,28 Typically, 
four measurements are made at each point, corresponding to phase intervals of 90°. If I1, I2, I3, and 
I4 are the values of intensity obtained, the phase difference between the interfering beams is given by 
the relation

tan ( , ) ( ) ( )x y I I I I/1 3 2 4
(11)

Phase-shifting interferometers are used widely in optical testing, since a detector array can be used 
in conjunction with a microcomputer to make measurements simultaneously at a large number of 
points covering the interference pattern.

Figure 13 is a schematic of a compact optical system (the Mirau interferometer) used for phase-
shifting interference microscopy. In this setup, the phase-steps are introduced by mounting the 
sample on a piezoelectric transducer (PZT) to which an appropriately varying voltage is applied. 
In a Fizeau interferometer, it is possible to use a laser diode as the light source and vary its output 
frequency.29 If the initial optical path difference between the beams in the interferometer is p, a fre-
quency shift v in the output of the laser diode introduces an additional phase difference between 
the beams

( )2 p v v/ (12)

Another way of shifting the phase of a beam of light is by a cyclic change in its state of polarization. 
Since the resulting phase shift (the Pancharatnam phase) is very nearly achromatic, measurements 
can be made with white light, so that phase ambiguities at steps are eliminated.30

32.10 PHASE-LOCKED INTERFEROMETERS

The output intensity from an interferometer depends on the phase difference between the beams. 
In phase-locked interferometers, any variation in the output intensity is detected and fed back 
to a phase modulator in the measurement path so as to hold the output intensity constant. The 
changes in the optical path can then be estimated from the changes in the drive signal to the phase 
modulator.31

FIGURE 13 Schematic of a compact opti-
cal system (the Mirau interferometer) used for 
phase-stepping interference microscopy.
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Drifts can be eliminated by using an ac amplifier. If the phase of one beam in the interferometer 
is subjected to a sinusoidal modulation

( )t tsin (13)

with an amplitude << , the output signal at the modulation frequency has an amplitude

I t I I J( ) ( ) ( )4 1 2
1 2

1
/ sin (14)

and drops to zero when m , where m is an integer. Since, at this point, both the magnitude and 
the sign of this signal change, it can be used as the input to a servo system that locks the phase dif-
ference between the beams at this point.

With a laser diode, it is possible to compensate for changes in the optical path difference by a 
change in the illuminating wavelength. A typical setup is shown in Fig. 14. The injection current of 
the laser then consists of a dc bias current io, a control current ic, and a sinusoidal modulation cur-
rent i t i tm m( ) cos  whose amplitude is chosen to produce the required phase modulation.32

Direct measurements of changes in the optical path are possible by sinusoidal phase-modulating 
interferometry, which uses a similar setup, except that in this case the amplitude of the phase 
modulation is much larger (typically around  radians). The modulation amplitude is determined 
from the amplitudes of the components in the detector output corresponding to the modulation 
frequency and its third harmonic. The average phase difference between the beams can then be 
determined from the amplitudes of the components at the modulation frequency and its second 
harmonic.33

32.11 LASER-DOPPLER INTERFEROMETERS

Light scattered from a moving particle undergoes a frequency shift, due to the Doppler effect, that 
is proportional to the component of its velocity in a direction determined by the directions of 
illumination and viewing. With laser light, this frequency shift can be evaluated by measuring the 
frequency of the beats produced by the scattered light and a reference beam, or by the scattered light 
from two illuminating beams incident at different angles.34,35

Amplifier

Mixer

Laser diode

Object

CCD array

( )

( )

FIGURE 14 Schematic of a phase-locked interferometer using a laser 
diode source. (From Ref. 32.)
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Laser-Doppler interferometry can be used for measurements of the velocity of moving materials,36

as well as for measurements, at a given point, of the instantaneous flow velocity of a moving fluid to 
which suitable tracer particles have been added.37 A typical optical system for measurements on flu-
ids is shown in Fig. 15. If the two illuminating beams in this arrangement make equal but opposite 
angles  with the viewing direction, the frequency of the beat signal is given by the relation

f v( sin )2| | / (15)

where v is the component of the velocity of the particle in the plane of the beams at right angles 
to the direction of observation. To distinguish between positive and negative flow directions, the 
frequency of one of the beams is offset by a known amount by means of an acousto-optical modula-
tor. Simultaneous measurements of the velocity components along two orthogonal directions can 
be made by using two pairs of beams in orthogonal planes. Interactions between the two pairs of 
beams are avoided by using different laser wavelengths.

Laser diodes and optical fibers can be used to build very compact laser-Doppler interferometers.38,39

A frequency offset can be introduced between the beams either by using a piezoelectric fiber-
stretcher driven by a sawtooth waveform in one path, or by ramping the injection current of the 
laser diode linearly.

Laser-Doppler interferometry can also be used to measure vibration amplitudes. Typically, one 
of the beams in an interferometer is reflected from a point on the vibrating specimen, while the 
other, whose frequency is offset, is reflected from a fixed reference mirror. The output from a photo-
detector then consists of a component at the offset frequency (the carrier) and two sidebands. The 
amplitude of the vibration can be determined from a comparison of the amplitudes of the carrier 
and the sidebands.40 This technique can measure vibration amplitudes down to a few thousandths 
of a nanometer.41

32.12 LASER-FEEDBACK INTERFEROMETERS

Laser-feedback interferometers use the fact that the output of a laser is strongly affected if, as shown 
in Fig. 16, a fraction of the output beam is reflected back into the laser cavity by an external mirror 
M3. The output of the laser then varies cyclically with the position of M3, one cycle of modulation 
corresponding to a displacement of M3 by half a wavelength.42

FIGURE 15 Optical arrangement used for laser-Doppler 
velocimetry.

FIGURE 16 Schematic of a laser-feedback interferometer.
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The operation of such an interferometer can be analyzed by considering the two mirrors M3
and M2 as a Fabry-Perot interferometer that replaces the output mirror of the laser. A variation in 
the spacing of M3 and M2 results in a variation in the reflectivity of this interferometer for the laser 
wavelength and, hence, in the gain of the laser.

A very compact laser-feedback interferometer can be set up with a single-mode laser diode.43

Small displacements can be detected by measuring the changes in the laser output when the laser 
current is held constant. Measurements can be made over a larger range by mounting the laser on a 
piezoelectric transducer and using an active feedback loop to stabilize the length of the optical path 
from the laser to the mirror.44

Laser-feedback interferometers can also be used for velocimetry. If the light reflected from the 
moving object is mixed with the original oscillating wave inside the laser cavity, the beat signal can 
be observed in the beam leaving the rear end of the laser.45,46 Very high sensitivity can be obtained 
with a laser diode operated near threshold.47 If a separate external cavity is used, as shown in Fig. 17, 
to ensure single-mode operation, measurements can be made at distances up to 50 m.

32.13 FIBER INTERFEROMETERS

Analogs of conventional two-beam interferometers can be built with single-mode optical fibers. 
High sensitivity can be obtained with fiber interferometers because it is possible to have very long 
optical paths in a small space. In addition, because of the extremely low noise level, sophisticated 
detection techniques can be used.

Fiber-Interferometer Rotation Sensors

Fiber interferometers were first used for rotation sensing, by replacing the ring cavity in a conven-
tional Sagnac interferometer with a closed, multiturn loop made of a single-mode fiber.48 For a loop 
rotating with an angular velocity  about an axis making an angle  with the plane of the loop, the 
phase difference introduced between the two counterpropagating beams is

( )4 Lr ccos / (16)

where L is the length of the fiber, r is the radius of the loop,  is the wavelength, and c is the speed of 
light. High sensitivity can be obtained by increasing the length of the fiber in the loop. In addition, 
very small phase shifts can be measured, and the sense of rotation determined, by introducing a 
nonreciprocal phase modulation in the beams and using a phase-sensitive detector.49

FIGURE 17 Feedback interferometer using a diode laser for velocimetry.  
(From Ref. 47.)
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Figure 18 is a schematic of a typical all-fiber interferometric rotation sensor.50 In this arrangement, 
the beam splitters are replaced by optical couplers, and a phase modulator consisting of a few turns of 
the fiber wound around a piezoelectric cylinder is located near one end of the optical fiber coil.

Fiber-interferometer rotation sensors have the advantages of small size and low cost. If care is 
taken to minimize noise due to back scattering and nonreciprocal effects due to fiber birefringence, 
performance close to the limit set by photon noise can be obtained.51

Generalized Fiber-Interferometer Sensors

The optical path length in a fiber is affected by its temperature and also changes when the fiber is 
stretched, or when the pressure changes. Accordingly, an optical fiber can be used in an interferom-
eter to sense changes in these parameters.52

Figure 19 is a schematic of an all-fiber interferometer that can be used for such measurements.53

A layout analogous to a Mach-Zehnder interferometer avoids optical feedback to the laser. Optical 

FIGURE 18 Fiber-interferometer for rotation sensing. (From Ref. 50.)

FIGURE 19 Schematic of a typical fiber-interferometer sensor. (From Ref. 53.)
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fiber couplers are used to divide and recombine the beams, and measurements can be made with 
either a heterodyne system or a phase-tracking system. Detection schemes involving either laser-
frequency switching or a modulated laser source can also be used. Optical phase shifts as small as 
10–6 radian can be detected.

Fiber interferometers can also be used for measurements of magnetic or electric fields with a 
fiber sensor bonded to a magnetostrictive element54 or jacketed with a piezoelectric polymer.55 

Phase ambiguities can be overcome by using a birefringent fiber56 or by fiber-optic low-coherence 
interferometry, using a broad-band source.57

Multiplexed Fiber-Interferometer Sensors

Fiber-interferometer sensors can be multiplexed to measure different quantities at different loca-
tions with a single light source and detector and the same set of transmission lines. Techniques 
developed for this purpose include frequency-division multiplexing, time-division multiplexing, 
and coherence multiplexing.58–62

32.14 INTERFEROMETERIC WAVE METERS

Tunable lasers have created a need for instruments that can measure their output wavelengths with 
an accuracy commensurate with their narrow line width. Dynamic wave meters have greater accu-
racy but can be used only with continous wave (cw) sources; static wave meters can also be used 
with pulsed lasers.

Dynamic Wave Meters

A dynamic wave meter typically consists of a two-beam interferometer in which the number of 
fringes crossing the field is counted as the optical path is changed by a known amount. In one form, 
shown in Fig. 20, two beams, one from the laser whose wavelength is to be determined and another 
from a frequency stabilized He-Ne laser, traverse the same two paths in opposite directions.63 The 
fringe systems formed by these two lasers are imaged on the two detectors D1 and D2, respectively. If, 
then, the end reflector is moved through a distance d, we have

1 2 2 1/ /N N (17)

where N1 and N2 are the numbers of fringes seen by D1 and D2, respectively, and 1 and 2 are the 
wavelengths in air. To obtain the highest precision, it is also necessary to measure the fractional 
order numbers. This can be done by phase-locking an oscillator to an exact multiple of the frequency 

FIGURE 20 Optical system of a dynamic interferometric wave meter. 
(From Ref. 63.)
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of the ac signal from the reference channel, or by digitally averaging the two signal frequencies.64

It is also possible to use a vernier method in which the counting cycle starts and stops when the 
phases of the two signals coincide.65 With these techniques, a precision of 1 part in 109 can be 
obtained.

Another type of dynamic wave meter uses a scanning Fabry-Perot interferometer in which the 
separation of the mirrors is changed slowly. If this interferometer is illuminated with the two wave-
lengths to be compared, peak transmission will be obtained for both wavelengths at intervals given 
by the condition

m m p1 1 2 2 (18)

where m1 and m2 are the changes in the integer order and p is the change in the optical path dif-
ference.66 A precision of 1 part in 107 can be obtained with a range of movement of only 25 mm, 
because the Fabry-Perot fringes are much sharper than two-beam fringes.

Static Wave Meters

The simplest type of static wave meter is based on the Fizeau interferometer.67 As shown in Fig. 21, 
a collimated beam from the laser is incident on two uncoated fused-silica flats separated by about 
1 mm and making an angle of about 3 min of arc with each other. The intensity distribution in the 
fringe pattern formed in the region in which the shear between the two reflected beams is zero is 
recorded by a linear detector array.68 In the first step, the integral interference order is calculated 
from the spatial period of the interference pattern: the exact value of the wavelength is then calcu-
lated from the positions of the maxima and minima.

32.15  SECOND-HARMONIC AND PHASE-CONJUGATE 
INTERFEROMETERS

Nonlinear optical elements are used in second-harmonic and phase-conjugate interferometers.69

FIGURE 21 Schematic of a static interferometric wave meter. 
(From Ref. 67.)
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Second-Harmonic Interferometers

One type of second-harmonic interferometer, shown in Fig. 22, is an analog of the Mach-Zehnder 
interferometer.70 In this interferometer, the infrared beam from a Q-switched Nd: YAG laser 
( . )1 1 06 m  is incident on a frequency-doubling crystal. The green ( . )2 0 53 m  and infrared 
beams emerging from this crystal traverse the test piece and are then incident on another frequency-
doubling crystal.

The fringe number at any point in this interferometer is

N n n d( )1 2 2/ (19)

where n1 and n2 are the refractive indices of the test specimen at 1.06 and 0.53 m, respectively, and 
d is its thickness.

Phase-Conjugate Interferometers

In a phase-conjugate interferometer, the wavefront that is being studied is made to interfere with its 
conjugate.71 Such an interferometer has the advantage that a reference wavefront is not required; in 
addition, the sensitivity of the interferometer is doubled.

Figure 23 is a schematic of a phase-conjugate interferometer that is an analog of the Fizeau 
interferometer.72 In this interferometer, the signal beam is incident on a conventional, partially 
reflecting mirror placed in front of a single crystal of barium titanate which functions as an inter-
nally self-pumped phase-conjugate mirror.

An interferometer in which both mirrors have been replaced by phase-conjugating mirrors 
is unaffected by misalignment of the mirrors and the field of view is normally completely dark. 
However, because of the delay in the response of the phase conjugator, dynamic changes in the opti-
cal path difference are displayed.73,74

FIGURE 22 Second-harmonic interferometer: analog of the Mach-
Zehnder interferometer. (From Ref. 70.)

FIGURE 23 Schematic of a phase-conjugate Fizeau 
interferometer. (From Ref. 72.)
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Interferometric Optical Switches

Nonlinear optical effects have also been exploited to develop high-speed interferometric optical 
switches.75

32.16 STELLAR INTERFEROMETERS

A star can be considered as an incoherent light source whose dimensions are small compared to 
its distance from the earth. Accordingly, the complex degree of coherence between the fields at two 
points on the earth’s surface is given by the normalized Fourier transform of the intensity distribu-
tion over the stellar disc.

Michelson’s Stellar Interferometer

Michelson used the interferometer shown schematically in Fig. 24 to make observations of the vis-
ibility of the fringes formed by light from a star, for different separations of the mirrors. The separa-
tion at which the fringes disappeared was used to determine the angular diameter of the star. The 
problems encountered by Michelson in making measurements at mirror separations greater than 6 m 
have been overcome in new versions of this interferometer.76

The Intensity Interferometer

The intensity interferometer77 uses measurements of the correlation between the fluctuations in the 
intensity at two photodetectors separated by a suitable distance, which is proportional to the square 
of the modulus of the degree of coherence of the fields. Atmospheric turbulence only affects the phase 
of the incident waves and has no effect on the measured correlation. In addition, since the spectral 
bandwidth is limited by the electronics, it is only necessary to equalize the optical paths to within a 
few centimeters. It was therefore possible to use light collectors separated by distances up to 188 m.

FIGURE 24 Michelson’s stellar interferometer.
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Heterodyne Stellar Interferometers

In heterodyne stellar interferometers, as shown in Fig. 25, light from the star is mixed with light from 
two CO2 lasers, whose frequencies are offset by 5 MHz with respect to each other, at two photodetec-
tors, and the resulting heterodyne signals are multiplied in a correlator. The output signal from the 
correlator is a measure of the degree of coherence of the wave fields at the two photodetectors.78–80

As in the intensity interferometer, it is only necessary to equalize the two paths to within a few 
centimeters. However, higher sensitivity is obtained, because the output is proportional to the prod-
uct of the intensities of the laser and the star.

Nulling Interferometers and Interferometric Arrays

Problems arise when trying to detect a planet near a star. Nulling interferometers reduce the flux 
from the star, relative to its surroundings, by making the light from the star interfere with itself.81
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DetectorDetector

LaserLaser
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Telescope Telescope

Heterodyne signals (<1500 MHz)

5-MHz signal

Processor

Fringe amplitude

Computer

FIGURE 25 Schematic of an infrared heterodyne stellar interferometer. (From Ref. 78.)
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Another advance is the application of multielement interferometric arrays to obtain high-resolution 
images of stellar objects.82,83

32.17 GRAVITATIONAL-WAVE INTERFEROMETERS

Gravitational waves produced by cosmic sources, such as binary systems of neutron stars, collaps-
ing supernovas and black holes, can be thought of as an alternating strain that propagates through 
space, affecting the dimensions and spacing of all material objects.

Since gravitational waves are transverse quadrupole waves, the effect of a gravitational wave on 
a Michelson interferometer would be a change in the difference of the lengths of the two arms.84

However, to obtain the required sensitivity to strains, of the order of 1 part in 1021, unrealistically 
long arms (>100 km) would be needed. In the LIGO project, higher sensitivity is obtained by using, 
as shown in Fig. 26, two identical Fabry-Perot interferometers (d = 4 km) at right angles to each 
other, with their mirrors mounted on freely suspended masses.85 The separations of the mirrors are 
compared by locking the frequency of a laser to a transmission peak of one interferometer and using 
a servo system to adjust the length of the other interferometer continuously, so that its peak trans-
mittance is also at the same frequency.

Even higher sensitivity is obtained by making use of the fact that, to avoid overloading the detec-
tor, the interferometer is normally adjusted so that observations are made on a dark fringe. Most of 
the light is then returned to the source. This light is recycled by using an extra mirror to reflect it 
back into the interferometer with the right phase.

FIGURE 26 Gravitational-wave detector using two Fabry-Perot interferometers. (See also color insert.) 
(From Ref. 85.)
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33.1 GLOSSARY

A wave amplitude

a diameter of viewing lens in speckle imaging system

d fringe spacing

dsp characteristic speckle diameter

E electric field vector

ê polarization unit vector

f wave frequency

I field irradiance

IH irradiance of the field in plane of hologram

K proportionality constant

k propagation constant

r radial position coordinate

T transmittance of the hologram

distance from lens to image plane in speckle imaging system

1, 2 object and reference beam angles

wavelength

wave phase

complex field amplitude

H complex field amplitude in plane of hologram

O complex amplitude of object wave field

R complex amplitude of reference wave field

T complex amplitude of field transmitted by hologram

33.1
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33.2 INTRODUCTION

The three-dimensional imagery produced by holography accounts for much of the popular interest 
in this technique. Conceptual applications, such as the holodeck seen on the television series Star 
Trek: The Next Generation, and actual applications, like the widespread use of embossed holograms 
on book and magazine covers, gift wrapping, product packaging, and credit cards, have fascinated 
and captured the imagination of millions. Holography was discovered in 1947 by Gabor and revived 
in the early 1960s through the work of Leith and Upatnieks. Since that time, most practitioners in the 
field believe that technical applications, rather than imaging, have represented the utility of holography 
in a more significant way. This chapter is a brief overview of some of the more important technical 
applications, particularly as they relate to a variety of instrumentation problems. The discussion 
addresses several ways holography has been used to observe, detect, inspect, measure, or record 
numerous physical phenomena. The second section presents a brief review of the basic principles of 
wavefront reconstruction. The third section (Sec. 33.4) addresses one of the more important applica-
tion of holography—holographic interferometry. Included in this section is a review of electronic or 
television holography which takes this powerful interferometric technique into the real-time domain. 
Section 33.5 addresses several instrumental applications of holographic optical elements (HOEs). 
Sections 33.6 and 33.7 discuss ways in which holography has been applied in the semiconductor 
industry. Section 33.8 briefly addresses the holographic storage of information.

33.3 BACKGROUND AND BASIC PRINCIPLES

Holography is a method of recording and reconstructing wavefronts residing anywhere in the electro-
magnetic spectrum or acoustic spectrum. This chapter addresses optical holography as practiced in or 
near the visible region of the electromagnetic spectrum. The principals of wavefront reconstruction 
were discovered by Gabor1–3 in an attempt to improve the resolving power of the electron microscope. 
The original purpose was never accomplished, but this basic discovery evolved into one of the most 
significant new fields of study in the twentieth century. Gabor’s early work received little attention 
because the lack of a light source with sufficient coherence severely limited the quality of the images 
produced. However, the invention of the laser in the early 1960s heralded a holographic renaissance. 
During this period, Leith and Upatnieks4,5 recognized the parallels between their work in coherent radar 
and Gabor’s wavefront reconstruction concepts. Their experiments in the optical region of the spectrum 
with the newly available HeNe laser produced the first high-quality, three-dimensional images. The 
publication of this work created an explosive interest in the field as well as many unrealistic predictions 
about what might be accomplished with holographic three-dimensional imagery. The work of numer-
ous researchers established the medium’s true capabilities and limitations; consequently, many successful 
applications ensued. Progress continues to be made in the development of new materials and techniques 
sustaining a high level of interest in holography and its technical, commercial, and artistic applications.

Holography is most often associated with its ability to produce striking three-dimensional 
images. Therefore, a logical place to start in understanding holography is to compare this imaging 
science with its two-dimensional predecessor—photography. A light wavefront is characterized by 
several parameters; the two most important of these are its intensity (or irradiance) and its local 
direction of propagation. Photography records only one of these parameters—intensity—in the 
plane of the recording medium or photographic film. The intensity distribution of a light wave ema-
nating from an object may be recorded by simply exposing a film plate placed in proximity to the 
object; however, this will not produce a discernible image. Recording a photograph is accomplished 
by imaging the object onto the film with a lens, thereby establishing a correspondence between 
points on the object and points in the film plane.

Holography also records the intensity distribution of a wavefront; in addition, the local propa-
gation direction (or phase) is recorded through the process of optical interference. The process in 
its simplest form is illustrated in Fig. 1. The light from a laser is split into two parts, expanded with 
a short-focal-length lens (usually a microscope objective), and spatially filtered with a pinhole to 
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remove intensity variations caused primarily by nonuniformities in the lens. One of the split beams 
(object beam) is directed to the object; the other (reference beam) is incident directly on the record-
ing medium (such as high-resolution silver halide film). The light reflected from and scattered by 
the object combines with the reference beam at the plate to form an interference fringe field. These 
fringes are recorded by the film. The spacing of these fringes d is given by the grating equation

d
(sin sin )1 2

(1)

where  is the wavelength of the light, and 1 and 2 are the angles made by the object and refer-
ence beams relative to the normal. For visible light and common recording geometries, the fringe 
frequency (1/d) can exceed 2000 fringes (or line-pairs) per millimeter. Therefore, the recording 
material must be of very high resolution relative to conventional photographic film which is usually 
in the range of 50 line-pairs per millimeter. The stability of the fringe is extremely sensitive to the 
mechanical motion of the object and optical components. To record holograms with good fringe 
stability, the optical system must be stable enough to prevent motions greater than a fraction of a 
wavelength. For this reason, the common practice is to use rigid optical components placed on a 
stable, vibration-isolated table.

Illumination of the developed hologram by the reference beam alone reveals a three-dimensional 
image which is essentially identical to the original object as viewed in laser light. Observing the 
holographic image of the object is exactly like looking at the object through the window formed by 
the plate with full parallax and look-around capability. The object wave is reconstructed when the 
illumination (reference) wave is diffracted by the grating formed in the recording medium. This 
grating is formed by variation of the optical transmittance or optical thickness of the material along 
the fringe lines. The amplitude hologram formed with silver halide film may be converted to a phase 
hologram by bleaching; this results in a significant increase in diffraction efficiency. Other materials 
(such as photopolymer film) produce phase holograms directly.

The holographic recording and reconstruction process may be described in general mathemati-
cal terms as follows. The object and reference fields satisfy the Helmholtz equation

2 2 0E Ek (2)

where E is the electric field vector and k 2 / is the propagation constant.

FIGURE 1 Typical optical arrangement for making a 
simple laser transmission hologram.
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A spherical wave solution of this equation may be expressed in the form

E e eAeikr i ft2 ˆ (3)

where A is the amplitude of the wave, f is the frequency, and ê is the polarization unit vector.
The complex field amplitude  is defined as

Aei (4)

where kr  is the phase. The irradiance of the field is given by

I

A

E E e eˆ ˆ

| |2 2
(5)

where  denotes the complex conjugate.
The field in the plane of the hologram H is the sum of the object and reference fields:

H O R
(6)

and the irradiance of the field at the hologram is given by (assuming parallel polarization of the waves):

IH H H O R O R

O R O R

( )( )

| | | |2 2
R O

(7)

After processing, and apart from a constant term, the transmittance T of the hologram is propor-
tional to the irradiance of the field at the hologram;

T K O R O R R O[| | | | ]2 2 (8)

When illuminated by the reference wave, the field transmitted by the hologram T is given by the 
hologram transmittance multiplied by the reference wave field:

T R O R R O R OK[ (| | | | ) | | ]2 2 2 2 (9)

The first term in this equation for T is simply the transmitted wave altered by an attenuation 
factor. The second term is the original object wave multiplied by an amplitude factor; this term rep-
resents the virtual holographic image of the object. The third term is the conjugate object wave. In 
off-axis holography, the real image formed by this wave is weak, lies out of the field of view, and does 
not make a significant contribution to the imaging process. However, for Gabor’s original in-line 
holography, this term represented an objectionable twin image which overlapped and obstructed 
viewing of the desired image. An important contribution of the Leith and Upatnieks off-axis refer-
ence scheme was the elimination of this twin image.

Many different types of holograms can be made by varying the location of the object relative to 
the recording medium, the directions and relative angles of the object and reference beams, and 
the wavefront curvature of these beams. The properties of these hologram types vary greatly; much 
research has been performed to characterize and successfully apply the different formats. Vigorous 
work is still being pursued in both areas of imaging and technical applications. For a thorough 
explanation of holography and its many applications, the reader may consult any of several standard 
texts on the subject (e.g., Refs. 6–11).

33.4 HOLOGRAPHIC INTERFEROMETRY

Interferometry provides a means of measuring optical path differences through the analysis of 
fringe patterns formed by the interference of coherent light waves. Optical path differences of inter-
est may be produced by mechanical displacements, variations in the contour of one surface relative 
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to another, and variations in the refractive index of a material volume. Classical interferometry 
involves the interference of two relatively simple optical wavefronts which are formed and directed 
by optical components. These components must be of sufficient quality that they do not introduce 
random phase variations across the field that compete with or totally mask the optical path length 
differences of interest. Typical examples of classical interferometry include the use of configura-
tions such as the Michelson or Twyman Green and Mach-Zehnder interferometers to determine 
the surface figure of optical components, study the refractive index variation in optical materials, 
and visualize the properties of flowing gases. The need for high-quality optical surfaces in classi-
cal interferometry is a consequence of the difficulty, using classical optical methods, of generating 
two separate but identical optical wavefronts of arbitrary shape. Although it was not immediately 
recognized by early holography researchers, the ability to holographically record then replay an 
arbitrary wavefront in a predictable fashion obviated this basic limitation of classical interferometry. 
With holographic interferometry, polished optical surfaces are not required and diffusely reflecting 
objects of any shape may be studied.

In holographic interferometry, a wavefront is stored in the hologram and later compared inter-
ferometrically with another wavefront. Phase differences between these two wavefronts produce 
fringes that can be analyzed to yield a wide range of both qualitative and quantitative information 
about the system originating these two wavefronts. Several researchers working independently made 
experimental observations related to this fact.12–17 Once the full implication of this discovery was 
realized, a period of intense research activity began to develop a solid theoretical understanding 
of this powerful new technique. Holographic interferometry quickly became the most important 
application of the relatively young science of holography. Although other branches of holography 
have successfully matured, most notably HOEs, holographic interferometry remains today the area 
in which holography has probably made the greatest impact.

As stated earlier, holographic interferometry involves the interferometric comparison of two 
wavefronts separated in time. This comparison can be made in a variety of ways which constitute 
the basic methods of holographic interferometry: real-time, double-exposure, and time-average. 
Real-time interferometry is realized by the interference of a holographically reconstructed object 
wave with the wave emanating from the actual object. This is accomplished as follows. The holo-
graphic plate is exposed, developed, then replaced in its holder in its original position. Reference- 
and object-beam intensities are adjusted so that the illuminated object and its holographic image 
are of approximately equal brightness. Since the reconstructed object wavefront is 180° out of phase 
with the object wavefront, the object should be dark when viewed through the holographic plate. 
In practice, one or two broad fringes usually appear across the object due to emulsion shrinkage 
effects and lack of complete mechanical precision in returning the holographic plate to its original 
position. Any disturbance of the object which results in a mechanical displacement of its surface will 
now produce a fringe system which can be viewed in real time. The structure and periodicity of the 
fringes are related to the surface displacement. The mechanical surface deformation can result from 
an applied force, change in pressure, change in temperature, or any combination of the three. The 
quantitative details of this surface deformation can be derived from an analysis of this fringe system.

In double-exposure holographic interferometry, the two wavefronts to be compared are stored 
in the same hologram. This is done by holographically recording the image of the object under 
study in two exposures separated in time in the same holographic plate. If nothing is done to alter 
the object wavefront between these two exposures, the resulting image will appear as for a single-
exposure hologram. However, if the object is perturbed in some way between these two exposures, 
an interference fringe system will appear in the final image. Again, this fringe system is related to the 
mechanical deformations of the object surface caused by the disturbance. Real-time holographic 
interferometry allows one to study the effects of object perturbation of varying types and degrees 
over any desired length of time and in real time. In contrast, double-exposure holographic inter-
ferometry examines a particular change of the state of the object between two particular points in 
time. A double-exposure holographic interferogram then might be thought of as a single data point 
record. The interferogram might be a record of the change of the object from one stable state to 
another, which might be recorded with a continuous wave laser. Or the interest might be to compare 
two states of a rapidly varying system most effectively recorded using a pulsed laser.
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In some respects, the double-exposure holographic interferogram involves less experimental 
complexity, because both exposures are made in a single hologram plate held in a fixed position. 
Mechanical registration of the plate to a baseline position is not required. Emulsion shrinkage due to 
wet process development of silver halide film affects the holographic fringe systems for both expo-
sures in the same way; therefore, it is not a problem for double-exposure interferometry. Another 
feature which may or may not be of benefit, depending on the parameters of the experiment, is that 
the superimposed images for the two exposures are in phase, thereby producing a bright baseline 
image. Double-exposure interferometry has been used very effectively to record fast events such as 
the flight of a bullet passing through a chamber.18 The first exposure is made of the chamber alone 
before passage of the bullet; the second exposure is made with the bullet in midflight. The interfero-
gram is an interference recording of the refractive index variations in the chamber created by the 
disturbance of the bullet.

Vibrating surfaces may be studied using either real-time or time-average holographic 
interferometry.16,19 A vibrating object presents a continuum of surface configurations or surface 
deformations to an interferometric system. A unique interferometric fringe system is associated 
with each state of the surface for any particular point in time during the vibrating cycle. In real-
time interferometry, the interference fringes are formed by the addition of wavefronts from the 
surface of the object at rest and from the vibrating surface at some point during its vibrating cycle. 
The fringe pattern observed is a visual time average of this continuum set of interferogram fringe 
systems. A time-average holographic interferogram is made by exposing the holographic plate while 
the object is vibrating; the exposure time is usually multiple vibration periods. This hologram may 
be thought of as a continuum set of exposures, each recording the interference of the object wave 
with its temporal counterparts in the rest of the continuum over one cycle. The end result is a fringe 
pattern, directly related to the surface vibration pattern, in which the fringe lines represent contours 
of constant vibration amplitude. A more physical view of the process derives from observing that 
holographic fringe movement in the recording medium due to object movement nullifies the holo-
graphic recording. Thus, regions of a vibrating surface in motion (antinodes) will appear dark while 
regions at rest (nodes) will appear bright.

Stroboscopic illumination has long been used to study objects in motion. Coupling this tech-
nique with holographic interferometry produces interferograms of vibrating objects with enhanced 
fringe visibility and greater information content. The technique may be used to make real-time 
observations or to record double-exposure holograms of vibrating surfaces. In the real-time con-
figuration, the hologram of the test object at rest is made in the usual fashion. The object is then 
vibrated and strobed with a laser set to flash at a particular point in the vibrating cycle. The fringe 
system formed is produced by interference of the wavefront from the object at rest and the wave-
front from the object at this particular point in the cycle. The timing of the laser flash may be varied 
to observe the evolution of the surface vibration throughout its entire cycle. A double-exposure 
interferogram is formed by exposing the hologram plate to two flashes from the strobed laser. In 
this manner, any two states of the vibrating surface may be compared during its cycle by varying 
the timing of the laser flashes and their separation. The actual exposure may extend over several 
vibration cycles. This method results in fringes of much higher contrast than those yielded by time-
average holography.

An interesting variant of hologram interferometry is contour generation.20–22 This is accom-
plished by making two exposures of an object with a refractive index change in the medium sur-
rounding the object or a change in the laser wavelength between exposures. Either method yields 
fringes on the surface of the object. The fringe positions are related to the height of points on the 
object relative to a fixed plane. The two-wavelength method may be implemented in real-time by 
first making a hologram of an object in the usual manner at one wavelength, then illuminating both 
the object and the processed hologram (carefully placed in its original position) at a different wave-
length. Both methods have been successfully applied in a variety of situations.

In many cases, the interpretation of the fringe pattern produced by a holographic interfero-
gram is a simple matter of qualitative assessment. For example, defects or flaws may be identified 
by anomalous local variations in a background fringe pattern. The presence or absence of these 
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anomalies may provide all the information required in a nondestructive evaluation experiment. 
However, a detailed quantitative assessment of the mechanical deformation of the surface may 
be desired—this can involve a complex mathematical analysis of the fringe system. Quantitative 
analysis of the fringe pattern is often complicated by the fact that the fringes are not necessarily 
localized on the surface of the object. The interpretation of holographic interferograms and analysis 
of the fringe data have been the subject of considerable study.23–27 Numerous methods such as 
sandwich holographic interferometry,28,29 fringe linearization interferometry,30 difference holo-
graphic interferometry,31 and fringe carrier techniques32 have been developed to facilitate this 
interpretation. In addition, the development of automatic fringe reading systems and data reduc-
tion software have greatly aided this process. However, fringe data reduction remains a challenge for 
many situations despite the progress that has been made.

The basic methods of holographic interferometry (real-time, double-exposure, and time-
average) are in widespread use and continue to be the mainstay of this technique. However, 
important refinements have been made which have greatly added to the power of holographic 
interferometry. These advances include the use of real-time recording media33,34 and heterodyne 
holographic interferometry35 Real-time holographic recording materials (such as photorefractive 
crystals) provide an adaptive feature that makes the interferometer less sensitive to vibration, air 
currents, and other instabilities. The reliability of the interferometric process in a hostile environ-
ment is thus improved. Heterodyne techniques using two separate reference waves and a frequency 
shift between these two waves upon reconstruction has greatly improved the accuracy of holo-
graphic interferometry. Measurements with accuracies as high as /1000 can be made using hetero-
dyne methods. Holographic moiré,36 infrared holographic interferometry,37 and the use of optical 
fibers38 have also significantly extended the capabilities of holographic interferometry.

In the laboratory, where conditions are well-controlled, silver halide film has been the recording 
material of choice for holographic interferometry due to its relatively high sensitivity, low cost, and 
reliability. However, in field applications such as the factory floor, the wet processing requirements 
of silver halide film make this material much less attractive and, for some time, inhibited the use of 
holographic interferometry in many situations. Other materials that do not require wet processing 
(such as photopolymer films) are available, but these materials have very low sensitivity. The devel-
opment of the thermoplastic recording material,39 which does not require wet processing but retains 
the high sensitivity of silver halide film, made possible the much more convenient application of 
holographic interferometry in industrial situations. Several companies have commercially marketed 
holocamera systems using this material. A holographic interferogram made using one of these holo-
camera systems is shown in Fig. 2.

Holographic interferometry has been applied to an enormous range of problems; this is a 
simple testimony to its utility and versatility. The classical interferometric testing of the figure 
of optical components during fabrication can be augmented with holographic interferometry to 
test for figure during the grinding process since the surface of the test object does not need to be 
polished.21 The ability of holographic interferometry to make precise measurements of very small 
mechanical displacements has enabled it to be used in stress-strain measurements in materials, 
components, and systems. Mechanical displacements observed with holographic interferometry 
are often the result of thermal disturbances. Measurement of these thermally induced mechani-
cal displacements with holographic interferometry can provide an accurate determination of the 
heat transfer properties of the material or system under study.40 Similarly, diffusion coefficients in 
liquids can be determined using holographic interferometry.41,42 Flow visualization and the accu-
rate determination of fluid-flow properties using holographic interferometry has been an intense 
area of study.43–45 As noted earlier, the technique can also be used to study high-speed events using 
short-pulse lasers in the double-pulse mode. Vibration analysis is one of the more powerful appli-
cations of holographic interferometry. In this area, the technique has been applied to a diverse 
array of problems including studies of the vibration properties of musical instruments,46 vibration 
patterns in the human eardrum,47 and vibration properties of mechanical parts such as turbine 
blades.48 The application of holographic interferometry to turbine blade mechanics is illustrated 
in Fig. 3. One of the great virtues of holographic interferometry is that a tremendous wealth of 
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FIGURE 2 Time-average holographic interferogram of a loudspeaker vibrating at 
resonance. (Photo courtesy of Newport Corporation.)

FIGURE 3 Time-average holographic interfero-
gram displaying one of the vibration modes of a turbine 
blade. (Photo courtesy of Karl Stetson, United Technologies 
Research Center.)
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information can be garnered from its application without destroying the test object or system. As 
a result, nondestructive evaluation or nondestructive testing has been one of the most important 
areas of application for this technique. As an example, holographic interferometry has been suc-
cessfully used to observe subsurface defects in solid opaque objects. Even though the interference 
pattern is produced strictly by mechanical surface deformations, these surface variations are often 
indicative of subsurface changes (e.g., ply separations in automobile tires and interlayer delamina-
tion in composite materials).49 Subsurface defects are usually manifest in local anomalies of the 
fringe pattern and a qualitative examination of the interferogram will often discern the effect. 
The literature is replete with articles describing these and many other applications of holographic 
interferometry. For the reader interested in an in-depth discussion of the theory and application of 
holographic interferometry, numerous textbooks and review articles are available (see, for example, 
Refs. 6–8 and 50–57).

Electronic Holography

Even with the use of thermoplastic recording media, holographic interferometry remains a chal-
lenge and, in many cases, unacceptable technique for industrial applications—particularly those 
that involve on-line quality testing in a production environment. Speckle-pattern interferometry,58

another technique closely associated with holographic interferometry, alleviates many shortcomings 
of the traditional holographic approach when combined with electronic image recording and pro-
cessing equipment.

Speckle is the coarse granular or mottled intensity pattern observed when a diffuse surface 
is illuminated with coherent light. Wavelets reflected from the randomly oriented facets of 
an optically rough surface interfere to produce this effect when the size of the facets is on the 
order of a wavelength or larger. Although this interference occurs throughout the space occu-
pied by the wave scattered by the surface, the interference that produces the observable pattern 
takes place in the plane of the detector or recording medium (i.e., the retina of the eye or the 
film plane of a camera). The speckle-pattern recorded by an imaging system (eye or camera) is 
known as subjective speckle, while the intensity variation detected by a scanning detector above 
a coherently illuminated diffuse surface is referred to as objective speckle. Objective speckle is 
the resultant sum of the waves scattered from all parts of the surface to a point in space; in sub-
jective speckle, wave summation in the observation plane is limited to the resolution cell of the 
system. The objective-speckle scale depends only on the plane in space where it is viewed, not 
on the image system used to view it. The size of the image plane or subjective speckle depends 
on the aperture of the viewing or imaging system. For subjective speckle, the characteristic 
speckle diameter, dsp is given by59

d
asp

2 4. (10)

where  is the wavelength,  is the distance from the lens to the image plane, and a is the diameter 
of the viewing lens aperture.

A fringe pattern is formed when the speckle patterns of the diffuse surface in its original and 
displaced positions are properly combined. The formation of this fringe pattern is known as 
speckle-pattern interferometry, of which there are two basic types: speckle-pattern photography 
and speckle-pattern correlation interferometry. Both techniques, which form the basis for electronic 
speckle-pattern interferometry (ESPI), and other forms of electronic holography will be discussed in 
this section. The remarks made here are derived from Ref. 58, which contains a thorough discussion 
of the topic.

By varying the recording and viewing configurations, speckle-pattern interference fringes 
can be made sensitive to in-plane and out-of-plane displacements, displacement gradients, and 
the first derivative of displacement gradients. Speckle-pattern interferometry has two distinct 
advantages over holographic interferometry: (1) the direction of the magnitude sensitivity of 
the fringes can be varied over a larger range, and (2) the resolution of the recording medium 
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for speckle-pattern interferometry does not need to be nearly as high. Therefore, speckle-
pattern interferometry is a much more flexible technique, although the fringe definition is not 
nearly as good as with holographic interferometry due to the degradation of the images by the 
speckle pattern.

In speckle-pattern photography, the object is illuminated by a single light beam; no reference 
beam is involved. Some of the light scattered by the object is collected by a lens and recorded 
on photographic film. The film plane may be an image plane (in-focus) or some other plane 
(out-of-focus). The location of the film plane determines whether the resulting interferometric 
fringes are sensitive to in-plane or out-of-plane motion. Two exposures of the film are made: one 
with the object in its original position, the second with the object deformed or displaced. Proper 
illumination of the film negative with coherent light produces a fringe pattern in the observation 
plane which is related to the object motion. With the use of appropriate recording and viewing 
geometries, the fringes may be made to superimpose an image of the object. If the object is illu-
minated by a plane wavefront and the film is in the focal plane of a lens, the fringes are related 
to out-of-plane displacement gradients. Illumination of the object by a diverging wavefront in 
the proper geometry yields fringes related to the tilt of the object. Speckle-pattern photography 
can be used to make time-average stroboscopic and double-pulse measurements just as in holo-
graphic interferometry. In speckle-pattern correlation interferometry, a reference beam (either 
specular or diffuse) is incident upon the observation or recording plane in addition to the light 
scattered by the object. Interferometric fringes are produced by the correlation of the speckle 
patterns in the observation plane for the displaced and undisplaced object. Real-time or live-
correlation fringes may be produced as follows. The object and reference beams are recorded 
with the object in its original position using photographic film. The film is developed and the 
film negative is replaced in its original position. The negative is illuminated with object and 
reference light, and the object is displaced. Correlation fringes are produced by the process of 
intensity multiplication. Because of the contrast reversal of the film negative, minimum trans-
mission is found in areas of maximum correlation between the pattern recorded and the pattern 
produced by the displaced object. Unfortunately, the correlation fringes produced using this 
technique are of low contrast.

The variation in the correlation of the two speckle patterns which produces the fringes may be 
made sensitive to different components of surface displacement by using different object and refer-
ence beam geometries. One of the most important configurations uses a specular in-line reference 
beam introduced with a beam splitter or mirror with a pin hole. This configuration may be used to 
make dynamic displacement measurements or to observe the behavior of vibrating objects in real 
time. This particular optical geometry is also the most popular arrangement for ESPI.

In ESPI, the photographic film processing methods used for speckle-pattern photography and 
speckle-pattern correlation interferometry are replaced by video recording and display technology. 
The concept of using video equipment for this purpose was originated by several researchers work-
ing independently during the same period.60–63 For speckle-pattern interferometry, the minimum 
speckle size is usually in the range of 5 to 100 μm so that standard television (TV) cameras can be 
used to record the pattern. The main advantage of using TV equipment is the high data rate. Real-
time correlation fringes may be produced and displayed on the TV monitor at 30 frames per second. 
In addition, the full array of modern video image processing technology is available to further 
manipulate the image once it is recorded and stored in the system. Another advantage is the rela-
tively high light sensitivity of TV cameras which operate at low light levels, thus enabling satisfac-
tory ESPI measurements with relatively low power lasers.

The ready availability of advanced video recording and processing equipment, its ease of use, 
and its flexible adaption to various applications make ESPI a near-ideal measurement system in 
many instances—particularly, industrial situations (such as an assembly line) where rapid data 
generation and retrieval, and high throughput are required. ESPI overcomes many of the objec-
tions of holographic interferometry and has been used extensively for industrial measurements.

Intensity correlation fringes in ESPI are produced by a process of video subtraction or addi-
tion. In the subtraction process, the image of a displaced object is subtracted from an electronically 
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stored image of the object in its original position to produce the correlation fringes. To observe 
these fringes, the subtracted video signal is rectified and high-pass filtered, then displayed on a video 
monitor. This video processing is analogous to the reconstruction step in holography.

For the addition method, both original and displaced images are added optically at the photo 
cathode of the TV camera. The TV camera detects the light intensity and, again, the signal is full-
wave rectified, high-pass filtered, and displayed on the TV monitor. Because of the persistence 
of the TV tube, the two images need not be recorded simultaneously; however, they must be 
presented to the camera within its persistence time, usually on the order of 100 ms. The vari-
ous optical configurations used in speckle-pattern correlation interferometry, employing both 
specular and diffuse reference beams, may be used in ESPI as well. The most popular of these 
configurations uses a specular in-line reference beam and may be used to make real-time vibra-
tion studies. ESPI has been used for this purpose more than any other application. This optical 
configuration is shown in Fig. 4. The object and reference beams in Fig. 4 are derived from the 
same laser with the use of a beam splitter, not shown for simplicity. In holographic interferometry, 
a high-resolution film is used and the reference beam angle may be any practical value desired. In 
ESPI, the recording medium (TV camera) has a resolution two orders of magnitude lower than 
holographic film (on the order of 30 line-pairs per millimeter). Therefore, in ESPI, an in-line 
reference beam must be used. Furthermore, the aperture of the system must be small enough to 
keep the interference angle below 1 . All the usual modes of holographic interferometry (real-
time, time-average, stroboscopic, and double-exposure) may be performed with ESPI. A time-
average ESPI interferogram of an object made with the system operating in the subtraction mode 
is shown in Fig. 5a. For comparison, a holographic interferogram of the same object is shown in 
Fig. 5b. ESPI has been applied to a wide range of measurement problems. These applications are 
discussed in numerous books, technical papers, and review articles.64–71

Despite the flexibility of ESPI and its ease of use, fringe definition is poor compared to holographic 
interferometry—this has somewhat limited its use. Speckle-averaging and video-processing techniques 
have provided some improvement in interferogram quality, but very fine interference fringes are still 
difficult to discern with ESPI. A significant improvement in interferogram quality has been achieved 
with a newer technique: electro-optic holography (EOH).72–74 This technique uses the same speckle 
interferometer optical configuration as ESPI, but processes the video images in a different manner. 
In EOH, a phase-stepping mirror is added to the reference leg to advance the phase of the reference 
beam by 90° between successive video frames. Subsequent processing of these phase-stepped images 
combined with frame and speckle averaging provides interferograms in real-time with nearly the same 

FIGURE 4 Typical ESPI optical arrangement with in-line 
reference beam.
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FIGURE 5 Time-average interferograms of a pulley made with (a) ESPI and (b) holo-
graphic interferometry.
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resolution and clarity of the traditional film-based holographic interferogram. An interferogram made 
with an EOH system is shown in Fig. 6.

33.5 HOLOGRAPHIC OPTICAL ELEMENTS

An optical element with the power to direct and/or focus a light wave can be made by recording the 
fringe pattern formed by two interfering light beams. HOEs or diffractive optical elements, thus pro-
duced, have several features that distiuguish them from conventional optics. A compilation of articles 
on diffractive optics may be found in Ref. 75. References 76 and 77 provide past reviews of the field.

Different types of elements may be produced by varying the curvature of the interfering wave-
fronts, interbeam angle, and configuration of the recording surface. Lenses with mild or very strong 
focusing power and plane or focusing mirrors are easily produced. The recording substrate may 
be plane or any arbitrarily curved shape. An element combining diffractive power with refractive 
power can be made by placing the recording medium on a curved surface. This method may be used 
to reduce the aberration of the combined optic since the achromatic dispersion of diffraction and 
refraction are of opposite sign. Although any of the many types of holographic recording materials 
may be used to make an HOE, dichromated gelatin and photoresist are preferred because of their 
high resolution and extremely low optical scatter. Dichromated gelatin has the additional advantage 
of forming HOEs of very high diffraction efficiency. Photoresist forms a surface relief hologram 
which makes possible the economical mass production of HOEs with straightforward mechanical 
replication means. Since the power of an HOE is derived from diffraction at the element’s surface, 
the HOE may be very thin and lightweight. HOEs may be produced by the direct interference of 
physical light waves, or by calculating the desired interference pattern and printing this pattern 
onto a substrate by either photographic or electron beam lithographic means. Computer-generated 
HOEs are advantageous when the required optical wave-fronts are difficult to create physically.

The use of the term “holographic optics” is not technically correct because the definition of 
holography implies that at least one of the wavefronts being combined to produce an interference 
record is an information carrier. Consequently, the term “diffractive optics” has gained popularity 

FIGURE 6 An interferogram illustrating a vibrating mode of a center-
mounted rectangular plate made with an electronic holography system. (Photo 
courtesy of Karl Stetson, United Technologies Research Center.)



33.14  INSTRUMENTS

and, when applied to gratings, the term “interference gratings” is certainly more appropriate. In this 
brief discussion, however, we will continue to use the “holographic” terminology.

Certainly one of the most common and successful applications of holographic optics is as a grat-
ing in spectrographic instruments.78–80 The main advantage of holographic gratings  are that they can 
be made free of the random and periodic groove variation found in even the finest-ruled gratings, 
and they have low light scatter. This latter property is especially important when even a small amount 
of stray light is objectionable (such as in the study of Raman spectra of solid samples). To produce 
high-quality holographic gratings, extreme care must be used in the fabrication process. Photoresist 
is the preferred recording material for reasons mentioned above; however, it is very insensitive and 
requires long exposure times, often many hours. Therefore, a highly stable optical system is essen-
tial. The recording room must be free of air currents, the air must be filtered and dust-free, and the 
photoresist coating must be defect-free. Stray light scatter from optical mounts and other objects in 
the recording setup must be eliminated by proper baffling and masking. The interfering beams must 
be appropriately conditioned by spatial filtering to ensure diffraction-limited performance. If beam-
forming optics are used, for example, to produce collimated beams for making plane holographic 
gratings, these optics must be aberration-free and of diffraction-limited quality.

After exposure and chemical development, the surface relief pattern is metalized and the holographic 
grating is replicated as conventional master-ruled gratings are replicated. Both positive and negative pho-
toresists are available for making holographic gratings, however, the negative resist is seldom used.

Grating-diffraction efficiency in the various orders is determined by the groove profile. In a 
ruled grating, the groove is profiled by appropriately shaping the diamond tool. Holographic grat-
ings have a sinusoidal profile; blazing, in this case, is accomplished by ion etching. A wide range of 
groove spacing is possible with ruled gratings, however, holographic gratings offer more flexibility 
with respect to the groove pattern. For example, groove curvature may be used in holographic grat-
ings to reduce aberrations in the spectrum, thereby improving the throughput and resolution of 
imaging spectrometers. The grooves in ruled gratings are produced by the traveling diamond tool, 
one after another. In holographic gratings, all grooves are produced in parallel; thus, the fabrication 
time for holographic gratings can be considerably shorter.

Another important instrumental HOE application is in optical beam scanning; the most com-
mon example of this is the supermarket scanner.81 Laser beam scanning is usually accomplished by 
either mechanical means (e.g., rotating mirror) or with the use of some transparent medium whose 
optical properties are changed by some sort of stimulation (e.g., acousto-optic cell). Holographic 
scanners offer advantages over both of these more conventional methods.

The working principle of the holographic scanner may be illustrated by considering the transla-
tion of a focusing lens through an unexpanded laser beam. As the beam intercepts the lens from one 
side to the other, it is simultaneously deflected and focused at the lens focal point on the lens axis. 
Thus, moving the lens back and forth causes the laser beam to sweep back and forth in the focal 
plane of the lens. In its basic form, a holographic scanner is simply an HOE lens or mirror translat-
ing through the scan beam. The principal advantage of the holographic scanner over conventional 
scanning means is the ability to combine beam deflection and focusing into a single element. The 
form of both the deflection and focusing function can be tailored in a very flexible way by proper 
design of the HOE formation optical system. For example, the scan element may be easily made a 
line segment rather than a focal spot, and the locus of the scanned focal spot or line may be placed 
on either plane or curved surfaces. Multiple scan beams with multiple focal points may be gener-
ated by a scanner in the form of a segmented rotating disk. Each segment or facet of this disk has 
different deflection and focal properties. As the disk rotates through the beam, a multiplicity of 
scan beams is produced which can densely fill the desired scanned volume. This feature is especially 
important in a supermarket application because it allows products of varying sizes and shapes to be 
rapidly scanned. A further advantage of the HOE scanner is that the scanner disk can be small, thin, 
and lightweight, thereby greatly reducing the demands on the drive system. The disk format also 
produces little air movement due to windage and is very quiet in operation.

The discussion here on holographic gratings is taken largely from Ref. 80. The author is indebted to Christopher Palmer of 
the Milton Roy Company for making an advance copy of this material available.
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In addition to serving as the beam deflector, the holographic scanner also collects the light scat-
tered from the laser spot on the product and directs it to the optical detector. This scattered light 
illuminates the holographic scanner along the conjugate object beam path and is diffracted into 
the fixed conjugate reference or primary scan beam path where it is accessed by a beam splitter. The 
light scattered from all points in the scan volume is thus directed to a single, fixed detector position. 
An optical schematic for a point-of-sales scanner is shown in Fig. 7.

The ability to combine several optical functions into a single HOE makes this device attractive 
in many situations. Significant savings in space, weight, and cost can often be realized by replac-
ing several conventional elements with a single HOE device. This feature has been incorporated 
into an optical head for compact disk applications with the use of a multifunctional HOE.82 An 
optical diagram of the device is shown in Fig. 8. The objective lens images the light-emitting point 

FIGURE 7 Schematic of a holographic supermarket scanner. (Reprinted 
from Ref. 81, p. 9; courtesy of Marcel Dekker, Inc.)

FIGURE 8 Diagram of compact disk 
optical head employing a holographic opti-
cal element. (Diagram courtesy of Wai-Hon 
Lee, Hoetron, Inc.)
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of the laser diode (LD) to the compact disk. The light scattered from this focal point on the disk 
is reimaged by the objective lens through the HOE to the photodetector (PD). In this application, 
the HOE serves as a spherical lens, beam splitter, aberration-correcting lens, and cylindrical lens. 
In addition to simplifying the optical system, the HOE provides a better means of aligning the 
optical system.

Holography has even been applied to one of the oldest instrumental functions known—the 
keeping of time. This has been accomplished by using an HOE as a holographic sundial.83

33.6 HOLOGRAPHIC INSPECTION

Quality assurance inspection and testing, important functions in any industrial manufactur-
ing process, have also benefited from advances in holography. Holographic methods have been 
applied to the quality control problem in several areas, such as identifying and locating sub-
surface mechanical defects and determining the presence or absence of certain surface features. 
Holographic interferometry has been successfully applied to some of these problems,84–86 and 
optical processing methods have also yielded good results in many cases.87 Matched and spatial 
filtering in the Fourier transform plane of an optical processing system have proved to be espe-
cially powerful means of identifying features and determining surface detail. In this section, we 
describe a unique combination of holography and classical optical processing methods that made 
possible a very successful means of rapidly detecting defects in devices with highly regular and 
repetitive patterns.

Defects in integrated circuit photomasks and wafers at various stages of processing can greatly 
diminish the final device yield. Since the economics of wafer production is strongly influenced by 
yield, there has been an ever-present incentive to increase this yield by minimizing the number of 
defects introduced at various points in the production process. One way to increase yield is to iden-
tify these defects early, and eliminate them before they cascade in a multiplicative manner through 
the various stages of the process.

For years, the inspection of integrated circuit photomasks and wafers was performed by either 
manual microscopic examination or automated serial scanning using an optical detector. The latter 
method involves comparison of the detector signal from a magnified portion of the test pattern to 
a similar portion of a reference pattern, adjacent pattern, or digital design database. In either case, 
the inspection process was long and tedious, often requiring many hours or days to inspect a single 
photomask or wafer. These methods are very slow because of the large number of pixels involved 
and the serial pixel-by-pixel nature of the inspection. Clearly, a great advantage would be afforded 
by the ability to examine all the pixels in parallel rather than serial format.

This observation prompted a number of researchers to consider optical processing methods 
for integrated circuit inspection and for addressing other types of problems involving highly 
repetitive patterns such as cathode-ray tube masks and TV camera tube array targets.88–90 The 
concept in all cases was to eliminate perfect pattern information and highlight defect areas of the 
image by spatial filtering in the Fourier transform plane. These methods met with only limited 
success because of the difficulty in fashioning effective blocking filters and the need for extremely 
high quality, large-aperture, low F-number Fourier transform lenses. Despite considerable work 
in this area, none of these efforts resulted in the development, production, and in-process use of 
integrated circuit inspection systems using Fourier optical processing concepts.

This situation was reversed by the adaption of a holographic documentation system used to docu-
ment the surface microstructure of high-energy laser optical component test samples.91,92 A sche-
matic diagram of the holographic documentation optical system is shown in Fig. 9. An F/3.42 lens 
was used to image the test target onto the hologram film and an argon laser operating at a wavelength 
of 514.5 nm was the illumination source. A polarizing beam-splitting cube and a half-wave plate 
were used to split the beam into object and reference beams, and to adjust the beam ratios. A second 
polarizing beam-splitting cube and quarter-wave plate were used to efficiently illuminate the test tar-
get and direct the reflected light to the holographic plate. The holographic image was reconstructed 
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with the conjugate reference beam by removing mirror M4. The test target was removed and the 
holographic image of the sample was examined with the aid of a microscope. The calculated resolu-
tion of this system (classic Rayleigh resolution limit) was 4.0 μm. A photograph of the holographic 
reconstruction of the standard Air Force resolution target made with this system is shown in Fig. 10. 
The smallest bars in this target are on 4.4-μm centers. Thus, the resolution observed with this system 
was comparable to the calculated value.

In considering how the documentation system might be adapted to other applications (includ-
ing the integrated circuit inspection problem), Fusek et al. observed that because the real image of 
the test target was being examined by conjugate reconstruction, both functions of the classic Fourier 
optical system (i.e., transform and inverse transform) were performed in the documentation 
system.93,94 Because of reverse ray tracing, a high-quality matched pair of specially designed Fourier 
transform lenses is no longer required to produce a diffraction-limited output image. As with 
previous work, the objective was to attenuate the image area where the pattern is defect-free and 
highlight the defects. This is done simply by placing the appropriate blocking filter in the Fourier 
transform plane. The method works effectively only if the filter efficiently blocks the light associated 
with defect-free areas of the image and efficiently transmits the defect light. Fortunately, this is the 
case for integrated circuit masks and wafers which consist of regular patterns of circuit elements 
repeated many times over the area of the wafer. For such patterns, the intensity distribution in the 
Fourier transform plane is a series of sharp spikes or bright points of light. Low spatial frequencies 
associated with slowly varying features (such as line-spacing) are represented by light points near 
the optical axis of the imaging lens. High spatial frequencies, representing such features as edge and 
corner detail, lie farther out in the Fourier transform plane. The Fourier transform plane intensity 
pattern for a production-integrated circuit photomask is shown in Fig. 11. Since defects are usually 
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FIGURE 9 Holographic documentation optical system. (Reprinted from Ref. 92, p. 87; courtesy of Oxford 
University Press.)
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FIGURE 10 Magnified image of the holographic reconstruction of 
the Air Force resolution target. (Reprinted from Ref. 92, p. 88; courtesy of 
Oxford University Press.)

FIGURE 11 Optical Fourier transform of a production-integrated circuit photo-
mask. (Reprinted from Ref. 92, p. 98; courtesy of Oxford University Press.)
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of a nonregular nature, the light associated with defects is generally spread out fairly uniformly over 
the Fourier transform plane. Thus, a filter designed to block the regular-pattern light passes most of 
the light associated with defects.

The most straightforward way to produce the blocking filter is by photographic means, with the 
film placed in the Fourier transform plane. The filter is made first, then the hologram is exposed 
with the object beam passing through this filter. Thus, the reconstructed wave that produces the 
output image is effectively filtered twice. A problem with this method of filter fabrication is the 
extremely large range of intensities in the Fourier transform plane which can cover as many as 
ten orders of magnitude. If the filter is properly exposed near the axis where the transform light 
is brightest, high-spatial-frequency components away from the axis will be underexposed and 
inadequately filtered. However, if high frequencies are properly exposed, low frequencies will be 
overexposed, and too much defect light will be filtered. An effective means of alleviating this inten-
sity-range problem is dynamic range compression by multistep filter generation. The process is as 
follows. With a mask in place, a holographic plate is exposed to the Fourier transform pattern with 
exposure parameters set to record the intensity distribution in the low-frequency region near the 
optical axis. After processing, this plate (Stage 1 filter) is replaced in the Fourier transform plane 
and a hologram of the mask is made through this filter. The hologram is illuminated by the con-
jugate reference beam and a second filter plate (Stage 2 filter) is exposed to the resulting Fourier 
transform intensity pattern. This pattern now has its low-frequency components attenuated 
because of the action of the Stage 1 filter. The Stage 2 filter can now be used to record a Stage 3 
filter. The process may be repeated as many times as necessary to produce a filter with the desired 
attenuation properties. Because the defect light is of much lower intensity in the Fourier transform 
plane than the light corresponding to nondefect areas, defect light does not contribute significantly 
to the exposure of the filter, and the object under test (containing defects) may be used to generate 
the filter. Stage 1 and 2 filters for a defect calibration test mask (Master Images VeriMask™) are 
shown in Fig. 12.

Performance of the breadboard documentation system using the VeriMask is shown in Fig. 13. 
Figure 13a is a photo of a magnified region of the VeriMask containing a pinhole defect. Figure 13b
shows the Stage 2 filter image of this same defect which is clearly enhanced. In addition, dimen-
sional variations in the mask pattern from die to die are also highlighted.

The breadboard holographic inspection technology developed by Fusek and coworkers was 
further advanced and placed into production by Insystems of San Jose, California.95–98 This com-
pany produced a series of mask and wafer inspection machines based on the holographic optical 
processing technique. The optical configuration of the Insystems Model 8800 Wafer Inspection 
System is shown in Fig. 14. The commercial instrument used an argon ion laser as the light source, 
and the system functioned in an optical manner identical to that of the original breadboard device. 
However, many refinements were incorporated into the commercial system which yielded substan-
tially improved performance over the breadboard system. These refinements, which included a 
sophisticated Fourier transform lens design, made possible adequate performance without using the 
multistep filter generation technique. The wafer test piece and the hologram were placed on a rotat-
ing stage under a microscope and a video camera so that the filtered image of the defect and the 
microscopic image of the defect on the actual wafer could be viewed simultaneously. Figure 15 illus-
trates the advanced filtering capability of the commercial instrument. This instrument was sensitive 
to defects as small as 0.35 m.

Disadvantages of the holographic defect detection system are the inconvenience and time delays 
associated with the wet processing of the silver halide holographic recording material. The use of 
photorefractive crystals, which operate in real time and do not require wet processing, has been 
studied as a means of eliminating these disadvantages.97 The dual functions of image recording and 
spatial filtering are combined by placing the crystal in the Fourier transform plane and adjusting 
the reference beam intensity to the level of the defect light intensity. Since the light in the Fourier 
transform plane associated with defects is much lower in intensity than nondefect light, only the 
defects will be recorded with high diffraction efficiency. Practical use of photorefractive crystals in 
this application has not been realized, however, because these crystals have relatively low sensitivity 
and are not available in large sizes with good optical quality.
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FIGURE 12 Fourier transform plane blocking filters for a defect calibration test mask: 
(a) first-stage initial filter and (b) second-stage dynamic range compressed filter. (Reprinted from 
Ref. 92, p. 101; courtesy of Oxford University Press.)
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FIGURE 13 Images of the holographic reconstruction of a 2.01-μm pinhole on a calibration 
test mask: (a) unfiltered and (b) filtered. (Reprinted from Ref. 92, pp. 102–103; courtesy of Oxford 
University Press.)
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33.7 HOLOGRAPHIC LITHOGRAPHY

The lithographic transfer of an integrated circuit photomask pattern to a resist-coated integrated 
circuit wafer has been accomplished by several methods, including contact printing, proximity 
printing, and step-and-repeat imaging. Each method has advantages and disadvantages. Contact 
printing is a simple, straightforward method suitable for printing large wafer areas, but damage to 

FIGURE 14 Optical schematic for the Insystems Model 8800 holo-
graphic wafer inspection system. (Diagram courtesy of Insystems.)

FIGURE 15 Metal layer defect in an integrated circuit wafer highlighted by the Insystems Model 8800 wafer inspec-
tion system: (a) filtered image and (b) unfiltered image. (Photo courtesy of Insystems.)
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the mask and contamination of the wafer are common problems. Proximity printing is resolution-
limited because of near-field diffraction. The diffraction problem can be eliminated by imaging the 
mask onto the wafer, but full-field imaging systems do not provide the resolution required over the 
full area of the wafer. Stepper systems, which image only a small area of the mask at a time, pro-
vide the required resolution; however, they are complex and expensive because of the resolution 
demands placed on the optical imaging system and the mechanical difficulty in accurately stitching 
together the multiple image patterns over the full area of the wafer.

Clearly, a full-field method of printing the image onto the full area of the wafer with the required 
resolution is desirable. A holographic system capable of accomplishing this task was developed by 
Holtronic Technologies Limited.98–100 Rather than using a lens system to image the mask on to the 
wafer, the Holtronic holographic system used real-image projection by conjugate illumination to 
overlay the mask image onto the wafer. Near-field holography was used to record the mask image by 
placing the mask in close proximity to the recording medium (100-μm separation) and illuminat-
ing the mask from the back with a collimated laser beam (364-nm line from an argon ion laser). To 
allow the introduction of an off-axis reference beam, an image of the mask could be relayed to the 
hologram plane with a lens. The approach taken was to eliminate the need for this lens with the use 
of the total internal reflection holography scheme of Stetson.101 A diagram illustrating the optical 
principle is shown in Fig. 16.

Light transmitted and diffracted by the mask is incident directly on the holographic recording 
material which is deposited onto the opposing surface of a prism. Reference light is introduced 
through the diagonal surface of the prism and reflected at the holographic coating/air interface by 
total internal reflection. The recording medium was Dupont photopolymer. The holographic expo-
sure was made with an expanded reference beam illuminating the entire hologram area.

Since three beams pass through the photosensitive material, three gratings are formed: (1) a 
reflection grating formed by the incident and reflected reference beams, (2) a reflection grating 
formed by the object beam and the incident reference beam, and (3) a transmission grating formed 

Reference beam

Recording layer
100 m

Object beam

(a)

(b)

1  photomask

Illumination beam

Hologram
100 m

Wafer

FIGURE 16 Basic optical arrangement for total 
internal reflection holographic lithography: (a) holo-
gram exposure and (b) reconstruction onto a resist-
coated substrate. (Reprinted from Ref. 99; courtesy of 
PennWell Publications.)
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by the object beam and the reflected reference beam. To reconstruct the mask wavefront, an illu-
mination beam conjugate to the reflected reference beam is introduced through the prism. This 
incident illumination beam interacts with the transmission object grating to form the conjugate real 
image of the mask. The totally internally reflected and the Lippmann-reflected illumination beams 
interact with the reflection object grating to reinforce the mask image.

During reconstruction and exposure of the photoresist-coated wafer, a small-area illumination 
beam is scanned over the hologram surface. Dynamic focusing of this scanned exposure beam 
eliminates the requirement that the mask and wafer substrates be ultraflat. Figure 17 illustrates 
the 0.3- m resolving capability of the holographic lithography process in 0.3-mm thick resist. 
The lines shown were printed on a silicon wafer coated with Olin Hunt HPR 204 i-line photore-
sist and developed using the Hunt HPRD 429 developer. The effective numerical aperture of the 
system was greater than 0.7.

33.8 HOLOGRAPHIC MEMORY

The information storage capability of holograms has been the subject of considerable study over 
the years with several applications in mind. With the parallel information storage and processing 
capability of holograms, and the promise of shorter access times, computer memory has received 
particular attention. Two review articles provide good summaries of this field of research through 
1990.102,103 However, little mention is made of the work of Russian scientists who have also been 
very active in this field (see, for example, Refs. 104–116).

Of all the holographic material recording possibilities available, volume storage in photorefrac-
tive crystals has received the most attention. There are two main reasons for this emphasis: (1) the 
large information storage capacity of these crystals, and (2) their capability to meet the write-read-
erase requirement in real time with no wet-chemical or other material-processing delays. However, 
no commercial memory systems using holographic storage have been developed. One reason for 
this is the relatively large volume of space occupied by the laser beam-steering equipment and 
other optical components required in such a system, even though the actual holographic storage 
element may occupy a volume of less than a few cubic centimeters. However, the primary reason 

FIGURE 17 Scanning electron micrograph of 0.3-μm lines and spaces printed in 
photoresist by holographic lithography. (Photo courtesy of Holtronic Technologies Ltd.)



HOLOGRAPHY AND HOLOGRAPHIC INSTRUMENTS 33.25

is the limitations of the recording material. Despite their distinct advantages over other record-
ing material candidates, photorefractive crystals have some significant limitations. It is difficult 
to grow large crystals with good optical quality and to achieve stable, long-term storage without 
destructive readout.

Work by Redfield and Hesselink117–119 was directed toward overcoming these previous limita-
tions. Rather than concentrating on developing large, high-quality crystals, their approach was to 
form a large-volume memory element by using an array of small crystallites of strontium barium 
niobate in the form of small cubes or crystalline fibers. Techniques have also been developed for 
accessing the holographic information stored in these crystallites without destructive readout. 
Information is stored in the memory structure by recording Fourier holograms of checkerboard 
patterns (pages) of digital information. Access times were projected to be 100 to 1000 times faster 
than with conventional magnetic disk drives.

33.9 CONCLUSION

This chapter has briefly reviewed some of the more important instrumental applications of holog-
raphy and demonstrated how holographic methods have been used to creatively solve a variety of 
measurement and recording problems. These successful applications should pave the way for addi-
tional advances in this field. Consequently, we anticipate that the list of technical applications of 
holography will expand significantly in the future.

33.10 REFERENCES

1. D. Gabor, “A New Microscope Principle,” Nature 161 (1948).

2. D. Gabor, “Microscopy by Reconstructed Wavefronts,” Proc. Roy. Soc. A197 (1949).

3. D. Gabor, “Microscopy by Reconstructed Wavefronts: II,” Proc. Phys. Soc. B64 (1951).

4. E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory,” J. Opt. Soc. Am. 
52(10) (1962).

5. E. N. Leith and J. Upatnieks, “Wavefront Reconstruction with Diffused Illumination and Three-
Dimensional Objects,” J. Opt. Soc. Am. 54(11) (1964).

6. R. J. Collier, C. B. Burchhardt, and L. H. Lin, Optical Holography, Academic Press, New York, 1971.

7. H. M. Smith, Principles of Holography, 2d ed., John Wiley & Sons, New York, 1975.

8. H. J. Caulfield (ed.), Handbook of Optical Holography, Academic Press, New York, 1979.

9. N. Abramson, The Making and Evaluation of Holograms, Academic Press, New York, 1981.

10. P. Hariharan, Optical Holography, Cambridge University Press, Cambridge, 1984.

11. G. Saxby, Practical Holography, Prentice-Hall, New York, 1988.

12. J. M. Burch, “The Application of Lasers in Production Engineering,” Prod. Eng. (London) 44:431 (1965).

13. K. A. Haines and B. P. Hildebrand, “Contour Generation by Wavefront Reconstruction,” Phys. Lett. 19:10
(1965).

14. R. J. Collier, E. T. Doherty, and K. S. Pennington, “Application of Moire Techniques to Holography,” Appl. 
Phys. Lett. 7:223 (1965).

15. R. E. Brooks, L. O. Heflinger, and R. F. Wuerker, “Interferometry with a Holographically Reconstructed 
Comparison Beam,” Appl. Phys. Lett. 7:248 (1965).

16. R. L. Powell and K. A. Stetson, “Interferometric Vibration Analysis by Wavefront Reconstruction,” J. Opt. 
Soc. Am. 55:1593 (1965).

17. K. A. Stetson and R. L. Powell, “Interferometric Hologram Evaluation and Real-Time Vibration Analysis of 
Diffuse Objects,” J. Opt. Soc. Am. 55:1694 (1965).



33.26  INSTRUMENTS

18. L. O. Heflinger, R. F. Wuerker, and R. E. Brooks, “Holographic Interferometry,” J. Appl. Phys. 37:642 
(1966).

19. M. A. Monahan and K. Bromley, “Vibration Analysis by Holographic Interferometry,” J. Acoust. Soc. Am. 
44:1225 (1968).

20. B. P. Hildebrand and K. A. Haines, “Multiple-Wavelength and Multiple-Source Holography Applied to 
Contour Generation, ” J. Opt. Soc. Am. 57:155 (1967).

21. T. Tsuruta, N. Shiotake, J. Tsujiuchi, and K. Matsuda, “Holographic Generation of Contour Map of 
Diffusely Reflecting Surface by Using Immersion Method,” Jpn. J. Appl. Phys. 6:661 (1967).

22. N. Shiotake, T. Tsuruta, Y. Itoh, J. Tsujiuchi, N. Takeya, and K. Matsuda, “Holographic Generation of 
Contour Map of Diffusely Reflecting Surface by Using Immersion Method,” Jpn. J. Appl. Phys. 7:904 
(1968).

23. J. D. Trolinger, “Automated Data Reduction in Holographic Interferometry,” Opt. Eng. 24(5) (1985).

24. R. J. Pryputniewicz, “Time Average Holography in Vibration Analysis,” Opt. Eng. 24(5) (1985).

25. R. J. Pryputniewicz, “Quantification of Holographic Interferograms: State of the Art Methods,” Topical 
Meeting on Holography Technical Digest 86(5), Opt. Soc. Am. Washington, D.C. (1986).

26. R. J. Pryputniewicz, “Review of Methods for Automatic Analysis of Fringes in Hologram Interferometry,” 
SPIE Proc. 816 (1987).

27. R. J. Pryputniewicz, “Automated Systems for Quantitative Analysis of Holograms,” SPIE Institute Series,
vol. IS 8 (1990).

28. N. Abramson, “Sandwich Hologram Interferometry: A New Dimension in Holographic Comparison,” 
Appl. Opt. 13(9) (1974).

29. H. Bjelkhagen, “Sandwich Holography for Compensation of Rigid Body Motion and Reposition of Large 
Objects,” SPIE Proc. 215 (1980).

30. G.O. Reynolds, D. A. Servaes, L. Ramos-Izquierdo, J. B. DeVelis, D. C. Peirce, P. D. Hilton, and R. A. 
Mayville, “Holographic Fringe Linearization Interferometry for Defect Detection,” Opt. Eng. 24(5) (1985).

31. Z. Fuzessy and F. Gyimesi, “Difference Holographic Interferometry: An Overview,” SPIE Institute Series, 
vol. IS 8 (1990).

32. P. D. Plotkowski, Y. Y. Hung, J. D. Hovanesian, and G. Gerhart, “Improved Fringe Carrier Technique for 
Unambiguous Determination of Holographically Recorded Displacements,” Opt. Eng. 24(5) (1985).

33. A. A. Kamshilin, E. V. Mokrushina, and M. P. Petrov, “Adaptive Holographic Interferometers Operating 
Through Self-Diffraction of Recording Beams in Photorefractive Crystals,” Opt. Eng. 28(6) (1989).

34. V. I. Vlad, D. Popa, M. P. Petrov, and A. A. Kamshilin, “Optical Testing by Dynamic Holographic 
Interferometry with Photorefractive Crystals and Computer Image Processing,” SPIE Proc. 1332 (1990).

35. R. Dandliker and R. Thalmann, “Heterodyne and Quasi-Heterodyne Holographic Interferometry,” Opt. 
Eng. 24(5) (1985).

36. X. Youren, C. M. Vest, and E. J. Delp, “Optical and Digital Moiré Detection of Flaws Applied to 
Holographic Nondestructive Testing,” Appl. Opt. 8:452–454 (1983).

37. M. Cormier, J. Lewandowski, B. Mongeau, F. Ledoyen, and J. Lapierre, “Infrared Holographic Interferometry,” 
Topical Meeting on Holography Technical Digest 86(5), Opt. Soc. Am. Washington, D.C. (1986).

38. J. A. Gilbert and T. D. Dudderar, “The Use of Fiber Optics to Enhance and Extend the Capabilities of 
Holographic Interferometry,” SPIE Institute Series, IS 8 (1990).

39. T. C. Lee, “Holographic Recording on Thermoplastic Films,” Appl. Opt. 13(4) (1974).

40. N. G. Patil, C. R. Prasad, and V. H. Arakeri, “Holographic Interferometric Study of Heat Transfer in 
Rectangular Cavities,” Topical Meeting on Holography Technical Digest 86(5), Opt. Soc. Am. Washington, 
D.C. (1986).

41. H. Fenichel and M.  Lin, “Application of Holographic Interferometry to Investigations of Diffusion 
Processes in Liquid Solutions,” SPIE Proc. 523 (1985).

42. H. Fenichel, G. E. Lohman, and D. Will, “Measurements of Diffusion Coefficients in Liquids Using 
Holographic Interferometry,” Topical Meeting on Holography Technical Digest 86(5), Opt. Soc. Am.
Washington, D.C. (1986).

43. R. L. Perry and G. Lee, “Holographic Interferometry Applied to Symmetric Aerodynamic Models in a 
Wind Tunnel,” SPIE Proc. 523 (1985).



HOLOGRAPHY AND HOLOGRAPHIC INSTRUMENTS 33.27

44. V. A. Deason, L. D. Reynolds, and M. E. McIlwain, “Velocities of Gases and Plasmas from Real-Time 
Holographic Interferograms,” Opt. Eng. 24(5) (1985).

45. P. J. Bryanston-Cross, “Holographic Flow Visualization,” J. Phot. Sci. 37(1) (1989).

46. C. Agren and K. A. Stetson, “Measuring the Wood Resonance of Treble-Viol Plates by Hologram 
Interferometry,” J. Acoust. Soc. Am. 46(1) (1969).

47. G. von Bally, “Otological Investigations in Living Man Using Holographic Interferometry,” in G. von Bally 
(ed.), Holography in Medicine and Biology, Springer Series in Optical Sciences, vol. 18, Springer-Verlag, 
Berlin, 1979.

48. K. A. Stetson, “Holography as a Tool in the Gas Turbine Industry,” Topical Meeting on Holography 
Technical Digest 86(5), Opt. Soc. Am. Washington, D.C. (1986).

49. Y. Y. Hung, “Shearography versus Holography in Nondestructive Evaluation of Tyres and Composites,” 
SPIE Proc. 814 (1987).

50. G. M. Brown, R. M. Grant, and G. W. Stroke, “Theory of Holographic Interferometry,” J. Acoust. Soc. Am. 
45(5) (1969).

51. C. M. Vest, Holographic Interferometry, John Wiley & Sons, New York, 1979.

52. K. A. Stetson, “A Critical Review of Hologram Interferometry,” SPIE Proc. 532 (1985).

53. C. M. Vest, “Holographic Metrology and Nondestructive Testing—Past and Future,” Proc. of the NATO 
Advanced Study Institute, Martinus Nijhoff, Dordrecht, Netherlands, 1987.

54. P. Hariharan, “Interferometric Metrology: Current Trends and Future Prospects,” SPIE Proc. 816 (1987).

55. R. J. Parker and D. G. Jones, “Holography in an Industrial Environment,” Opt. Eng. 27(1) (1988).

56. B. Ovryn, “Holographic Interferometry,” CRC Critical Reviews in Biomedical Engineering 16(4) (1989).

57. H. Rottenkolber and W. Juptner, “Holographic Interferometry in the Next Decade,” SPIE Proc.1162
(1990).

58. R. Jones and C. Wykes, Holographic and Speckle Interferometry, Cambridge University Press, Cambridge, 
1983.

59. R. Jones and C. Wykes, Holographic and Speckle Interferometry, Cambridge University Press, Cambridge, 
1983, p. 57.

60. J. N. Butters and J. A. Leendertz, “Holographic and Video Techniques Applied to Engineering 
Measurements,” J. Meas. Control 4 (1971).

61. A. Macovski, D. Ramsey, and L. F. Schaefer, “Time Lapse Interferometry and Contouring Using Television 
Systems,” Appl. Opt. 10(12) (1971).

62. O. Schwomma, Osterreichisches, Patent No. 298830, 1972.

63. U. Kopf, in Messtechnik (in German), vol. 4, 1972, p. 105.

64. O. J. Lokberg, “Advances and Application of Electronic Speckle Pattern Interferometry (ESPI),” SPIE Proc. 
215 (1980).

65. B. D. Bergquist, P. C. Montgomery, F. Mendoza-Santoyo, P. Henry, and J. Tyrer, “The Present 
Status of Electronic Speckle Pattern Interferometry (ESPI) With Respect to Automatic Inspection and 
Measurement,” SPIE Proc. 654 (1986).

66. O. J. Lokberg, “The Present and Future Importance of ESPI,” SPIE Proc. 746 (1987).

67. O. J. Lokberg, “Electronic Speckle Pattern Interferometry,” Proc. of the NATO Advanced Study Institute, 
Martinus Nijhoff, Dordrecht, Netherlands, 1987, pp. 542–572.

68. O. J. Lokberg and G. A. Slettermoen, “Basic Electronic Speckle Pattern Interferometry,” chap. 8, in R. R. 
Shannon and J. C. Wyant (eds.), Applied Optics and Optical Engineering, vol. X, Academic Press, Inc., 1987.

69. D. W. Robinson, “Holographic and Speckle Interferometry in the UK: A Review of Recent Developments,” 
SPIE Proc. 814 (1988).

70. D. E. Parker, “Introductory Overview of Holography and Speckle,” SPIE Proc. 1375 (1990).

71. O. J. Lokberg and S. Ellingsrud, “TV-Holography (ESPI) and Image Processing in Practical Use,” SPIE 
Proc. 1332 (1990).

72. K. A. Stetson, W. R. Brohinsky, J. Wahid, and T. Bushman, “An Electro-Optic Holography System with 
Real-Time Arithmetic Processing,” J. Nondest. Eval. 8(2) (1989).

73. T. Bushman, “Development of a Holographic Computing System,” SPIE Proc. 1162 (1989).



33.28  INSTRUMENTS

74. R. J. Pryputniewicz and K. A. Stetson, “Measurement of Vibration Patterns Using Electro-Optic 
Holography,” SPIE Proc. 1162 (1989).

75. T. W. Stone and B. J. Thompson (eds.), “Selected Papers on Holographic and Diffractive Lenses and 
Mirrors, SPIE Milestone Series, vol. MS 34, 1991.

76. S. V. Pappu, “Holographic Optical Elements: State-of-the-Art Review Part 2,” Opt. Laser Technol. 21(6) 
(1989).

77. S. V. Pappu, “Holographic Optical Elements: State-of-the-Art Review Part 1,” Opt. Laser Technol. 21(5) 
(1989).

78. J. M. Lerner, J. Flamand, J. P. Laude, G. Passereau, and A. Thevenon, “Diffraction Gratings, Ruled and 
Holographic: A Review,” SPIE Proc. 240 (1980).

79. E. G. Loewen, “Diffraction Gratings, Ruled and Holographic,” chap. 2, in Appl. Opt. and Opt. Eng. 
IX (1983).

80. “Interference (Holographic) Gratings, ” chap. 5, in C. Palmer and E. Loewen (eds.), Diffraction Grating 
Handbook, Milton Roy Company, 1991.

81. G. T. Sincerbox, “Holographic Scanners,” chap. 1, in G. F. Marshall (ed.), Laser Beam Scanning, Marcel 
Dekker, Inc., New York, 1985.

82. W. Lee, “Holographic Optical Head for Compact Disk Applications,” Opt. Eng. 28(6) (1989).

83. K. M. Johnson, B. Cormack, A. Strasser, K. Dixon, and J. Carsten, “The Digital Holographic Sundial,” 
Topical Meeting on Holography Technical Digest 86(5), Opt. Soc. Am. Washington, D.C. (1986).

84. K. A. Arunkumar, J. D. Trolinger, S. Hall, and D. Cooper, “Holographic Inspection of Printed Circuit Board,” 
SPIE Proc. 693 (1986).

85. Y. Lu, L. Jiang, L. Zou, X. Zhao, and J. Sun, “The Non-Destructive Testing of Printed Circuit Board by 
Phase Shifting Interferometry,” SPIE Proc. 1332 (1990).

86. C. P. Wood and J. D. Trolinger, “The Application of Real-Time Holographic Interferometry in the 
Nondestructive Inspection of Electronic Parts and Assemblies,” SPIE Proc. 1332 (1990).

87. D. Casasent, “Computer Generated Holograms in Pattern Recognition: A Review,” SPIE Proc. 532 (1985).

88. L. S. Watkins, Proc. IEEE 57:1634 (1969).

89. N. N. Axelrod, Proc. IEEE 60:447 (1972).

90. R. A. Heinz, R. L. Odenweller, Jr., R. C. Oehrle, and L. S. Watkins, Western Elect. Eng. 17:39 (1973).

91. R. L. Fusek, J. S. Harris, J. Murphy, and K. G. Harding, “Holographic Documentation Camera for 
Component Study Evaluation,” in High Power Lasers and Applications: Proceedings of the Meeting, SPIE 
Proc., Los Angeles, Calif., February 11–13, 1981.

92. L. Huff, “Holographic Documentation and Inspection,” chap. 8, in J. Robillard and H. J. Caulfield (eds.), 
Industrial Application of Holography, Oxford University Press, 1990.

93. R. L. Fusek, L. H. Linn, K. Harding, and S. Gustafson, “Holographic Optical Processing for Submicrometer 
Defect Detection,” Opt. Eng. 24(5) (1985).

94. R. L. Fusek, J. S. Harris, and K. G. Harding, U.S. Patent 4,566,757, 28 January 1986.

95. L. H. Din, D. L. Cavan, R. B. Howe, and R. E. Graves, “A Holographic Photomask Defect Inspection 
System,” SPIE Proc. 538:110–116 (1985).

96. D. L. Cavan, L. H. Lin, R. B. Howe, R. E. Graves, and R. L. Fusek, “Patterned Wafer Inspection Using Laser 
Holography and Spatial Frequency Filtering,” J. Vac. Sci. Technol. B6(6) (1988).

97. E. Ochoa, J. W. Goodman, and L. Hesselink, “Real-Time Enhancement of Defects in a Periodic Mask Using 
Photorefractive Bi12SiO20,” Opt. Lett. 10(9) (1985).

98. J. Brook and R. Dandliker,  “Submicrometer Holographic Photolithography,” Solid State Technology 
(November 1989).

99. B. A. Omar, F. Clube, M. Hamidi, D. Struchen, and S. Gray, “Advances in Holographic Lithography,” Solid 
State Technology (September 1991).

100. S. Gray and M. Hamidi, “Holographic Microlithography for Flat-Panel Displays,” SID 91 Digest (1991).

101. K. Stetson, “Holography with Totally Internally Reflected Light,” Appl. Phys. Lett. 11:225 (1967).

102. B. Hill,  “Holographic Memories and Their Future,” in N. H. Farhat (ed.), Advances in Holography, vol. 3, 
Marcel Dekker, New York, 1976, pp. 1–251.



HOLOGRAPHY AND HOLOGRAPHIC INSTRUMENTS 33.29

103. S. V. Pappu, “Holographic Memories: A Critical Review,” Int. J. Optoelectronics 5:3 (1990).

104. G. A. Voskoboinik, I. S. Gibin, V. P. Koronkevich, E. S. Nezhevenko, P. E. Tverdokhleb, and Y. V. 
Ghugui, “Holographic Memory Device for Identifying Substances from Their Infrared Spectra,” Optika i 
Spektroskopiya 30(6) (1971), translated in Optics and Spectroscopy 30(6) (1971).

105. I. S. Gibin, A. Gofman, S. K. Kibirev, E. F. Pen, and P. E. Tverdokhleb, “Holographic Memory Devices with 
Data Search Functions,” Avtometriya 5:37–51 (1977) translated in Optoelectronics, Instrumentation and 
Data Processing (1977).

106. E. F. Pen, P. E. Tverdokhleb, Y. N. Tishchenko, and A. V. Trubetskoi, “Acoustooptical Deflector for 
a Holographic Memory,” Optika i Spektroskopiya 55(l):148–155 (1983); translated in Opt. Spectrosc. 
55(l):86–90 (1983).

107. V. A. Dombrovskii, S. A. Dombrovskii, and E. F. Pen, “Investigation of Noise Stability of Holograms in 
a Holographic Memory,” Avtometriya 4 (1985), translated in Optoelectronics, Instrumentation and Data 
Processing (1985).

108. A. A. Verbovetskii, A. P. Grammatin, V. N. Ivanov, V. G. Mityakov, A. A. Novikov, N. N. Rukavitsin, 
Y. S. Skvortsov, V. B. Fedorov, and V. V. Tsvetkov, “Holographic Memory for Archival Storage of Binary 
Information,” Optiko-Mekhanicheskaya Promyshlennost 55:5 (1988), translated in Sov. J. Opt. Technol. 55:5
(1988).

109. V. A. Dombrovskii, S. A. Dombrovskii, and E. F. Pen, “Reliability of Data Readout in a Holographic 
Memory Channel with Constant Characteristics,” Avtometriya 6 (1988), translated in Optoelectronics, 
Instrumentation and Data Processing 6 (1988).

110. Y. V.  Vovk,  L. V.  Vydrin, N. N. V’yukhina, V. N. Zatolokin, P. E. Tverdokhleb, I. S. Shteinberg, and Y. A. 
Shchepetkin, “Fast Storage Device for Digital Data Based on a Pack of Optical Disks,” Avtometriya 3:82–94
(1989), translated in Optoelectronics, Instrumentation and Data Processing 3:78–90 (1989).

111. Y. V. Vovk, L. V. Vydrin, P. E. Tverdokhleb, and Y. A. Shchepetkin, “Method for Multichannel Recording 
of Binary Data on Optical Disk,” Avtometriya 2:77–87 (1989), translated in Optoelectronics, Instrumentation 
and Data Processing 2:79–89 (1989).

112. B. V. Vanyushev, N. N. V’yukhina, I. S. Gibin, A. P. Litvintseva, T. N. Mantush, B. N. Pankov, E. F. Pen, 
A. N. Potapov, I. B. Tatarnikova, and P. E. Tverdokhleb, “Architecture of Data System Based on Large 
Capacity Holographic Memory,” Avtometriya 3:74–82 (1989), translated in Optoelectronics, Instrumentation 
and Data Processing 3:70–77 (1989).

113. A. A. Blok, R. S. Kucheruk, and E. F. Pen, “Diffraction Efficiency of Partially Superimposed Holograms,” 
Avtometriya 3 (1989), translated in Optoelectronics, Instrumentation and Data Processing 3 (1989).

114. A. A. Blok, “Effect of Data Coding Methods in Holographic Memory on Characteristics of Reconstructed 
Images of Data Pages,” Avtometriya 5 (1989), translated in Optoelectronics Instrumentation and Data 
Processing 5 (1989).

115. V. A. Dombrovskii, S. A. Dombrovskii, and E. F. Pen, “Noise Immunity of Holographic Memory with 
Paraphrase Data Coding,” Avtometriya 2 (1989), translated in Optoelectronics, Instrumentation and Data 
Processing 2 (1989).

116. P. E. Tverdokhleb and B. N. Pankov, “Parallel Associative VLSI Processor with Optical Input,” SPIE Proc. 
1230 (1990).

117. S. Redfield and L. Hesselink, “Data Storage in Photorefractives Revisited,” SPIE, Optical Computing 88 963
(1988).

118. S. Redfield and L. Hesselink, “Enhanced Nondestructive Holographic Readout in Strontium Barium 
Niobate,” Opt. Lett. 13(10) (1988).

119. L. Hesselink and S. Redfield, “Photorefractive Holographic Recording in Strontium Barium Niobate 
Fibers,” Opt. Lett. 13(10) (1988).



This page intentionally left blank.



34.1

34
XEROGRAPHIC SYSTEMS

Howard Stark
Xerox Corporation
Corporate Research and Technology
Rochester, New York

34.1 INTRODUCTION AND OVERVIEW

The xerographic process was invented in the 1930s by Chester Carlson, who was looking for a simple 
process to copy office documents. The process consists of the creation of an electrostatic image on 
an image receptor, development of the image with dyed or pigmented charged particles referred to 
as toner, transfer of the toner from the image receptor to the paper, fusing the toner to the paper, 
cleaning the residual toner from the image receptor, and finally, erasing whatever is left of the origi-
nal electrostatic image. The process is then repeated on the cleaned, electrostatically uniform image 
receptor. In the most common embodiment of the process, the electrostatic image is created opti-
cally from either a digital or a light lens imaging system on a charged photoreceptor, a material that 
conducts electric charge in the light and is an insulator in the dark. These steps are shown schemati-
cally in Fig. 1, in which the photoreceptor drum is shown to be rotating clockwise. In this review we 
summarize the more common ways in which these steps are carried out.

The process just outlined is the heart of copying and digital printing systems whose speeds can 
range from a few to 180 copies per minute. Repeating the process several times (once for each color 
and black if needed) can produce full-color images. Often the system contains means for either 
input or output collation and stapling or binding. The cost of these systems can range from hun-
dreds of dollars to several hundred thousand dollars.

This review will not attempt to give complete references to the technical literature. There are several 
excellent books that do this.1–4 In addition, there are older books that give an interesting historical 
perspective on the development of the technology.5,6

34.2 CREATION OF THE LATENT IMAGE

This section covers the creation of the electrostatic field image. First the more common optical 
systems are considered. Here, exposing a charged photoconductor to the optical image creates the 
latent electrostatic image. Then, ion writing systems, in which an insulator is charged imagewise 
with an ion writing head or bar to create the latent electrostatic image, are briefly discussed.

Retired.
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Optical Systems

We consider here ways in which the photoreceptor is charged, the required physical properties of the 
photoreceptor, and common exposure systems.

Charging Figure 2 schematically shows the charging and exposure of the photoreceptor. In this 
case the charging is shown to be positive. The two devices commonly used to charge the photore-
ceptor, the corotron and the scorotron, are shown schematically in Fig. 3. The corotron approximates 
a constant-current device, the scorotron a constant-voltage device.

The operational difference between the two devices is that the scorotron has a control screen. In 
both cases, a high potential, shown negative here, is applied to the corotron wires, creating a cloud 
of negative ions around the wires. In the case of the corotron, the negative ions drift under the influ-
ence of the electric field between the wires and the photoreceptor. Since the charging voltage of the 
photoreceptor is significantly less than that of the corona wires, the electric field and the resulting 
photoreceptor-charging current remain roughly constant. The charge voltage of the photoreceptor is 
then simply determined from the current per unit length of the corotron, the photoreceptor velocity 
under the corotron, and the capacitance per unit area of the photoreceptor.

In the case of the scorotron, the photoreceptor voltage and the voltage on the control grid deter-
mine the charging field. Thus, when the photoreceptor reaches the grid voltage, the field and the 
current go to zero. Hence the constant-voltage-like behavior.

Photoreceptor The discharge of the photoreceptor is accomplished by charge transport through 
the photoconductive medium. There are many materials that have been used as photoconductors. 

ExposeCharge

Erase

Clean

Paper path

Transfer
Fuse

Photoreceptor
drum

Develop

FIGURE 1 Schematic of xerographic process.

FIGURE 2 Charging and exposure of photoreceptor.
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The first photoreceptors were films 50 or 60 μm thick of amorphous selenium on a metallic substrate. 
These were followed by amorphous films of various selenium alloys, which were panchromatic and 
in some cases more robust. Other materials that have been used include amorphous silicon, which 
is quite robust as well as being panchromatic. Organic photoreceptors are used in most of the recent 
designs. Here the photoreceptor consists of a photogeneration layer on the order of 1 μm and a 
transport layer on the order of 20 μm thick.

The photoreceptor discharge process is shown in Fig. 4. The photoconductor is negatively charged, 
creating an electric field between the deposited charge and the ground plane. Light is shown to be 
incident on the generator layer. A hole is released that drifts upward under the influence of the electric 
field. Ideally the hole reaches the surface and neutralizes the applied surface charge. The electron that 
remains in the generator layer neutralizes the positive charge in the ground plane. Important charac-
teristics of this process include the dark decay of the photoreceptor—how well the photoreceptor holds 
its charge in the dark—the quantum efficiency of the generation process, the transit time of the hole 
across the transport layer, whether or not it gets trapped in the process, and whether or not there are 
any residual fields remaining across the generator layer.

In order for the photoreceptor to hold its charge in the dark (Ref. 2, pp. 104–112), the charge on 
the surface must not be injected into the transport layer and drift to the substrate. There must be no 
bulk generation of charge in the transport layer. Finally, there must be no injection and transport 
of charge from the conductive ground plane into the transport layer. Modern photoreceptors dark-
decay at rates of less than a few volts per second.

Corona wires
neg. several

kV

Corona wires
neg. several

kV

Scorotron Corotron

Control
screen

Photoreceptor

FIGURE 3 Scorotron and corotron.

Mylar substrate

Generation layer
Conductive layer

grounded

+ Hole

Incident light

Transport layer

FIGURE 4 Photoreceptor discharge process.
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The transport time of the photogenerated charge through the transport layer determines the rate 
at which the electrostatic latent image builds up. This limits the shortest time between exposure and 
development.

Charge trapped within the bulk of the photoreceptor can cause electrostatic ghosts of earlier 
images that may be developed. Proper erase procedures as well as careful photoreceptor processing 
are required to eliminate ghosts.

Exposure At present, both conventional light lens and digital exposure systems are in use. 
Conventional systems include both full-frame flash and slit scanning systems. Belt photoreceptors 
allow for a flat focal plane that permits a quite conventional exposure system; a full-frame flash 
exposure is used from a flat platen. More interesting is the system that is shown in Fig. 1. Here a slit 
is exposed at a fixed position on the rotating drum. To accommodate the movement of the drum, 
the image must move with it within the exposure slit. This is done with a moving platen for the 
document or a fixed platen with a moving exposure system and pivoting mirrors. Often a selfoc lens 
is used to conserve space.

The “original” in a digital imaging system is a document stored in computer memory. The idea 
includes both computer printers and digital copiers. The two most common means of optically 
writing the image on the photoreceptor are scanning lasers and image bars. In its simplest form an 
image bar exposes a line at a time across the photoreceptor. It consists of a full-width array of adja-
cent light-emitting diodes, one for each pixel. As the photoreceptor rotates under the image bar the 
diodes are turned on and off to write the image.

Laser scanning systems, also known as raster output scanning (ROS) systems, in their simplest 
embodiment use a laser diode that is focused and scanned across the photoreceptor by a rotating 
polygon. A so-called f-  is used to achieve constant linear velocity of the spot across the photo-
receptor. Often two or more diodes are focused several raster lines apart in order to write several 
lines at the same polygon speed. The laser diodes are modulated appropriately with the image 
information.

Prior to the development of laser diodes, HeNe lasers were used with acousto-optical modula-
tors. In order to accommodate the slow response time of the acousto-optical crystal, the Scophony7

system developed in the 1930s was used. The acousto-optic modulator consists of a piezoelectric 
transducer, which launches an acoustical wave in a transparent medium whose index of refraction 
is pressure sensitive. The acoustic wave, which is modulated with the image information, creates a 
phase-modulated diffraction pattern. The laser beam is expanded, passed through the crystal and 
by a stop that blocks the zeroth order of the diffraction pattern. The image of the acousto-optic 
modulator is then focused on the photoreceptor. Because of the phased imaging system, the result-
ing image is intensity modulated. However, the diffraction pattern is moving and thus the pixels 
are moving on the photoreceptor surface. To compensate for this motion, the image of the modu-
lator is scanned in the opposite direction by the polygon at precisely the same speed at which the 
pixels are moving.

Ion Writing Systems

In an ion writing system the electrostatic image is created by depositing ions on a dielectric receiver 
in an imagewise fashion. It is typically used in high-speed applications. The requirements for the 
dielectric receiver are that it be mechanically robust and that it hold the charge through the develop-
ment process. Transfer, fusing, and cleaning are essentially the same as in conventional xerography. 
Since (in principle at least) the photoreceptor can be replaced by a more durable dielectric receiver 
and since charging is eliminated, the process promises to be cheaper and more robust.

At least two techniques have been used commercially for writing the image: stylus writing and 
ion writing heads. In both cases the limitation appears to be resolution. A stylus writing head con-
sists of an array of styli, one for each pixel. The dielectric receiver is moved under the array and a 
voltage greater than air breakdown is applied to each stylus as appropriate. The ion writing heads 
are an array of ion guns, which uses an electrode to control the ion flow to the receiver.
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34.3 DEVELOPMENT

The role of the developer system is to apply toner to the appropriate areas of the photoreceptor. In 
the case of conventional exposure, these areas are the charged areas of the photoreceptor. This sys-
tem is referred to as charged area development (CAD). For digital systems where lasers or image bars 
are employed, the designer has a choice; the regions to be developed can be left charged as in the 
conventional system. Alternatively, the photoreceptor can be discharged in the regions to be toned. 
This is referred to as discharged area development (DAD). Image quality and reliability drive the 
choice. For either CAD or DAD, charged toner is electrostatically attracted to the photoreceptor.

There are many different techniques for developing the electrostatic latent image. We consider 
first two-component magnetic brush development and, in that context, outline many of the more 
general considerations for all development systems. Other interesting systems will then be described.

Two-Component Magnetic Brush Development

The developer in two-component magnetic brush development consists of magnetized carrier beads 
and toner. Here the toner is typically 10 μm and the carrier 200 to 300 μm. The two components are 
mixed together and, by means of triboelectric charging, charge is exchanged between the toner and 
carrier. The much smaller toner particles remain attached to the carrier beads so that in a properly 
mixed developer there is little or no free toner. The role of the carrier is thus twofold: to charge the 
toner and, because of its magnetic properties, to enable the transport of the two-component devel-
oper. As will be seen, the conductivity of the carrier plays an important role in development. The 
carrier often consists of a ferrite core coated with a polymer chosen principally to control the charg-
ing characteristics of the developer.

The toner is a polymer containing pigment particles. For black systems the pigment is carbon 
black; for full color the subtractive primaries (cyan, magenta, and yellow) are used. In highlight 
color systems (black plus a highlight color) the pigment is the highlight color or perhaps a com-
bination of pigments yielding the desired color. The choice of the polymer and, to some degree, 
the colorants is also constrained by the charging properties against the carrier and by the softening 
temperature, which is set by the fusing requirements. The covering power of the toner is deter-
mined by the concentration of the pigment. Typically a density of 1 is achieved on the order of 
1 mg/cm2 of toner.

A typical magnetic brush development system is shown schematically in Fig. 5.
The developer roll transports the developer (beads and carrier) from the sump to the nip 

between the developer roll and the photoreceptor where development takes place. The magnetic 
fields hold the developer on the roll and the material is moved along by friction. A carefully spaced 
doctor blade is used to control and limit the amount of developer on the roll.

Doctor blade

Stationary magnets

Rotating
developer roll

Developer layer

Photoreceptor drum with
electrostatic image

Sump containing two
component developer

FIGURE 5 Magnetic brush development system.
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Key to the development process is the triboelectric charge on the toner particle. The charge 
exchange between the toner and carrier can be thought of in terms of the alignment of the Fermi 
levels of the two materials in order to reach thermodynamic equilibrium. Thus a knowledge of the 
work functions (the energy required to lift an electron from the Fermi level to vacuum) gives a first-
order estimate of the toner charge. Impurities and the pigments also play a large role in the tribo-
electric charging, as do the manufacturing processes. Often charge control agents are used to control 
the toner charging. The toner adheres to the carrier bead because of electrostatic attraction (they are 
of opposite polarity) and whatever other adhesion forces there are. Figure 6 schematically shows the 
details of the nip between the charged photoreceptor and the development roll.

The Development of Solid Areas The principal driving force for development is the electric field 
E = (Vpr − Vc)/d where it is assumed that the developer is an insulator. (The conductive case will be 
considered presently.) Vpr is the voltage on the photoreceptor and Vc is a small voltage used to sup-
press development in background regions by reversing the field. The toner, however, is attached to 
the carrier beads and must be detached before it can be deposited on the photoreceptor. The electric 
field plays a role in this, as do the mechanical forces that result from impaction with the photorecep-
tor and the mixing of the developer within the nip. The density of the developer in the nip, the toner 
concentration, the magnetic field, and the electric field thus all affect the rate of toner deposition. 
Developed toner may also be scavenged from the photoreceptor by, say, an oppositely charged car-
rier bead impacting on the developed area. Development proceeds until the two rates are equal or 
until the photoreceptor emerges from the nip.

The voltage Vc is used to provide a reverse electric field to prevent toner deposition in what 
should be toner-free regions. This is required to prevent toner from adhering to the photoreceptor 
for nonelectrostatic reasons. Developers may contain a small amount of wrong-sign toner for which 
this field is a development field. This requires careful formulation of the developer and as well as 
judicious sizing of the cleaning field.

As development proceeds and toner is deposited on the photoreceptor, current flows from the 
developer roll to the photoreceptor, neutralizing the charge on the photoreceptor. This process may 
be viewed as the discharging of a capacitor—the photoreceptor—through a resistor—the devel-
oper. Thus, as a first-order approximation, the time constant for development is simply determined 
from the capacitance per unit area of the photoreceptor and the resistivity of the developer. The nip 
design must be such that the photoreceptor is in the nip on the order of a time constant or more. 
Typically development takes place to 50 percent or more of complete neutralization of the photore-
ceptor and is roughly a linear function of the development field until saturation is reached.

The resistivity of the developer plays a large role in the rate of development. Two cases may be 
considered: the insulating magnetic brush (IMB) and the conductive magnetic brush (CMB). In the 
case of conductive development (CMB) the effective spacing to the development electrode or roller 
is smaller than d (see Fig. 6), thereby increasing the apparent electric field and the rate of develop-
ment. Ideally development proceeds to neutralization for CMB. If the resistivity of the developer is 

FIGURE 6 Details of nip between charged 
photoreceptor and developer roll.
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large, the spacing is larger and the development is slower. In addition, space charge may develop in 
the nip, further slowing down development.

The Development of Lines For solid-area development with a highly resistive developer, the electric 
field that controls development is given by E = (Vpr − Vc)/d (Fig. 6). For lines this is no longer true. 
It was recognized early on that lines develop much faster than solids due to the fact that the electric 
field at the edge of a large solid area is quite a bit stronger than at the center. This edge-enhancing 
effect was quite prominent in early xerographic development systems. A general approach to under-
standing line development is to calculate the modulation transfer function (MTF) or sine-wave 
response. It is relatively straightforward to calculate the electric fields above a sinusoidal charge dis-
tribution (Ref. 2, pp. 25–37), as shown in Fig. 7. The question is what field to use and whether or not 
a linear analysis is appropriate in what would appear to be a very nonlinear system.

As development proceeds, the fields decrease due to the neutralization of the charge on the pho-
toreceptor. Furthermore, the fields fall off approximately exponentially in distance from the surface 
of the photoreceptor. Finally, space charge can accumulate in the developer nip; thus the assumption 
of a well-defined dielectric constant is questionable. Shown in Fig. 8 (taken from Ref. 2) is the nor-
mal component of the initial electric field 27 μm above the photoreceptor surface. The photorecep-
tor is 60 μm thick. The dielectric constant is 6.6, and the photoreceptor is charged to an average field 
of 15 V/μm. The dielectric constant of the nip is assumed to be 21 and the thickness of the nip is 
assumed to be 1700 μm. Here it is seen that, at least initially, lines with a spatial frequency of, say, 
5 lines per mm develop at a rate 4 times faster than a solid area. If development is designed to go 
close to completion, this ratio can be much reduced.

FIGURE 7 Calculating electric fields above a sinusoidal charge distribution.

FIGURE 8 The normal electric field as 
a function of spatial frequency.
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Measuring Toner Charge

The measurement of the charge on the toner is fundamental to characterization of a developer, 
that is, a toner and carrier bead mix. A Faraday cage is used with screens on either end (Fig. 9). The 
screen mesh is such that toner can pass through and the carrier cannot.

The developer is loaded into the cage. A jet of air is blown through the cage, removing the toner. 
Both the charge and the weight of the removed toner are measured. The quotient is referred to as the 
tribo and is measured in units of microcoulombs per gram. The results depend on how the devel-
oper is mixed. Useful, properly mixed developers have tribos ranging between 10 and, say, 30 μC/g.

The distribution of the charge can be obtained from what is called a charge spectrograph.8 (See 
Fig. 10.) The charged toner is blown off the developer mixture and inserted into the laminar air 
stream flowing in the tube. An electric field is applied normal to the toner flow. Within the tube the 
toner is entrained in the air and drifts transversely in the direction of the electric field. It is collected 
on the filter. The displacement of the toner d can be calculated from the charge on the toner Qt, the 

FIGURE 9 Faraday cage used to measure charge on toner.

Laminar
flow

Toner inserted

FIGURE 10 Charge spectrograph.
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electric field E, and the viscous drag, which is proportional to the radius rt of the particle and the 
viscosity of the air . Thus

d Q r Et t( )( )/ /6

Using a computerized microscope to measure the number of toner particles as well as the radius 
and displacement, it is possible to obtain the charge and size distribution of the toner. This tech-
nique is particularly important as it yields the amount of wrong-sign toner in the developer.

Other Development Systems

Among the other useful development systems are inductively charged single-component develop-
ment, powder cloud development, and electrophoretic or liquid immersion development (LID).

Single-Component Development In inductively charged single-component development the toner 
is both conductive and magnetic. The system is shown schematically in Fig. 11. The toner is charged 
inductively in response to the electric field with charge injected from the developer roll. The charge 
is transferred to the toner closest to the developer roll. The toner then is attracted to the photore-
ceptor. The materials issues are to ensure charge injection from the developer roll while at the same 
time preventing charge transfer from the toner to the photoreceptor.

Powder Cloud Development A powder cloud development system is shown in Fig. 12. Here toner 
is injected above the grid, drifts through the grid, acquires a negative charge, and is transported to 
the photoreceptor by the electric field. As is seen, at the edge of a charged area, the fields are such as 
to prevent toner from entering into the region near the edge, thus diminishing edge development.

Liquid Immersion Development An electrophoretic developer consists of toner particles suspended 
in a nonconducting fluid. Charge exchange takes place between the fluid and the toner particles. 

V = Vc

Charged
photoreceptor

+V
Single-component

developer

Rotating developer
roll and magnets

d

FIGURE 11 Single-component development.

Grounded
photoreceptor

Grid at –1500 V

Turbulent toner

FIGURE 12 Powder cloud development system.
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The charged toner then follows the field lines to the photoreceptor. The development rates can be 
determined from the toner charge and the image-driven electric field. In commercial systems, the 
developer fluid is pumped between the photoreceptor and a development roll. Controlling the toner 
charge is a major materials problem. The details of preparation play an important role. Surface-
active agents also play an important role in the charging of the toner.

34.4 TRANSFER

After development, the toner is held on the photoreceptor by electrostatic forces. Electrostatic 
transfer is accomplished by applying an electric field either by means of a corotron or a bias transfer 
roll to attract the toner to the paper (Fig. 1). The paper is brought into contact with the image on 
the photoreceptor if nonelectrostatic forces are assumed negligible; it is possible to calculate9 where 
the toner splits as a function of the applied field and the thickness of the photoreceptor, toner 
layer, and paper. The nonelectrostatic forces, say, Van der Waals forces, between toner particles and 
between the toner and the photoreceptor can play an important role. Transfer efficiencies can run 
over 90 percent.

The difficult engineering problem is to bring the possibly charged paper into and out of contact 
with the photoreceptor without causing toner disturbances due possibly to air breakdown or pre-
mature transfer resulting in a loss of resolution. Bias transfer rolls with a semiconductive coating 
having carefully controlled relaxation times are required.

34.5 FUSING

After transfer the toner must be permanently fixed to the paper. This can be accomplished with the 
application of heat and possibly pressure. The idea is to have the toner flow together as well as into 
the paper. Surface tension and pressure play important roles. Many different types of fusing systems 
exist, the simplest of which is to pass the paper under a radiant heater. Here the optical absorption 
of the toner must be matched to the output of the lamp. This usually requires black toner.

Roll fusing systems are quite common. Here the paper is passed between two rolls, with the 
heated roll on the toner side. The important parameters are the roll temperature and dwell time 
of the image in the nip of the rollers. Release agents are used to assist the release of the paper from 
the rollers.

The fusing system imposes material constraints on the toner. Low-melt toners are preferred for 
fusing, but they cause the developer to age faster.

34.6 CLEANING AND ERASING

There are many ways of removing the untransferred toner from the photoreceptor in preparation 
for the next imaging cycle. Vacuum-aided brushes are common. Here a fur brush is rotated against 
the photoreceptor; the toner is removed from the photoreceptor by the brush and from the brush by 
the vacuum. These systems tend to be noisy because of the vacuum assist. Electrostatic brushes have 
also been used. Here a biased conductive brush removes the toner from the photoreceptor and then 
“develops” it onto a conductive roller, which in turn is cleaned with a blade. A development system 
biased to remove toner from the photoreceptor has also been used. The simplest of the cleaning sys-
tems is a blade cleaner; it is compact, quiet, and inexpensive.

Along with the removal of untransferred toner, the photoreceptor must be returned to a uniform 
and preferably uncharged state. Ghosting from the previous image may result from trapped charge 
within the photoreceptor. Erasing is accomplished using strong uniform exposure.



XEROGRAPHIC SYSTEMS  34.11

34.7 CONTROL SYSTEMS

Proper operation of the xerographic system requires system feedback control to maintain excellent 
image quality. Among the things to be controlled are charging, exposure, and toner concentra-
tion and development. At a minimum, toner gets used and must be replaced. The simplest control 
system counts pages, assumes area coverage, and replenishes the toner appropriately. The photore-
ceptor potential after charging and after exposure can be measured with an electrostatic voltmeter. 
Changes to the charging and exposures can then be appropriately made. The toner optical density of 
a developed patch on the photoreceptor of known voltage contrast can be measured with a densi-
tometer. In digital systems the actual area coverage can be determined by counting pixels. These two 
measurements allow the control of toner concentration.

34.8 COLOR

There are many full-color and highlight-color copiers and printers available commercially. All of 
the recent designs are digital in that the image is either created on a computer or read in from an 
original document and stored in a digital format. Thus in a full-color process the half-toned cyan, 
magenta, yellow, and black separations are written on the photoreceptor by the ROS or image bar. 
The process is then essentially repeated for each separation.

Full Color

The xerographic processor can be configured in several different ways for full color. In a cyclic pro-
cess a system like the one shown in Fig. 13 is used. The paper is attached to the bias transfer roll 
and the cycle is repeated four times for full color. The significant new issues are the need for four 
developer housings, registration, and the fusing of the thicker toner layers. The cyan image must be 
developed with just cyan. It is also important not to disturb the cyan image on the photoreceptor as 
it passes through the other housings. The developer housings are therefore mechanically or electri-
cally switched in or out depending on the image written.

Charge

Erase

Clean

Paper in

Fuse

Photoreceptor
drum

Expose

Cyan

Yellow

Magenta

Black

Develop

Bias
transfer

roll

Paper out

FIGURE 13 Cyclic full-color process.
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In Fig. 13 the transfer roll and the photoreceptor are the same diameter. Registration is accom-
plished by writing the image on the same place on the photoreceptor in each cycle. The temperature 
and dwell time in the fuser are controlled to achieve a good fuse.

Tandem configurations are also used. Here four separate processors are used as shown in Fig. 14. 
A belt transfer system is shown. The paper is attached to the belt and moved from station to station. 
The rollers shown behind the belt are used to apply the bias required for transfer. The order of 
development, shown here with yellow first, is chosen to minimize the effects of contamination. 
Other transfer systems are also possible. The image can be transferred directly to the belt and then, 
after the last station, to the paper.

Comparison of these two systems is interesting. The cyclic system has fewer parts and is therefore 
less expensive and likely more reliable. The tandem system has more parts but is a factor of 4 faster 
for full color than the cyclic system.

Highlight Color

Highlight color is black plus one color, say red, which is used to accentuate or highlight important 
parts of the image. It can be achieved with the full-color systems just discussed. Also, the full-color 
system can be modified to contain just the black plus the highlight color. A single-pass highlight 
color system was developed at Xerox that retains much of the simplicity and throughput of a single-
color system. Referred to as Tri-Level,10,11 it encodes the black and highlight color on the photore-
ceptor as different voltages. The electrostatic arrangement is shown in Fig. 15. The photoreceptor is 
discharged to three levels. In this case full charge is black, the highlight is discharged to a low level, 
and white is maintained at some intermediate level.

Two developer housings are used, one for each color. In this case the black toner is negative 
and the color toner is positive. The housings are biased as shown. The image is passed sequentially 
through the two housings. The black region appears as a development field for black. Both the back-
ground and highlight color regions are cleaning fields for black and no development takes place. The 
same considerations apply to the highlight color. On the photoreceptor the resulting image contains 
opposite-polarity toner. The images are passed under a pretransfer corotron to reverse the sign of 
one of the toners. Thus, at the cost of an additional housing and a pretransfer charging device and 
no cost in throughput, a black-plus-one-color system can be designed.

The difficulties of the system are under consideration. Since the maximum charging voltage 
is limited, the voltage contrast is reduced by more than a factor of 2. The first image must not be 
disturbed when passing through the second developer housing. Both of these constraints require 
sophisticated developer housing design.

Charge
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CyanMagentaBlack

Fuse

Transfer

FIGURE 14 Tandem full-color process.
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35.1 INTRODUCTION

Since the early 1940s magnetic recording has been the mainstay of electronic information storage 
worldwide. Audiotapes provided the first major application for the storage of information on mag-
netic media. Magnetic tape has been used extensively in consumer products such as audiotapes and 
videocassette recorders (VCR); it has also found application in backup/archival storage of computer 
files, satellite images, medical records, etc. Large volumetric capacity and low cost are the hallmarks 
of tape data storage, although sequential access to the recorded information is perhaps the main 
drawback of this technology. Magnetic hard disk drives have been used as mass-storage devices in 
the computer industry ever since their inception in 1957. With an areal density that has doubled 
roughly every 2 years, hard disks have been and remain the medium of choice for secondary storage 
in computers.  Another magnetic storage device, the floppy disk, has been successful in areas where 
compactness, removability, and rapid access to the recorded information have been of primary 
concern. In addition to providing backup and safe storage, inexpensive floppies with their moder-
ate capacities (2 Mbytes on a 3.5-in-diameter platter is typical) and reasonable transfer rates have 
provided the crucial function of file/data transfer between isolated machines. All in all, it has been a 
great half-century of progress and market dominance for magnetic storage which is only now begin-
ning to face a serious challenge from the technology of optical recording.

Like magnetic recording, a major application of optical data storage is the secondary storage of 
information for computers and computerized systems. Like the high-end magnetic media, optical 
disks can provide recording densities in the range of 107 bits/cm2 and beyond. The added advan-
tage of optical recording is that, like floppies, these disks can be removed from the drive and stored 
on the shelf. Thus the functions of the hard disk (i.e., high capacity, high data transfer rate, rapid 
access) may be combined with those of the floppy (i.e., backup storage, removable media) in a single 
optical disk drive. Applications of optical recording are not confined to computer data storage. 
The enormously successful compact audio disk (CD) which was introduced in 1983 and has since 

Achievable densities on hard disks are presently in the range of 107 bits/cm2; random access to arbitrary blocks of data in 
these devices can take on the order of 10 ms, and individual read-write heads can transfer data at the rate of several megabits 
per second.
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become the de facto standard of the music industry, is but one example of the tremendous poten-
tials of the optical disk technology.

A strength of optical recording is that, unlike its magnetic counterpart, it can support read-only, 
write-once, and erasable/rewritable modes of data storage. Consider, for example, the technology of 
optical audio/video disks. Here the information is recorded on a master disk which is then used as a 
stamper to transfer the embossed patterns to a plastic substrate for rapid, accurate, and inexpensive 
reproduction. The same process is employed in the mass production of read-only files (CD-ROM, 
O-ROM) which are now being used to distribute software, catalogs, and other large databases. Or 
consider the write-once-read-many (WORM) technology, where one can permanently store mas-
sive amounts of information on a given medium and have rapid, random access to them afterward. 
The optical drive can be designed to handle read-only, WORM, and erasable media all in one unit, 
thus combining their useful features without sacrificing performance and ease of use. Moreover, 
the media can contain regions with prerecorded information as well as regions for read/write/erase 
operations on the same platter, thus offering opportunities for applications that have heretofore 
been unthinkable.

This chapter presents the conceptual basis for optical storage systems, with emphasis on disk tech-
nology in general and magneto-optical (MO) disk in particular. Section 35.2 is devoted to a discus-
sion of some elementary aspects of disk data storage including the concept of track, definition of the 
access time, and the physical layout of data. Section 35.3 describes the function of the optical path; 
included are properties of the semiconductor laser diode, characteristics of the beam-shaping optics, 
and features of the focusing (objective) lens. The limited depth of focus of the objective lens and the 
eccentricity of tracks dictate that optical disk systems utilize closed-loop feedback mechanisms for 
maintaining the focused light spot on the right track at all times. Automatic focusing and automatic 
track-following schemes are described in Secs. 35.4 and 35.5. The physical process of thermomag-
netic recording is the subject of Sec. 35.6, followed by a discussion of MO readout in Sec. 35.7. 
Certain important characteristics of MO media are summarized in Sec. 35.8. Concluding remarks 
and an examination of trends for future optical recording devices are the subject of Sec. 35.9.

Alternative methods of optical data storage such as reversible phase-change, photochemical spec-
tral hole burning, three-dimensional volume holographic storage, photon echo, photon trapping, 
etc., will not be discussed in this chapter. The interested reader may consult the following references 
for information concerning these alternative storage schemes:

Proceedings of the International Symposium on Optical Memory, ISOM’89, published as supplement 
28-3 of the Japanese Journal of Applied Physics, vol. 28 (1989).

Proceedings of the Optical Data Storage Conference, SPIE, vol. 1316 (1990).

Proceedings of the Optical Data Storage Conference, SPIE, vol. 1499 (1991).

Proceedings of the Optical Data Storage Conference, SPIE, vol. 1663 (1992).

R. G. Zech, “Volume Hologram Optical Memories: Mass Storage Future Perfect,” Optics and 
Photonics News, vol. 3, no. 8, pp. 16–25 (1992).

35.2 PRELIMINARIES AND BASIC DEFINITIONS

The format and physical layout of recorded data on the storage medium as well as certain opera-
tional aspects of disk drive mechanism will be described in the present section.

The Concept of Track

The information on magnetic and optical disks is recorded along tracks. Typically, a track is a narrow 
annulus at some distance r from the disk center, as shown in Fig. 1. The width of the annulus is 
denoted by Wt, while the width of the guard band, if any, between adjacent tracks is denoted by Wg.
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FIGURE 1 Physical appearance and general features of 
an optical disk. The read-write head gains access to the disk 
through a window in the jacket; the jacket itself is for protection 
purposes only. The hub is the mechanical interface with the 
drive for mounting and centering the disk on the spindle. The 
track shown here is of the concentric-ring type, with radius r0
and width Wt.

The track-pitch is the center-to-center distance between neighboring tracks and is therefore equal to 
Wt + Wg. A major difference between the magnetic floppy disk, the magnetic hard disk, and the opti-
cal disk is that their respective track-pitches are presently of the order of 100, 10, and 1 μm. Tracks 
may be fictitious entities, in the sense that no independent existence outside the pattern of recorded 
marks may be ascribed to them. This is the case, for example, with the compact audio disk format 
where prerecorded marks simply define their own tracks and help guide the laser beam during read-
out. In the other extreme are tracks that are physically engraved on the disk surface before any data 
is ever recorded. Examples of this type of track are provided by pregrooved WORM and magneto-
optical disks. Figure 2 shows micrographs from several recorded optical disk surfaces. The tracks 
along which data is written are clearly visible in these pictures.

It is generally desired to keep the read-write head stationery while the disk spins and a given 
track is being read from or written onto. Thus, in an ideal situation, not only should the track be 
perfectly circular, but also the disk must be precisely centered on the spindle axis. In practical sys-
tems, however, tracks are neither precisely circular, nor are they concentric with the spindle axis. 
These eccentricity problems are solved in low-performance floppy drives by making tracks wide 
enough to provide tolerance for misregistrations and misalignments. Thus the head moves blindly 
to a radius where the track center is nominally expected to be, and stays put until the reading or 
writing is over. By making the head narrower than the track-pitch, the track center is allowed to 
wobble around its nominal position without significantly degrading the performance during read-
write operations. This kind of wobble, however, is unacceptable in optical disk systems which have 
a very narrow track, about the same size as the focused beam spot. In a typical situation arising in 
practice the eccentricity of a given track may be as much as 50 μm, while the track-pitch is only 
about 1 μm, thus requiring active track-following procedures.

A popular method of defining tracks on an optical disk is by means of pregrooves, which are 
either etched, stamped, or molded onto the substrate. The space between neighboring grooves is 
called land (see Fig. 3a). Data may be written in the groove with the land acting as a guard band. 
Alternatively, the land may be used for recording while the grooves separate adjacent tracks. The 
groove depth is optimized for generating an optical signal sensitive to the radial position of the 
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read-write laser beam. For the push-pull method of track-error detection (described in Sec. 35.5) 
the groove depth is in the neighborhood of /8, where  is the wavelength of the light beam.

In digital data storage each track is divided into small segments called sectors. A sector is 
intended for the storage of a single block of data which is typically either 512 or 1024 bytes. The 
physical length of a sector is thus several millimeters. Each sector is preceded by header information 
such as the identity of the sector, identity of the corresponding track, synchronization marks, etc. 
The header information may be preformatted onto the substrate, or it may be written directly on the 
storage layer. Pregrooved tracks may be “carved” on the optical disk either as concentric rings or as a 
single continuous spiral. There are certain advantages to each format. A spiral track contains a suc-
cession of sectors without interruption, whereas concentric rings may each end up with some empty 
space that is too small to become a sector. Also, large files may be written onto (and read from) spi-
ral tracks without jumping to the next track, which is something that occurs when concentric tracks 
are used. On the other hand, multiple-path operations such as write-and-verify or erase-and-write 
which require two paths each for a given sector, or still-frame video are more conveniently handled 
on concentric-ring tracks.

Another suggested track format is based on the idea of a sampling servo. Here the tracks are 
identified by occasional marks placed permanently on the substrate at regular intervals, as shown in 
Fig. 3b. Details of track-following by the sampled-servo scheme will follow shortly (see Sec. 35.5), 
suffice it to say at this point that servo marks help the system identify the position of the focused 
spot relative to the track center. Once the position is determined it is fairly simple to steer the beam 
and adjust its position on the track.

FIGURE 2 Micrographs of several types of optical 
storage media. The tracks are straight and narrow with a 
1.6-μm pitch, and are diagonally oriented in each frame. 
(a) Ablative, write-once tellurium alloy. (b) Ablative, 
write-once organic dye. (c) Amorphous-to-crystalline, write-
once phase-change alloy GaSb. (d) Erasable, amorphous 
magneto-optic alloy GdTbFe. (e) Erasable, crystalline-
to-amorphous phase-change tellurium alloy. ( f ) Read-
only CD-Audio, injection-molded from polycarbonate 
with a nickel stamper. (From Ullmann’s “Encyclopedia 
of Industrial Chemistry,” Verlagsgesell-schaft, mbH, 
Weinheim, 1989.)
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Disk Rotation Speed

When a disk rotates at a constant angular velocity , a track of radius r moves with the constant 
linear velocity V r . Ideally, one would like to have the same linear velocity for all the tracks, but 
this is impractical except in a limited number of situations. For instance, when the desired mode of 
access to the various tracks is sequential, such as in audio- and video-disk applications, it is possible 
to place the head in the beginning at the inner radius and move outward from the center thereafter 
while continuously decreasing the angular velocity. By keeping the product of r and  constant, one 
can achieve constant linear velocity for all tracks.  Sequential access mode, however, is the exception 
rather than the norm in data storage systems. In most applications, the tracks are accessed randomly 
with such rapidity that it becomes impossible to adjust the rotation speed for constant linear velocity. 
Under these circumstances the angular velocity is kept constant during normal operation. Typical 

In compact audio disk players the linear velocity is kept constant at 1.2 m/s. The starting position of the head is at the inner 
radius rmin 25 mm, where the disk spins at 460 rpm. The spiral track ends at the outer radius rmax 58 mm, where the disk’s 
angular velocity is 200 rpm.

FIGURE 3 (a) Lands and grooves in an 
optical disk. The substrate is transparent, and 
the laser beam must pass through it before 
reaching the storage medium. (b) Sampled-servo 
marks in an optical disk. These marks which are 
offset from the track center provide information 
regarding the position of focused spot.
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rotation rates are 1200 and 1800 rpm for slower drives, and 3600 rpm for the high-end systems. 
Higher rotation rates (5000 rpm and beyond) are certainly feasible and will likely appear in future 
generations of optical storage devices.

Access Time

The direct access storage device used in computer systems for the mass storage of digital infor-
mation is a disk drive capable of storing large quantities of data and accessing blocks of this data 
rapidly and in random order. In read-write operations it is often necessary to move the head to 
new locations in search of sectors containing specific data items. Such random relocations are usu-
ally time-consuming and can become the factor that limits performance in certain applications. 
The access time a is defined as the average time spent in going from one randomly selected spot 
on the disk to another. The access time a can be considered the sum of seek time s, which is the 
average time needed to acquire the target track, and a latency l , which is the average time spent 
on the target track waiting for the desired sector; thus a s + l. The latency is half the revolution 
period of the disk, since a randomly selected sector is, on the average, halfway along the track from 
the point where the head initially lands. Thus, for a disk rotating at 1200 rpm l 25 ms, while at 
3600 rpm l 8.3 ms. The seek time, on the other hand, is independent of the rotation speed, but 
is determined by the travel distance of the head during an average seek, as well as by the mechanism 
of head actuation. (It can be shown that the average length of travel in a random seek is one-third of 
the full stroke.) In magnetic disk drives where the head/actuator assembly is relatively lightweight, 
(a typical Winchester head weighs about 5 g) the acceleration and deceleration periods are short, 
and seek times are typically around 10 ms. In optical disk systems, on the other hand, the head, 
being an assembly of discrete elements, is fairly large and heavy (typical weight 50 to 100 g), 
resulting in values of ts that are several times greater than those obtained in magnetic recording. The 
seek times reported for commercially available optical drives presently range from 20 msec in high-
performance 3.5-in drives to 100 ms in larger drives. One must emphasize, however, that the optical 
disk technology is still in its infancy; with the passage of time the integration and miniaturization 
of the elements within the optical head will surely produce lightweight devices capable of achieving 
seek times in the range of several milliseconds.

Organization of Data on Disk

For applications involving computer files and data, each track is divided into a number of sectors 
where each sector can store a fixed-length block of binary data. The size of the block varies among 
the various disk/drive manufacturers, but typically it is either 512 or 1024 bytes. As long as the disk 
is dedicated to a particular drive (such as in magnetic hard drives) the sector size is of little impor-
tance to the outside world. However, with removable media the sector size (among other things) 
must be standardized, since now various drives need to read from and write onto the same disk.

A block of user data cannot be directly recorded on a sector. First, it must be coded for protec-
tion against errors (error-correction coding) and for the satisfaction of channel requirements (mod-
ulation coding). Also, it may be necessary to add synchronization bits or other kinds of information 
to the data before recording. Thus a sector’s capacity must be somewhat greater than the amount 
of raw data assigned to it. A sector also must have room for “header” information. The header is 
either recorded during the first use of the disk by the user, as in formatting a floppy disk, or is writ-
ten by the manufacturer before shipping the disk. The header typically contains the address of the 
sector plus synchronization and servo bits. In magnetic disks the header is recorded magnetically, 
which makes it erasable and provides the option of reformatting at later times. On the negative side, 
formatting is time-consuming and the information is subject to accidental erasure. In contrast, the 
optical disk’s sector headers may be mass-produced from a master at the time of manufacture, thus 
eliminating the slow process of soft formatting. The additional space used by the codes and by the 
header information constitutes the overhead. Depending on the quality of the disk, the degree of 
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sophistication of the drive, and the particular needs of a given application, the overhead may take as 
little as 10 percent and as much as 30 percent of a disk’s raw capacity.

35.3 THE OPTICAL PATH

The optical path begins at the light source which, in all laser disk systems in use today, is a semicon-
ductor GaAs diode laser. Several unique features of the laser diode have made it indispensable for 
optical recording applications: its small size ( 300 × 50 × 10 μm) makes possible the construction 
of compact head assemblies, its coherence properties allow diffraction-limited focusing to extremely 
small spots, and its direct modulation capability eliminates the need for external intensity modula-
tors. The operating wavelength of the laser diode can be selected within a limited range by proper 
choice of material composition; presently, the shortest wavelength available from the III-V class of 
semiconductor materials is 670 nm.

Figure 4a shows a typical plot of laser power output versus input current for a GaAs-based laser 
diode. The lasing starts at the threshold current, and the output power rapidly increases beyond that 

T c 
=

 0
C

T c 
=

 2
5

C
T c 

=
 5

0
C

0

10

20

30

40
O

pt
ic

al
 p

ow
er

 o
u

tp
u

t 
P

o 
(m

W
)

0 4020 60 80 100 120 140

Forward current IF (mA)

838

836

834

832

830

828

826

W
av

el
en

gt
h

 (
n

m
)

20 30

Case temperature Tc ( C)
(b)

(a)

40 50

Po = 30 mW

FIGURE 4 (a) Optical output power versus 
forward-bias current for a typical diode laser. 
Different curves were obtained at different ambi-
ent temperatures. (b) Variations of wavelength 
as function of case temperature for typical diode 
laser. The output power is fixed at Po 30 mW. 
(From Sharp Laser Diode User’s Manual.)
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point. Below threshold, the diode operates in the spontaneous emission mode and its output is inco-
herent. After threshold, stimulated emission takes place, yielding coherent radiation. Of course, the 
output power cannot increase indefinitely and beyond a certain point the laser fails catastrophically. 
Fortunately, the required optical power levels for the read/write/erase operations in present-day 
data storage systems are well below the failure levels of these lasers. Available lasers for data storage 
applications have threshold currents around 40 mA, maximum allowable currents of about 100 mA, 
and peak output powers [CW (continuous wave) mode] around 50 mW. The relationship between 
the injection current and the output light power is very sensitive to the operating temperature of the 
laser, as evidenced by the various plots in Fig. 4a. Also, because the semiconductor material’s band-
gap is a function of the ambient temperature, there is a small shift in the operating wavelength of 
the device when the temperature fluctuates (see Fig. 4b). For best performance it is usually necessary 
to mount the laser on a good heat-sink, or try to steady its temperature by closed-loop feedback.

The output optical power of the laser can be modulated by controlling the injection current. One 
can apply pulses of variable duration to turn the laser on and off during the recording process. The 
pulse duration can be as short as a few nanoseconds, with rise and fall times which are typically less 
than 1 ns. This direct-modulation capability of the laser diode is particularly welcome in optical disk 
systems, considering that most other sources of coherent light (such as gas lasers) require bulky and 
expensive devices for external modulation. Although readout of optical disks can be accomplished 
at constant power level in CW mode, it is customary (for noise reduction purposes) to modulate the 
laser at a high frequency in the range of several hundred MHz.

Collimation and Beam Shaping

Since the cross-sectional area of the active region in a laser diode is only about 1 μm2, diffraction 
effects cause the emerging beam to diverge rapidly. This phenomenon is depicted schematically in 
Fig. 5a. In practical applications of the laser diode, the expansion of the emerging beam is arrested 
by a collimating lens, such as that shown in Fig. 5b. If the beam happens to have aberrations (astig-
matism is particularly severe in diode lasers), then the collimating lens must be designed to correct 
this defect as well.

In optical recording it is most desirable to have a beam with circular cross section. The need for 
beam shaping arises from the special geometry of the laser cavity with its rectangular cross section. 
Since the emerging beam has different dimensions in the directions parallel and perpendicular to 
the junction, its cross section at the collimator becomes elliptical, with the initially narrow dimen-
sion expanding more rapidly to become the major axis of the ellipse. The collimating lens thus pro-
duces a beam with elliptical cross section. Circularization may be achieved by bending various rays 
of the beam at a prism, as shown in Fig. 5c. The bending changes the beam’s diameter in the plane of 
incidence, but leaves its diameter in the perpendicular direction intact.

The output of the laser diode is linearly polarized in the plane of the junction. In some applica-
tions (such as readout of compact disks or read-write on WORM media) the polarization state is 
immaterial as far as interaction with the storage medium is concerned. In such applications one 
usually passes the beam through a polarizing beam splitter (PBS) and a quarter-wave plate, as in 
Fig. 6, and converts its polarization to circular. Upon reflection from the disk, the beam passes 
through the quarter-wave plate once again, but this time emerges as linearly polarized in a direc-
tion perpendicular to the original direction of polarization. The returning beam is thus directed 
away from the laser and toward the detection module, where its data content is extracted and its 
phase/amplitude pattern is used to generate error signals for automatic focusing and tracking. By 
thoroughly separating the returning beam from the incident beam, one not only achieves efficiency 
in the use of the optical power, but also succeeds in preventing the beam from going back to the 
laser where it causes instabilities in the laser cavity and, subsequently, increases the noise level. 
Unfortunately, there are situations where a specific polarization state is required for interaction 
with the disk; magneto-optical readout which requires linear polarization is a case in point. In 
such instances the simple combination of PBS and quarter-wave plate becomes inadequate and one 
must resort to other (less efficient) means of separating the beams.
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Focusing

The collimated and circularized beam of the laser is focused on the surface of the disk using an 
objective lens. The objective is designed to be aberration-free, so that its focused spot size is limited 
only by the effects of diffraction. Figure 7a shows the design of a typical objective made from spheri-
cal optics. According to the classical theory of diffraction, the diameter of the beam, d, at the objec-
tive’s focal plane is

d
NA

(1)

Y

X

d1

d2

90

1

2

(b)

(c)

(a)

FIGURE 5 (a) Away from the facet, the 
output beam of a diode laser diverges rapidly. 
In general, the beam diameter along X is differ-
ent from that along Y, which makes the cross 
section of the beam elliptical. Also, the radii 
of curvature Rx and Ry are not the same, thus 
creating a certain amount of astigmatism in 
the beam. (b) Multielement collimator lens for 
laser diode applications. Aside from collimat-
ing, this lens also corrects astigmatic aberrations 
of the beam. (c) Beam-shaping by deflection at 
a prism surface. 1 and 2 are related by the 
Snell’s law, and the ratio d2/d1 is the same as 
cos 2/cos 1. Passage through the prism circu-
larizes the elliptical cross section of the beam.
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where  is the wavelength of light and NA is the numerical aperture of the objective. In optical 
recording it is desired to achieve the smallest possible spot, since the size of the spot is directly 
related to the size of marks recorded on the medium. Also, in readout, the spot size determines the 
resolution of the system. According to Eq. (1) there are two ways to achieve a small spot: reducing 
the wavelength and increasing the numerical aperture. The wavelengths currently available from 
GaAs lasers are in the range of 670 to 840 nm. It is possible to use a nonlinear optical device to 
double the frequency of these lasers, thus achieving blue light. Good efficiencies have been dem-
onstrated by frequency doubling. Also recent developments in II-VI materials have improved the 
prospects for obtaining green and blue light directly from semiconductor lasers. Consequently, there 
is hope that in the near future optical storage systems will operate in the wavelength range of 400 to 
500 nm. As for the numerical aperture, current practice is to use a lens with NA 0.5–0.6. Although 
this value might increase slightly in the coming years, much higher numerical apertures are unlikely, 
since they put strict constraints on the other characteristics of the system and limit the tolerances. 
For instance, the working distance at high NA is relatively short, making access to the recording layer 
through the substrate more difficult. The smaller depth of focus of a high-NA lens will make attaining/
maintaining proper focus more difficult, while the limited field of view might restrict automatic 
track-following procedures. A small field of view also places constraints on the possibility of read/
write/erase operations involving multiple beams.

The depth of focus of a lens, , is the distance away from the focal plane over which tight focus 
can be maintained (see Fig. 7b). According to the classical theory of diffraction,

NA2
(2)

Thus for 700 nm and NA 0.6 the depth of focus is about 1 μm. As the disk spins under the 
optical head at the rate of several thousand rpm, the objective must stay within a distance of f
from the active layer if proper focus is to be maintained. Given the conditions under which drives 
usually operate, it is impossible to make rigid enough mechanical systems to yield the required posi-
tioning tolerances. On the other hand, it is fairly simple to mount the objective lens in an actuator 
capable of adjusting its position with the aid of closed-loop feedback control. We emphasize that by 
going to shorter wavelengths and/or larger numerical apertures (as is required for attaining higher 
data densities) one will have to face a much stricter regime as far as automatic focusing is concerned. 
Increasing the numerical aperture is particularly worrisome, since drops with the square of NA.

y

x
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X

FIGURE 6 Separation of incident and reflected beams at the polarizing 
beam splitter (PBS). The quarter-wave plate converts the linearly polarized 
incident beam into one with circular polarization and converts the returning 
beam back to linear, but with its polarization vector orthogonal to that of the 
incident beam. This 90° rotation of polarization is responsible for the diver-
sion of the reflected beam toward the detection channel.
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A source of spherical aberrations in optical disk systems is the substrate through which the light 
must pass in order to reach the active layer. Figure 7c shows the bending of the rays at the surface of 
the disk, which causes the aberration. This problem can be solved by taking into account the effects 
of the substrate in the design of the objective, so that the lens is corrected for all aberrations, includ-
ing those arising at the substrate. Recent developments in molding of aspheric glass lenses have gone 
a long way in simplifying the lens design problem. Figure 8 shows a pair of molded glass aspherics 
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FIGURE 7 (a) Multielement lens design for 
a high-NA videodisc objective. (After D. Kuntz, 
“Specifying Laser Diode Optics,” Laser Focus, March 
1984.) (b) Various parameters of the objective lens. 
The numerical aperture is NA sin . The spot 
diameter d and the depth of focus  are given by 
Eqs. (1) and (2), respectively. (c) Focusing through 
the substrate can cause spherical aberration at the 
active layer. The problem is corrected by a proper 
design for the objective lens, which takes the sub-
strate into account.
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designed for optical storage applications; both the collimator and the objective are single-element 
lenses and are corrected for axial aberrations.

Laser Noise

Compared to other sources of coherent light such as gas lasers, laser diodes are noisy and unstable. 
Typically, within a diode laser’s cavity several modes compete for dominance. Under these circum-
stances, small variations in the environment can cause mode-hopping which results in unpredict-
able power-level fluctuations and wavelength shifts. Unwanted optical feedback is specially trouble-
some, as even a small fraction of light returning to the cavity can cause a significant rise in the noise 
level. Fortunately, it has been found that high-frequency modulation of the injection current can 
be used to instigate power sharing among the modes and thereby reduce fluctuations of the output 
optical power. In general, a combination of efforts such as temperature stabilization of the laser, 
antireflection coating of the various surfaces within the system, optical isolation of the laser, and 
high-frequency modulation of the injection current can yield acceptable levels of noise for practical 
operation of the device.

35.4 AUTOMATIC FOCUSING

Since the objective lens has a large numerical aperture (NA 0.5) its depth of focus  is shallow 
( 1 μm at 780 nm). During all read/write/erase operations, therefore, the disk must remain 
within a fraction of a micrometer from the focal plane of the objective. In practice, however, the 
disks are not flat and are not always mounted rigidly parallel to the focal plane, so that during any 
given revolution movements away from focus (by as much as 50 μm) may occur. Without auto-
matic adjustment of the objective along the optic axis, this runout (or disk flutter) will be detrimen-
tal to the operation of the system. In practice, the objective is mounted on a small actuator (usually 
a voice coil) and allowed to move back and forth to keep its distance from the disk within an accept-
able range. Since the spindle turns at a few thousand rpm, if the disk moves in and out of focus a few 
times during each revolution, then the voice coil must be fast enough to follow these movements in 
real time; in other words, its frequency response must extend from DC to several kHz.

The signal that controls the voice coil is obtained from the light reflected from the disk. There are 
several techniques for deriving the focus error signal (FES), one of which is depicted in Fig. 9a. In 
this so-called obscuration method a secondary lens with one-half of its aperture covered is placed in 
the path of the reflected light, and a split-detector is placed at the focal plane of this secondary lens. 
When the disk is in focus, the returning beam is collimated and the secondary lens will focus the 

FIGURE 8 Molded glass aspheric lens pair for optical disk 
application. These singlets can replace the multielement spherical 
lenses shown in Figs. 5b and 7a.
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beam at the center of the split-detector, giving a difference signal S equal to zero. If the disk now 
moves away from the objective, the returning beam will become converging, as in Fig. 9b, sending all 
the light to detector 1. In this case S will be positive and the voice coil will push the lens toward the 
disk. On the other hand, when the disk moves close to the objective, the returning beam becomes 
diverging and detector 2 receives the light (see Fig. 9c). This results in a negative S which forces the 
voice coil to pull back and return S to zero.

A given focus error detection scheme is generally characterized by the shape of its focus error 
signal S versus the amount of defocus Z. One such curve is shown in Fig. 9d. The slope of the 
FES curve near the origin is of particular importance, since it determines the overall performance 
and stability of the servo loop. In general, schemes with a large slope are preferred, although certain 
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FIGURE 9 Focus error detection by the obscuration method. In (a) the
disk is in focus, and the two halves of the split detector receive equal amounts 
of light. When the disk is too far from the objective (b) or too close to it (c), the 
balance of detector signals shifts to one side or the other. A plot of the focus 
error signal versus defocus is shown in (d), and its slope near the origin is iden-
tified as the FES gain, G.
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other aspects of system performance should also be taken into consideration. For instance, varia-
tions of the FES during seek operations (where multiple track-crossings occur) should be kept at a 
minimum, or else the resulting “feedthrough” might destabilize the focus servo. Also, it is important 
for a focus-error-detection scheme to be insensitive to slight imperfections of the optical elements, 
as well as to the positioning and mechanical misalignments; otherwise, the manufacturing cost of 
the device may become prohibitive. Finally, the focusing scheme must have a reasonable acquisition 
range, so that at start-up (or in those occasions where focus is lost and needs to be acquired again) 
the system can move in the proper direction to establish focus.

35.5 AUTOMATIC TRACKING

Consider a circular track with a certain radius, say, r0, and imagine viewing a portion of it through 
the access window (see Fig. 1). It is through this window that the read-write head gains access to the 
disk and, by moving in the radial direction, reaches the various tracks. To a viewer looking through 
the window, a perfectly circular track centered on the spindle axis will look stationary, irrespective 
of the rotational speed of the disk. However, any track eccentricity will cause an apparent motion 
toward or away from the center. The peak-to-peak radial distance traveled by a track (as seen 
through the window) might depend on a number of factors, including centering accuracy of the 
hub, deformability of the disk substrate, mechanical vibrations, manufacturing tolerances, etc. For 
a 3.5-in plastic disk, for example, this peak-to-peak motion can be as much as 100 μm. Assuming a 
rotation rate of 3600 rpm, the apparent radial velocity of the track will be a few millimeter per second. 
Now, if the focused spot (which is only about 1 μm) remains stationary while trying to read or write 
on this track (whose width is also about 1 μm), it is clear that the beam will miss the track for a good 
fraction of every revolution cycle.

Practical solutions to the above problem are provided by automatic track-following techniques. 
Here the objective lens is placed in a fine actuator, typically a voice coil, which is capable of moving 
the necessary radial distances and maintaining a lock on the desired track. The signal that controls 
the movement of this actuator is derived from the reflected light itself, which carries information 
about the position of the focused spot relative to the track. There exist several mechanisms for 
extracting the track-error signal (TES) from the reflected light. All these methods require some 
sort of structure on the disk surface to identify the position of the track. In the case of read-only 
disks (CD, CD-ROM, and video disk) the embossed pattern of data provides ample information for 
tracking purposes. In the case of write-once and erasable disks, tracking guides are impressed on the 
substrate during the manufacturing process. The two major formats for these tracking guides are 
pregrooves (for continuous tracking) and sampled-servo marks (for discrete tracking). A combina-
tion of the two schemes, known as continuous/composite format, is often used in practice. This 
format is depicted schematically in Fig. 10 which shows a small section containing five tracks, each 
consisting of the tail end of a groove, synchronization marks, a mirror area for adjusting offsets, a 
pair of wobble marks for sampled tracking, and header information for sector identification.

FIGURE 10 Servo offset fields in continuous/
composite format contain a mirror area and offset 
marks for tracking. (Marchant, 1990.)
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Tracking on Grooved Regions

As shown in Fig. 3a, grooves are continuous depressions that are embossed, etched, or molded onto 
the substrate prior to deposition of the storage medium. If the data is recorded on the grooves, 
then the lands are not used except for providing a guard band between neighboring grooves. 
Conversely, the land regions may be used to record the information, in which case grooves provide 
the guard band. Typical track widths are about one wavelength of the light. The guard bands are 
somewhat narrower, their exact shape and dimensions depending on the beam size, required track-
servo accuracy, and the acceptable levels of crosstalk between adjacent tracks. The groove depth is 
typically around one-eighth of one wavelength ( /8) which gives the largest TES in the push-pull 
method. The geometrical shape of the groove’s cross section might be rectangular, trapezoidal, 
triangular, or some smooth version of these curves.

When the focused spot is centered on a given track, it is diffracted symmetrically from the two 
edges, resulting in a balanced far-field pattern. As soon as the spot moves away from the center, the 
symmetry breaks down and the far-field distribution tends to shift to one side or the other. A split 
photodetector placed in the path of the reflected light can therefore sense the relative position of the 
spot and provide the appropriate feedback signal (see Fig. 11). This is the essence of the push-pull 

FIGURE 11 (a) Push-pull sensor for tracking on grooves. (Marchant, 1990.) (b) Light intensity distribution at the detector plane 
when the disk is in focus and the beam is centered on the track. (c) Light intensity distribution at the detector plane when the disk is in 
focus and the beam is centered on the groove edge. (d) Same as (c) except for the spot being on the opposite edge of the groove.
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method. Figure 11 also shows intensity plots at the detector plane after reflection from various loca-
tions on the grooved surface. Note how the intensity shifts to one side or the other depending on 
whether the spot moves to the right edge or to the left edge of the groove.

Sampled Tracking

Since dynamic track runout is usually a slow and gradual process, there is actually no need for con-
tinuous tracking as done on grooved media. A pair of embedded marks, offset from the track center 
as in Fig. 12a, can provide the necessary information for correcting the relative position of the 
focused spot. The reflected intensity will indicate the positions of the two servo marks as two succes-
sive short pulses. If the beam happens to be on track, the two pulses will have equal magnitudes and 
there shall be no need for correction. If, on the other hand, the beam is off-track, one of the pulses 
will be stronger than the other. Depending on which pulse is the stronger, the system will recognize 
the direction in which it has to move and will correct the error accordingly. Sampled-servo mark 
pairs must be provided frequently enough to ensure proper track-following. In a typical applica-
tion, the track might be divided into groups of 18 bytes, 2 bytes dedicated as servo offset areas and 
16 bytes filled with other format information or left blank for user data. Figure 12b shows a small 
section from a sampled-servo disk containing a number of tracks, three of which are recorded with 
user data. The track-servo marks in this case are preceded by synch marks (also prerecorded on the 
servo offset area). Note in Fig. 12b that the format marks repeat a certain pattern every four tracks. 
This pattern is known as a “gray code,” and allows the system to recognize and correct minor track-
counting errors during the seek operation.

Preformatted
servo marks

Focused
spot

Recorded
marks

Servo fields

(b)

Data fields

(a)

FIGURE 12 (a) In sampled tracking a pair of preformatted 
servo marks helps locate the position of the focused spot relative 
to the track center. (b) servo fields occur frequently and at regular 
intervals in sampled servo format. The data area shown here has 
data recorded on three tracks. (Marchant, 1990.)
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Track Counting During the Seek Operation

In the seek operation the coarse actuator moves the head assembly across the disk to a new location where 
the desired track is located. In order to avoid landing on a nearby track and being forced to perform a 
second (fine) seek, most systems in use today count the tracks as they are being crossed. In this way the 
head can land on the correct track and thereby minimize the overall seek time. The sampled-servo format 
is not suitable for this purpose, since the servo marks do not occur frequently enough to allow uninter-
rupted counting. In contrast, grooved media provide the necessary information for track-counting.

During a seek operation the focus servo loop remains closed, maintaining focus as the head 
crosses the tracks. The tracking loop, on the other hand, must be opened. The zero crossings of the 
TES then provide the track count. Complications may arise in this process, however, due to eccen-
tricities of tracks. As was mentioned earlier, to an observer looking through the access window, an 
eccentric track moves in and out radially with a small (but not insignificant) velocity. As the head 
approaches the desired track and slows down to capture it, its velocity might fall just short of the 
apparent track velocity. Under these circumstances, a track which has already been counted may 
catch up with the head and be counted once again. Intelligence must be built into the system to rec-
ognize and avoid such problems. Also, through the use of gray codes and similar schemes, the system 
can be made to correct its occasional miscounts before finally locking onto the destination track.

35.6 THERMOMAGNETIC RECORDING PROCESS

Recording and erasure of information on a magneto-optical disk are both achieved by the ther-
momagnetic process. The essence of thermomagnetic recording is shown in Fig. 13. At the ambient 
temperature the film has a high magnetic coercivity  and therefore does not respond to the externally 
applied field. When a focused laser beam raises the local temperature of the film, the hot spot 
becomes magnetically soft (i.e., its coercivity drops). As the temperature rises, coercivity drops 
continuously until such time as the field of the electromagnet finally overcomes the material’s resis-
tance to reversal and switches its magnetization. Turning the laser off brings the temperatures back 
to normal, but the reverse-magnetized domain remains frozen in the film. In a typical situation 
in practice, the film thickness may be around 300 Å, laser power at the disk 10 mV, diameter of 
the focused spot 1 μm, laser pulse duration ~50 ns, linear velocity of the track 10 m/s, and the 
magnetic field strength 200 gauss. The temperature may reach a peak of 500 K at the center of the 
spot, which is certainly sufficient for magnetization reversal, but is not nearly high enough to melt 
or crystalize or in any other way modify the structure of the material.

The materials of MO recording have strong perpendicular magnetic anisotropy. This type of anisot-
ropy favors the “up” and “down” directions of magnetization over all other orientations. The disk is 
initialized in one of these two directions, say, up, and the recording takes place when small regions are 
selectively reverse-magnetized by the thermomagnetic process. The resulting magnetization distribution 
then represents the pattern of recorded information. For instance, binary sequences may be represented 
by a mapping of zeros to up-magnetized regions and ones to down-magnetized regions [non-return 
to zero (NRZ) scheme]. Alternatively, the non-return to zero inverted (NRZI) scheme might be used, 
whereby transitions (up-to-down and down-to-up) are used to represent the ones in the bit sequence.

Recording by Laser Power Modulation

In this traditional approach to thermomagnetic recording, the electromagnet produces a constant 
field, while the information signal is used to modulate the power of the laser beam. As the disk 
rotates under the focused spot, the pulsed laser beam creates a sequence of up/down domains along 

Coercivity of a magnetic medium is a measure of its resistance to magnetization reversal. For example, consider a thin 
film with perpendicular magnetic moment saturated in the +Z direction, as in Fig. 13a. A magnetic field applied along −Z will 
succeed in reversing the direction of magnetization only if the field is stronger than the coercivity of the film.
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the track. The Lorentz electron micrograph in Fig. 13b shows a number of domains recorded by 
laser power modulation (LPM). The domains are highly stable and may be read over and over again 
without significant degradation. If, however, the user decides to discard a recorded block and to use 
the space for new data, the LPM scheme does not allow direct overwrite; the system must erase the 
old data during one revolution and record the new data in a subsequent revolution cycle.

During erasure, the direction of the external field is reversed, so that up-magnetized domains in 
Fig. 13a now become the favored ones. Whereas writing is achieved with a modulated laser beam, 
in erasure the laser stays on for a relatively long period of time, erasing an entire sector. Selective 
erasure of individual domains is not practical, nor is it desired, since mass data storage systems 
generally deal with data at the level of blocks, which are recorded onto and read from individual 
sectors. Note that at least one revolution cycle elapses between the erasure of an old block and its 
replacement by a new block. The electromagnet therefore need not be capable of rapid switch-
ings. (When the disk rotates at 3600 rpm, for example, there is a period of 16 ms or so between 
successive switchings.) This kind of slow reversal allows the magnet to be large enough to cover 
all the tracks simultaneously, thereby eliminating the need for a moving magnet and an actuator. 
It also affords a relatively large gap between the disk and the magnet tip, which enables the use of 
double-sided disks and relaxes the mechanical tolerances of the system without overburdening the 
magnet’s power supply.

The obvious disadvantage of LPM is its lack of direct overwrite capability. A more subtle con-
cern is that it is perhaps unsuitable for the pulse width modulation (PWM) scheme of representing 
binary waveforms. Due to fluctuations in the laser power, spatial variations of material properties, 
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FIGURE 13 (a) Thermomagnetic recording process. The field of 
the electromagnet helps reverse the direction of magnetization in the area 
heated by the focused laser beam. (b) Lorentz micrograph of domains 
written thermomagnetically. The various tracks shown here were written at 
different laser powers, with power level decreasing from top to bottom.
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lack of perfect focusing and track-following, etc., the length of a recorded domain along the track 
may fluctuate in small but unpredictable ways. If the information is to be encoded in the distance 
between adjacent domain walls (i.e., PWM), then the LPM scheme of thermomagnetic writing may 
suffer from excessive domain-wall jitter. Laser power modulation works well, however, when the 
information is encoded in the position of domain centers [i.e., pulse position modulation (PPM)]. 
In general, PWM is superior to PPM in terms of the recording density, and methods that allow 
PWM are therefore preferred.

Recording by Magnetic Field Modulation

Another method of thermomagnetic recording is based on magnetic field modulation (MFM), and 
is depicted schematically in Fig. 14a. Here the laser power may be kept constant while the informa-
tion signal is used to modulate the direction of the magnetic field. Photomicrographs of typical 
domain patterns recorded in the MFM scheme are shown in Fig. 14b. Crescent-shaped domains are 
the hallmark of the field modulation technique. If one assumes (using a much simplified model) 
that the magnetization aligns itself with the applied field within a region whose temperature has 
passed a certain critical value, Tcrit, then one can explain the crescent shape of these domains in the 
following way: with the laser operating in the CW mode and the disk moving at constant velocity, 
temperature distribution in the magnetic medium assumes a steady-state profile, such as that in 
Fig. 14c. Of course, relative to the laser beam, the temperature profile is stationary, but in the frame 

FIGURE 14 (a) Thermomagnetic recording by magnetic field modulation. The power 
of the beam is kept constant, while the magnetic field direction is switched by the data signal. 
(b) Polarized-light microphotograph of recorded domains. (c) Computed isotherms produced by 
a CW laser beam, focused on the magnetic layer of a disk. The disk moves with constant velocity 
under the beam. The region inside the isotherm marked as Tcrit is above the critical temperature 
for writing, thus its magnetization aligns itself with the direction of the applied magnetic field. 
(d) Magnetization within the heated region (above Tcrit) follows the direction of the applied mag-
netic field, whose switchings occur at times tn. The resulting domains are crescent-shaped.
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of reference of the disk the profile moves along the track with the linear track velocity. The isotherm 
corresponding to Tcrit is identified as such in the figure; within this isotherm the magnetization always 
aligns itself with the applied field. A succession of critical isotherms along the track, each obtained 
at the particular instant of time when the magnetic field switches direction, is shown in Fig. 14d.
From this picture it is not difficult to see how the crescent-shaped domains form, and also to under-
stand the relation between the waveform that controls the magnet and the resulting domain pattern.

The advantages of magnetic field modulation recording are that (1) direct overwriting is pos-
sible, and (2) domain wall positions along the track, being rather insensitive to defocus and laser 
power fluctuations, are fairly accurately controlled by the timing of the magnetic field switchings. 
On the negative side, the magnet must now be small and fly close to the disk surface if it is to pro-
duce rapidly switched fields with a magnitude of a few hundred gauss. Systems that utilize magnetic 
field modulation often fly a small electromagnet on the opposite side of the disk from the optical 
stylus. Since mechanical tolerances are tight, this might compromise the removability of the disk 
in such systems. Moreover, the requirement of close proximity between the magnet and the storage 
medium dictates the use of single-sided disks in practice.

Thermal Optimization of the Media—Multilayer Structures

The thermal behavior of an optical disk can be modified and improved if the active layer is incor-
porated into a properly designed multilayer structure, such as that shown in Fig. 15. In addition to 
thermal engineering, multilayers allow protective mechanisms to be built around the active layer; 
they also enable the enhancement of the signal-to-noise ratio in readout. (This latter feature is fur-
ther explored in Sec. 35.7.) Multilayers are generally designed to optimize the absorption of light 
by creating an antireflection structure, whereby a good fraction of the incident optical power is 
absorbed in the active layer. Whereas the reflectivity of bare metal films is typically over 50 percent, 
a quadrilayer structure can easily reduce that to 20 percent or even less, if so desired. Multilayers can 
also be designed to control the flow of heat generated by the absorbed light. The aluminum reflect-
ing layer in the quadrilayer of Fig. 15, for instance, may be used as a heat sink for the magnetic layer, 
thus minimizing the undesirable effects of lateral heat diffusion within the magnetic medium.

Reflector
(aluminum ~50 nm)

Dielectric layers
(AIN or SiN)

~100 nm)

Protective
coating
(~10 m)

Magneto-
optic film
(~30 nm)

Substrate
(glass or
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1.2 mm)

FIGURE 15 Quadrilayer magneto-optical disk structure. 
This particular design is for use in the substrateincident mode, 
where the light goes through the substrate before reaching the MO 
layer. The thicknesses of the various layers can be optimized for 
enhancing the read signal, increasing the absorbed laser power, and 
controlling the thermal profile. Note in particular that the aluminum 
layer can play the dual roles of light reflector and heat sink.



 PRINCIPLES OF OPTICAL DISK DATA STORAGE  35.21

35.7 MAGNETO-OPTICAL READOUT

The information recorded on a perpendicularly magnetized medium may be read with the aid of 
the polar magneto-optical Kerr effect. When linearly polarized light is normally incident on a per-
pendicular magnetic medium, its plane of polarization undergoes a slight rotation upon reflection. 
This rotation of the plane of polarization, whose sense depends on the direction of magnetization in 
the medium, is known as the polar Kerr effect. The schematic representation of this phenomenon in 
Fig. 16 shows that if the polarization vector suffers a counterclockwise rotation upon reflection from 
an up-magnetized region, then the same vector will rotate clockwise when the magnetization is 
down. A magneto-optical medium is characterized in terms of its reflectivity R and its Kerr rotation 
angle k.  In MO readout, it is the sign of the rotation angle that carries the information about the 
state of magnetization of the medium, i.e., the recorded bit pattern.

The laser used for readout is usually the same as that used for recording, but its output power 
level is substantially reduced in order to avoid erasing (or otherwise obliterating) the previously 
recorded information. For instance, if the power of the write/erase beam is 20 mW, then for the 
read operation the beam is attenuated to about 3 or 4 mW. The same objective lens that focuses 
the write beam is now used to focus the read beam, creating a diffraction-limited spot for resolving 
the recorded marks. Whereas in writing the laser was pulsed to selectively reverse-magnetize small 
regions along the track, in readout it operates with constant power, i.e., in CW mode. Both up- and 
down-magnetized regions are read as the track passes under the focused light spot. The reflected 
beam, which is now polarization-modulated, goes back through the objective and becomes colli-
mated once again; its information content is subsequently decoded by polarization-sensitive optics, 
and the scanned pattern of magnetization is reproduced as an electronic signal.

In reality, the reflected state of polarization is not linear, but has a certain degree of ellipticity. One may consider the 
reflected polarization as consisting of two linear components: E|| which is parallel to the direction of incident polarization, 
and E  which is perpendicular to it. Now, if E|| is in phase with E , the net magneto-optic effect will be a pure rotation of the 
polarization vector. On the other hand, if E|| and E  are 90° out of phase, then the reflected polarization will be elliptical, with 
no rotation whatsoever. In practice, the phase difference between E|| and E is somewhere between 0° and 90°, resulting in a 
reflected beam which has some degree of ellipticity k, with the major axis of the polarization ellipse rotated by an angle 

k (relative to the incident E vector). By inserting a Soleil-Babinet compensator in the reflected beam’s path, one can change 
the phase relationship between E|| and E  in such a way as to eliminate the beam’s ellipticity; the emerging polarization then 
will become linear with an enhanced rotation angle. In this chapter, reference to Kerr angle implies the effective angle which 
includes the above correction for ellipticity.
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FIGURE 16 Schematic diagram describing the polar magneto-optical Kerr 
effect. Upon reflection from the surface of a perpendicularly magnetized medium, 
the polarization vector undergoes a rotation. The sense of rotation depends on the 
direction of magnetization M, and switches sign when M is reversed.
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FIGURE 17 Differential detection scheme utilizes a polarizing beam splitter and 
two photodetectors in order to convert the rotation of polarization to an electronic 
signal. E|| and E  are the reflected components of polarization; they are, respectively, 
parallel and perpendicular to the direction of incident polarization. The diagram in 
(b) shows the orientation of the PBS axes relative to the polarization vectors.

Differential Detection

Figure 17 shows the differential detection system that is the basis of magneto-optical readout in 
practically all erasable optical storage systems in use today. The beam splitter (BS) diverts half of 
the reflected beam away from the laser and into the detection module. The polarizing beam splitter 
(PBS) splits the beam into two parts, each carrying the projection of the incident polarization along 
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one axis of the PBS, as shown in Fig. 17b. The component of polarization along one of the axes goes 
straight through, while the component along the other axis splits off to the side. If, upon reflection 
from the disk, the polarization did not undergo any rotations whatsoever, then the beam entering 
the PBS would be polarized at 45° to the PBS axes, in which case it would split equally between the 
two branches. Under this condition, the two detectors generate identical signals and the differential 
signal S will be zero. Now, if the beam returns from the disk with its polarization rotated clockwise 
(rotation angle k), then detector 1 will receive more light than detector 2, and the differential 
signal will be positive. Similarly, a counterclockwise rotated beam entering the PBS will generate 
a negative S. The electronic signal S thus reproduces the pattern of magnetization along the 
scanned track.

Enhancement of the Signal-to-Noise Ratio by Multilayering

The materials suitable for optical recording presently have very small Kerr angles (typically 

k 0.5°), with the result that the signal S is correspondingly small. Multilayering schemes 
designed for the enhancement of the MO signal increase the interaction between the light and 
the magnetic medium by encapsulating a thin film of the MO material in an antireflection-type 
strucure. By providing a better index match between the MO film and its surroundings, and also 
by circulating the light through the MO film, multilayered structures manage to trap a large frac-
tion of the incident light within the magnetized medium, and thus increase the Kerr rotation 
angle. These efforts inevitably result in a reduced reflectivity, but since the important parameter is 
the magneto-optically generated component of polarization, E R ksin , it turns out that a net 
gain in the signal-to-noise ratio can be achieved by adopting the multilayering schemes. Reported 
enhancements of E  have been as large as a factor of 5. The popular quadrilayer structure 
depicted in Fig. 15 consists of a thin film of the MO material, sandwiched between two transpar-
ent dielectric layers, and capped off with a reflecting metallic layer. The entire structure, which is 
grown on a transparent substrate (through which light must travel to reach the MO film), is pro-
tected by a lacquer layer on the top. Numbers shown in Fig. 15 for the various layer thicknesses 
are representative of currently designed quadrilayers.

The advantage of sending the light through the substrate is that the front facet of the disk 
stays out of focus during operation. In this way, small dust particles, finger prints, and scratches 
will not block the passage of light, and their deteriorating effects on the quality of the focused 
spot (which affects the integrity of both writing and readout) will be minimized. Any optical 
storage medium designed for removability ought to have the kind of protection that illumina-
tion through the substrate provides. The note of caution with substrate-side illumination is 
that, if the objective is simply designed for focusing in the air, then the oblique rays will bend 
upon entering the substrate and deviate from nominal focus, causing severe aberrations (see 
Fig. 7c). Therefore, the substrate thickness and refractive index must be taken into account in 
the objective’s design.

Sources of Noise in Readout

The read signal is always accompanied by random noise. The effective noise amplitude (relative to 
the strength of the signal) ultimately limits the performance of any readout system. Part of the noise 
is thermal in nature, arising from random fluctuations of charge carriers within the photodiodes, 
resistors, and amplifiers. In principle, this source of noise can be mitigated by reducing the operat-
ing temperature of the device. However, since operating below the normal room temperature is not 
very practical for data storage systems, one must accept some of the limitations brought about by 
the thermal noise.

Another source of readout noise is shot noise which, in classical language, is due to random 
arrival of photons at the photodetector(s). This noise is a permanent companion of the read signal 
and cannot be eliminated, but the system parameters may be adjusted to minimize its effect. One 
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property of the shot noise is that its rms amplitude is proportional to the square root of the available 
optical power Po. Since the signal strength is directly proportional to Po, it is clear that by increasing 
the read power of the laser one can enhance the ratio of signal-to-shot noise. There is, however, an 
upper limit on the laser read power, since the rise in the temperature of the medium will force the 
decline of its magneto-optical response.

Other sources of noise in magneto-optical readout include the laser noise, the media noise, 
and the data noise. Laser noise is caused by amplitude/phase fluctuations of the electromagnetic 
radiation that comprises the optical beam. Media noise arises from variations in the reflectivity/
magneto-optic activity of the medium across its surface. The presence of grooves with rough 
and nonuniform edges can be a source of media noise as well. The term data noise refers to the 
unpredictable variations of the read signal arising from the imperfect shape/position of the 
recorded marks.

Figure 18 shows the various components of noise in a typical MO readout system, as detected by 
a spectrum analyzer. In (a) the light beam is blocked and the trace on the analyzer screen is solely 
due to the thermal noise. The trace in (b) where the beam reaches the detectors but the disk is sta-
tionary shows the combined effect of thermal, shot, and laser noise. Trace (c) corresponds to reading 
an erased track on a spinning disk; the noise here includes all of the above plus the media noise. 
When a single-frequency tone was recorded on the track and the read-back signal was fed to the 
spectrum analyzer, trace (d) was obtained. The narrow pulse at frequency f0 is the first harmonic of 
the recorded signal; the corresponding second harmonic appears at 2f0. The noise level in this case is 
somewhat greater than that from the same track before the data was recorded. This difference is due 
to “data noise” and arises from jitter and nonuniformity of the recorded marks.

A commonly used measure of performance for optical recording media is the carrier-to-noise 
ratio (CNR). This is the ratio of the signal amplitude at the carrier frequency f0 to the average level 
of noise. On a logarithmic scale the ratio is simply the difference between the two levels; in Fig. 18 
the CNR is 53 decibels (dB).

FIGURE 18 Spectra of the various noise components 
in magneto-optical readout.
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35.8  MATERIALS OF MAGNETO-OPTICAL RECORDING

Amorphous rare earth transition metal alloys are presently the media of choice for erasable opti-
cal data storage applications. The general formula for the composition of the alloy may be written 
(TbyGd1−y)x(FexCo1−z)1−x where terbium and gadolinium are the rare earth (RE) elements, while 
iron and cobalt are the transition metals (TM). In practice, the transition metals constitute roughly 
80 atomic percent of the alloy (i.e., x 0.2). In the transition metal subnetwork the fraction of 
cobalt is usually small, typically around 10 percent, and iron is the dominant element (z 0.9).
Similarly, in the rare earth subnetwork Tb is the main element (y 0.9) while the Gd content 
is small or it may even be absent in some cases. Since the rare earth elements are highly reactive, 
RE-TM films tend to have poor corrosion resistance and, therefore, require protective coatings. In 
a disk structure such as that shown in Fig. 15, the dielectric layers that enable optimization of the 
medium for the best optical/thermal behavior also perform the crucial task of protecting the MO 
layer from the environment.

The amorphous nature of the material allows its composition to be continuously varied until a 
number of desirable properties are achieved. (In other words, the fractions x, y, z of the various ele-
ments are not constrained by the rules of stoichiometry.) Disks with large surface areas are coated 
uniformly with thin films of these media, and, in contrast to polycrystalline films whose grains 
and grain boundaries scatter the light beam and cause noise, these amorphous films are smooth 
and substantially noise-free. The films are deposited either by sputtering from an alloy target, or 
by cosputtering from multiple elemental targets. In the latter case, the substrate moves under the 
various targets and the fraction of a given element in the alloy film is determined by the time spent 
under the target as well as the power applied to that target. Substrates are usually kept at a low tem-
perature (by water cooling, for instance) in order to reduce the mobility of deposited atoms and to 
inhibit crystal growth. Factors that affect the composition and short-range order of the deposited 
films include the type of the sputtering gas (argon, krypton, xenon, etc.) and its pressure during 
sputtering, the bias voltage applied to the substrate, deposition rate, nature of the substrate and its 
pretreatment, temperature of the substrate, etc.

Ferrimagnetism

The RE-TM alloys of interest in MO recording are ferrimagnetic, in the sense that the magnetiza-
tion of the TM subnetwork is antiparallel to that of the RE subnetwork. The net magnetic moment 
exhibited by the material is the vector sum of the two subnetwork magnetizations. Figure 19 shows 
a typical temperature dependence of RE and TM magnetic moments, as well as the net saturation 
moment of the material. The exchange coupling between the two magnetic subnetworks is strong 
enough to give them the same critical temperature Tc. At T 0 K the rare earth moment is stron-
ger than that of the transition metal, giving the material a net moment along the direction of the 
RE magnetization. As the temperature rises, thermal disorder competes with interatomic exchange 
forces that tend to align the individual atomic dipole moments. The decrease of MRE with the 
increasing temperature is faster than that of MTM, and the net moment Ms begins to approach zero. 
At the compensation point temperature Tcomp, the net moment vanishes. Between Tcomp and Tc the 
net moment is dominated by the TM subnetwork and the material is said to exhibit TM-rich behav-
ior (as opposed to when T < Tcomp, where it exhibits RE-rich behavior). At the Curie temperature, 
thermal agitations finally break the hold of the exchange forces on magnetic dipoles, and the mag-
netic order disappears. Beyond Tc the material is in the paramagnetic state.

The composition of the materials of magneto-optical storage is chosen so that Tcomp appears 
near the ambient temperature of Ta 300 K. Thus, under normal conditions, the net magnetization 
of the material is close to zero. Figure 20 shows a schematic drawing of the magnetization pattern in 
the cross section of a recorded track. Note that, although the net magnetization is nearly zero every-
where, the subnetwork moments have opposite orientations in adjacent domains. During readout 
the light from the GaAs laser interacts mainly with the transition metal subnetwork; thus, the MO 
Kerr signal is strong even though the net magnetization of the storage layer may be small. The magnetic 
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electrons of iron and cobalt are in the 3d electronic shell, which forms the outer layer of the ion 
once the 4s electrons have escaped into the sea of conduction electrons. The magnetic electrons of 
Tb and Gd, in contrast, are within the 4f shell, concealed by the 5s, 5p, and 5d shells, even after the 
6s electrons escape to the conduction band. A red or near-infrared photon is not energetic enough 
to penetrate the outer shell and interact with the magnetic 4f electrons, but it readily interacts with 
the exposed 3d electrons that constitute the magnetic moment of the TM subnetwork. It is for this 
reason that the MO Kerr signal in the visible and in the infrared is a probe of the state of magnetiza-
tion of the TM subnetwork.

Perpendicular Magnetic Anisotropy

An important property of amorphous RE-TM alloy films is that they possess perpendicular mag-
netic anisotropy. The magnetization in these films favors perpendicular orientation even though 
there is no discernible crystallinity or microstructure that might obviously be responsible for this 
behavior. It is generally believed that atomic short-range order, established in the deposition process 
and aided by the symmetry-breaking at the surface of the film, gives preference to perpendicular 
orientation. Unequivocal proof of this assertion, however, is not presently available due to a lack of 
high-resolution observation instruments.

The perpendicular magnetization of MO media is in sharp contrast to the in-plane ori-
entation of the magnetization vector in ordinary magnetic recording. In magnetic recording, 
the neighboring domains are magnetized in head-to-head fashion, which is an energetically 
unfavorable situation, since the domain walls are charged and highly unstable. The boundary 
between neighboring domains in fact breaks down into zigzags, vortices, and all manner of jag-
ged, uneven structure in an attempt to reduce the magnetostatic energy. In contrast, adjacent 
domains in MO media are highly stable, since the pattern of magnetization causes flux closure, 
which reduces the magnetostatic energy.

Recorded
track

Land
Groove

Substrate

Magnetic
film

RE
moment

TM
moment

FIGURE 20 Schematic diagram showing the 
pattern of magnetization along a recorded track. The 
rare earth and the transition metal moments couple 
antiferromagnetically, so that the net magnetization 
everywhere is small. However, since the read beam 
interacts mainly with the TM subnetwork, the read- 
out signal is not necessarily small.

FIGURE 19 Temperature dependence of mag-
netization in amorphous RE-TM films. The moments 
of RE and TM subnetworks decrease monotonically, 
until they both vanish at the critical (Curie) tem-
perature Tc. The net magnetization is the difference 
between the two subnetwork moments, and goes 
through zero at the compensation point Tcomp.
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Coercivity and the Hysteresis Loop

Typical hysteresis loops of an amorphous RE-TM thin film at various temperatures are shown in 
Fig. 21a. These loops, obtained with a vibrating sample magnetometer (VSM), show several char-
acteristics of the MO media. (The VSM applies a slowly varying magnetic field to the sample and 
measures its net magnetic moment as a function of the field.) The horizontal axis in Fig. 21a is the 
applied field, which varies from −12 to +12 kOe, while the vertical axis is the measured magnetic 
moment per unit volume (in CGS units of emu/cm3). The high degree of squareness of the loops 
signifies the following:

1. The remanent magnetization Mr is the same as the saturation magnetization Ms. Thus, once the 
sample is saturated with the help of an applied field, removing that field does not cause a reduc-
tion of the magnetic moment.

2. Transitions of the magnetization from up to down (or from down to up) are very sharp. The 
reverse field does not affect the magnetization until the critical value of Hc, the coercive field, is 
reached. At the coercive field the magnetization suddenly reverses direction, and saturation in 
the opposite direction is almost immediate.
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FIGURE 21 (a) Hysteresis loops of an amor-
phous Tb27(FeCo)73 film, measured by VSM at three 
different temperatures. The saturation moment Ms,
the remanent moment Mr, and the coercive field Hc
are identified for the loop measured at T 200 K. 
(b) Coercivity as function of temperature for the 
above sample. At the compensation temperature, 
Tcomp 400 K, the coercivity is infinite; it drops to zero 
at the Curie point Tc 450 K.
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The fact that Mr is very nearly equal to Ms in MO media is significant, since it means that 
the recorded domains remain fully saturated and exhibit maximum signal during readout. The 
coercivity Hc, in addition to being responsible for the stability of recorded domains, plays an 
important role in the processes of thermomagnetic recording and erasure. The coercivity at room 
temperature, being of the order of several thousand oersteds, prevents fields weaker than Hc from 
destroying (or disturbing) any recorded data. With the increasing temperature, the coercivity 
decreases and drops to zero at the Curie point, Tc. Figure 21b is the plot of Hc versus T for the 
same sample as in (a). Note that at the compensation point the coercivity goes to infinity, simply 
because the magnetization vanishes, and the external field does not see any magnetic moments to 
interact with. Above Tcomp the coercive field decreases monotonically, which explains the process 
of magnetization reversal during thermomagnetic recording: M switches sign once the coercivity 
drops below the level of the applied field.

35.9 CONCLUDING REMARKS

In this chapter we have reviewed the basic characteristics of optical disk data storage systems, 
with emphasis on magneto-optical recording. The goal has been to convey the important con-
cepts without getting distracted by secondary issues and less significant details. As a result, we 
have glossed over several interesting developments that have played a role in the technological 
evolution of optical data storage. In this final section some of these developments are briefly 
described.

Multiple-Track Read-Write with Diode Laser Arrays

It is possible in an optical disk system to use an array of lasers instead of just one, focus all the lasers 
simultaneously through the same objective lens, and perform parallel read/write/erase operations on 
multiple tracks. Since the individual lasers of an array can be modulated independently, the parallel 
channels thus obtained are totally independent of each other. In going from a single-channel drive 
to a multiple-channel one, the optics of the system (i.e., lenses, beam splitters, polarization-sensitive 
elements, focus and track servos, etc.) remain essentially the same; only the lasers and detectors 
proliferate in number. Parallel track operations boost the sustainable data rates in proportion to the 
number of channels used.

Diffractive Optics

The use of holographic optical elements (HOEs) to replace individual refractive optics is a prom-
ising new development. Diffractive optical elements are relatively easy to manufacture, they are 
lightweight and inexpensive, and can combine the functions of several elements on a single plate. 
These devices are therefore expected to help reduce the cost, size, and weight of optical heads, making 
optical drives more competitive in terms of price and performance.

An example of the application of HOEs in MO systems is shown in Fig. 22, which shows a 
reflection-type element consisting of four separate holograms. The light incident on the HOE at an 
angle of 60° has a p component which is the original polarization of the laser beam, and an s com-
ponent (parallel to the hologram’s grooves) which is the magneto-optically generated polarization 
at the disk. Nearly 90 percent of the s and 70 percent of the p polarization in this case are reflected 
from the HOE without suffering any diffraction (i.e., in the zero-order beam); they are captured 
in the differential detection module and yield the MO read signal. The four holograms deflect 
20 percent of the incident p-polarized light in the form of first-order diffracted beams and bring 
them to focus at four different spots on a multielement detector. The two small holograms in the 
middle, H3 and H4, focus their first-order beams on detectors P3 and P4, to generate the push-pull 
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tracking-error signal. The other two holograms, H1 and H2, send the diffracted beams to a four-
element detector in order to generate a focus-error signal based on the double knife-edge scheme. 
This HOE, therefore, combines the functions of beam splitting, masking, and focusing all in one 
compact unit.

Alternative Storage Media

The GaAlAs lasers of the present optical disk technology will likely be replaced in the future by light 
sources that emit in the blue end of the spectrum. Shorter wavelengths allow smaller marks to be 
recorded, and also enable the resolving of those marks in readout. Aside from the imposition of 
tighter tolerances on focusing and tracking servos, operation in the blue will require storage materials 

FIGURE 22 Application of holographic optical element (HOE) in 
optical recording. (a) Configuration of MO head using a polarization-
sensitive reflection HOE. (b) Geometrical relation between holograms and 
detectors. (After A. Ohba et al., SPIE Proceedings, Vol. 1078, 1989.)
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FIGURE 23 Direct overwrite in exchange-
coupled magnetic multilayers involves the formation 
of domains that do not extend through the entire 
thickness of the magnetic medium.

that are sensitive to the short wavelengths. The current favorites for erasable optical recording media, 
the amorphous RE-TM alloys, may not be suitable for readout in the blue, since their magneto-optic 
Kerr signal drops at short wavelengths. A new class of magnetic materials which holds promise for 
future-generation device applications is the class of TM/TM superlattice-type media. The best-known 
material in this class is the Co/Pt-layered structure which consists of very thin layers of cobalt (typically 
one or two atomic layers), separated by several atomic layers of platinum. These polycrystalline films 
which have very small crystallites (grain diameter 200 Å) are prepared either by electron beam 
evaporation or by sputtering. Co/Pt films have large perpendicular magnetic anisotropy, good signal-
to-noise ratios in the blue, sufficient sensitivity for write/erase operations, and are environmentally 
more stable than the RE-TM media.

Direct Overwrite in Magneto-Optical Systems

The problem of direct overwrite (DOW) on MO media has been the subject of extensive research in 
recent years. Some of the most promising solutions have been based on exchange-coupled magnetic 
multilayered structures. The basic idea of recording on exchange-coupled bilayers (or trilayers) is 
simple and involves the writing of reverse domains that do not extend through the entire film thick-
ness, such as those shown schematically in Fig. 23. Such domains are under pressure from their 
excessive wall energies to collapse and can readily be erased with a moderate-power laser pulse. 
DOW on exchange-coupled media is thus achieved by writing (i.e., creating reverse domains) with a 
high-power pulse, and erasing (i.e., eliminating domains) with a moderate-power pulse. An external 
magnetic field is usually required for writing on such media, but neither the direction nor the mag-
nitude of this field needs to change during erasure.

Optical recording is an evolving technology, which will undoubtedly see many innovations and 
improvements in the coming years. Some of the ideas and concepts described here will hopefully 
remain useful for some time to come, while others may have a shorter lifetime and limited usefulness. 
It is the author’s hope, however, that they all serve as a stepping-stone to profound new ideas.

35.10 FURTHER INFORMATION

Proceedings of the Optical Data Storage Conference are published annually by SPIE, the International 
Society for Optical Engineering. These proceedings document each year the latest developments in 
the field of optical recording.

Two other conferences in this field are the International Symposium on Optical Memory (ISOM) 
whose proceedings are published as a special issue of the Japanese Journal of Applied Physics, and the 
Magneto-Optical Recording International Symposium (MORIS) whose proceedings appear in a spe-
cial issue of the Journal of the Magnetics Society of Japan.
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Abbe sine condition, 29.36
and reflective and catadioptric objectives, 29.34
of stigmatic conditioning, 1.30–1.31, 17.10

Abbe-Porter experiments, 11.1
Abbe’s prisms, 19.3t, 19.7, 19.7f–19.8f
ABC model, of surface finish, 8.14–8.15
Abel transform, 8.13
Abelès method, 12.11–12.12
Aberrated wavefronts, 2.12, 2.13
Aberration(s):

in binary optics, 23.4–23.7, 23.5f, 23.6f
chromatic, 1.91–1.92
defined, 1.28
defocus as, 1.85–1.86
and general aspheres, 29.3
higher-order, 29.37
in instrumental optics, 1.85
of point images, 1.85–1.92, 1.88f
polarization, 15.35–15.37, 15.35f–15.37f
pupil, 1.76
ray, 1.87–1.88, 1.88f
Seidel, 29.38
spherical, 1.90, 29.7, 29.8, 29.15, 29.21, 

29.37, 29.38
and stop position, 1.92
and stop size, 1.92
in systems with rotational symmetry, 1.89–1.90
third-order, 1.90–1.91, 29.38
transverse primary chromatic, 17.22
wavefront, 1.86–1.88, 1.86f

Aberration theory, in gradient index optics, 24.3
Ablation, microscopes, 28.54

Absolute instruments, 1.29
Absorption cross section, 7.5
Absorption cross section, 31.3
Absorption index, 12.6
Acceptance (étendue), 1.22, 1.81, 13.7
Access time, for optical disk data, 35.6
Accessories, for cameras, 25.16–25.17, 25.18f
Achromatic doublets (lenses), 17.22–17.25, 

17.23f–17.25f, 17.24t
Achromatic retardation plates, 13.48–13.52, 

13.50f, 13.53t
Acousto-optic cells, 11.8–11.9, 11.9f
Acousto-optic correlators, 11.10–11.12, 11.11f
Acousto-optic scanners, 30.44–30.45
Active autofocus systems, for cameras, 

25.11–25.12, 25.12f
Active devices:

fabrication of, 21.14
for integrated optics, 21.25–21.31, 

21.26f–21.31f
Active layer removal, in PIC manufacturing, 21.19
Active pixel sensors, 26.2, 26.8–26.9, 26.8f
Active scanning, 30.4
Active-passive transitions, in PICs, 21.19–21.20
Addition, as analog operation, 11.2
Aerial cameras, 25.20
Aerial images, 1.26
Aerosol Polarimeter Sensor, 15.38
Affine transformations, 1.57
Afocal Cassegrain-Mersenne telescope 

objective, 29.9
Afocal Gregorian-Mersenne telescope 

objective, 29.12
Afocal lenses, 18.1–18.22

for binoculars, 18.13–18.14, 18.14f
catadioptric, 18.21–18.22, 18.22f
Galilean, 18.15–18.17, 18.15f, 18.16f
Gaussian, 1.45, 1.46f, 1.53–1.54, 1.53f, 1.54f

The combined index for all five volumes can be downloaded from www.HandbookofOpticsOnline.com.
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Afocal lenses (Cont.):
Gaussian analysis, 18.4–18.6

and focusing lenses, 18.2–18.4, 18.3f, 18.5f
and optical invariant, 18.7
subjective aspects of, 18.6, 18.7f

Keplerian, 18.7–18.14
and eye relief manipulation, 18.8–18.10, 

18.9f, 18.10f
field-of-view limitations in, 18.11
finite conjugate afocal relays, 

18.11–18.12, 18.12f
thin-lens model of, 18.7–18.8, 18.8f

paraxial matrix methods, 1.70
for periscopes, 18.19, 18.19f
reflecting, 18.19–18.21, 18.20f, 18.21f
in relay trains, 18.17–18.19, 18.17f, 18.18f
for scanners, 18.13, 18.13f
for telescopes, 18.10–18.11, 18.11f

Afocal magnification, 18.5–18.6
Afocal objectives, 29.9, 29.12, 29.29–29.30
Agile beam steering, 30.51–30.63

with decentered-lens and mircolens arrays, 
30.57–30.60, 30.58f–30.60f, 30.62–30.63

with digital micromirror devices, 30.60–30.61
with gimbal-less two-axis scanning 

micromirrors, 30.61–30.62, 30.62f
phased-array, 30.52–30.57, 30.53f,

30.62–30.63
Ahrens method of spar cutting, 13.12
Ahrens Nicol prisms, 13.16f, 13.17
Ahrens prisms, 13.14
Aircraft, synthetic aperture radar for, 

11.6–11.7, 11.7f
Airy disks:

in confocal microscopy, 28.50
defined, 3.26
of DIC microscopes, 28.39
of microscopes, 28.17–28.19, 28.18f, 28.19f
of solid-state cameras, 26.15
and vector diffraction, 3.33

Airy equation, 12.10
Airy pattern, 17.38
Airy-Drude formula, 16.5
Altenhof objectives, 29.32–29.33
Alternative Paul three-mirror objective, 29.28
Alvarez plates, 22.16
Alvarez-Humphrey plates, 22.37
Amici lenses, 17.10, 17.10f
Amici prisms, 19.3t, 19.11, 19.12f, 20.6f
Amplitude, of waves, 2.4, 2.5, 12.5

Amplitude division, interference by, 
2.14, 2.19–2.28

and extended sources, 2.20
and Fizeau interferometers, 2.24–2.26, 2.25f
and fringes of equal inclination, 2.20–2.22, 

2.21f, 2.22f
and fringes of equal thickness, 2.22–2.24, 2.23f
and Michelson interferometers, 2.26–2.28, 

2.26f–2.27f
plane-parallel plate, 2.19, 2.20f, 2.30–2.33, 

2.30f, 2.32f, 2.33f
thin films, 2.24

Amplitude penetration depth, 12.5
Amplitude reflection coefficients, Fresnel, 

12.7–12.8, 12.10
Amplitude scattering matrix, 7.10, 7.13

(See also Jones matrix)
Amplitude transmission coefficients, Fresnel, 12.8
Amplitude-shift-keyed (ASK) transmission, 21.30
Analog optical signal and image processing, 

11.1–11.20
Fourier transforms in, 11.3–11.5, 11.3f, 11.5f
and fundamental analog operations, 11.2–11.3
incoherent processing, 11.17–11.20, 

11.18f, 11.19f
and spatial filtering, 11.5–11.6, 11.6f
of synthetic aperture radar data, 11.6–11.8, 

11.7f–11.8f
of temporal signals, 11.8–11.12, 11.9f–11.11f
of two-dimensional images, 

11.12–11.17, 11.13f
Analog transmission, 21.32–21.34, 21.33f, 21.34f
Analytical signal representation, in coherence 

theory, 5.2–5.3
Analyzed states, of polarizers, 15.19
Analyzer vectors, 15.11
Anamorphic afocal attachments 

(anamorphosers), 18.16–18.17, 18.16f
Anamorphic error control, 30.49, 30.50
Anastigmatic (term), 29.36
Anastigmatic objectives, 29.12–29.13
Angle characteristic function, 1.14–1.15, 

1.15f, 1.17
Angle of incidence, 1.23, 1.39, 13.48
Angle-point characteristic function, 1.16, 1.17
Angular change, of optical beams, 30.5
Angular correction function, 5.6, 5.7f
Angular magnification, 1.52, 1.78, 18.4
Angular scan, 30.28–30.29
Angular spectrum representation, 5.14–5.15, 5.14f
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Anisotropy, perpendicular magnetic, 35.26
Annealed proton exchange (APE) process:

for fiber optic gyroscopes, 21.35, 21.36, 21.36t
for LiNbO3 waveguides, 21.16–21.17

Anomalous diffraction, 7.5, 7.6f
Antinodal points, of lens systems, 17.7
Antiprincipal points, of lens systems, 17.7
Aperture(s), 1.74–1.76, 1.75f

circular
diffraction of light from, 3.6–3.7, 3.6f, 3.7f,

3.9–3.11
Fraunhofer patterns for, 3.25, 3.26, 3.27f

double-slit, 3.26–3.28, 3.27f, 3.28f
image space numerical, 1.79
linear, 30.54
rectangular, 3.19–3.20

Fraunhofer patterns for, 3.25, 3.26
Fresnel diffraction from, 3.19–3.20, 3.20f

uniformly illuminated, 30.9, 30.10, 30.10f
Aperture, numerical, 1.79, 17.9
Aperture stops, 1.74, 1.75f, 17.8, 29.5, 29.36
Aperture-scanning microscopy, 28.53–28.54
Aplanatic (term), 29.36
Aplanatic lenses, 17.5, 17.11–17.12, 17.11f
Aplanatic objectives, 29.11–29.13
Arbitrary phase profiles, 23.8
Arbitrary systems, paraxial matrix methods 

for, 1.67
Area-solid-angle-product, 1.22

(See also Étendue)
Arrayed waveguide gratings (AWGs), 21.24
Aspherical surfaces:

and axial gradients, 24.3
and reflective/catadioptric objectives, 29.3
in systems of revolution, 1.35

Astigmatic difference (term), 1.43
Astigmatism, 1.90, 1.91, 29.34, 29.37
Astronomical telescopes, 18.10
Astronomy, radio, 5.23
Atmospheric particles, scattering by, 7.2
Atoms:

electronic structure of, 10.12–10.16, 
10.13f–10.15f

multielectron, 10.10–10.11
one-electron, 10.7–10.9, 10.8f, 10.9f
spectra of, 10.3

Augmented resolution, 30.12–30.14, 30.13f
Autofocus, of cameras, 25.11–25.15, 

25.12f–25.15f
Autofocus SLRs, 25.12–25.14, 25.13f

Automatic focusing, optical disks and, 
35.12–35.14, 35.13f

Automatic tracking, on optical disks, 
35.14–35.17, 35.14f–35.16f

Average degree of polarization (average DoP), 
14.32–14.33

Axial astigmatism, 29.34, 29.37
Axial color, 1.91, 29.9, 29.37
Axial gradient lenses, 24.3–24.5, 24.4f
Axial image point, 1.27
Axial (longitudinal) magnification, 1.28, 

1.52, 17.5
Axicons, 11.7, 11.7f
Axis wander, of prisms, 13.15
AxoScan Mueller matrix polarimeters, 15.33
Azimuth, 15.10, 16.16

Babinet compensators, 13.53–13.55, 13.54f
Babinet principle, 3.9–3.11, 3.10f, 3.11f, 3.13
Babinet-Soleil compensators, 13.55–13.56, 13.55f
Back focal length (BFL), of camera lenses, 

27.2, 27.3f–27.5f, 27.7f–27.16f,
27.18f–27.22f, 27.25

Backscatter and backscattering:
coherent, 9.14–9.15, 9.14f
enhanced, 6.5–6.7, 6.5f

Baker relays, 18.18, 18.18f
Baker super-Schmidt objective, 29.21
Baker-Nunn objective, 29.22
Balmer -spectra, 10.7–10.8, 10.8f
Balmer -transition, 10.9
Barrel distortion, 1.91
Barrel length (BRL), of camera lenses, 27.3f–27.5f,

27.7f–27.16f, 27.18f–27.22f, 27.25
Beam deviation and displacement, 19.2
Beam diffusers, 23.13
Beam propagation method (BPM), 21.8
Beam shapers and shaping:

in binary optics, 23.13
for optical disks, 35.8, 35.9f, 35.10f

Beam splitters, polarizing, 13.41–13.42
Beam steering (see Agile beam steering)
Beam-splitter gratings, 23.11, 23.12

Dammann approach, for binary gratings, 23.12
Beam-splitter prisms, 13.18–13.22

Foster, 13.7, 13.18f, 13.21–13.22
Glan-Thompson, 13.18f, 13.22
Rochon, 13.7, 13.18–13.21, 13.18f, 13.24
Sénarmont, 13.7, 13.18, 13.18f, 13.21
Wollaston, 13.7, 13.18, 13.18f, 13.21, 13.24
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Becke line, 28.27
Beilby-layer polarizers, 13.28
Benes architecture, for switches, 21.34–21.35
Berremann calculus, 15.32
Bertrand lenses, 28.8, 28.44f
Bertrand-type Feussner prisms, 13.23
Bessel functions, 7.12, 7.14–7.15, 17.38, 28.17
Bidirectional reflectance distribution function 

(BRDF), 8.4, 15.38–15.39, 15.38f–15.40f
Bifocal lenses, 23.12, 23.12f
Billet’s split lens, 2.16, 2.17f
Binary optics, 23.1–23.17

fabrication of
mask layout, 23.14–23.16, 23.15f, 23.15t
micromachining techniques, 23.16, 

23.16f, 23.17
and geometrical optics, 23.2–23.9

aberration correction, 23.4–23.7, 
23.5f, 23.6f

analytical models, 23.2–23.4, 23.6
micro-optics, 23.7–23.8, 23.7f–23.8f
optical performance, 23.8–23.9, 

23.9f, 23.10t
and scalar diffraction theory, 23.10–23.13, 

23.11t, 23.12f, 23.13f
and vector diffraction theory, 

23.13–23.14, 23.14f
Binoculars, 18.13–18.14, 18.14f
Binomial vectors, of space curves, 1.19
Biotar lenses, 17.28
Biplates, 13.56
Birefringence, 15.6, 15.41
Bistatic radar cross-section (RCS), in surface 

scattering, 8.3, 8.4
Blocks (optical disk data), 35.6–35.7
Bohr frequency condition, 10.4
Bohr’s theory of hydrogen, 10.3
Born series, 9.4
Born-Oppenheimer approximation, 10.19, 

10.20, 10.22
Bound modes, of optical waveguides, 21.3
Brace half-shade plates, 13.57
Bragg cell spectrum analyzers, 11.9–11.10, 11.10f
Bragg cells, 11.11–11.12, 11.19
Bragg diffraction, 11.9, 11.9f
Bragg reflection filters, 21.30
Bragg reflectors, 21.8, 21.30
Bragg regime, 30.39–30.41, 30.41f, 30.42f
Brashear-Hastings prisms, 19.3t, 19.25, 19.25f
Bravais biplates, 13.56

Brewster angle:
and Airy equation, 12.10
defined, 12.12
and extinction ratio, 12.18, 12.22, 12.22f,

12.23f, 12.24
and polarization, 12.15

Brewster angle prisms, 13.13
Brewster angle reflection polarizers, 12.16–12.18, 

12.16f, 12.17f, 13.34–13.37, 13.34t–13.36t
Brewster angle transmission polarizers, 

12.18–12.24, 12.19t–12.20t, 12.21f,
13.37–13.39, 13.38t–13.39t

Bright field microscopy, 28.25, 28.27–28.28, 28.27f
Brillouin scattering, 31.30
Broadening, of lineshapes, 10.7
Brownian fractals, 8.9, 8.17
Brownian movement, 28.28
Buckbee Mears wire-grid polarizers, 13.31
Bunsen-Kirchhoff spectrometers, 20.5f
Butterfly scanners, 30.50f, 30.51

Cable television (CATV), 21.2, 21.32–21.34
Caged compounds, in microscopy, 28.55
Calcite:

double refraction in, 13.2–13.6, 13.2f–13.3f,
13.4t–13.5t

Feussner prisms of, 13.23
Rochon prisms of, 13.20

Camera formula, for solid-state cameras, 26.13
Camera lenses:

classification system for, 27.17, 27.23t, 27.24
design limitations of, 27.1–27.2
fish-eye, 27.6
inverted telephoto, 27.2, 27.6, 27.7f–27.14f

extreme wide-angle, 27.6, 27.13f, 27.14f
highly complex extreme speed, 27.6, 

27.9f–27.12f
very compact moderate speed, 27.6, 

27.7f–27.8f
SLR normal lenses, 27.2, 27.3f–27.4f
telephoto lenses, 27.6, 27.13, 27.15f–27.16f
wide-angle lenses, 27.2, 27.5f
zoom lenses, 27.17, 27.20f–27.22f

Cameras, 25.3–25.26
accessories for, 25.16, 25.17, 25.17f
aerial, 25.20
and autoexposure, 25.10–25.11
and autofocus, 25.11–25.15, 25.12f–25.15f
characteristics of, 25.3–25.4
clandestine, 25.21
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Cameras (Cont.):
critical features of, 25.8, 25.9f
display types, 25.6–25.7
endoscopic, 25.21, 25.21f
features of, 25.8, 25.18, 25.19f
film for, 25.5, 25.6
and flash, 25.16, 25.17f
formats for, 25.18
high-speed, 25.21–25.22, 25.22f
and image, 25.5
images from, 25.7
and instant pictures, 25.8
large-format, 25.18–25.20
and red eye, 25.16
and resolution of fine detail, 25.5–25.6, 25.6f
sewer, 25.22–25.23
solid-state (see Solid-state cameras)
stereo, 25.23–25.24, 25.23f
streak, 25.24, 25.24f
thermal imaging, 25.25
and time lag, 25.8–25.9, 25.9f
underwater, 25.25
video, 25.7–25.8
view, 25.18–25.20, 25.19f
for wide-angle photography, 25.25, 25.26f

Canon EOS A2E camera, 25.14f, 25.15, 
25.16, 25.15f

Cantor sets, 8.9
Cardinal points, of lenses, 1.44, 17.7
Carl Zeiss prism system, 19.3t, 19.16, 19.16f
Carlisle objectives, 29.8
Carlson, Chester, 34.1
Carrier effects, in integrated optics, 21.10–21.12
Carrier-to-noise ratio (CNR), 35.24
Cartesian coordinates, 1.20, 1.21
Cassegrain objectives, 29.6, 29.7

afocal Cassegrain-Mersenne telescope, 29.9
dual magnification, 29.9–29.10
with field corrector and spherical secondary, 

29.8–29.9
Houghton-Cassegrain, 29.22–29.23
Mangin-Cassegrain with correctors, 29.24
reflective Schmidt-Cassegrain, 29.17
Schmidt-Cassegrain, 29.16–29.17
Schmidt-meniscus Cassegrain, 29.21
with Schwarzschild relay, 29.32
solid Makutsov-Cassegrain, 29.19
spherical-primary, with reflective field 

corrector, 29.9
three-mirror, 29.30

Cassegrainian telescopes, 18.21
Catadioptric (term), 29.37
Catadioptric Herschelian objective, 29.27
Catadioptric lenses:

afocal, 18.21–18.22, 18.22f
systems of, 1.9

Catadioptric objectives (see Reflective and 
catadioptric objectives)

Cathode ray tube (CRT) monitors, 25.6–25.7
Cathode-ray tubes (CRTs), 30.4, 30.25–30.26
Catoptric systems, 1.9
Caustics, ray densities and, 1.88
Center, of afocal lens, 1.54
Channels, for wave propagation, 9.16
Characteristic functions (geometrical optics), 

1.13–1.18
angle characteristic function, 1.14–1.15, 

1.15f, 1.17
angle-point characteristic function, 1.16, 1.17
and expansions about rays, 1.16
and expansions about the axis, 1.16–1.17
ideal, 1.17–1.18
mixed, 1.13
paraxial forms of, 1.17
and paraxial matrices, 1.74
point characteristic function, 1.14
point eikonal, 1.14, 1.17
point-angle characteristic function, 1.15–1.17

Charge injection devices (CIDs), 26.6–26.7, 
26.6f–26.8f

Charge spectrographs, 34.8, 34.8f
Charge-coupled devices (CCDs), 25.7, 

26.3–26.5, 26.4f–26.6f
Charged area development (CAD), 

in xerographic systems, 34.4
Chebyshev polynomials, 7.15
Chemical beam epitaxy (CBE), 21.17, 21.18
Chief rays, 1.75, 17.8, 29.20, 29.37
Chiolite, 13.42
Chiral particles, scattering by, 7.2
Cholesky decomposition, 14.41, 14.42
Chromatic aberration correction, 

23.5–23.6, 23.6f
Chromatic aberrations, 1.91–1.92
Chromatism, of axial gradients, 24.3–24.6
Circle (Zernike) polynomials, 1.90, 23.3
Circuits, in integrated optics, 21.21–21.31

for active devices, 21.25–21.31, 21.26f–21.31f
for passive devices, 21.21–21.25, 21.22f–21.25f

Circular analyzers, of polarized light, 15.18, 15.19
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Circular apertures:
diffraction of light from, 3.6–3.7, 3.6f,

3.7f, 3.9–3.11
Fraunhofer patterns for, 3.25, 3.26, 3.27f

Circular polarizers, 15.17–15.19
Circular scan, 30.16, 30.18f
Clandestine cameras, 25.21
Clausius-Mosotti theory, 7.16
Cleaning, in xerographic systems, 34.10
Clebsch-Gordon coefficients, 31.17
Coated spheres, scattering by, 7.14
Coddington’s equations, 1.44
Coefficient of finesse (interference), 2.31
Coercivity, of optical disk data, 35.17n, 35.27, 

35.27f, 35.28
Cogging, of streak cameras, 25.24
Coherence, 5.1–5.23, 6.2–6.13

analytical signal representation, 5.2–5.3
applications of, 5.22–5.23
in binary optics, 23.7, 23.8f
classical, 5.1–5.2
coherence area, 5.3
and coherence functions, 5.4–5.9

angular correction function, 5.6, 5.7f
complex degree of coherence, 5.4
complex degree of spectral coherence, 5.5
cross-spectral density function, 5.5
efficient sampling of, 6.10–6.12, 6.11f
higher-order functions, 5.8–5.9
intensity, 5.7
mutual coherence function, 5.4
radiance, 5.8
radiant emittance, 5.7–5.8
radiant intensity, 5.8
spectrum and normalized spectrum, 5.5–5.6

coherence time, 5.3
complex degree of, 2.37, 5.4
and enhanced backscatter, 6.5–6.7, 6.5f
and general linear systems, 6.3–6.4
and image formation, 6.9–6.10, 6.9f
and interference, 2.13, 2.36–2.42

laser sources, 2.41–2.42, 2.42f
Michelson stellar interferometers, 

2.40–2.41, 2.40f
mutual coherence function, 2.36–2.38, 2.36f
spatial coherence, 2.38–2.40, 2.38f–2.39f
temporal coherence, 2.41

and Koehler-illumination, 6.12–6.13, 6.12f
and laser modes, 5.23
and Lau effect, 6.7–6.8, 6.8f
of light sources, 5.9–5.13

Coherence (Cont.):
and Lukosz-type super-resolving systems, 

6.9–6.10, 6.9f
measurements of coherence, 5.3–5.4
and noncosmological red shift, 5.23
and optical image enhancement, 

11.14–11.17
partial, 2.38
and polarization effects, 5.22
propagation in, 5.13–5.19, 5.14f–5.16f, 6.4
and radio astronomy, 5.23
scalar field amplitude, 5.3
spatial coherence, 5.3
and speckle, 5.22
and spectral representation, 5.22
and spectrum of light, 5.19–5.22, 5.20f
and statistical radiometry, 5.22
temporal, 2.41, 5.3
time averages in, 6.4–6.5

Coherence area, 5.3
Coherence length, 2.19
Coherence time, 5.3
Coherence volume, 5.3
Coherency matrix, 12.29–12.30, 14.41
Coherent arrays, scattering by, 7.2–7.3
Coherent backscattering, 9.14–9.15, 9.14f
Coherent mode representation (spectrum 

of light), 5.20–5.21
Coherent optical image enhancement, 

11.14–11.17
Coherent radiation, 30.2, 30.25–30.26
Coherent scattering, 7.3, 9.2, 9.3, 9.5–9.7, 9.6f
Collimation, 35.8, 35.9f, 35.10f
Collineation, 1.56–1.63

of conjugate lines, 1.59
of conjugate planes, 1.58–1.59
coordinate systems and degrees of freedom 

for, 1.57
equations of, 1.57–1.58
general properties of, 1.62–1.63
matrix representation of, 1.59–1.60
of rotationally symmetric lenses, 

1.60–1.62, 1.62f
Colocalization, single molecule 

high-resolution, 28.23
Color:

axial, 1.91, 29.9, 29.37
in human visual system, 26.18
lateral, 1.91–1.92
in xerographic systems, 34.11–34.12, 

34.11f–34.13f
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Color filter arrays (CFAs), in solid-state 
cameras, 26.18

Coma, 1.31, 24.7, 29.37
Coming’s glass molding process, 22.9, 22.9f
Compact disks (CDs), 35.1–35.2, 35.5n
Compensators, 13.53–13.56, 13.54f,

13.55f, 28.38
Complementary aperture screens, 3.9–3.11
Complementary metal-oxide semiconductors 

(CMOSs), 26.8–26.9
Complex amplitude, 2.4, 2.5, 11.2
Complex degree of coherence, 2.37, 5.4
Complex degree of spectral coherence, 5.5
Complex refractive index, 7.12–7.13, 12.5, 12.6
Composite retardation plates, 13.52, 13.53
Compound microscopes, 17.10
Compound mirror optics configurations, 

30.15–30.16, 30.15f
Conductance channels, in speckle patterns, 9.16
Conductive magnetic brush (CMB), 34.6
Conductivity, diffraction and, 3.32–3.33
Configurational coordinate model, 

of lineshapes, 10.22, 10.23f
Confocal Cassegrainians (telescopes), 18.21
Confocal microscopy, 28.49–28.51, 28.49f, 28.51f
Confocal parabolas, 18.20, 18.20f, 18.21
Conic constant (term), 1.34, 29.37
Conic mirrors, 29.3f, 29.4f
Conical surfaces, in systems of revolution, 

1.34–1.35
Conjugate lines, collineation of, 1.59
Conjugate matrices, 1.68–1.71, 1.73
Conjugate planes:

collineation of, 1.58–1.59
in microscopes, 28.4–28.5

Conscopic imaging, 28.8–28.9
Conservation of étendue, law of, 1.22
Constructive interference, 2.7
Continuous wave (CW) dye lasers, 10.8
Contrast, in microscopy:

bright field microscopy, 28.25, 
28.27–28.28, 28.27f

dark field microscopy, 28.28
Hoffman modulation contrast, 28.29
interference microscopy, 28.33–28.44, 28.35f,

28.37f, 28.38f, 28.40f, 28.42f, 28.43f
and modulation transfer function, 

28.24–28.25, 28.25f, 28.26f
phase contrast, 28.28–28.29, 28.29f
SSEE microscopy, 28.29, 28.30, 

28.30f–28.33f, 28.33

Contrast transfer function (CTF), 4.7–4.8, 
4.8f, 28.24

Cook objectives, 29.31
Coordinate systems:

for aberrations of point images, 1.86
for collineation, 1.57
for Fresnel equations, 12.6–12.7, 12.7f
left-handed, 12.6
for Mueller matrices, 14.19–14.20

Cornu’s spiral, 3.16–3.19, 3.18f
Corotron, in xerographic systems, 34.2, 34.3f
Correctors, for reflective and catadioptric 

objectives:
aplanatic, anastigmatic Schwarzschild with 

aspheric corrector plate, 29.13
Cassegrain with spherical secondary and 

field corrector, 29.8–29.9
Mangin-Cassegrain with correctors, 29.24
Ritchey-Chretien telescope with two-lens 

corrector, 29.8
spherical-primary Cassegrain with reflective 

field corrector, 29.9
three-lens prime focus corrector, 29.10

Correlated double sampling (CDS), 26.11
Correlators, acousto-optic, 11.10–11.12, 11.11f
Cosine condition, of stigmatic imaging, 

1.30, 1.30f
Cosine-to-the-fourth approximation, 1.81
Cotton polarizers, 13.21
Couder objective, 29.12
Coulomb repulsion, 10.10, 10.12, 10.16
Coupled-dipole method, 7.15
Couple-mode theory, in integrated optics, 21.8
Coverslip correction, 28.10–28.11, 28.12f, 28.13
Critical illumination, 28.7
Cross-spectral density function, 5.5, 5.9, 

5.10, 5.16
Crystalline-quartz retardation plates, 

13.46–13.48
Curie temperature, 35.25
Curvature:

of space curves, 1.18–1.19
vertex (paraxial), 1.32–1.33

Curved surfaces, radial gradients with, 24.7
Cylinders, scattering by, 7.14
Cylindrical lenses, 22.45, 22.46f
Cylindrical wavefronts, 3.13–3.21, 3.14f

and Cornu’s spiral, 3.16–3.19, 3.18f, 3.19t
and opaque strip construction, 3.20–3.21
from rectangular apertures, 3.19–3.20
from straight edges, 3.14–3.16
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Czerny-Turner monochromators, 31.6
Czerny-Turner mounts, 20.8f, 20.14t

Dall-Kirkham objective, 29.8
Dammann approach, for binary gratings, 23.12
Dark decay, of xerographic photoreceptors, 34.3
Dark field microscopy, 28.28
Data noise, 35.24
Data rates, 30.6–30.8
Data-reduction equations, polarimetric, 

15.14–15.15
Decentered lens arrays, for agile beam 

steering, 30.57–30.60, 30.58f–30.60f,
30.62–30.63

Decomposition:
of conjugate matrices, 1.71–1.72
of Mueller matrices, 14.33

Cholesky decomposition, 14.41, 14.42
polar decomposition, 14.39–14.40
SVD, 15.25–15.27

Weyl’s plane-wave, 3.23
Deep reactive ion etching (DRIE), 22.7, 

22.23, 30.62
Deep x-ray lithography (DXRL), 22.7
Defocus, 1.82, 1.83, 1.83f, 1.85–1.86, 1.90, 1.91
Degenerate integrated structures, 21.12
Degree of circular polarization (DoCP), 15.10
Degree of coherence, 2.37
Degree of linear polarization (DoLP), 15.10
Degree of polarization (DoP), 

12.14–12.15, 15.9
Degree of polarization (DoP) surfaces 

and maps, 14.31–14.32, 14.32f
Density (coherency) matrix, 

12.29–12.30, 14.41
Depolarization:

defined, 15.7
and diagonal depolarizers, 14.30
Mueller matrices for, 14.30–14.39

depolarization index, 14.32
generators of, 14.33–14.39, 14.36f, 14.37f

and volume scattering, 9.16–9.17, 9.17f
Depolarization index, 14.32
Depth of field, 1.84, 17.37, 28.22–28.23
Depth of focus, 1.84, 17.37, 17.37f, 28.22
Derivative matrices, 1.73
Derotation, of polygon scanners, 30.35–30.36
Destructive interference, 2.7
Development, in xerographic systems, 

34.5–34.10, 34.5f–34.9f

Diagonal depolarizers, 14.30
Dialytes (lenses), 17.25, 17.25f
Diamagnification, 1.23
Diamond turning, 22.15–22.18, 22.16t,

22.17f, 22.18f
Diattenuation and diattenuators, 14.6, 15.7

linear, 14.8, 14.17
Mueller matrices for, 14.16–14.19, 14.16f

Dichroic polarizers, 13.24–13.33, 
13.26f, 13.27f

coatings as, 13.28
measuring polarization of, 13.33
pyrolytic-graphite polarizers, 

13.28–13.29, 13.29f
sheet polarizers, 13.25–13.28

Dichroism, 15.19, 15.41, 31.17, 31.20, 31.21
Dielectric impermeability, 21.9
Differential detection, of optical disk data, 

35.22–35.23, 35.22f
Differential geometry, of rays, 1.19–1.21
Differential scattering cross-sections (DSCs), 

7.8, 8.3, 8.4
Differential-interference contrast (DIC) 

microscopy, 28.27, 28.39–28.41, 28.40f
Differential-phase-shift-keyed (DPSK) 

transmission, 21.30, 21.32
Diffraction, 3.2–3.3, 3.3f

anomalous, 7.5, 7.6f
Bragg, 11.9, 11.9f
from circular apertures, 3.6–3.7, 3.6f, 3.7f
and Cornu’s spiral, 3.16–3.17
of cylindrical wavefronts, 3.13–3.21, 3.14f

Cornu’s spiral, 3.16–3.19, 3.18f, 3.19t
opaque strip construction, 3.20–3.21, 3.21f
from rectangular apertures, 3.19–3.20, 3.20f
from straight edge, 3.14–3.16, 3.14f, 3.15f

definition of, 3.6
from disks, 3.7–3.8
Fraunhofer, 3.24–3.28, 3.24f–3.26f

Airy diffraction as, 28.17
conducting screens for, 3.33f
and gratings, 20.3

Fresnel-Kirchhoff formula, 3.21, 3.22, 3.32
Green’s function, 3.22–3.23
Huygens-Fresnel construction, 3.4–3.13

Babinet principle, 3.9–3.11, 3.10f, 3.11f
circular apertures and disks, light from, 

3.6–3.9, 3.6f–3.9f
Fresnel zones, 3.4–3.6
zone plates, 3.11–3.13
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Diffraction (Cont.):
mathematical theory of, 3.21–3.29

diffraction grating, 3.28–3.29, 3.29f, 3.30f
Fraunhofer diffraction, 3.24–3.28
Fresnel and Fraunhofer approximations, 

3.23–3.24
Rayleigh-Sommerfeld, 3.9, 3.10, 3.23, 3.29
and resolution of microscopes, 28.19–28.22, 

28.20f, 28.21f
scalar diffraction theory, 23.10–23.13, 23.11t,

23.12f, 23.13f
by spheres, 7.4
stationary phase approximation for, 3.29, 

3.31–3.32
vector, 3.32–3.37, 3.32f–3.37f,

23.13–23.14, 23.14f
Diffraction efficiency, 23.9, 23.9f, 23.10t
Diffraction gratings, 3.28–3.29, 3.29f, 3.30f, 20.4

arrayed waveguide, 21.24
beam-splitter, 23.11, 23.12
binary, 23.13
dispersive gratings vs., 20.3–20.4
interference, 33.14
multiple beam, 2.28–2.29, 2.29f, 2.30f
for PICs, 21.19
as polarizers, 13.30–13.33

Diffraction patterns, three-dimensional, 
28.19–28.22

Diffraction-limited depth of focus, 28.22
Diffraction-limited lenses, 17.37–17.39, 

17.41f–17.42f
Diffraction-type polarizers, 13.30–13.33
Diffractive optics, 33.13, 35.28, 35.28f, 35.29
Diffusers, 6.5, 6.5f, 6.7, 23.13
Diffusion approximation, of radiative 

transfer, 9.11–9.12
Digital holographic microscopy (DHM), 28.42, 

28.43
Digital light processing (DLP), 30.3, 30.60
Digital micromirror devices (DMDs), 22.23, 

30.60–30.61
Digital transmission, in integrated optics, 

21.31–21.32
Digitized Green’s function, 7.15, 7.16
Dioptric systems, 1.9
Dipole approximation, discrete, 7.16
Dipole model of light, 3.33–3.36, 3.37f
Dirac delta function, 5.9, 5.12, 6.8
Dirac equation, for one-electron atom, 10.10
Dirac series, 30.8

Direct overwrite (DOW), of optical disks, 
35.30, 35.30f

Direct-vision prisms, 19.2
Discharged area development (DAD), 34.4
Discrete dipole approximation, 7.16
Discrete signals, incoherent processing of, 

11.17–11.20, 11.18f, 11.19f
Disk rotation speed, of optical disks, 35.5–35.6
Disks, as aperture screens, 3.7–3.11, 3.8f
Dispersion, 20.1
Dispersive prisms and gratings, 20.1–20.15

configurations of, 20.4–20.15
diffraction gratings vs., 20.3–20.4
Eagle configuration, 20.7, 20.11f
Ebert-Fastie configuration, 20.8, 20.12f
Littrow configuration, 20.7f, 20.10
Paschen-Runge configuration, 20.7, 20.11f
Pfund configuration, 20.8f, 20.10, 20.13f
in spectrometers, 20.2–20.3, 20.3f
in spectroradiometers, 20.1, 20.2f, 20.14t
Wadsworth configuration, 20.5f, 20.8, 20.12f

Displays, of cameras, 25.6–25.7
Distances:

in Gaussian lenses, 1.51–1.53
hyperfocal, 1.85

Distortion, 29.37
barrel, 1.91
nonrectilinear, 27.6
of objectives, 29.6
pincushion, 1.91
pupil, 1.78
rectilinear, 27.6, 27.13f, 27.14f

Distortion-free focusing lenses, 18.4
Distributed Bragg reflector (DBR) lasers, 21.25, 

21.30, 21.32, 21.37, 21.37f
Distributed feedback (DFB) lasers, 21.25, 

21.29, 21.30, 21.32, 21.38, 21.42
Distributed index of refraction, 24.1 [See also

Gradient index (GRIN) optics]
Distributed-index planar microlenses, 

22.26–22.31, 22.27f–22.30f, 22.27t, 22.31t
Disturbance of wavefront, 3.5–3.6, 

3.14–3.15, 3.14f
Division-of-amplitude photopolarimeter 

(DOAP), 16.15, 16.15f, 16.16
Division-of-amplitude polarimeters, 15.5–15.6
Division-of-aperture polarimeters, 15.5
Division-of-wavefront photopolarimeter 

(DOWP), 16.14, 16.14f
Doppler broadening, 10.2, 10.7, 31.23
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Doppler shift, 2.13, 5.23, 11.6, 31.30
Double Dove prisms, 19.3t, 19.10, 19.10f
Double refraction, in calcite, 13.2–13.6, 

13.4t–13.5t
Double-beam spectrophotometers, 

31.4–31.5, 31.5f
Double-Gauss lenses, 17.27–17.28, 17.28f, 27.2
Double-pass monochromators, 20.9f
Double-pass objective optics, 30.32–30.33, 30.32f
Double-passed two-beam interferometers, 32.8
Double-reflection error control, 30.50–30.51, 

30.50f, 30.51f
Double-slit apertures, 3.26–3.28, 3.27f, 3.28f
Doublets, achromatic (lenses), 17.22–17.25, 

17.23f–17.25f, 17.24t
Dove prisms, 19.3t, 19.9, 19.9f, 19.10, 19.10f
Drude model, 21.10
Dual magnification Cassegrain objective, 

29.9–29.10
Dual rotating retarder polarimeters, 15.16, 15.16f
Dummond, D. G., 13.47
Duty cycle, for input/output scanning, 30.14
Dynamic range, of solid-state cameras, 

26.11, 26.14
Dynamic scattering, 9.7–9.8, 9.7f
Dyson interference microscopes, 28.41, 

28.42, 28.42f
Dyson lenses, 18.21, 18.22, 18.22f

Eagle configuration, of dispersive prisms, 
20.7, 20.11f

Ebert-Fastie configuration, 20.14t
Ebert-Fastie configuration, of dispersive 

prisms, 20.8, 20.12f
Eccentric field arrangement, of lenses, 18.22
Eccentricity, 1.34, 15.10
Edge response, OTF and, 4.7
Effective focal length (EFL):

of camera lenses, 27.3f–27.5f, 27.7f–27.16f,
27.18f–27.22f, 27.25

of Gaussian lenses, 1.48
of microlenses, 22.10

Effective index method, 12.11, 12.12, 21.4
Effective medium theories (EMTs), 16.4, 16.9
Effective-medium representation, of volume 

scattering, 9.8
Efficiency factors, for scattering by particles, 

7.5, 7.6f
E-folding distance, 7.13
Eigenpolarization, 15.7

Eikonals, 1.12–1.14
Einstein coefficients:

for spontaneous emission, 31.3
for stimulated absorption, 10.6

Eisenburg and Pearson two-mirror, three 
reflection objective, 29.25

Elastic scattering, 7.3
Electric fields, 2.3–2.4, 3.2, 3.3
Electromagnetic dipole model of light, 

3.33–3.36, 3.37f
Electromagnetic theory, 12.4
Electronic holography, 33.9–33.14, 33.11f–33.13f
Electronic structure, of atoms, 10.12–10.16, 

10.13f–10.15f
Electronic-speckle pattern interferometry 

(ESPI), 33.9–33.13, 33.11f–33.13f
Electrons:

lifetimes of, 10.6
in multielectron atoms, 10.10–10.11
in one-electron atoms, 10.7–10.9, 10.8f, 10.9f
and optical spectra, 10.12–10.16, 10.13f–10.15f

Electro-optic holography (EOH), 33.11–33.13, 
33.12f, 33.13f

Electro-optic (gradient) scanners, 30.45–30.48, 
30.46f–30.48f

Electro-optic tensors, 21.10
Electro-optical modulators, 15.23
Ellipsometers, 16.10–16.18, 16.10f–16.12f

for azimuth measurements, 16.16
four-detector photopolarimeters, 

16.14–16.16, 16.14f–16.16f
interferometric arrangements of, 16.18
normal-incidence rotating-sample, 16.18
null, 16.11, 16.12
perpendicular-incidence, 16.17–16.18, 16.18f
photometric, 16.12–16.14, 16.13f, 16.14f
return-path, 16.16–16.17, 16.17f
rotating-analyzer, 16.13, 16.13f, 16.14
rotating-detector, 16.14, 16.14f

Ellipsometric angles, 16.3
Ellipsometry, 16.1–16.21

about, 16.2–16.3, 16.2f
applications, 16.21
conventions, 16.3–16.4, 16.3f
defined, 15.7
generalized, 16.19
instrumentation for (see Ellipsometers)
Jones-matrix generalized, 16.19
modeling and inversion, 16.4–16.9, 

16.6f–16.8f, 16.10f
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Ellipsometry (Cont.):
Mueller-matrix generalized, 16.19–16.21, 

16.20f, 16.20t, 16.21f
multiple-angle-of-incidence, 16.3
and polarimetry, 15.30–15.32, 15.31f, 15.32f
spectroscopic, 16.3
transmission, 16.10
variable-angle spectroscopic, 16.3

Elliptical polarizers, 14.10, 15.17–15.18
Elliptical retarders, Mueller matrices for, 14.14
Ellipticity, of polarization elements, 15.10
Empty magnification limit, 28.17
Endoscopic cameras, 25.21, 25.21f
Enhanced backscatter (EBS), 6.5–6.7, 6.5f
Entrance pupil (lens), 1.76, 17.8, 18.4–18.6, 29.37
Entrance pupil distance (ENP) of camera 

lenses, 27.3f–27.5f, 27.7f–27.16f,
27.18f–27.22f, 27.25

Entrance window (lens), 17.9
Epi-illumination, in microscopes, 28.7–28.9, 

28.7f, 28.8f
Epitaxy, 21.17–21.20
Equivalent lenses, 17.20
Equivalent particles, in volume scattering, 9.6
Erasing, in xerographic systems, 34.10
Etching, for PICs, 21.18–21.19
Étendue, 1.22, 1.81, 13.7
Euler equations, 1.20
Excitonic effects, in integrated optics, 21.11
Exit pupil (lens), 1.76, 17.8, 18.6, 29.37
Exit pupil distance (EXP), of camera lenses, 

27.3f–27.5f, 27.7f–27.16f,
27.18f–27.22f, 27.25

Exit window (lens), 17.9
Exiting beam, of polarimeters, 15.4
Exposure, in xerographic systems, 34.3
Extended boundary condition method 

(EBCM), 7.15
Extended objects, images of, 1.27
Extended sources, interference by, 2.20
Extinction cross section, 7.5, 7.8
Extinction paradox, 7.8
Extinction ratio:

about, 12.14–12.15, 12.17
of polarizers, 12.21–12.24, 12.22f, 12.23f, 14.6

Extreme wide-angle lenses, 27.6, 27.13f, 27.14f
Eye loupes, 17.9–17.10
Eye relief (ER), 18.8–18.10, 18.9f, 18.10f
Eye space, of afocal lenses, 18.4
Eye space pupil diameter, 18.6

Eye tracking, in cameras, 25.14–25.15, 
25.14f, 25.15f

Eyepieces, in afocal systems, 18.7

Fabry-Perot etalon (cavity), 2.33, 2.33f
Fabry-Perot interferometers, 32.4–32.7, 

32.7f, 32.14
in dynamic wave meters, 32.17
in gravitational wave interferometers, 

32.21, 32.21f
as heterodyne interferometers, 32.10
and multiple beam interference, 2.33–2.36, 

2.34f, 2.35f
and wire-grid polarizers, 13.31

False polarization, 15.38
Faraday cages, 34.8, 34.8f
Faraday rotators, 28.46
Faraday shutters, 25.22
Fast axis, 12.25, 15.7
Fax machines, 24.6
Feedthrough, of optical disk data, 35.14
Fermat’s principle, 1.11–1.13, 1.24
Ferrimagnetism, 35.25, 35.26, 35.26f
Feussner prisms, 13.6, 13.7, 13.22–13.23, 13.22f
Fiber interferometers, 32.14–32.16, 32.15f
Fiber optic gyroscopes (FOG), 21.2, 

21.35–21.37, 21.36f, 21.36t
Fiber squeezers, 15.24
Fiber-to-fiber excess loss, 21.13–21.14
Fick’s law, 9.12
Field (lens), 1.74
Fields, of rays, 1.13
Field angles:

of apertures, 1.75, 1.75f, 1.76
of Glan-Thompson type prisms, 13.12

Field curvature, 1.91, 29.7, 29.37
(See also Petzval curvature)

Field flatness (aberration), 1.91
Field flattener lenses, 17.28
Field intensities, of waves, 2.5–2.6
Field lenses, 1.82, 1.82f, 17.10
Field of view (FOV), 1.74

in Keplerian afocal lenses, 18.11
for reflective and catadioptric objectives, 

29.34–29.35, 29.35f, 29.36f
in telescopes, 18.15–18.16, 18.15f

Field size (lens), 28.13
Field stop, 1.74, 17.9, 29.5, 29.37
Field-effect-transistors (FETs), 21.38
Field-flattened Schmidt objective, 29.14–29.15
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Fill factor, of binary optics, 23.8
Film (camera), 25.5, 25.6
Filters:

for coherent optical image enhancement, 
11.14–11.17

of Mach-Zehnder interference, 21.23, 
21.24f, 21.25

narrowband, 3.3
for pattern recognition, 11.12–11.14
spatial, 11.5–11.6, 11.6f

Finesse:
coefficient of, 2.31
of Fabry-Perot etalon, 2.34, 2.35
of interferometers, 32.6

Finish models, for surface scattering, 8.14–8.15
Finite conjugate afocal relays, 18.11–18.12, 18.12f
Finite rays, 1.35
Finite-difference time-domain (FDTD) 

technique, 7.16–7.17
First-order optics, 1.29, 1.37
First-order retardation plates, 13.46
Fish-eye lenses, 27.6
Fixed-pattern noise (FPN), 26.11
Fizeau interferometers, 2.24–2.26, 2.25f, 32.2, 

32.2f, 32.17
Flame hydrolysis (FHD), 21.13–21.14
Flash (camera), 25.16, 25.17f
Flat-field objective optics, 30.30–30.33
Flat-medial-field objectives, 29.11
Fluorescence imaging with one nanometer 

accuracy (FIONA), 28.23
Fluorescence line narrowing (FLN), 10.18, 

31.29, 31.29f
Fluorescent microscopy, 28.48–28.49
Flux:

of polarization elements, 15.9
and radiative transfer, 9.12–9.13, 9.13f

F-number, 1.79, 17.9
Focal Gaussian lenses, 1.45–1.53, 1.47f

conjugate equations of, 1.49–1.50, 1.49f
magnifications and distances in, 1.50–1.53
nodal points of, 1.48, 1.48f, 1.49
principal focal points of, 1.47
principal planes of, 1.47, 1.47f, 1.48
reduced coordinates of, 1.53

Focal length:
effective

of camera lenses, 27.3f–27.5f, 27.7f–27.16f,
27.18f–27.22f, 27.25

of Gaussian lenses, 1.48
of microlenses, 22.10

Focal length (Cont.):
in gradient index optics, 24.5–24.6
primary, 3.12
of surfaces, 1.39–1.40
in systems of revolution, 1.40

Focal lines, 1.58
Focal planes, 1.57, 1.70
Focal plane-to-focal plane conjugate 

matrices, 1.69
Focal points:

front and rear, 1.40, 1.47
of lens systems, 17.7
principal, 1.47, 1.58

Focal ratio, 29.5, 29.37
Focal-plane-to-focal-plane geometry, 

11.3–11.4, 11.3f
Focus, range of, 1.85
Focus error signal (FES), 35.12–35.14, 35.13f
Focusing, of optical disks, 35.9–35.12, 

35.11f, 35.12f
Form birefringence (term), 15.41
Form dichroism (term), 15.41
Förster resonance energy transfer (FRET), 28.23
45° half-wave linear retarders, Mueller matrices 

for, 14.12t
45° linear polarizers, 14.10t
45° quarter-wave linear retarders, Mueller 

matrices for, 14.12t
Forward-looking infrared (FLIR) systems, 

30.22, 30.23, 30.51
Foster prisms, 13.7, 13.18f, 13.21–13.22
Foucault prisms, 13.7, 13.17
Four-detector photopolarimeters (FDPs), 

16.14–16.16, 16.14f–16.16f
Fourier analysis, for radiative transfer, 9.11
Fourier domain filters, 11.13
Fourier transform lenses, 18.12
Fourier transform plane, 33.16–33.19, 

33.18f, 33.20f
Fourier transforms:

in analog optical and image processing, 
11.3–11.5, 11.5f

and coherence theory, 5.20
and diffraction, 3.2, 3.24
for focal plane-to-focal plane 

matrices, 1.69
and transfer functions, 4.2
of uniformly illuminated linear 

aperture, 30.54
Four-powered-mirror lenses, 18.21, 18.21f
Fractal model of surface finish, 8.14
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Fractals:
brownian, 8.9, 8.17
Fresnel-Kirchhoff approximation for, 8.8–8.9

Frankford Arsenal prisms, 19.3t, 19.18–19.24, 
19.18f–19.24f

Frank-Ritter-type prisms, 13.6, 13.6f,
13.13–13.14

Franz-Keldysh effect, 21.11, 21.11f
Fraunhofer approximation, 5.14, 5.16
Fraunhofer diffraction, 3.24–3.28, 3.24f–3.26f

Airy diffraction as, 28.17
conducting screens for, 3.33f
and gratings, 20.3

Fraunhofer theory, 7.11
Fredericksz cells, 14.31, 15.21
Free spectral range (FSR), of interferometers, 

2.34, 2.35, 2.35f, 32.5
Frenet equation, 1.19
Frequency domain, 7.17
Frequency-modulation interferometers, 32.9, 

32.9f, 32.10
Fresnel amplitude reflection coefficients, 

12.7–12.8
Fresnel amplitude transmission 

coefficients, 12.8
Fresnel diffraction, 3.24
Fresnel equations, 12.6–12.13, 12.15

for absorbing materials, 12.10–12.13, 12.13f
coordinate system for, 12.6–12.7, 12.7f
for nonabsorbing materials, 12.8–12.10, 12.9f

Fresnel intensity reflectivities, 8.6
Fresnel lenses, micro-, 22.31–22.37, 

22.31f–22.33f, 22.35f–22.37f
Fresnel losses, 22.10
Fresnel number, 3.25
Fresnel propagation kernels, 6.6
Fresnel reflection coefficients, 8.10
Fresnel rhombs, 13.45, 13.50f
Fresnel Risley prisms, 19.27f
Fresnel zones, 3.4–3.6, 3.4f

for cylindrical wavefronts, 3.6f, 3.7f,
3.13–3.14, 3.14f

and Fraunhofer diffraction, 3.25
opaque strip obstruction, 3.20–3.21, 3.21f

Fresnel-Kirchhoff approximation, 8.5–8.9
Fresnel-Kirchhoff diffraction formula, 3.21, 

3.22, 3.32
Fresnel’s biprism, 2.16, 2.16f
Fresnel’s mirror, 2.16, 2.16f
Fringe localization, 2.14
Fringe visibility (contrast), 2.7–2.8

Fringe-counting interferometers, 32.8, 32.8f
Fringes of equal inclination, 2.20–2.22, 

2.21f, 2.22f
Fringes of equal thickness, 2.22–2.24, 2.23f
Front focal lengths, 1.40
Front focal points, 1.40, 1.47
Front principal planes, 1.48
Front vertex distance (FVD), camera lens 

performance and, 27.3f–27.5f,
27.7f–27.16f, 27.18f–27.22f, 27.25

Full width at half maximum (FWHM) 
points, 30.9

Full-frame arrays, of CCDs, 26.3–26.4, 26.4f
Fusing, in xerographic systems, 34.10

Gabor objective, 29.20
Galilean lenses, 18.7, 18.15–18.17, 

18.15f, 18.16f
Galilean telescopes, 18.15
Galvanometer scanners, 30.41–30.44, 

30.43f, 30.44f
Gauss points, of lenses, 1.44
Gaussian analyses, of lenses:

afocal, 18.4–18.7, 18.7f
focusing, 18.2–18.4, 18.3f, 18.5f

Gaussian lenses, 1.44–1.55
afocal, 1.45, 1.46f, 1.53–1.54, 1.53f, 1.54f
focal, 1.45–1.53, 1.47f

conjugate equations of, 1.49–1.50, 1.49f
magnifications and distances in, 1.50–1.53
nodal points of, 1.48, 1.48f, 1.49
principal focal points of, 1.47
principal planes of, 1.47, 1.47f, 1.48
reduced coordinates of, 1.53

notation for, 1.45t
properties of, 1.54
systems of, 1.54–1.55

Gaussian optics, 1.29, 1.44
GDx Nerve Fiber Analyzer, 15.41
Gédamine, 13.9, 13.10, 13.11f, 13.20
General deviation prisms, 19.3t, 19.28, 

19.28f–19.29f
General Photonics, 15.24
Generalized ellipsometry (GE), 16.19
Generalized Lagrange invariant (étendue), 

1.22, 1.81, 13.7
Geometrical optics:

for aberrations of point images, 
1.86–1.92, 1.86f

and binary optics, 23.5–23.9, 23.5f–23.9f, 23.10t
characteristic functions of, 1.13–1.18, 1.15f
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Geometrical optics (Cont.):
for collineation, 1.56–1.65, 1.65f
and conservation of étendue, 1.22
defined, 1.8
for Gaussian lenses, 1.44–1.55

afocal, 1.45, 1.46f, 1.53–1.54, 1.53f, 1.54f
focal, 1.45–1.55, 1.47f–1.49f
notation for, 1.45t
properties of, 1.54
systems of, 1.54–1.55

and images about known rays, 
1.43–1.44, 1.44f

for imaging, 1.26–1.31, 1.30f
at interfaces of homogeneous media, 1.23–1.26
lens sizes and fields in, 1.74–1.85

apertures, 1.74–1.77, 1.75f
cosine-to-the-fourth approximation, 1.81
field lenses, 1.82, 1.82f
fields, 1.74, 1.77, 1.84
F-number, 1.79
focus and defocus, 1.82–1.85, 1.83f
irradiance, 1.80
power per pixel, 1.80
pupils, 1.76–1.79, 1.76f, 1.78f
telecentricity, 1.83–1.84
total lens étendue, 1.81
vignetting, 1.81, 1.81f, 1.82

paraxial matrix methods, 1.65–1.74
and rays, 1.8–1.13

in heterogeneous media, 1.18–1.22
paths of, 1.10–1.13

and skew invariant, 1.23
of systems of revolution, 1.32–1.43

paraxial optics of, 1.37–1.43
ray tracing in, 1.35–1.37, 1.36f
surfaces, 1.32–1.35
unfolded reflections, 1.32

Geometrical path length, 1.11
Geometrical wavefronts, 1.12–1.13
Gimbal-less two-axis scanning-micromirror 

devices (GSMDs), 30.61–30.62, 30.62f
Glan-Foucault prisms, 13.7, 13.9, 13.11f,

13.12–13.14
Glan-Taylor prisms, 13.7, 13.9n, 13.10–13.14, 

13.10f, 13.11f
Glan-Thompson prisms, 13.6, 13.6f,

13.9–13.12, 13.10f, 13.18f, 13.22
field angle of, 13.12
and optical spectrometers, 31.7
sheet polarizers vs., 13.27
transmission by, 13.9–13.10, 13.11f

Glan-type prisms, 13.6, 13.6f, 13.8–13.15
defects and testing of, 13.14–13.15
Frank-Ritter, 13.6, 13.6f, 13.13–13.14
Glan-Foucault, 13.7, 13.9, 13.11f,

13.12–13.14
Glan-Taylor, 13.7, 13.9n, 13.10–13.14, 

13.10f, 13.11f
Glan-Thompson, 13.6f, 13.9–13.12, 13.10f,

13.11f, 13.27
Lippich, 13.6, 13.6f, 13.12–13.13
Marple-Hess, 13.12, 13.13
precautions with, 13.14

Glass:
for microlenses, 22.9–22.10, 22.10t, 22.11f,

22.12t, 22.13t, 22.14f
for objectives, 29.2, 29.2t
sol-gel formed, 24.8

Glass-calcite Rochon prisms, 13.20
Glazebrook prisms, 13.6, 13.9 (See also

Glan-Thompson prisms)
Goerz prism system, 19.3t, 19.17, 19.17f
Goos-Hanchen shift, 21.4
Graded index profile, of optical waveguides, 21.4
Graded-index (GRIN) films, 16.9
Gradient dispersion, 24.3
Gradient index (GRIN) optics, 24.1–24.8

analytic solutions of, 24.2
axial gradient lenses, 24.3–24.5, 24.4f
materials, 24.8
mathematical representations of, 24.2–24.3
radial gradients, 24.5–24.8, 24.5f, 24.7f

Grating equation, 23.4
Grating interferometers, 32.4, 32.5f
Grating multiplexers, 23.11, 23.12
Grating polarizers, 13.33
Gratings (see Diffraction gratings; Dispersive 

prisms and gratings)
Gravitational-wave interferometers, 

32.21, 32.21f
Gray code, on optical disks, 35.16
Gray-scale masks, 22.23–22.25, 

22.23f–22.25f
Green’s function, 3.22–3.23, 3.22f

in approximations of multiple 
scattering, 9.10

digitized, 7.15, 7.16
in scattering, 9.3

Gregorian objective, 29.10
Grooved regions, on optical disks, 35.15, 

35.15f, 35.16
Gunn diodes, 31.21
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Haidinger fringes, 2.22, 2.22f, 2.27
Half-period zones, 3.5
Half-shade devices, 13.56–13.57
Half-wave linear retarders, Mueller matrices 

for, 14.12t, 14.13
Half-wave plates, 12.25, 12.27
Half-wave retarders, Mueller matrices 

for, 14.14
Halle prisms, 13.16f, 13.17
Hamiltonian optics, 1.13, 1.43
Hamilton’s equations for rays, 1.21
Harting-Dove (Dove) prisms, 19.3t, 19.9, 

19.9f, 19.10, 19.10f
Hartman testing, 22.26
Hartnack-Prazmowski prisms, 13.16f, 13.17
Hartree-Fock variational approach, 10.11
Hastings (Brashear-Hastings) prisms, 19.3t,

19.25, 19.25f
Hausdorff-Besicovitch dimension, 8.8
Header information, on optical disks, 35.6
Heisenberg uncertainty principle, 21.11
Heisenberg’s matrix mechanics, 10.3
Helmholtz equation, 3.2, 5.9, 5.10, 33.3
Helmholtz invariant, 1.77 (See also Two-ray 

paraxial invariant)
Hermitian matrices, 14.19, 14.41
Herschel condition, 1.31, 29.34, 29.37
Herschelian objectives, 29.6, 29.27
Heterodyne interferometers, 32.10, 32.10f,

32.20, 32.20f
Heterogeneous media, rays in, 1.9, 1.18–1.22
High-dry objectives, 28.11, 28.12f
Higher-order aberrations, 29.37
Highlight color, in xerographic systems, 

34.12, 34.13f
High-performance miniature systems, 

22.5–22.8
High-speed cameras, 25.21–25.22, 25.22f
Hilbert space formulation, 5.2
Hoffman modulation contrast 

microscopy, 28.29
Holographic inspection, 33.16–33.19, 

33.17f–33.18f, 33.20f–33.22f
Holographic memory, 33.24–33.25
Holographic microscopes, 28.42, 

28.43, 28.43f
Holographic optical elements (HOEs), 

33.13–33.16, 33.15f, 35.28–35.29, 35.29f
Holographic optics, 33.13
Holographic scanners, 30.38–30.41, 

30.40f–30.42f

Holography, 33.1–33.25
electronic, 33.9–33.14, 33.11f–33.13f
and holographic inspection, 33.16–33.19, 

33.17f–33.18f, 33.20f–33.22f
and holographic memory, 33.24–33.25
and interferometry, 33.4–33.9, 33.8f
and lithography, 33.22–33.24, 33.22f–33.24f
optical elements for, 33.13–33.16, 33.15f
principles of, 33.2–33.4, 33.3f

Holtronic Technologies holographic system, 33.23
Homogeneous broadening, of lineshapes, 10.7
Homogeneous coordinates, of collineation 

matrix, 1.59
Homogeneous media, 1.9, 1.23–1.26
Homogeneous polarization elements:

defined, 15.7
in Mueller matrices, 14.25–14.26

Homogeneous sources of light, 5.11–5.12, 5.19
Hopkin’s formula, 5.13
Horizontal half-wave linear retarders, Mueller 

matrices for, 14.12t
Horizontal linear polarizers, 14.9, 14.10t
Horizontal quarter-wave linear retarders, 

Mueller matrices for, 14.12t
Houghton objectives, 29.22–29.23
Huang-Rhys parameter, 10.22
Hubble space telescope, 29.8
Human visual system (HVS), color in, 26.18
Hund’s rule, 10.12
Hurst dimension, 8.8
Huygens wavelets, 5.16
Huygens-Fresnel construction (diffraction), 

3.4–3.13
Babinet principle, 3.9–3.11
for double refraction in calcite, 13.5
Fresnel zones in, 3.4–3.6
and light from circular apertures 

and disks, 3.6–3.9
zone plates in, 3.11–3.13, 3.12f

Hydrogen, Bohr’s theory of, 10.3
Hyperfocal distance, 1.85
Hysteresis loops, of optical disks, 35.27, 

35.27f, 35.28

Ideal imaging (term), 1.28, 1.38
Identity matrix, 14.8
Illumination:

critical, 28.7
epi-, 28.7–28.9, 28.7f, 28.8f
for input/output scanning, 30.14
trans-, 28.5–28.7, 28.6f
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Illumination area, surface scattering and, 8.12
Image(s), 1.26

about known rays, 1.43–1.44, 1.44f
aerial, 1.26
from cameras, 25.5, 25.7
of extended objects, 1.27
in focal Gaussian lenses, 1.51
formation of, 6.9–6.10, 6.9f, 17.5–17.8, 

17.5f, 17.6f
latent, 34.1–34.4, 34.2f–34.3f
medial, 29.11, 29.37
point, 1.85–1.92, 1.88f
of points, 1.27
received, 1.26
recorded, 1.26
in systems of revolution, 1.42
two-dimensional, 11.12–11.17, 11.13f
virtual, 29.38

Image derotation, 30.36
Image distance, 18.3
Image distribution, for cameras, 25.7
Image enhancement, coherent optical, 

11.14–11.17
Image erectors, 18.10
Image height, 1.27, 18.4
Image inversion, 19.2
Image plane, 1.27
Image point, 1.27
Image processing, analog (see Analog optical 

signal and image processing)
Image receptors, in xerographic systems, 34.1
Image reversion, 19.2
Image rotation, 30.35–30.36
Image space, 1.26, 1.83–1.84, 1.83f
Image space numerical aperture, 1.79
Image-forming cone (bundle), 1.74
Image-forming rays, 1.74
Imaging:

conscopic vs. orthoscopic, 28.8–28.9
fluorescence, 28.23
in geometrical optics, 1.26–1.31
ideal, 1.17, 1.28–1.29, 1.38
in microscopes, 28.44–28.54

aperture-scanning microscopy, 28.53–28.54
confocal microscopy, 28.49–28.51, 

28.49f, 28.51f
fluorescent microscopy, 28.48–28.49
light field microscopy, 28.53
polarizing microscopes, 28.44–28.48, 

28.44f, 28.46f, 28.47f
structured illumination, 28.52

Imaging (Cont.):
Newtonian equation for, 17.8
in polarimeters, 15.6
pupil, 1.76
stigmatic, 1.29–1.31, 1.30f

Image-space scanners, 30.18–30.23
Immersion lenses, 17.11
Imperfect polarizers, 13.33
Impermeability, dielectric, 21.9
Inclination factor, 3.5
Incoherent arrays, scattering by, 7.2–7.3
Incoherent light sources, 5.12, 5.18–5.19
Incoherent processing, of discrete signals, 

11.17–11.20, 11.18f, 11.19f
Incoherent radiation, 30.2, 30.26, 30.27
Incoherent scattering, 9.2–9.5
Incomplete polarimeters, 15.4
Incomplete sample-measuring polarimeters, 

15.16–15.17
Index ellipsoid equation, 21.9–21.10
Index of refraction (refractive index), 1.9

for Brewster angle transmission polarizers, 
12.21–12.22

complex, 7.12–7.13, 12.5, 12.6
distributed, 24.1
in gradient index optics, 24.2–24.3
in integrated optics, 21.8–21.9
of polarizers, 12.16, 12.18
for rays in heterogeneous media, 1.21–1.22
of shallow radical gradients, 24.7–24.8

Infrared emitting diodes (IREDs), 25.14, 25.14f
Infrared radiation, single-order plates and, 13.47
Inhomogeneous (heterogeneous) media, rays 

in, 1.9, 1.18–1.22
Inhomogeneous optics, 24.1 (See also Gradient 

index (GRIN) optics)
Inhomogeneous polarization elements, 

14.25–14.26, 14.26f, 15.7, 15.20
Input planes, translations of, 1.68
Input/output scanning, 30.2, 30.4–30.6, 

30.25–30.34
objective, preobjective, and postobjective, 

30.28–30.29, 30.29f, 30.30f
objective optics, 30.30–30.33, 30.32f–30.33f
power density and power transfer of, 

30.25–30.28, 30.27f, 30.28f
resolution of, 30.8–30.14, 30.10f, 30.10t,

30.11t, 30.12f–30.13f
Inspection, holographic, 33.16–33.19, 

33.17f–33.18f, 33.20f–33.22f
Instant pictures, 25.8
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Instrumental polarization, 12.15
Insulating magnetic brush (IMB), 34.6
Integrated circuits:

photonic
of III-V materials, 21.17–21.20
in integrated optics, 21.2
in WDM systems, 21.37, 21.38

polarizers for, 13.57
Integrated optic circuits (IOCs), 21.2
Integrated optics (IO), 21.1–21.41

applications of, 21.31–21.39
analog transmission, 21.32–21.34, 

21.33f, 21.34f
digital transmission, 21.31–21.32
fiber optic gyroscopes, 21.35–21.37, 

21.36f, 21.36t
silicon photonics transmission, 

21.38, 21.39
switching, 21.34–21.35, 21.34f
WDM systems, 21.37–21.38, 

21.37f–21.39f
circuit elements of, 21.21–21.31

active devices, 21.25–21.31, 
21.26f–21.31f

passive devices, 21.21–21.25, 
21.22f–21.25f

future trends in, 21.39–21.41
advanced integration, 21.40–21.41
shift from R&D to manufacturing, 

21.39–21.40
materials and fabrication techniques for, 

21.13–21.21
ion-exchanged glass waveguides, 21.13
LiNbO3 and LiTaO3, 21.16–21.17, 

21.28, 21.33
PICs of III-V materials, 21.17–21.20
silicon photonics, 21.14–21.16, 21.15f
thin film oxides, 21.13–21.14

physics of, 21.3–21.12
carrier effects, 21.10–21.12
index of refraction, 21.8–21.9
linear electro-optical effect, 21.9–21.10
nonlinear effects, 21.12
optical waveguides, 21.3–21.8, 

21.3f–21.5f, 21.7f
thermal effects, 21.12

Intensified CCD (ICCD), 26.3
Intensity, 5.7, 11.2
Intensity interferometers, 32.19
Intensity reflection coefficients, 12.8–12.12
Intensity transmission coefficients, 12.9–12.10

Interference, 2.3–2.42
by amplitude division, 2.19–2.28

extended source, 2.20
Fizeau interferometers, 2.24–2.26, 2.25f
fringes of equal inclination, 2.20–2.22, 

2.21f, 2.22f
fringes of equal thickness, 2.22–2.24, 2.23f
Michelson interferometer, 2.26–2.28, 

2.26f–2.27f
plane-parallel plate, 2.19, 2.20f
thin films, 2.24

applications of, 2.42
and coherence, 2.36–2.42, 2.36f,

2.38f–2.40f, 2.42f
constructive and destructive, 2.7
effects of, 2.5–2.14

aberrated wavefronts, 2.12, 2.13
coherence, 2.13
interference fringes, 2.6–2.8, 2.6f, 2.7t
plane wave and spherical wave, 

2.9–2.11, 2.10f
temporal beats, 2.13
two plane waves, 2.8–2.9, 2.9f
two spherical waves, 2.11–2.12, 2.12f, 2.13f

multiple beam, 2.28–2.36
diffraction gratings, 2.28–2.29, 2.29f, 2.30f
Fabry-Perot interferometer, 2.33–2.36, 

2.34f, 2.35f
plane-parallel plates, 2.30–2.33, 2.30f,

2.32f, 2.33f
order of, 2.7
by wavefront division, 2.14–2.19, 2.15f–2.18f
and wavefronts, 2.4–2.5, 2.5f
and waves, 2.3–2.4, 2.5f

Interference filters, Mach-Zehnder, 21.23, 
21.24f, 21.25

Interference fringes, 2.6–2.8, 2.6f, 2.7t
Interference gratings, 33.14
Interference microscopy, 28.33–28.44

differential-interference contrast 
microscopes, 28.39–28.41, 28.40f

Dyson microscopes, 28.41, 28.42, 28.42f
holographic, 28.42, 28.43, 28.43f
Jamin-Lebedev microscopes, 

28.38–28.39, 28.38f
Linnik microscopes, 28.36–28.38, 28.37f
Mach-Zehnder microscopes, 28.36, 28.37f
Mirau microscopes, 28.41, 28.42, 28.42f
and optical coherence tomography, 28.43–28.44
optical path difference (OPD) in, 

28.33–28.34, 28.35f, 28.36
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Interference polarizers, 13.39–13.41, 13.40f
Interferometers (interferometry), 32.1–32.21

double-passed two-beam, 32.8
Fabry-Perot, 32.4–32.7, 32.7f, 32.14

in dynamic wave meters, 32.17
in gravitational wave interferometers, 

32.21, 32.21f
as heterodyne interferometers, 32.10
and multiple beam interference, 

2.33–2.36, 2.34f, 2.35f
and wire-grid polarizers, 13.31

fiber, 32.14–32.16, 32.15f
finesse of, 32.6
Fizeau, 2.24–2.26, 2.25f, 32.2, 32.2f, 32.17
free spectral range of, 2.34, 2.35, 2.35f, 32.5
frequency-modulation, 32.9, 32.9f, 32.10
fringe-counting, 32.8, 32.8f
grating, 32.4, 32.5f
gravitational-wave, 32.21, 32.21f
heterodyne, 32.10, 32.10f, 32.20, 32.20f
and holography, 33.4–33.9, 33.8f
intensity, 32.19
and interferometric optical switches, 32.19
and interferometric wave meters, 

32.16–32.17, 32.16f, 32.17f
laser-Doppler, 32.12–32.13, 32.13f
laser-feedback, 32.13–32.14, 32.14f
Mach-Zehnder, 21.10, 21.12, 21.14, 21.16, 

21.32, 21.40, 32.3, 32.3f, 33.5
Michelson, 2.26–2.28, 2.26f–2.27f, 32.2, 

32.3f, 32.21, 33.4
Michelson stellar, 2.40–2.41, 2.40f,

32.19, 32.19f
Newton, 2.25
Nomarski, 32.4, 32.5f
nulling, 32.20–32.21
phase-conjugate, 32.17, 32.18, 32.18f
phase-locked, 32.11–32.12, 32.12f
phase-shifting, 32.10–32.11, 32.11f
polarization, 32.4, 32.5f
Sagnac, 21.35, 21.36, 21.36f, 32.3–32.4, 32.4f
second-harmonic, 32.17–32.18, 32.18f
shearing, 32.4, 32.6f
stellar, 32.19–32.21, 32.19f, 32.20f
three-beam, 32.7–32.8, 32.7f
and two-wavelength interferometry, 32.9
Twyman-Green, 2.28, 32.2, 32.9, 33.5
Young’s two pinhole, 6.3

Interferometric arrays, 32.20–32.21
Interferometric ellipsometry, 16.18

Interferometric optical switches, 32.19
Interferometric wave meters, 32.16–32.17, 

32.16f, 32.17f
Interline transfer, of CCDs, 26.4–26.5, 

26.5f, 26.6f
Intersection points, ray tracing for, 1.36, 1.36f
Invariance properties, of rays, 1.10
Invariants, optical, 18.7
Inverse filters, for coherent optical image 

enhancement, 11.14–11.17
Inverse Galilean telescopes, 18.15, 18.16, 18.16f
Inverse systems, conjugate matrices for, 1.71
Inverted telephoto lenses, 27.2, 27.6, 

27.7f–27.14f
highly complex extreme speed, 27.6, 

27.9f–27.12f
with nonrectilinear distortion, 27.6
with rectilinear distortion correction, 

27.6, 27.13f, 27.14f
very compact moderate speed, 27.6, 

27.7f–27.8f
Ion exchange process, 24.8
Ion-exchanged glass waveguides, 21.13
Ions, tri-positive rare earth, 10.16–10.18, 

10.16t, 10.17f
Iris (lens), 17.8
Irradiance, 3.3

of circular patterns and disks, 3.7–3.8
of complementary aperture screen patterns, 

3.10–3.11
and diffraction gratings, 3.28, 3.29
of double-slit patterns, 3.27, 3.27f
of lambertian objects, 1.80
of straight-edge patterns, 3.15–3.17, 3.18f
as vector, 3.33, 3.37f
and zone plates, 3.11, 3.12f

Irradiation, microbeam, 28.54
Isotropic homogenous spheres, scattering 

by, 7.11–7.14

Jamin-Lebedev microscopes, 
28.38–28.39, 28.38f

Jellett-Cornu prisms, 13.56
J-K model, of surface finish, 8.13, 8.15
Jones calculus, 12.29–12.30
Jones matrix, 7.10

in ellipsometry, 15.30, 16.19
and Mueller matrices, 14.3, 14.22–14.24, 

14.27, 14.33
tensor product of, 14.23
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Keplerian afocal lenses, 18.7–18.14
in binoculars, 18.13–18.14, 18.14f
and eye relief manipulation, 18.8–18.10, 

18.9f, 18.10f
field-of-view limitations in, 18.11
finite conjugate afocal relays, 

18.11–18.12, 18.12f
for scanners, 18.13, 18.13f
in terrestrial telescopes, 18.10–18.11, 18.11f
thin-lens model, 18.7–18.8, 18.8f

Keplerian telescopes, 18.10
Kerr cell shutters, 25.22
Kerr cells, 31.9
Kerr effect, 15.23, 35.21, 35.23, 35.25
Kinematic lens mounts, 22.7, 22.8f
Klein bottle, 14.15
Kodak Cameo Motordrive camera, 25.16, 25.16f
Kodak Cobra flash, 25.16, 25.17f
Kodak DCS 200 camera, 25.7
Kodak Fun Saver Portait 35, 25.16, 25.17f
Kodak glass molding process, 22.9, 22.10
Koehler (Köhler) illumination:

and coherence theory, 6.12–6.13, 6.12f
in microscopes, 28.4–28.5, 28.5f, 28.7, 28.9

Korsch objectives, 29.30–29.32, 29.34
Kramers states, 31.19, 31.19f, 31.20
Kramers-Kronig relation, 21.11
Kronecker delta function, 5.20
Kubelka-Munk theory, 9.13

Lagrange invariant, 1.22, 1.41, 1.77, 1.81, 13.7, 
17.5, 30.11

Lamb shift, 10.4
Lambertian objects, irradiance for, 1.80
Lambert’s law, 5.12
Lamipol structures, 13.57
Landé interval formula, 10.17
Landolt fringe, 13.14, 13.17, 13.18
Lands, of optical disks, 35.3, 35.5f
Landscape lenses, 17.17–17.20, 

17.17f–17.20f, 17.19t
Laporte selection rule, 10.10
Large-format cameras, 25.18–25.20
Large-format film, 25.6
Laser direct write (LDW) fabrication, 

22.19–22.23, 22.20f–22.22f
Laser modes, coherence theory and, 5.23
Laser noise, 35.12, 35.24
Laser power modulation (LPM), 35.17–35.19
Laser radar (LIDAR) systems, 30.51

Laser speckle, 9.14
Laser Stark spectroscopy, 31.27–31.29, 

31.27f, 31.28f
Laser-assisted chemical etching (LACE), 22.45
Laser-Doppler interferometers, 

32.12–32.13, 32.13f
Laser-feedback interferometers, 

32.13–32.14, 32.14f
Lasers:

continuous wave (CW) dye, 10.8
distributed Bragg reflector, 21.25, 21.30, 

21.32, 21.37, 21.37f
distributed feedback, 21.25, 21.29, 21.30, 

21.32, 21.38, 21.40
for interferometry, 2.41–2.42

Latent images, in xerographic systems, 
34.1–34.4, 34.2f–34.3f

Lateral color, 1.91–1.92, 29.14, 29.37
Lateral magnification, 17.5
Lateral resolution, of microscopes, 28.17–28.19
Lau effect, 6.7–6.8, 6.8f
Laurent half shades, 13.56
Leaky waveguides, 21.3
Left circular polarizers, Mueller matrices 

for, 14.10t
Left half-wave circular retarders, Mueller 

matrices for, 14.12t
Left-circularly polarized light, 12.27
Left-handed coordinate systems, 12.6
Legendre transformations, 1.13, 1.15, 1.16
Leica Summitar lenses, 17.28, 17.28f
Leman prisms, 19.3t, 19.13, 19.13f
Length-to-aperture (L/A) ratio, for prisms, 13.7
Lens axis, 1.32 (See also Optical axis)
Lens law, 17.8
Lenses, 17.3–17.39

axial separations in, 1.52
cardinal points of, 1.44, 17.7
conjugate matrices for, 1.71
defined, 1.9
effective focal length of, 1.48, 22.10, 

27.3f–27.5f, 27.7f–27.16f,
27.18f–27.22f, 27.25

entrance pupil of, 1.76, 17.8, 18.4–18.6, 29.37
entrance window of, 17.9
equivalent, 17.20
exit pupil of, 1.76, 17.8, 18.6, 29.37
exit window of, 17.9
field size of, 28.13
fields of, 1.74
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Lenses (Cont.):
F-number and numerical aperture of, 17.9
Gauss points of, 1.44
Gaussian analyses of, 18.2–18.7, 18.3f,

18.5f, 18.7f
geometrical optics for, 1.74–1.85

apertures, 1.74–1.77, 1.75f
cosine-to-the-fourth approximation, 1.81
field lenses, 1.82, 1.82f
fields, 1.74, 1.77, 1.84
F-number, 1.79
focus and defocus, 1.82–1.85, 1.83f
irradiance, 1.80
power per pixel, 1.80
pupils, 1.76–1.79, 1.76f, 1.78f
telecentricity, 1.83–1.84
total lens étendue, 1.81
vignetting, 1.81, 1.81f, 1.82

image formation in, 17.5–17.8, 17.5f, 17.6f
inverses of, 1.71
for magnifiers, 17.9–17.10
for microscopes, 28.9–28.17 (See also

Reflective and catadioptic lenses)
compound, 17.10
objective lenses, 28.9–28.15, 28.10t,

28.11t, 28.12f, 28.13t, 28.14f–28.16f
oculars, 28.16–28.17

natural stop shift of, 22.3
nodal points of, 1.48, 1.49
optical center point of, 17.16, 17.17
performance of, 17.29–17.36, 17.30f–17.35f
for periscopes, 18.19, 18.19f
pupils of, 17.8–17.9
rays in, 1.35
for scanners, 18.13, 30.57–30.60, 

30.58f–30.60f
shape factor of, 17.12–17.13, 17.13f
single element, 17.12–17.17, 

17.13f–17.16f, 17.17t
stops of, 17.8–17.9
systems of, 17.7, 17.20–17.22, 17.21f–17.22f
See also specific types of lenses

Lenslets, monolithic, 22.25–22.26, 22.25f
Lifetimes, of electrons, 10.6
Light-emitting diodes (LEDs):

in integrated optics, 21.2
and parallel matrix-vector multipliers, 11.18
and serial incoherent matrix-vector 

multipliers, 11.17–11.18
transmission by, 21.32

Light field microscopy, 28.53
Light grasp (étendue), 1.22, 1.81, 13.7
Light sources, 5.6, 5.9–5.13
Light-gathering power (étendue), 1.22, 1.81, 13.7
Light-measuring polarimeters, 15.3–15.4, 

15.11–15.13
Linear diattenuation and diattenuators, 

14.8, 14.17
Linear electro-optic effect, 21.9–21.10
Linear magnification, 18.4
Linear polarization sensitivity, 14.17
Linear polarizers, 14.9, 14.10t, 15.7
Linear systems, coherence theory for, 6.3–6.4
Linearity:

in paraxial matrix methods, 1.66
of systems of revolution, 1.41
and transfer functions, 4.2

Linnik interference microscopes, 
28.36–28.38, 28.37f

Liouville’s theorem, 1.22
Lippich-type prisms, 13.6, 13.12–13.13

Glan-Taylor, 13.7, 13.9n, 13.10, 13.10f,
13.11f, 13.12–13.14

half-shade, 13.12n, 13.56
Marple-Hess, 13.12, 13.13

Liquid crystal (LC) cells, 15.32f, 15.33–15.35, 
15.33f, 15.34t

Liquid crystal displays (LCDs), 25.7
Liquid crystal (LC) lenses, 22.40–22.41, 22.42t
Liquid crystal on silicon (LCOS) panels, 15.28
Liquid crystal retarders, 15.21–15.23, 15.22f
Liquid crystal variable retarders (LCVRs), 

15.21–15.23, 15.22f
Liquid immersion development, in xerographic 

systems, 34.9, 34.10
Liquid lenses, 22.37–22.41, 22.38f–22.41f, 22.42t
Liquid-phase epitaxial (LPE) growth, 21.17
Lissajous-type figures, from Risley prisms, 

19.25, 19.26f
Lithium niobate (LiNbO3), 21.16–21.17, 21.28, 

21.33, 21.39
Lithium tantalate (LiTaO3), 21.17
Lithography:

deep x-ray, 22.7
and holography, 33.22–33.24, 33.22f–33.24f
and miniature and micro-optics, 22.18–22.25

with gray-scale masks, 22.23–22.25, 
22.23f–22.25f

laser direct write fabrication, 22.19–22.23, 
22.20f–22.22f
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Littrow configuration, of dispersive prisms, 
20.7f, 20.10

Littrow mirrors, 20.4
Lloyd’s mirror, 2.16, 2.17f, 2.18
Localization, in volume scattering, 

9.13–9.17, 9.14f
Longitudinal aberrations, 1.87
Longitudinal magnification, 1.28, 1.52, 17.5
Lorentzian distribution of frequencies, 10.7
Loupes, eye, 17.9–17.10
Low inertia scanners, 30.43
Low-light-level television (LLTV) systems, 26.3
Low-order flux models, of radiative transfer, 

9.12–9.13, 9.13f
Lu-Chipman polar decomposition, 14.39–14.40
Lukosz-type super-resolving systems, 

6.9–6.10, 6.9f
Luminescence, 31.17, 31.19–31.21, 31.19f
Luminescence excitation spectrometers, 

31.11–31.12, 31.11f
Luminescence spectrometers, 31.5–31.12, 

31.8f, 31.11f
Luminosity (étendue), 1.22, 1.81, 13.7
Luneburg lenses, 1.21, 22.26 (See also

Distributed-index planar microlenses)
Lyot coronagraphs, 29.5
Lyot stop, 29.5, 29.5f, 29.37

Mach-Zehnder (MZ) interference filters, 21.23, 
21.24f, 21.25

Mach-Zehnder (MZ) interference microscopes, 
28.36, 28.37f, 28.39

Mach-Zehnder (MZ) interferometers, 21.10, 
21.12, 21.14, 21.16, 21.32, 21.40, 32.3, 
32.3f, 33.5

Mach-Zehnder (MZ) modulators, 21.26, 
21.27f, 21.28, 21.32, 21.34

Magnetic brush development, in xerographic 
systems, 34.5–34.7, 34.5f–34.7f

Magnetic circular dichroism (MCD), 
31.20, 31.21

Magnetic circular polarization (MCP), 31.21
Magnetic field modulation (MFM), 35.19, 

35.19f, 35.20
Magnetic resonance, optically detected, 

31.21–31.23, 31.22f, 31.23f
Magneto-optical (MO) disks, 35.2
Magneto-optical (MO) modulators, 15.23
Magneto-optical (MO) readout, 35.21–35.24, 

35.22f, 35.24f

Magneto-optical (MO) recording, 35.25–35.28, 
35.26f, 35.27f (See also Optical disk 
data storage)

Magnification, 1.28
afocal, 18.5–18.6
angular, 1.52, 1.78, 18.4
axial (longitudinal), 1.28, 1.52, 17.5
dia-, 1.23
by focal Gaussian lenses, 1.52–1.53
lateral, 17.5
linear, 18.4
longitudinal, 1.28
and magnifiers, 17.9–17.10
in microscopes, 28.3–28.4
pupil, 1.76
pupil angular, 1.78
scan, 30.5, 30.12–30.14
secondary, 29.12, 29.38
in systems of revolution, 1.42
transverse, 1.28, 1.50–1.51
visual, 1.28

Maksutov objectives, 29.19, 29.20
Malus-Dupin principle, 1.12
Mangin elements, in objective design, 29.6
Mangin objectives, 29.7, 29.24
Mapping, of object and image space, 1.27
Marginal rays, 1.75, 17.8, 29.37
Marple-Hess prisms, 13.12, 13.13
Mask layout, for binary optics, 23.14–23.16, 

23.15f, 23.15t
Maskless lithography tool (MLT), 22.23
Mass-transport process, for miniature and 

micro-optics, 22.45, 22.46f
Master groups, of zoom lenses, 27.17
Master-oscillator/power-amplifiers (MOPAs), 

21.30, 21.30f
Matched filters, for pattern recognition, 

11.12–11.13
Matrices:

amplitude scattering, 7.10
for collineation, 1.59–1.60
computing polarization with, 12.27–12.30
density (coherency), 12.29–12.30, 14.41
identity, 14.8
Jones, 7.10

in ellipsometry, 15.30, 16.19
and Mueller matrices, 14.3, 14.22–14.24, 

14.27, 14.33
tensor product of, 14.23

paraxial, and geometrical optics, 1.65–1.74
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Matrices (Cont.):
Pauli spin, 14.24, 14.41
point spread, 15.36, 15.36f
power, 1.67
for radiative transfer, 9.11
for single scattering, 9.16, 9.17
Stokes, 14.4
T-matrix method, 7.15
See also Mueller matrices

Matrix generators, 14.27
Maxwell equations, 7.3
Maxwell fisheye (lens), 1.21
Maxwell-Boltzmann velocity distribution, 31.24
Maxwell-Garnett mixing formula, 9.8
Maxwellian ideal imaging, 1.17, 1.28, 1.38
Maxwell’s electromagnetic theory, 10.3
Maxwell’s equations:

and binary gratings, 23.13
and coherence theory, 5.2, 5.3
and diffraction, 3.1, 3.2, 3.4
and laws of reflection and refraction, 1.24
and optical waveguides, 21.3, 21.5
and surface scattering, 8.4

McCarthy objective, 29.32
McKinley relays, 18.18, 18.18f, 18.19
Mean-field approximation, 7.16
Mechanical distances, in focal Gaussian 

lenses, 1.53
Medial images, 29.11, 29.37
Medium-format film, 25.6
Meinel-Shack objective, 29.28
Mellin transforms, 11.14
Melted-resin arrays, 22.42–22.45, 

22.42f–22.44f
Memory, holographic, 33.24–33.25
Meridians (meridional planes), 1.27, 1.32
Meridional rays, 1.35, 1.37
Mersenne objectives, 29.9, 29.12
Mersenne telescopes, 18.20
Metal-insulator semiconductor (MIS) 

capacitors, 26.2
Metal-organic molecular beam epitaxy 

(MOMBE), 21.17, 21.18
Metal-organic vapor-phase epitaxy (MOVPE), 

21.17–21.18
Metal-oxide semiconductor (MOS) capacitors, 

26.2, 26.6
Mica retardation plates, 13.45–13.46
Michel Lévy Color Chart, 28.35f
Michelson interferometers, 2.26–2.28, 

2.26f–2.27f, 32.2, 32.3f, 32.21, 33.4

Michelson stellar interferometers, 2.40–2.41, 
2.40f, 32.19, 32.19f

Microbeam irradiation, 28.54
Microelectromechanical systems (MEMS), 30.3
Micro-Fresnel lenses (MFLs), 22.31–22.37, 

22.31f–22.33f, 22.35f–22.37f
Microlenses:

distributed-index planar, 22.26–22.31, 
22.27f–22.30f, 22.27t, 22.31t

micro-Fresnel lenses (MFLs), 22.31–22.37, 
22.31f–22.33f, 22.35f–22.37f

molded glass, 22.9–22.10, 22.10t, 22.11f,
22.12t, 22.13t, 22.14f

molded plastic, 22.10, 22.12–22.15
Micromachining techniques, for binary optics, 

23.16, 23.16f, 23.17
Micromirrors, 22.23, 30.61–30.62, 30.62f
Micro-optical table (MOT) techniques, 

22.6, 22.7f
Micro-optics (see Miniature and micro-optics)
Microscopes, 28.1–28.56

aperture-scanning microscopy, 28.53–28.54
bright field microscopy, 28.25, 

28.27–28.28, 28.27f
compound, 17.10
confocal microscopy, 28.49–28.51, 

28.49f, 28.51f
contrast in

bright field microscopy, 28.25, 28.27–28.28, 
28.27f

dark field microscopy, 28.28
Hoffman modulation contrast, 28.29
interference microscopy, 28.33–28.44, 

28.35f, 28.37f, 28.38f, 28.40f,
28.42f, 28.43f

modulation transfer function, 
28.24–28.25, 28.25f, 28.26f

phase contrast, 28.28–28.29, 28.29f
SSEE microscopy, 28.29–28.33, 

28.30f–28.33f
dark field microscopy, 28.28
differential-interference contrast, 

28.39–28.41, 28.40f
Dyson, 28.41, 28.42, 28.42f
fluorescent microscopy, 28.48–28.49
history of, 28.1–28.3
holographic, 28.42, 28.43, 28.43f
imaging modes of, 28.44–28.54, 28.44f,

28.46f, 28.47f, 28.49f, 28.51f
interference microscopy, 28.35f, 28.37f,

28.38f, 28.42f, 28.43f
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Microscopes (Cont.):
Jamin-Lebedev, 28.38–28.39, 28.38f
lenses in, 28.9–28.17, 28.10t, 28.11t,

28.12f–28.16f
light field microscopy, 28.53
Linnik, 28.36–28.38, 28.37f
Mach-Zehnder, 28.36, 28.37f
Mirau, 28.41, 28.42, 28.42f
optical arrangements in, 28.3–28.9, 

28.4f–28.8f
optical path difference (OPD) in, 

28.33–28.34, 28.35f, 28.36
resolution, 28.17–28.24, 28.18f–28.21f
specimen manipulation for, 28.54–28.55
SSEE microscopy, 28.29–28.33, 28.30f–28.33f

Mie scattering, 7.11, 7.12, 9.17
Miller algorithm, 7.15
Miniature and micro-optics, 22.1–22.46, 22.46f

and binary optics, 23.7–23.8, 23.7f–23.8f
design considerations, 22.2–22.8
diamond turning, 22.15–22.18, 22.16t,

22.17f, 22.18f
distributed-index planar microlenses, 

22.26–22.31, 22.27f–22.30f, 22.27t, 22.31t
drawn preform cylindrical lenses, 22.45, 22.46f
high-performance miniature systems, 

22.5–22.8
laser-assisted chemical etching (LACE), 22.45
liquid lenses, 22.37–22.41, 22.38f–22.41f,

22.42t
and lithography, 22.18–22.25, 22.20f–22.25f
mass-transport process, 22.45, 22.46f
melted-resin arrays, 22.42–22.45, 

22.42f–22.44f
micro-Fresnel lenses, 22.31–22.37, 

22.31f–22.33f, 22.35f–22.37f
molded microlenses, 22.8–22.15

molded glass, 22.9–22.10, 22.10t, 22.11f,
22.12t, 22.13t, 22.14f

molded plastic, 22.10, 22.12–22.15
monolithic lenslet modules, 

22.25–22.26, 22.25f
Minimum signal, for solid-state cameras, 

26.13–26.14
Minox camera, 25.21
Mirages, 24.1, 24.2f
Mirau interference microscopes, 28.41, 

28.42, 28.42f
Mircolens arrays, for agile beam steering, 

30.57–30.60
Mirror-image effect, 12.6

Mirrors:
compound, 30.15–30.16, 30.15f
conic, 29.3f, 29.4f
Fresnel’s, 2.16, 2.16f
Littrow, 20.4
Lloyd’s, 2.16, 2.17f, 2.18
micromirrors, 22.23, 30.61–30.62, 30.62f
plane, 1.25
in reflecting afocal lenses, 18.20, 18.20f,

18.21, 18.21f
reflection from, 1.25
for scanners, 30.14–30.16, 30.15f,

30.60–30.62, 30.62f
as thin lenses, 1.55
See also Reflective and catadioptric objectives

Misfocus, 1.82
Mixed characteristic functions, 1.13
Mobius strip, 14.15
Modulation transfer function (MTF), 4.3

calculations, 4.3–4.6, 4.4f, 4.5f
and camera lens performance, 27.3f–27.5f,

27.7f–27.16f, 27.18f–27.22f, 27.24, 27.25
and characteristics of objective detectors, 28.16
and contrast of microscopes, 28.24–28.25, 

28.25f, 28.26f
and development in xerographic 

systems, 34.7
diffraction-limited, 4.4–4.5, 4.4f, 4.5f
measurements of, 4.6–4.8, 4.8f
for microscopes, 28.24, 28.25f
for scanners, 4.6
for solid-state cameras, 26.14
at specific wavelengths, 17.38, 17.39
of uniformly illuminated apertures, 30.9, 

30.10, 30.10f
Modulators:

electro-optical modulators, 15.23
Mach-Zehnder, 21.26–21.28, 21.27f,

21.32, 21.34
magneto-optical modulators, 15.23
photo-elastic, 15.21, 16.13
polarization (retardance), 15.20–15.24
traveling wave, 21.26

Molecular beam epitaxy (MBE), 21.17, 21.18
Molecular Expressions (website), 28.3
Molecular scattering, 7.11
Monocentric Schmidt-Cassegrain 

objectives, 29.16
Monocentric systems, 29.37
Monochromatic aberration correction, 

23.6–23.7
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Monochromatic sources of light, 5.11
Monochromators:

Czerny-Turner, 31.6
double-pass, 20.9f
Perkin-Elmer Model 99, 20.9f
Unicam double-, 20.10, 20.13, 20.15f

Monogon scanners, 30.34–30.36
Monolithic lenslet modules (MLMs), 

22.25–22.26, 22.25f
Moving electron beam exposure system 

(MEBES), 23.15, 23.16, 23.16f
Mueller calculus, 12.28–12.30
Mueller matrices, 7.10, 14.1–14.42

about, 14.3–14.4
coordinate system, 14.19–14.20
and depolarization, 14.30–14.31

depolarization index, 14.32
generators of, 14.33–14.39, 14.36f, 14.37f
nondepolarizing matrices, 14.24–14.25, 

14.27–14.30
diattenuators/diattenuation, 14.16–14.19, 

14.16f
in ellipsometry, 15.30, 16.19–16.21, 16.20f,

16.20t, 16.21f
and Jones matrices, 14.22–14.24
normalization of, 14.19
physically realizable, 14.40–14.42
polar decomposition of matrices, 

14.39–14.40
and polarimetry, 15.8–15.9, 15.11

elements of, 15.13–15.14
in error analysis, 15.28
singular value decomposition, 15.25–15.27

polarizance, 14.18
and polarization, 14.7, 14.8, 14.25–14.27, 14.33

average degree of polarization, 14.32–14.33
degree of polarization surfaces and maps, 

14.31–14.32, 14.32f
ideal polarizers, 14.8–14.10, 14.10t
nonpolarizing, 14.8

for radiative transfer, 9.11
for refraction and reflection, 14.20–14.22
retarder, 14.11, 14.12t, 14.13–14.15, 14.15f
for single scattering, 9.16, 9.17
and Stokes parameters, 14.4–14.6
transmittance, 14.16–14.17

Mueller matrix bidirectional reflectance 
distribution function (MMBRDF), 
15.39, 15.39f, 15.40f

Mueller matrix polarimeters, 15.26–15.27

Mueller polarimeters, 15.4
Mueller vectors, 15.15
Mueller-Jones matrices, 14.24, 14.27–14.29

(See also Nondepolarizing Mueller matrices)
Muller convention, 12.6
Multielectron atoms, 10.10–10.11
Multifocal lenses, 23.12, 23.12f, 23.13f
Multiple beam interference, 2.28–2.36

diffraction gratings, 2.28–2.29, 2.29f, 2.30f
Fabry-Perot interferometers, 2.33–2.36, 

2.34f, 2.35f
plane-parallel plates, 2.30–2.33, 2.30f,

2.32f, 2.33f
Multiple (volume) scattering, 9.2, 9.3, 9.8–9.17

analytical theory of, 9.9–9.10, 9.9f
depolarization, 9.16–9.17, 9.17f
effective-medium representation, 9.8
radiative transfer, 9.10–9.13, 9.11f, 9.13f
speckle patterns, 9.15–9.16, 9.15f
weak localization, 9.13–9.17, 9.14f

Multiple-angle-of-incidence ellipsometry 
(MAIE), 16.3

Multiple-order retardation plates, 13.47–13.48
Multiple-track read-write with diode laser 

arrays, 35.28
Multiplexed image scanning, 30.23, 30.24f
Multiplexed sensors, for fiber 

interferometers, 32.16
Multiplexing, spatial, 23.8
Multiplication, 11.3
Multipliers, serial incoherent matrix-vector, 

11.17–11.18, 11.18f
Mutual coherence function, 2.36–2.38, 2.36f,

5.4, 5.10, 6.2–6.3
Mutual intensity, 5.11, 6.3–6.4, 6.7, 6.8

Nakamura biplates, 13.56
Narrowband filters, 3.3
Natural broadening, of lineshapes, 10.7
Natural stop shift, of lenses, 22.3
Net complex amplitude, 2.5
Neutron scattering, 9.6
Newton interferometers, 2.25
Newton ring method, 29.22
Newtonian form, of Gaussian equations, 18.4
Newtonian imaging equation, 17.8
Newtonian objectives, 29.6
Newton’s equation, for Gaussian focal lenses, 1.49
Newton’s ring pattern, 2.10, 2.19, 2.25–2.26
Nicol curtate prisms, 13.16f, 13.17
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Nicol-type polarizers, 13.6, 13.6f, 13.10f,
13.15–13.18

conventional, 13.6f, 13.15–13.16
Glan-type vs., 13.8–13.9
trimmed, 13.16–13.18, 13.16f

Nikon N8008s camera, 25.7
Nikon Plan Apochromat, 28.13, 28.14f
Nipkow disks, 28.50, 28.51f
Nippon Sheet Glass, 24.2, 24.6, 24.7
Nodal planes, of Gaussian lenses, 1.48–1.49
Nodal plane-to-nodal plane conjugate 

matrices, 1.69
Nodal points, of lenses, 1.48, 1.48f, 1.49, 17.7
Nodal rays, 17.16
Noether’s theorem, 1.21
Noise:

data, 35.24
fixed-pattern, 26.11
laser, 35.12, 35.24
and optical disk data, 35.12, 35.23–35.24, 

35.24f
pattern, 26.11–26.12, 26.12f
shot, 26.11
in solid-state cameras, 26.11–26.12, 26.12f

Noise equivalent exposure (NEE), 26.10
Nomarski interferometers, 32.4, 32.5f
Nomarski prisms, 28.40, 28.41
Nonafocal lenses, 1.46 (See also Focal lenses)
Noncalcite prisms, 13.23–13.24
Noncosmological red shift, 5.23
Nondepolarizing Mueller matrices, 

14.24–14.25, 14.27–14.30
Nondispersive prisms, 19.1–19.29

Abbe’s, 19.3t, 19.7, 19.7f–19.8f
Amici (roof), 19.3t, 19.11, 19.12f
and beam deviation, 19.2
and beam displacement, 19.2
Brashear-Hastings, 19.3t, 19.25, 19.25f
Carl Zeiss, 19.3t, 19.16, 19.16f
Dove, 19.3t, 19.9, 19.9f, 19.10, 19.10f
Frankford Arsenal, 19.3t, 19.18–19.24, 

19.18f–19.24f
general deviation, 19.3t, 19.28, 19.28f–19.29f
Goerz, 19.3t, 19.17, 19.17f
and image inversion/reversion, 19.2
Leman, 19.3t, 19.13, 19.13f
Pechan, 19.3t, 19.11, 19.11f
penta, 19.3t, 19.13, 19.14f
Porro, 19.3, 19.3t, 19.5f, 19.6, 19.6f
retroreflectors, 19.3t, 19.28, 19.28f

Nondispersive prisms (Cont.):
reversion, 19.3t, 19.14, 19.14f
rhomboidal, 19.3t, 19.25, 19.25f
right-angle, 19.3, 19.3t, 19.4f
Risley, 19.3t, 19.25, 19.25f–19.27f, 19.27
Schmidt, 19.3t, 19.12, 19.12f
Wollaston, 19.3t, 19.15, 19.15f

Nonhomogeneous polarization elements, 
14.25–14.26, 14.26f, 15.7, 15.20

Nonhomogeneous polarization elements 
(Mueller matrices), 14.25–14.26, 14.26f

Nonlinear effects, in integrated optics, 21.12
Nonnormal-incidence reflection:

in Brewster angle reflection polarizers, 
13.34–13.37, 13.34t–13.36t

in pile-of-plates polarizers, 12.15–12.18, 
12.16f, 12.17f

in polarizing beam splitters, 13.41–13.42
Nonnormal-incidence transmission:

in Brewster angle transmission polarizers, 
13.37–13.39, 13.38t–13.39t

in interference polarizers, 13.39–13.41, 13.40f
in pile-of plates polarizers, 12.18–12.24, 

12.19t–12.20t, 12.21f
in polarizing beam splitters, 13.41–13.42

Nonpolarizing elements, 15.7
Nonpolarizing Mueller matrices, 14.8
Nonradiating sources of light, 5.18
Nonrectilinear distortion, 27.6
Non-return to zero inverted (NRZI) 

scheme, 35.17
Non-return to zero (NRZ) scheme, 35.17
Nonrotationally symmetric systems, 1.74
Nonspherical particles, scattering by, 7.15–7.17
Normal congruence rays, 1.10
Normal vectors, 1.18, 1.19
Normal-incidence rotating-sample 

ellipsometers (NIRSE), 16.18
Normalization, of Mueller matrices, 14.19
Normalized spectrum, coherence functions 

for, 5.5–5.6
Null ellipsometers, 16.11, 16.12
Nulling interferometers, 32.20–32.21
Numerical aperture, 1.78, 1.79, 17.9
Nyquist frequency, 26.16–26.20, 26.17f

Object relief distance, 18.11–18.12, 18.12f
Object space, 1.26, 1.83
Object space numerical aperture, 1.78
Object space pupil diameter, 18.6
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Object transparencies, 11.4–11.5, 11.5f
Objective optics, 30.30–30.33, 30.32f–30.33f
Objective scanning, 30.5, 30.28
Objective speckle, 33.9
Objectives:

for microscopes, 28.9–28.15, 28.10t, 28.11t
in afocal systems, 18.7
corrections for tube length, 28.13, 28.13t
coverslip correction, 28.10–28.11, 

28.12f, 28.13
design of, 28.13–28.15, 28.14f–28.16f
field size, 28.13
working distance, 28.13

reflective and catadioptric (see Reflective 
and catadioptric objectives)

for telescopes
afocal Cassegrain-Mersenne, 29.9
afocal Gregorian-Mersenne, 29.12
Ritchey-Chretien, 29.8
three-mirror afocal, 29.29–29.30

Object-space scanners, 30.18–30.23, 
30.19f–30.23f

Object-to-image distance, 1.51–1.52
Oblique spherical aberrations, 1.90, 29.15, 

29.21, 29.37
Obliquity factor, 3.5
Obscurations, of reflective and catadioptric 

objectives, 29.4–29.5, 29.4f
Oculars, for microscopes, 28.16–28.17
Off-axis, eccentric-pupil Paul-Gregorian 

objective, 29.28–29.29
Off-axis double-pass grating spectrograph, 

20.10, 20.13f
Offner relay, 29.33
Offset quantum wells, 21.19
On-axis objective optics, 30.30
One-electron atoms, 10.7–10.9, 10.8f, 10.9f
135° linear polarizers, Mueller matrices 

for, 14.10t
135° half-wave linear retarders, Mueller 

matrices for, 14.12t
135° quarter-wave linear retarders, Mueller 

matrices for, 14.12t
Ophthalmic polarimetry, 15.39, 15.41
Optic axis, of calcite crystals, 13.2, 13.2f,

13.3f, 13.3n
Optical absorption spectrometers, 

31.2–31.5, 31.5f
Optical axes, 1.32, 14.8, 18.2, 29.5, 29.37
Optical center point, of lenses, 17.16, 17.17

Optical coherence microscopy (OCM), 28.44
Optical coherence tomography (OCT), 22.2, 

22.39, 22.40f, 28.43–28.44
Optical constants, 7.12, 12.4–12.6, 16.5
Optical disk data storage, 35.1–35.30

alternative storage media, 35.29, 35.30
automatic focusing, 35.12–35.14, 35.13f
automatic tracking, 35.14–35.17, 

35.14f–35.16f
data format and layout for, 35.2–35.7, 

35.3f–35.5f
developments in, 35.28–35.30
diffractive optics, 35.28, 35.28f, 35.29
direct overwrite, 35.30, 35.30f
materials for recording, 35.25–35.28, 

35.26f, 35.27f
multiple-track read-write with diode laser 

arrays, 35.28
and optical path, 35.7–35.12, 35.7f,

35.9f–35.11f
readout, 35.21–35.24, 35.22f, 35.24f
thermomagnetic recording process, 

35.17–35.20, 35.18f–35.20f
Optical extent (étendue), 1.22, 1.81, 13.7
Optical fibers, polarizers for, 13.57
Optical hole burning (OHB), 10.18
Optical holeburning (OHB) spectroscopy, 

31.24–31.26, 31.24f–31.26f
Optical invariants, 18.7
Optical matched filtering, for pattern 

recognition, 11.12–11.14, 11.13f
Optical metrology, 15.35
Optical path, of optical disks, 35.7–35.12, 35.7f,

35.9f–35.12f
Optical path difference (OPD), 2.7, 28.33–28.34, 

28.35f, 28.36
Optical path length (OPL), 1.11, 2.5
Optical processing systems, for synthetic 

aperture radar data, 11.7–11.8
Optical sine theorem, 17.5
Optical spectrometers (see Spectrometers)
Optical spectroscopy (see Spectroscopy)
Optical theorem, 7.8
Optical train, in microscopes, 28.3–28.5, 28.5f
Optical transfer function (OTF):

calculations of, 4.3, 4.5
and camera lens performance, 27.3f–27.5f,

27.7f–27.16f, 27.18f–27.22f, 27.24
measurements of, 4.6–4.7

Optical tube length, 17.10
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Optical tweezers, 28.55
Optically detected magnetic resonance 

(ODMR), 31.21–31.23, 31.22f, 31.23f
Optoelectronic integrated circuit (OEIC), 21.2
Orthogonal matrices, 14.11
Orthoscopic imaging, 28.8
Orthotomic systems, 1.10, 1.12
Oscillations, wavelength interval between, 12.10
Osculating planes, of space curves, 1.18, 1.19
Outer product processors, 11.19
Output planes, conjugate matrices for, 1.68
Overillumination, 30.14
Oxides, thin film, 21.13–21.14

Pancharatnam phase, 32.11
Panoramic cameras, 25.25, 25.26f
Parabasal optics, 1.43
Paraboloid objective, 29.6
Parallax stereogram, 25.24
Parallel matrix-vector multipliers, 

11.18–11.19, 11.18f
Parallel-beam scanners, 30.23–30.25, 

30.24f–30.25f
Paraxial chief rays, 1.75
Paraxial curvature, 1.32–1.33
Paraxial invariant, 1.41
Paraxial invariants, 1.77
Paraxial limit, of systems of revolution, 1.38
Paraxial matrices, for geometrical optics, 

1.65–1.74
angle instead of reduced angle, 1.72
arbitrary systems, 1.67
and characteristic functions, 1.74
conjugate matrices, 1.68–1.71, 1.73
linearity, 1.66
nonrotationally symmetric systems, 1.74
operation on two rays, 1.68
possible zeros, 1.68
power matrix, 1.67
skew rays, 1.73
transfer matrices, 1.66
two-ray specification, 1.72
unit determinants, 1.67

Paraxial optics, 1.29, 1.37
Paraxial optics, of systems of revolution, 

1.37–1.43
angle of incidence at a surface, 1.39
axial object and image locations, 1.40
image location and magnification, 1.42
linearity of, 1.41

Paraxial optics, of systems of revolution (Cont.):
paraxial limit, 1.38
principal focal lengths of surfaces, 1.39–1.40
ray tracing, 1.40
reflection and refraction, 1.38
switching axial objects and viewing 

positions, 1.43
three-ray rule, 1.42
transfer, 1.38
two-ray paraxial invariant, 1.41

Paraxial pupils, 1.77
Paraxial rays, 1.35
Partially polarized light, 15.7
Particles, scattering by, 7.1–7.17

coherent vs. incoherent arrays, 7.2–7.3
concepts of, 7.4–7.5, 7.6f–7.7f, 7.8–7.10, 

7.9f, 7.10f
isotropic homogenous spheres, 7.11–7.14
Mie, 7.11, 7.12
nonspherical particles, 7.15–7.17
regular particles, 7.14–7.15
single particles, 7.2–7.3
theories of, 7.3–7.4

Paschen-Runge configuration, 20.7, 20.11f, 20.14t
Passive autofocus systems, for cameras, 25.12
Passive devices, for integrated optics, 

21.21–21.25, 21.22f–21.25f
Pattern noise, 26.11–26.12, 26.12f
Pattern recognition, optical matched filtering 

for, 11.12–11.14, 11.13f
Paul objectives, 29.28–29.29
Pauli spin matrices, 14.24, 14.41
Pechan prisms, 19.3t, 19.11, 19.11f
Pellin-Broca prisms, 20.6f
Penta prisms, 19.3t, 19.13, 19.14f
Percus-Yevick approximation, 9.5
Perfectly reflecting (PEC) surfaces, 8.10
Periphery cameras, 25.22
Periscopes, lenses in, 18.19, 18.19f
Periscopic lenses, 17.27, 17.27f
Perpendicular magnetic anisotropy, 35.26
Perpendicular-incidence ellipsometers (PIEs), 

16.17–16.18, 16.18f
Petzval (field) curvature:

in gradient index optics, 24.4, 24.6, 24.7
of reflective and catadioptric objectives, 29.7, 

29.11, 29.14, 29.15, 29.32
as wavefront aberration, 1.91

Petzval lenses, 17.10, 17.28, 17.28f, 17.35f
Petzval sum, 28.15, 29.37
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Pfund configuration, of dispersive prisms, 
20.8f, 20.10, 20.13f

Pfund objectives, 29.6
Phase contrast microscopy, 28.28–28.29, 28.29f
Phase plates, 28.28
Phase retardation, 12.24
Phase transfer functions (PTF), 4.3, 4.7
Phase-conjugate interferometers, 32.17, 

32.18, 32.18f
Phased-arrays, for agile beam steering, 

30.52–30.57, 30.53f, 30.62–30.63
Phase-locked interferometers, 32.11–32.12, 

32.12f
Phase-matching, in integrated optics, 21.12
Phase-sensitive detection (PSD), 

31.8–31.11, 31.8f
Phase-shifting interferometers, 

32.10–32.11, 32.11f
Phasors, 5.2
Photo-activated localization microscopy 

(PALM), 28.23
Photocopolymerization, 24.8
Photocopying, 24.6
Photo-elastic modulators (PEMs), 15.21, 16.13
Photographic plates, 3.3
Photography, wide-angle, 25.25
Photoluminescence decay time, 31.12–31.15, 

31.13f, 31.14f
Photometric ellipsometers, 16.12–16.14, 

16.13f, 16.14f
Photon correlation spectroscopy (PCS), 9.8
Photon migration approach, to radiative 

transfer, 9.12
Photon transfer, 26.12
Photonic integrated circuits (PICs):

of III-V materials, 21.17–21.20
in integrated optics, 21.2
in WDM systems, 21.37, 21.38

Photopolarimeters, 16.13–16.16, 16.14f–16.16f
Photoreceptors, in xerographic systems, 34.1, 

34.2–34.4, 34.2f, 34.3f
Photoresponse nonuniformity (PRNU), 

26.11–26.12, 26.12f
Photosensitive compounds, in microscopy, 28.55
Physically realizable Mueller matrices, 

14.40–14.42
Picosecond and sub-picosecond relaxation, 

31.14, 31.14f
Pictures, instant, 25.8
Piezoelectric transducer (PZT), 15.21, 15.24

Pile-of-plates polarizers:
nonnormal-incidence reflection, 

12.15–12.18, 12.16f, 12.17f
nonnormal-incidence transmission, 

12.18–12.24
Pincushion distortion, 1.91
Piston error, 1.91
Pixels, 30.8
Planar lenses, 17.28
Planar objects, transmissive, 6.3
Planar secondary source of light, 5.9
Plane mirrors, 1.25
Plane of incidence, 1.23, 12.6
Plane of polarization, 12.6n
Plane waves, 2.4, 2.5f, 3.3, 3.17

decomposition of, 3.23
interference of, 2.8–2.9, 2.9f
and spherical waves, 2.9–2.11, 2.10f

Plane-parallel plates, 2.19, 2.20f, 2.30–2.33, 
2.30f, 2.32f, 2.33f

Planes of vibration, 12.6
Pockels cells, 28.45, 31.9
Pockels effect, 15.23, 21.9 (See also Linear 

electro-optic effect)
Poincaré spheres, 12.27–12.29, 14.4–14.6, 

14.5f, 14.26f, 28.45
Point characteristic function, 1.11, 1.14
Point eikonal, 1.14, 1.17
Point images, aberrations of, 1.85–1.92, 1.86f
Point objects, image planes of, 28.19
Point spread matrix, 15.36, 15.36f
Point-angle characteristic function, 1.15–1.17
Points, images of, 1.27
Polacoat dichroic polarizers, 13.25, 13.26, 13.28
Polanret system, 28.29
Polar decomposition, of Mueller matrices, 

14.39–14.40
Polarimeters, 15.3–15.6

AxoScan Mueller matrix, 15.33
classes of, 15.5
complete and incomplete, 15.4
defined, 15.7
design metrics for, 15.24–15.25
division-of-amplitude, 15.5–15.6
division-of-aperture, 15.5
dual rotating retarder, 15.16
dual rotating retarder polarimeters, 

15.16, 15.16f
imaging, 15.6
light-measuring, 15.3–15.4, 15.11–15.13
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Polarimeters (Cont.):
Mueller, 15.4
Mueller matrix, 15.26–15.27
polarization modulation, 15.5
sample-measuring, 15.4

incomplete, 15.16–15.17
for Mueller matrix elements, 

15.13–15.14, 15.13f
spectropolarimeters, 15.6
Stokes, 15.4, 15.5, 15.25
time-sequential, 15.5
See also Photopolarimeters

Polarimetric data-reduction equations, 
15.14–15.15

Polarimetric measurement equation, 15.12, 
15.14–15.15

Polarimetry, 15.3–15.41
applications of, 15.29–15.41

ellipsometry, 15.30–15.32, 15.31f, 15.32f
liquid crystal cell and system testing, 

15.32–15.35, 15.32f, 15.33f, 15.34t
ophthalmic polarimetry, 15.39, 15.41
polarization aberrations, 15.35–15.37, 

15.35f–15.37f
polarization light scattering, 15.38–15.39, 

15.38f–15.40f
remote sensing, 15.37–15.38

error analysis in, 15.27–15.29, 15.29f
instruments for (see Polarimeters)
Mueller matrices in, 15.8–15.9, 15.11

elements of, 15.13–15.14
in error analysis, 15.28
singular value decomposition, 15.25–15.27

polarimetric data-reduction equations, 
15.14–15.15

polarimetric measurement equation, 
15.14–15.15

and polarization elements, 15.17, 15.19–15.20
polarization generators and analyzers, 

15.4–15.5
polarization (retardance) modulators, 

15.20–15.24, 15.22f
Stokes vectors in, 15.8–15.10
terms in, 15.6–15.7

Polariscopes, Sénarmont, 12.30
Polarizance, 12.14n, 14.18
Polarization, 12.3–12.30

average degree of, 14.32–14.33
and coherence theory, 5.22
concepts and conventions, 12.4–12.6

Polarization (Cont.):
defined, 15.8
degree of, 12.14–12.15
of dichroic polarizers, 13.33
false, 15.38
Fresnel equations for, 12.6–12.13

for absorbing materials, 12.10–12.13, 12.13f
coordinate system for, 12.6–12.7, 12.7f
for nonabsorbing materials, 

12.8–12.10, 12.9f
generators and analyzers of, 15.4–15.5
instrumental, 12.15
magnetic circular, 31.21
matrix methods for computing, 12.27–12.30
and Mueller matrices, 14.7, 14.8, 

14.25–14.27, 14.33
pile-of-plates polarizers, 12.15–12.24

nonnormal-incidence reflection, 
12.15–12.18, 12.16f, 12.17f

nonnormal-incidence transmission, 
12.18–12.24, 12.19t–12.20t, 12.21f

plane of, 12.6n
relations for polarizers, 12.14–12.15
retardation plates, 12.24–12.27, 12.25f, 12.26f
See also related topics

Polarization aberration function (PAF), 15.35
Polarization aberrations, 15.35–15.37, 

15.35f–15.37f
Polarization analyzer, 15.11
Polarization and Directionality of Earth’s 

Reflectances (POLDER) instrument, 15.37
Polarization artifacts, 15.38
Polarization coupling, 15.8
Polarization critical region, 15.28
Polarization instruments, 12.29
Polarization interferometers, 32.4, 32.5f
Polarization light scattering, 15.38–15.39, 

15.38f–15.40f
Polarization modulation polarimeters, 15.5
Polarization (retardance) modulators, 

15.20–15.24, 15.22f
Polarization spectrometers, 31.15–31.23

optically detected magnetic resonance, 
31.21–31.23, 31.22f, 31.23f

polarized absorption by, 31.15–31.17, 
31.15f, 31.18f

polarized absorption/luminescence 
techniques, 31.17, 31.19–31.21, 31.19f

principles of, 31.15, 31.15f
Polarization state detectors (PSDs), 16.10
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Polarization state generators (PSGs), 16.10
Polarization-dependent loss (PDL), 14.17
Polarized absorption, 31.15–31.21, 31.15f,

31.18f, 31.19f
Polarized light, 15.8
Polarizer-compensator-sample analyzer 

(PCSA) ellipsometer arrangement, 
16.10–16.14, 16.11f

Polarizers, 13.1–13.57
beam-splitter prisms as, 13.6, 13.18–13.22

Foster, 13.7, 13.18f, 13.21–13.22
Glan-Thompson, 13.18f, 13.22
Rochon, 13.7, 13.18–13.21, 13.18f,

13.19f, 13.24
Sénarmont, 13.7, 13.18, 13.18f, 13.21
Wollaston, 13.7, 13.18, 13.18f, 13.21, 13.24

circular, 15.17–15.19
compensators, 13.53–13.56, 13.54f, 13.55f
Cotton, 13.21
defined, 15.8
dichroic and diffraction-type, 13.24–13.33, 

13.26f, 13.27f
dichroic polarizing coatings, 13.28
measuring polarization of, 13.33
pyrolytic-graphite polarizers, 

13.28–13.29, 13.29f
sheet polarizers, 13.25–13.28
wire-grid and grating polarizers, 

13.30–13.33, 13.31f, 13.32t
elliptical, 15.17–15.18
Feussner prisms, 13.6, 13.7, 13.22–13.23, 

13.22f
Glan-Foucault prisms, 13.7, 13.9, 13.11f,

13.12–13.14
Glan-type prisms, 13.6, 13.6f, 13.8–13.15

Frank-Ritter-type, 13.6, 13.6f, 13.13–13.14
Glan-Foucault, 13.7, 13.9, 13.11f,

13.12–13.14
Glan-Thompson type, 13.6f, 13.9–13.12, 

13.10f, 13.11f, 13.27
Lippich-type, 13.6, 13.6f, 13.7, 13.9n,

13.10–13.14, 13.10f, 13.11f
half-shade devices, 13.56–13.57
ideal, 14.8–14.10, 14.10t, 15.7
imperfect, 13.33
miniature, 13.57
Nicol-type, 13.6, 13.6f, 13.10f, 13.15–13.18

conventional, 13.6f, 13.15–13.16
Glan-type vs., 13.8–13.9
trimmed, 13.6f, 13.7, 13.16–13.18, 13.16f

Polarizers (Cont.):
noncalcite prisms as, 13.23–13.24
nonnormal-incidence reflection by

Brewster angle reflection polarizers, 
13.34–13.37, 13.34t–13.36t

pile-of-plates polarizers, 12.15–12.18, 
12.16f, 12.17f

polarizing beam splitters, 13.41–13.42
nonnormal-incidence transmission by

Brewster angle transmission polarizers, 
13.37–13.39, 13.38t–13.39t

interference polarizers, 13.39–13.41, 13.40f
pile-of plates polarizers, 12.18–12.24, 

12.19t–12.20t, 12.21f
polarizing beam splitters, 13.41–13.42

prism, 13.2–13.8, 13.2f–13.3f, 13.4t–13.5t, 13.6f
relations for, 12.14–12.15
retardation plates as, 13.43–13.53, 

13.43t–13.44t, 13.50f, 13.53t
Polarizing angle, 12.12, 12.15
Polarizing beam splitter (PBS) prisms, 13.6, 

13.41–13.42
Polarizing beam splitters (PBSs), 13.41–13.42, 

35.22–35.23, 35.22f
Polarizing coatings, dichroic, 13.28
Polaroid dichroic polarizers, 13.25–13.28, 13.26f
Polygon scanners, 30.34–30.38, 30.34f, 30.35f
Porro prisms, 19.3, 19.3t, 19.5f, 19.6, 19.6f
Postobjective scanning, 30.5, 30.29, 30.29f, 30.30f
Powder cloud development, in xerographic 

systems, 34.9, 34.9f
Power (Gaussian lenses), 1.46–1.47, 1.47f
Power density, 30.25
Power exponential (PEX) model, of surface 

finish, 8.15
Power matrix, 1.67
Power per pixel, 1.80
Power spectra, for surface scattering, 

8.12–8.13, 8.13f
Power transfer, 30.25–30.28, 30.27f, 30.28f
Poynting vectors, 1.8, 3.3
Preflash, of cameras, 25.16
Preobjective scanning, 30.5, 30.28, 30.29f
Primary focal length (term), 3.12
Principal plane-to-principal plane conjugate 

matrices, 1.69
Principal rays (term), 1.75, 17.8
Principal transmittance (term), 12.14–12.16
Prism polarizers, 13.2–13.8, 13.2f–13.3f,

13.4t–13.5t, 13.8f (See also specific types)
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Prism spectrometers, 20.2–20.3, 20.3f
Prismatic facets, 30.34–30.35
Prisms (See also Dispersive prisms and gratings; 

Nondispersive prisms)
axis wander of, 13.15
beam-splitter, 13.7, 13.18–13.22, 13.18f
Bertrand-type Feussner, 13.23
Brewster angle, 13.13
of calcite, 13.20, 13.23
Feussner, 13.6, 13.7, 13.22–13.23, 13.22f
Foster, 13.7, 13.18f, 13.21–13.22
Foucault, 13.7, 13.17
Frank-Ritter-type, 13.6, 13.6f, 13.13–13.14
Fresnel’s biprism, 2.16, 2.16f
Glan-Foucault, 13.7, 13.9, 13.11f, 13.12–13.14
Glan-Taylor, 13.7, 13.9n, 13.10–13.14, 

13.10f, 13.11f
Glan-Thompson, 13.6, 13.6f, 13.9–13.12, 

13.10f, 13.18f, 13.22
field angle of, 13.12
sheet polarizers vs., 13.27
transmission by, 13.9–13.10, 13.11f

Glan-type, 13.6, 13.6f, 13.8–13.15
Glazebrook, 13.6, 13.9
Halle, 13.16f, 13.17
Hartnack-Prazmowski, 13.16f, 13.17
Jellett-Cornu, 13.56
length-to-aperture (L/A) ratio, 13.7
Lippich-type, 13.6, 13.9n, 13.10f, 13.11f,

13.12–13.14, 13.12n, 13.56
Marple-Hess, 13.12, 13.13
Nicol curtate, 13.16f, 13.17
Nomarski, 28.40, 28.41
noncalcite, 13.23–13.24
polarizing beam splitter, 13.6, 13.41–13.42
Rochon, 13.7, 13.18–13.21, 13.18f,

13.19–13.20, 13.19f, 13.24
semifield angle of, 13.7
Sénarmont, 13.7, 13.18, 13.18f, 13.21
Steeg and Reuter Nicol, 13.17
Wollaston, 13.7, 13.18, 13.18f, 13.21, 13.24, 

28.39, 28.40, 32.4
Projective transformation, 1.56 (See also

Collineation)
Propagation of light, coherence theory and, 

5.13–5.19, 5.14f–5.16f
Propagation of mutual intensity, 6.4
Pseudo-Brewster angle, 12.13
Pulse width modulation (PWM), in 

thermomagnetic recording, 35.18–35.19

Pupil aberrations, 1.76
Pupil angular magnification, 1.78
Pupil distortion, 1.78
Pupil imaging, 1.76
Pupil magnification, 1.76
Pupils, of lenses, 1.76–1.79, 1.76f, 1.78f,

17.8–17.9
Purcell, M., 7.16
Purcell-Pennypacker method, 7.15
Pure diattenuators, 15.8
Pure retarders, 15.8
Pushbroom scan, 30.18
Pyramidal facets, 30.34–30.35, 30.34f, 30.35f
Pyrolytic-graphite polarizers, 13.28–13.29, 13.29f

Quantitative phase microscopy, 28.27
Quantum coherence theory, 5.2
Quantum electrodynamic (QED) shifts, 10.4
Quantum-confined Stark effect (QCSE), 

21.11–21.12, 21.32
Quantum-well intermixing, 21.19, 21.20
Quarter pitch length, of the rod, 24.6
Quarter-wave circular retarders, Mueller 

matrices for, 14.12t
Quarter-wave linear retarders, Mueller matrices 

for, 14.11, 14.12t
Quarter-wave plates, 12.25–12.27, 12.26f
Quartz retardation plates, 13.46–13.48
Quasi-homogeneous sources of light, 

5.11–5.12, 5.19
Quasi-monochromatic sources of light, 5.11

Racah parameters, for ion energy levels, 10.12
Radar, synthetic aperture, 11.6–11.8, 

11.7f–11.8f
Radial gradients, 24.5–24.8, 24.5f, 24.7f
Radial symmetry, of scanners, 30.5
Radiance, 5.8
Radiant emittance, 5.7–5.8
Radiant intensity, 5.8
Radiation:

coherent, 30.2, 30.25–30.26
incoherent, 30.2, 30.26, 30.27
infrared, 13.47

Radiation fields, coherence theory and, 
5.15–5.16, 5.15f, 5.16f

Radiation modes, of optical waveguides, 21.4
Radiative lifetime, 31.12–31.13, 31.13f
Radiative transfer, in volume scattering, 

9.10–9.13, 9.11f, 9.13f
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Radio astronomy, 5.23
Radiometry, statistical, 5.22
Radius of torsion, for space curves, 1.19
Radius of torsion, of space curves, 1.19
Ramachandran, G. N., 12.28, 13.53
Raman scattering, 31.30–31.31, 31.31f
Raman-Nath diffraction, 11.9, 11.9f
Ramsden disk, 28.8, 28.16
Range of focus, 1.85
Rapid Rectilinear lenses, 17.27
Rare earth ions, tri-positive, 10.16–10.18, 

10.16t, 10.17f
Raster output scanning (ROS) systems, 34.4
Ray aberrations, 1.87–1.88
Ray densities, 1.88
Ray equation, 1.20
Ray fans, 1.35
Ray intercept diagrams, 1.87
Ray optics, 1.8
Ray paths, 1.10–1.13, 24.2
Ray tracing:

for binary optics, 23.4, 23.6
in systems of revolution, 1.35–1.37, 

1.36f, 1.40
Rayleigh criterion, 17.37, 28.6, 28.18
Rayleigh criterion of resolving power, 3.26
Rayleigh index, 8.6
Rayleigh radius value, 30.10
Rayleigh range of origin, 5.14, 5.16
Rayleigh resolution, 30.56, 33.17
Rayleigh scattering, 7.11, 9.17, 31.30
Rayleigh-Gans approximation, 7.9, 7.9f
Rayleigh-Rice (RR) approximation, 8.4, 

8.9–8.12
Rayleigh’s diffraction integral, 5.13
Rayleigh-Sommerfeld diffraction, 3.9, 3.10, 

3.23, 3.29
Rays, 1.8–1.13

chief, 1.75, 17.8, 29.20, 29.37
for collineation, 1.61
defined, 1.8–1.9
differential geometry of, 1.19–1.21
direction of, 1.10
expansions about, 1.16
fields of, 1.13
finite, 1.35
groups of, 1.10
Hamilton’s equations for, 1.21
in heterogeneous media, 1.9, 1.18–1.22
image-forming, 1.74
images about known rays, 1.43–1.44, 1.44f

Rays (Cont.):
invariance properties of, 1.10
in lenses, 1.35
marginal, 1.75
meridianal, 1.37
meridional, 1.35
nodal, 17.16
normal congruence, 1.10
paraxial, 1.35, 1.75
paraxial matrices for, 1.68, 1.73
paths of, 1.10–1.13
principal, 1.75, 17.8
principal index of, 13.3
real and virtual, 1.10, 1.35
reversibility of, 1.9
skew, 1.35, 1.73
variational integral of, 1.19

Reactive ion etching (RIE), 21.18–21.19
Readout, from optical disk data storage, 

35.21–35.24
Real pupils, 1.76
Real rays, 1.10, 1.35
Rear focal lengths, 1.40
Rear focal points, 1.40, 1.47
Rear principal plane, of Gaussian focal 

lenses, 1.48
Received images, 1.26
Receiving surfaces, in imaging, 1.26
Reciprocity theorem, coherence theory and, 

5.17–5.18
Recorded images, 1.26
Recording, of optical disk data, 35.25–35.28, 

35.26f, 35.27f
Rectangular apertures, 3.19–3.20, 3.20f,

3.25, 3.26
Rectilinear distortion correction, 

27.6, 27.13f, 27.14f
Red eye, cameras and, 25.16
Red shift, noncosmological, 5.23
Rediagonalization, of index ellipsoid 

equation, 21.10
Reference spheres, for wavefronts, 1.86
Reflectance, 12.17
Reflecting afocal lenses, 18.19–18.21, 18.20f
Reflection(s):

in Gaussian lens systems, 1.55
in homogeneous media, 1.25
Mueller matrices for, 14.21–14.22
nonnormal-incidence, 12.15–12.18
and phase changes, 12.12–12.13
and ray tracing, 1.37
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Reflection(s) (Cont.):
of systems of revolution, 1.38, 1.39
total internal, 13.20, 21.3
unfolded, 1.32
volumetric, 7.7f

Reflective and catadioptric objectives, 29.1–29.38
afocal telescope designs

Cassegrain-Mersenne, 29.9
Gregorian-Mersenne, 29.12
three-mirror, 29.29–29.30

Altenhof, 29.32–29.33
anastigmatic designs, 29.12–29.13
aplanatic designs, 29.11–29.13
Baker-Nunn, 29.22
Cassegrain designs, 29.6, 29.7

afocal Cassegrain-Mersenne telescope, 29.9
dual magnification, 29.9–29.10
with field corrector and spherical 

secondary, 29.8–29.9
Houghton-Cassegrain, 29.22–29.23
Mangin-Cassegrain with correctors, 29.24
reflective Schmidt-Cassegrain, 29.17
Schmidt-Cassegrain, 29.16–29.17
Schmidt-meniscus Cassegrain, 29.21
with Schwarzschild relay, 29.32
solid Makutsov-Cassegrain, 29.19
spherical-primary, with reflective field 

corrector, 29.9
three-mirror, 29.30

Cook three-mirror, 29.31
correctors, in designs

aplanatic, anastigmatic Schwarzschild 
with aspheric corrector plate, 29.13

Cassegrain with spherical secondary and 
field corrector, 29.8–29.9

Mangin-Cassegrain with correctors, 29.24
Ritchey-Chretien telescope with two-lens 

corrector, 29.8
spherical-primary Cassegrain with 

reflective field corrector, 29.9
three-lens prime focus corrector, 29.10

Couder, 29.12
Dall-Kirkham, 29.8
Eisenburg and Pearson two-mirror, three 

reflection, 29.25
features of, 29.2–29.5, 29.3f–29.5f
field-of-view plots, 29.34–29.35, 

29.35f, 29.36f
flat-medial-field designs, 29.11
Gabor, 29.20
glass varieties for, 29.2, 29.2t

Reflective and catadioptric objectives (Cont.):
Herschelian catadioptric, 29.27
Houghton designs, 29.22–29.23
Korsch designs, 29.30–29.32, 29.34
Maksutov designs, 29.19, 29.20
Mangin designs, 29.7, 29.24
Mersenne designs, 29.9, 29.12
Paul designs, 29.28–29.29
Ritchey-Chretien with two-lens corrector, 29.8
Schiefspiegler, 29.26–29.27
Schmidt designs, 29.14

Baker super-Schmidt, 29.21
field-flattened, 29.14–29.15
reflective, 29.15
reflective Schmidt-Cassegrain, 29.17
Schmidt-Cassegrain, 29.16–29.17
Schmidt-meniscus Cassegrain, 29.21
Shafer-relayed-virtual, 29.17–29.18, 29.18f
solid, 29.16

Schwarzschild designs, 29.12–29.13, 29.32
SEAL, 29.27–29.28
Shafer designs

five mirror unobscured, 29.33–29.34
four mirror unobscured, 29.33
Shafer relayed virtual Schmidt, 

29.17–29.18, 29.18f
two-mirror three reflection, 29.25

Shenker, 29.23
spherical primaries in designs, 29.9, 29.11, 

29.18, 29.30
for telescopes

afocal Cassegrain-Mersenne, 29.9
afocal Gregorian-Mersenne, 29.12
Ritchey-Chretien, 29.8
three-mirror afocal, 29.29–29.30

terminology, 29.36–29.38
three-mirror designs, 29.28–29.32, 29.34
Wetherell and Womble three-mirror, 29.31
Wright, 29.15
Yolo, 29.26

Reflective Schmidt objective, 29.15
Reflective Schmidt-Cassegrain objective, 29.17
Reflective systems, 1.9
Refraction:

in calcite, 13.2–13.6, 13.4t–13.5t
double, 13.2–13.6, 13.2f–13.3f, 13.4t–13.5t
in Gaussian lens systems, 1.54
in homogeneous media, 1.24–1.25
Mueller matrices for, 14.20–14.21
ray tracing, 1.37
in systems of revolution, 1.38, 1.39
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Refraction gradients, index of, 24.1 (See also
Gradient index (GRIN) optics)

Refractive index (index of refraction), 1.9
for Brewster angle transmission polarizers, 

12.21–12.22
complex, 7.12–7.13, 12.5, 12.6
distributed, 24.1
in gradient index optics, 24.2–24.3
in integrated optics, 21.8–21.9
of polarizers, 12.16, 12.18
for rays in heterogeneous media, 1.21–1.22
of shallow radical gradients, 24.7–24.8

Refractive optics, 23.7, 23.8
Refractive systems, 1.9
Region of sag (axial gradients), 24.4f
Relativity, of conjugate matrices, 1.70
Relay lenses, 17.10
Relay trains, in afocal lenses, 18.17–18.19, 

18.17f, 18.18f
Remote sensing, polarimetry and, 15.37–15.38
Remote sensing scanners, 30.2–30.4, 

30.14–30.25
circular scan, 30.16, 30.18f
compound mirror optics configurations for, 

30.15–30.16, 30.15f
multiplexed image scanning by, 30.23, 30.24f
object- and image-space, 30.18–30.23
parallel-beam, 30.23–30.25, 30.24f–30.25f
pushbroom scan, 30.18
resolution of, 30.6–30.8, 30.7f
rotating wedge, 30.16, 30.17f
single-mirror, 30.14, 30.15f
two-dimensional, 30.18, 30.19f

Resolution:
of cameras, 25.5–25.6, 25.6f
of microscopes, 28.17–28.24

Airy disk and lateral resolution, 
28.17–28.19, 28.18f, 28.19f

depth of field, 28.22–28.23
depth of focus, 28.22
three-dimensional diffraction pattern, 

28.19–28.22, 28.20f, 28.21f
and objective optics, 30.33
Rayleigh, 30.56, 33.17
of scanners, 30.6–30.14

data rates and remote sensing, 
30.6–30.8, 30.7f

input/output scanning, 30.8–30.14, 30.10f,
30.10t, 30.11t, 30.12f–30.13f

of solid-state cameras, 26.15–26.16, 26.16f

Resolution limit, 1.80
Resonant scanners, 30.41–30.44, 30.43f, 30.44f
Responsivity, of solid-state cameras, 26.9–26.10
Retardance, 14.6, 15.8
Retardance modulators, 15.20
Retardance space, 14.6
Retardation plates, 12.24–12.27, 12.25f, 12.26f,

13.43–13.53, 13.43t–13.44t
achromatic, 13.48–13.52, 13.50f, 13.53t
composite, 13.52, 13.53
crystalline-quartz, 13.46–13.48
defined, 15.8
mica, 13.45–13.46
quarter-wave and half-wave, 12.24–12.27, 

12.25f, 12.26f
rhomb-type, 13.52, 13.53t
variable, 13.53

Retarder space, 14.14–14.15, 14.15f
Retarders:

defined, 15.8
Mueller matrices for, 14.11–14.15, 14.12t,

14.15f
Retrofocus lenses, 27.2 (See also Inverted 

telephoto camera lenses)
Retro-reflection testing and correction, 

15.28–15.29, 15.29f
Retroreflectors, 19.3t, 19.28, 19.28f
Return-path ellipsometers, 16.16–16.17, 16.17f
Return-path ellipsometers (RPEs), 

16.16–16.17, 16.17f
Reverse telephoto lenses, 17.29, 17.34f
Reversibility, of rays, 1.9
Reversion prisms, 19.3t, 19.14, 19.14f
Revolution, systems of, 1.32–1.43

paraxial optics of, 1.37–1.43
ray tracing in, 1.35–1.37
surfaces, 1.32–1.35
unfolded reflections, 1.32

Rhomboidal prisms, 19.3t, 19.25, 19.25f
Rhomb-type retardation plates, 13.52, 13.53t
Riccati-Bessel functions, 7.12
Right circular polarizers, Mueller matrices 

for, 14.10t
Right half-wave circular retarders, Mueller 

matrices for, 14.12t
Right-angle prisms, 19.3, 19.3t, 19.4f
Right-circularly polarized light, 12.27, 12.28n
Ring field lens design, 18.22
Risley prisms, 19.3t, 19.25–19.27, 19.25f–19.27f
Ritchey-Chretien objectives, 29.7–29.8
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Ritchey-Chretien primaries, 29.10
Rochon prisms, 13.7, 13.18–13.21, 13.18f,

13.19f, 13.24
Roof prisms, 19.11, 19.12f

(See also Amici prisms)
Rotating retarders, 15.20
Rotating wedge scanners, 30.16, 30.17f
Rotating-analyzer ellipsometer (RAE), 16.13, 

16.13f, 16.14
Rotating-compensator fixed analyzer (RCFA) 

photopolarimeter, 16.14
Rotating-detector ellipsometer (RODE), 

16.14, 16.14f
Rotating-element photopolarimeters (REPs), 

16.13
Rotation sensors, for fiber interferometers, 

32.14–32.15, 32.15f
Rotational spectra, 10.20–10.22
Rotationally symmetric lenses, 1.27, 

1.60–1.62, 1.62f
Rotationally symmetric systems, 1.17, 

1.89–1.90
Routers, waveguide grating, 21.24
Rowland circle, 20.5, 20.7, 20.8, 20.10f
Rydberg constant, 10.3
Rytov’s series of exponential approximations, 9.4

Sag, of surfaces, 1.32, 1.33f
Sagittal fans and foci, 1.35
Sagnac interferometers, 21.35, 21.36, 21.36f,

32.3–32.4, 32.4f
Sampled tracking, on optical disks, 

35.16, 35.16f
Sample-measuring polarimeters, 15.4, 

15.13–15.14, 15.13f, 15.16–15.17
Sampling, with solid-state cameras, 

26.16–26.19, 26.17f–26.19f
SAOBIC processor, 11.20
Saturated absorption spectroscopy, 

31.24–31.26, 31.24f–31.26f
Saturation equivalent exposure (SEE), 

26.10–26.11
Savart plates, 13.56
Scalar diffraction theory, for binary optics, 

23.10–23.13, 23.11t, 23.12f, 23.13f
Scalar field amplitude, 5.3
Scaling law, of spectrum of light, 5.21
Scan error reduction, 30.48–30.51, 30.49t,

30.50f, 30.51f
Scan magnification, 30.5, 30.12–30.14

Scanners, 30.1–30.63
acousto-optic, 30.44–30.45
agile beam steering, 30.51–30.63

decentered lens and mircolens arrays, 
30.57–30.60, 30.58f–30.60f,
30.62–30.63

digital micromirror devices, 30.60–30.61
gimbal-less two-axis scanning 

micromirrors, 30.61–30.62, 30.62f
phased-array, 30.52–30.57, 30.53f,

30.62–30.63
electro-optic (gradient), 30.45–30.48, 

30.46f–30.48f
error reduction in, 30.48–30.51, 30.49t,

30.50f, 30.51f
galvanometer and resonant, 30.41–30.44, 

30.43f, 30.44f
holographic, 30.38–30.41, 30.40f–30.42f
input/output scanning, 30.2, 30.4–30.6, 

30.4t, 30.25–30.34
objective, preobjective, and postobjective, 

30.28–30.29, 30.29f, 30.30f
objective optics, 30.30–30.33, 

30.32f–30.33f
power density and power transfer of, 

30.25–30.28, 30.27f, 30.28f
resolution of, 30.8–30.14, 30.10f, 30.10t,

30.11t, 30.12f–30.13f
Keplerian afocal lenses for, 18.13, 18.13f
modulation transfer function (MTF) 

for, 4.6
monogon and polygon, 30.34–30.38, 

30.34f, 30.35f
remote sensing, 30.2–30.4, 30.14–30.25

circular scan, 30.16, 30.18f
compound mirror optics configurations, 

30.15–30.16, 30.15f
multiplexed image scanning, 30.23, 30.24f
object- and image-space, 30.18–30.23, 

30.19f–30.23f
parallel-beam, 30.23–30.25, 30.24f–30.25f
pushbroom scan, 30.18
rotating wedge, 30.16, 30.17f
single-mirror, 30.14, 30.15f
two-dimensional, 30.18, 30.19f

resolution of, 30.6–30.14
data rates and remote sensing, 30.6–30.8
input/output scanning, 30.8–30.14, 30.10f,

30.10t, 30.11t, 30.12f–30.13f
Scanning, active, 30.4
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Scattering:
and backscattering, 6.5–6.7, 6.5f,

9.14–9.15, 9.14f
Brillouin, 31.30
by coated spheres, 7.14
coherent and incoherent, 9.2, 9.3
by cylinders, 7.14
Mie, 7.11, 7.12, 9.17
molecular, 7.11
neutron, 9.6
in optical spectrometers, 31.30–31.31, 31.31f
and polarization, 15.38–15.39, 15.38f–15.40f
Raman, 31.30–31.31, 31.31f
Rayleigh, 7.11, 9.17, 31.30
theory of, 9.3–9.4, 9.4f
x-ray, 9.6
See also related topics, e.g.: Volume (multiple) 

scattering
Scattering, by particles, 7.1–7.17

in coherent vs. incoherent arrays, 7.2–7.3
isotropic homogenous spheres, 7.11–7.14
Mie scattering, 7.11, 7.12
nonspherical particles, 7.15–7.17
regular particles, 7.14–7.15
single particles, 7.2–7.3
theories of, 7.3–7.4
volume scattering vs., 9.2–9.3

Scattering cross section, 7.4
Scattering length, 9.6
Scattering matrices, 7.10, 16.8–16.9

(See also Mueller matrices)
Scattering planes, 7.9
Scattering potentials, 9.6
Scheimpflug condition, 1.61, 17.6f, 17.7, 18.4, 

25.18, 25.19f
Scheimpflug rule, 18.4, 18.8
Schell model sources (of light), 5.11
Schiefspiegler objectives, 29.26–29.27
Schmidt objectives, 29.14

Baker super-Schmidt, 29.21
field-flattened, 29.14–29.15
reflective, 29.15
reflective Schmidt-Cassegrain, 29.17
Schmidt-Cassegrain, 29.16–29.17
Schmidt-meniscus Cassegrain, 29.21
Shafer-relayed-virtual, 29.17–29.18, 29.18f
solid, 29.16

Schmidt prisms, 19.3t, 19.12, 19.12f
Schrödinger equation, 10.4
Schwarzschild arrangement, for McCarthy 

objective, 29.33

Schwarzschild objectives, 29.12–29.13, 29.32
Scophony TV projection system, 30.45
Scorotron, in xerographic systems, 

34.2, 34.3f
SEAL objective, 29.27–29.28
Second Brewster angle, 12.13
Secondary magnification, 29.12, 29.38
Secondary sources of light, 5.9–5.10
Secondary spectrum, 29.7, 29.38
Second-harmonic interferometers, 

32.17–32.18, 32.18f
Sectors (optical disk data), 35.4, 35.6–35.7
Seek operation, on optical disks, 35.17
Seidel, Philipp Ludwig von, 17.27
Seidel aberrations, 1.90, 29.38
Selective area epitaxy, 21.19–21.20
Self-centering lens springs, 22.8, 22.8f
Self-coherence function, 2.41
Selfoc lenses, 24.2, 24.7f
Semiconductors, complementary metal-oxide, 

26.8–26.9
Semifield angles, of prisms, 13.7
Sénarmont compensators, 13.53, 28.38
Sénarmont polariscopes, 12.30
Sénarmont prisms, 13.7, 13.18, 13.18f, 13.21
Sensors:

active pixel, 26.2, 26.8–26.9, 26.8f
generalized, 32.15–32.16, 32.15f
multiplexed, 32.16
rotation, 32.14–32.15, 32.15f

Serial incoherent matrix-vector multipliers, 
11.17–11.18, 11.18f

Sewer cameras, 25.22–25.23
Shafer objectives:

five mirror unobscured, 29.33–29.34
four mirror unobscured, 29.33
Shafer relayed virtual Schmidt, 

29.17–29.18, 29.18f
two-mirror three reflection, 29.25

Shallow radial gradient index (SRGRIN), 24.7
Shape factor, of lenses, 17.12–17.13, 17.13f
Shearing interferometers, 32.4, 32.6f
Sheet polarizers, 13.25–13.28
Shenker objective, 29.23
Shenker objectives, 29.23
Shift invariance, 4.2
Shot noise, of solid-state cameras, 26.11
Siemens star, 28.30f, 28.47f
Sierpinski Gasket, 8.9
Signal, for solid-state cameras, 26.9–26.11, 

26.13–26.14
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Signal-to-noise ratio (SNR):
of optical disk data, 35.23
of solid-state cameras, 26.13–26.14

Silicon photonics transmission, 21.14–21.16, 
21.15f, 21.38–21.40

Silicon-on-insulator (SOI) technology, 
21.14–21.15, 21.15f

Sine condition, for stigmatic imaging, 1.30–1.31
Singham, Shermila Brito, 7.16
Single element lenses, 17.12–17.17, 

17.13f–17.16f, 17.17t
Single lens reflex (SLR) cameras:

autofocus, 25.12–25.14, 25.13f
features of, 25.8, 25.9f
formats of, 25.18
lenses for, 27.1–27.2, 27.3f–27.4f
normal lenses for, 27.2, 27.3f–27.4f
and time lag, 25.8–25.9

Single molecule high-resolution colocalization 
(SHREC), 28.23

Single scattering, 7.2–7.3
coherent and incoherent, 9.4–9.7, 9.6f
dynamic, 9.7–9.8, 9.7f
and volume scattering, 9.2–9.8

Single sideband edge enhancement (SSEE) 
microscopy, 28.29–28.33, 28.30f–28.33f

Single speckle, 8.17
Single-component development, 

in xerographic systems, 34.9, 34.9f
Single-mirror scanners, 30.14, 30.15f
Single-mode waveguides, 21.4
Single-order plates, 13.47
Singlet lenses, 17.37–17.38
Singular value decomposition (SVD), 

15.25–15.27
Sinusoidal ray paths, 24.2
Skew invariant, 1.21, 1.23
Skew rays, 1.35, 1.73
Skewness, 1.23
Skin depth, 7.13
Slater parameters, 10.12
Slow axis, 12.25, 15.8
Small-perturbation approximation, for surface 

scattering, 8.9–8.12
SMARTCUT technique, 21.14, 21.15
Smith invariant, 1.77 (See also Two-ray 

paraxial invariant)
Smith reflectors, 28.44
Snell’s law, 1.24, 1.38, 12.16, 13.3, 13.5, 13.19
Solano objectives, 29.26
Soleil compensators, 13.55–13.56, 13.55f

Soleil-Babinet compensators, 35.21n
Sol-gel formed glass, 24.8
Solid Makutsov-Cassegrain objective, 29.19
Solid Schmidt objective, 29.16
Solid state spectroscopy, 10.22–10.26, 

10.23f–10.27f
Solid-state cameras, 26.1–26.20

applications, 26.3
array performance in, 26.9–26.12, 26.12f
and charge injection devices, 26.6–26.7, 

26.6f–26.8f
and charge-coupled devices, 26.3–26.5, 

26.4f–26.6f
complementary metal-oxide semiconductor 

(CMOS), 26.8–26.9
modulation transfer function (MTF) 

for, 26.14
performance metrics for, 26.12–26.16, 26.16f
sampling with, 26.16–26.19, 26.17f–26.19f

Space curves, differential geometry of, 
1.18–1.19

Space-bandwidth product, 6.9
Space-integrating correlator, 11.11
Spar cutting, Ahrens method of, 13.12
Sparrow criterion, 28.18, 28.19
Spatial coherence, 2.38–2.40, 2.38f–2.39f,

5.3, 5.5
Spatial filtering, 11.5–11.6, 11.6f
Spatial multiplexing, 23.8
Spatial-frequency content, 4.8
Specimen, for microscopes, 28.22, 28.54–28.55
Speckle:

and coherence theory, 5.22
laser, 9.14
objective and subjective, 33.9
single, 8.17
in volume scattering, 9.15–9.16, 9.15f

Spectral coherence, 5.5
Spectral transitions, 10.6–10.7
Spectrographs, charge, 34.8
Spectrometers, 31.1–31.31

Bunsen-Kirchhoff, 20.5f
dispersive prisms and gratings for, 20.2–20.3, 

20.3f
high-resolution techniques of, 31.23–31.29

fluorescence line narrowing, 31.29, 31.29f
laser Stark spectroscopy of molecules, 

31.27–31.29, 31.27f, 31.28f
polarized absorption spectrometers, 31.26
saturated absorption, 31.24–31.26, 

31.24f–31.26f
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Spectrometers (Cont.):
and light scattering, 31.30–31.31, 31.31f
luminescence, 31.5–31.12, 31.8f, 31.11f
optical absorption, 31.2–31.5, 31.5f
and photoluminescence decay time, 

31.12–31.15, 31.13f, 31.14f
polarization, 31.15–31.23

and optically detected magnetic resonance, 
31.21–31.23, 31.22f, 31.23f

polarized absorption by, 31.15–31.17, 
31.15f, 31.18f

polarized absorption/luminescence 
techniques for, 31.17, 
31.19–31.21, 31.19f

prism, 20.2–20.3, 20.3f
Unicam double-monochromator, 20.10, 

20.13, 20.15f
Spectrophotometric measurements, 12.15
Spectropolarimetry and spectropolarimeters, 

15.6, 15.8
Spectroradiometers, 20.1, 20.2f, 20.14t
Spectroscopic ellipsometry (SE), 16.3
Spectroscopic lineshapes, 10.6–10.7, 10.22–10.27

in solid state spectroscopy, 10.22–10.26, 
10.23f–10.27f

of spectral transitions, 10.6–10.7
Spectroscopic transition, rates of, 10.4–10.6
Spectroscopy, 3.29, 10.1–10.22

of multielectron atoms, 10.10–10.11
of one-electron atoms, 10.7–10.9, 10.8f, 10.9f
and outer electronic structure, 10.12–10.16, 

10.13f–10.15f
photon correlation, 9.8
rates of spectroscopic transition, 10.4–10.6
solid state, 10.22–10.26
theoretical basis, 10.3–10.4
of tri-positive rare earth ions, 10.16–10.18, 

10.16t, 10.17f
and vibrational and rotational spectra, 

10.18–10.22, 10.19f, 10.21f
Spectrum:

power, 8.12–8.13
of primary light source, 5.6
rotational, 10.20–10.22
secondary, 29.7, 29.38
vibrational, 10.18–10.20
and wavefront division, 2.17–2.18, 2.18f

Spectrum of light, 5.19–5.22
coherence functions for, 5.5–5.6
coherent mode representation of, 5.20–5.21

Spectrum of light (Cont.):
limitations, 5.19, 5.20f
for primary sources, 5.6
scaling law, 5.21
Wolf shift, 5.21

Spheres, scattering by, 7.11–7.14
Spherical aberrations, 1.90, 29.7, 29.38

oblique, 29.15, 29.21, 29.37
zonal, 29.8, 29.38

Spherical lenses, 6.3
Spherical primaries, in objective designs, 29.9, 

29.11, 29.18, 29.30
Spherical surfaces, in systems of revolution, 1.34
Spherical waves, 2.4, 2.5f, 3.2–3.3

interference from, 2.11–2.12, 2.12f, 2.13f
and plane waves, 2.9–2.11, 2.10f

Spherochromatism, 24.3–24.6, 29.14
Split-aperture scanners, 30.15–30.16, 30.15f
Spontaneous decay rate, 10.6
Square-ended Nicol prisms, 13.16f, 13.17
Squirm, 13.14
Stark effect, 21.11–21.12
Stark spectroscopy of molecules, laser, 

31.27–31.29
Stationary phase approximation, in diffraction, 

3.29, 3.31–3.32
Stationary surfaces, Fresnel-Kirchhoff 

approximation for, 8.6–8.8
Statistical radiometry, 5.22
Steeg and Reuter Nicol prisms, 13.17
Stellar interferometers, 32.19–32.21, 32.19f, 32.20f
Stereo cameras, 25.23–25.24, 25.23f
Stigmatic imaging, 1.29–1.31, 1.30f
Stimulated emission depletion (STED), 28.24
Stochastic optical reconstruction microscopy 

(STORM), 28.23
Stokes matrix, 14.4 (See also Mueller matrix)
Stokes parameters:

and Mueller matrices, 14.4–14.6
and Poincaré sphere, 14.4–14.6, 14.5f,

14.26f, 14.33
Stokes polarimeters, 15.4, 15.5, 15.25
Stokes vectors, 12.14n, 12.28

and Mueller matrices, 14.15–14.17, 
14.19–14.21

for nonhomogeneous polarization 
elements, 14.26f

in polarimetry, 15.3, 15.8–15.13
for radiative transfer, 9.11
for speckle patterns, 9.17
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Stop shift, 1.92
Stops:

aperture, 1.74, 1.75f, 17.8, 29.5, 29.36
field, 1.74, 17.9, 29.5, 29.37
of lenses, 17.8–17.9

S-trace formula, 1.44
Straight edges, cylindrical wavefronts and, 

3.14–3.16, 3.14f, 3.15f
Stratified-medium model (SMM), 

in ellipsometry, 16.4
Stray light suppression, 29.5, 29.5f
Streak cameras, 25.24, 25.24f
Strehl index, 8.6
Sub-Doppler absorption spectroscopy, 

31.26–31.27
Subjective speckle, 33.9
Superzone construction, for micro-Fresnel 

lenses, 22.36
Surface acoustic wave (SAW) devices, 21.16
Surface scattering, 8.1–8.17

finish models for, 8.14–8.15
and finite illumination area, 8.12
Fresnel-Kirchhoff approximation for, 8.5–8.9

fractal surfaces, 8.8–8.9
statistically stationary surfaces, 8.6–8.8

notation for, 8.2–8.4
and power spectra, 8.12–8.13, 8.13f
Rayleigh-Rice approximation, 8.9–8.12
second-order statistical functions for, 8.12–8.13
statistics for, 8.12–8.15
and surface finish specifications, 8.15–8.17

Surfaces, 1.32
aspherical, 1.35
conical, 1.34–1.35
spherical, 1.34

Suspension systems, of resonant scanners, 
30.43, 30.43f, 30.44

Sweatt lenses, 23.4
Sweatt model, 23.4, 23.6
Switches and switching:

in integrated optics, 21.34–21.35, 21.34f
interferometric optical switches, 32.19

Symmetrical lenses, 1.71, 17.26–17.27, 17.27f
Synthetic aperture radar data, 11.6–11.8, 

11.7f–11.8f
System-response (SR) function, 8.12

Tangent vectors, of space curves, 1.18, 1.19
Tangential fans and foci, 1.35
Telecentric lenses, 18.12

Telecentric stop, 17.9
Telecentricity, 1.83–1.84, 30.31, 30.31f, 30.32
Telephoto lenses, 17.29, 27.2, 27.6, 

27.7f–27.16f, 27.13
Telescopes:

astronomical, 18.10
Cassegrainian, 18.21
field of view in, 18.15–18.16, 18.15f
Galilean, 18.15
Keplerian, 18.10
Mersenne, 18.19
objectives for, 29.8, 29.9, 29.12, 29.29–29.30
terrestrial, 18.10–18.11, 18.11f

Telescopic lenses, 1.46 (See also Afocal lenses)
Telescopic transformations, 1.57
Television:

integrated optics and cable, 21.2, 21.32–21.34
Scophony TV projection system, 30.45

Temperature:
and crystalline-quartz retardation plates, 13.48
Curie, 35.25
and integrated optics, 21.12

Temporal beats, interference and, 2.13
Temporal coherence, 2.41, 5.3
Temporal signals, analog processing of, 

11.8–11.12, 11.9f–11.11f
Tensor, electro-optic, 21.10
Tensor product, of Jones matrices, 14.23
Terrestrial telescopes, 18.10–18.11, 18.11f
Tessar lenses, 17.26, 17.26f
Tewarson, 12.30
Thermal imaging cameras, 25.25
Thermal optimization, of media, 35.20, 35.20f
Thermal (Lambertian) sources of light, 

5.12–5.13
Thermomagnetic recording process, 

35.17–35.20, 35.18f–35.20f
Thick lens systems, 1.55
Thin film oxides, 21.13–21.14
Thin films, interference and, 2.24
Thin lens systems, 1.55
Thin-lens model:

of Galilean afocal lenses, 18.15, 18.15f
of Keplerian afocal lenses, 18.7–18.8, 18.8f

Third-order aberrations, 1.90–1.91, 29.38
Thompson reversed Nicol prisms, 13.16f, 13.17
Thomson CSF, 21.35
Three-beam interferometers, 32.7–32.8, 32.7f
Three-dimensional diffraction patterns, 

28.19–28.22, 28.20f, 28.21f
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Three-lens prime focus corrector objective, 29.10
Three-mirror objectives, 29.28–29.32, 29.34
Three-phase model (ellipsometry), 16.5–16.8, 

16.6f–16.8f
Three-powered-mirror lenses, 18.20, 

18.20f, 18.21
Three-ray rule, 1.42
Throughput, 1.22, 13.7 (See also Étendue)
Tilted planes, for collineation, 1.61, 1.62, 1.62f
Tilted-plane processors, 11.8, 11.8f
Time, coherence, 5.3
Time averages, in coherence theory, 

6.2n, 6.4–6.5
Time domain, 7.17
Time lag, of cameras, 25.8–25.9, 25.9f
Time-integrating correlators, 11.11–11.12, 11.11f
Time-sequential polarimeters, 15.5
T-matrix method, 7.15
T-number, 1.79
Toner, in xerographic systems, 34.1, 

34.8–34.9, 34.8f
Topothesy, of fractals, 8.8
Torsion, radius of, 1.19
Total internal reflection:

of optical waveguides, 21.3
of Rochon prisms, 13.20

Track-error signal (TES), 35.14–35.15, 
35.15f, 35.17

Tracks, on optical disks, 35.2–35.5, 35.3f–35.5f
Transfer, in xerographic systems, 34.10
Transfer functions (see specific functions, e.g.:

Modulation transfer function (MTF))
Transfer matrices, 1.66
Transillumination, in microscopes, 

28.5–28.7, 28.6f
Translation, by scanners, 30.5
Transmission:

amplitude-shift-keyed, 21.30
analog, 21.32–21.34, 21.33f, 21.34f
differential-phase-shift-keyed, 21.30, 21.32
digital, 21.31–21.32
by Glan-Thompson-type prisms, 13.9–13.10, 

13.10f, 13.11f
by LEDs, 21.32
in multilayer systems, 16.8–16.9
nonnormal-incidence, 12.18–12.24
silicon photonics, 21.14–21.16, 21.15f
by silicon photonics, 21.38, 21.39

Transmission ellipsometry, 16.10
Transmissive planar objects, 6.3

Transmittance:
of Brewster angle transmission polarizers, 12.22
of Mueller matrices, 14.16–14.17
of pile-of-plates polarizers, 12.15–12.17
principal, 12.14–12.16
of spherical lenses, 6.3

Transmitted state, of polarizers, 15.19
Transverse electric (TE) modes, of optical 

waveguides, 21.6, 21.7
Transverse magnetic (TM) modes, of optical 

waveguides, 21.6, 21.7
Transverse magnification, 1.28, 1.50–1.51
Transverse primary chromatic aberration 

(TPAC), 17.22
Transverse ray aberrations, 1.87
Transverse translational scan, 30.28
Traveling wave modulators, 21.26
Trigger detection, with ODMR, 31.21
Tri-Level highlight color process, 34.12, 34.13f
Trim retarders, for LC panels, 15.33
Trimmed Nicol-type polarizers, 

13.16–13.18, 13.16f
Triplet lenses, 17.26, 17.26f
Tri-positive rare earth ions, 10.16–10.18, 

10.16t, 10.17f
Trischiefspiegler objective, 29.27
T-trace formula, 1.44
Tube length (objective lenses), 28.13, 28.13t
Tutton’s test, 13.45
Two-component magnetic brush 

development, in xerographic systems, 
34.5–34.7, 34.5f–34.7f

Two-dimensional images, analog processing 
for, 11.12–11.17, 11.13f

Two-dimensional scanners, 30.18, 30.19f
Two-lens systems, 17.20–17.22, 17.21f–17.22f
Two-mirror, three reflection objective, 29.26
Two-phase model (ellipsometry), 16.5, 16.6f
Two-powered-mirror lenses, 18.20, 18.20f
Two-ray paraxial invariant, 1.41
Two-wavelength interferometry, 32.9
Twyman-Green interferometers, 2.28, 32.2, 

32.9, 33.5

Unblazed gratings, 20.3–20.4
Underillumination, for input/output 

scanning, 30.14
Underwater cameras, 25.25
Unfolded reflections, in systems 

of revolution, 1.32
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Unicam double-monochromator spectrometer, 
20.10, 20.13, 20.15f

Uniformity, of binary optics, 23.7
Unit determinants, paraxial matrix methods 

for, 1.67
Upatnieks, J., 33.2

Van Cittert-Zernike theorem, 2.38, 2.39, 
5.13–5.14, 5.17–5.19, 6.4, 6.8

Vander Lugt filters, 11.13–11.14
Vapor-phase epitaxy (VPE), 21.17, 21.18
Variable retardation plates, 13.53
Variable-angle spectroscopic ellipsometry 

(VASE), 16.3
Variational integral, of rays, 1.19
Vector aberration theory, 29.5
Vector diffraction, 3.32–3.37, 3.32f–3.37f,

23.13–23.14, 23.14f
Vector Huygens secondary source (unit), 

3.33–3.36, 3.37f
Vectors:

electric field, 2.3–2.4
of space curves, 1.18, 1.19

Vector-scattering amplitude, 7.8
VeriMask, 33.19
Vertex, for figure of revolution, 1.32
Vertex curvature, 1.32–1.33
Vertical half-wave linear retarders, Mueller 

matrices for, 14.12t
Vertical linear polarizers, 14.10t
Vertical quarter-wave linear retarders, Mueller 

matrices for, 14.12t
Vibration, planes of, 12.6
Vibrational relaxation, 31.14, 31.14f
Vibrational sidebands, 10.24
Vibrational spectra, 10.18–10.20
Video cameras, 25.7–25.8
Videocassette recorders (VCRs), 35.1
Video-enhanced differential-interference 

contrast (VE-DIC), 28.41
View cameras, 25.18–25.20, 25.19f
Vignetting, 1.81, 1.81f, 1.82, 17.8, 

29.6, 29.38
Virtual images, 29.38
Virtual pupils, 1.76
Virtual rays, 1.10
Visual magnification, 1.28
VLSI-CMOS technology, silicon photonics 

for, 21.15, 21.16
Volume imaging ideal, 1.29

Volume scattering, 9.1–9.17
multiple scattering, 9.8–9.17

analytical theory of, 9.9–9.10, 9.9f
depolarization, 9.16–9.17, 9.17f
effective-medium representation, 9.8
radiative transfer, 9.10–9.13, 9.11f, 9.13f
speckle patterns, 9.15–9.16, 9.15f
weak localization, 9.13–9.17, 9.14f

single particle scattering vs., 9.2–9.3
and single scattering, 9.4–9.8, 9.6f, 9.7f
theory of, 9.3–9.4, 9.4f

Volumetric reflection, 7.7f
Volumetric scattering cross section, 7.7f

Wadsworth configuration, 20.5f, 20.8, 
20.12f, 20.14t

WALRUS objective, 29.28
Wave equation, 12.4–12.6
Wave normals, 13.5
Wavefront aberration coefficients, 1.90
Wavefront aberrations, 1.86–1.88
Wavefront division, 2.14
Wavefront division, interference by, 2.14–2.19, 

2.15f–2.18f
Wavefront multiplexers, 23.11, 23.11t, 23.12
Wavefront quality, of binary optics, 23.8
Wavefronts, 3.4

aberrated, 2.12, 2.13
cylindrical, 3.13–3.21, 3.14f

Cornu’s spiral, 3.16–3.19
opaque strip construction, 3.20–3.21
from rectangular apertures, 3.19–3.20
from straight edge, 3.14–3.16

disturbance of, 3.5–3.6
for cylindrical wavefronts, 3.13–3.14, 3.14f
and straight edges, 3.14–3.15

geometrical, 1.12–1.13
and interference, 2.4–2.5

Waveguide grating routers (WGRs), 21.24
Waveguides:

integrated optics, 21.3–21.8, 21.3f–21.5f, 21.7f
leaky, 21.3

Wavelength:
and modulation transfer function, 17.38, 17.39
of plane waves, 2.4

Wavelength division multiplexes (WDM) systems:
fabrication of, 21.14
filters for, 21.23
in integrated optics, 21.37–21.38, 

21.37f–21.39f
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Wavelength interval (between oscillations), 12.10
Waveplates, 15.8
Waves, 2.3–2.6

amplitudes of, 2.4, 2.5, 12.5
diffraction of, 3.2–3.3, 3.3f
interference of, 2.5–2.6
plane, 2.4, 2.5f, 3.3, 3.17

decomposition of, 3.23
interference of, 2.8–2.9, 2.9f
and spherical waves, 2.9–2.11, 2.10f

spherical, 2.4, 2.5f, 3.2–3.3
interference of, 2.11–2.12, 2.12f, 2.13f
and plane waves, 2.9–2.11, 2.10f

Weak polarization elements (Mueller matrices), 
14.26–14.27

Wernicke prisms, 20.6f
Wetherell and Womble objectives, 29.31
Weyl’s integral, 5.17
Weyl’s plane-wave decomposition, 3.23
Wide-angle photography:

cameras for, 25.25, 25.26f
lenses for, 27.2, 27.5f

with nonrectilinear distortion, 27.6
with rectilinear distortion correction, 

27.6, 27.13f, 27.14f
Wide-field objective with Maksutov 

correction, 29.20
Wieman-Hansch experiment, 31.26
Wiener filter, 11.15–11.17
Wiener-Khintchine theorem, 5.5, 5.21
Wien’s wavelength displacement law, 31.4
Wigner distribution function, 5.8
Winchester heads, 35.6
Wire grids, 13.30n
Wire-grid polarizers, 13.30–13.33, 

13.31f, 13.32t
Wiscombe, W., 7.12, 7.15
Wizinowich, P. L., 12.15, 13.52
Wolf shift, 5.21
Wollaston, W. H., 17.17, 17.18

Wollaston prisms, 13.7, 13.18, 13.18f, 13.21, 13.24
for DIC microscopes, 28.39, 28.40
in Nomarski interferometers, 32.4
and nondispersive prisms, 19.3t, 19.15, 19.15f

Working distance, of objective lenses, 28.13
Wright objective, 29.15
Wright objectives, 29.15
Write-once-read-many (WORM) 

technology, 35.2

Xerographic systems, 34.1–34.13, 34.2f
cleaning and erasing in, 34.10
color in, 34.11–34.12, 34.11f–34.13f
control of, 34.11
development in, 34.5–34.10, 34.5f–34.9f
fusing in, 34.10
and latent image, 34.1–34.4, 34.2f–34.3f
transfer in, 34.10

X-ray scattering, 9.6

Yolo objectives, 29.26
Young’s astigmatic formulae, 1.44
Young’s double slit experiment, 2.14–2.15, 2.15f
Young’s fringes, 13.45
Young’s modulus, for molded microlenses, 22.12t
Young’s two pinhole interferometer, 6.3
Young-Thollon half prisms, 20.7f

Zeeman effect, 31.17, 31.18f, 31.19–31.21
Zeiss Infinity Color-Corrected Systems Plan 

Apo, 28.15, 28.15f
Zeiss prism system, 19.3t, 19.16, 19.16f
Zeiss sheet polarizers, 13.26
Zenger prisms, 20.6f
Zernike polynomials, 1.90, 23.3
Zero-phonon transitions, 10.24–10.26, 10.24f
Zeros, in paraxial matrices, 1.68
Zonal spherical aberrations, 29.8, 29.38
Zone plates, 3.11–3.13, 3.12f
Zoom lenses, 27.17, 27.20f–27.22f



COLOR PLATES



FIGURE 15.2 A sample-measuring polarimeter consists of a source, polariza-
tion state generator (PSG), the sample, a polarization state analyzer (PSA), and the 
detector.

FIGURE 15.3 The dual rotating retarder polarimeter consists of a source, a 
fixed linear polarizer, a retarder which rotates in steps, the sample, a second retarder 
which rotates in steps, a fixed linear polarizer, and the detector.

FIGURE 15.6 Imaging polarimeter configured for retro reflection test-
ing using a non polarizing beam splitter and beam dump.
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FIGURE 32.26 Gravitational-wave detector using two Fabry-Perot interferometers. 
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