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COVER ILLUSTRATIONS

Left: Poincaré sphere describing light’s polarization states is shown floating in front of a depo-
larized field of polarization ellipses, with linearly and circularly polarized fields propagating on
its left and right, respectively. See Chaps. 12 and 15.

Middle: Triplet lens developed for photographic applications that can zero out the primary
aberrations by splitting the positive lens of a doublet into two and placing one on each side of
the negative lens. See Chap. 17.

Right: Micrographs of different optical storage media showing the straight and narrow tracks
with 1.6-pm spacing between adjacent tracks. The recorded information bits appear as short
marks along each track. See Chap. 35.
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EDITORS’ PREFACE

The third edition of the Handbook of Optics is designed to pull together the dramatic developments
in both the basic and applied aspects of the field while retaining the archival, reference book value
of a handbook. This means that it is much more extensive than either the first edition, published
in 1978, or the second edition, with Volumes I and II appearing in 1995 and Volumes III and IV in
2001. To cover the greatly expanded field of optics, the Handbook now appears in five volumes. Over
100 authors or author teams have contributed to this work.

Volume I is devoted to the fundamentals, components, and instruments that make optics pos-
sible. Volume II contains chapters on design, fabrication, testing, sources of light, detection, and a
new section devoted to radiometry and photometry. Volume III concerns vision optics only and is
printed entirely in color. In Volume IV there are chapters on the optical properties of materials, non-
linear, quantum and molecular optics. Volume V has extensive sections on fiber optics and x ray and
neutron optics, along with shorter sections on measurements, modulators, and atmospheric optical
properties and turbulence. Several pages of color inserts are provided where appropriate to aid the
reader. A purchaser of the print version of any volume of the Handbook will be able to download
a digital version containing all of the material in that volume in PDF format to one computer (see
download instructions on bound-in card). The combined index for all five volumes can be down-
loaded from www.HandbookofOpticsOnline.com.

It is possible by careful selection of what and how to present that the third edition of the
Handbook could serve as a text for a comprehensive course in optics. In addition, students who take
such a course would have the Handbook as a career-long reference.

Topics were selected by the editors so that the Handbook could be a desktop (bookshelf) general ref-
erence for the parts of optics that had matured enough to warrant archival presentation. New chapters
were included on topics that had reached this stage since the second edition, and existing chapters from
the second edition were updated where necessary to provide this compendium. In selecting subjects to
include, we also had to select which subjects to leave out. The criteria we applied were: (1) was it a spe-
cific application of optics rather than a core science or technology and (2) was it a subject in which the
role of optics was peripheral to the central issue addressed. Thus, such topics as medical optics, laser sur-
gery, and laser materials processing were not included. While applications of optics are mentioned in the
chapters there is no space in the Handbook to include separate chapters devoted to all of the myriad uses
of optics in today’s world. If we had, the third edition would be much longer than it is and much of it
would soon be outdated. We designed the third edition of the Handbook of Optics so that it concentrates
on the principles of optics that make applications possible.

Authors were asked to try to achieve the dual purpose of preparing a chapter that was a worth-
while reference for someone working in the field and that could be used as a starting point to
become acquainted with that aspect of optics. They did that and we thank them for the outstanding
results seen throughout the Handbook. We also thank Mr. Taisuke Soda of McGraw-Hill for his help
in putting this complex project together and Mr. Alan Tourtlotte and Ms. Susannah Lehman of the
Optical Society of America for logistical help that made this effort possible.

We dedicate the third edition of the Handbook of Optics to all of the OSA volunteers who, since
OSA’s founding in 1916, give their time and energy to promoting the generation, application,
archiving, and worldwide dissemination of knowledge in optics and photonics.

Michael Bass, Editor-in-Chief
Associate Editors:

Casimer M. DeCusatis

Jay M. Enoch

Vasudevan Lakshminarayanan
Guifang Li

Carolyn MacDonald

Virendra N. Mahajan

Eric Van Stryland
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PREFACE TO VOLUME |

The third edition of the Handbook of Optics has been completely reorganized, expanded, and updated.
The four volumes of the second edition grew to five in the current edition. Each volume is divided
into parts, where each part, sometimes referred to as a section, consists of several chapters related
to a certain topic. Volumes I and II are devoted primarily to the basic concepts of optics and optical
phenomena, sometimes called classical optics. Volume I starts with geometrical optics and continues
with physical optics. This includes interference, diffraction, coherence theory, and scattering. A new
chapter on tools and applications of coherence theory has been added. A several-chapter section fol-
lows devoted to issues of polarized light. The chapter on polarimetry has been updated and its con-
tent on the Mueller matrices now appears in a separate chapter by that title. Next there are chapters
on components such as lenses, afocal systems, nondispersive and dispersive prisms, and special optics
that include integrated, miniature and micro-, binary, and gradient index optics. Finally, there are
several chapters on instruments. They include cameras and camera lenses, microscopes, reflective and
catadioptric objectives, scanners, spectrometers, interferometers, xerographic systems, and optical
disc data storage.

There are many other chapters in this edition of the Handbook that could have been included
in Volumes I and II. However, page limitations prevented that. For example, in Volume V there is
a section on Atmospheric Optics. It consists of three chapters, one on transmission through the
atmosphere, another on imaging through atmospheric turbulence, and a third on adaptive optics to
overcome some of the deleterious effects of turbulence.

The chapters are generally aimed at the graduate students, though practicing scientists and engi-
neers will find them equally suitable as references on the topics discussed. Each chapter has sufficient
references for additional and/or further study.

The whole Handbook has been retyped and the figures redrawn. The reader will find that the
figures in the new edition are crisp. Ms. Arushi Chawla and her team from Glyph International have
done an outstanding job in accomplishing this monumental task. Many of the authors updated and
proofread their chapters. However, some authors have passed away since the second edition and others
couldn’t be located. Every effort has been made to ensure that such chapters have been correctly
reproduced.

Virendra N. Mahajan

The Aerospace Corporation
Associate Editor
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GLOSSARY AND FUNDAMENTAL
CONSTANTS

Introduction

Units

Prefixes

This glossary of the terms used in the Handbook represents to a large extent the language of optics.
The symbols are representations of numbers, variables, and concepts. Although the basic list was
compiled by the author of this section, all the editors have contributed and agreed to this set of sym-
bols and definitions. Every attempt has been made to use the same symbols for the same concepts
throughout the entire Handbook, although there are exceptions. Some symbols seem to be used for
many concepts. The symbol o is a prime example, as it is used for absorptivity, absorption coeffi-
cient, coefficient of linear thermal expansion, and more. Although we have tried to limit this kind of
redundancy, we have also bowed deeply to custom.

The abbreviations for the most common units are given first. They are consistent with most of the
established lists of symbols, such as given by the International Standards Organization ISO! and the
International Union of Pure and Applied Physics, [UPAP.2

Similarly, a list of the numerical prefixes' that are most frequently used is given, along with both the
common names (where they exist) and the multiples of ten that they represent.

Fundamental Constants

Symbols

The values of the fundamental constants® are listed following the sections on SI units.

The most commonly used symbols are then given. Most chapters of the Handbook also have a glos-
sary of the terms and symbols specific to them for the convenience of the reader. In the following
list, the symbol is given, its meaning is next, and the most customary unit of measure for the quan-
tity is presented in brackets. A bracket with a dash in it indicates that the quantity is unitless. Note
that there is a difference between units and dimensions. An angle has units of degrees or radians and
a solid angle square degrees or steradians, but both are pure ratios and are dimensionless. The unit
symbols as recommended in the SI system are used, but decimal multiples of some of the dimen-
sions are sometimes given. The symbols chosen, with some cited exceptions, are also those of the
first two references.

RATIONALE FOR SOME DISPUTED SYMBOLS

The choice of symbols is a personal decision, but commonality improves communication. This sec-
tion explains why the editors have chosen the preferred symbols for the Handbook. We hope that this
will encourage more agreement.

XXix
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Fundamental Constants

It is encouraging that there is almost universal agreement for the symbols for the fundamental con-
stants. We have taken one small exception by adding a subscript B to the k for Boltzmann’s constant.

Mathematics

We have chosen i as the imaginary almost arbitrarily. [UPAP lists both i and j, while ISO does not
report on these.

Spectral Variables

These include expressions for the wavelength A, frequency v, wave number o, ® for circular or
radian frequency, k for circular or radian wave number and dimensionless frequency x. Although
some use f for frequency, it can be easily confused with electronic or spatial frequency. Some use
Vv for wave number, but, because of typography problems and agreement with ISO and ITUPAP, we
have chosen o'; it should not be confused with the Stefan-Boltzmann constant. For spatial frequen-
cies we have chosen & and 7, although f, and fy are sometimes used. ISO and IUPAP do not report
on these.

Radiometry

Radiometric terms are contentious. The most recent set of recommendations by ISO and IUPAP are L for
radiance [Wcemsr'], M for radiant emittance or exitance [Wcm™], E for irradiance or incidance [Wcm™],
and I for intensity [Wsr2]. The previous terms, W, H, N, and J, respectively, are still in many texts, notably
Smith* and Lloyd® but we have used the revised set, although there are still shortcomings. We have tried to
deal with the vexatious term infensity by using specific intensity when the units are Wemsr™), field intensity
when they are Wem™, and radiometric intensity when they are Wsr™.

There are two sets to terms for these radiometric quantities, which arise in part from the terms
for different types of reflection, transmission, absorption, and emission. It has been proposed that
the ion ending indicate a process, that the ance ending indicate a value associated with a particu-
lar sample, and that the ivity ending indicate a generic value for a “pure” substance. Then one also
has reflectance, transmittance, absorptance, and emittance as well as reflectivity, transmissivity,
absorptivity, and emissivity. There are now two different uses of the word emissivity. Thus the words
exitance, incidence, and sterance were coined to be used in place of emittance, irradiance, and radi-
ance. It is interesting that ISO uses radiance, exitance, and irradiance whereas IUPAP uses radiance
excitance [sic|, and irradiance. We have chosen to use them both, i.e., emittance, irradiance, and
radiance will be followed in square brackets by exitance, incidence, and sterance (or vice versa).
Individual authors will use the different endings for transmission, reflection, absorption, and emis-
sion as they see fit.

We are still troubled by the use of the symbol E for irradiance, as it is so close in meaning
to electric field, but we have maintained that accepted use. The spectral concentrations of these
quantities, indicated by a wavelength, wave number, or frequency subscript (e.g., L,) represent
partial differentiations; a subscript g represents a photon quantity; and a subscript v indicates
a quantity normalized to the response of the eye. Thereby, L is luminance, E, illuminance, and
M, and I, luminous emittance and luminous intensity. The symbols we have chosen are consis-
tent with ISO and TUPAP.

The refractive index may be considered a radiometric quantity. It is generally complex and is
indicated by 7 = n — ik. The real part is the relative refractive index and k is the extinction coefficient.
These are consistent with ISO and TUPAP, but they do not address the complex index or extinction
coefficient.



GLOSSARY AND FUNDAMENTAL CONSTANTS XXXi

Optical Design

For the most part ISO and IUPAP do not address the symbols that are important in this area.

There were at least 20 different ways to indicate focal ratio; we have chosen FN as symmetri-
cal with NA; we chose f and efl to indicate the effective focal length. Object and image distance,
although given many different symbols, were finally called s, and s, since s is an almost universal
symbol for distance. Field angles are 6 and ¢; angles that measure the slope of a ray to the optical
axis are u; u can also be sin u. Wave aberrations are indicated by W, while third-order ray aberra-
tions are indicated by 0, and more mnemonic symbols.

Electromagnetic Fields

There is no argument about E and H for the electric and magnetic field strengths, Q for quantity
of charge, p for volume charge density, o for surface charge density, etc. There is no guidance from
Refs. 1 and 2 on polarization indication. We chose L and || rather than p and s, partly because s is
sometimes also used to indicate scattered light.

There are several sets of symbols used for reflection transmission, and (sometimes) absorption,
each with good logic. The versions of these quantities dealing with field amplitudes are usually
specified with lower case symbols: , £, and a. The versions dealing with power are alternately given
by the uppercase symbols or the corresponding Greek symbols: R and T versus p and 7. We have
chosen to use the Greek, mainly because these quantities are also closely associated with Kirchhoff’s
law that is usually stated symbolically as o = €. The law of conservation of energy for light on a sur-
face is also usually written as a+p+ 7= 1.

Base S| Quantities

length m meter
time s second
mass kg kilogram
electric current A ampere
temperature K kelvin
amount of substance mol mole
luminous intensity cd candela

Derived S| Quantities

energy ] joule
electric charge C coulomb
electric potential \Y% volt
electric capacitance F farad
electric resistance Q ohm
electric conductance S siemens
magnetic flux Wb weber
inductance H henry
pressure Pa pascal
magnetic flux density T tesla
frequency Hz hertz
power W watt
force N newton
angle rad radian

angle ST steradian
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Prefixes
Symbol Name Common name Exponent of ten
F exa 18
P peta 15
T tera trillion 12
G giga billion 9
M mega million 6
k kilo thousand 3
h hecto hundred 2
da deca ten 1
d deci tenth -1
c centi hundredth -2
m milli thousandth -3
u micro millionth -6
n nano billionth -9
P pico trillionth -12
f femto -15
a atto -18
Constants
c speed of light vacuo [299792458 ms™]
[ first radiation constant = 27c’h = 3.7417749 X 107'¢ [Wm?]
c, second radiation constant = hc/k = 0.014838769 [mK]
e elementary charge [1.60217733 x 107 C]
g, free fall constant [9.80665 ms™]
h Planck’s constant [6.6260755 X 10734 W]
k, Boltzmann constant [1.380658 x 10~ JK]
m, mass of the electron [9.1093897 x 107! kg]
N, Avogadro constant [6.0221367 X 10% mol™]
R Rydberg constant [10973731.534 m™']
€, vacuum permittivity [u ~'c™]
o Stefan-Boltzmann constant [5.67051 x 10~ Wm™ K]
u, vacuum permeability [477 x 107 NA?]
Uy Bohr magneton [9.2740154 x 1074 JT™']
General
B magnetic induction [Wbm™, kgs™' C']
C capacitance [f, C* s> m2 kg™!]
C curvature [m™']
c speed of light in vacuo [ms™']
c first radiation constant [Wm?]
c second radiation constant [mK]
D electric displacement [Cm™]
E incidance [irradiance] [Wm™]
e electronic charge [coulomb]
E, illuminance [lux, Imm™]

electrical field strength [Vm™]

transition energy [J]

band-gap energy [eV]

focal length [m]

Fermi occupation function, conduction band
Fermi occupation function, valence band

o
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Greek Symbols

o
o

focal ratio (f/number) [—]
gain per unit length [m™]
gain threshold per unit length [m']
magnetic field strength [Am™, Cs™! m™']
height [m]
irradiance (see also E) [Wm™]
radiant intensity [Wsr™!]
nuclear spin quantum number [—]
current [A]

-1
imaginary part of
current density [Am™]
total angular momentum [kg m?s™']
Bessel function of the first kind [—]
radian wave number =271/A4 [rad cm™]
wave vector [rad cm™|
extinction coefficient [—]
sterance [radiance] [Wm™ sr!]
luminance [cdm™]
inductance [h, m? kg C?]
laser cavity length
direction cosines [—]
angular magnification [—]
radiant exitance [radiant emittance] [Wm™72]
linear magnification [—]|
effective mass [kg]
modulation transfer function [—]
photon flux [s7!]
carrier (number)density [m™]
real part of the relative refractive index [—]
complex index of refraction [—]
numerical aperture [—]
optical path difference [m]
macroscopic polarization [C m~]
real part of [—]
resistance [€2]
position vector [m]
Seebeck coefficient [VK™]
spin quantum number [—]
path length [m]
object distance [m]
image distance [m]
temperature [K, C]
time [s]
thickness [m]
slope of ray with the optical axis [rad]
Abbe reciprocal dispersion [—]
voltage [V, m? kgs C!]
rectangular coordinates [m]
atomic number [—]

absorption coefficient [cm™]
(power) absorptance (absorptivity)
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diclectric coefficient (constant) [—]
emittance (emissivity) [—]

eccentricity [—]

Re (€)

Im (€)

(power) transmittance (transmissivity) [—]
radiation frequency [Hz]

circular frequency = 27v [rads™]
plasma frequency [H,]

wavelength [wm, nm]

wave number = 1/A [cm™]

Stefan Boltzmann constant [Wm—2K™!]
reflectance (reflectivity) [—]

angular coordinates [rad, °]

rectangular spatial frequencies [m™!, r™!]
phase [rad, °]

lens power [m 2]

flux [W]

electric susceptibility tensor [—]

solid angle [sr]

DR HeSDPD QI <an"Amnmnm
=S

Other
R responsivity
exp (x) e*
log, (x) log to the base a of x
In (x) natural log of x
log (x) standard log of x: log,, (x)
z summation
IT product
A finite difference
Ox variation in x
dx total differential
ox partial derivative of x
(x) Dirac delta function of x
517 Kronecker delta
REFERENCES
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Standardization, 1982.
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and Applied Physics, 1978.
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4. W.]J. Smith, Modern Optical Engineering, 2nd ed., McGraw-Hill, 1990.

w

. J. M. Lloyd, Thermal Imaging Systems, Plenum Press, 1972.

William L. Wolfe

College of Optical Sciences
University of Arizona
Tucson, Arizona



PART

1

GEOMETRICAL
OPTICS




This page intentionally left blank.



GENERAL PRINCIPLES OF

GEOMETRICAL OPTICS

Douglas S. Goodman

Corning Tropel Corporation

Fairport, New York
1.1 GLOSSARY
(NS) indicates nonstandard terminology
italics  definition or first usage
V  gradient (d/dx, d/dy, d/0dz)
prime, unprime  before and after, object and image space (not derivatives)
A auxiliary function for ray tracing
A, A" area, total field areas, object and image points
AB  directed distance from A to B
a  unit axis vector, vectors
ag, ag, a, coefficients in characteristic function expansion
B matrix element for symmetrical systems
B auxiliary function for ray tracing
B, B’ arbitrary object and image points
b  binormal unit vector of a ray path
B interspace (between) term in expansion
C  matrix element for conjugacy
C(O,B,.$) characteristic function
¢ speed of light in vacuum
¢ surface vertex curvature, spherical surface curvature
¢, sagittal curvature
¢, tangential curvature
D auxiliary distance function for ray tracing
d  distance from origin to mirror
d  nominal focal distance
d,d’  arbitrary point to conjugate object, image points d = AO, d” = A’O’
d,d’  axial distances, distances along rays
d,,  hyperfocal distance
d,,  near focal distance
d, far focal distance

>l



1.4 GEOMETRICAL OPTICS

dA

e.epe,
E F’
FN

FN

F(

F(x, 5z
L

G

differential area

differential geometrical path length

image irradiance

axial image irradiance

entrance and exit pupil locations
eccentricity

coefficients for collineation

matrix element for front side

front and rear focal points

F-number

F-number for magnification m

general function

general surface function

front and rear focal lengths f= PE "= P’F’
diffraction order

focal lengths in tilted planes

ray heights at objects and images, field heights
hamiltonian

incidence angles

unit matrix

paraxial incidence angles

image space term in characteristic function expansion
surface x-direction cosine

paraxial invariant

principal points to object and image axial points /= PO, I’=P’0O’
axial distances from vertices of refracting surface = VO, I’=V’0O’

lagrangian for heterogeneous media
lambertian emittance

surface z-direction cosine

transverse magnification

longitudinal magnification

angular magnification

paraxial pupil magnification

nodal point magnification = n/n’

pupil magnification in direction cosines
magnification at axial point
magnifications in the x, y, and z directions
surface z-direction cosine

nodal points

numerical aperture

refractive index

normal unit vector of a ray path
nonstandard

axial object and image points

object space term in expansion
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1.5
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q
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S

S(x, v, %", y")
s
s

s, s’
¥

T(o, B; o, B)

t

’

Lt

LMN
W, W, W,
W % 9,2
W'e, B;x’, y’
W(x, y; o, B’
x=(x%1z
x(0)

)
)
)
)

power (radiometric)
principal points
pupil shape functions

period of grating

ray vector, optical direction cosinep=nr=(p, p,p,)
pupil radius

optical direction cosines

pupil shape functions relative to principal direction cosines

resolution parameter

coordinate for Lagrange equations
derivative with respect to a parameter
auxiliary functions for collineation

unit vector along grating lines

matrix element for rear side

radius of curvature, vertex radius of curvature
ray unit direction vector r = (o, 8, 7)
surface normal S = (L, M, N)

point eikonal V(x, y, z,; x’, ¥, z,)
geometrical length

axial length

distances associated with sagittal foci
skew invariant

angle characteristic function

thickness, vertex-to-vertex distance
distances associated with tangential foci
time

tangent unit vector of a ray path
meridional ray angles relative to axis
paraxial ray angles relative to axis
paraxial marginal ray angle

paraxial chief ray angle

homogeneous coordinates for collineation
optical path length

point characteristic function

vertex points

speed of light in medium

wavefront aberration term

wavefront aberration terms for reference shift
wavefront aberration function
angle-point characteristic function
point-angle characteristic function
position vector

parametric description of ray path
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x(0)  derivative with respect to a parameter
X(o)  second derivative with respect to a parameter
y  meridional ray height, paraxial ray height
¥y  Pparaxial marginal ray height
Yo  paraxial chief ray height
¥p»¥p  paraxial ray height at the principal planes
z  axis of revolution
z(p)  surface sag
sag of a sphere

z
sphere
sag of a conic

z_ .
‘conic
’

2,z focal point to object and image distances z= FO, z" =F’O’

o, B,y ray direction cosines

o, B,y entrance pupil directions
o', B’,y" exit pupil direction cosines

oy, B,  principal direction of entrance pupil

oy, B,  principal direction of exit pupil
o, 0
max min

B..o B, extreme pupil directions

extreme pupil directions

I' n’cosl’”—ncosl
Sx, 0y, 0z  reference point shifts
Ao, AB angular ray aberrations
Ax, Ay, Az shifts
€ surface shape parameter
£, transverse ray aberrations

>

pupil coordinates—not specific

o I™

ray angle to surface normal
marginal ray angle

plane tilt angle

conic parameter

curvature of a ray path
wavelength

< > % x5

azimuth angle
field angle
power, surface power

<

azimuth
p  radius of curvature of a ray path
distance from axis
radial pupil coordinate
0 ray path parameter
general parameter for a curve
7  reduced axial distances
torsion of a ray path
T(a’, B’5x",y’)  pupil transmittance function
o, ®" reduced angle w=nu, " =n’u’
dw  differential solid angle
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1.2 INTRODUCTION

The Subject

Geometrical optics is both the object of abstract study and a body of knowledge necessary for design
and engineering. The subject of geometrical optics is small, since so much can be derived from a
single principle, that of Fermat, and large since the consequences are infinite and far from obvious.
Geometrical optics is deceptive in that much that seems simple is loaded with content and impli-
cations, as might be suggested by the fact that some of the most basic results required the likes of
Newton and Gauss to discover them. Most of what appears complicated seems so because of obscu-
ration with mathematical terminology and excessive abstraction. Since it is so old, geometrical
optics tends to be taken for granted and treated too casually by those who consider it to be “under-
stood.” One consequence is that what has been long known can be lost if it is not recirculated by
successive generations of textbook authors, who are pressed to fit newer material in a fairly constant
number of pages.

The Contents

The material in this chapter is intended to be that which is most fundamental, most general, and
most useful to the greatest number of people. Some of this material is often thought to be more
esoteric than practical, but this opinion is less related to its essence than to its typical presentation.
There are no applications per se here, but everything is applicable, at least to understanding. An
effort has been made to compensate here for what is lacking elsewhere and to correct some com-
mon errors. Many basic ideas and useful results have not found their way into textbooks, so are
little known. Moreover, some basic principles are rarely stated explicitly. The contents are weighted
toward the most common type of optical system, that with rotational symmetry consisting of mir-
rors and/or lens elements of homogeneous materials. There is a section “Rays in Heterogeneous
Media,” an application of which is gradient index optics discussed in Chap. 24. The treatment here
is mostly monochromatic. The topics of caustics and anisotropic media are omitted, and there is
little specifically about systems that are not figures of revolution. The section on aberrations is short
and mostly descriptive, with no discussion of lens design, a vast field concerned with the practice of
aberration control. Because of space limitations, there are too few diagrams.

Terminology

Notation

Because of the complicated history of geometrical optics, its terminology is far from standardized.
Geometrical optics developed over centuries in many countries, and much of it has been rediscov-
ered and renamed. Moreover, concepts have come into use without being named, and important
terms are often used without formal definitions. This lack of standardization complicates commu-
nication between workers at different organizations, each of which tends to develop its own optical
dialect. Accordingly, an attempt has been made here to provide precise definitions. Terms are itali-
cized where defined or first used. Some needed nonstandard terms have been introduced, and these
are likewise italicized, as well as indicated by “NS” for “nonstandard.”

As with terminology, there is little standardization. And, as usual, the alphabet has too few letters to
represent all the needed quantities. The choice here has been to use some of the same symbols more
than once, rather than to encumber them with superscripts and subscripts. No symbol is used in a
given section with more than one meaning. As a general practice nonprimed and primed quantities
are used to indicate before and after, input and output, and object and image space.
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References

No effort has been made to provide complete references, either technical or historical. (Such a list
would fill the entire chapter.) The references were not chosen for priority, but for elucidation or inter-
est, or because of their own references. Newer papers can be found by computer searches, so the older
ones have been emphasized, especially since older work is receding from view beneath the current
flood of papers. In geometrical optics, nothing goes out of date, and much of what is included here
has been known for a century or so—even if it has been subsequently forgotten.

Communication

Because of the confusion in terminology and notation, it is recommended that communication
involving geometrical optics be augmented with diagrams, graphs, equations, and numeric results,
as appropriate. It also helps to provide diagrams showing both first-order properties of systems,
with object and image positions, pupil positions, and principal planes, as well as direction cosine
space diagrams, as required, to show angular subtenses of pupils.

1.3 FUNDAMENTALS

What Is a Ray?

Geometrical optics, which might better be called ray optics, is concerned with the light ray, an entity
that does not exist. It is customary, therefore, to begin discussions of geometrical optics with a theo-
retical justification for the use of the ray. The real justification is that, like other successful models
in physics, rays are indispensable to our thinking, notwithstanding their shortcomings. The ray is a
model that works well in some cases and not at all in others, and light is necessarily thought about
in terms of rays, scalar waves, electromagnetic waves, and with quantum physics—depending on the
class of phenomena under consideration.

Rays have been defined with both corpuscular and wave theory. In corpuscular theory, some def-
initions are (1) the path of a corpuscle and (2) the path of a photon. A difficulty here is that energy
densities can become infinite. Other efforts have been made to define rays as quantities related to
the wave theory, both scalar and electromagnetic. Some are (1) wavefront normals, (2) the Poynting
vector, (3) a discontinuity in the electromagnetic field,? (4) a descriptor of wave behavior in short
wavelength or high frequency limit,* and (5) quantum mechanically.* One problem with these
definitions is that there are many ordinary and simple cases where wavefronts and Poynting vectors
become complicated and/or meaningless. For example, in the simple case of two coherent plane
waves interfering, there is no well-defined wavefront in the overlap region. In addition, rays defined
in what seems to be a reasonble way can have undesirable properties. For example, if rays are defined
as normals to wavefronts, then, in the case of gaussian beams, rays bend in a vacuum.

An approach that avoids the difficulties of a physical definition is that of treating rays as math-
ematical entities. From definitions and postulates, a variety of results is found, which may be more
or less useful and valid for light. Even with this approach, it is virtually impossible to think “purely
geometrically”—unless rays are treated as objects of geometry, rather than optics. In fact, we often
switch between ray thinking and wave thinking without noticing it, for instance in considering the
dependence of refractive index on wavelength. Moreover, geometrical optics makes use of quantities
that must be calculated from other models, for example, the index of refraction. As usual, Rayleigh®
has put it well: “We shall, however, find it advisable not to exclude altogether the conceptions of the
wave theory, for on certain most important and practical questions no conclusion can be drawn
without the use of facts which are scarcely otherwise interpretable. Indeed it is not to be denied that
the too rigid separation of optics into geometrical and physical has done a good deal of harm, much
that is essential to a proper comprehension of the subject having fallen between the two schools.”
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The ray is inherently ill-defined, and attempts to refine a definition always break down. A defini-
tion that seems better in some ways is worse in others. Each definition provides some insight into
the behavior of light, but does not give the full picture. There seems to be a problem associated with
the uncertainty principle involved with attempts at definition, since what is really wanted from a
ray is a specification of both position and direction, which is impossible by virtue of both classical
wave properties and quantum behavior. So the approach taken here is to treat rays without precisely
defining them, and there are few reminders hereafter that the predictions of ray optics are imperfect.

Refractive Index

For the purposes of this chapter, the optical characteristics of matter are completely specified by its
refractive index. The index of refraction of a medium is defined in geometrical optics as

speed of light in vacuum _ ¢ (1)

"= speed of light in medium ~ v

A homogeneous medium is one in which n is the same everywhere. In an inhomogeneous or
heterogeneous medium the index varies with position. In an isotropic medium n is the same at each
point for light traveling in all directions and with all polarizations, so the index is described by a scalar
function of position. Anisotropic media are not treated here.

Care must be taken with equations using the symbol #, since it sometimes denotes the ratio of
indices, sometimes with the implication that one of the two is unity. In many cases, the difference
from unity of the index of air (=1.0003) is important. Index varies with wavelength, but this depen-
dence is not made explicit in this chapter, most of which is implicitly limited to monochromatic light.
The output of a system in polychromatic light is the sum of outputs at the constituent wavelengths.

Systems Considered

The optical systems considered here are those in which spatial variations of surface features or
refractive indices are large compared to the wavelength. In such systems ray identity is preserved;
there is no “splitting” of one ray into many as occurs at a grating or scattering surface.

The term lens is used here to include a variety of systems. Dioptric or refractive systems employ
only refraction. Catoptric or reflective systems employ only reflection. Catadioptric systems employ
both refraction and reflection. No distinction is made here insofar as refraction and reflection can
be treated in a common way. And the term lens may refer here to anything from a single surface to a
system of arbitrary complexity.

Summary of the Behavior and Attributes of Rays

Rays propagate in straight lines in homogeneous media and have curved paths in heterogeneous
media. Rays have positions, directions, and speeds. Between any pair of points on a given ray there is
a geometrical path length and an optical path length. At smooth interfaces between media with dif-
ferent indices rays refract and reflect. Ray paths are reversible. Rays carry energy, and power per area
is approximated by ray density.

Reversibility

Rays are reversible; a path can be taken in either direction, and reflection and refraction angles are
the same in either direction. However, it is usually easier to think of light as traveling along rays in a
particular direction, and, of course, in cases of real instruments there usually is such a direction. The
solutions to some equations may have directional ambiguity.
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Groups of Rays

Invariance

Certain types of groups of rays are of particular importance. Rays that originate at a single point
are called a normal congruence or orthotomic system, since as they propagate in isotropic media they
are associated with perpendicular wavefronts. Such groups are also of interest in image formation,
where their reconvergence to a point is important, as is the path length of the rays to a reference
surface used for diffraction calculations. Important in radiometric considerations are groups of
rays emanating from regions of a source over a range of angles. The changes of such groups as they
propagate are constrained by conservation of brightness. Another group is that of two meridional
paraxial rays, related by the two-ray invariant.

Properties

Individual rays and groups of rays may have invariance properties—relationships between the posi-
tions, directions, and path lengths—that remain constant as a ray or a group of rays passes through
an optical system.® Some of these properties are completely general, e.g., the conservation of étendue
and the perpendicularity of rays to wavefronts in isotropic media. Others arise from symmetries of
the system, e.g., the skew invariant for rotationally symmetric systems. Other invariances hold in the
paraxial limit. There are also differential invariance properties.”® Some ray properties not ordinarily
thought of in this way can be thought of as invariances. For example, Snell’s law can be thought of
as a refraction invariant # sin I.

Description of Ray Paths

A ray path can be described parametrically as a locus of points x(0), where o is any monotonic
parameter that labels points along the ray. The description of curved rays is elaborated in the section
on heterogeneous media.

Real Rays and Virtual Rays

Direction

Since rays in homogeneous media are straight, they can be extrapolated infinitely from a given
region. The term real refers to the portion of the ray that “really” exists, or the accessible part, and
the term virtual refers to the extrapolated, or inaccessible, part.

At each position where the refractive index is continuous a ray has a unique direction. The direction
is given by its unit direction vector r, whose cartesian components are direction cosines (o, B, ), i.e.,

r=(a, B, 7) (2)

where |r|*=a?+ > +y? =1. The three direction cosines are not independent, and one is often
taken to depend implicitly on the other two. In this chapter it is usually ¥, which is

v(op)=y1-o*-p* 3)
Another vector with the same direction as r is
p=nr=n(c,,7)=(p>p,, p,) (4)

where |p|? = n?. Several names are used for this vector, including the optical direction cosine and the
ray vector.
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Geometrical Path Length

Geometrical path length is geometrical distance measured along a ray between any two points. The

differential unit of length is
ds=\/dx* +dy* +dz* (5)

The path length between points x, and x, on a ray described parametrically by x(o), with derivative
x(o)=dx(o)/do is

Xy X d X, .
S(x,3 x2)=le dsle ﬁd(f: j x(0)P do (6)

Optical Path Length

The optical path length between two points x, and x, through which a ray passes is
Optical pathlength=V(x; x,)= szn(x) ds= cf%zcjdt (7)

The integral is taken along the ray path, which may traverse homogeneous and inhomogeneous
media, and include any number of reflections and refractions. Path length can be defined for virtual
rays. In some cases, path length should be considered positive definite, but in others it can be either
positive or negative, depending on direction.” If x, x,, and x, are three points on the same ray, then

Vi(x,s x,)=V(x5 x)+ V(x5 x,) (8)

Equivalently, the time required for light to travel between the two points is

Time = optical path length _ V _ %J‘Xz (o) ds = sz ds )

c c x V

In homogeneous media, rays are straight lines, and the optical path length is V = nfds = (index) x
(distance between the points).

The optical path length integral has several interpretations, and much of geometrical optics
involves the examination of its meanings. (1) With both points fixed, it is simply a scalar, the optical
path length from one point to another. (2) With one point fixed, say x,, then treated as a function of
x, the surfaces V(x; x) = constant are geometrical wavefronts for light originating at x,. (3) Most gen-
erally, as a function of both arguments V(x; x,) is the point characteristic function, which contains all
the information about the rays between the region containing x, and that containing x,. There may
not be a ray between all pairs of points.

Fermat’s Principle

According to Fermat’s principle!®~'> the optical path between two points through which a ray passes
is an extremum. Light passing through these points along any other nearby path would take either
more or less time. The principle applies to different neighboring paths. The optical path length of a
ray may not be a global extremum. For example, the path lengths of rays through different facets of
a Fresnel lens have no particular relationship. Fermat’s principle applies to entire systems, as well
as to any portion of a system, for example, to any section of a ray. In a homogeneous medium, the
extremum is a straight line or, if there are reflections, a series of straight line segments.

The extremum principle can be described mathematically as follows.!® With the end points fixed,
if a nonphysical path differs from a physical one by an amount proportional to 6, the nonphysical
optical path length differs from the actual one by a quantity proportional to 62 or to a higher order.
If the order is three or higher, the first point is imaged at the second-to-first order. Roughly speaking,
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the higher the order, the better the image. A point is imaged stigmatically when a continuum of
neighboring paths have the same length, so the equality holds to all orders. If they are sufficiently
close, but vary slightly, the deviation from equality is a measure of the aberration of the imaging. An
extension of Fermat’s principle is given by Hopkins.!”

Ray and wave optics are related by the importance of path length in both.'®!° In wave optics, optical
path length is proportional to phase change, and the extremum principle is associated with constructive
interference. The more alike the path lengths are from an object point to its image, the less the differ-
ences in phase of the wave contributions, and the greater the magnitude of the net field. In imaging this
connection is manifested in the relationship of the wavefront aberration and the eikonal.

Fermat’s principle is a unifying principle of geometrical optics that can be used to derive laws of
reflection and refraction, and to find the equations that describe ray paths and geometrical wave-
fronts in heterogeneous and homogeneous media. It is one of a number of variational principles
based historically on the idea that nature is economical, a unifying principle of physics. The idea
that the path length is an extremum could be used mathematically without interpreting the refrac-
tive index in terms of the speed of light.

Geometrical Wavefronts

For rays originating at a single point, a geometrical wavefront is a surface that is a locus of constant
optical path length from the source. If the source point is located at x;, and light leaves at time t,,
then the wavefront at time t is given by

V(x,; x)=c(t—t,) (10)
The function V(x; xo), as a function of x, satisfies the eikonal equation
(5] {5 (5]
dx dy dz (11
=|AV(x; x|

This equation can also be written in relativistic form, with a four-dimensional gradient as
0=3%(dV/dx,).”

For constant refractive index, the eikonal equation has some simple solutions, one of which is
V =nla(x—x,)+ B(y—y,)+7(z—z,)], corresponding to a parallel bundle of rays with directions
(05 B, 7). Another is V =n[(x—x,)*+(y—y,)* +(z—2,)*]"?, describing rays traveling radially from a
point (xo, Voo zo).

In isotropic media, the rays and wavefronts are everywhere perpendicular to each other, a condi-
tion referred to as orthotomic. According to the Malus-Dupin principle, if a group of rays emanating
front a single point is reflected and/or refracted any number of times, the perpendicularity of rays to
wavefronts is maintained. The direction of a ray from x, at x is that of the gradient of V(x; x)

p=nr=VV
or
A% A% av
na—x ﬂﬁ—a—y I’l}’—z (12)

In a homogeneous medium, all wavefronts can be found from any one wavefront by a construction.
Wavefront normals, i.e., rays, are projected from the known wavefront, and loci of points equidistant
therefrom are other wavefronts. This gives wavefronts in both directions, that is, both subsequent and
previous wavefronts. (A single wavefront contains no directional information.) The construction also
gives virtual wavefronts, those which would occur or would have occurred if the medium extended
infinitely. This construction is related to that of Huygens for wave optics. At each point on a wavefront
there are two principal curvatures, so there are two foci along each ray and two caustic surfaces.®?!
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The geometrical wavefront is analogous to the surface of constant phase in wave optics, and
the eikonal equation can be obtained from the wave equation in the limit of small wavelength.>* A
way in which wave optics differs from ray optics is that the phase fronts can be modified by phase
changes that occur on reflection, transmission, or in passing through foci.

Fields of Rays

In many cases the optical direction cosine vectors p form a field, where the optical path length is
the potential, and the geometrical wavefronts are equipotential surfaces. The potential changes with
position according to

dV=nodx+nBdy+nydz=nr-dx=p-dx (13)

If dx is in the direction of a ray, then dV/dx = n, the maximum rate of change. If dx is perpendicular
to a ray, then dV/dx = 0. The potential difference between any two wavefronts is

v, -V, =_[:dV (14)

where x, and x, are any two points on the respective wavefronts, and the integrand is independent of
the path. Other relationships for rays originating at a single point are

0=Vxp=Vx(nr) and Ozgsp-dx (15)

where the integral is about a closed path.? These follow since p is a gradient, Eq. (13). In regions
where the rays are folded onto themselves by refraction or reflections, p and V are not single-valued,
so there is not a field.

1.4 CHARACTERISTIC FUNCTIONS

Introduction

Characteristic functions contain all the information about the path lengths between pairs of points,
which may either be in a contiguous region or physically separated, e.g., on the two sides of a lens.
These functions were first considered by Hamilton,? so their study is referred to as hamiltonian
optics. They were rediscovered in somewhat different form by Bruns?*** and referred to as eikonals,
leading to a confusing set of names for the various functions. The subject is discussed in a number
of books.?—3¢

Four parameters are required to specify a ray. For example, an input ray is defined in the
z = 0 plane by coordinates (x, y) and direction (¢, ). So four functions of four variables specify
how an incident ray emerges from a system. In an output plane z” = 0, the ray has coordinates
x'=x"(x, ¥, o, B), y'=y"(x, y, a, B), and directions o’ =a’(x, y, a, B), p'=p'(x, y, o, B).
Because of Fermat’s principle, these four functions are not independent, and the geometrical optics
properties of a system can be fully characterized by a single function.*

For any given system, there is a variety of characteristic functions related by Legendre transfor-
mations, with different combinations of spatial and angular variables.>* The different functions are
suited for different types of analysis. Mixed characteristic functions have both spatial and angular
arguments. Those functions that are of most general use are discussed next. The others may be use-
ful in special circumstances. If the regions have constant refractive indices, the volumes over which
the characteristic functions are defined can be extended virtually from physically accessible to inac-
cessible regions.

From any of its characteristic functions, all the properties of a system involving ray paths can
be found, for example, ray positions, directions, and geometrical wavefronts. An important use of
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the characteristic functions is demonstrating general principles and fundamental limitations. Much
of this can be done by using the general properties, e.g., symmetry under rotation. (Unfortunately,
it is not always known how closely the impossible can be approached.)

Point Characteristic Function

The point characteristic function is the optical path integral V(x; x")=V(x, y, z; x’, y’, z") taken as a
function of both points x and x”. At point x where the index is #,

% A% A%
—na_g —nﬁ—g —n)/—z or —-p=VV (16)

Similarly, at x’, where the index is #’,

n'a':— n'ﬂ':j}‘/’l n,}/:% or p’:VIV (17)

It follows from the above equations and Eq. (4) that the point characteristic satisfies two conditions:
n*=|VV]? and n?=|V'V]? (18)

Therefore, the point characteristic is not an arbitrary function of six variables. The total differential
of Vis

dV(x; x")=p’-dx’—p-dx (19)

“This expression can be said to contain all the basic laws of optics”

Point Eikonal

If reference planes in object and image spaces are fixed, for which we use z, and z;, then the point
eikonal is S(x, y; x’, y')=V(x, y, 2 x’, ¥, z}). This is the optical path length between pairs of
points on the two planes The fanction is not useful if the planes are conjugate, since more than one
ray through a pair of points can have the same path length. The function is arbitrary, except for the
requirement®’ that

I I 40 (20)
oxdx’ dydy’ dxdy’ dx’dy

The partial derivatives of the point eikonal are

cna= g =B g (21)
no= nf= 2y and no'=— nﬂ—ay,

The relative merits of the point characteristic function and point eikonal have been debated.’”-**

Angle Characteristic

The angle characteristic function T(a, ;¢ 8’), also called the eikonal, is related to the point char-
acteristic by

T(a, B; o', B)=V(x, y, z; X", y', 2")+n(ox+ By +yz) (22)
—n'(a'x"+By' +y'z")

Here the input plane z and output plane 2’ are fixed and are implicit parameters of T.
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(a,B57)

<
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FIGURE 1 Geometrical interpretation of the angle characteristic function for constant
object and image space indices. There is, in general, a single ray with directions (¢, S, 7) in
object space and (o', B’, y’) in image space. Point O is the coordinate origin in object space,
and O’ is that in image space. From the origins, perpendiculars to the ray are constructed,
which intersect the ray at Q and Q’. The angle characteristic function T(a, 3; @', B’) is the
path length from Q to Q.

This equation is really shorthand for a Legendre transformation to coordinates p _=9V/dx; etc. In
principle, the expresswns of Eq. (16) are used to solve for x and y in terms of & and B, and likewise
Eq. (17) gives x” and y” in terms of o¢” and 3/, so

T(O{, ﬂ; o, ﬁ')zV[x(O!, ,B)> )’(05> ,B)y zZ; .X,((X,, ﬁ,)) }/'(05': ;8’)> z ]
+nlax(o, B)+ By, B)+41—-o*—B2z] (23)
—n'la’x’(a’, B+ By (o, B+yl-a"> =B 2']

The angle characteristic is an arbitrary function of four variables that completely specify the direc-
tions of rays in two regions. This function is not useful if parallel incoming rays give rise to parallel
outgoing rays, as is the case with afocal systems, since the relationship between incoming and outgo-
ing directions is not unique. The partial derivatives of the angular characteristic function are

9T _ (o e, 9T_( B o
ET I T T A U (24)
&—T=—n'(x'—a—,z'] 8_T:_n,( '—EZ/J 25
Jao’ ,y; > aﬂr Yy ,}/, (25)

These expressions are simplified if the reference planes are taken to be z =0 and z” = 0. The geo-
metrical interpretation of T is that it is the path length between the intersection point of rays with
perpendicular planes through the coordinate origins in the two spaces, as shown in Fig. 1 for the
case of constant n and n”. If the indices are heterogeneous, the construction applies to the tangents
to the rays. Of all the characteristic functions, T is most easily found for single surfaces and most
easily concatenated for series of surfaces.

Point-Angle Characteristic

The point-angle characteristic function is a mixed function defined by
W(x, y,zs &, B)=V(x, y, 25 x", ¥, 2)—n'(0'x"+ By +7'2") 26)
=T(a, B; o', B)—nlox+By+yz)
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As with Eq. (22), this equation is to be understood as shorthand for a Legendre transformation. The
partial derivatives with respect to the spatial variables are related by equations like those of Eq. (16),
so n? = |VW]|?, and the derivatives with respect to the angular variables are like those of Eq. (25). This
function is useful for examining transverse ray aberrations for a given object point, since JW/d o/,
dW/Jd 3’ give the intersection points (x’, ") in plane z for rays originating at (x, y) in plane z.

Angle-Point Characteristic
The angle-point characteristic function is
Wi, B 'y, 2)=V(x, y, 2z %', s 2)+nlax+ By +7z)
=T(a, Bs o', B))—n'(a’x"+ By’ +7'z)

Again, this is shorthand for the Legendre transformation. This function satisfies relationships like
those of Eq. (17) and satisfies n’> =|V’ W’|*. Derivatives with respect to spatial variables are like
those of Eq. (21). It is useful when input angles are given and output angles are to be found.

(27)

Expansions About an Arbitrary Ray

If two points on a ray that are not conjugate are taken as coordinate origins, and the z axes of the
coordinate systems are taken to lie along the rays, then the expansion to second order of the point
eikonal about these points is

. - 2
S(x,5 y5 %5 y,)=VHax] +bx y +c yl +axi+bx,y, +c,y? (8)

+dx,x, +ey,y, + fx,y,+gyx,
The other characteristic functions have similar expansions. These expansions have three types of
terms, those associated with the input space, the output space, and “interspace” terms. From the

coefficients, information about imaging along a known ray is obtained. This subject is treated in the
references for the section “Images About Known Rays.”

Expansions About the Axis
For rotationally symmetric systems, the building blocks for an expansion about the axis are
Objectspace term: O=x*+y> or «a*+f (29)
Image space term: $=x"2+y"> or «a’*+p" (30)
Interspace term:  B=xx"+yy’ or o«ao'+pB or xo'+yf’

(31)
or ox'+By

(Here % = “between.”) The interspace term combines the variables included in O and .$. The general
form can be written as a series

CO, B, =Y. a, OBV IN (32)
L,M,N
To second order, the expansion is
C(0, B, $)=a,+a,,,0+a,, B+ay, I+a,,0*+a, B +a,,5*

(33)
+a,,,0B+a, 09+a, BI
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The constant term is the optical path length between coordinate origins in the two spaces. It is often
unimportant, but it does matter if two systems are used in parallel, as in an interferometer. The three
first-order terms give the paraxial approximation. For imaging systems, the second-order terms are
associated with third-order ray aberrations, and so on.* It is also possible to expand the characteristic
functions in terms of three linear combinations of 0, %, and .. These combinations can be chosen
so that the characteristic function of an aberration-free system depends on only one of the three
terms, and the other two describe the aberrations.2631:40

Paraxial Forms for Rotationally Symmetric Systems

These functions contain one each of the object space, image space, and interspace terms, with coef-
ficients a, a,, and a;. The coefficients of the object and image space terms depend on the input and
output plane locations. That of the interspace term depends on the system power. Point eikonal:

S(x', ¥ %, y)=a+a, (x*+y*)+ay(xx’+yy ) +a, (k" +y'?) (34)
Angle characteristic:
T(e', B's o, B)=a+a,(0?+p*)+ay(oc’+ B +a, (' + ) (35)
Point-angle characteristic:
W(x, y; o, B')=a+a,(x*+y*)+ay(xo’+ yf)+a, (o’ + %) (36)
Angle-point characteristic:
We, B, %', y')=a+a, (0 +B*)+ay(ax’+ By ) +a, (x> +y?) (37)

The corresponding coefficients in these expressions are different from each other. The familiar prop-
erties of paraxial and gaussian optics can be found from these functions by taking the appropriate
partial derivatives.

Some Ideal Characteristic Functions

For a system that satisfies certain conditions, the form of a characteristic function can sometimes be
found. Thereafter, some of its properties can be determined. Some examples of characteristic func-
tions follow, in each of which expression the function F is arbitrary.

For maxwellian perfect imaging (defined below) by a rotationally symmetric system between
planes at z = 0 and z” = 0 related by transverse magnification m, the point characteristic function,
defined for z’ # 0, is

V(s y's 255 %, y)= F(x? + y2)+[(x"=mx)? +(y = my)* + 272 (38)

Expanding the expression above for small x, x, y, y” give the paraxial form, Eq. (34). The form of the
point-angle characteristic is

W(x, y; o', B)=F(x*+y*)—mn o’x+n’"f’y) (39)
The form of the angle-point characteristic is

W'(e, B x', y")=F(x"? +y’2)+%(nax’+nﬁy') (40)

The functions F are determined if the imaging is also stigmatic at one additional point, for example,
at the center of the pupil.263404! The angular characteristic function has the form
T(e, B; o, B)=Fl(na—mn’o’)* +(nf—mn’ f’)*] (41)

where F is any function.
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For a lens of power ¢ that stigmatically images objects at infinity in a plane, and does so in either
direction,
nn’

¢

Partially differentiating with respect to the appropriate variables shows that for such a system, the
heights of point images in the rear focal plane are proportional to the sines of the incident angles,
rather than the tangents.

S, y; %', y)=—¢(xx"+yy") and T(e, B; o', B)=——(ao’+pp") (42)

1.5 RAYS IN HETEROGENEOUS MEDIA

Introduction

This section provides equations for describing and determining the curved ray paths in a heteroge-
neous or inhomogeneous medium, one whose refractive index varies with position. It is assumed
here that n(x) and the other relevant functions are continuous and have continuous derivatives to
whatever order is needed. Various aspects of this subject are discussed in a number of books and
papers.*>~* This material is often discussed in the literature on gradient index lenses®*>* and in dis-
cussions of microwave lenses.>>8

Differential Geometry of Space Curves

A curved ray path is a space curve, which can be described by a standard parametric description,
x(0)=[x(0),y(0),2z(0)], where o is an arbitrary parameter.*>>>-%2

Different parameters may be used according to the situation. The path length s along the ray is
sometimes used, as is the axial position z. Some equations change form according to the parameter,
and those involving derivatives are simplest when the parameter is s. Derivatives with respect to the
parameter are denoted by dots, so x(0)=dx(0)/do =[x(0), y(0),z(0)]. A parameter other than s is a
function of s, so dx(0)/ds=(dx/do)(do/ds).

Associated with space curves are three mutually perpendicular unit vectors, the tangent vector t,
the principal normal n, and the binormal b, as well as two scalars, the curvature and the torsion. The
direction of a ray is that of its unit tangent vector

x(0)

|%(0)]

t=22—x(s)=(0t, B, 7) (43)

The tangent vector t is the same as the direction vector r used elsewhere in this chapter. The rate of
change of the tangent vector with respect to path length is

. . do dp dy
ant(s)zx(s):(g, P E] (44)
The normal vector is the unit vector in this direction
X(s)
n=-—-—- (45)
[%(s)]

The vectors t and n define the osculating plane. The curvature x =|X(s)| is the rate of change of
direction of t in the osculating plane.

. i 2 2 2
S - L L I
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The 